
The LATEX2ε “msg” package
for package localization∗

Package writer’s guide

Bernard Gaulle

As of 2006/10/03

Contents
1 Introduction 2

2 Macros to be used in a LATEX package 2

3 The message files 5

4 The macros to use in message files 7

5 Testing a message file 11

6 Output options 11

7 A tracing option 12

8 A special option 12

9 Language options 12

10 Migration scheme 13

11 Generated files 13

12 Volunteers 14

13 Thanks 14

∗This file has version V0.40 last revised 2006/10/03

1

1 Introduction
Since a LATEX package issues various messages, mostly in English (but, unfor-
tunately, often in an English-like language), it is usefull to provide a feature to
localize any LATEX 2ε package or document class. The “msg” package is designed
for that. Messages are in dedicated files and retrieved when needed.

Packages writers (as well as document class writers) just have to create their
native messages file and ask for any message when needed.

\issuemsgio

2 Macros to be used in a LATEX package
Basically, three macro commands can be coded for package localization:
\issuemsg, \getmsg and \retrievemsg. Another macro, \issuemsgx is given for
specific cases, we will see that later, page 8.

Output a message
Here is the main macro which will issue a message “id” via the command
\issuemsgio defaultly set to \typeout .

\issuemsg [#1]#2(#3)[#4]

\issuemsgx [#1]#2(#3)[#4]

One can provide another command to issue the message by the way of the first
optional argument. The second argument is the message “id”; the third is the
name of the package (or document class1) which provides that message through
a message file whose name is [language_]package-msg.tex. Lastly an optional
parameter can be set to “#12” to forward an argument directly inside the message
content. I thought the syntax would be too much complicated to offer much more
parameters through that mean. We will see later that the message can also be
split in four parts, allowing anyone to display the message differently but not as
\issuemsg does.

\issuemsg[〈message_macro 〉]{〈id 〉}(〈package 〉)[#1]

The message macro could be the usual \typeout or any other output macro
with one argument such as \message or \wlog. You can also code a macro with two
arguments, such as \ClassWarning, \ClassWarningNoLine, \PackageWarning,

1Each time we are talking about a LATEX package, please consider it applies also to any LATEX
document class.

2You can put here any replacement text instead of this #1 parameter. Be careful, this param-
eter or replacement text will be, usually, expanded; so protect any string which should not with
a \string prefix.

2

\PackageWarningNoLine, \ClassInfo or \PackageInfo which have just a name
as first argument, like this:

\issuemsg[〈message_macro{arg1} 〉]{〈id 〉}(〈package 〉)[#1]

That way the first argument is not localized (usually this is a class or package
name) and the second argument is provided by the message file entry and so
localized.

You can also use special error macros with 3 arguments as explained below.

Willing to issue a \PackageError?
The “msg” package is designed for basic macro messages which have just only
one text argument to localize. The \PackageError is one exception; it has 3
arguments: the first one (name of package in error: <package1 >) which is given
as the following:

\issuemsg[\PackageError{〈package1 〉}]{〈id 〉}(〈package2 〉)[#1]

the other two arguments will be retrieved from the message file of 〈package2 〉
and localized.

The same coding can be used for \ClassError:

\issuemsg[\ClassError{〈class1 〉}]{〈id 〉}(〈class2 〉)[#1]

Examples & tests
(using the message files listed page 6)
\issuemsg1(msg) will give at the console:
2006/10/03 V0.40 package to issue localized messages, now loaded.

but \issuemsg01(msg) will give: erroneous message id ‘‘01’’.
While defining \def\test#1{‘\issuemsg4(msg)[#1]’} the following call

\emph{\test{SPECIAL}} will print:
‘This is to test the SPECIAL feature’

showing that the argument was inserted inside the message at the exact area,
replacing #1.

In a French document, the same codes will issue:
2006/10/03 chargement de l’extension de localisation (V0.40).

le message id ‘‘01’’ n’est pas répertorié
‘Ceci est pour tester le dispositif SPECIAL’

Get a message for typesetting
Sometimes we only want to get the message and typeset it. The syntax is the
same as \issuemsg except there is no first optional argument for providing the
macro name to issue the message since it is not issued at all.

\getmsg{〈id 〉}(〈package 〉)[#1]

3

Examples & tests
‘\textsl{\getmsg1(msg)}’ will insert at this point for typesetting the message:
‘2006/10/03 V0.40 package to issue localized messages, now loaded.’; nothing is
issued at the console nor in the log, except if the <id> is not found in the message
file.

In a French document, the same code will issue:
‘2006/10/03 chargement de l’extension de localisation (V0.40).’

\getmsg #1(#2)[#3]

The message file input routine
To avoid having superfluous file names listed in the log each time we request a
message from a file, defaultly we read the file with the TEX \read command.

NOTICE: all messages read until the requested one (included) are expanded
(before parsing) in the following macro. Thus, each (\msg) macro call should
contain significant value or \protect a macro. The same reason applies to
\msgheader and \msgtrailer we will discuss later (cf p 10).

Just retrieve \themsg

One can also want to retrieve the message from the file and save it in a macro
for later use. In fact, if this is a one-part message it will be saved in \themsg,
otherwise this will be the first part message and other parts will be saved in
\themsgi, \themsgii and \themsgiii.

\retrievemsg #1(#2)[#3]

\themsg
\themsgi

\themsgii
\themsgiii

\msgid

The \retrievemsg command is the heart of all macros to obtain the wanted
message. It will input the message file, depending on the language to use, searching
for the message “id”. If this is a valid language (i.e. defined in the language.dat
file in use) and the corresponding language file exists it is inputed otherwise it
is the package default message file which is inputed (which should be usually in
English). In case the message “id” is still not found in that file and no “*” message
“id” exists we will try to access message number 6 of the “msg” package. And
again, if still not found we terminate the process with a final package error; this
is the only English message hard coded in the “msg” package. Localization might
occur but should be also hard coded; not really usefull since it is not addressed to
the end user but to a package or class writer.

\retrievemsg{〈id 〉}(〈package 〉)[#1]

4

Examples & tests
\retrievemsg1(msg) will set \themsg with the value of the corresponding mes-
sage ; nothing is issued at the console nor in the log, except if the <id> is not
found in the message file.
\show\themsg will explain:
> \themsg=macro:
->2006/10/03 V0.40 package to issue localized messages, now loaded.
In a French document, the same code will issue:
> \themsg=macro:
->2006/10/03 chargement de l’extension de localisation (V0.40).

In case the message file is empty or do not contain neither the message “id”
nor any \msg{*} macro then we will obtain:
> \themsg=macro:
->msg package: UNUSUAL end of file reached when loading msg-msg.tex
file!

It may also arrive that we don’t find that former message (#6) at all then we
will issue the usual LATEX \PackageError macro.

3 The message files
The default (English) message files should have the name package -msg.tex and
localized ones should be language _package -msg.tex. I would have prefered the
file names begin with a dot which is a hidden file in unix and thus avoid visual pol-
lution inside packages directories but, unfortunately, writing them with doctrip
is generally forbiden due to ‘openout_any = p’ in texmf.cnf configuration file.

These files contain only the messages which could be requested by the associ-
ated package . It is important to say now that when a message is split on multiple
lines, each line must end with " %" to avoid to loose the ending space when any is
required; this is due to the special \reading process shown .

Message files contents
A typical file content is the following msg-msg.tex file, used by the “msg” package
itself:

〈/code〉
1 〈∗english〉
2 % File: msg-msg.tex
3 % Here are the English messages for the \msgname\ package.
4 %
5 % The following line is just for testing purpose:
6 \msgencoding{}\msgheader{}\msgtrailer{}
7 \msg{1}{\filedate\space \fileversion\space package to issue localized %
8 messages, now loaded.}{}
9 \msg{2}{invalid optional parameter provided:}{}

10 \msg{3}{invalid language requested: ‘‘\CurrentOption’’}{}

5

11 \msg{4}{This is to test the #1 feature}{}
12 \msg{5}{‘‘msg’’ package line number }{\msgparti{issues %
13 \#\msgid\ #1 message}}
14 \msg{6}{msg package: UNUSUAL end of file reached when %
15 \MessageBreak %
16 loading \msg@filename\space file!}{}
17 \msg{7}{\string\msg\space syntax error}{\help{last % special test case
18 argument is missing.}}
19 \msgheader{MESSAGE\space\msgid:\space‘‘}\msgtrailer{’’}
20 \msg{8}{here is a customized message}{}%
21 \msg{9}{here is a customized message %
22 \MessageBreak which continuation is aligned}{}
23 \msgheader{Message\space\msgid\space(msg):\space}\msgtrailer{}
24 \msg*{10}{****** I emphasize: this is a WARNING! ****** %
25 \MessageBreak ****** Be careful.^^J}{}
26 \msgheader{}\msgtrailer{}
27 \msg{11}{The msg package is in use with ‘‘tracefiles’’ option.}{}
28 \msg{12}{A risk of infinite loop arose; %
29 \MessageBreak %
30 please check the message file: \msg@filename}%
31 {\help{Look at rules to apply in messages files.}}
32 \msg{*}{erroneous message id ‘‘\msgid’’}{}
33 〈/english〉

If necessary, one can link english_msg-msg to that file, but since English is
always the default language for LATEX this is useless.

The same messages, localized for French, are located in the following messages
file (french_msg-msg.tex):
34 〈∗french〉
35 % Fichier french_msg-msg.tex
36 % Ici on trouve les messages en francais pour l’extension \msgname\ .
37 %
38 \msgencoding{latin1}\msgheader{}\msgtrailer{}
39 \msg{1}{\filedate\space chargement de l’extension de %
40 localisation (\fileversion).}{}
41 \msg{2}{le paramètre optionnel est invalide}{}
42 \msg{3}{le langage demandé (\CurrentOption) n’existe pas}{}
43 \msg{4}{Ceci est pour tester le dispositif #1}{}
44 \msg{5}{ligne }{\msgparti{de l’extension ‘‘msg’’ génère le %
45 message de #1 \#\msgid}}
46 \msg{6}{extension msg \string: fin ANORMALE de fichier rencontrée %
47 \MessageBreak %
48 en chargeant le fichier \msg@filename\space\string!}{}
49 \msg{7}{erreur de syntaxe à l’appel de \string\msg}% cas special de test
50 {\help{il manque le dernier argument.}}
51 \msgheader{MESSAGE\space\msgid\space\string:\space %
52 \string<\string<\space}
53 \msgtrailer{\space\string>\string>}
54 \msg{8}{ceci est un message personnalisé}{}
55 \msg{9}{ceci est un message personnalisé %

6

56 \MessageBreak et aligné}{}
57 \msgheader{Message\space\msgid\space(msg)\space\string: %
58 \space}\msgtrailer{}
59 \msg*{10}{****** Je mets en valeur \string: %
60 ceci est un AVERTISSEMENT ! ****** %
61 \MessageBreak ****** Soyez prudent.^^J}{}
62 \msgheader{}\msgtrailer{}
63 \msg{11}{L’extension msg est en service avec l’option %
64 \string<\string< tracefiles \string>\string>.}{}
65 \msg{12}{Un risque de boucle infinie a été rencontré \string; %
66 \MessageBreak %
67 vérifier le fichier des message \string: \msg@filename}%
68 {\help{Voir les règles à appliquer dans les fichiers de messages.}}
69 \msg{*}{le message id ‘‘\msgid’’ n’est pas répertorié}{}
70 〈/french〉

〈*code〉

Notice that you can have messages which call any internal macro name since
the \catcode for @ is assigned to letter when the message file is read in.

4 The macros to use in message files
The simpliest way to code a message is:

\msg{〈id 〉}{〈message 〉}{}

The last message in the file should have 〈id 〉 equal to * to say that,
when reached, no valid 〈id 〉 was found in the file and the “msg” package
should issue (or get or retrieve) that error message , which could be e.g.
\msg{*}{erroneous message id ‘‘\msgid’’}.

\msg #1#2#3

\help #1

When the \msg{*} is reached the “msg” package will issue a \PackageWarning
with that message, but no line number is sent because the message file is still not
closed and the current line number is that from the message file. The message is
also forwarded to the TEX mouth even when an \issuemsg was requested.

To build a \PackageError or \ClassError message
A \PackageError has a message part and a help part; these are given as the
following:

\msg{<id>}{<message-part>}{\help{<help-part>}}

7

in that special case you can’t build a multi-parts message as explained in the
following section.

To build a multi-parts message
When given, the optional argument provides 3 additional message parts. Here is
the syntax :

\msg{<id>}{<message-part1>}{\msgparti{<message-part2>}
\msgpartii{<message-part3>}
\msgpartiii{<message-part4>}}

(Any \msgparti* can be omitted)

When retrieved, \themsg will contain message-part1, \themsgi the message-
part2, \themsgii the message-part3 and \themsgiii the message-part4. One can
build the wanted message with the mix of these four parts and other materials.
When requested via \getmsg or \issuemsg the four parts are sticked in the usual
order.

\msgparti #1

\msgpartii #1

\msgpartiii #1

Input encoding discussion
It is assumed that, defaultly, \issuemsg will finally provide a message to the con-
sole (without any encoding). The macro \getmsg is designed for typesetting (usu-
ally with an input encoding). Since \retrievemsg’s target is unknown, display
or typesetting, we let the package or class maker to decide which input encoding
has to be set up.

If you want to issue a message but not to the console, you should probably use
the macro \issuemsgx in place of \issuemsg.

For messages issued to the console
If your messages can be coded in 7bits, no problem except that you probably need
to avoid macros like \aa, \oe, \ae, etc. which can’t output as expected on the
console or log file. If your messages use 8bits characters, these 8bits characters
will be output asis (until the LATEX team introduces a real output encoding for
the console3).

3The “msg” package is already designed for any output encoding; this is the \kbencoding
macro call which can do that (as currently done by my experimental keyboard package).

8

For messages to be typeset
If any of your messages use at least one 8bits character, you need to specify which
input encoding you are using:

\msgencoding{〈input encoding 〉}

you just have to give the name of the input encoding, exactly like with
\inputencoding for the inputenc package. This is usually the first command
in the messages file.

\msgencoding #1

Disadvantage using \msgencoding

As the inputenc package is automatically loaded when \msgencoding is executed,
there is a risk you try loading again inputenc in the preamble via \usepackage.
This is the case if any message was already issued by the “msg” package and then
an option clash will occur and force you to put the encoding option as a global
option in \documentclass.

Since “msg” is calling inputenc there will be real difficulties to localize the
inputenc package itself.

The messages file rules
Due to the reading process you should apply the following rules in a message file:

Rule 1: A line can be a comment (begining with %).

Rule 2: A line can begin with \msg,\msgheader,\msgtrailer or \msgencoding.

Rule 3: A \msg line can be continued on the next line(s), assuming each one ends
with %.

Rule 4: The following macros: \msgheader, \msgtrailer, or \msgencoding are
always executed.

Rule 5: Spacing inside \msgheader and \msgtrailer should be made only by
the use of the macro \space.

Rule 6: Any of these three macros should be expandable at any time.

Rule 7: No other macro command can begin a line.

Rule 8: All 8bits characters used should in the range specified by the macro
command \msgencoding.

That’s all!

9

To build messages with header and/or trailer
\msgheader #1

\msgtrailer #1

Before any \msg call you can specify which header and/or trailer you want in
the following message or messages. You just have to specify them:

\msgheader{<my_header>}
\msgtrailer{<my_trailer>}

When a message needs to be continued on the next line you just have to insert
\MessageBreak where you want the new line will start and then the “msg” package
will try to align the following text by adding the same number of \spaces as tokens
in the expanded \msgheader. That feature only applies with \issuemsg and only
to the <message-part1> (the three other message parts can not have any header
or trailer).

To emphasize a message
When you want to emphasize a message you just have to code the star form of
the \msg macro:

\msg*{<id>}{<message-part1>}{<part2}>}

and then the message will be issued after a line skip on the console and log.
If your message ends with ^^J another line will be skiped after. Obviously this
feature only works with \issuemsg but not with \getmsg or \retrievemsg.

Examples & tests
We use message # 5 of msg-msg.tex file as following:
\def\foo#1{\retrievemsg5(msg)[#1]\themsg\the\inputlineno\ \themsgi}

then \emph{The \foo{test}} will generate:
The “msg” package line number 1194 issues #5 test message

In a French document, the code \emph{La \foo{test}} will issue:
La ligne 1200 de l’extension “msg” génère le message de test #5

We will now use the message # 8 of msg-msg.tex file in order to show the
customization set in that file.

\getmsg8(msg) will generate:
MESSAGE 8: “here is a customized message”

The following \texttt{\getmsg9(msg)} using \MessageBreak will give at the
console:
MESSAGE 9: ‘‘here is a customized message

10

which continuation is aligned’’
(same message issued to the console).
And in a French document, the same calls will issue:
MESSAGE 8 : « ceci est un message personnalisé »
MESSAGE 9 : << ceci est un message personnalisé

et aligné >>
Below is a test of an emphasized message (\texttt{\getmsg{10}(msg)}):

Message 10 (msg): ****** I emphasize: this is a WARNING! ******
****** Be careful.

(same message issued to the console).

5 Testing a message file
When you are building a messages file few typing errors can occur; so there is a
need to test that file. You can do this by using the following macro call:

\issueallmsg[〈message_macro 〉](〈package 〉)

All messages will be retrieved and issued as requested (with the message macro)
but not, perhaps, with the exact macro call which will be used in the LATEX 2ε
package or document class. Specially, the \help macro call does nothing and
\msgparts are listed in the order found in the file. You should also notice that
all macros used inside the messages should be expandable. This macro is allways
executed with the tracefiles4 option.

Here is an example using the “msg” file (\issueallmsg[\wlog](msg)) please
check the log file to find the output.

\issueallmsg [#1](#2)

6 Output options

\usepackage[〈output-options 〉]{msg}

The output options provide to the “msg” package with a running macro name
to issue any message, in replacement of the default \issuemsgio macro initialized
at the begining (cf page 2). Currently the following macro names are defined as
options:

\usepackage[message|wlog|typeout|kbtypeout]{msg}

These options are related to basic messages macros but this is not an exhaustive
list of macros which can be called by \issuemsg. Specially, \PackageError can
also be used, as already discussed p. 3 and p. 7. The last one macro name is coming
from a package of mine (keyboard) doing input encoding and output decoding.

4I never found the right code to avoid a loop with tracefiles option...

11

7 A tracing option

\usepackage[〈tracefiles 〉]{msg}

The tracefiles option changes the processing for reading messages files. De-
faultly these files are not read with the usual \input macro and so the files are
not listed in the log file. When giving the tracefiles option messages files are
read with a \input macro like and then the full path names are listed.

8 A special option

\usepackage[〈noop 〉]{msg}

The noop option changes the processing: don’t read the messages files and just
provides the "msgid" as text message with the following header: 0<msg noop>.

9 Language options

\usepackage[〈output-options 〉,〈language-name 〉]{msg}

Defaultly messages are issued from the message file dedicated to the document
running language. One can force the “msg” package to use a specific language
(assuming it was defined in the language.dat file in use), just give it as the last
option.

\nativelanguage #1

This optional macro is usefull to understand and/or translate correctly the message
files. Each package writer can define it as i currently do for the “msg” package
here. To obtain messages in writer’s native language, just call the “msg” package
with the option ‘native’:

\usepackage[〈output-options 〉,native]{msg}

The last option, if undeclared as an option, is assumed to be a language name. If
that language is unknown (i.e. undefined in the language.dat file in use) we issue
a warning with message number 3, otherwise that language name will be now the
prefix for all the message files names searchs. It overides any previously set (in
format, package, ...) language name for use by the “msg” package.

Notice that, when set (and forced) as option, the “msg” language name can’t
be changed any way inside the document (no language change can modify that).

12

10 Migration scheme
If you want to migrate a document class ou package issuing messages in order it
could be localized for any language, you just have to follow the following steps:

1. Chose the native language and create the related messages file.

2. Chose the input encoding and define it in the messages file with the macro
\msgencoding.

3. Insert the final error message (\msg(*){...}{}).

4. Isolate all messages in the code.

5. Attach to each message a unique id.

6. Comment each message argument(s) and put these arguments in the message
file as:
\msg{id}{argument1}{<argument2>}

7. Replace the message macro call (\typeout or \wlog or ...) by :
\issuemsg[<message macro>]{id}(package)

8. Check the syntax carefully, specially, for error messages and when a param-
eter will be used.

9. Test each message independtly and tune it considering the display option,
the header and trailer facilities, etc.

10. Test the messages file with \issueallmsg.

11. Consider other translations of your native messages file.

12. Release the new code along with its messages files.

11 Generated files
Currently the file msg.ins is the file to compile with (La)TeX to generate all the
“msg” stuff. Here is msg.ins showing the doctrip generated files:

\def\batchfile{msg.ins}
\input docstrip.tex
\askonceonly
\keepsilent
\preamble

File is part of the "msg" package for LaTeX
which is designed to localize any LaTeX package
or document class.

13

\endpreamble
\generateFile{README_msg_doc.txt} {t}{\from{msg.dtx}{README}}
\generateFile{msg.sty} {t}{\from{msg.dtx}{code}}
\generateFile{msg-msg.tex} {t}{\from{msg.dtx}{english}}
\generateFile{french_msg-msg.tex} {t}{\from{msg.dtx}{french}}
\generateFile{norsk_msg-msg.tex} {t}{\from{msgfiles.dtx}{norsk}}
\generateFile{german_msg-msg.tex} {t}{\from{msgfiles.dtx}{german}}
\Msg{***}
\Msg{* "msg" package is now generated, please move msg.sty}
\Msg{* file and *-msg.tex messages files in the }
\Msg{* appropriate directory where LaTeX can find them. }
\Msg{* }
\Msg{* For TeX Live please do: "make TL" }
\Msg{***}
\endinput

12 Volunteers
Volunteers are welcome to translate the “msg” package message file (the English
one or the native one in French) in their mother language. Lot of thanks to them!

13 Thanks
The following people contributed to that project and we really appreciate their
effort for testing, translating, documenting, etc.: Hans F. Nordhaug, Harald Hard-
ers.

Enjoy!

∗–∗

14

