
blogexec.sty
—

Overcoming blog.sty’s Pure Expansion∗

Uwe Lück†

November 29, 2012

Abstract

blog.sty before v0.7 generated HTML by pure macro expansion and could
use LATEX macros (redefined) only to a very limited extent. On adding
blogexec.sty, some macros (configurable) are “intercepted” before expan-
sion in a blog run for “running” some code, basically \begin, \end, and a
new general \EXECUTE. A table environment with active characters inside
only is provided—perhaps “nicer than LATEX.”

Contents
1 Features and Usage 2

2 Package File Header (Legalize) 3

3 Requirements 3

4 Processing Source Files 4

5 Intercepting Single-Parameter Commands 5
5.1 The General Method . 5
5.2 \EXECUTE . 6
5.3 \begin and \end . 7
5.4 A Comfortable Table Environment 8

6 Intercepting Two-Parameter Macros 8

7 Leaving and HISTORY 8
∗This document describes version v0.2 of blogexec.sty as of 2012/08/29.
†http://contact-ednotes.sty.de.vu

1

http://contact-ednotes.sty.de.vu

1 FEATURES AND USAGE 2

1 Features and Usage
The file blogexec.sty is provided ready, installation only requires putting it some-
where where TEX finds it (which may need updating the filename data base).1

blogexec.sty may be loaded by

\RequirePackage{blogexec}

in a driver file for blog.sty. Alternatively, the following commands in a blog
driver file (in a certain way even in a source file) load blogexec.sty and then are
carried out according to their definitions in blogexec:

\BlogInterceptExecute intercepts \EXECUTE only.

\BlogInterceptEnvironments intercepts \EXECUTE , \begin , and \end
only; the latter two then work much as with LATEX. They expand to
HTML code as with blog; \begin{〈env〉} additionally executes commands
according to an (optional)

\MakeBlogBeginRun{〈env〉}〈arguments〉{〈begin-code〉} .

\BlogInterceptExtra intercepts all the commands in certain lists (using the
dowith package), including \EXECUTE, \begin, \end. E.g.,

\MakeBlogOneArgInterception{〈cmd〉}{〈run〉}{〈write〉}

adds 〈cmd〉 to such a list and tells that 〈run〉 should be carried out and that
〈cmd〉〈one-argument〉 should be replaced by 〈write〉 in a line containing
〈cmd〉 (not hidden in braces, and there better should not be much more
in the line).

\BlogInterceptHash does not choose an “interception level” as the previ-
ous commands do, but may be necessary for allowing parameters in macro
definitions to be run in the course of an interception. It is automatically
(“implicitly”) envoked by the star forms of the above commands, i.e., by
either of

• \BlogInterceptExecute*

• \BlogInterceptEnvironments*

• \BlogInterceptExtra*

The reader may find additional details in the following sections near the code
implementing the commands.

blogexec.sty also modifies blog.sty’s (v0.7) {stdallrulestable} environ-
ment as follows:

1http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

http://ctan.org/pkg/dowith
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

2 PACKAGE FILE HEADER (LEGALIZE) 3

| The vertical stroke becomes an active character that closes a table cell
and opens another one (being an alias for blog.sty’s v0.7 \endcell)—just
as & does it with TEX/LATEX.

& The ampersand becomes an active character that—differently to TEX/
LATEX—as an alias for blog.sty’s \figurespace produces the Unicode
figure space for alignment of figures.

Outside the {stdallrules} environment, both characters have their “usual”
meaning, i.e., & may be used for accessing HTML entities (as blog.sty allows it).
\cr (and \endline , provided by blog.sty v0.7) ends a table row and starts a
new one. \\ is not touched—a difference to LATEX and may still be used for
breaking a line within a table cell.

2 Package File Header (Legalize)
1 \NeedsTeXFormat{LaTeX2e}[1994/12/01] %% \newcommand* etc.
2 \ProvidesPackage{blogexec}[2012/08/29 v0.2
3 assignments with blog.sty (UL)]
4 %% copyright (C) 2011 Uwe Lueck,
5 %% http://www.contact-ednotes.sty.de.vu
6 %% -- author-maintained in the sense of LPPL below.
7 %%
8 %% This file can be redistributed and/or modified under
9 %% the terms of the LaTeX Project Public License; either

10 %% version 1.3c of the License, or any later version.
11 %% The latest version of this license is in
12 %% http://www.latex-project.org/lppl.txt
13 %% We did our best to help you, but there is NO WARRANTY.
14 %%
15 %% Please report bugs, problems, and suggestions via
16 %%
17 %% http://www.contact-ednotes.sty.de.vu

3 Requirements
The dowith package is needed for managing and running lists of macros to be
intercepted:

18 \RequirePackage{dowith}

Admittedly, \do and \@elt lists (as discussed in dowith.pdf) would be faster
than the dowith method, which might be relevant here (TODO: how much?). I
may abandon dowith later, I just cannot afford removing it now (2011/11/05,
TODO).

http://ctan.org/pkg/dowith

4 PROCESSING SOURCE FILES 4

4 Processing Source Files
With \BlogInterceptExtra , blog.sty deals with empty input lines just like

\BlogCopyFile[〈changes〉]{〈src-file〉}

does; otherwise the content of \fdInputLine is copied to \fdOutputCode . Be-
fore the latter is writen to the output file 〈output〉 (as determined by a recent
\ResultFile{〈output〉}), \BlogInterceptions is run, its purpose is to ex-
tract assignment and other “execution” commands and to turn \fdOutputCode
into an expandable macro. We use \def because blog.sty may have provided a
preliminary definition earlier:

19 \def\blog@icl@xtra{%
20 \let\BlogProcessLine\BlogAllowIntercepting
21 \let\BlogInterceptions\AllBlogInterceptions}
22 \def\BlogInterceptExtra{\@ifstar@intercept@hash\blog@icl@xtra}
23 \def\@ifstar@intercept@hash#1{\@ifstar{#1\BlogInterceptHash}#1}

And this is the default setting (TODO!?):

24 \BlogInterceptExtra

Below, there are commands for restricted (faster—TODO: relevant? or less com-
plex, to reduce danger) interception functionality. (Maybe the file should be
restructured.) \AllBlogInterceptions first is nothing:

25 \InitializeListMacro\AllBlogInterceptions

—and should become more below.
\BlogAllowIntercepting stores the difference to blog.sty:

26 \newcommand*{\BlogAllowIntercepting}{%
27 \let\fdOutputCode\fdInputLine
28 \BlogInterceptions

When, after removing the intercepted command, the line is empty, it is not
written into output:

29 \ifx\fdOutputCode\@empty \else
30 \WriteResult{%
31 \ProcessExpandedWith\fdOutputCode\BlogOutputJob}%

. . . enabling “ligatures” with blog.sty v0.7.

32 \fi}

. . . TODO: in fifinddo with something like \fdInterceptions?
Especially for storing file-specific macro definitions with \EXECUTE (below),

a parameter character (usually hash mark) is needed. fifinddo.sty (so far—
2011/11/20) does not include it with \BasicNormalCatCodes, and blog.sty
does not include it with \BlogCodes —the following \BlogInterceptHash
does. Moreover, \MakeHashParameter enables such definitions when placed
in a source file within the argument of a separate(!) \EXECUTE.

5 INTERCEPTING SINGLE-PARAMETER COMMANDS 5

33 \providecommand*{\MakeHashParameter}{\catcode‘\#6 }
34 \def\BlogInterceptHash{%
35 \ToListMacroAdd\BlogCodes\MakeHashParameter
36 \MakeHashParameter}

TODO: default? 0-arg interception?

5 Intercepting Single-Parameter Commands
5.1 The General Method
Macros to be intercepted that have a single argument will be collected in
\blogOneArgInterceptions :

37 \InitializeListMacro\blogOneArgInterceptions
38 \ToListMacroAdd\AllBlogInterceptions{%
39 \DoWithAllIn\blogTryOneArgCmd
40 \blogOneArgInterceptions}

Here \blogTryOneArgCmd{〈cmd〉} creates a “sandbox” for parsing in a simi-
lar way as fifinddo does it, searching for 〈cmd〉. The method there was made
thinking of reading files with “plain text” category codes, not aware of blog.sty.
Maybe this was a mistake, and I will reconsider it. There I also introduce a
separate sandbox macro for each search pattern, thinking of different types of
sandboxes. This is not done/needed here (strangely, TODO).—The sandbox
starts with the parsing macro. The latter’s name derives from 〈cmd〉 by pre-
fixing something to its name. \StripEsc is a little helper for removing the
backslash from a macro name.

41 \providecommand*{\StripEsc}{\expandafter\@gobble\string}

Name spaces:

42 \newcommand*{\blog@x}{\StripEsc\blogx}
43 \newcommand*{\blogTryOneArgCmd}[1]{%
44 \csname \blog@x:\StripEsc#1\expandafter\endcsname
45 \fdOutputCode \@gobble#1\@empty\@nil}

Here, \@empty is the dummy argument for 〈cmd〉—this is what must be mod-
ified for 〈cmd〉 with more than one parameter. At present (2011/11/05), that
tail starting with \@gobble may stay at the end of \fdOutputCode for each
interception per \fdInputLine, until it expands to nothing in the \write.

\MakeBlogOneArgInterception{〈cmd〉}{〈run〉}{〈write〉} says that when
〈cmd〉 is found in \fdOutputCode, 〈run〉 should be executed, and 〈cmd〉〈arg〉
should be replaced by 〈write〉 in \fdOutputCode where 〈arg〉 is the argument for
〈cmd〉 found in \fdOutputCode. Let 〈arc〉 be 〈arg〉 without delimiting braces if
〈arg〉 is {〈arc〉} (otherwise 〈arc〉 is the same as 〈arg〉). Then use #2 for referring
to 〈arc〉 inside 〈run〉 and 〈write〉. (Sorry, I cannot afford replacing #2 by a more
natural placeholder right now.)

5 INTERCEPTING SINGLE-PARAMETER COMMANDS 6

46 \begingroup
47 \catcode‘\|\z@ |MakeOther|\% %% \z@ 2011/11/22
48 |@ifdefinable|MakeBlogOneArgInterception{%
49 |gdef|MakeBlogOneArgInterception#1#2#3{%

First we add 〈cmd〉 to \blogOneArgInterceptions, unless it is already there:
50 |TestListMacroForToken|blogOneArgInterceptions#1%
51 |ifin@
52 |PackageWarning{blogexec}{Redeclaring |string#1.}%
53 |else
54 |ToListMacroAdd|blogOneArgInterceptions#1%
55 |fi

Now the parsing macro is defined, together with the actions depending on the
result:

56 |@namedef{|blog@x:|StripEsc#1}##1#1##2##3|@nil{%

#3 will be empty if and only if 〈cmd〉 does not occur in \fdOutputCode. A
backslash made “other” will not occur in \fdOutputCode, therefore the following
\ifx becomes true if and only if #3 is empty, i.e., 〈cmd〉 does not occur in
\fdOutputCode:

57 |ifx\##3\%

In this case we just do nothing.
58 |else

Otherwise, we apply 〈run〉 and 〈write〉:
59 #2%
60 |def|fdOutputCode{##1#3##3}%
61 |fi}%
62 }%
63 }%
64 |endgroup

5.2 \EXECUTE
\EXECUTE{〈run〉} runs 〈run〉 and is removed from the output line:

65 \MakeBlogOneArgInterception\EXECUTE{#2}{}

You can store settings 〈set〉 for processing a source file in this file by
\EXECUTE{〈set〉} (e.g., shorthand macros only useful in this single file). You
even can switch off the interception functionality after running the other set-
tings 〈set〉 by \EXECUTE{〈set〉\BlogCopyLines}.

\EXECUTE{〈run〉} may be a great relief thinking of pure expansion with
blog.sty. You may be happy enough with it and restrict the interception func-
tionality to \EXECUTE by \BlogInterceptExecute . Its definition may be a
redefinition of the preliminary macro in blog.sty. (TODO: option for stopping
here, avoid dowith.)

5 INTERCEPTING SINGLE-PARAMETER COMMANDS 7

66 \def\blog@icl@exec{%
67 \let\BlogProcessLine\BlogAllowIntercepting
68 \def\BlogInterceptions{\blogTryOneArgCmd\EXECUTE}}
69 \def\BlogInterceptExecute{\@ifstar@intercept@hash\blog@icl@exec}

5.3 \begin and \end
At present (2011/11/06), only \begin{〈env〉} will run settings. Macros \〈env〉
and \end〈env〉 will expand in the .html as with blog.sty alone, not touched here.
Settings to be run must be stored in a macro \blogx.b:〈env〉. If this has not
been done, only \relax (from \csname) will be “run.”

70 \MakeBlogOneArgInterception\begin{%

Indeed, we have a “modified selection” from LATEX’s original \begin:

71 \@ifundefined{#2}%
72 {\def\@tempa{\@latex@error{Environment #2 undefined}\@eha}}%
73 {\def\@tempa{\def\@currenvir{#2}%
74 % \edef\@currenvline{\on@line}% %% not in source
75 \csname \blog@x.b:#2\endcsname}}% %% \StripEsc->: 2012/08/28
76 \begingroup \@tempa}{%
77 \csname #2\endcsname}

\MakeBlogBeginRun{〈env〉}〈args〉{〈begin-code〉}

resembles

\newenvironment*{〈env〉}〈args〉{〈begin-code〉}{〈end-code〉}

except that it does not have {〈end-code〉}:

78 \newcommand*{\MakeBlogBeginRun}{\@makeblogbeginrun\newcommand}

v0.2 allows redefinition by

\ChangeBlogBeginRun{〈env〉}〈args〉{〈begin-code〉}

79 \newcommand*{\@makeblogbeginrun}[2]{%
80 \expandafter #1\expandafter *%
81 \csname \blog@x.b:#2\endcsname} %% \StripEsc->: 2012/08/28
82 \newcommand*{\ChangeBlogBeginRun}{\@makeblogbeginrun\renewcommand}

Moreover, v0.2 allows copying that action by

\CopyBlogBeginRunTo{〈env〉}{〈enw〉}

83 \newcommand*{\CopyBlogBeginRunTo}[2]{%
84 \withcsname \let \blog@x.b:#2\expandafter\endcsname
85 \csname \blog@x.b:#1\endcsname}

\end{〈env〉} :

6 INTERCEPTING TWO-PARAMETER MACROS 8

86 \MakeBlogOneArgInterception\end{\@checkend{#2}\endgroup}{\end{#2}}
87 % \expandafter\show\csname blogx:end\endcsname

\BlogInterceptEnvironments

restricts interception functionality to \EXECUTE, \begin, and \end:

88 \def\blog@icl@envs{%
89 \BlogInterceptExecute
90 \ToListMacroAdd\BlogInterceptions{%
91 \blogTryOneArgCmd\begin\blogTryOneArgCmd\end}}
92 \def\BlogInterceptEnvironments{\@ifstar@intercept@hash\blog@icl@envs}

TODO: 1. imitate LATEX’s toggling with \emph (redefine it in italic environments)
2. code indenting (cf. inputtrc)

5.4 A Comfortable Table Environment
As an application of \MakeBlogBeginRun for blog.sty’s {stdallrulestable} ,
we provide ‘|’ as an active character invoking blog.sty’s \endcell (move to next
cell) and an active character ‘&’ for \figurespace, i.e., a Unicode symbol for
aligning figures. Indeed, we are not going back to LATEX and Plain TEX by using
& for moving to the next cell, I consider the present choice more intuitive.

93 \MakeBlogBeginRun{stdallrulestable}{%
94 \MakeActiveDef\|{\endcell}\MakeActiveDef\&{\figurespace}}

I hope nobody will confuse & and 8. A little drawback may be that you now
can’t use & for inserting HTML entities. However, recall that these settings
are restricted to the {stdrulestable} environment, and that you can use
\MakeBlogBeginRun{stdallrulestable} again for your own choice of short-
hands. (TODO: \MakeActiveLet)

6 Intercepting Two-Parameter Macros
Here especially I have a macro \labelsection{〈label〉}{〈title〉} in mind
(TODO). It could be handled by the one-argument approach by storing the
first argument and inserting another macro that reads the second argument.
Therefore I am not sure . . . (2011/11/04)

7 Leaving and HISTORY
95 \endinput

96 VERSION HISTORY
97
98 v0.1 2011/11/04 started; arrived at \EXECUTE
99 2011/11/05 rm. \blogx@dummy, corrected loop,

100 \BlogInterceptExtra, \BlogInterceptExecute
101 2011/11/06 \BlogAllowIntercepting, emptiness test

http://ctan.org/pkg/inputtrc

7 LEAVING AND HISTORY 9

102 with "other" backslash, \begin/\end
103 2011/11/07 debugging (\catcode... in \@ifdefinable);
104 warning on reusing interceptor,
105 \BlogInterceptEnvironments;
106 doc.: raise interception level in \EXECUTE
107 2011/11/08 \BlogInterceptHash (understanding needed hours)
108 2011/11/10 ‘v0.1’ in \Provides..., doc. fix,
109 removing experimental code, doc. all 1-arg
110 interceptions in one section
111 2011/11/20 \BlogInterceptHash improved
112 2011/11/20 doc. ‘%’ doubled
113 2011/11/21 \BlogOutputJob
114 2011/11/22 TODO + \z@ for \MakeBlogOne...
115 2011/12/15 rm. TODO
116 v0.2 2012/08/28 \begin/\end revised (\StripEsc wrong)
117 2012/08/29 \ChangeBlogBeginRun, \CopyBlogBeginRun,
118 \blog@x
119

	Features and Usage
	Package File Header (Legalize)
	Requirements
	Processing Source Files
	Intercepting Single-Parameter Commands
	The General Method
	\EXECUTE
	\begin and \end
	A Comfortable Table Environment

	Intercepting Two-Parameter Macros
	Leaving and HISTORY

