mismath
 Miscellaneous mathematical macros*

Antoine Missier
antoine.missier@ac-toulouse.fr

May 8, 2019

1 Introduction

According to the International Standards ISO 31-0:1992 to ISO 31-13:1992, superseded by ISO 80000-2:2009, mathematical constants e, i, π sould be typeset in upright shape and not in italic (sloping shape) like variables (see [1] [2] [3] [4]). This package provides some tools to achieve this (automatically).

Even if it is recommended to typeset vectors names in bold italic style [2] [3], they are often represented with arrows (particularly in school documents or in physics). To draw pretty arrows above vectors, we use esvect package by Eddie Saudrais [8] and we provide a few more macros related to vectors with arrows, in particular to improve the typesetting of the norm: $\|\overrightarrow{A B}\|$ instead of LATEX version $\|\overrightarrow{A B}\|$ which is not adjusted, or worse $\|\overrightarrow{A B}\|$.

The package also provides other macros for:

- some standard operator names,
- a few useful aliases,
- improving some spacings in mathematical formulas,
- systems of equations and small matrices,
- displaymath in double columns for long calculation.

To avoid incompatibility, a large majority of our macros will be defined only if there is not another command with the same name in the packages loaded before mismath. If a macro is already defined, compilation will produce a warning message and mismath definition will simply be ignored. To keep mismath command, either load mismath before the other package with which it is in conflict

[^0]for the name of the command (assuming the other package supports it), or use \let $\backslash\langle c o m m a n d\rangle \backslash$ relax before loading mismath.
[〈options \rangle]\{mismath\}
The amsmath package is loaded by mismath without option. For using amsmath with options (see [5]), these options can be added when calling mismath, or amsmath has to be loaded with the required options before mismath.

Two other usefull packages are loaded: mathtools by Morten Høgholm and Lars Madsen [6] and mathfixs by Niklas Beiser with frac and root options [7].

A recommendation, seldom observed, is to typeset uppercase Greek letters in italic shape like other variables [3]. This is automatically done with fixmath package by Walter Schmidt [10] or isomath by Günter Milde [11] or you can do \ProvideMathFix\{greekcaps\} in the preamble, thanks to mathfixs package. But this feature is not implemented in mismath because this rule is conflicting to the one used for instance in France where all mathematics capitals have to be typeset in upright shape ${ }^{1}$. The choice of loading or not one of these packages remains thus to the user.

2 Usage

2.1 Mathematical constants

\mathup As for classic functions identifiers, predefined mathematical constants should be typeset in upright shape (generally in roman family), even if this practice is not really common and tedious to respect. To avoid to stuff a document with \backslash mathrm\{e\} or \backslash mathrm\{i\} (or better \backslash mathup $\{e\}$ and \backslash mathup $\{i\}^{2}$), the package provides \e command for the base of natural logarithm and \i or \j for imaginary numbers. One can notice that $\backslash i$ and $\backslash j$ already exist in $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$: using in LR mode, they produce " 1 " and " J " without the point so one can place accents on them, and in mathematical mode they produce "Latex warning: Command invalid in math mode". Redefining \i and $\backslash j$ only concerns mathematical mode.

Nevertheless, it can be tiresome to type a lot of backslashes in a document with many formulas containing e or i. So a way is proposed here to free of it by placing \enumber, \inumber or \jnumber in the preamble: e, i or j will then automatically be set in upright shape in the whole document, no need to type $\backslash \mathrm{e}, \backslash \mathrm{i}$ or $\backslash \mathrm{j}$, let's hope that there are not many other e, i or j as variables. However, one can still get italicized e, i or j with $\mathrm{IATEX}_{\mathrm{E}}$ command \mathit or \mathnormal. Of course, this does not fully comply with $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ philosophy: in the document body, objects should be pointed out by their nature rather than their typographical characteristics, defined in the preamble. But these macros are really handy and thanks to them it is possible to bring a document up to the standards afterwards; besides anyone is free to use them or not.

[^1]\backslash pinumber $[\langle$ font $\rangle] \quad$ Mathematical constant π should also be typeset in upright shape, which differs from italicized π (see [3] and [4]). This recommendation is even less observed than the one concerning e and i [1]. The upgreek package by Walter Schmidt [9] makes it possible to typeset greek letters in upright font by using commands such as \upalpha, \upbeta,... To avoid typing a lot of \uppi, one can use the \pinumber macro, which has to be put in the preamble. This command loads the upgreek package with an optional $\langle f o n t\rangle$ argument: Symbol (by default), Euler or Symbolsmallscale (see [9]). It also redefines the \pi command to typeset all \pi in the selected upright font.

By activating \enumer, \inumber and \pinumber in the preamble, you can get for instance:

$$
\$ e^{\wedge}\{i \backslash p i\}=-1 \$ \quad e^{\mathrm{i} \pi}=-1
$$

\itpi When \pinumber is activated, the original italic π is still available with \itpi.

2.2 Vectors

\vectBydefault,the\vectcommand3,producesvectorswitharrows(thankstoesvectpackagebyEddieSaudrais4)whicharemuchmoreelegantthanthoseproducedby$\mathrm{AT}_{\mathrm{E}}\mathrm{X}$\overrightarrowcommand(giving\overrightarrow{AB}).Theesvectpackagehasanoptionalargument(oneletterbetweenaandh)definingtherequiredtypeofarrow(see[8]).Inmismath,esvectisloadedwiththeoptionb:\vect$\{AB\}$gives\overrightarrow{AB}.Tochooseanothertypeofarrow,esvectmustbecalledwiththerequiredoptionbeforemismath,forinstance\usepackage[d]\{esvect\}willgivethearrowsproducedbydefaultin[8].\boldvect\vectmakesalsopossibletotypesetvector'snamesusingbolditalic(accordingtoISOrecommendation[4])ratherthanarrows.Forthis,calling\boldvectwillmodifythebehaviorof\vect:undefined

\[\boldvect \vect\{v\}
$=\backslash$ lambda $\left.{ }^{\text {vect }\{e\}}\right\}_{-} \mathrm{x}+\backslash$ mu \backslash vect $\left.\{\mathrm{e}\} _\mathrm{y} . \backslash\right] \quad \boldsymbol{v}=\lambda \boldsymbol{e}_{x}+\mu \boldsymbol{e}_{y}$.
\boldvectcommand
By default \boldvect uses the \boldsymbol command ${ }^{5}$ from amsbsy package, loaded by amsmath. But other packages producing bold italic can be preferred, e.g. \bm from bm package or \mathbold from fixmath package (also implemented in mathfixs ${ }^{6}$) or \mathbfit from isomath. For that, redefine \backslash boldvectcommand: for instance }\).

By setting \boldvectcommand to \mathbf, \vect produces vectors in bold upright shape, which tends to be used instead of bold italic (but probably for bad reasons).
\arrowvect At any moment, you can get back to the default behavior with the inverse

[^2]switch \arrowvect. These switches can be placed anywhere: inside mathematical mode or inside an environment (with local effect) or outside (with global effect).
\hvect
When vectors with arrows are typeset side by side, arrows can be set up a bit higher (with a vertical phantom box containing h) to avoid inelegants effects:

- $\overrightarrow{A B}=\vec{u}+\overrightarrow{A C}$ is less than $\overrightarrow{A B}=\vec{u}+\overrightarrow{A C}$, obtained with \hvect $\{\mathrm{u}\} ;$
- $\vec{a} \cdot \vec{b}=0$ is less than $\vec{a} \cdot \vec{b}=0$, obtained with $\backslash \operatorname{hvect}\{\mathrm{a}\}$.

The \boldvect switch has no effect on the \hvect macro which always typesets arrows on vectors (with the \vv command from esvect package).
\hvec In a similar way, \hvec raises the little arrow produced by IATEX command Ivec (but only from height of t letter):

- $\mathcal{P}=\vec{f} \cdot \vec{v}$ is less than $\mathcal{P}=\vec{f} \cdot \vec{v}$, obtained with \hvec $\{\mathrm{v}\} ;$
- $\vec{f}=m \vec{a}$ is less than $\vec{f}=m \vec{a}$, obtained with \hvec\{a\}.

The norm of a vector is classically produced by delimiters \lVert and \rVert (rather than $\backslash \mid$) or \left } \backslash Vert and \backslash right \backslash Vert for delimiters adapting to the content. Unfortunately, these delimiters are always vertically centred, relatively to the middle of the base line, whereas vectors with arrows are asymetrics objects, the height above the middle of the base line being superior to the depth under it. The code $\$ \backslash$ norm $\{\backslash \operatorname{vec}\{h\}\} \$$ raises the double bar to produce $\|\vec{h}\|$. Let's notice that the height of the bars don't adjust to content, but however to context: main text, subscripts or exponents.

2.3 Standard operator names

\di The differential operator should be typeset in upright shape and not in italic, to make it different from variables (as mentioned in [1] [2] [3] [16]). To get this, use the \di command. In the first following example, notice the thin spaces before the d, as for classic function's names; in the second one, spaces before fractions have been enlarged by the mathfixs package:

```
\[ \iint xy\di x\di y \]
\[m\frac{\di^2x}{\di t^2}
    + h\frac{\di x}{\di t} + kx = 0 \]
```

$\iint x y \mathrm{~d} x \mathrm{~d} y$

$$
m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+h \frac{\mathrm{~d} x}{\mathrm{~d} t}+k x=0
$$

This command can also stand for distance (hence its name):

$$
\lambda \mathrm{d}(A, \mathcal{F})+\mu \mathrm{d}(B, \mathcal{H})
$$

To refer to probability ${ }^{7}$ and expectation the proper use is to typeset capital obtained with $\backslash P$ and $\backslash E$. Variance is normally denoted by Var (see further), but in some countries we can find V produced by $\backslash \mathrm{V}$.
\backslash Par and has been redefined, but this symbol can still be obtained with \backslash Par.

Some authors use "blackboard bold" font to represent probability, expectation and variance: $\mathbb{P}, \mathbb{E}, \mathbb{V}$. The \backslash probastyle macro sets the appearance of $\backslash P, \backslash E$ and $\backslash V$: for instance }^{8}\) brings the previous "openwork" letters. \mathbb comes from amsfonts package (loaded by amssymb but also available standalone) which has to be called in the preamble.

The following operator names are also defined in mismath:

\adj	adj	\erf	erf	\rank	rank
\Aut	Aut	\grad	$\overrightarrow{\text { grad }}$	\Re	Re
\Conv	Conv	\id	id	\rot	$\xrightarrow[\text { rot }]{ }$
\cov	cov	\Id	Id	\sgn	sgn
\Cov	Cov	\im	im	\spa	span
\curl	curl	\Im	Im	\tr	tr
\divg	div	Ilb	lb	\Var	Var
\End	End	\lcm	lcm	\Zu	Z

By default, operators returning vectors, \grad and \curl (or its synonym \rot rather used in Europe), are written with an arrow on the top. When \boldvect is activated, they are typeset in bold style: grad, curl, rot. For the covariance and the identity function, two notations are provided, with or without a first capital letter, because they are both very frequent. On the other hand, "im" stands for the image of a linear transformation (like "ker" for the kernel) but "Im" is the imaginary part of a complex number. Notice that \div and \span already exist and haven't been redefined, therefore \divg and \spa macros; $\backslash Z$ is used otherwise (see further), therefore $\backslash \mathrm{Zu}$, to designate the center of a group: $\mathrm{Z}(G)$ (from German Zentrum).
\oldRe
\oldIm

The \backslash Re and $\backslash I m$ macros already existed, to refer to real and imaginary part of a complex number, producing outdated symbols \Re and \Im. They have been redefined according to actual use, as mentionned in the above table, but it's still possible to get old symbols with \oldRe and \oldIm.

Some (inverse) circular or hyperbolic fonctions, missing in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, are also provided by mismath:

\arccot	arccot	\arsinh	arsinh	\arcoth
arcoth				
\sech	sech	\arcosh	arcosh	\arsech
arsech				
\csch	csch	\artanh	artanh	\arcsch

\bigo Asymptotic comparison operators (in Landau notation) are obtained with \big0 or \bigo and \lito commands:

$$
n^{2}+\mathcal{O}(n \log n) \quad \text { or } \quad n^{2}+\mathrm{O}(n \log n) \quad \text { and } \quad \mathrm{e}^{x}=1+x+\mathrm{o}\left(x^{2}\right)
$$

${ }_{8}^{7} \mathrm{AAT}_{\mathrm{E}} \mathrm{X}$ provides also $\backslash \mathrm{Pr}$ which gives Pr .
${ }^{8}$ As for \boldvect and \arrowvect, effect is local to the container environment.

2.4 A few useful aliases

In the tradition of Bourbaki and D. Knuth, proper use requires that classics sets of numbers are typeset in bold roman: $\mathbf{R}, \mathbf{C}, \mathbf{Z}, \mathbf{N}, \mathbf{Q}$, "openwork" letters ($\mathbb{R}, \mathbb{Z}, \ldots$) being restricted to writing at blakboard [16]; and likewise to designate a field: \mathbf{F} or K (Körper in German). We get these symbols with the following macros:

$$
\backslash R, \backslash C, \backslash Z, \backslash N, \backslash Q, \backslash F, \backslash K .
$$

\mathset
$\backslash d s$
\dlim
\dsum
\dprod
\dcup
\dcap
bol, one can use the following macros: \dlim, \dsum, \dprod, \dcup, \dcap. So $\$ \backslash d l^{\prime} m_{-}\{x \backslash$ to $+\backslash i n f t y\} \backslash f r a c\{1\}\{x\} \$$ gives $\lim _{x \rightarrow+\infty} \frac{1}{x}$.

Large bars over expressions are obtained with \overline or, shorter, its alias
\lbar
\hlbar \lbar, to get for instance $\overline{z_{1} z_{2}}$. Such as for vectors, one can raise the bar (from the height of h) with \hlbar command, in order to correct uneven bars heights.

$$
\overline{z+z^{\prime}}=\bar{z}+\overline{z^{\prime}} \text { is less than } \overline{z+z^{\prime}}=\bar{z}+\overline{z^{\prime}}, \text { obtained with } \backslash \operatorname{hlbar}\{\mathrm{z}\}
$$

\eqdef IATEX command \stackrel):
\unbr
The \eqdef macro writes equality symbol topped with "def" (thanks to the

```
$ \e^{i0} \eqdef
```

\$ \e^{i0} \eqdef
\cos0 + i\sin0 \$

```
    \cos0 + i\sin0 $
```

 \(\mathrm{e}^{\mathrm{i} \theta} \stackrel{\text { def }}{=} \cos \theta+\mathrm{i} \sin \theta\)
 The \mathset command enables to change in a global way the behavior of all these macros: by default, \mathset is an alias for \mathbf, but if one prefer openwork letters, just place } in the preamble, after loading amsfonts package (which provides the "blackboard bold" typeface, also loaded by amssymb).

The \displaystyle command being very frequent, common alias \ds is provided. Not only it eases typing but also it makes source code more readable.

Symbols with limits behave differently for in-line formulas or for displayed equations. In the latter case, "limits" are put under or above whereas for in-line math mode, they are placed on the right, as subscript or exponent. Compare: $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ with

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

With in-line math mode, displaymath behavior can be forced with \displaystyle or its alias \ds, but then, all the rest of the current mathematical environment will be set in displaymath mode too (in the previous example, the fraction will be expanded). Just like the amsmath command \dfrac only transforms the required fraction in display style, to limit display style effect to the affected symbol, one can use the following macros: \dlim, \dsum, \dprod, \dcup, \dcap. So

$$
\begin{aligned}
& \$(\mathrm{QAP})^{\wedge} \mathrm{n}=\text { \unbr\{QAP\mul QAP\mul } \\
& \quad \text { \cdots } \backslash \text { mul } \mathrm{QAP}\} _\{\mathrm{n} \backslash \text { text }\{\text { times }\}\}
\end{aligned} \quad(Q A P)^{n}=\underbrace{Q A P \times Q A P \times \cdots \times Q A P}_{n \text { times }}
$$

[^3]
2.5 Improving some spacings in mathematical formulas

$\backslash m u l$ The multiplication symbol obtained with \times produces the same spacing than addition or substraction operators, whereas division obtained with / is tighten around its arguments. This actually hides the priority of the multiplication on + and - . This is why we provide the \mul macro, behaving like / (ordinary symbol) and leaving less space around than \times:

$$
\lambda+\alpha \times b-\beta \times c \text { is less than } \lambda+\alpha \times b-\beta \times c, \text { obtained with } \backslash \text { mul. }
$$

The \then macro produces the symbol \Longrightarrow surrounded by large spaces as the standard macro \iff does it with \Longleftrightarrow. In a similar way, \txt based on the \text macro (from the amstext package, automatically loaded by amsmath), leaves em quad spaces (\quad) around the text. See the following example:
\ln $\mathrm{x}=\mathrm{a} \backslash$ then $\mathrm{x}=\backslash \mathrm{e}^{\wedge} \mathrm{a} \backslash t \mathrm{txt}\left\{\right.$ rather than\} $\backslash \ln \mathrm{x}=\mathrm{a}$ \Longrightarrow $\mathrm{x}=\backslash \mathrm{e}^{\wedge} \mathrm{a}$

$$
\ln x=a \Longrightarrow x=\mathrm{e}^{a} \quad \text { rather than } \quad \ln x=a \Longrightarrow x=\mathrm{e}^{a}
$$

When typesetting an exponent after a closing parenthesis produced by \right), the exponent is little to far from the parenthesis. The command \backslash pow $\{\langle\operatorname{expr}\rangle\}\{\langle p o w\rangle\}$ sets $\langle\operatorname{expr}\rangle$ between parentheses and puts the exponent $\langle p o w\rangle$ slightly closer to the right parenthesis. Compare:

$$
\mathrm{e}^{a} \sim\left(1+\frac{a}{n}\right)^{n} \quad \text { and } \quad \mathrm{e}^{a} \sim\left(1+\frac{a}{n}\right)^{n} .
$$

\abs
Absolute value (or modular for a complex number) should be typeset with \lvert . . \rvert rather than | which doesn't respect correct spaces for delimiters; for bars whose height has to adapt to content, we use \left\vert ... \right\vert or, more simply, the \backslash abs $\{\ldots\}$ command which is equivalent ${ }^{10}$.

This macro behaves like $\backslash f r a c^{11}$ but with medium spaces around the arguments, so the corresponding fraction bar is perceptibly a little bit longer:

$$
\lbar\{Z\} =
\[
\bar{Z}=\frac{\overline{z_{1}-z_{2}}}{\overline{z_{1}+z_{2}}}
$$

[] Brackets symbols [and] have been redefined for mathematical mode because, in standard $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, the space before them can be unsuitable ${ }^{12}$:
$\$ \mathrm{x} \backslash$ in $] 0, \backslash \mathrm{pi}[$ \cup $] 2 \backslash \mathrm{pi}, 3 \backslash \mathrm{pi}\left[\$ \begin{cases}x \in] 0, \pi[\cup] 2 \pi, 3 \pi[& \text { without mismath } \\ x \in] 0, \pi[\cup] 2 \pi, 3 \pi[& \text { with mismath }\end{cases}\right.$

[^4]In our code, [and] symbols are not defined anymore as delimiters. One can regret it because a line break could occur between the two, but in addition to the fact that it works very well like that for spaces (because these symbols are most of the time preceded or followed by relational, binary or punctuation symbols), it is always possible to transform them into delimiters with \left and \backslash right ${ }^{13}$.

2.6 Environments for systems of equations and small matrices

system
The system environment produces a system of equations:

```
$\begin{system}
    x=1+2t \\ y=2-t \\ z=-3-t
\end{system}$
```

$$
\left\{\begin{array}{l}
x=1+2 t \\
y=2-t \\
z=-3-t
\end{array}\right.
$$

This first example could also have been produced with cases environment from amsmath package, although cases places mathematical expressions closer to the bracket (which is logical considering it's use). \systemsep enables to set the gap between the bracket and the expressions, set by default to \medspace. This gap may be reduce, for instance: \{\thinspace\}, or enlarged with \thickspace (and with \{\} we get back to what cases do).

By default, a system is written like an array environment with only one column, left aligned. The environment has an optional argument to create several columns, specifying their alignment, with the same syntax than the array environment of $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$: \begin\{system\} [cl] produces a two-column system, the first } one being centred, the second being left aligned, such as in the following example:

```
\$ \(\backslash\) begin\{system [cl]
    \(y \&=\backslash d f r a c\{1\}\{2\} x-2 \quad \backslash \backslash[1 e x]\)
    \((x, y) \& \backslash n e q(0,-2)\)
\end\{system\}\$ }
```

$$
\left\{\begin{aligned}
y & =\frac{1}{2} x-2 \\
(x, y) & \neq(0,-2)
\end{aligned}\right.
$$

\systemstretch
Default spacing between the lines of a system environment has been slightly enlarged compared to the one from array environments (from 1.2 factor). This spacing may be changed by typing \{〈stretch $\rangle\}$ inside the current mathematical environment (for a local change) or outside (for a global change). By default, stretch's value is 1.2 . In addition we can use a carriage return with a spacing option such as it has been done above with $\backslash \backslash[1 \mathrm{ex}]$.

Another example with \begin\{system\}[rl@\{\quad\}l] } { } ^ { 1 4 } :

$$
\left\{\begin{array} { r l }
{ x + 3 y + 5 z = 0 } & { R _ { 1 } } \\
{ 2 x + 2 y - z = 3 } & { R _ { 2 } } \\
{ 3 x - y + z = 2 } & { R _ { 3 } }
\end{array} \Longleftrightarrow \left\{\begin{array}{rl}
x+3 y+5 z=0 & R_{1} \\
4 y+11 z=3 & R_{2} \leftarrow 2 R_{1}-R_{2} \\
5 y+7 z=-1 & R_{3} \leftarrow \frac{1}{2}\left(3 R_{1}-R_{3}\right)
\end{array}\right.\right.
$$

[^5]Let's mention the systeme package [13] which deals with linear systems with a lighter syntax and automatic alignments on,,$+-=$, and also the spalign package [14] which moreover produces nice alignments for matrices (with spaces and semicolons as delimiters).
spmatrix
amsmath package provides various environments to typeset matrices: for instance pmatrix that surrounds the matrix with parenthesis or smallmatrix that typesets a small matrix that can even be inserted in a text line. We provide a combination of the two with spmatrix:
$\$ \backslash$ vec $\{u\} \backslash$ begin\{spmatrix\}-1 $\backslash \backslash 2 \backslash e n d\left\{\right.$ spmatrix\} $\$$ yielding $\vec{u}\binom{-1}{2}$.
mathtools package enhance amsmath matrices environments and provides also a small matrix environment with parenthesis. Furthermore, with starred version \begin\{psmallmatrix*\}[〈col } \rangle], you can choose the alignment inside the columns ($c, 1$ or r). But sadly, the space before the left parenthesis is too narrow regarding to the space inside the parenthesis. Compare previous $\vec{u}\binom{-1}{2}$ with $\vec{u}\binom{-1}{2}$.

2.7 Displaymath in double columns

mathcols
\changecol
The \changecol macro causes a change of column; aligment is produced using classic delimiters \& and $\backslash \backslash$.

```
\begin{mathcols}
            & \frac{1}{2 \mul \pow{\frac{1}{4}}{n} + 1} \geq 0.999 \\
    \iff\ & 1 \geq 1.998 \pow{\frac{1}{4}}{n} + 0.999 \\
    \iff\ & 0.001 \geq \frac{1.998}{4^n} \\
\changecol
    & \iff 4^n \geq 1998 \\
    & \iff n \ln 4 \geq \ln(1998) \\
    & \iff n \geq \frac{\ln(1998)}{\ln 4} \approx 5.4 \\
    & \iff n \geq 6
\end{mathcols}
```


3 Implementation

[^6]```
3\@ifpackageloaded{amsmath}{}{\RequirePackage{amsmath}}
4 \@ifpackageloaded{esvect}{}{\RequirePackage[b] {esvect}}
5\RequirePackage{ifthen}
6 \RequirePackage{xspace}
7\RequirePackage{mathtools}
8\RequirePackage[frac,root] {mathfixs}
```

The above conditional packages loading avoids "option clash" errors if the packages have been previously loaded with options.

The three following internal commands are meta commands for a conditional macro definition with warning message if the macro already exists. The \bslash macro used inside \@mwarning comes from doc.sty package by Frank Mittelbach. It can also be used in other documents instead of \ (which doesn't work here).

```
9{\catcode'\|=\z@ \catcode'\\=12 |gdef|bslash{\}} % the \bslash command
0 \newcommand\@mwarning[1]{
 \PackageWarning{mismath}{
 Command \bslash #1 already exist and will not be redefined
 }
4}
\newcommand\@mmacro[2]{
 \@ifundefined{#1}{
 \expandafter\def\csname #1\endcsname{#2}
 }{\@mwarning{#1}}
}
\newcommand\@moperator[3] [] {% this macro is ugly, TODO: by default #1=#3
 \ifthenelse{\equal{#1}{}}{
 \@ifundefined{#3}{
 \DeclareMathOperator{#2}{#3}
 }{\@mwarning{#3}}
 }{
 \@ifundefined{#1}{
 \DeclareMathOperator{#2}{#3}
 }{\@mwarning{#1}}
 }
}
31
```

To work correctly with the beamer package, we did not use \mathrm but \mathup (based on \operatorfont from mathopn package) to produce the correct upright shape font. This command works also fine with other sans serif fonts like cmbright. Moreover for beamer, \enumber must use the family default font defined by beamer package (sans serif), therefore the $\backslash$ AtBeginDocument inside the macro (otherwise it has no effect). The same holds for \inumber and \jnumber.
$\backslash$ AtBeginDocument is also necessary to redefine \i when calling hyperref package which overwrites the \i definition.

```
\providecommand{\mathup}[1]{{\operatorfont #1}}
\@mmacro{e}{\mathup{e}}
\AtBeginDocument{\let\oldi\i \let\oldj\j
```

```
 \renewcommand{\i}{\TextOrMath{\oldi}{\mathup{i}}}
 \renewcommand{\j}{\TextOrMath{\oldj}{\mathup{j}}}
7}
```



```
\DeclareSymbolFont{up}{\encodingdefault}{\familydefault}{m}{n}
\newcommand{\enumber}{
 \AtBeginDocument{\DeclareMathSymbol{e}\mathalpha{up}{'e}}
2}
\newcommand{\inumber}{
 \AtBeginDocument{\DeclareMathSymbol{i}\mathalpha{up}{'i}}
}
\newcommand{\jnumber}{
 \AtBeginDocument{\DeclareMathSymbol{j}\mathalpha{up}{`j}}
48 }
\newcommand*{\pinumber}[1] [Symbol]{
 \@ifpackageloaded{upgreek}{}{\usepackage[#1]{upgreek}}
 \let\itpi\pi
 \renewcommand{\pi}{\uppi}
}
54
\newboolean{arrowvect}
\setboolean{arrowvect}{true}
\newcommand{\arrowvect}{\setboolean{arrowvect}{true}}
\newcommand{\boldvect}{\setboolean{arrowvect}{false}}
\newcommand{\boldvectcommand}{\boldsymbol} % needs bm package
\@mmacro{vect}{\ifthenelse{\boolean{arrowvect}}{\vv}{\boldvectcommand}}
\newcommand*{\hvect}[1]{\vv{\vphantom{h}#1}}
\newcommand*{\hvec}[1]{\vec{\vphantom{t}#1}}
\newcommand*{\@norm}[1]{
 \mbox{\raisebox{1.75pt}{$\bigl\Vert$}} #1
 \mbox{\raisebox{1.75pt}{$\bigr\Vert$}} }
% works better than with relative length
\newcommand*{\@@norm}[1]{
 \mbox{\footnotesize\raisebox{1pt}{\Vert}} #1
 \mbox{\footnotesize\raisebox{1pt}{\Vert}} }
\newcommand*{\@@@norm}[1]{
 \mbox{\tiny\raisebox{1pt}{\Vert}} #1
 \mbox{\tiny\raisebox{1pt}{\Vert}} }
\providecommand*{\norm}[1]{
 \mathchoice{\@norm{#1}}{\@norm{#1}}{\@@norm{#1}}{\@@@norm{#1}} }
\newcommand{\di}{\mathop{}\!\mathup{d}}
\newcommand\probastyle{}
\let\Par\P % end of paragraph symbol
\renewcommand{\P}{\operatorname{\probastyle{P}}}
\@mmacro{E}{\operatorname{\probastyle{E}}}
\@mmacro{V}{\operatorname{\probastyle{V}}}
\newcommand{\PEupright}{
 \AtBeginDocument{% necessary for working with beamer
```

```
\DeclareMathSymbol{P}\mathalpha{up}{'P}
 \DeclareMathSymbol{E}\mathalpha{up}{'E}
 }
8}
89
90\@moperator{\adj}{adj}
\@moperator{\Aut}{Aut}
\@moperator{\Conv}{Conv}
\@moperator{\cov}{cov}
\@moperator{\Cov}{Cov}
\@mmacro{curl}{\operatorname{\vect{\mathup{curl}}}}
\@moperator[divg]{\divg}{div}
\@moperator{\End}{End}
98
\@moperator{\erf}{erf}
\@mmacro{grad}{\operatorname{\vect{\mathup{grad}}}}
\@moperator{\id}{id} % mathop or mathord ?
\@moperator{\Id}{Id}
\@moperator{\im}{im}
\let\oldIm\Im \renewcommand{\Im}{\operatorname{Im}}
\@moperator{\lb}{lb}
\@moperator{\lcm}{lcm}
107
108\@moperator{\rank}{rank}
\let\oldRe\Re \renewcommand{\\Re}{\operatorname{Re}}
\@mmacro{rot}{\operatorname{\vect{\mathup{rot}}}}
\@moperator{\sgn}{sgn}
\@moperator[spa]{\spa}{span}
\@moperator{\tr}{tr}
\@moperator{\Var}{Var}
\@moperator [Zu]{\Zu}{Z}
1 1 6
117\@moperator{\arccot}{arccot}
\@moperator{\sech}{sech}
\@moperator{\csch}{csch}
\@moperator{\arsinh}{arsinh}
\@moperator{\arcosh}{arcosh}
\@moperator{\artanh}{artanh}
\@moperator{\arcoth}{arcoth}
\@moperator{\arsech}{arsech}
\@moperator{\arcsch}{arcsch}
1 2 6
127 \@moperator[big0]{\big0}{\mathcal{0}}
\@moperator[bigo]{\bigo}{0}
\@moperator[lito]{\lito}{o}
1 3 0
131 \newcommand{\mathset}{\mathbf}
132\@mmacro{R}{\ensuremath{\mathset{R}}\xspace}
133\@mmacro{C}{\ensuremath{\mathset{C}}\xspace}
134\@mmacro{N}{\ensuremath{\mathset{N}}\xspace}
```

```
5\@mmacro{Z}{\ensuremath{\mathset{Z}}\xspace}
\@mmacro{Q}{\ensuremath{\mathset{Q}}\xspace}
\@mmacro{F}{\ensuremath{\mathset{F}}\xspace}
\@mmacro{K}{\ensuremath{\mathset{K}}\xspace}
\@mmacro{ds}{\displaystyle}
\@mmacro{dlim}{\lim\limits}
\@mmacro{dsum}{\sum\limits}
\mmacro{dprod}{\prod\limits}
\@mmacro{dcup}{\bigcup\limits}
\@mmacro{dcap}{\bigcap\limits}
\@mmacro{lbar}{\overline}
\providecommand*{\hlbar} [1]{\overline{\vphantom{h}#1}}
\@mmacro{eqdef}{\stackrel{\mathup{def}}{=}}
\@mmacro{unbr}{\underbrace}
\@mmacro{iif}{if and only if\xspace}
\@mmacro{mul}{\mathord{\times}}
\@mmacro{then}{\ \Longrightarrow \ \mbox{} }
```

Vithout $\backslash \operatorname{mbox}\}$ the space produced by $\backslash$ would be suppressed in tabulars.

```
\providecommand*{\txt}[1]{\quad\text{#1}\quad}
\providecommand*{\pow}[2]{\left(#1 \right)^{\!#2}}
\providecommand*{\abs}[1]{\left\vert#1\right\vert}
\providecommand*{\lfrac}[2]{\frac{\:#1\:}{\:#2\:}}
\DeclareMathSymbol{]}\mathord{up}{093} % originally \mathclose
\DeclareMathSymbol{[}\mathord{up}{091} % originally \mathopen
\newcommand{\systemstretch}{1.2}
\newcommand{\systemsep}{\medspace}
\newenvironment{system} [1] [l] {
 \renewcommand{\arraystretch}{\systemstretch}
 \setlength{\arraycolsep}{0.15em}
 \left\{\begin{array}{@{\systemsep}#1@{}} %
}{\end{array}\right.}
\newenvironment{spmatrix}{
 \left(\begin{smallmatrix}
}{\end{smallmatrix}\right)}
\newenvironment{mathcols}{% needs multicol package
 \renewcommand{\columnseprule}{0.1pt}
 \begin{multicols}{2}
 \par\noindent\hfill
 \begin{math}\begin{aligned}\displaystyle
}{%
 \end{aligned}\end{math} \hfill\mbox{}
 \end{multicols}
1}
182 \newcommand{\changecol}{%
```

```
83\end{aligned}\end{math} \hfill\mbox{}
184 \par\noindent\hfill
185
\begin{math}\begin{aligned}\displaystyle
186 }
```


## References

[1] Typesetting mathematics for science and technology according to ISO 31/XI, Claudio Beccari, TUGboat Volume 18 (1997), No. 1.
[2] Typefaces for Symbols in Scientific Manuscripts. https://www.physics.nist.gov/cuu/pdf/typefaces.pdf.
[3] On the Use of Italic and up Fonts for Symbols in Scientific Text, I.M. Mills and W.V. Metanomski, ICTNS (Interdivisional Committee on Nomenclature and Symbols), dec 1999.
[4] ISO 80000-2. https://en.wikipedia.org/wiki/ISO_80000-2
[5] The amsmath package. Frank Mittelbach, Rainer Schöpf, Michael Downes, Davis M. Jones, David Carlisle, CTAN, v2.17b 2018/12/01.
[6] The mathtool package. Morten Høgholm, Lars Madsen, CTAN, v1.21 2018/01/08.
[7] The mathfixs Package. Niklas Beisert, CTAN, v1.01 2018/12/30.
[8] Typesetting vectors with beautiful arrow with $L^{A} T_{E} X$ 2 . esvect package by Eddie Saudrais, CTAN, v1.3 2013/07/11.
[9] The upgreek package for $L^{A} T_{E} X \mathcal{L}_{\varepsilon}$, Walter Schmidt, CTAN, v2.0 2003/02/12.
[10] The fixmath package for $L^{A} T_{E} X 2 \varepsilon$, Walter Schmidt, CTAN, v0.9 2000/04/11.
[11] isomath. Mathematical style for science and technology. Günter Milde, CTAN, v0.6.1 04/06/2012.
[12] The interval package. Lars Madsen, CTAN, v0.3 2014/08/04.
[13] L'extension pour $T_{E} X$ et $L^{A} T_{E} X$ systeme. Christian Tellechea, CTAN v0.32 2019/01/13.
[14] The spalign package. Joseph Rabinoff, CTAN, 2016/10/05.
[15] L'extension frenchmath. Antoine Missier, CTAN, v1.2 2019/04/27.
[16] The Not So Short Introduction to $L^{A} T_{E} X 2 \varepsilon$. lshort package by Tobias Oetiker, Hubert Partl, Irene Hyna and Elisabeth Schlegl, CTAN, v6.2 2018/02/28.
[17] The $L^{A} T_{E} X$ Companion. Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, Chris Rowley, 2nd edition, Pearson Education, 2004.


[^0]:    *This document corresponds to mismath v1.3, dated 2019/05/08. Thanks to François Bastouil for help in English translation.

[^1]:    ${ }^{1}$ The package frenchmath [15] takes this rule into account.
    ${ }^{2} \backslash$ mathup is based on \operatorfont (from amsopn package, automatically loaded by amsmath). The beamer package uses a default sans serif math font, but \mathrm produces a font with serif in beamer. This problem is solved by using \mathup instead of \mathrm.

[^2]:    ${ }^{3}$ As for many macros of this package, the definition will take effect only if this macro is not defined before by another package.
    ${ }^{4}$ esvect provides \vv macro used by \vect.
    ${ }^{5} \backslash$ mathbf gives upright bold font, even if used in combination with $\backslash$ mathit.
    ${ }^{6}$ To activate a feature of mathfix like mathbold, do \ProvideMathFix\{mathbold\}.

[^3]:    ${ }^{9}$ The mathtools package by Morten Høgholm and Lars Madsen [6] provides a new improved version of \underbrace command (as many other usefull macros); it is loaded by mismath.

[^4]:    ${ }^{10}$ Another solution is to define \abs with the \DeclarePairedDelimiter command from the mathtool package [6].
    ${ }^{11} \backslash$ frac is redefined by mathfixs package to produce better surrounding space.
    ${ }^{12}$ The interval package [12] gives another solution, less direct, based on an \interval macro.

[^5]:    ${ }^{13}$ Is LATEX definition of [ as mathopen really appropriate where this symbol could almost also logically have been defined as mathclose?
    ${ }^{14} @\{\ldots\}$ sets inter-column space.

[^6]:    1 \DeclareOption*\{\PassOptionsToPackage\{\CurrentOption\}\{amsmath\}\}
    2 \ProcessOptions \relax

