
The morewrites package:
Always room for a new \write∗

Bruno Le Floch

July 10, 2012

Contents
1 morewrites documentation 2

2 Known deficiencies 2

3 morewrites implementation 2
3.1 Overview of relevant TEX facts . 2
3.2 Renaming primitives (again) . 4
3.3 Variables . 4
3.4 Parsing . 5
3.5 Immediate (writing) . 6

3.5.1 What follows \immediate . 6
3.5.2 Immediate closeout . 6
3.5.3 Immediate openout . 7
3.5.4 Immediate write . 8

3.6 Non-immediate writing . 9
3.6.1 Replacement for primitives . 10
3.6.2 Shipout business . 11

3.7 Hook at the very end . 13
3.8 Modified \newwrite . 14
3.9 Redefining the “normal” control sequences 15

∗This file has version number v0.2, last revised 2012-07-10.

1

1 morewrites documentation
This LATEX package is meant to be a solution for the error “no room for a new \write”,
which occurs when too many macro packages reserve streams to write data to various
auxiliary files. It is in principle possible to rewrite packages so that they are less greedy
on resources, but that is often unpractical for the end-user. Instead, morewrites hooks at
the lowest level (TEX primitives). If I did my job correctly, you simply need to add the
line \usepackage{morewrites} somewhere near the beginning of your LATEX file, and
the “no room for a new \write” error should vanish.

I have tried to make the code as robust as possible, but there may still be bugs
lurking as this package has not been tested very thoroughly yet. I thus encourage you to
check that references are correct after loading that package: if they are correct without
morewrites, but wrong with, please send me a minimal file showing the problem, or
post a question on the tex.stackexchange.com question and answers website, or the
comp.text.tex newsgroup.

This package loads the expl3 package, hence the l3kernel bundle needs to be up to
date. If Heiko Oberdiek’s package atbegshi is available, it will be used.

2 Known deficiencies
Some distributions of TEX allow a quoted syntax for file names with spaces. I haven’t
yet coded that. A temporary fix is to avoid file names with spaces.

The package code is not very legible, and definitely uses too many :D control se-
quences, whose name means “do not use”. The author does not see a way to avoid using
primitives in this package, since hooking into the primitives \immediate, \write, etc.
requires having a very strong control on what every command does. Do not take this
package as an example of how to code with expl3; go and see Joseph Wright’s siunitx
instead.

In particular, I’d like to document better how and when \newlinechar and
\endlinechar are set and used, to make sure that this is done correctly.

3 morewrites implementation
<*package>

1 \ProvidesExplPackage
2 {morewrites} {2012/07/10} {0.2} {Always room for a new write}
3 \RequirePackage{expl3, primargs}

4 〈@@ = morewrites〉

3.1 Overview of relevant TEX facts
The aim of the morewrites package is to lift TEX’s restriction of only having 16 files
open for writing at the same time. We must thus patch 4 primitives, \openout, \write,
\closeout and \immediate, and the \newwrite macro, defined by LATEX (and plain

2

tex.stackexchange.com
comp.text.tex

TEX). Each of those commands must be made to accept numbers outside the range [0, 15].
Let us review the syntax of the various commands we need to alter (see Chapter 24 of
the TEXbook).

We start with the three “actions”. TEX searches the path for a file with a name given
by 〈file name〉. If found, this file is opened in the writing stream 〈integer〉, which must be
a number in the range [0, 15]. TEX expands the 〈general text〉 as for an x-type expansion,
with the caveat that macro parameter characters do not need to be doubled; converts
the result to a string, and writes it in the writing stream 〈integer〉. If the writing stream
〈integer〉 is open (in particular it must be in the range [0, 15]), then this writes to the
corresponding file. Otherwise, if the 〈integer〉 is negative, the text is written to the log
file, and a non-negative 〈integer〉 writes to the terminal. One exception: if the 〈integer〉
is 18, the text is sent to a shell to be run as shell code. If the writing stream 〈integer〉 is
open, it is closed. Otherwise, if the 〈integer〉 is not in the range [0, 15] an error may be
raised, or nothing happens.

By default, each one of those three “actions” are recorded in a whatsit node in the
current list, and will be performed when the box containing the whatsit node is sent to the
final pdf, i.e., at “shipout” time. In particular, the 〈general text〉 for the \write primitive
is expanded at shipout time. This behaviour may be modified by putting \immediate
before any of the three “actions” to force TEX to perform the action immediately instead
of recording it in a whatsit node.

Since the \openout, \write, and \closeout primitives operate at \shipout time, we
will have to hook into this primitive too. It expects to be followed by a box specification
such as \box〈integer〉, or \hbox{〈material to typeset〉}.

Finally, the \newwrite macro expects one token as its argument, and defines this
token (with \chardef) to be an integer corresponding to the first available writing stream.
We must extend it to let it allocate higher (virtual) write registers.

All of the primitives above perform full expansion of all tokens when looking for their
operands. In most cases, only the \meaning of tokens encountered in this way matters.
Specifically,

• 〈integer〉 denotes an integer in any form that TEX accepts as the right-hand side of
a primitive integer assignment of the form \count0=〈integer〉;

• 〈equals〉 is an arbitrary (optional) number of explicit or implicit space characters,
an optional explicit equal sign of category other, and further (optional) explicit or
implicit space characters;

• 〈file name〉 is an arbitrary sequence of explicit or implicit characters with arbi-
trary category codes (except active characters, which are expanded before reaching
TEX’s mouth), ending either with a space character (character code 32, arbitrary
non-active category code, explicit or implicit), which is removed, or with a non-
expandable token, with some care needed for the case of a \notexpanded: expand-
able token;

• 〈filler〉 is an arbitrary combination of tokens whose meaning is \relax or a character
with category code 10;

3

• 〈general text〉 is formed of braced tokens, starting with an explicit or implicit begin-
group character, and ending with the matching explicit end-group character (both
with any character code), with an equal number of explicit begin-group and end-
group characters in between: this is precisely the right-hand side of an assignment
of the form \toks0=〈general text〉.

3.2 Renaming primitives (again)
__morewrites_tex_immediate:w

__morewrites_tex_openout:w
__morewrites_tex_write:w

__morewrites_tex_closeout:w

First save the output-related primitives.
5 \cs_new_eq:NN __morewrites_tex_immediate:w \tex_immediate:D
6 \cs_new_eq:NN __morewrites_tex_openout:w \tex_openout:D
7 \cs_new_eq:NN __morewrites_tex_write:w \tex_write:D
8 \cs_new_eq:NN __morewrites_tex_closeout:w \tex_closeout:D

(End definition for __morewrites_tex_immediate:w and others. These functions are documented on
page ??.)

__morewrites_tex_shipout:w Since the non-\immediate output primitives act at \shipout time, we need to alter this
primitive too.

9 \cs_new_eq:NN __morewrites_tex_shipout:w \tex_shipout:D
(End definition for __morewrites_tex_shipout:w This function is documented on page ??.)

3.3 Variables
\g__morewrites_late_write_int The integer \g__morewrites_late_write_int labels the various non-immediate oper-

ations in the order in which they appear in the source. We can never reuse a number
because there is no way to know if a whatsit was recorded in a box register, which could
be reused in a shipped-out box:

\vbox_set:Nn \l_my_box
{ \iow_shipout_x:Nn \c_term_iow {〈text〉} } \tex_shipout:D \tex_-
copy:D \l_my_box \tex_shipout:D \tex_copy:D \l_my_box

will print 〈text〉 to the terminal twice.
10 \int_new:N \g__morewrites_late_write_int

(End definition for \g__morewrites_late_write_int This variable is documented on page ??.)

\g__morewrites_iow_prop The property list \g__morewrites_iow_prop associates a file name to each open stream.
11 \prop_new:N \g__morewrites_iow_prop

(End definition for \g__morewrites_iow_prop This variable is documented on page ??.)

\g__morewrites_iow

\g__morewrites_ior
\g__morewrites_tmp_file_tl

The expansion that \write performs is impossible to emulate with anything else than
\write. We will write on the stream \g__morewrites_iow to the file \g__morewrites_-
tmp_file_tl and read back from it in the stream \g__morewrites_ior for things to work
properly. Unfortunately, this means that the file is repeatedly opened and closed, leaving
a trace of that in the log.

12 \newwrite \g__morewrites_iow
13 \newread \g__morewrites_ior

4

14 \tl_new:N \g__morewrites_tmp_file_tl
15 \tl_gset:Nn \g__morewrites_tmp_file_tl { \jobname.mw }

(End definition for \g__morewrites_iow , \g__morewrites_ior , and \g__morewrites_tmp_file_tl These
variables are documented on page ??.)

\g__morewrites_reserved_iow_clist Some of the writing streams are already allocated when loading this package, and we let
the engine manage them. This variable is a clist because it only contains integers and
the main task is to test if a given integer is in the comma list.

16 \clist_new:N \g__morewrites_reserved_iow_clist
17 \int_step_inline:nnnn {0} {1} { \g__morewrites_iow - 1 }
18 { \clist_gput_right:Nn \g__morewrites_reserved_iow_clist {#1} }
19 \clist_gput_right:Nn \g__morewrites_reserved_iow_clist {18}

(End definition for \g__morewrites_reserved_iow_clist This variable is documented on page ??.)

\g__morewrites_stream_int An integer holding the 〈number〉 argument of various primitives, namely a writing stream.
20 \int_new:N \g__morewrites_stream_int

(End definition for \g__morewrites_stream_int This variable is documented on page ??.)

\s__morewrites A recognizable version of \scan_stop:. This is inspired from1 scan marks (see the
l3quark module of LATEX3), but note that we don’t use __scan_new:N directly, since it
is internal to LATEX3.

21 \cs_new_eq:NN \s__morewrites \scan_stop:
(End definition for \s__morewrites This function is documented on page ??.)

\l__morewrites_internal_tl Temporary token list, used for scratch purposes.
22 \tl_new:N \l__morewrites_internal_tl

(End definition for \l__morewrites_internal_tl This variable is documented on page ??.)

3.4 Parsing
__morewrites_equals_file_name:N Most of the parsing for primitive arguments is done using primargs, except for one case

we care about: after its 〈number〉 argument, the \openout primitive expects an 〈equals〉
(optional spaces and =) and a 〈file name〉.

23 \cs_new_protected:Npn __morewrites_equals_file_name:N #1
24 {
25 \group_begin:
26 \tex_aftergroup:D #1
27 \primargs_remove_equals:N __morewrites_parse_file_name:
28 }
29 \cs_new_protected:Npn __morewrites_parse_file_name:
30 { \primargs_get_file_name:N \group_end: }

(End definition for __morewrites_equals_file_name:N)

1Historically, this might have happened the other way around, since the author of this package is also
on the LATEX3 Team.

5

3.5 Immediate (writing)
In the context of immediate writing, we can store the text in a token list, and only write
it at the corresponding \closeout command. We keep track of a property list, \g__-
morewrites_iow_prop, of the writes which are open (from the point of view of the user),
with the corresponding file name.

3.5.1 What follows \immediate

__morewrites_immediate:w

__morewrites_immediate_ii:
__morewrites_immediate_iii:N
__morewrites_immediate_iv:NN

__morewrites_immediate_v:w

This is a little bit subtle: TEX’s \immediate primitive raises a flag which is cancelled
once TEX sees a non-expandable token. We use primargs’s read_x_token function to fully
expand in the TEX way, then test for \openout, \write, or \closeout. We don’t test for
the primitives themselves, but rather for a recognizable marker, \s__morewrites, equal
to \relax. If present, replace morewrites by morewrites_immediate in the csname of
the second token after it (it turns out that this is the correct structure).

31 \cs_new_protected_nopar:Npn __morewrites_immediate:w
32 { \primargs_read_x_token:N __morewrites_immediate_ii: }
33 \cs_new_protected_nopar:Npn __morewrites_immediate_ii:
34 {
35 \token_if_eq_meaning:NNT \g_primargs_token \s__morewrites
36 { __morewrites_immediate_iii:N }
37 }
38 \cs_new_protected:Npn __morewrites_immediate_iii:N #1
39 {
40 \tl_if_eq:nnTF { #1 } { \s__morewrites }
41 { __morewrites_immediate_iv:NN }
42 { #1 }
43 }
44 \cs_new_protected:Npn __morewrites_immediate_iv:NN #1 #2
45 {
46 \exp_args:Nc #1
47 {
48 \exp_after:wN __morewrites_immediate_v:w
49 \token_to_str:N #2
50 }
51 }
52 \use:x
53 {
54 \cs_new:Npn \exp_not:N __morewrites_immediate_v:w
55 ##1 \tl_to_str:n { __morewrites } { __morewrites_immediate }
56 }

(End definition for __morewrites_immediate:w This function is documented on page ??.)

3.5.2 Immediate closeout

__morewrites_immediate_closeout_test:n When the user requests to close a stream, we look in \g__morewrites_reserved_iow_-
clist to see if it is a reserved stream: in this case, we simply use the primitive.

57 \cs_new_protected:Npn __morewrites_immediate_closeout_test:n #1

6

58 {
59 \int_gset:Nn \g__morewrites_stream_int {#1}
60 \clist_if_in:NnTF \g__morewrites_reserved_iow_clist {#1}
61 { __morewrites_tex_immediate:w __morewrites_tex_closeout:w \g__morewrites_stream_int }
62 { __morewrites_immediate_closeout_aux: }
63 }

(End definition for __morewrites_immediate_closeout_test:n)

__morewrites_immediate_closeout_aux: We then look in \g__morewrites_iow_prop to find the file name corresponding to that
stream number. If the stream does not appear as a key in the property list, then it
was not open yet, and we do nothing. Otherwise, the key is removed, and we write the
collected material to the file.

64 \cs_new_protected_nopar:Npn __morewrites_immediate_closeout_aux:
65 {
66 \exp_args:NNV \prop_pop:NnNT \g__morewrites_iow_prop
67 \g__morewrites_stream_int \l__morewrites_internal_tl
68 {
69 __morewrites_immediate_write_and_close:nn
70 { \g__morewrites_stream_int } { \l__morewrites_internal_tl }
71 }
72 }

(End definition for __morewrites_immediate_closeout_aux:)

__morewrites_immediate_write_and_close:nn The code to write the material collected so far for a given output 〈stream〉 is in the
token list \g__morewrites_iow_〈stream〉_tl. We do this writing in the actual stream
\g__morewrites_iow, briefly opened and closed on the file #2.

73 \cs_new_protected:Npn __morewrites_immediate_write_and_close:nn #1#2
74 {
75 __morewrites_tex_immediate:w __morewrites_tex_openout:w
76 \g__morewrites_iow #2 \scan_stop:
77 \group_begin:
78 \int_set_eq:NN \tex_newlinechar:D \c_minus_one
79 \tl_use:c { g__morewrites_iow_ \int_eval:n {#1} _tl }
80 \tl_gclear:c { g__morewrites_iow_ \int_eval:n {#1} _tl }
81 \group_end:
82 __morewrites_tex_immediate:w __morewrites_tex_closeout:w \g__morewrites_iow
83 }

(End definition for __morewrites_immediate_write_and_close:nn)

3.5.3 Immediate openout

__morewrites_immediate_openout_test:n Read the stream number. If it is one of the reserved streams, we use the primitive.
Otherwise, parse an optional equal sign, followed by the file name.

84 \cs_new_protected:Npn __morewrites_immediate_openout_test:n #1
85 {
86 \int_gset:Nn \g__morewrites_stream_int {#1}
87 \clist_if_in:NnTF \g__morewrites_reserved_iow_clist {#1}
88 { __morewrites_tex_immediate:w __morewrites_tex_openout:w \g__morewrites_stream_int }

7

89 { __morewrites_equals_file_name:N __morewrites_immediate_openout_aux:n }
90 }

(End definition for __morewrites_immediate_openout_test:n)

__morewrites_immediate_openout_aux:n When the user requests to open a stream, it might already be open, with another file as
its destination. We thus need to first close the stream, writing all that we collected so
far to that other file. This has no effect if the stream was not open yet.

We then put the stream and its associated file name in the property list, and
empty/create the corresponding token list.

91 \cs_new_protected:Npn __morewrites_immediate_openout_aux:n #1
92 {
93 __morewrites_immediate_closeout_aux:
94 \prop_gput:NVn \g__morewrites_iow_prop \g__morewrites_stream_int {#1}
95 \tl_gclear_new:c { g__morewrites_iow_ \int_use:N \g__morewrites_stream_int _tl }
96 }

(End definition for __morewrites_immediate_openout_aux:n)

3.5.4 Immediate write

__morewrites_immediate_write_test:n Read the stream number. If it is one of the reserved streams, we use the primitive.
Otherwise, parse the text.

97 \cs_new_protected:Npn __morewrites_immediate_write_test:n #1
98 {
99 \int_gset:Nn \g__morewrites_stream_int {#1}

100 \clist_if_in:NnTF \g__morewrites_reserved_iow_clist {#1}
101 { __morewrites_tex_immediate:w __morewrites_tex_write:w \g__morewrites_stream_int }
102 { \primargs_get_general_text:N __morewrites_immediate_write_aux:n }
103 }
(End definition for __morewrites_immediate_write_test:n)

__morewrites_immediate_write_aux:n Test whether the stream is allocated or not.
104 \cs_new_protected_nopar:Npn __morewrites_immediate_write_aux:n
105 {
106 \prop_if_in:NVTF \g__morewrites_iow_prop \g__morewrites_stream_int
107 { __morewrites_immediate_write_open:n }
108 { __morewrites_immediate_write_closed:n }
109 }
(End definition for __morewrites_immediate_write_aux:n)

__morewrites_immediate_write_closed:n If the stream \g__morewrites_stream_int is not allocated, then write either to the
terminal or only to the log file, depending on the sign.
110 \cs_new_protected:Npn __morewrites_immediate_write_closed:n #1
111 {
112 __morewrites_tex_immediate:w __morewrites_tex_write:w
113 \if_num:w \g__morewrites_stream_int < \c_zero
114 -1
115 \else:
116 16

8

117 \fi:
118 {#1}
119 }
(End definition for __morewrites_immediate_write_closed:n)

__morewrites_immediate_write_open:n
__morewrites_immediate_write_readlines_loop:

Only \write itself can emulate how \write expands tokens, because # don’t have to be
doubled, and because the \newlinechar has to be changed to new lines. Hence, we start
by writing #1 to a file, yielding some lines. The lines are then read one at a time using
ε-TEX’s \readline with \endlinechar set to −1 to avoid spurious characters. Each
line becomes a \immediate \write statement added to the token list \g__morewrites_-
iow_〈stream〉_tl. This token list will be called when it is time to actually write to the
file. At that time, \newlinechar will be −1, so that writing each line will produce no
extra line.
120 \cs_new_protected:Npn __morewrites_immediate_write_open:n #1
121 {
122 __morewrites_tex_immediate:w __morewrites_tex_openout:w \g__morewrites_iow
123 \g__morewrites_tmp_file_tl \scan_stop:
124 __morewrites_tex_immediate:w __morewrites_tex_write:w \g__morewrites_iow {#1}
125 __morewrites_tex_immediate:w __morewrites_tex_closeout:w \g__morewrites_iow
126 \group_begin:
127 \int_set_eq:NN \tex_endlinechar:D \c_minus_one
128 \tex_openin:D \g__morewrites_ior \g__morewrites_tmp_file_tl \scan_stop:
129 __morewrites_immediate_write_readlines_loop:
130 \tex_closein:D \g__morewrites_ior
131 \group_end:
132 }
133 \cs_new_protected_nopar:Npn __morewrites_immediate_write_readlines_loop:
134 {
135 \etex_readline:D \g__morewrites_ior to \l__morewrites_internal_tl
136 \ior_if_eof:NF \g__morewrites_ior
137 {
138 \tl_gput_right:cx
139 { g__morewrites_iow_ \int_use:N \g__morewrites_stream_int _tl }
140 {
141 __morewrites_tex_immediate:w __morewrites_tex_write:w \g__morewrites_iow
142 { \l__morewrites_internal_tl }
143 }
144 __morewrites_immediate_write_readlines_loop:
145 }
146 }
(End definition for __morewrites_immediate_write_open:n This function is documented on page ??.)

3.6 Non-immediate writing
This is trickier, because the expansion of the text for a non-immediate \write takes place
immediately after the page containing it is shipped out. We store each non-immediate
\openout, \write, or \closeout without expansion in separate token lists \g__-
morewrites_late_write_〈stream〉_tl to be used later, and instead write ‘(〈stream〉)

9

to a file (including the strange delimiters). After each shipout, we can read the file to
see which output operations we need to perform, and in what order.

3.6.1 Replacement for primitives

__morewrites_late:n Store the action to be done at shipout in a token list, and non-immediately write the
label \g__morewrites_late_write_int of the output operation to the temporary file.
Here, #1 holds an assignment similar to the lines above it, and #2 holds the relevant
immediate action to be performed after shipout.
147 \cs_new_protected:Npn __morewrites_late:n #1
148 {
149 \int_gincr:N \g__morewrites_late_write_int
150 \tl_const:cx
151 {
152 c__morewrites_late_write_
153 \int_use:N \g__morewrites_late_write_int
154 _tl
155 }
156 {
157 \int_gset:Nn \exp_not:N \g__morewrites_stream_int
158 { \exp_not:V \g__morewrites_stream_int }
159 \exp_not:n {#1}
160 }
161 \exp_args:NNx __morewrites_tex_write:w \g__morewrites_iow
162 { ‘(\int_use:N \g__morewrites_late_write_int) }
163 }
(End definition for __morewrites_late:n)

__morewrites_openout:w

__morewrites_openout_test:n
__morewrites_openout_aux:n

\openout tests if the number to come is among reserved streams. If it is, use the primitive,
otherwise, parse a file name.
164 \cs_new_protected_nopar:Npn __morewrites_openout:w
165 { \s__morewrites \primargs_get_number:N __morewrites_openout_test:n }
166 \cs_new_protected:Npn __morewrites_openout_test:n #1
167 {
168 \int_gset:Nn \g__morewrites_stream_int {#1}
169 \clist_if_in:NnTF \g__morewrites_reserved_iow_clist {#1}
170 { __morewrites_tex_openout:w \g__morewrites_stream_int }
171 { __morewrites_equals_file_name:N __morewrites_openout_aux:n }
172 }
173 \cs_new_protected:Npn __morewrites_openout_aux:n #1
174 { __morewrites_late:n { __morewrites_immediate_openout_aux:n {#1} } }
(End definition for __morewrites_openout:w This function is documented on page ??.)

__morewrites_write:w

__morewrites_write_test:n
__morewrites_write_aux:n

Same idea for \write, except that we parse a text.
175 \cs_new_protected_nopar:Npn __morewrites_write:w
176 { \s__morewrites \primargs_get_number:N __morewrites_write_test:n }
177 \cs_new_protected:Npn __morewrites_write_test:n #1
178 {

10

179 \int_gset:Nn \g__morewrites_stream_int {#1}
180 \clist_if_in:NnTF \g__morewrites_reserved_iow_clist {#1}
181 { __morewrites_tex_write:w \g__morewrites_stream_int }
182 { \primargs_get_general_text:N __morewrites_write_aux:n }
183 }
184 \cs_new_protected:Npn __morewrites_write_aux:n #1
185 { __morewrites_late:n { __morewrites_immediate_write_aux:n {#1} } }
(End definition for __morewrites_write:w This function is documented on page ??.)

__morewrites_closeout:w

__morewrites_closeout_test:n
__morewrites_closeout_aux:

Same idea for \closeout, and we don’t need to parse anything else than the number.
186 \cs_new_protected_nopar:Npn __morewrites_closeout:w
187 { \s__morewrites \primargs_get_number:N __morewrites_closeout_test:n }
188 \cs_new_protected:Npn __morewrites_closeout_test:n #1
189 {
190 \int_gset:Nn \g__morewrites_stream_int {#1}
191 \clist_if_in:NnTF \g__morewrites_reserved_iow_clist {#1}
192 { __morewrites_tex_closeout:w \g__morewrites_stream_int }
193 { __morewrites_closeout_aux: }
194 }
195 \cs_new_protected_nopar:Npn __morewrites_closeout_aux:
196 { __morewrites_late:n { __morewrites_immediate_closeout_aux: } }
(End definition for __morewrites_closeout:w This function is documented on page ??.)

3.6.2 Shipout business

__morewrites_before_shipout: Immediately before the shipout, we must open the writing stream \g__morewrites_-
iow. Each delayed output operation has been replaced by \write \g__morewrites_iow
{‘(〈operation number〉}. The delimiters we chose to put around numbers must be at
least two distinct characters on the left (then \tex_newlinechar:D cannot be equal to
the delimiter), and at least one non-digit character on the right.
197 \cs_new_protected_nopar:Npn __morewrites_before_shipout:
198 {
199 __morewrites_tex_immediate:w __morewrites_tex_openout:w \g__morewrites_iow
200 \g__morewrites_tmp_file_tl \scan_stop:
201 }
(End definition for __morewrites_before_shipout:)

__morewrites_after_shipout:

__morewrites_after_shipout_loop:ww
Immediately after all the \writes are performed, close the file, then read the file with
\endlinechar set to \newlinechar2 to get exactly the original characters that have been
written, possibly with extra characters between ‘(. . .) groups. The file is then read with
all the appropriate category codes set up (no other character can appear in the file).
The looping auxiliary __morewrites_after_shipout_loop:ww extract the 〈operation〉
numbers from the file, and makes a token list out of those. This token list is then used

2Note that the \newlinechar used by \writes at \shipout time are those in effect when the page is
shipped out, i.e., just after the closing brace of the \shipout construction, which is exactly where we
have added this hook.

11

in a mapping function to perform the appropriate \write operations. Note that those
operations may reuse the file, so we have to fully parse the file before moving on.
202 \cs_new_protected_nopar:Npn __morewrites_after_shipout:
203 {
204 __morewrites_tex_immediate:w __morewrites_tex_closeout:w \g__morewrites_iow
205 \group_begin:
206 \int_set_eq:NN \tex_endlinechar:D \tex_newlinechar:D
207 \char_set_catcode_other:n { \tex_endlinechar:D }
208 \tl_map_inline:nn { ‘(0123456789) }
209 { \char_set_catcode_other:n {‘##1} }
210 \etex_everyeof:D { ‘() \exp_not:N }
211 \exp_args:NNx
212 \group_end:
213 \tl_map_inline:nn
214 {
215 \exp_after:wN __morewrites_after_shipout_loop:ww
216 \tex_input:D \g__morewrites_tmp_file_tl \c_space_tl %^^A bug?
217 }
218 { \tl_use:c { c__morewrites_late_write_ ##1 _tl } }
219 }
220 \cs_new:Npn __morewrites_after_shipout_loop:ww #1 ‘(#2)
221 {
222 \tl_if_empty:nF {#2}
223 {
224 {#2}
225 __morewrites_after_shipout_loop:ww
226 }
227 }
(End definition for __morewrites_after_shipout: This function is documented on page ??.)

\shipout

__morewrites_shipout:w
\g__morewrites_group_level_int

\g__morewrites_shipout_box

If atbegshi is available, patch it by adding __morewrites_before_shipout: and __-
morewrites_after_shipout: at the right place: the two transformations are needed to
cover several versions of the package. Otherwise, redefine \shipout to add a hook (see
Heiko’s atbegshi for details).
228 \IfFileExists{atbegshi.sty}
229 {
230 \RequirePackage{atbegshi}
231 \tl_replace_once:Nnn \AtBegShi@Output
232 { \AtBegShi@OrgShipout \box \AtBeginShipoutBox }
233 {
234 __morewrites_before_shipout:
235 \AtBegShi@OrgShipout \box \AtBeginShipoutBox
236 __morewrites_after_shipout:
237 }
238 \tl_replace_once:Nnn \AtBegShi@Output
239 { \AtBeginShipoutOriginalShipout \box \AtBeginShipoutBox }
240 {
241 __morewrites_before_shipout:
242 \AtBeginShipoutOriginalShipout \box \AtBeginShipoutBox

12

243 __morewrites_after_shipout:
244 }
245 }
246 {
247 \int_new:N \g__morewrites_group_level_int
248 \box_new:N \g__morewrites_shipout_box
249 \cs_new_protected_nopar:Npn __morewrites_shipout:w
250 {
251 \int_gset_eq:NN \g__morewrites_group_level_int \etex_currentgrouplevel:D
252 \tex_afterassignment:D __morewrites_shipout_i:
253 \tex_global:D \tex_setbox:D \g__morewrites_shipout_box
254 }
255 \cs_new_protected_nopar:Npn __morewrites_shipout_i:
256 {
257 \int_compare:nNnTF { \g__morewrites_group_level_int }
258 = { \etex_currentgrouplevel:D }
259 { __morewrites_shipout_ii: }
260 { \tex_aftergroup:D __morewrites_shipout_ii: }
261 }
262 \cs_new_protected_nopar:Npn __morewrites_shipout_ii:
263 {
264 __morewrites_before_shipout:
265 __morewrites_tex_shipout:w \tex_box:D \g__morewrites_shipout_box
266 __morewrites_after_shipout:
267 }
268 \AtBeginDocument { \cs_gset_eq:NN \shipout __morewrites_shipout:w }
269 }
(End definition for \shipout This function is documented on page ??.)

3.7 Hook at the very end
\g__morewrites_at_end_int At the end of the run, we try very hard to put some material at the \@@end. This integer

controls how many times to call __morewrites_close_all_at_end:w, to avoid infinite
loops in case two packages compete for that last place.
270 \int_new:N \g__morewrites_at_end_int
271 \int_gset:Nn \g__morewrites_at_end_int { 10 }
(End definition for \g__morewrites_at_end_int This variable is documented on page ??.)

__morewrites_close_all: At the end of the document, close all the files.
272 \cs_new_protected_nopar:Npn __morewrites_close_all:
273 {
274 \prop_map_function:NN \g__morewrites_iow_prop
275 __morewrites_immediate_write_and_close:nn
276 \prop_gclear:N \g__morewrites_iow_prop
277 }
(End definition for __morewrites_close_all:)

13

__morewrites_close_all_at_end:w This pushes its first argument to the very end of the LATEX run, recursively (at most 10
times, initial value of \g__morewrites_at_end_int), just in case some other code adds
things there.
278 \cs_set:Npn __morewrites_tmp:w #1
279 {
280 \cs_new_protected:Npn __morewrites_close_all_at_end:w ##1 #1
281 {
282 \int_gdecr:N \g__morewrites_at_end_int
283 \int_compare:nNnTF \g__morewrites_at_end_int > \c_zero
284 {
285 \tl_if_empty:nTF {##1}
286 { ##1 __morewrites_close_all: }
287 { ##1 __morewrites_close_all_at_end:w }
288 }
289 { __morewrites_close_all: ##1 }
290 #1
291 }
292 }
293 \exp_args:Nc __morewrites_tmp:w { @ @ end }
294 \AtEndDocument { __morewrites_close_all_at_end:w }
(End definition for __morewrites_close_all_at_end:w)

3.8 Modified \newwrite

\g__morewrites_alloc_int The counter that LATEX2ε uses to allocate \write registers.
295 \tex_countdef:D \g__morewrites_alloc_int 17 \scan_stop:
(End definition for \g__morewrites_alloc_int This variable is documented on page ??.)

\newwrite We need to allow \newwrite to allocate more than 16 writes, but beware that 18 is
reserved, and that packages might expect 16 or 17 to write to the terminal. So instead
skip until 20, to be on the safe side.
296 \cs_new:Npn __morewrites_newwrite:N #1
297 {
298 \int_gincr:N \g__morewrites_alloc_int
299 \if_num:w \g__morewrites_alloc_int = \c_sixteen
300 \int_gset:Nn \g__morewrites_alloc_int { 20 }
301 \fi:
302 \int_set_eq:NN \allocationnumber \g__morewrites_alloc_int
303 \cs_undefine:N #1
304 \int_const:Nn #1 { \allocationnumber }
305 \wlog
306 {
307 \token_to_str:N #1
308 = \token_to_str:N \write \int_use:N \allocationnumber
309 }
310 }
(End definition for \newwrite)

14

3.9 Redefining the “normal” control sequences
\immediate

\openout
\write

\closeout
\newwrite

\shipout has been redefined earlier.
311 \cs_gset_eq:NN \immediate __morewrites_immediate:w
312 \cs_gset_eq:NN \openout __morewrites_openout:w
313 \cs_gset_eq:NN \write __morewrites_write:w
314 \cs_gset_eq:NN \closeout __morewrites_closeout:w
315 \cs_gset_eq:NN \newwrite __morewrites_newwrite:N
(End definition for \immediate and others.)

</package>

15

	Contents
	1 morewrites documentation
	2 Known deficiencies
	3 morewrites implementation
	3.1 Overview of relevant TeX facts
	3.2 Renaming primitives (again)
	3.3 Variables
	3.4 Parsing
	3.5 Immediate (writing)
	3.5.1 What follows `immediate
	3.5.2 Immediate closeout
	3.5.3 Immediate openout
	3.5.4 Immediate write

	3.6 Non-immediate writing
	3.6.1 Replacement for primitives
	3.6.2 Shipout business

	3.7 Hook at the very end
	3.8 Modified \newwrite
	3.9 Redefining the ``normal'' control sequences

