
The mpostinl Package

Niklas Beisert

Institut für Theoretische Physik
Eidgenössische Technische Hochschule Zürich

Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland

nbeisert@itp.phys.ethz.ch

27 February 2017, v1.1

Abstract

mpostinl is a LATEX 2ε package which enables the embedding of METAPOST figures
within a LATEX document. The package automatically collects the embedded definitions
and figures in a .mp file, adds an appropriate LATEX document structure, and compiles it
to .mps files. It also allows for various configuration options to manage the generation
of files and compilation.

Contents

1 Introduction 2
1.1 Related CTAN Packages and Software . 3

2 Usage 3
2.1 Figures and Definitions . 4
2.2 Package Options . 5
2.3 Writing and Compiling Options . 7
2.4 Multiple Files . 8
2.5 Immediate Processing . 9
2.6 Interaction with Other Packages . 10

3 Information 11
3.1 Copyright . 11
3.2 Files and Installation . 11
3.3 Feature Suggestions . 12
3.4 Revision History . 12

A Sample File 13
A.1 Preamble . 13
A.2 Basic Functionality . 14
A.3 Immediate Processing . 16
A.4 Filename Composition . 16
A.5 Multiple Files . 18

B Implementation 19

1

mailto:nbeisert@itp.phys.ethz.ch

1 Introduction

METAPOST is a versatile tool to generate vector graphics files from a plain text source for
inclusion in LATEX documents which allows to typeset labels in native LATEX code and fonts.
The METAPOST compiler mpost typically compiles a metapost source file (extension .mp) to
a set of metapost figure files (extension .mps) which are encapsulated postscript files (.eps)
with a somewhat reduced scope. The figure files can be included in a LATEX document by
\includegraphics, and modern TEX distributions are typically able to handle the required
conversions on the fly.

While many steps in the compilation process are automated, some management is left
to the user:

• Link the figures in the metapost source with the LATEX source by choosing an appro-
priate figure filename (or numeric identifier).

• When a figure is changed, the metapost source file must be compiled to update the
figure files, and afterwards the LATEX source must be compiled to introduce the changes
into the output document.

• Keep any changes aligned between LATEX and metapost source files.

• Set up a proper LATEX document structure to compile labels via LATEX.

• Distribute source and figures as separate files.

The current LATEX package mpostinl helps in the management of metapost figures by em-
bedding them into the LATEX source:

• Figures are displayed at the location of their definition within the LATEX source to
facilitate alignment between text and figures.

• A metapost source file with LATEX structure for the labels is generated.

• Figure files are compiled automatically from within the LATEX compiler.

For example, a simple figure consisting of a circle might be represented as:

\begin{mpostfig}

draw fullcircle scaled 1cm;

\end{mpostfig}

The package also offers several options and customisations to streamline its use in several
situations:

• Figures can be assigned labels or filenames for later usage.

• There are several options and mechanisms to minimise the need for multiple compiler
passes to generate the desired output.

• The package can handle several metapost files in a row with common definitions or
include files.

• The font generation, LATEX structure and generated filenames can be customised.

2

1.1 Related CTAN Packages and Software

There are at least four other LATEX packages which offer a similar functionality:

• The package emp provides similar basic functionality to compose a metapost file, but
it does not automatically compile it. Analogously to the picture environment the
size for every figure must be specified explicitly.

• The package mpfig by Tomasz Cholewo (not available on CTAN) provides very basic
functionality to compose a metapost file.

• The package mpgraphics provides similar functionality to compose and compile a meta-
post file. It processes all figures immediately and does not offer labels for recycling
figures.

• The package gmp provides similar functionality to compose and compile a metapost
file. It processes all figures immediately and allows to inject LATEX definitions into the
metapost code at the price of modifying the metapost syntax slightly.

The philosophy of the present package is to generate a single metapost file containing all
figures as in a traditional metapost setup which can be compiled in one pass. The aim is
to provide a metapost setup which works with as little configuration as possible, but which
offers several configuration options to customise the management in the desired way. The
package offers most of the functionality of the above packages, but (presently) misses out
on some more advanced features, see section 3.3.

The package relies on other packages and software:

• This package relies on some functionality of the package verbatim to read verbatim
code from the LATEX source without expansion of macros. Compatibility with the
verbatim package has been tested with v1.5q (2014/10/28).

• This package uses the package graphicx from the graphics bundle to include graphics
files. Compatibility with the graphicx package has been tested with v1.0g (2014/10/28).

• This package uses the package keyval from the graphics bundle to process the options
for the package, environments and macros. Compatibility with the keyval package has
been tested with v1.15 (2014/10/28).

• This package uses the command \currfilename provided by the package currfile (if
available and loaded) to indicate the LATEX source file in the generated metapost file.
Compatibility with the currfile package has been tested with v0.7c (2015/04/23).

• The package assumes a TEX installation with METAPOST configured appropriately.
Recent texlive and MiKTEX distributions should work well. Compatibility with the
texlive distribution has been tested with the 2016 issue containing pdfTEX version
3.14159265-2.6-1.40.17 and METAPOST version 1.9991.

2 Usage

This manual assumes familiarity with the METAPOST figure description language. The
METAPOST manual is a recommended introduction and an excellent reference.

To use the package mpostinl add the command

\usepackage{mpostinl}

3

http://www.ctan.org/pkg/emp
http://ci.uofl.edu/tom/software/LaTeX/
http://www.ctan.org/pkg/mpgraphics
http://www.ctan.org/pkg/gmp

to the preamble of your LATEX document. If not yet present, the package graphicx will
be loaded automatically. Metapost figures and definitions are to be specified using the
environments mpostfig and mpostdef, respectively, as described in section 2.1.

The package collects the figure files contained in the LATEX source, writes them to a
metapost file, and compiles them at the end of the LATEX document. This means that
the figures (or their updates) will normally not be available in the first LATEX run and a
secondary run is required for the correct output, see section 2.5 for strategies to avoid a
second pass.

You should make sure that LATEX allows calling of external programs. If this feature
is not enabled by default, it is achieved by calling latex with the command line option
-shell-escape (or -shell-restricted if mpost is in the list of permissible commands):

latex -shell-escape source

In the MiKTEX distribution the appropriate command line option is -enable-write18. In
a LATEX front end this option may be configurable in the preferences. If the shell escape
is not available, the generated metapost file(s) filename (typically the same as the LATEX
source source) must be compiled manually:

mpost -tex=latex filename

Some extended configuration options and situations are described in the following sec-
tions: package options are listed in section 2.2; some options for writing and compiling are
discussed in section 2.3; the generation of multiple metapost files is described in 2.4; finally,
some issues regarding other LATEX packages are discussed in section 2.6.

2.1 Figures and Definitions

The main functionality provided by the package is the mpostfig environment:mpostfig

\begin{mpostfig}[opts]
metapost code

\end{mpostfig}

The above block is translated to the following code in the metapost file:

filenametemplate:="filename";
beginfig(number)

metapost code
endfig;

The optional argument opts of the mpostfig environment is a comma-separated list of
options:

• show[=true|false] (no value implies true, initially set to false) – Show the figure in
place. If neither file nor label are specified, this option is forced to true.

• file=filename – Filename for the figure.

• label=label – Label for later use by the command \mpostuse{label}.

• opt=opt – Options to be passed on to \includegraphics[opt].

• now[=true|false] (no value implies true, overrides global setting nowall) – Compile
figure immediately. Requires global option now to work.

• twice[=true|false] (no value implies true, overrides global setting twice) – Compile
this figure twice.

Please note the following restrictions due to the implementation via the package verbatim:

4

• The closing statement \end{mpostfig} must be on a line on its own. Any amount of
leading whitespace is allowed, and trailing characters are ignored.

• The environment mpostfig cannot be used within macro arguments or particular other
environments. If you want to display a figure in these situations, you should declare
the figure with a label and display it via the command \mpostuse (see below).

Figures which have been previously declared with a label label can be recycled any number\mpostuse

\mpostgetname of times with the command:

\mpostuse[opts]{label}

The options are passed on to \includegraphics[opt]{filename}. Furthermore, the file-
name of a figure can be obtained by calling \mpostgetname{label}. The filename is returned
in the macro \mpostfigurename.

Plain metapost code which is not part of a figure (definitions, assignments) can be specifiedmpostdef

by the mpostdef environment:

\begin{mpostdef}[opts]
code

\end{mpostdef}

Note that the same restrictions as for mpostfig (see above) apply to mpostdef. The optional
argument opts is a comma-separated list of options:

• tex[=true|false] (no value implies true, initially set to false) – The block code rep-
resents TEX or LATEX definitions rather than METAPOST code, which will be enclosed
in the metapost file by verbatimtex and etex.

• global[=true|false] (no value implies true, overrides global setting globaldef) – In
a setup with multiple metapost files, the block code is applied to all files, not just the
current file.

2.2 Package Options

Options can be passed to the package by:\mpostsetup

\usepackage[opts]{mpostinl}
or \PassOptionsToPackage{opts}{mpostinl}
or \mpostsetup{opts}

\PassOptionsToPackage must be used before \usepackage; \mpostsetup must be used
afterwards (for selected options). opts is a comma-separated list of options. Below we
provide a complete list of available options while some of the more relevant options are
discussed in detail in the following sections:

• draft[=true|false] (no value implies true, initially set to false) – Enable/disable
draft mode by declaring draft:=1 at the top of the metapost file.

• final – Same as draft=false.

• write[=true|false] (no value implies true, initially set to true) – Enable/disable
writing to metapost file.

• compile[=true|false] (no value implies true, initially set to true) – Enable/disable
automatic compilation of metapost file. Requires shell escapes to work properly.

5

• twice[=true|false] (no value implies true, initially set to false) – Enable/disable
secondary metapost compilation. Some metapost files may require this to produce the
intended output.

• fonts[=true|false] (no value implies true, initially set to false) – Enable/disable
embedding of fonts in metapost figures by setting prologues:=3 thus making them
proper encapsulated postscript files. This option may be required if figure files are
used outside a TEX environment, e.g. if the files are to be viewed or processed by .eps

tools. Has no effect if prologues option is specified.

• prologues=value – Declares prologues:=value at the top of the metapost file. Set
value to empty to disable the prologues statement.

• lineno[=true|false] (no value implies true, initially set to false) – Enable/disable
line number indicators in the metapost file. All blocks in the metapost file will start
with the line number where this block can be found in the LATEX source file. To view
the source file name you should load the package currfile.

• labelnames[=true|false] (no value implies true, initially set to false) – Use the
figure label instead of a consecutive number to construct the name for figure files.
The benefit of this mode is that the label will usually stay fixed while the number
may change when adding or removing figures. The drawback is that the LATEX inter-
nal labels will appear as part of the filenames cluttering the directory slightly more.
Moreover, one has to make sure that the figure labels are valid filenames in your
operating system, i.e. use special characters with care, better only use alphanumeric
characters, and bear in mind that some operating systems do not distinguish upper-
and lowercase letters.

• latex[=true|false] (no value implies true, initially set to true) – Switch between
TEX (false) and LATEX (true) processing of labels. In LATEX mode a basic LATEX
document structure is provided by the metapost file.

• compiler=compiler – Set the compiler program for labels to compiler (command line
option -tex=compiler for METAPOST). The default is tex (in TEX mode) or latex

(in LATEX mode). Set compiler to empty to specify no compiler.

• format=tag – Write format tag %&tag to specify the compiler program for labels. The
default is tex (in TEX mode) or latex (in LATEX mode). Set tag to empty to write no
format tag.

• class=class (initially set to article) – Set the document class to be used in LATEX
mode.

• classopt=options – Set the options for the \documentclass statement in LATEX mode,
e.g. 12pt or 11pt. No options are specified initially resulting in the 10pt font set.

• mem=mem – Set the metapost format file to mem.

• command=command – Use command to process the generated file(s). By default the
METAPOST program mpost is invoked to compile the generated metapost files (with
appropriate command line options).

• now[=true|false] (no value implies true, initially set to false) – Activate/deactivate
immediate mode. In immediate mode, figures can be processed immediately so that
a secondary LATEX pass is not required to display the figure correctly. Note that
this option merely enables recording of all the required definitions so that immediate
processing will be possible, but it does not activate immediate processing per se.

6

• nowall[=true|false] (no value implies true, initially set to false) – Enable/disable
immediate processing for all figures by default. This option will call the METAPOST

compiler for every figure. While convenient, it requires heavier processing.

• nowkeep[=true|false] (no value implies true, initially set to false) – Enable/disable
immediate generation of figures by individual metapost files. If this mode is enabled,
the filename for immediate processing of the figure filename.mps will be filename.mp.
Otherwise the metapost code is stored in a temporary file and is overwritten by any
subsequent immediate processing.

• globaldef[=true|false] (no value implies true, initially set to false) – En-
able/disable the global option for the mpostdef environments by default. This option
can be used to specify a global block of definitions by enclosing it with appropriate
\mpostsetup statements.

• template=template (initially set to \mpostfilename-#1.mps) – Set the template for
figure filenames for which it is not given explicitly. The parameter #1 carries the
number (or label) to be used. Moreover, the macro \mpostfilename carries the current
metapost file.

• extension=ext (initially set to mps) – Set the default extension for figure filenames.

• numberwithin=counter – Declares the figure counter to be a child of counter. In other
words, the figure counter is reset when counter is increased, and the figure number
will be composed as counter-figure. Using this option with a top-level counter such as
section or chapter stabilises the figure numbering by making changes to the sequence
have effects only within the present section or chapter.

Admittedly, some of these options are hardly necessary as they will have little impact on
output or performance in ordinary situations. They are provided for completeness, to make
the package work in more exotic situations, and/or to satisfy some personal taste regarding
how things should be managed.

Finally, the package allows to customise the placeholder which is displayed when a figure\mpostplaceholder

file is not (yet) present after the first LATEX pass (or in case of some compile error) or a
figure label does not exist. In these situations the following macro is called:

\mpostplaceholder[type]{name}

type is either ‘file’ or ‘label’ and name is the missing filename or label. By default this
command displays a 1”×0.6” box containing the missing filename or label. This behaviour
can be customised by overwriting the macro.

2.3 Writing and Compiling Options

The following discusses some package options regarding the writing and compiling of meta-
post files in more detail.

Label Typesetting Options. Metapost figure files may or may not include the META-
FONT fonts which are used by the figure labels. When the generated metapost figures are
only used within a LATEX document in a standard TEX distribution, it is not necessary to
include the required fonts as they are automatically supplied by the LATEX compiler. This
omission reduces the size of the figure files (but apparently it has no impact on the size of the
compiled LATEX document in modern TEX distributions). However, the postscript structure
of such figure files is incomplete, and therefore the labels typically appear distorted in
external viewing or processing tools. If the figure files are to be viewed, processed or passed
on to a publisher, it makes sense to include the required fonts. The latter is achieved by

7

enabling the package option fonts. In this context, one can also set the default figure file
extension to eps by means of the package option extension.

By default, the package provides a LATEX document structure for processing labels by
LATEX. The default document class is article without options. An alternative class and
options can be specified by the package options class and classopt. Further packages or
macros should be declared as usual by specifying them in a mpostdef enviroment in tex

mode. If no LATEX structure is desired, set the package option latex to false. If the
typesetting requires an advanced compiler beyond latex or tex, it should be specified by
the package option compiler.

Compiling Options. When the figure files are in a final form it may make sense to
disable the compiling or even the writing of the metapost file(s) by setting the package
options compile or write to false. In particular, this may be desirable if the LATEX source
is uploaded to a repository or passed on to a publisher.

When the metapost file compiles with errors, one can inspect the generated metapost
file. To this end it may be helpful to know which part of the LATEX source file is responsible
for which part of the metapost file. The package option lineno activates prepending every
block in the metapost file by the corresponding location in the LATEX source. If the LATEX
source is distributed over several files, the source filename can also be provided if the package
currfile is loaded.

Filename Options. By default the names of figure files take the form

filename-specifier.ext

where filename is the name of the metapost file, specifier is an integer number which enu-
merates the figures and ext is ‘mps’. There are several options to customise the scheme:

• The figure option file allows to explicitly specify the desired filename.

• The package option numberwithin=section can be used to associate the counting with
a top-level section counter (such as ‘section’ or ‘chapter’). Then specifier takes the
form section-number, where number is an integer that enumerates the figures within
the present section.

• The package option labelnames lets specifier be the figure label. This option should
be used with care, as the operating system does not necessarily allow or distinguish
all characters which are available for TEX macros.

• The extension ext can be customised by the package option extension.

• The package option template allows to customise the above template. In composing
the template, the argument #1 carries the specifier and \mpostfilename carries the
name of the present metapost file.

2.4 Multiple Files

By default the package mpostinl writes out a single file source.mp if the LATEX source is called
source.tex. However, the package can also be configured to write out several metapost files.
This feature can be used to declare one metapost file for each top-level section of a large
LATEX document (e.g. section or chapter). Alternatively, one could define different metapost
files for figures of different kinds (e.g. technical drawings, diagrams, graphs, charts). Note
that these could well use different sets of metapost macros and variables.

This feature can make sense if the metapost source or generated figures are to be passed
on to someone else (e.g. publisher) in order to help clarify the placement of figures. It may

8

also be useful if selected sections of the document are generated individually by means of
\includeonly, in which case only the relevant metapost file is generated and compiled.

The contents of each metapost file should be enclosed by \mpostfile and \mpostdone.

A new metapost file is started by the command:\mpostfile

\mpostfile[opts]{filename}

filename is the filename without .mp extension. opt is a comma-separated list of options:
the only available option is include[=true|false] (no value implies true, initially set to
false) which declares whether the file is an include file.

The present metapost file is completed by the command \mpostdone which also compiles\mpostdone

the contained figures. Note that this command is called automatically at the end of the
LATEX document.

Global Definitions. Definitions in mpostdef environments apply to the present metapost
file only. However, definitions can also be specified for all metapost files by means of the
option global:

\begin{mpostdef}[global]

These definitions are stored internally and will be written to all subsequent metapost files.
To declare several consecutive (or all) blocks of definitions as global, one can use the pack-

age option globaldef. To that end, enclose the blocks by \mpostsetup{globaldef=true}

and \mpostsetup{globaldef=false}.

Include Files. Alternatively, global definitions can be saved to an include file. This may
make sense if there is a large amount of definitions which should not be written to each
and every metapost file. An include file is declared by \mpostfile[include]{filename}
and will be used by all subsequent main metapost files. Include files are equivalent to global
definitions, but they cannot contain TEX definitions. Moreover they must not contain figures.

2.5 Immediate Processing

By default, the metapost file is compiled at the end of the LATEX document. Therefore
all new figures and any changes to existing figures are not reflected in the compiled LATEX
document after the first pass. A second LATEX pass is needed to generate the desired output.
Moreover, any change to the sequence of figures (figures inserted, deleted or moved) can
only be seen after the second pass; the first pass shows the old sequence.

In the following we present some strategies to minimise or avoid this issue.

Collecting Figures at the Top. One option is to declare all figures with labels near
the top of the document, and close the metapost file by the command \mpostdone. The
compiled figures are immediately available afterwards. A side effect is that metapost and
LATEX source is necessarily separated (which may be considered a benefit or a drawback
depending on philosophy). Note that in a setup with multiple metapost files, the figures can
be defined at the top of each section thereby allowing some association between figures and
manuscript.

Stable Filenames. A change of figure sequence can have irritating effects because some
figures are displayed in the wrong place in the first pass. Even though a second pass resolves
this issue, the first pass may have upset the page composition so that some labels containing
page numbers can be messed up in the second pass thus requiring a third pass. There are
some methods to reduce this effect:

9

• Provide a filename for each figure by the option file.

• Automatically align the figure filenames with the labels by the package option
labelnames.

• Use the package option numberwithin with the counter of the top-level section.
Changes of the figure order will then be contained within each section.

• Use one metapost file for each top-level section. Changes of the figure order will then
be contained within each metapost file.

Immediate Processing. The above strategies are workarounds, but the package also
provides a mechanism to compile individual figures or all figures at once. The drawback is
that one metapost file with all relevant definitions needs to be generated and compiled for
each figure. This may have some negative impact on performance for very large documents
with excessively many figures, if many such documents are to be generated in a row, if the
computer is slow or busy otherwise, or if the laptop battery is low on a long journey (or
eventually if the user is old-fashioned or paranoid).

The mechanism is enabled by the package option now. While composing or editing indi-
vidual figures, one can specify the figure option now, and remove it when the figure is final.
Alternatively one can activate immediate processing for all figures with the package option
nowall (together with now). Ordinarily, a temporary file is used for the metapost source
for immediate processing. If the metapost sources for individual figures are needed, the
package option nowkeep stores the metapost source for every generated figure filename.mps
in the file filename.mp. When the figures are in a final state, all immediate processing can
be disabled by turning off the package option now.

Note that changing some variables within the figure blocks can have undesired effects
for immediate processing: In immediate processing only the present figure is included in the
metapost file, otherwise the metapost file contains the sequence of all figures. Therefore, a
change or (re)definition of a variable within a figure block will not be visible to all subsequent
figures in immediate mode! To avoid such situations:

• Do not (re)define variables within a figure block. Use a definition block before the
figure instead.

• Provide an initial value for all used variables which could change within other figures.

• For internal variables (such as the size ahlength of an arrow head) you can save

the initial value before the first redefinition within a figure block. Alternatively you
can prepend the first change to the variable by interim. Note that you can declare
variables as internal by means of newinternal.

2.6 Interaction with Other Packages

The following lists some potential issues in the interaction with other LATEX packages:

Package inputenc. This package should not interfere with the input encoding selected via
the package inputenc, e.g. utf8 encoding. Extended characters are passed on unchanged by
the mpostfig environment. If you declare an input encoding for your LATEX source by:

\usepackage[enc]{inputenc}

you should select the same input encoding for the labels in the metapost figures by means
of:

\begin{mpostdef}[tex]

\usepackage[enc]{inputenc}
\end{mpostdef}

10

Package beamer. The package beamer is a popular package for preparing slideshow pre-
sentations. In particular, slides can be presented in several steps by means on an overlay
mechanism. To that end the frame environment saves the enclosed block and processes
it in several passes. Therefore, the environments mpostfig and mpostdef must not be
used within the frame environment. Instead, figures should be declared outside the frame

environment and can be displayed by \mpostuse within the frame environment.

Package graphbox. Figures are eventually displayed by the \includegraphics command
which aligns the graphics with the bottom of the current line. To achieve different alignments
or placements takes some efforts. The package graphbox extends the optional arguments
of \includegraphics to customise the alignment conveniently. Since graphics arguments
are passed on directly to \includegraphics the graphbox package can be used without
restrictions. For instance, to align a figure vertically with the centre of the line, you may
use \begin{mpostfig}[opt={align}] or \mpostuse[align]{label}.

Package latexmp. The METAPOST package latexmp writes its own LATEX structure to
the metapost file. Therefore mpostinl must not write the LATEX structure, but still use the
latex compiler. Furthermore latexmp needs two METAPOST passes. The required options
are:

\mpostsetup{latex=false,format,compiler=latex,twice}

Script mplatex. The METAPOST processing script mplatex expects the default metapost
file naming convention (filename.nn) and no prologues statement. Moreover, it provides
the LATEX structure. The required options are:

\mpostsetup{latex=false,format,prologues}

\mpostsetup{template={\mpostfilename.#1}}

\mpostsetup{command={mplatex opt}}

In opt you can specify command line options for mplatex, e.g. to include LATEX packages.
Make sure to enable full access to external programs, and that mplatex is in the path (or
specify its location explicitly). Note that the file naming convention (filename.nn) does not
seem to work with pdfLATEX.

3 Information

3.1 Copyright

Copyright c© 2010–2017 Niklas Beisert

This work may be distributed and/or modified under the conditions of the LATEX Project
Public License, either version 1.3 of this license or (at your option) any later version. The
latest version of this license is in http://www.latex-project.org/lppl.txt and version
1.3 or later is part of all distributions of LATEX version 2005/12/01 or later.

This work has the LPPL maintenance status ‘maintained’.

The Current Maintainer of this work is Niklas Beisert.

This work consists of the files mpostinl.dtx and mpostinl.ins and the derived files
mpostinl.sty and mpinlsmp.tex

3.2 Files and Installation

The package consists of the files:

11

http://www.latex-project.org/lppl.txt

README readme file
mpostinl.ins installation file
mpostinl.dtx source file
mpostinl.sty package file
mpinlsmp.tex sample file
mpostinl.pdf manual

The distribution consists of the files README, mpostinl.ins and mpostinl.dtx.

• Run (pdf)LATEX on mpostinl.dtx to compile the manual mpostinl.pdf (this file).

• Run LATEX on mpostinl.ins to create the package mpostinl.sty and the sample
mpinlsmp.tex. Copy the file mpostinl.sty to an appropriate directory of your LATEX
distribution, e.g. texmf-root/tex/latex/mpostinl.

3.3 Feature Suggestions

The following is a list of features which may be useful for future versions of this package:

• A method to expand LATEX macros to the metapost code to match the corresponding
feature of package gmp: One difficulty is that direct insertion of LATEX macros requires
a substantially different implementation of the block scanning method because the
method supplied by verbatim does not work. Furthermore, some escape mechanism is
required either to expand selected LATEX macros or to prevent their expansion (within
btex . . . etex blocks).

• A simpler approach to the above feature would be to implement a command or option
to prepend some metapost statements to a given metapost block where LATEX macros
are expanded. This may work well for passing very few macros to metapost variables.
However, one would have to decide how aggressively macros are to be expanded.

• Write generated files to a subdirectory or remove files not needed after processing.
However, both appear to be somewhat in contrast to the usual TEX philosophy.

• Compare the generated metapost file to the previous instance and compile only in case
of changes. This could be implemented by a checksum or by some external tool such
as diff. This feature is probably too difficult to implement.

3.4 Revision History

v1.1: 2017/02/27

• improved compatibility with package latexmp and script mplatex (thanks to Walter
Entenmann for encouragement and testing)

• options improved to fine-tune structures written to metapost files and to specify com-
piler programs

v1.0: 2017/01/04

• manual and install package

• first version published on CTAN

12

v0.7–0.9: 2016/11/15 – 2017/01/04

• package options

• metapost environments simplified and renamed

• immediate and multiple file processing

• customisation options

• internal buffer processing

v0.6–0.63: 2015/07/11 – 2016/10/03

• minor improvements

v0.5: 2010/11/01

• basic functionality

A Sample File

In this section we provide a LATEX example how to use some of the mpostinl features.

A.1 Preamble

Standard document class:

1 \documentclass[12pt,a4paper]{article}

Adjust the paragraph shape:

2 \parindent0pt

3 \parskip6pt

Include the mpostinl package, include METAFONT fonts in the metapost figures:

4 \usepackage[fonts=true]{mpostinl}

We will test labels in UTF-8, so include package inputenc:

5 \usepackage[utf8]{inputenc}

Include packages currfile and graphbox if available, declare an alignment switch \align (if
graphbox is available):

6 %% optional: add filename to position labels in metapost code

7 \IfFileExists{currfile.sty}{\usepackage{currfile}}{}

8 %% optional: tools to align graphics

9 \IfFileExists{graphbox.sty}

10 {\def\align{align}\usepackage{graphbox}}

11 {\def\align{}}

Enable immediate mode and line number indicators, prepare some mpostinl options for
testing:

12 %% some sample package options:

13 %% \mpostsetup{write=false}

14 %% \mpostsetup{compile=false}

13

15 \mpostsetup{now}

16 %% \mpostsetup{nowall}

17 \mpostsetup{lineno}

18 %% \mpostsetup{latex=false}

19 %% \mpostsetup{classopt={12pt}}

Include the package inputenc for preparing LATEX labels within the metapost figures; as we
will be generating several metapost files later on, make sure this statement in included in
all of them:

20 %% declare packages to be used for processing labels:

21 \begin{mpostdef}[tex,global]

22 \usepackage[utf8]{inputenc}

23 \end{mpostdef}

Define an internal variable unit and initialise to 1cm; as we will be generating several
metapost files later on, make sure this statement in included in all of them:

24 %% specify global definitions:

25 \begin{mpostdef}[global]

26 newinternal unit;

27 unit:=1cm;

28 \end{mpostdef}

Begin document body:

29 \begin{document}

A.2 Basic Functionality

We start by demonstrating the basic functionality of the package:

30 \section{Basic Functionality}

First, draw a circle of diameter 1cm and write a ‘1’ in the centre:

31 a plain circle:\\

32 \begin{mpostfig}

33 draw fullcircle scaled unit;

34 label(btex 1 etex, (0,0));

35 \end{mpostfig}

Use the options for \includegraphics. Draw another circle containing a ‘2’ and scale it by
factor 1.5. Also vertically align to the centre (if graphbox is available):

36 scaled (and aligned to centre if available):\\

37 X

38 \begin{mpostfig}[opt={scale=1.5,\align}]

39 draw fullcircle scaled unit;

40 label(btex 2 etex, (0,0));

41 \end{mpostfig}

42 X

Declare a figure with label fig, do not show:

43 declare figure with label (no display).

44 \begin{mpostfig}[label={fig}]

45 draw fullcircle scaled unit;

46 label(btex 3 etex, (0,0));

47 \end{mpostfig}

14

Display the figure:

48 display:\\

49 \mpostuse{fig}

Display the figure with options for \includegraphics:

50 display with options:\\

51 \mpostuse[scale=1.5,\align]{fig}

Display the figure within a box:

52 display in a box:\\

53 \fbox{\mpostuse{fig}}

Display the figure at the centre of a line:

54 centred display:

55 \begin{center}

56 \mpostuse[scale=1.5]{fig}

57 \end{center}

Display the figure within an equation:

58 display in equation (align if possible):

59 \begin{equation}

60 \mpostuse[scale=1.5,\align]{fig}

61 \end{equation}

Show the filename of the figure:

62 filename: \mpostgetname{fig}

63 \texttt{\mpostfigurename}

Declare a figure with filename, label and show it, then display filename:

64 figure with filename:\\

65 \begin{mpostfig}[file={\jobname-name.mps},label={name},show]

66 draw fullcircle scaled unit;

67 label(btex 4 etex, (0,0));

68 \end{mpostfig}

69 \\

70 filename: \mpostgetname{name}

71 \texttt{\mpostfigurename}

Display the file via \includegraphics. As the figure may not exist (in the first pass) check
for existence first to avoid a compile error:

72 display by \verb+\includegraphics+ (if file exists):\\

73 \IfFileExists{\jobname-name.mps}{\includegraphics{\jobname-name.mps}}{}

Show a figure which does not exist, triggers a warning and displays a box:

74 label does not exist:\\

75 \mpostuse{notexist}

Display a figure with a label containing special characters in UTF-8. Note that the internal
variable unit is changed locally (interim) so that subsequent figures will see the old value:

76 utf-8 test:\\

77 \begin{mpostfig}

78 interim unit:=1.5cm;

79 draw fullcircle scaled unit;

80 label(btex àáâ~aäåæ etex, (0,0));

81 \end{mpostfig}

15

A.3 Immediate Processing

Next, we demonstrate immediate processing (make sure to enable the package option now):

82 \section{Immediate Processing}

Declare a figure for immediate processing. You may change the size unit and the figure will
be adjusted after the first LATEX pass:

83 immediate processing per figure:\\

84 \begin{mpostfig}[now]

85 interim unit:=1.5cm;

86 draw fullcircle scaled unit;

87 label(btex 5 etex, (0,0));

88 \end{mpostfig}

One can also enable immediate processing for all subsequent figures. Furthermore, store the
metapost source in individual files:

89 turn on immediate processing for all figures and keep sources.

90 \mpostsetup{nowall,nowkeep}

Now declare a figure with individual metapost source, display via \includegraphics, and
confirm that source exists:

91 generate file \texttt{\jobname-now.mps}:

92 \begin{mpostfig}[file={\jobname-now.mps}]

93 draw fullcircle scaled unit;

94 label(btex 6 etex, (0,0));

95 \end{mpostfig}

96 \\

97 display by \verb+\includegraphics+:\\

98 \includegraphics{\jobname-now.mps}

99 \\

100 source \texttt{\jobname-now.mp}

101 \IfFileExists{\jobname-now.mp}{exists}{does not exist}.

Reset immediate processing options for further examples (normally not necessary):

102 turn off immediate processing and discard sources.

103 \mpostsetup{nowall=false,nowkeep=false}

A.4 Filename Composition

Now, we demonstrate how to adjust the composition of figure filenames:

104 \section{Filename Composition}

Use the figure label instead of a figure counter:

105 by label:\\

106 \mpostsetup{labelnames=true}

107 \begin{mpostfig}[label={circle},show]

108 draw fullcircle scaled unit;

109 label(btex 7 etex, (0,0));

110 \end{mpostfig}

111 \mpostsetup{labelnames=false}

112 \\

113 filename: \mpostgetname{circle}

114 \texttt{\mpostfigurename}

16

Change extension to .eps:

115 change extension:

116 \mpostsetup{extension=eps}

117 \begin{mpostfig}[label={ext}]

118 draw fullcircle scaled unit;

119 label(btex 8 etex, (0,0));

120 \end{mpostfig}

121 \mpostsetup{extension=mps}

122 \\

123 filename: \mpostgetname{ext}

124 \texttt{\mpostfigurename}

Change template altogether:

125 change template:\\

126 \mpostsetup{template=\mpostfilename-figure-#1.mps}

127 \begin{mpostfig}[label={template},show]

128 draw fullcircle scaled unit;

129 label(btex 9 etex, (0,0));

130 \end{mpostfig}

131 \mpostsetup{template=\mpostfilename-#1.mps}

132 \\

133 filename: \mpostgetname{template}

134 \texttt{\mpostfigurename}

Demonstrate numbering within a section (here: subsection)

135 \mpostsetup{numberwithin=subsection}

One figure in the first section:

136 \subsection{Section 1}

137

138 \begin{mpostfig}[show,label={sec1}]

139 draw fullcircle scaled unit;

140 label(btex 10 etex, (0,0));

141 \end{mpostfig}

142 \\

143 filename: \mpostgetname{sec1}

144 \texttt{\mpostfigurename}

Two figures in the second section:

145 \subsection{Section 2}

146

147 \begin{mpostfig}[show,label={sec2}]

148 draw fullcircle scaled unit;

149 label(btex 11 etex, (0,0));

150 \end{mpostfig}

151 \\

152 filename: \mpostgetname{sec2}

153 \texttt{\mpostfigurename}

154

155 \begin{mpostfig}[show,label={sec3}]

156 draw fullcircle scaled unit;

157 label(btex 12 etex, (0,0));

158 \end{mpostfig}

159 \\

160 filename: \mpostgetname{sec3}

161 \texttt{\mpostfigurename}

17

One figure in the third section:

162 \subsection{Section 3}

163

164 \begin{mpostfig}[show,label={sec4}]

165 draw fullcircle scaled unit;

166 label(btex 13 etex, (0,0));

167 \end{mpostfig}

168 \\

169 filename: \mpostgetname{sec4}

170 \texttt{\mpostfigurename}

Reset numbering for further examples (normally not necessary, setting cannot be undone
completely):

171 \makeatletter

172 \def\thempi@count{\arabic{mpi@count}}

173 \makeatother

A.5 Multiple Files

Finally, demonstrate the generation and usage of several metapost files:

174 \section{Multiple Files}

First, close the old metapost file to get to a clean state:

175 \mpostdone

Make a definition which will apply to all metapost files. global option can be activated for
a block of definitions (here only one):

176 \mpostsetup{globaldef=true}

177

178 \begin{mpostdef}

179 unit:=0.8cm;

180 \end{mpostdef}

181

182 \mpostsetup{globaldef=false}

Alternatively, we can define an include file to be included by all main metapost files. This
has the same effect as a global definition, but is intended for long definitions:

183 \mpostfile[include]{\jobname-inc}

184

185 \begin{mpostdef}

186 def drawcircle =

187 draw fullcircle scaled unit

188 enddef;

189 \end{mpostdef}

190

191 \mpostdone

The first file contains one figure:

192 \subsection*{Section 1}

193 \mpostfile{\jobname-sec1}

194

195 \begin{mpostfig}[show,label={sec5}]

196 drawcircle;

197 label(btex 14 etex, (0,0));

18

198 \end{mpostfig}

199 \\

200 filename: \mpostgetname{sec5}

201 \texttt{\mpostfigurename}

202

203 \mpostdone

The second file contains a local redefinition of unit and two figures:

204 \subsection*{Section 2}

205 \mpostfile{\jobname-sec2}

206

207 \begin{mpostfig}[show,label={sec6}]

208 drawcircle;

209 label(btex 15 etex, (0,0));

210 \end{mpostfig}

211 \\

212 filename: \mpostgetname{sec6}

213 \texttt{\mpostfigurename}

214

215 \begin{mpostdef}

216 unit:=1.5cm;

217 \end{mpostdef}

218

219 \begin{mpostfig}[show,label={sec7}]

220 drawcircle;

221 label(btex 16 etex, (0,0));

222 \end{mpostfig}

223 \\

224 filename: \mpostgetname{sec7}

225 \texttt{\mpostfigurename}

226

227 \mpostdone

The third file contains one figure. Note that the redefinition of the second file does not apply
here:

228 \subsection*{Section 3}

229 \mpostfile{\jobname-sec3}

230

231 \begin{mpostfig}[show,label={sec8}]

232 drawcircle;

233 label(btex 17 etex, (0,0));

234 \end{mpostfig}

235 \\

236 filename: \mpostgetname{sec8}

237 \texttt{\mpostfigurename}

238

239 \mpostdone

End of document body:

240 \end{document}

B Implementation

In this section we describe the package mpostinl.sty.

19

Required Packages. The package loads the packages verbatim, graphicx and keyval if
not yet present. verbatim is used for reading verbatim metapost code. graphicx is used for
including graphics files. keyval is used for extended options processing.

241 \RequirePackage{verbatim}

242 \RequirePackage{graphicx}

243 \RequirePackage{keyval}

Internal Definitions.

\ifmpi@infile

\ifmpi@inbody

\ifmpi@infile indicates whether a file is open, \ifmpi@inbody indicates whether the con-
tent section has started:

244 \newif\ifmpi@infile\mpi@infilefalse

245 \newif\ifmpi@inbody\mpi@inbodyfalse

\mpostfilename

\mpi@nowname

\mpi@extension

\mpi@template

\mpostfilename stores the metapost filename, \mpi@nowname stores the filename for imme-
diate processing, and \mpi@template is the template to generate the figure filenames:

246 \def\mpostfilename{\jobname}

247 \def\mpi@nowname{\jobname-tmp}

248 \def\mpi@extension{mps}

249 \def\mpi@template#1{\mpostfilename-#1%

250 \ifx\mpi@extension\mpi@empty\else.\fi\mpi@extension}

mpi@count Declare a counter for figure filenames:

251 \newcounter{mpi@count}

252 \def\thempi@count{\arabic{mpi@count}}

Package Options. The package has some boolean keyval options which can be set to true

or false.

253 \newif\ifmpi@draft\mpi@draftfalse

254 \newif\ifmpi@latex\mpi@latextrue

255 \newif\ifmpi@fonts\mpi@fontsfalse

256 \newif\ifmpi@write\mpi@writetrue

257 \newif\ifmpi@compile\mpi@compiletrue

258 \newif\ifmpi@twice\mpi@twicefalse

259 \newif\ifmpi@lineno\mpi@linenofalse

260 \newif\ifmpi@labelnames\mpi@labelnamesfalse

261 \newif\ifmpi@nowactive\mpi@nowactivefalse

262 \newif\ifmpi@now\mpi@nowfalse

263 \newif\ifmpi@nowkeep\mpi@nowkeepfalse

264 \newif\ifmpi@include\mpi@includefalse

265 \newif\ifmpi@defglobal\mpi@defglobalfalse

\mpi@mpostmem

\mpi@mpostcompiler

\mpi@latexclass

\mpi@latexoptions

\mpi@documentclass

These definitions store the options for processing labels via TEX or LATEX:

266 \def\mpi@mpostmem{}

267 \def\mpi@mpostcompiler{}

268 \def\mpi@latexclass{article}

269 \def\mpi@latexoptions{}

270 \def\mpi@documentclass{\@backslashchar documentclass%

271 \mpi@latexoptions{\mpi@latexclass}}

\mpi@warncompile Warn and disable compiling if \write18 is unavailable:

20

272 \def\mpi@warncompile{\ifmpi@compile\ifeof18%

273 \PackageWarning{mpostinl}{write18 disabled, %

274 manual metapost compiling required}{}%

275 \global\mpi@compilefalse\fi\fi}

Process package options:

276 \def\mpi@group{mpi@}

277 \DeclareOption{final}{\mpi@draftfalse}

278 \define@key{\mpi@group}{draft}[true]{\csname mpi@draft#1\endcsname}

279 \define@key{\mpi@group}{write}[true]{\csname mpi@write#1\endcsname}

280 \define@key{\mpi@group}{latex}[true]{\csname mpi@latex#1\endcsname}

281 \define@key{\mpi@group}{compile}[true]{\csname mpi@compile#1\endcsname}

282 \define@key{\mpi@group}{twice}[true]{\csname mpi@twice#1\endcsname}

283 \define@key{\mpi@group}{fonts}[true]{\csname mpi@fonts#1\endcsname}

284 \define@key{\mpi@group}{prologues}[]{\def\mpi@prologues{#1}}

285 \define@key{\mpi@group}{lineno}[true]{\csname mpi@lineno#1\endcsname}

286 \define@key{\mpi@group}{labelnames}[true]{\csname mpi@labelnames#1\endcsname}

287 \define@key{\mpi@group}{compiler}[]{\def\mpi@texcompiler{#1}}

288 \define@key{\mpi@group}{format}[]{\def\mpi@texformat{#1}}

289 \define@key{\mpi@group}{mem}[]{\def\mpi@mpostmem{#1}}

290 \define@key{\mpi@group}{command}[]{\def\mpi@mpostcompiler{#1}}

291 \define@key{\mpi@group}{class}{\def\mpi@latexclass{#1}}

292 \define@key{\mpi@group}{classopt}[]{\def\mpi@latexoptions{[#1]}}

293 \define@key{\mpi@group}{now}[true]{\csname mpi@nowactive#1\endcsname}

294 \define@key{\mpi@group}{nowall}[true]{\csname mpi@now#1\endcsname}

295 \define@key{\mpi@group}{nowkeep}[true]{\csname mpi@nowkeep#1\endcsname}

296 \define@key{\mpi@group}{globaldef}[true]{\csname mpi@defglobal#1\endcsname}

297 \define@key{\mpi@group}{extension}[]{\def\mpi@extension{#1}}

298 \define@key{\mpi@group}{template}{\def\mpi@template##1{#1}}

299 \define@key{\mpi@group}{numberwithin}{%

300 \@addtoreset{mpi@count}{#1}%

301 \def\thempi@count{\arabic{#1}-\arabic{mpi@count}}%

302 }

Pass undeclared options on to keyval processing:

303 \DeclareOption*{\expandafter\setkeys\expandafter\mpi@group%

304 \expandafter{\CurrentOption}}

Process package options and warn if \write18 mechanism is not available:

305 \ProcessOptions

306 \mpi@warncompile

Internal Commands and Definitions.

\mpi@empty Define an empty macro for comparison via \ifx:

307 \def\mpi@empty{}

\mpi@dblquotchar Define a bare double quotation character for writing to the file:

308 \begingroup\catcode‘\"=12\relax\gdef\mpi@dblquotchar{"}\endgroup

\mpi@out

\mpi@outnow

File handles for the metapost file (\mpi@out) and for immediate output (\mpi@outnow):

309 \newwrite\mpi@out

310 \newwrite\mpi@outnow

21

\mpi@writebuf Write to the file:

311 \def\mpi@writebuf{\ifmpi@write\immediate\write\mpi@out{\the\mpi@buf}\fi}

\mpi@writenow Write to the immediate buffer:

312 \def\mpi@writenow{\ifmpi@nowactive\mpi@addtoexp\mpi@nowbuf{\the\mpi@buf^^J}\fi}

\mpi@buf

\mpi@defbuf

\mpi@nowbuf

Declare three token buffers to store the current block (\mpi@buf), global definitions
(\mpi@defbuf) and the definitions for immediate processing (\mpi@nowbuf):

313 \newtoks\mpi@buf

314 \newtoks\mpi@defbuf

315 \newtoks\mpi@nowbuf

316 \mpi@defbuf={}

\mpi@addto

\mpi@addtoexp

\mpi@addto adds the second argument to a global token buffer without expansion.
\mpi@addtoexp first expands the second argument (once) and adds it to the token buffer:

317 \def\mpi@addto#1#2{\global#1=\expandafter{\the#1#2}}

318 \def\mpi@addtoexp#1#2{\expandafter\mpi@addto\expandafter#1\expandafter{#2}}

\mpi@clearbuf

\mpi@addbufexp

\mpi@addbuf

\mpi@clearbuf clears the current block buffer. \mpi@addbufexp expands (once) and
adds to the current block buffer. \mpi@addbuf adds to the current block buffer via
\protected@edef:

319 \def\mpi@clearbuf{\global\mpi@buf={}}

320 \def\mpi@addbufexp#1{\mpi@addtoexp\mpi@buf{#1^^J}}

321 \def\mpi@addbuf#1{{\protected@edef\mpi@tmp{#1}\mpi@addbufexp\mpi@tmp}}

\mpi@stripext Strip .mps or .eps ending of a figure filename, return result in \mpi@stripped:

322 \def\mpi@stripext#1{\edef\mpi@tmp{#1}\expandafter%

323 \mpi@stripstart\expandafter{\mpi@tmp}}

324 \def\mpi@ifeq#1#2#3#4{\def\mpi@tmpa{#1}\def\mpi@tmpb{#2}%

325 \ifx\mpi@tmpa\mpi@tmpb#3\else#4\fi}

326 \def\mpi@stripstart#1{\mpi@stripfor{\@gobble}#1.\@@.}

327 \def\mpi@stripfor#1#2.#3.{%

328 \begingroup%

329 \mpi@ifeq{#3}{\@@}{%

330 \def\mpi@tmp{\def\mpi@stripped{#1.#2}}%

331 \mpi@ifeq{#1}{\@gobble}{}{%

332 \mpi@ifeq{#2}{eps}{\def\mpi@tmp{\def\mpi@stripped{#1}}}{}%

333 \mpi@ifeq{#2}{mps}{\def\mpi@tmp{\def\mpi@stripped{#1}}}{}%

334 \ifx\mpi@extension\mpi@empty\else%

335 \expandafter\mpi@ifeq\expandafter{\mpi@extension}{#2}%

336 {\def\mpi@tmp{\def\mpi@stripped{#1}}}{}%

337 \fi%

338 }%

339 }{\def\mpi@tmp{\mpi@stripfor{#1.#2}#3.}}%

340 \expandafter\endgroup\mpi@tmp%

341 }

\mpostplaceholder Display a placeholder for non-existing files or labels; this function may be overwritten by
the user for customisation purposes (optional argument contains either ‘file’ or ‘label’):

342 \newcommand{\mpostplaceholder}[2][]{\parbox[c]{1in}{%

343 \hrule\vrule\hfill%

344 \parbox[c]{0pt}{\rule{0cm}{0.6in}}\makebox[0pt][c]{\scriptsize\tt #2}%

345 \hfill\vrule\hrule}}

22

\mpi@graphics Display a figure; if the file does not exist (yet) issue a warning and display a placeholder,
otherwise expand filename properly and pass on to \includegraphics:

346 \newcommand{\mpi@graphics}[2][]{%

347 \IfFileExists{#2}%

348 {\edef\mpi@tmp{#2}\includegraphics[#1]{\mpi@tmp}}%

349 {\typeout{graphics file ‘#2’ missing}\mpostplaceholder[file]{#2}}%

350 }

\mpi@verbatim Start reading the block from the source file using the verbatim package; add each line to the
buffer:

351 \newcommand{\mpi@verbatim}{%

352 \@bsphack%

353 \let\do\@makeother\dospecials%

354 \catcode‘\^^M\active%

355 \def\verbatim@processline{\mpi@addbufexp{\the\verbatim@line}}%

356 \verbatim@start%

357 }

\mpi@putlineno Write current position in source file to buffer; write line number and source file name (if
available via package currfile):

358 \newcommand{\mpi@putlineno}{%

359 \ifmpi@lineno%

360 \mpi@addbuf{\@percentchar---------------------------------------}%

361 \mpi@addbuf{\@percentchar%

362 \ifx\currfilename\@undefined\else\currfilename\space\fi%

363 l.\the\inputlineno}%

364 \fi%

365 }

\mpi@beginfig Write beginning of figure block to buffer; write filename and beginfig statement:

366 \newcommand{\mpi@beginfig}[1]{%

367 \mpi@addbuf{filenametemplate \mpi@dblquotchar#1\mpi@dblquotchar;}%

368 \mpi@addbuf{beginfig(\arabic{mpi@count})}%

369 }

\mpi@endfig Write end of figure block to buffer; write endfig statement:

370 \newcommand{\mpi@endfig}{%

371 \mpi@addbuf{endfig;}%

372 }

\mpi@declaredoc Write \documentclass statement in LATEX mode to buffer:

373 \newcommand{\mpi@declaredoc}{%

374 \ifmpi@latex%

375 \mpi@addbuf{verbatimtex}%

376 \mpi@addbuf{\mpi@documentclass}%

377 \mpi@addbuf{etex}%

378 \mpi@addbuf{}%

379 \fi%

380 }

\mpi@begindoc Write beginning of content section to buffer; write \begin{document} statement in LATEX
mode:

23

381 \newcommand{\mpi@begindoc}{%

382 \ifmpi@latex%

383 \mpi@putlineno%

384 \mpi@addbuf{verbatimtex}%

385 \mpi@addbuf{\@backslashchar begin{document}}%

386 \mpi@addbuf{etex}%

387 \fi%

388 }

\mpi@enddoc Write end of content section to buffer; write \end{document} statement in LATEX mode:

389 \newcommand{\mpi@enddoc}{%

390 \ifmpi@latex%

391 \mpi@putlineno%

392 \mpi@addbuf{verbatimtex}%

393 \mpi@addbuf{\@backslashchar end{document}}%

394 \mpi@addbuf{etex}%

395 \fi%

396 }

\mpi@declareformat Write TEX format specifier to buffer:

397 \newcommand{\mpi@declareformat}{%

398 \let\mpi@tmp\mpi@texformat%

399 \ifx\mpi@tmp\@undefined\def\mpi@tmp{\ifmpi@latex latex\else tex\fi}\fi%

400 \ifx\mpi@tmp\mpi@empty\else%

401 \mpi@addbuf{verbatimtex}%

402 \mpi@addbuf{\@percentchar &\mpi@tmp}%

403 \mpi@addbuf{etex}%

404 \mpi@addbuf{}%

405 \fi%

406 }

\mpi@composehead Write file header to buffer; declare font inclusion and draft mode, write TEX format specifier
and LATEX header:

407 \newcommand{\mpi@composehead}{%

408 \mpi@putlineno%

409 \let\mpi@tmp\mpi@prologues%

410 \ifx\mpi@tmp\@undefined\def\mpi@tmp{\ifmpi@latex 3\else 2\fi}\fi%

411 \ifx\mpi@tmp\mpi@empty\else%

412 \mpi@addbuf{prologues:=\mpi@tmp;}%

413 \fi%

414 \ifmpi@draft\mpi@addbuf{draft:=1;}\fi%

415 \mpi@addbuf{}%

416 \mpi@declareformat%

417 \mpi@declaredoc%

418 }

\mpi@beginfile Write beginning of file to buffer; write generated file comment and header:

419 \newcommand{\mpi@beginfile}{%

420 \ifx\mpi@mpostmem\mpi@empty\else%

421 \mpi@addbuf{\@percentchar &\mpi@mpostmem}%

422 \fi%

423 \mpi@addbuf{\@percentchar generated from file ‘\jobname’ by mpostinl.sty}%

424 \ifmpi@include\else%

425 \mpi@composehead%

426 \mpi@addbufexp{\the\mpi@defbuf}%

24

427 \fi%

428 }

\mpi@endfile Write end of file to buffer; write end statement:

429 \newcommand{\mpi@endfile}{%

430 \mpi@putlineno%

431 \ifmpi@include\else%

432 \mpi@addbuf{end}%

433 \fi%

434 }

\mpi@startfile Start a new file if not already open:

435 \newcommand{\mpi@startfile}{%

436 \ifmpi@infile\else%

Prevent reopening and overwriting the previous file:

437 \ifx\mpostfilename\mpi@empty%

438 \PackageError{mpostinl}{no filename provided to write to}{}%

439 \fi%

Open file for writing, prepare and write header to file:

440 \global\mpi@infiletrue%

441 \ifmpi@write\immediate\openout\mpi@out\mpostfilename.mp\fi%

442 \mpi@clearbuf%

443 \mpi@beginfile%

444 \mpi@writebuf%

For include files, write input statement to definition buffer so that the file will be included
by all main files:

445 \ifmpi@include%

446 \mpi@clearbuf%

447 \mpi@putlineno%

448 \mpi@addbuf{input \mpostfilename}%

449 \mpi@addtoexp\mpi@defbuf{\the\mpi@buf^^J}%

If immediate mode is available fill immediate buffer with header:

450 \else%

451 \global\mpi@nowbuf={}%

452 \mpi@writenow%

453 \fi%

454 \fi%

455 }

\mpi@startcontent Start content section of file; make sure the file is open, prepare start of content section and
write to file, if immediate mode is available also add to immediate buffer:

456 \newcommand{\mpi@startcontent}{%

457 \mpi@startfile%

458 \ifmpi@inbody\else%

459 \global\mpi@inbodytrue%

460 \mpi@clearbuf%

461 \mpi@begindoc%

462 \mpi@writebuf%

463 \mpi@writenow%

464 \fi%

465 }

25

\mpi@compile Compile the metapost file (if writing and compiling is enabled):

466 \newcommand{\mpi@compile}[1]{%

467 \ifmpi@write\ifmpi@compile%

468 \ifx\mpi@mpostcompiler\mpi@empty%

Compose command line for mpost; pass on interactionmode setting to METAPOST, specify
mem filem, specify tex compiler:

469 \def\mpi@imode{}%

470 \ifcase\the\interactionmode%

471 \def\mpi@imode{-interaction=batchmode}\or%

472 \def\mpi@imode{-interaction=nonstopmode}\or%

473 \def\mpi@imode{-interaction=scrollmode}\or%

474 \def\mpi@imode{-interaction=errorstopmode}\fi%

475 \let\mpi@texswitch\mpi@texcompiler%

476 \ifx\mpi@texswitch\@undefined%

477 \def\mpi@texswitch{\ifmpi@latex latex\else tex\fi}%

478 \fi%

479 \def\mpi@execute{mpost\space%

480 \mpi@imode\space%

481 \ifx\mpi@mpostmem\mpi@empty\else -mem=\mpi@mpostmem\space\fi%

482 \ifx\mpi@texswitch\mpi@empty\else -tex=\mpi@texswitch\space\fi%

483 #1}%

484 \else%

Compose custom command:

485 \def\mpi@execute{\mpi@mpostcompiler\space#1}%

486 \fi%

Execute METAPOST by \write18 command; do it again if needed:

487 \immediate\write18{\mpi@execute}%

488 \ifmpi@twice%

489 \immediate\write18{\mpi@execute}%

490 \fi%

491 \fi\fi%

492 }

\mpi@closefile Close the file, compile and reset:

493 \newcommand{\mpi@closefile}{%

494 \ifmpi@infile%

Write end of content section (if started):

495 \mpi@clearbuf%

496 \ifmpi@inbody%

497 \mpi@enddoc%

498 \mpi@addbuf{}%

499 \fi%

Write end of file and close:

500 \mpi@endfile%

501 \mpi@writebuf%

502 \ifmpi@write\immediate\closeout\mpi@out\fi%

Compile if file contains figures:

503 \ifmpi@inbody\mpi@compile{\mpostfilename.mp}\fi%

26

Reset variables:

504 \global\mpi@infilefalse%

505 \global\let\mpostfilename\mpi@empty%

506 \global\mpi@inbodyfalse%

507 \setcounter{mpi@count}{0}%

508 \fi%

509 }

\mpi@processnow Write present figure to an individual file and process immediately:

510 \newcommand{\mpi@processnow}{%

511 \ifmpi@nowactive\ifmpi@write\ifmpi@compile%

If immediate file is to be kept, use filename.mp as source for filename.mps output file.

512 \ifmpi@nowkeep%

513 \mpi@stripext{\mpi@figfile}%

514 \edef\mpi@nowname{\mpi@stripped}%

515 \fi%

Open immediate file, write the immediate buffer, the present figure and the end of file, close
the file and compile:

516 \immediate\openout\mpi@outnow\mpi@nowname.mp%

517 \immediate\write\mpi@outnow{\the\mpi@nowbuf}%

518 \immediate\write\mpi@outnow{\the\mpi@buf}%

519 \mpi@clearbuf%

520 \mpi@enddoc%

521 \mpi@addbuf{}%

522 \mpi@endfile%

523 \immediate\write\mpi@outnow{\the\mpi@buf}%

524 \immediate\closeout\mpi@outnow%

525 \mpi@compile{\mpi@nowname.mp}%

526 \fi\fi\fi%

527 }

Make sure to close and process the file at the end:

528 \AtEndDocument{\mpi@closefile}

External Commands. The following commands are the interface of the package.

\mpostsetup \mpostsetup processes package options when the package has already been loaded:

529 \newcommand{\mpostsetup}[1]{%

530 \setkeys\mpi@group{#1}%

531 \mpi@warncompile%

532 }

mpostdef Declare options for the mpostdef environment:

533 \newif\ifmpi@deftex

534 \define@key{mpi@def}{tex}[true]{\csname mpi@deftex#1\endcsname}

535 \define@key{mpi@def}{global}[true]{\csname mpi@defglobal#1\endcsname}

The environment mpostdef adds a block of definitions to the metapost file:

536 \newenvironment{mpostdef}[1][]{%

27

Process optional arguments:

537 \mpi@deftexfalse%

538 \setkeys{mpi@def}{#1}%

TEX definitions cannot be in an include file:

539 \ifmpi@defglobal\else\ifmpi@deftex\ifmpi@include%

540 \PackageWarning{mpostinl}{tex definitions within an include file %

541 will be ignored by mpost; switching to global definition}{}%

542 \mpi@defglobaltrue%

543 \fi\fi\fi%

Prepare for recording; start the file if not open and not global, clear buffer, write current
position, and add ‘verbatimtex’ if in TEX mode:

544 \ifmpi@defglobal\else%

545 \mpi@startfile%

546 \fi%

547 \mpi@clearbuf%

548 \mpi@putlineno%

549 \ifmpi@deftex%

550 \mpi@addbuf{verbatimtex}%

551 \fi%

552 \mpi@verbatim%

553 }%

Postprocessing; add ‘etex’ if in TEX mode, add to appropriate buffer(s).

554 {%

555 \ifmpi@deftex%

556 \mpi@addbuf{etex}%

557 \fi%

558 \ifmpi@defglobal%

559 \mpi@addtoexp\mpi@defbuf{\the\mpi@buf^^J}%

560 \ifmpi@include\else\ifmpi@infile%

561 \mpi@writebuf%

562 \mpi@writenow%

563 \fi\fi%

564 \else%

565 \mpi@writebuf%

566 \ifmpi@include\else\mpi@writenow\fi%

567 \fi%

568 \@esphack%

569 }

mpostfig Declare options for the mpostfig environment:

570 \newif\ifmpi@figshow

571 \define@key{mpi@fig}{show}[true]{\csname mpi@figshow#1\endcsname}

572 \define@key{mpi@fig}{twice}[true]{\csname mpi@twice#1\endcsname}

573 \define@key{mpi@fig}{file}{\def\mpi@figfile{#1}}

574 \define@key{mpi@fig}{label}{\def\mpi@figlabel{#1}}

575 \define@key{mpi@fig}{opt}{\edef\mpi@figopt{[#1]}}

576 \define@key{mpi@fig}{now}[true]{\csname mpi@now#1\endcsname}

The environment mpostfig adds a figure to the metapost file:

577 \newenvironment{mpostfig}[1][]{%

Make sure that include files do not contain figures:

28

578 \ifmpi@include%

579 \PackageError{mpostinl}{cannot write figure to include file}{}%

580 \fi%

Process optional arguments:

581 \def\mpi@figfile{}%

582 \def\mpi@figlabel{}%

583 \def\mpi@figopt{}%

584 \mpi@figshowfalse%

585 \setkeys{mpi@fig}{#1}%

Display figure if no filename or label is provided:

586 \ifx\mpi@figlabel\mpi@empty\ifx\mpi@figfile\mpi@empty\mpi@figshowtrue\fi\fi%

Compose filename from label (if desired and specified):

587 \ifmpi@labelnames\ifx\mpi@figfile\mpi@empty\ifx\mpi@figlabel\mpi@empty\else%

588 \edef\mpi@figfile{\mpi@template{\mpi@figlabel}}%

589 \fi\fi\fi%

Compose filename from counter if no filename is provided:

590 \ifx\mpi@figfile\mpi@empty%

591 \addtocounter{mpi@count}{1}%

592 \edef\mpi@figfile{\mpi@template{\thempi@count}}%

593 \fi%

Save filename to label, warn if label has already been defined:

594 \ifx\mpi@figlabel\mpi@empty\else%

595 \expandafter\ifx\csname mpi@l@\mpi@figlabel\endcsname\relax\else%

596 \PackageWarning{mpostinl}{label ‘\mpi@figlabel’ already defined; %

597 overwriting}{}%

598 \fi%

599 \expandafter\xdef\csname mpi@l@\mpi@figlabel\endcsname{\mpi@figfile}%

600 \fi%

Prepare for recording; start file and content section (if needed), clear buffer, write current
position, begin figure block:

601 \mpi@startcontent%

602 \mpi@clearbuf%

603 \mpi@putlineno%

604 \mpi@beginfig{\mpi@figfile}%

605 \mpi@verbatim%

606 }%

Postprocessing; end figure block, add to buffer, process immediately if desired:

607 {%

608 \mpi@endfig%

609 \mpi@writebuf%

610 \ifmpi@now%

611 \mpi@processnow%

612 \fi%

613 \@esphack%

Display figure:

614 \ifmpi@figshow%

615 \expandafter\mpi@graphics\mpi@figopt{\mpi@figfile}%

29

616 \fi%

617 }

\mpostuse \mpostuse includes a metapost figure which was declared earlier via its label. The optional
argument is passed as the optional argument for \includegraphics

618 \newcommand{\mpostuse}[2][]{%

619 \expandafter\ifx\csname mpi@l@#2\endcsname\relax%

620 \PackageWarning{mpostinl}{unknown label ‘#2’}{}%

621 \mpostplaceholder[label]{#2}%

622 \else%

623 \mpi@graphics[#1]{\csname mpi@l@#2\endcsname}%

624 \fi%

625 }

\mpostgetname \mpostgetname gets the filename of a figure declared earlier via its label and returns it in
the macro \mpostfigurename:

626 \newcommand{\mpostgetname}[1]{%

627 \expandafter\ifx\csname mpi@l@#1\endcsname\relax%

628 \PackageWarning{mpostinl}{unknown label ‘#1’}{}%

629 \let\mpostfigurename\relax%

630 \else%

631 \edef\mpostfigurename{\csname mpi@l@#1\endcsname}%

632 \fi%

633 }

\mpostfile Declare options for \mpostfile:

634 \define@key{mpi@file}{include}[true]{\csname mpi@include#1\endcsname}

\mpostfile sets up a new metapost file. If the previous file is still open, it will be closed
and processed first.

635 \newcommand{\mpostfile}[2][]{%

636 \mpi@closefile%

637 \mpi@includefalse%

638 \setkeys{mpi@file}{#1}%

639 \xdef\mpostfilename{#2}%

640 }

\mpostdone \mpostdone closes the present metapost file and processes it if applicable.

641 \newcommand{\mpostdone}{\mpi@closefile}

30

	Introduction
	Related CTAN Packages and Software

	Usage
	Figures and Definitions
	Package Options
	Writing and Compiling Options
	Multiple Files
	Immediate Processing
	Interaction with Other Packages

	Information
	Copyright
	Files and Installation
	Feature Suggestions
	Revision History

	Sample File
	Preamble
	Basic Functionality
	Immediate Processing
	Filename Composition
	Multiple Files

	Implementation

