MYCHEMISTRY

v1.99a 2012/09/20

Create Reaction Schemes with $\mathbb{E}\!\!\mathsf{T}_{\!\!\mathsf{E}}\!\mathsf{X}\,\mathbf{2}_{\mathcal{E}}$ and Chemfig

Clemens Niederberger

https://bitbucket.org/cgnieder/mychemistry/ contact@mychemistry.eu

English documentation

Contents

1	Licence and Requirements						
2	Changes						
3	Bacl	kground	2				
4	Pack	cage options	3				
5	Usag	ge	3				
	5.1	Basic Principle	3				
	5.2	How does it work?	4				
		5.2.1 Basic Commands	4				
		5.2.2 Positioning	6				
		5.2.3 Branches	8				
		5.2.4 Numbered Schemes	10				
	5.3	Predefined Values	11				
6	Adv	anced Usage, Usage with Ti <i>k</i> Z	13				
	6.1	The Alignment Question	13				
	6.2	Using Ti k Z to Achieve Other					
		Results	17				
7	Alpł	nabetical Command Reference	19				
	7.1	anywhere	20				
	7.2	\arrow	21				
		7.2.1 Options	21				
		7.2.2 Alignment	24				

	7.2.3 Appearance	25
7.3	\mathbf{branch}	25
	7.3.1 Positioning	26
	7.3.2 Alignment problems .	28
7.4	$\$	29
7.5	\dummy	29
7.6	\elmove	30
7.7	\makeinvisible	30
7.8	\makevisible	31
7.9	\marrow	31
7.10	\mCsetup	32
7.11	\merge	33
7.12	\mesomeric	36
7.13	$reactant \dots$	38
7.14	rxn (environment)	39
	7.14.1 Options	40
7.15	rxnscheme (environment)	41
	7.15.1 Options	41
	7.15.2 Customizing rxnscheme	43
7.16	\setarrowlabel	45
7.17	\setarrowlength	45
7.18	\setatomsize	46
7.19	\setbondlength	46
7.20	\setarrowline	46
7.21	\setbondshape	46
7.22	\setelmove	47
7.23	\setmergelength	47

1 Licence and Requirements

Permission is granted to copy, distribute and/or modify this software under the terms of the LaTeX Project Public License, version 1.3 or later (http://www.latex-project.org/lppl.txt). This package has the status "maintained."

MYCHEMISTRY needs and loads the packages etoolbox,¹ float,² xkeyval,³ chemmacros⁴ and chemfig.⁵ It also loads the TikZ-libraries arrows, positioning, decorations.pathmorphing, shapes, calc, matrix, chains, scopes and intersections.

If the package is available MYCHEMISTRY also loads translator.⁶

2 Changes

With v1.99 (=v2.0beta) package dependencies have changed so that MYCHEMISTRY loads noticably less packages than before. Most important for you: it does not load mhchem⁷ any more. This documentation uses chemmacros instead which is loaded by MYCHEMISTRY.

There are now considerably less package options as most of them are not needed any more. MYCHEMISTRY now provides proper language support, e.g., when used together with babel.⁸

New is the command \setelmove. The command \makevisible now only has an effect if the new option draft is used.

3 Background

MYCHEMISTRY provides two environments within which the mechanisms are created. Both environments basically are tikzpicture environments. When this package first was written chemfig lacked the possibility of creating reaction schemes itself. This was the motivation for me to get started on MYCHEMISTRY which then rapidly grew and until now has its users.

The background has changed in August 2011, though. Then chemfig v1.0 was published and now provides simple but powerful macros to create reactions schemes. They seem to to be used very often but I am advertising as much as I can. Anyway, since then MYCHEMISTRY can be considered obsolete and is not actively developed any more. The current release 1.99 (= 2.0beta) was due to an incompatibility with pdfpages⁹ and a complete robustification of various parts of the code.

Other than bug fixes this package will very likely not be updated any more!

¹ CTAN: etoolbox ² CTAN: float ³ CTAN: xkeyval ⁴ CTAN: chemmacros ⁵ CTAN: chemfig ⁶ Part of the beamer bundle ⁷ CTAN: mhchem ⁸ CTAN: babel ⁹ CTAN: pdfpages

4 Package options

MYCHEMISTRY has a few package options.

- \blacktriangleright strict \rightarrow With this option all warning messages are turned into error messages.
- ▶ draft → This option is an alias to strict. Additionally it enables the makevisible command.
- ▶ final → This option is the opposite to draft, i.e., most error messages will be issued as warnings. It also disables the \makevisible command.
- ▶ placement = <value> → Changes the default floating behaviour of \begin{rxnscheme}, \end{rxnscheme} see section 7.15.

5 Usage

5.1 Basic Principle

Within the tikzpicture reactants and arrows are placed as nodes on a chain.¹⁰

```
1 \begin{tikzpicture}[start chain]
2 \node [on chain] {A};
3 \node [on chain] {B}; A B C
4 \node [on chain] {C};
5 \end{tikzpicture}
```

This way there are several possibilities to place the nodes relative to the others.

Above all MYCHEMISTRY uses the possibility of creating branches to the chain.

¹⁰ Provided by the tikzlibrary 'chains'

```
\begin{tikzpicture}[start chain=going right,node distance=5mm]
     \node [draw,on chain] {A};
     \node [draw,on chain] {B};
    { [start branch]
     \node [on chain=going below] {1};
     \node [on chain=going below] {2};
    3
    { [start branch]
8
     \node [on chain=going above] {$\alpha$};
9
     \node [on chain=going above] {$\beta$};
10
    }
11
     \node [draw,on chain] {C};
12
    \end{tikzpicture}
13
         β
         \alpha
              С
   А
         В
         1
         2
```

You don't have to understand that mechanism in detail but you should remember the placement commands in the last example, because MYCHEMISTRY uses them in the same way.

In some of the examples in this documentation the nodes are boxed with a coloured frame (see section 7.8). This is done so one can see, which size they have and which impact changes of the alignment have on them.

5.2 How does it work?

5.2.1 Basic Commands

There are two basic commands:

- > \reactant[<pos>,<name>,<tikz>]{<formula>}
- > \arrow[<pos>,<type>,<length factor>,<name>,both,<tikz>]{<above>}{<below>}

Schemes are created within the \begin{rxn} \end{rxn} environment. There you place reactants and arrows.

```
1 \begin{rxn}
2 \reactant{ \chemfig{-[::30]-[::-60]0H} }
3 \arrow{0x.}{}
4 \reactant{ \chemfig{-[::30]=_[::-60]0} }
5 \end{rxn}
```

key word	pos. angle	neg. angle
right	0	± 360
right above	45	-315
above	90	-270
above left	135	-225
left	180	-180
below left	225	-135
below	270	-90
below right	315	-45

Table 1: key words for positioning

 $\sim_{OH} \xrightarrow{Ox.} \sim_{O}$

When you don't use options reactants and arrows always are put to the right of the last object. With the option <pos> you can change this behaviour.

You can see in the last example that positioning can be realized through key words (see table 1) like below or by using the angle relative to the horizontal line. Every angle from the

interval $[-360^\circ; 360^\circ]$. 0° corresponds to right which is the default value. *Positive angles* mean a turn *counter clockwise*, negative ones a turn clockwise – like you're used to in mathematics.

5.2.2 Positioning

Reactants and arrows cannot only be positioned through key words and angles. They can refer to another reactant or arrow.

```
1 \begin{rxn}
2 \reactant[,start]{ \chemfig{R-[::30](-[::60]R|^1) (-[::-120]R|^2)
-[::-60]0H} }
3 \arrow[40]{\tiny$\text{R}^1=\text{H}$} {\tiny$\text{R}^2=\text{H}$}
4 \reactant[40]{ \chemfig{R-[::30]=_[::-60]0} }
5 \arrow[start.0]{\tiny$\text{R}^1=\text{alkyl}$} {\tiny$\text{R}^2=\
text{H}$}
6 \reactant{ \chemfig{R-[::30](-[::60]R)=_[::-60]0} }
7 \arrow[start.-40,-|>]{\tiny$\text{R}^1=\text{alkyl}$} {\tiny$\text{R}}
8 \end{rxn}
```


In the last example the first reactant got the <name> start. The arrows in lines 5 and 7 now could refer to it. A *previously given name* can act as an anchor for later reactants or arrows, if the positioning is written like <anchor>.<angle>.

Arrows can be given names, too. The anchor point of an arrow always is in the middle of the arrow line and has *no* size.

Using this kind of positioning does not break the chain.

```
1 \begin{rxn}
2 \reactant[,a]{A}
3 \arrow{}{}
4 \reactant{B}
5 \arrow[a.-90]{}{}
6 \reactant[-90]{C}
7 \arrow[a.180]{}{}
8 \reactant[180]{D}
9 \end{rxn}
```

All seven objects of this example are logically speaking part of the same chain. The next object is placed to the right of the last one if no positioning is used.

5.2.3 Branches

To break a chain you use the command

```
> \branch[<pos>,<name>,<tikz>]{<formulae>}
```

The positioning of a branch is slightly different from earlier objects, although the syntax is similar. A branch has two additional ways of positioning. Every positioning that refers to an anchor cause that the branch is not a part of the chain but is a real branch.

<angle> on the chain <key> on the chain <anchor>.<angle> not on the chain on chain=going <key> on the chain <key>=of <anchor> not on the chain As <key> you again use the values from table 1.

```
begin{rxn}
      \reactant{ \chemfig{-[::30]-[::-60]OH} }
      \arrow{}{}
      \reactant[,carbony1]{ \chemfig{-[::30]=_[::-60]0} }
      \branch[carbonyl.-90]{
        \arrow[-90,<=>]{\ch{NH2R}}{}
        \reactant[-90]{ \chemfig{-[::30]=_[::-60]N(-[6]H)-[::60]R} }
7
     }
8
     \arrow{}{}
9
      \reactant{ \chemfig{-[::30](-[::60]0H)=_[::-60]0} }
10
    \ensuremath{\mathsf{nd}}{\mathsf{rxn}}
11
```


Please note that in the last example the arrow and the reactant placed after branch continue the original chain.

```
\begin{rxn}
1
      \reactant[,a]{A}
      \arrow{}{}
      \mathbf{B}
      \branch[a.-90]{
        \arrow[-90]{}{}
        \reactant[-90]{C}
      }
8
      \arrow[a.180]{}{}
9
10
      \reactant[180]{D}
11
     \ensuremath{\mathsf{nd}}\xn\}
```

The chain is broken by the branch which starts a new chain itself.

Using \branch allows to create schemes with several branches:

5.2.4 Numbered Schemes

There is another environment to create schemes.

> \begin{rxnscheme}[<label>,<placement>,<alignment>,<skale factor>,<title>] <caption> \end{rxnscheme}

This is a floating environment for scheme, which can be given a <caption>, a <label> and the common placement identifiers like htp (default).

5.3 Predefined Values

There are some predefined values that are basically due to my personal taste. But of course you can change them according to your requirements. For chemfig-formulæ *inside of* MYCHEM-ISTRY *environments* some values are predefined as follows:

```
1 \setatomsep{1.8em}
2 \setcrambond{3pt}{0.5pt}{1pt}
```

Outside the MYCHEMISTRY environments the defaults of chemfig still are set.

MYCHEMISTRY's defaults can be changed with these commands:

- > \setbondlength{<length>}
- > \setbondshape{<base length>}{<dash thickness>}{<dash spacing>}

```
>> \setatomsize{<font size>}
```

With these commands the parameters are changed *for all following* MYCHEMISTRY environments. If you leave the arguments empty default values are restored. Default for \setatomsize is \small.

If you only want to change the parameters of a single environment you can use chemfig's commands and LATEX's fontsize commands *inside the environment*.

```
\begin{rxn}
    \setatomsep{2.1em}\setcrambond{5pt}{1pt}{2pt}\Large
    \reactant{\chemfig{-[::30](<[::60])-[::-60](<:[::-60])-[::60]A}}
    \end{rxn}
    \begin{rxn}
    \begin{rxn}
    \reactant{\chemfig{-[::30](<[::60])-[::-60](<:[::-60])-[::60]A}}
    \reactant{\chemfig{-[::30](<[::60])-[::-60](<:[::-60])-[::60]A}}
</pre>
```


The default length of reaction arrows is 4 em, the default line width is semithick and the default label distance is 0.2 em. You can change these default values with the commands

- > \setarrowlength{<length>}
- > \setarrowline{<line width>}
- > \setarrowlabel{<label distance>}

or with

- ▶ $mCsetup{<options>} \rightarrow valid options are:$
- ▶ arrowlength = <length>
- ▶ arrowline = <line width>
- > arrowlabel = <label distance>

6 Advanced Usage, Usage with TikZ

The biggest problem with MYCHEMISTRY usually is the correct positioning of reactants and arrows. Section 6.1 looks a little bit into this topic.

Some of the commands can be given TikZ code as third optional argument. More precisely you can use the same TikZ keys there as you would with a \node inside a tikzpicture. If a node is placed with \node[<tikz>] (<placement>){<anything>} then <tikz> is about the same in e.g. \reactant[,,<tikz>]{}. With this you can customize your scheme in many ways.

6.1 The Alignment Question

Since reactants, arrows and branches are aligned centered to the referred object the default alignment not always produces nice results.

As you can see both reactants are not aligned equally to the arrow as far as the benzene ring is concerned. The first reactant seems to be shifted up. Trying to solve this with TikZ code fails:

This is, because the first reactant is shifted with the respect to the object it refers to. Since it is the first object on the chain itself it isn't shifted a all. The following arrow always is centered to the object before.

Since there is no possibility to change the alignment of the arrow itself what you can do is put it inside a branch.

For the last example this isn't the best solution though because exact alignment needs lots of tries until you get the required result. There is another solution: an invisible bromine to the first benzene.

In other cases, too, an invisible substituent should be preferred over TikZ code since it's easier and more precise:

I'm afraid that in many other cases you'll have to play with xshift and yshift, though, until the scheme looks the way you want.

6.2 Using TikZ to Achieve Other Results

You could, just for fun?, change the looks of a molecule with TikZ.

The last example is not very good, of course, since you can achieve the same result using chemfig's own possibilities. But other cases are imaginable: for example one could define a style with which reactants are shown:

```
\colorlet{mCgreen}{green!50!gray}
    \colorlet{mCblue}{cyan!50!gray}
    \colorlet{mCred}{magenta!50!gray}
    \colorlet{mCyellow}{yellow!50!gray}
    begin{rxn}
     \tikzset{reactant/.style={draw=#1,fill=#1!10,inner sep=1em,minimum
     height=10em,minimum width=12em,rounded corners}}
     \reactant[,cytosine,reactant=mCred]{\chemfig{H-[:30]N*6(-(=0)-N=(-NH
     _2)-=-)}}
     \anywhere{cytosine.-90,,yshift=-2mm}{Cytosine}
     \reactant[,thymine,reactant=mCyellow]{\chemfig{H-[:30]N*6(-(=0)-N(-H)
     -(=0)-(-CH_3)=-)}}
     \anywhere{thymine.-90,,yshift=-2mm}{Thymine}
10
     \reactant[cytosine.-90,adenine,yshift=-2em,reactant=mCblue]{\chemfig
11
     {[:-36]*5(-N(-H)-*6(-N=-N=(-NH_2)--)--N=)}}
     \anywhere{adenine.-90,Guanin,yshift=-2mm}{Adenine}
12
     \reactant[,guanine,reactant=mCgreen]{\chemfig{[:-36]*5(-N(-H)-*6(-N
13
     =(-NH_2)-N(-H)-(=0)--)--N=)}}
     \anywhere{guanine.-90,,yshift=-2mm}{Guanine}
14
    \ensuremath{\mathsf{nd}}\xn\}
15
```


This way certain parts of a scheme could be emphasized:

7 Alphabetical Command Reference

In the following section every command is explained.

7.1 anywhere

Sometimes it might be useful to be able to place a reactant or anything else off the chain.

> \anywhere{<pos>, <name>, <tikz>}{<something>}

For this case there's \anywhere. It is positioned with <pos> similar to \branch.

<anchor>.<angle> not on the chain

on chain=going <key> on the chain

<key>=of <anchor> not on the chain

Please be aware that <pos> cannot be left empty.

```
\label{eq:linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_line
```

You can use this command e.g. for placing labels next to reactants.

```
\begin{rxn}
     \reactant[,ketone]{\chemfig{H-\chemabove{C}{\hspace*{5mm}}\
2
     scriptstyle\alpha}(-[2]H)(-[6,,,2]{}|{\textcolor{blue}H})-C(=[:60]\
     lewis{02,0})-[:-60]C|H_3}}
     \anywhere{below=of ketone}{$+ \ch[format=\color{blue}]{OH-}$}
     \arrow[,<=>]{\tiny slow}{}
     \mesomeric[,mesomer]{
       \reactant[,carbanion]{\chemfig{H_2|\chemabove[3pt]{\lewis{2,C}}}{\
     fscrm}-C(=[:60]\lewis{02,0})-[:-60]C|H_3}}
       \marrow
       \reactant[,enolate]{\chemfig{H_2C=C(-[:60]\chemabove{\lewis{024,0}
     }}{\hspace*{5mm}\fscrm})-[:-60]C|H_3}}
     }
9
     \anywhere{above=of enolate}{\tiny enolate ion}
10
     \anywhere{above=of carbanion}{\tiny carbanion}
11
     \anywhere{below=of mesomer}{$+ \ch[format=\color{blue}]{H20}$}
12
    \ensuremath{\mathsf{nd}}\xn\}
13
```


You can find many further examples for the usage of \anywhere in examples.tex or examples.pdf, respectively.

7.2 \arrow

Reaction arrows are created with \arrow .

> \arrow[<pos>,<type>,<length factor>,<name>,both,<tikz>]{<above>}{<below>}

7.2.1 Options

There are a number of options to customize the arrows. The options must be used in the right order, separated with commas.

1. <pos> – possible values:

Additionally you can use every angle from the interval $[-360^\circ; 360^\circ]$.

You can also use an angle with respect to an object that's been named with <name>: <name>. <angle>. This means the arrow is placed in an angle of <angle> next to <name>. You can find lots of examples in examples.tex orexamples.pdf, respectively.

2. <type> - possible values:

- <length factor> this factor multiplies with the arrow length (4 em with factor = 1.0, default)
- 4. <name> can be used to give the arrow an anchor, to which another object can refer.
- 5. both- this gives both nodes within which the labels are written the same size.
- 6. <tikz> you can modify the arrow with Ti*k*Z keys. Not all Ti*k*Z keys have an effect, though. You can't shift arrows with shift=<coord>, for example.

1 2 3	<pre> \begin{rxn} \arrow[,,.25]{M}{}\arrow[,,.5]{MM}{}\arrow[,,.75]{MMM}{}\arrow{MMMM }{}\arrow[,,1.125]{MMMMM}{}\arrow[,,1.25]{MMMMM}{} \end{rxn} </pre>								
	M	MM	MMM	MMMM	MMMMM	MMMMM			

Please note, that the labels <above> and <below> are rotated with the arrow. At an angle of 180° <above> actually is *below* the arrow.

1	\begin{rxn}	
2	\setarrowlength{2.5em}	
3	\dummy[a]	*
4	$arrow{a}{b}$	X alb a
5	$arrow[a.45]{a}{b}$	
6	\arrow[a.90]{a}{b}	b a
7	\arrow[a.135]{a}{b}	a b
8	\arrow[a.180]{a}{b}	2
9	\arrow[a.225]{a}{b}	
10	\arrow[a.270]{a}{b}	*
11	\arrow[a.315]{a}{b}	
12	\end{rxn}	

You need to be aware of one or two points, when using the arrow type -+>: if you leave the labels empty, the arrow is the same as ->. The first label is the one added to the reaction, the

second the one subtracted. If you use only one of the labels only the corresponding arrow part is drawn.

You can change the appearance of an arrow with TikZ keys:

7.2.2 Alignment

If an arrow is placed inside a branch the alignment of the branch may be determined by the size of the label nodes. If the two labels have a different size, alignment can go wrong.

By using the option both both nodes get the same size. This can correct the alignment.

```
1 \makevisible
2 \begin{rxn}
3 \reactant[,a]{A}
4 \arrow{}{}
5 \branch[below=of a]{
6 \arrow[-90,,,,both]{\chemfig{-[::30]-[::-60]OH}}{}
7 }
8 \end{rxn}
9 \makeinvisible
```


There's more to the question of alignment in section 7.3.2.

7.2.3 Appearance

You can change the general appearance of arrows with \setarrowlength (section 7.17) and \setarrowline (section 7.20).

7.3 \branch

\branch is used to, well, create a branch to a reaction.

> \branch[<pos>,<anchor>,<tikz>]{<branch code>}

For \branch positioning an anchor is important. Let's take a look at an example:

```
begin{rxn}
1
     \reactant[,start]{\chemfig{-[::30]=_[::-60](-[::-60])-[::60]}}
     \arrow[,,.75]{\ch{HCl}}{}
     \reactant{\chemfig{-[::30]-[::-60](-[::120]C1)(-[::-60])-[::60]}}
     \chemand
     \reactant{\chemfig{-[::30](-[::60]Cl)-[::-60](-[::-60])-[::60]}}
     \branch[below right=of start]{
       \arrow[-45,,.75]{\ch{H20}}{}
       \reactant[-45]{\chemfig{-[::30]-[::-60](-[::120]0H)(-[::-60])
     -[::60]}}
        \chemand
10
        \reactant{\chemfig{-[::30](-[::60]0H)-[::-60](-[::-60])-[::60]}}
11
     }
12
    \ensuremath{\mathsf{nd}}\xn\}
13
```


The first reactant got the anchor start (line 2, also see section 7.13). \branch now refers to it in its alignment (line 7). If you don't use the alignment reference to an anchor you automatically refer to the last \reactant or \arrow. If you don't use alignment at all, then the branch is aligned to the right of the last \reactant or \arrow.

7.3.1 Positioning

There are several ways to position a branch. It can either be part of the chain or be a real branch.

<angle> on the chain <key> on the chain <anchor>.<angle> not on the chain on chain=going <key> on the chain <key>=of <anchor> not on the chain

The default behaviour is equal to \branch[0]{}. In different situations different ways can be favoured. For example if you want to use \branch to shift an arrow it can still be part of the chain.

If you like to start a real branch it *does* matter which way you use.

If a reactant isn't squared or circled -45° does not mean the same as "below right."

```
\makevisible
     begin{rxn}
2
     \reactant[,a,circle]{\chemfig{[:30]--[::-60]-0H}}
      \ \
     branch[a.-45]{arrow[-45]}}
5
     \ensuremath{\mathsf{end}}\xn\}
6
    \begin{rxn}
7
     \reactant[,a,circle]{\chemfig{[:30]--[::-60]-OH}}
8
     \arrow{}{}
9
     \branch[below right=of a]{\arrow[-45]{}}
10
    \ensuremath{\mathsf{nd}}\xn\}
11
```


7.3.2 Alignment problems

If an arrow has two arguments with different sizes and is placed inside a branch the alignment of the branch can go wrong. In this case the **\arrow** key both isn't a solution since the smaller argument then is not placed next to the arrow but is centered in its node.

What you have to do is shift the branch using the TikZ keys xshift and yshift.

7.4 \chemand

The command

\chemand[<alignment>,<anchor>,<tikz>]

produces and places a + in the same way **reactant** places arbitrary text.

The optional arguments for $\$ and $\$ are the same, see section 7.13 for $\$ reactant's options.

7.5 \dummy

\dummy creates an empty node. Up to v1.3 \arrow needed to follow after a node since \arrow internally uses \tikzchainprevious. If there was no node on the chain *before* \arrow was

used an error was raised. The same thing happened with \branch. By using \dummy you could start a scheme with an arrow anyway.

```
1 \begin{rxn}
2 \dummy\arrow{}{}
3 \end{rxn}
```

This is not *necessary any more.* In some (alignment) cases an empty node still might be useful so the command still exists.

7.6 \elmove

\elmove just is a wrapper for chemfig's \chemmove.

> \elmove[<tikz>]{<start>}{<end>}{<end>}{<end direction>}

This is expanding to

\chemmove{\draw[<tikz>](<start>).. controls +(<start
direction>) and +(<end direction>)..(<end>);}

using [->,red,shorten <=3pt,shorten >=1pt] as default for <tikz>. How you use \chemmove is described in the documentation of .

You should use \elmove only inside of \anywhere, \reactant or \transition. Otherwise you might get alignment errors.

7.7 \makeinvisible

```
▶ \makeinvisible
```

\makeinvisible restores the normal MYCHEMISTRY behaviour after \makevisible (see section 7.8) has been used. \makeinvisible only changes the looks of nodes following after it.

7.8 \makevisible

▶ \makevisible

With \makevisible you can visualize the nodes within which reactants, arrows and branches are set. This is useful when you're aligning branches, for example. You can see an example of the usage of \makevisible in section 7.2. Every kind of nodes is emphasized with a different colour:

\reactant{}, \arrow{above}, \arrow{below} and \branch{}. Also see section 7.7. \makevisible only changes the looks of nodes following after it ond only effects the group whithin which it is used.

Please beware that \makevisible only has an effect if the package option draft is active!

7.9 \marrow

\marrow creates a double-headed arrow.

▶ \marrow[<direction>]

It is a shortcut for \arrow[<direction>,<->,.5]{}{}.

7.10 \mCsetup

With

▶ \mCsetup{<keys>}

you can fully customize MYCHEMISTRY. For each of MYCHEMISTRY's commands going like \set<command> except \setbondshape there is a key <command> = <value>. Additionally there is the key align = <value> with which you can change the alignment behaviour of both \begin{rxn} \end{rxn} and \begin{rxnscheme} \end{rxnscheme}, and the key reset with whith all values are reset to default.

\mCsetup as well as every other setup command only effects the group whithin which it is used.

Here is a complete list of valid keys:

- ▶ align
- ▶ arrowlabel
- ▶ arrowlength
- ▶ arrowline
- ▶ atomsize
- ▶ bondlength
- ▶ elmove
- ▶ mergelength
- ▶ rcndist
- ▶ reset
- ▶ rxnalign
- ▶ schemealign

7.11 \merge

The \merge command is used to merge different reaction chains. In order to do that the reactants that are to be merged must have an anchor name (\reactant[,<anchor>]{}), similar with branches, see sections 7.13 and 7.3) and be placed *before* \merge.

> \merge[<label>,<direction>,<length>]{<target>}{<start a>}{<start b>}

\merge has three optional and three mandatory arguments. The latter are the anchor names of the reactants that are to be merged.

```
begin{rxn}
     \branch[,first]{
2
      \reactant[,start_a]{\chemfig{-[:30]-[:-30]OH}}
      \reactant[,start_b,xshift=9em]{\chemfig{-[:30]=[:-30]0}}
4
     }
5
     \branch[below=of first,target,yshift=-5em]{
6
      \reactant{\chemfig{-[:30]-[:-30]0-[:30](-[2]0H)-[:-30]}}
7
     }
8
     \merge[\ch{[OH^-]}]{target}{start_a}{start_b}
9
    \ensuremath{\mathsf{nd}}\xn\}
10
```


The default <direction> is below, other possible values are right, left and above. With <length> the length of the arrow from the point of merging to the tip can be changed. The default length is 3 em. The default length can be changed with \setmergelength or \mcSetup.

Since you have to place the reactants first it might be useful to know a little bit about involved lengths. There are three values which influence the needed distance between start points and the target reactant. There is the *depth* of the involved reactants, the distance of the "reaction nodes" *rcndist* (see section 7.24) and the length of the \merge arrow *mergelength* (also see section 7.23).

At last an example where two chains are merged.

The usage of \merge may require some playing with branches, xshift and yshift until you get the desired result.

7.12 \mesomeric

The \mesomeric command works just like \branch (see section 7.3) but places the formulæ into square brackets.

> \mesomeric[<pos>, <anchor>, <tikz>] {<formula>}

The resonance formulæ are written into <formula>. With \marrow (see section 7.9) you can create the resonance arrows. If needed you can give an anchor (<anchor>) to \mesomeric (also see section 7.3). Alignment is used the same way as with \reactant.

Or vertical, too:

Or maybe a coordination complex?

```
 \left[ \begin{array}{c} \begin{rxn}\\ \setatomsep{3em}\\ \setatomsep{3em}\\ \setatomsep{am}\\ \setatomsep{am
```

7.13 \reactant

\reactant is something like the basic command.

```
> \reactant[<pos>,<name>,<tikz>]{<formula>}
```

Formulæ (<formula>) are written inside this command and can be named (<name>) for other objects to refer to. <pos> can either be one of these key words

- 1. right,
- 2. above right,
- 3. above,
- 4. above left,
- 5. left,
- 6. below left,
- 7. below,
- 8. below right

or be an angle from the intervall $[-360^\circ; 360^\circ]$. You also can position it relativ to another object via <anchor>.<angle>. The default equals \reactant [0] {}.

```
below:
                            begin{rxn}
    2
                                        \ensuremath{\ch{Br2}}\
    3
                                         \reactant[-90]{\ch{Cl2}}
                            \ensuremath{\mathsf{nd}}\xn\}
                          more than one reactant:
                           \begin{rxn}
   8
                                        \t(h{Br2})
  9
                                        \t(=90) \\ (ch{I2})
 10
                                        \climits \
11
                            \ensuremath{\mathsf{nd}}\xn\}
12
13
                            going down:
14
                            begin{rxn}
15
                                 \ensuremath{\ch{Br-Br}\}}
 16
                                  \rightarrow[-90,,.5]{
17
                                 \reactant[-90]{\ch{2 "\Lewis{0.,Br}"}}
18
                            \end{rxn}
 19
             below:
                                                                                                                                                                                                                                                      Br_2
                                                                                                                                                                                                                                                       Cl_2
              more than one reactant:
                                                                                                                                                                                                                                         Br_2
                                                                                                                                                                                                                                             I<sub>2</sub> Cl<sub>2</sub>
              going down:
                                                                                                                                                                                                                                              Br-Br
                                                                                                                                                                                                                                                             h\nu
                                                                                                                                                                                                                                                  2\,\mathrm{Br}
```

You can find many more examples in the file examples.tex or examples.pdf, respectively.

7.14 rxn (environment)

\begin{rxn} \end{rxn} is a non-floating not numbered environment for reaction schemes. Per default all schemes are centered.

> \begin{rxn}[<alignment>,<scalefactor>] ... \end{rxn}

7.14.1 Options

\begin{rxn} \end{rxn} has two options which are to be used in the following order, separated by a comma:

- 1. <alignment>: alignment behaviour of the \begin{rxn} \end{rxn} environment; default is center.
- 2. <scalefactor>: factor by which the \begin{rxn} \end{rxn} environment is scaled; default: 1.0. Same behaviour as with \begin{rxnscheme}, \end{rxnscheme} see section 7.15.

If you use the <scalefactor> option you might see strange effects on chemfig formulæ.

```
1 \begin{rxn}[,.5]
2 \reactant{\chemfig{**6(-----)}}
3 \end{rxn}
```

Scaling does in general not affect the size of chemfig formulæ but does scale the aromaticity ring of benzene and similar molecules. This is not MYCHEMISTRY's fault:

This issue can be solved either by using the *first* optional argument of \chemfig to undo the scaling or by using the *second* optional argument to scale the rest of the molecule.

Alignment examples:

1	\begin{rxn}[center]								
2	<pre>\reactant{center}{}\reactant{centered}</pre>								
3	\end{rxn}								
4	\begin{rxn}[right]								
5	\reactant{right}{}reactant{raggedleft}								
6	\end{rxn}								
7	\begin{rxn}[left]								
8	\reactant{left}{\reactant{raggedright}								
9	\end{rxn}								
	center ─── centered								
	right ──→ raggedleft								
	left ───→ raggedright								

7.15 rxnscheme (environment)

\begin{rxnscheme} \end{rxnscheme} is a floating environment for reaction schemes.

> \begin{rxnscheme}[<label>, <placement>, <alignment>, <scalefactor>, <name>] {<caption>}
 ... \end{rxnscheme}

7.15.1 Options

\begin{rxnscheme} \end{rxnscheme} has five options which are to be used in the following order, separated by commas:

1. <label>: Like every other floating environment \begin{rxnscheme} \end{rxnscheme} can be given a label. In order to do that you need to use the option <label>. For example if you use

```
1 \begin{rxnscheme}[rs:schema]{<caption>}
2 ...
3 \end{rxnscheme}
```

you can refer to it by using $\ref{rs:schema}$ as usual.

2. <placement>: With this option you can change the placement of the float, e.g. with h. The default value is htp.

- 3. <alignment>: This option changes the alignment of the scheme. You can choose between left, center and right.
- 4. <scalefactor>: \begin{rxnscheme} \end{rxnscheme} has another key with which the scheme can be scaled. Please keep in mind that it doesn't affect the font size and the size of chemfig's formulæ. You can have strange effects on chemfig's formulæ if you use this key, though. See section 7.14.1 for more information.
- 5. <name> This option changes the name of the actual scheme from "Reaction scheme" into <name>.

```
1 \begin{rxnscheme}[,<placement>]{<caption>}
2 ...
3 \end{rxnscheme}
```

```
\begin{rxnscheme}[,,,2]{Big scheme}
     \large\setatomsep{3.5em}
2
     \reactant{ \chemfig{=[::30]-[::-60]OH} }
     \arrow[,<=>]{}{}
     \reactant{ \chemfig{-[::30]=[::-60]0} }
    \end{rxnscheme}
6
    \begin{rxnscheme}[,,,.5]{Small scheme}
     \setatomsep{1.15em}\footnotesize
8
9
     \reactant{ \chemfig{=[::30]-[::-60]OH} }
10
     \arrow[,<=>]{}{}
     \reactant{ \chemfig{-[::30]=[::-60]0} }
11
    \end{rxnscheme}
12
    \begin{rxnscheme}{center}
13
     \reactant{center}\arrow{}{\reactant{centered}}
14
    \end{rxnscheme}
15
    \begin{rxnscheme}[,,right]{right}
16
     \reactant{right}\arrow{}{}\reactant{raggedleft}
17
    \end{rxnscheme}
18
    \begin{rxnscheme}[,,left]{left}
19
     \reactant{left}\arrow{}{\reactant{raggedright}
20
    \end{rxnscheme}
21
```


Reaction scheme 3 Small scheme

	<u>∕</u> ≈o	
Reaction scheme 4 center		

center>	centered

7.15.2 Customizing rxnscheme

Style If you don't like the style of \begin{rxnscheme} \end{rxnscheme} you can change it by using

- > \floatstyle{<new style>}
- ▶ \rxnfloat

There are different possible styles, provided by the float package:

plain without any special formatting, the caption is below the object.

plaintop like plain but the caption is placed above the object.

boxed the object is boxed, the caption placed below.

ruled the caption is placed above the object framed by two rules, one above and one below, another rule frames the object below; default for \begin{rxnscheme} \end{rxnscheme}.

1	\begin{rxnscheme}{ruled}
2	\reactant{default style}
3	\end{rxnscheme}
4	\floatstyle{boxed}
5	\restylefloat{rxnfloat}
6	\begin{rxnscheme}{boxed}
7	\reactant{framed object}
8	\end{rxnscheme}
9	\floatstyle{plain}
10	\restylefloat{rxnfloat}
11	\begin{rxnscheme}{plain}
12	\reactant{without any special formatting}
13	\end{rxnscheme}

Placement Usually floating environments have an optional argument for their placement. The default placement is htp. If you want to change it into H or something, you can use

```
> \floatplacement{rxnfloat}{<placement>}
```

It's easier, though, loading MYCHEMISTRY with the placement option:

Reaction scheme 5 right

right → raggedleft

Reaction scheme 6 left

```
left ──→ raggedright
```

```
1 \usepackage[placement=<placement>]{mychemistry}
```

This will change the default placement behaviour from htp to <placement>. You can also change the placement behaviour of just one \begin{rxnscheme} \end{rxnscheme} by using the placement option:

```
1 \begin{rxnscheme}[,<placement>]{<caption>}
2 ...
3 \end{rxnscheme}
```

Name If you want to change the name of reaction scheme you can do that with

▶ \setschemename{<new name>}

The default name is "Reaction scheme" but can change depending on the language you've loaded with babel.

Counter The counter can be changed just as usual. For example by using

```
1 \makeatletter
2 \@addtoreset{rxnfloat}{section}
3 \makeatletter
4 \renewcommand*\therxnscheme{\arabic{section}.\arabic{
    rxnscheme}}
```

the counter is reset with every new section an looks like section.rxnscheme.

List of Schemes By writing

```
> \listof{rxnfloat}{<title>}
```

you can create a list of all schemes created with \begin{rxnscheme} \end{rxnscheme}.

Reaction scheme 7 ruled

default style

```
framed object
```

Reaction scheme 8: boxed

\lis	tof{rxnfloat}{Reaction schemes}
Read	tion
sche	mes
1	Keto-Enol-tautomerism
2	Big scheme
3	Small scheme 43
4	center
5	right
6	left
7	ruled
8	boxed
9	plain

7.16 \setarrowlabel

The distance of arrow labels to the arrow has a default value of $0.2\,{\rm em}.$ You can change this with

\setarrowlabel{<distance>}

into <distance>.

```
1 \begin{rxn}
2 \arrow{a}{b}
3 \setarrowlabel{.5em}
4 \arrow{a}{b}
5 \end{rxn}
```


7.17 \setarrowlength

The default length of an reaction arrow is 4 em. You can change this value with

> \setarrowlength{<length>}

into <length>. Mind the fact that you have to use a length unit. If you leave the argument empty the length is reset to default.

without any special formatting

Reaction scheme 9: plain

7.18 \setatomsize

With

```
▶ \setatomsize{<font size>}
```

you can change the font size of the atom groups. Default value is \small. If you leave the argument empty the size is reset to default.

7.19 \setbondlength

With

> \setbondlength{<length>}

you can change \setatomsep{<length>}= for all chemfig formulæ *inside* of the MYCHEM-ISTRY environments. The default value is 1.8 em. If you leave the argument empty the length is reset to default.

7.20 \setarrowline

With the command

> \setarrowline{<value>}

the thickness of the arrows can be customized. Possible values are

- ------ ultra thin
- ----- very thin
- ----- thin
- ------ semithick (default)
- ----- thick
- ----- very thick
- ------ ultra thick

This command also applies to \merge.

7.21 \setbondshape

With

> \setbondshape{<base length>}{<dash thickness>}{<dash spacing>}

you can change \setcrambond{<base length>}{<dash thickness>}{<dash spacing>} for all chemfig formulæ *inside* of the MYCHEMISTRY environments. Default values are (in this order) 3 pt, 0.5 pt and 1 pt. If you leave an argument empty the value is reset to default.

7.22 \setelmove

The command

> \setelmove{<tikz>}

sets the default style that is used for the lines drawn by \elmove. An empty argument resets to ->,red,shorten <=3pt,shorten >=1pt.

7.23 \setmergelength

With

> \setmergelength{<length>}

you can change the length of the \mbox{merge} arrow. More precisely you can change the length of the arrow from the point of line crossing to the arrow tip (see section 7.11). If you leave the argument empty the value is reset to default (3 em).

7.24 \setrcndist

The nodes within which the reactants an arrows are set have a certain distance between them. The default distance is 1 em. If you want to change that you can use

> \setrcndist{<length>}

If you leave the argument empty the distance is reset to 1 em.

```
1 \setrcndist{2em}
2 \begin{rxn}
3 \reactant{A}\arrow{}{}
4 \end{rxn}
5 \setrcndist{}
6 \begin{rxn}
7 \reactant{A}\arrow{}{}
8 \end{rxn}
```


7.25 \setrxnalign/\setschemealign

With the commands

- > \setrxnalign{<alignment>}
- > \setschemealign{<alignment>}

The default alignment behaviour of \begin{rxn} \end{rxn} and \begin{rxnscheme} \end{rxnscheme} (see sections 7.14.1 and 7.15.1) can be set. You can choose between left, center and right. If you leave the argument empty MYCHEMISTRY's default behaviour (center) is restored.

7.26 \setschemename

See page 44.

7.27 \transition

\transition works exactly like \reactant (see section 7.13).

```
    \transition[<pos>, <anchor>, <tikz>] {<formula>}
```

```
begin{rxn}
      \t \in \{ \ \ 12 \} \}
2
      \arrow[below,<=>,.5]{}{}
3
      \transition[below]{ \chemfig[dotted][]{H?-I-[2]I-[4]H?} }
      \arrow[below,<=>,.5]{}{}
5
      \reactant[below]{ \ch{2 HI} }
6
     \ensuremath{\mathsf{nd}}\xn\}
                                              H_{2} + I_{2}
                                                  1
                                              [ H ···· I ]<sup>‡</sup>
                                              \mathbf{H} \cdots \mathbf{I}
                                                  1
                                                 2\,\mathrm{HI}
```

Index

Symbols						
<command/> .	 	 	 	 	 	 32

Α

align	
\anywhere	20 f., 30
\arrow	1, 4, 21, 26, 28 f., 31
arrowlabel	
arrowlength	
arrowline	
atomsize	

B

babel	 		2, 44
beamer	 		2
bondlength	 		33
\branch	 1, 8 f., 2	20, 25 f., 3	30 f., 36

С

\chemand1,	29
chemfig	46
chemmacros	. 2

D

draft.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21	f.,	3	1
\dummy	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1,	2	9	f.

E

elmove	
\elmove	
etoolbox	

F

final3
float 2, 43
\floatplacement43
\floatstyle 43
L
\listof
Μ
\makeinvisible1, 30

\makevisible.....1 ff., 30 f. \marrow.....1, 31, 36 \mCsetup1, 13, 32, 34 \merge1, 33 ff., 46 f. mergelength33 \mesomeric1, 36 mhchem2

N

\node																1	3
• • • •																	

Р

pdfpages		. 2
placement	3,	43

R

rcndist3	3
\reactant. 1, 4, 13, 26, 29 ff., 33, 36, 38, 4	8
reset	f.
rxnalign3	3
\rxnfloat4	3

S

schemealign
\set <command/> 32
\setarrowlabel1, 13, 45
\setarrowlength 1, 13, 25, 45
\setarrowline1, 13, 25, 46
\setatomsep 46
\setatomsize1, 11, 46
\setbondlength1, 11, 46
\setbondshape1, 11, 32, 46
\setcrambond46
\setelmove1 f., 47
\setmergelength 1, 34, 47
\setrcndist 2, 47
\setrxnalign 2, 47
\setschemealign2,47
\setschemename2, 44, 48
\small11
strict3

Т

Ti <i>k</i> Z	13 f., 16 f., 22 f., 28
\transition	
translator	
x	