The minted package:
Highlighted source code in IXTEX

Geoffrey M. Poore

gpoore@gmail.com

github.com/gpoore/minted

Originally created and maintained (2009-2013) by
Konrad Rudolph

v2.0 from 2015/01/31

Abstract

minted is a package that facilitates expressive syntax highlighting using the
powerful Pygments library. The package also provides options to customize
the highlighted source code output.

License

LaTeX Project Public License (LPPL) version 1.3.

Additionally, the project may be distributed under the terms of the 3-Clause
(“New”) BSD license: http://opensource.org/licenses/BSD-3-Clause.

gpoore@gmail.com
https://github.com/gpoore/minted
http://www.latex-project.org/lppl.txt
http://opensource.org/licenses/BSD-3-Clause

Contents

1 Introduction 4
2 Installation 4
2.1 Prerequisites e 4
2.2 Required packages 5
2.3 Imstalling minted Lo 5
3 Transitioning to version 2 6
4 Basic usage 6
4.1 Preliminary 6
4.2 A minimal complete example L. 7
4.3 Formatting source code L oo 7
4.4 Using different styles L oL o 8
4.5 Supported languages Lo 9
5 Floating listings 9
6 Options 11
6.1 Packageoptions L Lo L 11
6.2 Macro option usage Lo 13
6.3 Available options oL L 15
7 Defining shortcuts 22
8 FAQ and Troubleshooting 23
Version History 26
9 Implementation 30
9.1 Required packageso e 30
9.2 Packageoptions L L L 31
9.3 Input, caching, and temp files 32
9.4 OSinteraction 34
9.5 Option processing L 36
9.6 Additions to fancyvrb 51
9.7 Imternal helpers 57

9.8 Public API 62

9.9 Command shortcuts 67
9.10 Float support 69
9.11 Epilogueo e 70
9.12 Final cleanup 70
10 Implementation of compatibility package 70

1 Introduction

minted is a package that allows formatting source code in IMTEX. For example:

\begin{minted} {<language>}
<code>
\end{minted}

will highlight a piece of code in a chosen language. The appearance can be
customized with a number of options and color schemes.

Unlike some other packages, most notably listings, minted requires the installation
of additional software, Pygments. This may seem like a disadvantage, but there
are also significant advantages.

Pygments provides superior syntax highlighting compared to conventional packages.
For example, listings basically only highlights strings, comments and keywords.
Pygments, on the other hand, can be completely customized to highlight any kind
of token the source language might support. This might include special formatting
sequences inside strings, numbers, different kinds of identifiers and exotic constructs
such as HTML tags.

Some languages make this especially desirable. Consider the following Ruby code
as an extreme, but at the same time typical, example:

class Foo

def init
pi = Math::PI
@var = "Pi is approx. #{pi}"
end
end

Here we have four different colors for identifiers (five, if you count keywords) and
escapes from inside strings, none of which pose a problem for Pygments.

Additionally, installing Pygments is actually incredibly easy (see the next section).

2 Installation

2.1 Prerequisites

Pygments is written in Python, so make sure that you have Python 2.6 or later
installed on your system. This may be easily checked from the command line:

$ python --version
Python 2.7.5

If you don’t have Python installed, you can download it from the Python website
or use your operating system’s package manager.

Some Python distributions include Pygments (see some of the options under
“Alternative Implementations” on the Python site). Otherwise, you will need
to install Pygments manually. This may be done by installing setuptools, which
facilitates the distribution of Python applications. You can then install Pygments
using the following command:

$ sudo easy_install Pygments

Under Windows, you will not need the sudo, but may need to run the command
prompt as administrator. Pygments may also be installed with pip:

$ pip install Pygments

If you already have Pygments installed, be aware that the latest version is recom-
mended (at least 1.4 or later). Some features, such as escapeinside, will only
work with 2.04. minted may work with versions as early as 1.2, but there are no
guarantees.

2.2 Required packages

minted requires that the following packages be available and reasonably up to date
on your system. All of these ship with recent TEX distributions.

e keyval ¢ ifthen ¢ etoolbox
e kvoptions e calc e xstring
e fancyvrb e ifplatform e xcolor

e float ¢ pdftexcmds e lineno

2.3 Installing minted

You can probably install minted with your TEX distribution’s package manager.
Otherwise, or if you want the absolute latest version, you can install it manually
by following the directions below.

You may download minted. sty from the project’s homepage. We have to install
the file so that TEX is able to find it. In order to do that, please refer to the TEX
FAQ. If you just want to experiment with the latest version, you could locate your
current minted. sty in your TEX installation and replace it with the latest version.
Or you could just put the latest minted.sty in the same directory as the file you
wish to use it with.

http://www.python.org/download/
http://pypi.python.org/pypi/setuptools
https://github.com/gpoore/minted
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

3

Transitioning to version 2

Transitioning from minted 1.7 to 2.0+ should require no changes in almost all cases.
Version 2 provides the same interface and all of the same features.

In cases when custom code was used to hook into the minted internals, it may still
be desirable to use the old minted 1.7. For those cases, the new package mintedl is
provided. Simply load this before any other package attempts to load minted, and
you will have the code from 1.7.

A brief summary of new features in version 2.0 is provided below. More detail is
available in the Version History.

4

New inline command \mintinline.

Support for caching highlighted code with new package option cache. This
drastically reduces package overhead. Caching is on by default. A cache
directory called _minted-{document name) will be created in the document
root directory. This may be modified with the cachedir package option.

Automatic line breaking for all commands and environments with new option
breaklines. Many additional options for customizing line breaking.

Support for Unicode under the pdfTeX engine.

Set document-wide options using \setminted{{opts)}. Set language-specific
options using \setminted[(lang)] {{opts)}. Similarly, set inline-specific
options using \setmintedinline.

Package option langlinenos: do line numbering by language.

Many new options, including encoding, autogobble, and escapeinside
(requires Pygments 2.0+).

New package option outputdir provides compatibility with command-line
options —output-directory and —aux-directory.

New package option draft disables Python use to give maximum perfor-
mance.

\mint can now take code delimited by matched curly braces {}.

Basic usage

4.1 Preliminary

Since minted makes calls to the outside world (that is, Pygments), you need to
tell the IATEX processor about this by passing it the —shell-escape option or it
won’t allow such calls. In effect, instead of calling the processor like this:

$ latex input
you need to call it like this:

$ latex -shell-escape input

The same holds for other processors, such as pdflatex or xelatex.

You should be aware that using -shell-escape allows ETEX to run potentially
arbitrary commands on your system. It is probably best to use -shell-escape
only when you need it, and to use it only with documents from trusted sources.

4.2 A minimal complete example

The following file minimal.tex shows the basic usage of minted.

\documentclass{article}
\usepackage {minted}

\begin{document }

\begin{minted} {c}

int main() {
printf ("hello, world");
return 0;

}

\end{minted}

\end{document }

By compiling the source file like this:

$ pdflatex —-shell-escape minimal

we end up with the following output in minimal.pdf:

int main () {
printf ("hello, world");
return 0;

4.3 Formatting source code

minted Using minted is straightforward. For example, to highlight some Python source
code we might use the following code snippet (result on the right):

\mint

\mintinline

\inputminted

\usemintedstyle

\begin{minted} {python}

def boring(args = None): def boring(args = None):
pass pass
\end{minted}

Optionally, the environment accepts a number of options in key=value notation,
which are described in more detail below.

For a single line of source code, you can alternatively use a shorthand notation:

\mint {python} |import this| import this

This typesets a single line of code using a command rather than an environment,
so it saves a little typing, but its output is equivalent to that of the minted
environment.

The code is delimited by a pair of identical characters, similar to how \verb works.
The complete syntax is \mint [{options)] { {language) } (delim){code){delim), where
the code delimiter can be almost any punctuation character. The {code) may also
be delimited with matched curly braces {}, so long as (code) itself does not contain
unmatched curly braces. Again, this command supports a number of options
described below.

Note that the \mint command is not for inline use. Rather, it is a shortcut for
minted when only a single line of code is present. The \mintinline command is
provided for inline use.

Code can be typeset inline:

X\mintinline{python} {print (x**2) }X Xprint (x%%2) X ‘

The syntax is \mintinline [{options)] {{language)}{delim){code)(delim). The
delimiters can be a pair of characters, as for \mint. They can also be a matched
pair of curly braces, {}.

The command has been carefully crafted so that in most cases it will function
correctly when used inside other commands.!

Finally, there’s the \inputminted command to read and format whole files. Its
syntax is \inputminted[{options)] { {language)} { (filename)}.

4.4 Using different styles

Instead of using the default style you may choose another stylesheet provided by
Pygments. This may be done via the following;:

1For example, \mintinline works in footnotes! The main exception is when the code
contains the percent % or hash # characters, or unmatched curly braces.

listing

\usemintedstyle{name}

The full syntax is \usemintedstyle [{language)] {(style)}. The style may be set
for the document as a whole (no language specified), or only for a particular
language. Note that the style may also be set via \setminted and via the optional
argument for each command and environment.?

To get a list of all available stylesheets, see the online demo at the Pygments
website or execute the following command on the command line:

$ pygmentize -L styles

Creating your own styles is also easy. Just follow the instructions provided on the
Pygments website.

4.5 Supported languages

Pygments supports over 300 different programming languages, template languages,
and other markup languages. To see an exhaustive list of the currently supported
languages, use the command

$ pygmentize -L lexers

5 Floating listings

minted provides the 1isting environment to wrap around a source code block.
This puts the code into a floating box. You can also provide a \caption and a
\label for such a listing in the usual way (that is, as for the table and figure
environments):

\begin{listing} [H]
\mint{cl}/(car (cons 1 '(2)))/
\caption{Example of a listing.}
\label{lst:example}
\end{listing}

Listing \ref{lst:example} contains an example of a listing.

will yield:

2Version 2.0 added the optional language argument and removed the restriction that the
command be used in the preamble.

http://pygments.org/demo/
http://pygments.org/demo/
http://pygments.org/docs/styles/#creating-own-styles

\listoflistings

\listingscaption

\listoflistingscaption

(car (cons 1 '(2)))
Listing 1: Example of a listing.

Listing 1 contains an example of a listing.

The \listoflistings macro will insert a list of all (floated) listings in the
document:

List of Listings

\listoflistings
1 Example of a listing. 10

Customizing the 1isting environment

By default, the 1isting environment is created using the float package. In that
case, the \listingscaption and \listoflistingscaption macros described
below may be used to customize the caption and list of listings. If minted is loaded
with the newfloat option, then the 1isting environment will be created with the
more powerful newfloat package instead. newfloat is part of caption, which provides
many options for customizing captions.

When newfloat is used to create the 1isting environment, customization should be
achieved using newfloat’s \SetupFloatingEnvironment command. For example,
the string “Listing” in the caption could be changed to “Program code” using

\SetupFloatingEnvironment {listing}{name=Program code}
And “List of Listings” could be changed to “List of Program Code” with
\SetupFloatingEnvironment {listing}{listname=List of Program Code}

Refer to the newfloat and caption documentation for additional information.

(Only applies when package option newfloat is not used.) The string “Listing”
in a listing’s caption can be changed. To do this, simply redefine the macro
\listingscaption, for example:

\renewcommand{\listingscaption} {Program code}

(Only applies when package option newfloat is not used.) Likewise, the
caption of the listings list, “List of Listings,” can be changed by redefining
\listoflistingscaption:

10

http://www.ctan.org/pkg/newfloat
http://www.ctan.org/pkg/caption

cache=(boolean)

(default:

cachedir=(directory)
(def: _minted—{jobname))

draft=(boolean)

(default:

chapter

true)

false)

\renewcommand{\listoflistingscaption}{List of Program Code}

6 Options

6.1 Package options

To control how IXTEX counts the 1isting floats, you can pass either the section
or chapter option when loading the minted package. For example, the following
will cause listings to be counted by chapter:

\usepackage [chapter] {minted}

minted works by saving code to a temporary file, highlighting the code via Pygments
and saving the output to another temporary file, and inputting the output into the
ETEX document. This process can become quite slow if there are several chunks of
code to highlight. To avoid this, the package provides a cache option. This is on
by default.

The cache option creates a directory _minted-{jobname) in the document’s root
directory (this may be customized with the cachedir option). Files of highlighted
code are stored in this directory, so that the code will not have to be highlighted
again in the future. In most cases, caching will significantly speed up document
compilation.

Cached files that are no longer in use are automatically deleted.?

This allows the directory in which cached files are stored to be specified. Paths
should use forward spaces, even under Windows. Paths that include spaces are not
allowed.

Note that this directory is relative to the outputdir, if an outputdir is specified.

This uses fancyvrb alone for all typesetting; Pygments is not used. This trades syntax
highlighting and some other minted features for faster compiling. Performance
should be essentially the same as using fancyvrb directly; no external temporary
files are used. Note that if you are not changing much code between compiles, the
difference in performance between caching and draft mode may be minimal. Also
note that draft settings are typically inherited from the document class.

Draft mode does not support autogobble. Regular gobble, linenos, and most
other options not related to syntax highlighting will still function in draft mode.

3This depends on the main auxiliary file not being deleted or becoming corrupted. If that
happens, you could simply delete the cache directory and start over.

11

final=(boolean)

(default:

kpsewhich=(boolean)

(default:

langlinenos=(boolean)

(default:

true)

false)

false)

Documents can usually be compiled without shell escape in draft mode. The
ifplatform package may issue a warning about limited functionality due to shell
escape being disabled, but this may be ignored in almost all cases. (Shell escape
is only really required if you have an unusual system configuration such that the
\ifwindows macro must fall back to using shell escape to determine the system.
See the ifplatform documentation for more details: http://www.ctan.org/pkg/
ifplatform)

If the cache option is set, then all existing cache files will be kept while draft
mode is on. This allows caching to be used intermitently with draft mode without
requiring that the cache be completely recreated each time. Automatic cleanup of
cached files will resume as soon as draft mode is turned off. (This assumes that the
auxiliary file has not been deleted in the meantime; it contains the cache history
and allows automatic cleanup of unused files.)

This is the opposite of draft; it is equivalent to draft=false. Again, note that
draft and final settings are typically inherited from the document class.

This option uses kpsewhich to locate files that are to be highlighted. Some build
tools such as texi2pdf function by modifying TEXINPUTS; in some cases, users
may customize TEXINPUTS as well. The kpsewhich option allows minted to work
with such configurations.

This option may add a noticeable amount of overhead on some systems, or with
some system configurations.

This option does mot make minted work with the -output-directory and
—aux-directory command-line options for ITEX. For those, see the outputdir
package option.

Under Windows, this option currently requires that PowerShell be installed. It
may need to be installed in versions of Windows prior to Windows 7.

minted uses the fancyvrb package behind the scenes for the code typesetting.
fancyvrb provides an option firstnumber that allows the starting line number of an
environment to be specified. For convenience, there is an option firstnumber=1last
that allows line numbering to pick up where it left off. The 1anglinenos option
makes firstnumber work for each language individually with all minted and
\mint usages. For example, consider the code and output below.

\begin{minted} [linenos] {python}
def f(x):

return x#*=*2
\end{minted}

\begin{minted} [linenos] {ruby}
def func
puts "message"
end
\end{minted}

\begin{minted} [linenos, firstnumber=last] {python}

12

http://www.ctan.org/pkg/ifplatform
http://www.ctan.org/pkg/ifplatform

newfloat=(boolean)

(default:

outputdir=(directory)

(default:

false)

(none))

section

def g(x):
return 2xx
\end {minted}

1 def f(x):
2 return xx*+*2

1 def func
2 puts "message"
3 end

3 def g(x):
4 return 2x+x

Without the langlinenos option, the line numbering in the second Python envi-
ronment would not pick up where the first Python environment left off. Rather, it
would pick up with the Ruby line numbering.

By default, the 1isting environment is created using the float package. The
newfloat option creates the environment using newfloat instead. This provides
better integration with the caption package.

The -output-directory and -aux-directory (MiKTeX) command-line options
for BTEX causes problems for minted, because the minted temporary files are saved
in <outputdir>, but minted still looks for them in the document root directory.
There is no way to access the value of the command-line option so that minted
can automatically look in the right place. But it is possible to allow the output
directory to be specified manually as a package option.

The output directory should be specified using an absolute path or a path relative
to the document root directory. Paths should use forward spaces, even under
Windows. Paths that include spaces are not allowed.

To control how ETEX counts the 1isting floats, you can pass either the section
or chapter option when loading the minted package.

6.2 Macro option usage

All minted highlighting commands accept the same set of options. Options are
specified as a comma-separated list of key=value pairs. For example, we can
specify that the lines should be numbered:

\begin{minted} [linenos=true] {c++}
#include <iostream>
int main() {
std::cout << "Hello "
<< "world"
<< std::endl;

#include <iostream>
int main() {
std::cout << "Hello "
<< "world"
<< std::endl;

[N T S N

}
\end{minted}

13

\setminted

\setmintedinline

An option value of true may also be omitted entirely (including the “=”). To
customize the display of the line numbers further, override the \theFancyverbLine
command. Consult the fancyvrb documentation for details.

\mint accepts the same options:

\mint [1inenos] {perl}|S$x=~/foo/| 1 $Sx=~/foo/

Here’s another example: we want to use the N TEX math mode inside comments:

\begin{minted} [mathescape] {python}

Returns S$\sum_{i=1}"{n}i$ # Returns)" i

def sum_from_one_to(n): def sum_from_one_to(n):
r = range(l, n + 1) r = range(l, n + 1)
return sum(r) return sum(r)

\end{minted}

To make your ¥ TEX code more readable you might want to indent the code inside
a minted environment. The option gobble removes these unnecessary whitespace
characters from the output. There is also an autogobble option that detects the
length of this whitespace automatically.

\begin{minted} [gobble=2,
showspaces] {python}

def boring(args = None): def _boring (args_=_None) :
pass oo pass
\end{minted}
versus versus

\begin{minted} [showspaces] {python} o.def_boring(args = None):
def boring(args = None): Cooo Pass
pass
\end{minted}

You may wish to set options for the document as a whole, or for an entire language.
This is possible via \setminted[(language)] { (key=value,...)}. Language-specific
options override document-wide options. Individual command and environment
options override language-specific options.

You may wish to set separate options for \mintinline, either for the document as
a whole or for a specific language. This is possible via \setmintedinline. The
syntax is \setmintedinline [({language)] { (key=value,...)}. Language-specific
options override document-wide options. Individual command options override
language-specific options. All settings specified with \setmintedinline override
those set with \setminted. That is, inline settings always have a higher precedence
than general settings.

14

autogobble

baselinestretch

breakautoindent

breakbytoken

breakindent

breaklines

6.3 Available options

Following is a full list of available options. For more detailed option descriptions
please refer to the fancyvrb and Pygments documentation.

(boolean) (default: false)
Remove (gobble) all common leading whitespace from code. Essentially a version
of gobble that automatically determines what should be removed. Good for code
that originally is not indented, but is manually indented after being pasted into a
ETEX document.

.. .text.
\begin{minted} [autogobble] (python} --text.
def f(x):)
return xx*2 def f(i). ,
\end{minted} return xxx*
(auto|dimension) (default: auto)

Value to use as for baselinestretch inside the listing.

(boolean) (default: true)
When a line is broken, automatically indent the continuation lines to the indentation
level of the first line. When breakautoindent and breakindent are used together,
the indentations add. This indentation is combined with breaksymbolindentleft
to give the total actual left indentation. Does not apply to \mintinline.

(boolean) (default: false)
Only break lines at spaces that are not within tokens; prevent tokens from being
split by line breaks. By default, line breaking occurs at the space nearest the
margin. While this minimizes the number of line breaks that are necessary, it
can be inconvenient if the break occurs in the middle of a string or similar token.
This is not compatible with draft mode. A complete list of Pygments tokens is
available at http://pygments.org/docs/tokens/

(dimension) (default: opt)
When a line is broken, indent the continuation lines by this amount. When
breakautoindent and breakindent are used together, the indentations add.
This indentation is combined with breaksymbolindentleft to give the total
actual left indentation. Does not apply to \mintinline.

(boolean) (default: false)
Automatically break long lines in minted environments and \mint commands,
and wrap longer lines in \mintinline. Currently, automatic breaks only occur at
space characters. By default, the break will be at the space character closest to
the margin. You can prevent space characters within tokens (for example, within
strings) from being used as a break location with the option breakbytoken (this
is not compatible with draft mode). If you need breaks at another location, you
may use escapeinside to escape to MTEX and then insert a manual break. For
example, use escapeinside=| |, and then insert |\\| at the appropriate point.

15

http://pygments.org/docs/tokens/

(Note that escapeinside does not work within strings.)

...text. ...text.
\begin{minted} [breaklines] {python}
def f(x): def f(x):
return 'Some text ' + str(x) return 'Some text ' +
\end{minted} « str(x)

Breaking in minted and \mint may be customized in several ways. To customize the
indentation of broken lines, see breakindent and breakautoindent. To customize
the line continuation symbols, use breaksymbolleft and breaksymbolright.
To customize the separation between the continuation symbols and the code,
use breaksymbolsepleft and breaksymbolsepright. To customize the ex-
tra indentation that is supplied to make room for the break symbols, use
breaksymbolindentleft and breaksymbolindentright. Since only the left-
hand symbol is used by default, it may also be modified using the alias options
breaksymbol, breaksymbolsep, and breaksymbolindent. Note than none of
these options applies to \mintinline, since they are not relevant in the inline
context.

An example using these options to customize the minted environment is shown
below. This uses the \carriagereturn symbol from the dingbat package.

\begin{minted} [breaklines,
breakautoindent=false,
breaksymbolleft=\raisebox{0.8ex} {
\small\reflectbox{\carriagereturn}},
breaksymbolindentleft=0pt,
breaksymbolsepleft=0pt,
breaksymbolright=\small\carriagereturn,
breaksymbolindentright=0pt,
breaksymbolsepright=0pt] {python}

def f(x):
return 'Some text ' + str(x) + ' some more text ' +
— str(x) + ' even more text that goes on for a

— while'
\end{minted}

def f(x):
return 'Some text ' + str(x) + ' some more text ' +)
Cstr(x) + ' even more text that goes on for a while'

Automatic line breaks are limited with Pygments styles that use a colored back-
ground behind large chunks of text. This coloring is accomplished with \colorbox,
which cannot break across lines. It may be possible to create an alternative to
\colorbox that supports line breaks, perhaps with TikZ, but the author is unaware
of a satisfactory solution. The only current alternative is to redefine \colorbox
so that it does nothing. For example,

\AtBeginEnvironment {minted} {\renewcommand{\colorbox} [3] []{#3}}

16

uses the etoolbox package to redefine \colorbox within all minted environments.

Automatic line breaks will not work with showspaces=true. You may be able to
change the definition of \Fv@Space if you need this; see the fancyvrb implementation
for details.

breaksymbol (string) (default: breaksymbolleft)
Alias for breaksymbolleft.

breaksymbolleft (String) (default: \tiny\ensuremath{\hookrightarrow}, —)
The symbol used at the beginning (left) of continuation lines when breaklines=true.
To have no symbol, simply set breaksymbolleft to an empty string (“=,” or
“={}”). The symbol is wrapped within curly braces {} when used, so there is no

danger of formatting commands such as \tiny “escaping.”

The \hookrightarrow and \hookleftarrow may be further customized by the
use of the \rotatebox command provided by graphicx. Additional arrow-type
symbols that may be useful are available in the dingbat (\carriagereturn) and
mnsymbol (hook and curve arrows) packages, among others.

Does not apply to \mintinline.

breaksymbolright (string) (default: (none))
The symbol used at breaks (right) when breaklines=true. Does not appear at
the end of the very last segment of a broken line.

breaksymbolindent (dimension) (default: breaksymbolindentleft)
Alias for breaksymbolindentleft.

breaksymbolindentleft (dimension) (default: width of 4 characters in teletype font at default point size)
The extra left indentation that is provided to make room for breaksymbolleft.
This indentation is only applied when there is a breaksymbolleft.

This may be set to the width of a specific number of (fixed-width) characters by
using an approach such as

\newdimen\temporarydimen
\settowidth{\temporarydimen} {\ttfamily aaaa}

and then using breaksymbolindentleft=\temporarydimen.
Does not apply to \mintinline.

breaksymbolindentright (dimension) (default: width of 4 characters in teletype font at default point size)
The extra right indentation that is provided to make room for breaksymbolright.
This indentation is only applied when there is a breaksymbolright.

breaksymbolsep (dimension) (default: breaksymbolsepleft)
Alias for breaksymbolsepleft

breaksymbolsepleft (dimension) (default: lem)
The separation between the breaksymbolleft and the adjacent code. Does not
apply to \mintinline.

17

breaksymbolsepright

bgcolor

codetagify

encoding

escapeinside

(dimension) (default: 1em)
The separation between the breaksymbolright and the adjacent code.

(string) (default: (none))
Background color of the listing. Notice that the value of this option must not
be a color command. Instead, it must be a color name, given as a string, of a
previously-defined color:

\definecolor{bg}{rgb}{0.95,0.95,0.95}
\begin{minted} [bgcolor=bg] {php} S
<?php
<?php ?phy
echo "Hello Sx": echo "Hello, $x";
o> P>
\end{minted}

This option puts minted environments and \mint commands in a minipage with
a colored background. It puts \mintinline inside a \colorbox. If you want to
use \setminted to set background colors, and only want background colors on
minted and \mint, you may use \setmintedinline{bgcolor={}} to turn off
the coloring for inline commands.

This option will prevent breaklines from working with \mintinline. A
\colorbox cannot break across lines.

This option will prevent environments from breaking across pages. If
you want support for page breaks and advanced options, you should consider a
framing package such as framed, mdframed, or tcolorbox. It is easy to add framing
to minted commands and environments using the etoolbox package. For example,
using mdframed:

\BeforeBeginEnvironment {minted}{\begin{mdframed}}
\AfterEndEnvironment {minted} {\end{mdframed}}

Some framing packages also provide built-in commands for such purposes. For
example, mdframed provides a \surroundwithmdframed command, which could
be used to add a frame to all minted environments:

\surroundwithmdframed{minted}

tcolorbox even provides a built-in framing environment with minted support.

(list of strings) (default: highlight xxx, ToDO, BUG, and NOTE)
Highlight special code tags in comments and docstrings.

(string) (default: system-specific)
Sets the file encoding that Pygments expects. See also outencoding.

(string) (default: (none))
Escape to IXTEX between the two characters specified in (string). All code
between the two characters will be interpreted as ITEX and typeset accordingly.
This allows for additional formatting. Escaping does not work inside strings and

18

firstline

firstnumber

fontfamily

fontseries

fontsize

fontshape

formatcom

frame

framerule

framesep

funcnamehighlighting

comments (for comments, there is texcomments). The escape characters need not
be identical. Special BTEX characters must be escaped when they are used as the
escape characters (for example, escapeinside=\#\%). Requires Pygments 2.0+.

\begin{minted} [escapeinside=||]{py}
def f(x): def f(x):
y = x|\colorbox{green} {*x}|2 y = X k% 2
return y return y
\end{minted}

Note that when math is used inside escapes, in a few cases ligature
handling may need to be modified. The single-quote character (') is normally
a shortcut for ~\prime in math mode, but this is disabled in verbatim content as a
byproduct of ligatures being disabled. For the same reason, any package that relies
on active characters in math mode (for example, icomma) will produce errors along
the lines of TeX capacity exceeded and \leavevmode\kern\z@. This may be
fixed by modifying \@noligs, as described at http://tex.stackexchange.com/
questions/223876. minted currently does not attempt to patch \@noligs due
to the potential for package conflicts.

(integer) (default: 1)
The first line to be shown. All lines before that line are ignored and do not appear
in the output.

(autolinteger) (default: auto = 1)

Line number of the first line.

(family name) (default: tt)
The font family to use. tt, courier and helvetica are pre-defined.

(series name) (default: auto — the same as the current font)

The font series to use.

(font size) (default: auto — the same as the current font)
The size of the font to use, as a size command, e.g. \footnotesize.

(font shape) (default: auto — the same as the current font)

The font shape to use.

(command) (default: (none))

A format to execute before printing verbatim text.

(none|leftline|topline|bottomline|lines|single) (default: none)

The type of frame to put around the source code listing.

(dimension) (default: 0.4pt)

Width of the frame.

(dimension) (default: \fboxsep)

Distance between frame and content.

(boolean) (default: true)

19

http://tex.stackexchange.com/questions/223876
http://tex.stackexchange.com/questions/223876

gobble

keywordcase

label

labelposition

lastline

linenos

numbers

mathescape

numberblanklines

numbersep

obeytabs

[For PHP only] If t rue, highlights built-in function names.

(integer) (default: 0)
Remove the first n characters from each input line.

(string) (default: " lower’)
Changes capitalization of keywords. Takes ’ lower’, " upper’, or 'capitalize’.

(string) (default: empty)
Add a label to the top, the bottom or both of the frames around the code. See the
fancyvrb documentation for more information and examples. Note: This does not
add a \label to the current listing. To achieve that, use a floating environment
(section 5) instead.

(none|toplinelbottomline|all) (default: topline, all or none)
Position where to print the label (see above; default: topline if one label is
defined, a1l if two are defined, none else). See the fancyvrb documentation for
more information.

(integer) (default: last line of input)
The last line to be shown.

(boolean) (default: false)
Enables line numbers. In order to customize the display style of line numbers, you
need to redefine the \theFancyVerbLine macro:

\renewcommand{ \theFancyVerbLine} {\sffamily
\textcolor[rgb] {0.5,0.5,1.0}{\scriptsize
\oldstylenums{\arabic{FancyVerbLine}}}}

\begin{minted} [linenos, i def gii(itiia?igigble-
firstnumber=11] {python} 1‘ if not i: :
def all(iterable): 12 roturn False

for iflgoét§¥able: 15 return True
return False
return True
\end{minted}
(Left|right) (default: none)

Essentially the same as 1inenos, except the side on which the numbers appear
may be specified.

(boolean) (default: false)
Enable BTEX math mode inside comments. Usage as in package listings. See the
note under escapeinside regarding math and ligatures.

(boolean) (default: true)
Enables or disables numbering of blank lines.

(dimension) (default: 12pt)
Gap between numbers and start of line.

(boolean) (default: false)

20

outencoding

python3

resetmargins

rulecolor

samepage

showspaces

showtabs

startinline

style

stepnumber

stripall

stripnl

tabsize

texcl

texcomments

xleftmargin

Treat tabs as tabs instead of converting them to spaces.

(string) (default: system-specific)
Sets the file encoding that Pygments uses for highlighted output. Overrides any
encoding previously set via encoding.

(boolean) (default: false)
[For PythonConsoleLexer only] Specifies whether Python 3 highlighting is applied.

(boolean) (default: false)

Resets the left margin inside other environments.

(color command)
The color of the frame.

(default: black)

(boolean) (default: false)
Forces the whole listing to appear on the same page, even if it doesn’t fit.

(boolean)
Enables visible spaces: visible _spaces.

(deﬁuﬂt false)

(boolean) (default: false)

Enables visible tabs—only works in combination with obeytabs.

(boolean) (default: false)
[For PHP only] Specifies that the code starts in PHP mode, i.e., leading <?php is
omitted.

(string) (default: default)

Sets the stylesheet used by Pygments.
(integer)
Interval at which line numbers appear.

(default: 1)

(boolean) (default: false)

Strip all leading and trailing whitespace from the input.

(boolean)
Strip leading and trailing newlines from the input.

(deﬁnﬂt true)

(integer) (default: 8)
The number of spaces a tab is equivalent to. If obeytabs is not active, tabs will
be converted into this number of spaces. If obeytabs is active, tab stops will be
set this number of space characters apart.

(boolean) (default: false)
Enables IXMTEX code inside comments. Usage as in package listings. See the note
under escapeinside regarding math and ligatures.

(boolean) (default: false)
Enables TEX code inside comments. The newer name for texcl. See the note
under escapeinside regarding math and ligatures.

(dimension) (default: 0)

21

xrightmargin

\newminted

\newmint

Indentation to add before the listing.

(dimension) (default: 0)
Indentation to add after the listing.

7 Defining shortcuts

Large documents with a lot of listings will nonetheless use the same source language
and the same set of options for most listings. Always specifying all options is
redundant, a lot to type and makes performing changes hard.

One option is to use \setminted, but even then you must still specify the language
each time.

minted therefore defines a set of commands that lets you define shortcuts for the
highlighting commands. Each shortcut is specific for one programming language.

\newminted defines a new alias for the minted environment:

\newminted{cpp} {gobble=2, linenos}

\begin{cppcode}
template <typename T>
T id(T value) {
return value;

template <typename T>
T 1id(T value) {
return value;

AW e

}
}
\end{cppcode}

If you want to provide extra options on the fly, or override existing default options,
you can do that, too:

\newminted{cpp} {gobble=2, linenos}

\begin{cppcodex}{linenos=false,
frame=single}
int const answer = 42;
\end{cppcodex}

int const answer = 42;

Notice the star “+” behind the environment name—due to restrictions in fancyvrb’s
handling of options, it is necessary to provide a separate environment that accepts
options, and the options are not optional on the starred version of the environment.

The default name of the environment is (language)code. If this name clashes with
another environment or if you want to choose an own name for another reason,
you may do so by specifying it as the first argument: \newminted[{environment
name)] { {language) } { {options)}.

The above macro only defines shortcuts for the minted environment. The main
reason is that the short command form \mint often needs different options—at
the very least, it will generally not use the gobble option. A shortcut for \mint is
defined using \newmint [(macro name)] {{language)} { {options)}. The arguments

22

\newmintinline

\newmintedfile

and usage are identical to \newminted. If no (macro name) is specified, (language)
is used.

\newmint {perl} {showspaces}
my, S$foo,_=_Sbar;
\perl/my $foo = Sbar;/

This creates custom versions of \mintinline. The syntax is the same as that
for \newmint: \newmintinline[{macro name)] {{language)} {{options)}. If a
(macro name) is not specified, then the created macro is called \ (language)inline.

\newmintinline{perl} {showspaces}
Xmy, $foo_=_Sbar; X
X\perlinline/my $foo = S$bar; /X

This creates custom versions of \inputminted. The syntax is
\newmintedfile [{macro name)] {(language)} { {options)}

If no (macro name) is given, then the macro is called \{language)file.

8 FAQ and Troubleshooting

In some cases, minted may not give the desired result due to other document settings
that it cannot control. Common issues are described below, with workarounds or
solutions. You may also wish to search tex.stackexchange.com or ask a question
there, if you are working with minted in a non-typical context.

e When I use minted with KOMA-Script document classes, I get
warnings about \float@addtolists. minted uses the float package to
produce floated listings, but this conflicts with the way KOMA-Script does
floats. Load the package scrhack to resolve the conflict. Or use minted’s
newfloat package option.

o Tilde characters ~ are raised, almost like superscripts. This is a font
issue. You need a different font encoding, possibly with a different font.
Try \usepackage[T1]{fontenc}, perhaps with \usepackage{lmodern},
or something similar.

¢ I’'m getting errors with math, something like Tex capacity exceeded
and \leavevmode\kern\z@. This is due to ligatures being disabled within
verbatim content. See the note under escapeinside.

¢ Quotation marks and backticks don’t look right. Backtick char-
acters ' are appearing as left quotes. Single quotes are appear-
ing as curly right quotes. This is due to how Pygments outputs

23

http://tex.stackexchange.com/

KTEX code, combined with how ITEX deals with verbatim content. Try
\usepackage {upquote}.

I’'m getting errors with Beamer. Due to how Beamer treats verbatim
content, you may need to use either the fragile or fragile=singleslide
options for frames that contain minted commands and environments.
fragile=singleslide works best, but it disables overlays. fragile works
by saving the contents of each frame to a temp file and then reusing them. This
approach allows overlays, but will break if you have the string \end{frame}
at the beginning of a line (for example, in a minted environment). To work
around that, you can indent the content of the environment (so that the
\end{frame} is preceded by one or more spaces) and then use the gobble
or autogobble options to remove the indentation.

Tabs are eaten by Beamer. This is due to a bug in Beamer’s treatment
of verbatim content. Upgrade Beamer or use the linked patch. Otherwise,
try fragile=singleslide if you don’t need overlays, or consider using
\inputminted or converting the tabs into spaces.

I’'m trying to create several new minted commands/environments,
and want them all to have the same settings. I’'m saving the set-
tings in a macro and then using the macro when defining the com-
mands/environments. But it’s failing. This is due to the way that
keyval works (minted uses it to manage options). Arguments are not ex-
panded. See this and this for more information. It is still possible to do what
you want; you just need to expand the options macro before passing it to
the commands that create the new commands/environments. An example is
shown below. The \expandafter is the vital part.

\defl\args{linenos, frame=single, fontsize=\footnotesize, style=bw}

\newcommand {\makenewmintedfiles}[1]{%
\newmintedfile[inputlatex] {latex}{#1}%
\newmintedfile[inputc] {c} {#1}$%

}

\expandafter\makenewmintedfiles\expandafter{\args}

I want to use \mintinline in a context that normally doesn’t allow
verbatim content. The \mintinline command will already work in many
places that do not allow normal verbatim commands like \verb, so make
sure to try it first. If it doesn’t work, one of the simplest alternatives is to
save your code in a box, and then use it later. For example,

\newsavebox\mybox
\begin{lrbox}{\mybox}
\mintinline{cpp}{std::cout}
\end{lrbox}

24

https://bitbucket.org/rivanvx/beamer/issue/310/tab-characters-in-listings-lost-when-using
https://bitbucket.org/rivanvx/beamer/issue/310/tab-characters-in-listings-lost-when-using
http://tex.stackexchange.com/questions/13563/building-keyval-arguments-using-a-macro/13564#13564
http://tex.stackexchange.com/questions/145363/why-does-includegraphics-varone-vartwo-not-compile/145366#145366

\commandthatdoesnotlikeverbatim{Text \usebox{\mybox}}

Extended characters do not work inside minted commands and
environments, even when the inputenc package is used. Version 2.0
adds support for extended characters under the pdfTeX engine. But if you
need characters that are not supported by inputenc, you should use the XeTeX
or LuaTeX engines instead.

The polyglossia package is doing undesirable things to code. (For
example, adding extra space around colons in French.) You may
need to put your code within \begin{english}...\end{english}. This
may done for all minted environments using etoolbox in the preamble:

\usepackage{etoolbox}
\BeforeBeginEnvironment {minted} {\begin{english}}
\AfterEndEnvironment {minted} {\end{english}}

Tabs are being turned into the character sequence #~1. This
happens when you use XeLaTeX. You need to use the -8bit
command-line option so that tabs may be written correctly to tem-
porary files. See http://tex.stackexchange.com/questions/58732/
how-to-output—a-tabulation—into—a-file for more on XeLaTeX’s han-
dling of tab characters.

The caption package produces an error when \captionof and other
commands are used in combination with minted. Load the caption
package with the option compatibility=false. Or better yet, use minted’s
newfloat package option, which provides better caption compatibility.

I need a listing environment that supports page breaks. The built-in
listing environment is a standard float; it doesn’t support page breaks. You
will probably want to define a new environment for long floats. For example,

\usepackage{caption}
\newenvironment{longlisting}{\captionsetup{type=1listing}}{}

With the caption package, it is best to use minted’s newfloat package
option. See http://tex.stackexchange.com/a/53540/10742 for more on
listing environments with page breaks.

I want to use a custom script/executable to access Pygments,
rather than pygmentize. Redefine \MintedPygmentize:

\renewcommand{\MintedPygmentize}{...}

25

http://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file
http://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file
http://tex.stackexchange.com/a/53540/10742

¢ I want to use the command-line option —output-directory, or MiK-
TeX’s —aux-directory, but am getting errors. Use the package option
outputdir to specify the location of the output directory. Unfortunately,
there is no way for minted to detect the output directory automatically.

¢« I want extended characters in frame labels, but am getting errors.
This can happen with minted <2.0 and Python 2.7, due to a terminal encoding
issue with Pygments. It should work with any version of Python with minted
2.0+, which processes labels internally and does not send them to Python.

Acknowledgements

Konrad Rudolph: Special thanks to Philipp Stephani and the rest of the guys from
comp.text.tex and tex.stackexchange.com.

Geoffrey Poore: Thanks to Marco Daniel for the code on tex.stackexchange.com
that inspired automatic line breaking.

Version History

v2.0 (2015/01/31)

o Added the compatibility package mintedl, which provides the minted
1.7 code. This may be loaded when 1.7 compatibility is required. This
package works with other packages that \RequirePackage{minted},
so long as it is loaded first.

¢ Moved all old \changes into changelog.
Development releases for 2.0 (2014-January 2015)

o Caching is now on by default.

e Fixed a bug that prevented compiling under Windows when file names
contained commas.

e Added breaksymbolleft, breaksymbolsepleft, breaksymbolindentleft,
breaksymbolright, breaksymbolsepright, and breaksymbolindentright
options. breaksymbol, breaksymbolsep, and breaksymbolindent
are now aliases for the correspondent *left options.

e Added kpsewhich package option. This uses kpsewhich to locate the
files that are to be highlighted. This provides compatibility with build
tools like texi2pdf that function by modifying TEXINPUTS (#25).

e Fixed a bug that prevented \ inputminted from working with outputdir.

e Added informative error messages when Pygments output is missing.

26

https://bitbucket.org/birkenfeld/pygments-main/issue/801/python-2-fails-to-detect-terminal-encoding
https://bitbucket.org/birkenfeld/pygments-main/issue/801/python-2-fails-to-detect-terminal-encoding
tex.stackexchange.com

Added final package option (opposite of draft).

Renamed the default cache directory to _minted-<jobname> (replaced
leading period with underscore). The leading period caused the cache
directory to be hidden on many systems, which was a potential source
of confusion.

breaklines and breakbytoken now work with \mintinline (#31).
bgcolor may now be set through \setminted and \setmintedinline.

When math is enabled via texcomments, mathescape, Or escapeinside,
space characters now behave as in normal math by vanishing, instead of

appearing as literal spaces. Math need no longer be specially formatted

to avoid undesired spaces.

In default value of \listoflistingscaption, capitalized “Listings”
so that capitalization is consistent with default values for other lists
(figures, tables, algorithms, etc.).

Added newfloat package option that creates the 1isting environment
using newfloat rather than float, thus providing better compatibility
with the caption package (#12).

Added support for Pygments option stripall.

Added breakbytoken option that prevents breaklines from breaking
lines within Pygments tokens.

\mintinline uses a \colorbox when bgcolor is set, to give more
reasonable behavior (#57).

For PHP, \mintinline automatically begins with startinline=true

(#23).

Fixed a bug that threw off line numbering in minted when langlinenos=false
and firstnumber=last. Fixed a bug in \mintinline that threw off
subsequent line numbering when langlinenos=false and firstnumber=1last.

Improved behavior of \mint and \mintinline in draft mode.

The \mint command now has the additional capability to take code
delimited by paired curly braces {}.

It is now possible to set options only for \mintinline using the new
\setmintedinline command. Inline options override options specified
via \setminted.

Completely rewrote option handling. fancyvrb options are now handled
on the BTEX side directly, rather than being passed to Pygments and
then returned. This makes caching more efficient, since code is no longer
rehighlighted just because fancyvrb options changed.

Fixed buffer size error caused by using cache with a very large number
of files (#61).

Fixed autogobble bug that caused failure under some operating sys-
tems.

27

Added support for escapeinside (requires Pygments 2.0+; #38).
Fixed issues with XeTeX and caching (#40).

The upquote package now works correctly with single quotes when
using Pygments 1.6+ (#34).

Fixed caching incompatibility with Linux and OS X under xelatex (#18
and #42).

Fixed autogobble incompatibility with Linux and OS X.
\mintinline and derived commands are now robust, via \newrobustcmd
from etoolbox.

Unused styles are now cleaned up when caching.

Fixed a bug that could interfere with caching (#24).

Added draft package option (#39). This typesets all code using
fancyvrb; Pygments is not used. This trades syntax highlighting for
maximum speed in compiling.

Added automatic line breaking with breaklines and related options
(#1).

Fixed a bug with boolean options that needed a False argument to
cooperate with \setminted (#48).

v2.0-alpha3 (2013/12/21)

Added autogobble option. This sends code through Python’s
textwrap.dedent () to remove common leading whitespace.

Added package option cachedir. This allows the directory in which
cached content is saved to be specified.

Added package option outputdir. This allows an output directory
for temporary files to be specified, so that the package can work with
LaTeX’s —output-directory command-line option.

The kvoptions package is now required. It is needed to process key-
value package options, such as the new cachedir option.

Many small improvements, including better handling of paths under
Windows and improved key system.

v2.0-alpha2 (2013/08/21)

\DeleteFile now only deletes files if they do indeed exist. This elimi-
nates warning messages due to missing files.

Fixed a bug in the definition of \DeleteFile for non-Windows systems.
Added support for Pygments option stripnl.

Settings macros that were previously defined globally are now defined lo-
cally, so that \setminted may be confined by \begingroup. ..\endgroup
as expected.

28

Macro definitions for a given style are now loaded only once per docu-
ment, rather than once per command/environment. This works even
without caching.

A custom script/executable may now be substituted for pygmentize
by redefining \MintedPygmentize.

v2.0alpha (2013/07/30)

Added the package option cache. This significantly increases com-
pilation speed by caching old output. For example, compiling the
documentation is around 5x faster.

New inline command \mintinline. Custom versions can be created
via \newnmintinline. The command works inside other commands (for
example, footnotes) in most situations, so long as the percent and hash
characters are avoided.

The new \setminted command allows options to be specified at the
document and language levels.

All extended characters (Unicode, etc.) supported by inputenc now
work under the pdfTeX engine. This involved using \detokenize on
everything prior to saving.

New package option langlinenos allows line numbering to pick up
where it left off for a given language when firstnumber=last.

New options, including style, encoding, outencoding, codetagify,
keywordcase, texcomments (Same as texcl)7 python3 (for the
PythonConsoleLexer), and numbers.

\usemintedstyle now takes an optional argument to specify the style
for a particular language, and works anywhere in the document.

xcolor is only loaded if color isn’t, preventing potential package
clashes.

1.7 (2011/09/17)

Options for float placement added [2011/09/12]

Fixed tabsize option [2011/08/30]

More robust detection of the —~shell-escape option [2011/01/21]
Added the 1abel option [2011/01/04]

Installation instructions added [2010/03/16]

Minimal working example added [2010/03/16]

Added PHP-specific options [2010/03/14]

Removed unportable flag from Unix shell command [2010/02/16]

1.6 (2010/01/31)

29

o Added font-related options [2010/01/27]
o Windows support added [2010/01/27]

o Added command shortcuts [2010/01/22]
 Simpler versioning scheme [2010/01/22]

0.1.5 (2010/01/13)

o Added fillcolor option [2010/01/10]
o Added float support [2010/01/10]

o Fixed firstnumber option [2010/01/10]
o Removed caption option [2010/01/10]

0.0.4 (2010/01/08)
o Initial version [2010/01/08]

9 Implementation

9.1 Required packages

Load required packages. For compatibility reasons, most old functionality should
be supported with the original set of packages. More recently added packages, such
as etoolbox and xstring, should only be used for new features when possible.

\RequirePackage{keyval}
\RequirePackage{kvoptions}
\RequirePackage{fancyvrb}
\RequirePackage{float}
\RequirePackage{ifthen}
\RequirePackage{calc}
\RequirePackage{ifplatform}
\RequirePackage{pdftexcmds}
\RequirePackage{etoolbox}
\RequirePackage{xstring}

11 \RequirePackage{lineno}

© 0O~N OO0 B W N K

[
o

Make sure that either color or xcolor is loaded by the beginning of the document.

12 \AtBeginDocument{$%

13 \Q@ifpackageloaded{color}{}{%

14 \Q@ifpackageloaded{xcolor}{}{\RequirePackage{xcolor}}}$%
15 }

30

9.2 Package options

\minted@float@within Define an option that controls the section numbering of the 1isting float.

16 \DeclareVoidOption{chapter}{\def\minted@float@within{chapter}}
17 \DeclareVoidOption{section}{\def\minted@float@within{section}}

newfloat Define an option to use newfloat rather than float to create a floated 1isting
environment.

18 \DeclareBoolOption{newfloat}

cache Define an option that determines whether highlighted content is cached. We use a
boolean to keep track of its state.

19 \DeclareBoolOption[true] {cache}

\minted@cachedir Set the directory in which cached content is saved. The default uses a minted-
prefix followed by a sanitized \ jobname (spaces and asterisks replaced).

20 \StrSubstitute{\jobname}{ }{_}[\minted@jobname]

21 \StrSubstitute{\minted@jobname}{"}{} [\minted@jobname]

22 \StrSubstitute{\minted@jobname}{*}{-}[\minted@jobname]

23 \newcommand{\minted@cachedir} {\detokenize{_}minted-\minted@jobname}

24 \let\minted@cachedir@windows\minted@cachedir

25 \define@key{minted}{cachedir}{%

26 \@namedef {minted@Rcachedir} {#1}%

27 \StrSubstitute{\minted@Rcachedir}{/}{\@backslashchar} [\mintedRcachedir@windows]}

\minted@outputdir The -output-directory command-line option for IATEX causes problems for
minted, because the minted temporary files are saved in the output directory,
but minted still looks for them in the document root directory. There is no way
to access the value of the command-line option. But it is possible to allow the
output directory to be specified manually as a package option. A trailing slash is
automatically appended to the outputdir, so that it may be directly joined to
cachedir. This may be redundant if the user-supplied value already ends with
a slash, but doubled slashes are ignored under *nix and Windows, so it isn’t a
problem.

28 \let\minted@outputdir\@empty

29 \let\minted@outputdir@windows\@empty

30 \define@key{minted} {outputdir}{%

31 \@namedef {mintedQoutputdir}{#1/}%

32 \StrSubstitute{\minted@outputdir}{/}%

33 {\@backslashchar} [\minted@outputdir@windows] }

31

kpsewhich

langlinenos

draft

final

\minted@input

Define an option that invokes kpsewhich to locate the files that are to be
pygmentized. This isn’t done by default to avoid the extra overhead, but can be

useful with some build tools such as texi2pdf that rely on modifying TEXINPUTS.

34 \DeclareBoolOption{kpsewhich}

Define an option that makes all minted environments and \mint commands for a
given language share cumulative line numbering (if firstnumber=last).

35 \DeclareBoolOption{langlinenos}

Define an option that allows fancyvrb to do all typesetting directly, without using
Pygments. This trades syntax highlighting for speed. Note that in many cases, the

difference in performance between caching and draft mode will be minimal. Also
note that draft settings may be inherited from the document class.

36 \DeclareBoolOption{draft}

Define a final option that is the opposite of draft, since many packages do this.

37 \DeclareComplementaryOption{final}{draft}

Process package options. Proceed with everything that immediately relies upon
them.

38 \ProcessKeyvalOptions=*

39 \ifthenelse{\boolean{minted@newfloat}}{\RequirePackage{newfloat}}{}

40 \ifthenelse{\boolean{minted@cache}}{%

41 \AtEndOfPackage{\ProvideDirectory{\minted@Qoutputdir\minted@cachedir}}}{}

9.3 Input, caching, and temp files

We need a wrapper for \input. In most cases, \input failure will be due to
attempts to use \inputminted with files that don’t exist, but we also want to give
informative error messages when outputdir is needed or incompatible build tools
are used.

42 \newcommand{\minted@input}[1]{%
43 \IfFileExists{#1}%

44 {\input {#1}1}%

45 {\PackageError{minted} {Missing Pygments output; \string\inputminted\space
46 was®"Jprobably given a file that does not exist--otherwise, you may need
47 ~"~Jthe outputdir package option, or may be using an incompatible build
48 tool\ifwindows, "*Jor may be using the kpsewhich option without having

49 PowerShell installed\fi}%

50 {This could be caused by using -output-directory or -—-aux-directory

51 "mJwithout setting minted’s outputdir, or by using a build tool that

32

52 ~~Jchanges paths in ways minted cannot detect\ifwindows, or by using the
53 ~"~Jkpsewhich option without PowerShell\fi.}}%

54 }

\minted@infile Define a default name for files of highlighted content that are brought it. Caching
will redefine this. We start out with the default, non-caching value.

55 \newcommand{\minted@infile} {\jobname.out.pyg}

We need a way to track the cache files that are created, and delete those that
are not in use. This is accomplished by creating a comma-delimited list of cache
files and saving this list to the .aux file so that it may be accessed on subsequent
runs. During subsequent runs, this list is compared against the cache files that
are actually used, and unused files are deleted. Cache file names are created with
MD5 hashes of highlighting settings and file contents, with a .pygtex extension, so
they never contain commas. Thus comma-delimiting the list of file names doesn’t
introduce a potential for errors.

\minted@cachelist This is a list of the current cache files.

56 \newcommand{\minted@cachelist}{}

\minted@addcachefile This adds a file to the list of cache files. It also creates a macro involving the hash,
so that the current usage of the hash can be easily checked by seeing if the macro
exists. The list of cache files must be created with built-in linebreaks, so that when
it is written to the .aux file, it won’t all be on one line and thereby risk buffer
erTors.

57 \newcommand{\minted@addcachefile} [1]{%
58 \expandafter\long\expandafter\gdef\expandafter\minted@cachelist\expandafter{%

59 \minted@cachelist, ~""J%

60 \space\space#l}$%

61 \expandafter\gdef\csname minted@cached@#1l\endcsname{}%
62 }

\minted@savecachelist We need to be able to save the list of cache files to the .aux file, so that we can
reload it on the next run.

63 \newcommand{\minted@savecachelist}{%
64 \ifdefempty{\minted@cachelist}{}{$%

65 \immediate\write\@mainaux{$%

66 \string\gdef\string\minted@oldcachelist\string{$%
67 \minted@cachelist\string}}%

68 }%

69 }

\minted@cleancache Clean up old cache files that are no longer in use.

33

70 \newcommand{\minted@cleancache}{%

71 \ifcsname minted@oldcachelist\endcsname

72 \def\do##1{%

73 \ifthenelse{\equal {##1}{}}{}{%

74 \ifcsname minted@cached@##1\endcsname\else

75 \DeleteFile[\minted@outputdir\minted@cachedir] {##1}%
76 \fi

77 1%

78 1%

79 \expandafter\docsvlist\expandafter{\minted@oldcachelist}$%
8o \else

81 \fi

82 }

At the end of the document, save the list of cache files and clean the cache. If
in draft mode, don’t clean up the cache and save the old cache file list for next
time. This allows draft mode to be switched on and off without requiring that all
highlighted content be regenerated. The saving and cleaning operations may be
called without conditionals, since their definitions already contain all necessary
checks for their correct operation.

83 \ifthenelse{\boolean{minted@draft}}$%
84 {\AtEndDocument {%

85 \ifcsname minted@oldcachelist\endcsname

86 \let\minted@cachelist\minted@Roldcachelist
87 \minted@savecachelist

88 \fi}}%

89 {\AtEndDocument {%

90 \minted@savecachelist

91 \minted@cleancache}}%

9.4 OS interaction

We need system-dependent macros for communicating with the “outside world.”

\DeleteFile Delete a file. Define conditionally in case an equivalent macro has already been
defined.

92 \ifwindows
93 \providecommand{\DeleteFile} [2] []{%

94 \ifthenelse{\equal {#1}{}}%

95 {\IfFileExists{#2}{\immediate\writel8{del "#2"}}{}}%

96 {\IfFileExists{#1/#2}{%

97 \StrSubstitute{#1}{/}{\@backslashchar}[\minted@windir]

98 \immediate\writel8{del "\minted@windir\@backslashchar #2"}}{}}}
99 \else

100 \providecommand{\DeleteFile} [2] []{%

34

\ProvideDirectory

\TestAppExists

101

\ifthenelse{\equal{#1}{}}%

102 {\IfFileExists{#2}{\immediate\writel8{rm "#2"}}{}}%
103 {(\IfFileExists{#1/#2}{\immediate\writel8{rm "#1/#2"}}{}}}
104 \fi

We need to be able to create a directory, if it doesn’t already exist. This is primarily
for storing cached highlighted content.

105 \ifwindows

106
107
108

\newcommand{\ProvideDirectory} [1]{%
\StrSubstitute{#1}{/}{\@backslashchar} [\minted@windir]
\immediate\writel8{if not exist "\minted@windir" mkdir "\minted@windir"}}

109 \else

110
111
112

\newcommand{\ProvideDirectory} [1]{%
\immediate\writel8{mkdir -p "#1"}}
\fi

Determine whether a given application exists.

Usage is a bit roundabout, but has been retained for backward compatibil-
ity. At some point, it may be worth replacing this with something using
\@QRinput" | <command>". That would require MiKTeX users to —-—enable-pipes,
however, which would make things a little more complicated. If Windows XP
compatibility is ever no longer required, the where command could be used instead
of the approach for Windows.

To test whether an application exists, use the following code:

\TestAppExists{appname}
\ifthenelse{\boolean{AppExists}}{app exists}{app doesn't exist}

113
114
115
116

\newboolean{AppExists}

\newread\minted@appexistsfile

\newcommand{\TestAppExists} [1]{
\ifwindows

On Windows, we need to use path expansion and write the result to a file. If the
application doesn’t exist, the file will be empty (except for a newline); otherwise,
it will contain the full path of the application.

117
118
119
120
121
122
123
124
125

\DeleteFile{\ jobname.aex}
\immediate\writel8{for \string”\@percentchar i in (#l.exe #1.bat #1.cmd)
do set >"\jobname.aex" <nul: /p
x=\string”\@percentchar \string~$PATH:i>>"\jobname.aex"}
%$$ <- balance syntax highlighting
\immediate\openin\minted@appexistsfile\jobname.aex
\expandafter\defl\expandafter\@tmp@cr\expandafter{\the\endlinechar}
\endlinechar=-1\relax
\readline\mintedQappexistsfile to \mintedQapppathifexists

35

\minted@optlistcl@g

126 \endlinechar=\Q@tmp@cr

127 \ifthenelse{\equal{\mintedQapppathifexists}{}}
128 {\AppExistsfalse}

129 {\AppExiststrue}

130 \immediate\closein\minted@Rappexistsfile

131 \DeleteFile{\ jobname.aex}

132 \else

On Unix-like systems, we do a straightforward which test and create a file upon
success, whose existence we can then check.

133 \immediate\writel8{which "#1" && touch "\Jjobname.aex"}
134 \IfFileExists{\jobname.aex}

135 {\AppExiststrue

136 \DeleteFile{\jobname.aex}}

137 {\AppExistsfalse}

138 \fi

139 }

9.5 Option processing

Option processing is somewhat involved, because we want to be able to define
options at various levels of hierarchy: individual command/environment, language,
global (document). And once those options are defined, we need to go through
the hierarchy in a defined order of precedence to determine which option to apply.
As if that wasn’t complicated enough, some options need to be sent to Pygments,
some need to be sent to fancyvrb, and some need to be processed within minted
itself.

To begin with, we need macros for storing lists of options that will later be passed
via the command line to Pygments (opt1listcl). These are defined at the global
(cl@g), language (cl@lang), and command or environment (c1@cmd) levels, so
that settings can be specified at various levels of hierarchy. The language macro is
actually a placeholder. The current language will be tracked using \minted@lang.
Each individual language will create a \minted@optlistcl@lang(language) macro.
\minted@optlistcl@lang may be \let to this macro as convenient; otherwise,
the general language macro merely serves as a placeholder.

The global- and language-level lists also have an inline (i) variant. This allows
different settings to be applied in inline settings. An inline variant is not needed at
the command/environment level, since at that level settings would not be present
unless they were supposed to be applied.

140 \newcommand{\mintedQoptlistcl@qg}{}

36

\minted@optlistcl@g@i

141 \newcommand{\mintedRoptlistcl@gRi}{}

\minted@lang

142 \let\minted@lang\@empty

\minted@optlistcl@lang

143 \newcommand{\minted@optlistcl@lang}{}

\minted@optlistcl@lang@i

144 \newcommand{\minted@optlistcl@lang@i}{}

\minted@optlistcl@cmd

145 \newcommand{\minted@optlistcl@cmd}{}

We also need macros for storing lists of options that will later be passed to fancyvrb
(optlistfv). As before, these exist at the global (fveg), language (fv@lang),
and command or environment (fv@cmd) levels. Pygments accepts fancyvrb options,
but in almost all cases, these options may be applied via \fvset rather than via
running Pygments. This is significantly more efficient when caching is turned on,
since it allows formatting changes to be applied without having to re-highlight the
code.

\minted@optlistfv@g

146 \newcommand{\minted@optlistfv@g}{}

\minted@optlistfv@g@i

147 \newcommand{\minted@optlistfv@gQi}{}

\minted@optlistfv@lang

148 \newcommand{\minted@optlistfv@lang}{}

\minted@optlistfv@lang@i

149 \newcommand{\minted@optlistfv@lang@i}{}

\minted@optlistfv@cmd

150 \newcommand{\minted@optlistfv@cmd}{}

37

\minted@configlang We need a way to check whether a language has had all its option list macros

\minted@def@optcl

created. This generally occurs in a context where \minted@lang needs to be set.
So we create a macro that does both at once. If the language list macros do not
exist, we create them globally to simplify future operations.

151 \newcommand{\minted@configlang} [1]{%
152 \def\minted@lang{#1}%

153 \ifcsname minted@optlistcl@lang\minted@lang\endcsname\else

154 \expandafter\gdef\csname minted@optlistcl@lang\minted@lang\endcsname{}%
155 \fi

156 \ifcsname minted@optlistcl@lang\minted@lang @i\endcsname\else

157 \expandafter\gdef\csname minted@optlistcl@lang\minted@lang Q@i\endcsname{}%
158 \fi

159 \ifcsname minted@optlistfv@lang\minted@lang\endcsname\else

160 \expandafter\gdef\csname minted@optlistfv@lang\minted@lang\endcsname{}%
161 \fi

162 \ifcsname mintedRoptlistfv@lang\minted@lang @i\endcsname\else

163 \expandafter\gdef\csname minted@optlistfv@lang\minted@lang Q@i\endcsname{}%
164 \fi

165 }

We need a way to define options in bulk at the global, language, and command
levels. How this is done will depend on the type of option. The keys created are
grouped by level: minted@opt@g, minted@opt@lang, and minted@opt@cmd, plus
inline variants. The language-level key groupings use \minted@lang internally, so
we don’t need to duplicate the internals for different languages. The key groupings
are independent of whether a given option relates to Pygments, fancyvrb, etc.
Organization by level is the only thing that is important here, since keys are
applied in a hierarchical fashion. Key values are stored in macros of the form
\minted@opt@(level): (key), so that they may be retrieved later. In practice, these
key macros will generally not be used directly (hence the colon in the name).
Rather, the hierarchy of macros will be traversed until an existing macro is found.

Define a generic option that will be passed to the command line. Options are given
in a {key}{value} format that is transformed into key=value and then passed to
pygmentize. This allows value to be easily stored in a separate macro for later
access. This is useful, for example, in separately accessing the value of encoding
for performing autogobble.

If a key option is specified without =value, the default is assumed. Options are
automatically created at all levels.

Options are added to the option lists in such a way that they will be detokenized.
This is necessary since they will ultimately be used in \writel8.

166 \newcommand{\minted@addto@optlistcl}[2]{%
167 \expandafter\def\expandafter#l\expandafter{#1%
168 \detokenize{#2}\space}}

38

169 \newcommand{\minted@addto@optlistcl@lang}[2]{%

170 \expandafter\let\expandafter\minted@tmp\csname #1l\endcsname
171 \expandafter\defl\expandafter\minted@tmp\expandafter{\minted@tmp%
172 \detokenize{#2}\space}%

173 \expandafter\let\csname #1l\endcsname\minted@tmp}
174 \newcommand{\minted@defQoptcl} [4][]{%
175 \ifthenelse{\equal {#1}{}}%

176 {\define@Rkey{mintedQRoptRg} {#2}{%

177 \minted@addtoRoptlistcl{\minted@optlistcl@qg} {#3=#4}%
178 \@namedef {mintedQopt@g:#2} {#4}}%

179 \define@key{mintedRoptQ@gRi} {#2}{%

180 \minted@addtoRoptlistcl{\mintedRoptlistcl@gR@i}{#3=#4}%
181 \@namedef {minted@opt@RgRi:#2} {#4}}%

182 \define@key{mintedRoptR@lang} {#2}{%

183 \minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang} {#3=#4}%
184 \@namedef {minted@opt@lang\minted@lang:#2} {#4}}%

185 \define@key{minted@optRlang@i} {#2}{%

186 \minted@addto@Qoptlistcl@lang{$%

187 mintedQoptlistcl@lang\minted@lang @i} {#3=#41%

188 \@namedef{minted@opt@lang\minted@lang Qi:#2}{#4}}%

189 \definelRkey{minted@opt@cmd} {#2}{%

190 \minted@addto@optlistcl{\minted@optlistcl@cmd}{#3=#4}%
101 \@namedef{minted@optQ@cmd: #2}{#4}}}%

192 {\define@key{minted@opt@g} {#2} [#1]{%

193 \minted@addto@optlistcl{\minted@optlistcl@g}{#3=#41}%
104 \@namedef {mintedQoptQg:#2} {#4}}%

195 \define@key{minted@opt@gRi} {#2} [#1]1{%

196 \minted@RaddtoQRoptlistcl{\mintedQoptlistcl@gRi} {#3=#4}%
197 \@namedef{minted@optQ@gRi:#2}{#4}}%

198 \definelkey{minted@opt@lang} {#2} [#1]{%

199 \minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang} {#3=#4}%
200 \@namedef{minted@opt@lang\minted@lang:#2} {#4}}%

201 \define@key{mintedRopt@langRi} {#2} [#1]1{%

202 \minted@addto@optlistcl@lang{$%

203 minted@Qoptlistcl@lang\minted@lang @i} {#3=#41}%

204 \@namedef {minted@opt@lang\minted@lang Qi:#2}{#4}}%

205 \define@Rkey{minted@opt@cmd} {#2} [#1]{%

206 \minted@addtoQoptlistcl{\mintedQoptlistcl@cmd}{#3=#4}%
207 \@namedef {minted@opt@cmd: #2}{#4}}}%

208 }

This covers the typical options that must be passed to Pygments. But some,
particularly escapeinside, need more work. Since their arguments may contain
escaped characters, expansion rather than detokenization is needed. Getting
expansion to work as desired in a \writel8 context requires the redefinition of
some characters

\minted@escchars We need to define versions of common escaped characters that will work correctly

39

\minted@def@optcl@e

under expansion for use in \writel8.

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

\edef\minted@hashchar{\string#}
\edef\minted@dollarchar{\string$}
\edef\mintedQRampchar{\stringé&}
\edef\minted@underscorechar{\string_}
\edef\minted@tildechar{\string~}
\newcommand{\minted@escchars}{%
\let\#\minted@hashchar
\let\%\@percentchar
\let\{\@charlb
\let\}\@charrb
\let\$\minted@dollarchar
\let\&\minted@ampchar
\let_\minted@underscorechar
\let\\\@backslashchar
\let~\minted@tildechar
\let\~\minted@tildechar
} $$ <- highlighting

Now to define options that are expanded.

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

\newcommand{\minted@addtoRoptlistcl@e} [2]{%

\begingroup
\minted@escchars
\xdef\minted@xtmp{#2}%
\endgroup

\expandafter\minted@addto@optlistcl@e@Ril\expandafter{\minted@xtmp} {#1}}
\def\minted@addtoQoptlistcl@e@i#1#2{%

\expandafter\def\expandafter#2\expandafter{#2#1\space}}
\newcommand{\minted@addto@optlistcl@lang@e} [2]{%

\begingroup
\minted@escchars
\xdef\minted@xtmp{#2}%
\endgroup

\expandafter\minted@addto@optlistcl@lang@e@i\expandafter{\minted@xtmp} {#1}}
\def\minted@addtoQoptlistcl@langReQRi#1#2{%
\expandafter\let\expandafter\minted@tmp\csname #2\endcsname
\expandafter\def\expandafter\minted@tmp\expandafter{\minted@tmp#1l\space}$%
\expandafter\let\csname #2\endcsname\minted@tmp}
\newcommand{\minted@defQ@optcl@e} [4] []{%
\ifthenelse{\equal {#1}{}}%
{\defineQRkey{mintedQRoptRg} {#2} (%
\minted@addtoRoptlistcl@e{\mintedQRoptlistcl@g} {#3=#4}%
\@namedef {minted@opt@qg:#2} {#4}1}%
\defineRkey{mintedRopt@gRi} {#2}{%
\minted@addtoQoptlistcl@e{\minted@optlistcl@gRi} {#3=#4}%
\Q@namedef {minted@optRgRi:#2} {#4}}%
\define@Rkey{minted@opt@lang} {#2}{%
\minted@addto@optlistcl@lang@e{minted@optlistcl@lang\minted@lang} {#3=#41}%

40

254 \@namedef{minted@opt@lang\minted@lang:#2} {#4}}%

255 \define@key{minted@opt@lang@i} {#2}{%

256 \minted@addto@optlistcl@lang@e({$%

257 minted@optlistcl@lang\minted@lang @i} {#3=#4}%

258 \@namedef{minted@opt@lang\minted@lang Qi:#2}{#4}}%

259 \definelRkey{minted@opt@cmd} {#2}{%

260 \minted@addto@optlistcl@e{\minted@optlistcl@cmd} {#3=#4}%
261 \@namedef {minted@opt@cmd: #2}{#4}}}%

262 {\define@key{minted@opt@g} {#2} [#1]{%

263 \minted@addto@optlistcl@e{\minted@optlistcl@g}{#3=#4}%
264 \@namedef {mintedQoptQRg:#2} {#4}}%

265 \definelRkey{minted@opt@gRi} {#2} [#1]1{%

266 \minted@addto@optlistcl@e{\minted@optlistcl@gRi} {#3=#41}%
267 \@namedef{mintedQoptQ@gRi:#2}{#4}}%

268 \define@key{minted@opt@lang} {#2} [#1]1{%

269 \minted@addtoRoptlistcl@lang@e{minted@optlistcl@lang\minted@lang} {#3=#41}1%
270 \@namedef{minted@opt@lang\minted@lang:#2} {#4}}%

271 \define@key{minted@opt@lang@i} {#2} [#1]1{%

272 \minted@addtoQRoptlistcl@langle{%

273 minted@Qoptlistcl@lang\minted@lang @i} {#3=#41}%

274 \@namedef {minted@opt@lang\minted@lang Qi:#2}{#4}}%

275 \define@Rkey{minted@opt@cmd} {#2} [#1]{%

276 \minted@addtoQoptlistcl@e{\minted@optlistcl@cmd} {#3=#4}%
277 \@namedef{mintedQopt@cmd: #2} {#4}}}%

278 }

\minted@def@optcl@style Define an option for styles. These are defined independently because styles need
slightly different syntax. Also, it is conventient to create style macros when styles
are set. Otherwise, it would be necessary to check for the existence of style macros
at the beginning of every command or environment.

279 \newcommand{\minted@def@optcl@style}{$%
280 \define@key{minted@opt@g} {style}{%

281 \minted@addtoRoptlistcl{\minted@optlistcl@g}%

282 {-P style=##1 -P commandprefix=PYG##1}%

283 \minted@checkstyle{##1}%

284 \@namedef {mintedQRopt@g:style} {##1}}%

285 \define@key{minted@optRgR@i} {style}{%

286 \minted@addto@optlistcl{\minted@optlistcl@g@i}$%

287 {-P style=##1 -P commandprefix=PYG##1}%

288 \minted@checkstyle{##1}%

289 \@namedef {minted@opt@g@i:style} {##1}}%

290 \define@key{minted@opt@lang}{style}{%

291 \minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang}%
292 {-P style=##1 -P commandprefix=PYG##1}%

293 \minted@checkstyle{##1}%

204 \@namedef{minted@opt@lang\minted@lang:style} {##1}}%

295 \define@key{minted@opt@lang@i}{style}{%

2096 \minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang @i}%

41

297 {-P style=##1 -P commandprefix=PYG##1}%

298 \minted@checkstyle{##1}%

299 \@namedef{minted@opt@lang\minted@lang @i:style} {##1}}%
300 \define@key{minted@opt@cmd}{style}{$%

301 \minted@addto@optlistcl{\minted@optlistcl@cmd}%

302 {-P style=##1 -P commandprefix=PYG##1}%

303 \minted@checkstyle{##1}%

304 \@namedef {mintedQopt@cmd:style} {##1}}%

305 }

\minted@checkstyle Make sure that style macros exist.

We have to do some tricks with \endlinechar to prevent \input from inserting
unwanted whitespace. That is primarily for inline commands, where it would
introduce a line break. There is also the very unorthodox \let\def\gdef to make
sure that macros are defined globally. And we patch the single quote macro from
Pygments 1.6+ if the upquote package is in use. The conditionals for the patch
definition are borrowed from upquote. If we are in the preamble, we check for
patching twice, once immediately and once at the beginning of the document, so
that upquote will be detected even if it is loaded after minted.

306 \newcommand{\minted@patch@Zsqg}[1]{%
307 \ifx\upquote@Rcmtt\mintedRundefined\else

308 \ifx\encodingdefault\upquote@OTone

309 \ifx\ttdefault\upquote@cmtt

310 \expandafter\ifdefstring\expandafter{\csname PYG#1Zsg\endcsname}{\char*\’}%
311 {\expandafter\gdef\csname PYG#1lZsg\endcsname{\charl3 }}{}%

312 \else

313 \expandafter\ifdefstring\expandafter{\csname PYG#1lZsg\endcsname}{\char*\’}%
314 {\expandafter\gdef\csname PYG#1lZsg\endcsname{\textquotesingle}}{}$%

315 \fi

316 \else

317 \expandafter\ifdefstring\expandafter{\csname PYG#1lZsg\endcsname}{\char*\’}%
318 {\expandafter\gdef\csname PYG#1lZsg\endcsname{\textquotesingle}}{}%

319 \fi

320 \fi

321 }

322 \newcommand{\minted@checkstyle}[1]{%

323 \ifcsname minted@styleloaded@#1\endcsname\else

324 \expandafter\gdef\csname minted@styleloaded@#l\endcsname{}%

325 \ifthenelse{\boolean{minted@Rcache}}$%

326 {\IfFileExists{\minted@outputdir\minted@cachedir/#1.pygstyle}{}{%

327 \ifwindows

328 \immediate\writel8{\MintedPygmentize\space -S #1 -f latex

329 -P commandprefix=PYG#1

330 > "\mintedQoutputdir@windows\minted@cachedir@windows\@backslashchar#l.p
331 \else

332 \immediate\writel8{\MintedPygmentize\space -S #1 —-f latex

333 —-P commandprefix=PYG#1

42

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362 }

> "\minted@outputdir\minted@cachedir/#1.pygstyle"}%
\fi
1%
\begingroup
\let\def\gdef
\endlinechar=-1\relax
\minted@input {\minted@outputdir\minted@cachedir/#1.pygstyle}%
\endgroup
\minted@addcachefile{#1l.pygstyle}}%
{\ifwindows
\immediate\writel8{\MintedPygmentize\space -S #1 -f latex
-P commandprefix=PYG#1 > "\minted@outputdir@windows\ jobname.out.pyg"}%
\else
\immediate\writel8{\MintedPygmentize\space -S #1 -f latex
-P commandprefix=PYG#1 > "\minted@outputdir\jobname.out.pyg"}%
\fi
\begingroup
\let\def\gdef
\endlinechar=-1\relax
\minted@input {\minted@outputdir\jobname.out.pyg}%
\endgroup}$%
\ifx\@onlypreamble\@notprerr
\minted@patch@Zsq{#1}%
\else
\minted@patch@Zsqg{#1}%
\AtBeginDocument {\minted@patchQZsqg{#1}}%
\fi
\fi

363 \ifthenelse{\boolean{minted@draft}}{\renewcommand{\minted@checkstyle} [1]1{}}{}

\minted@def@optcl@switch Define a switch or boolean option that is passed to Pygments, which is true when
no value is specified.

364 \newcommand{\minted@def@optcl@switch} [2]{%

305
366
367
368
369
370
371
372
373
374
375
376
377
378
379

\define@booleankey{minted@opt@g} {#1}%
{\minted@addto@optlistcl{\minted@optlistcl@qg}{#2=True}$%
\@namedef {mintedQoptRg:#1}{true}}
{\minted@addto@optlistcl{\minted@optlistcl@qg} {#2=False}%
\@namedef{minted@opt@g:#1}{false}}
\define@booleankey{mintedRoptQ@gRi} {#1}%
{\minted@addto@optlistcl{\minted@optlistcl@RgR@i}{#2=True}%
\@namedef {minted@optQ@g@i:#1}{true}}
{\minted@addto@optlistcl{\minted@optlistcl@g@i}{#2=False}$%
\@namedef{minted@opt@g@i:#1}{false}}
\define@booleankey{minted@opt@lang}{#1}%
{\minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang} {#2=True}%
\@namedef{minted@opt@lang\minted@lang:#1}{true}}
{\minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang} {#2=False}%
\@namedef {minted@opt@lang\minted@lang:#1}{false}}

43

\minted@def@optfv

380
381
382
383
384
385
386
387
388
389
390

\define@booleankey{minted@opt@lang@i} {#1}%
{\minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang Qi}{#2=True}$%
\@namedef {minted@opt@lang\minted@lang Qi:#1}{true}}
{\minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang @i} {#2=False}$%
\@namedef {minted@opt@lang\minted@lang Qi:#1}{false}}
\define@booleankey{minted@opt@cmd} {#1}%
{\minted@addto@optlistcl{\minted@optlistcl@cmd} {#2=True}%
\@namedef {mintedRopt@cmd:#1} {true}}
{\minted@addto@optlistcl{\minted@optlistcl@cmd} {#2=False}$%
\@namedef {mintedQ@opt@cmd:#1}{false}}
}

Now that all the machinery for Pygments options is in place, we can move on to
fancyvrb options.

Define fancyvrb options.

301
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

\newcommand{\minted@defQoptfv} [1]{%
\define@key{minted@opt@g} {#1}{%
\expandafter\defl\expandafter\minted@optlistfv@g\expandafter{$%
\minted@optlistfv@g#l=##1,1%
\@namedef {minted@opt@qg:#1} {##1}}
\define@key{minted@Ropt@gRi} {#1}{%
\expandafter\def\expandafter\mintedRoptlistfv@g@i\expandafter{%
\minted@optlistfv@gRi#l=##1,1}%
\@namedef {mintedRopt@gR@i:#1} {##1}}
\define@Rkey{mintedRopt@lang} {#1}{%
\expandafter\let\expandafter\minted@tmp$%
\csname minted@optlistfv@lang\minted@lang\endcsname
\expandafter\def\expandafter\minted@tmp\expandafter{%
\minted@tmp#l=##1,}%
\expandafter\let\csname minted@optlistfv@lang\minted@lang\endcsname%
\minted@tmp
\@namedef{minted@opt@lang\minted@lang:#1} {##1}}
\define@key{minted@opt@lang@i} {#1}{%
\expandafter\let\expandafter\minted@tmp%
\csname minted@optlistfv@lang\minted@lang @il\endcsname
\expandafter\def\expandafter\minted@tmp\expandafter{%
\minted@tmp#1=##1, 1%
\expandafter\let\csname minted@optlistfv@lang\minted@lang @i\endcsname%
\minted@tmp
\@namedef {minted@opt@lang\minted@lang Qi:#1}{##1}}
\define@key{minted@opt@cmd} {#1}{%
\expandafter\def\expandafter\mintedRoptlistfv@cmd\expandafter{%
\minted@optlistfv@cmd#l=##1,1}%
\@namedef {minted@opt@cmd:#1} {##1}}

44

\minted@def@optfv@switch Define fancyvrb boolean options.

421 \newcommand{\minted@defQoptfv@switch} [1]{%
422 \define@Rbooleankey{minted@opt@qg} {#1}%

423 {\expandafter\def\expandafter\minted@optlistfv@g\expandafter{$%
424 \minted@optlistfv@g#l=true, }%

425 \@namedef{mintedQoptQg:#1}{true}}%

426 {\expandafter\defl\expandafter\minted@optlistfv@g\expandafter{$%
427 \minted@optlistfv@g#l=false, }%

428 \@namedef {mintedQoptQg:#1}{false}}%

429 \define@booleankey{minted@opt@gR@i} {#1}%

430 {\expandafter\defl\expandafter\minted@optlistfv@g@i\expandafter{$%
431 \mintedRoptlistfv@gRi#l=true, }%

432 \@namedef{mintedQopt@g@i:#1}{true}}%

433 {\expandafter\def\expandafter\minted@optlistfv@g@i\expandafter{%
434 \minted@optlistfv@gRi#l=false, }%

435 \@namedef{mintedQopt@g@i:#1}{false}}%

436 \define@booleankey{minted@opt@lang}{#1}%

437 {\expandafter\let\expandafter\minted@tmp%

438 \csname minted@optlistfv@lang\minted@lang\endcsname

439 \expandafter\def\expandafter\minted@tmp\expandafter{%

440 \minted@tmp#l=true, }%

441 \expandafter\let\csname minted@optlistfv@lang\minted@lang\endcsname%
442 \minted@tmp

443 \@namedef{minted@opt@lang\minted@lang:#1}{true}}%

444 {\expandafter\let\expandafter\minted@tmp%

445 \csname minted@optlistfv@lang\minted@lang\endcsname

446 \expandafter\def\expandafter\minted@tmp\expandafter{%

447 \minted@tmp#l=false, }%

448 \expandafter\let\csname minted@optlistfv@lang\minted@lang\endcsname%
449 \minted@tmp

450 \@namedef{minted@opt@lang\minted@lang:#1}{false}}%

451 \define@booleankey{minted@Ropt@lang@i} {#1}%

452 {\expandafter\let\expandafter\minted@tmp%

453 \csname minted@optlistfv@lang\minted@lang @i\endcsname

454 \expandafter\def\expandafter\mintedQ@tmp\expandafter{%

455 \minted@tmp#l=true, }%

456 \expandafter\let\csname minted@optlistfv@lang\minted@lang @i\endcsname%
457 \minted@tmp

458 \@namedef{minted@opt@lang\minted@lang Qi:#1}{true}}%

459 {\expandafter\let\expandafter\minted@tmp%

460 \csname mintedRoptlistfv@lang\minted@lang @i\endcsname

461 \expandafter\def\expandafter\minted@tmp\expandafter{%

462 \minted@tmp#l=false, }%

463 \expandafter\let\csname minted@optlistfv@lang\minted@lang QRi\endcsname%
464 \minted@tmp

465 \@namedef{minted@opt@lang\minted@lang Qi:#1}{false}}%

466 \define@booleankey{minted@opt@cmd} {#1}%

467 {\expandafter\def\expandafter\minted@optlistfv@cmd\expandafter{%
468 \minted@optlistfv@cmd#l=true, }%

45

minted@isinline

\minted@fvset

\minted@get@opt

469 \@namedef {minted@opt@cmd: #1}{true}}%

470 {\expandafter\def\expandafter\minted@optlistfv@cmd\expandafter{$%
471 \minted@optlistfv@cmd#l=false, }%

472 \@namedef {mintedRopt@cmd:#1}{false}}%

473}

In resolving value precedence when actually using values, we need a way to
determine whether we are in an inline context. This is accomplished via a boolean
that is set at the beginning of inline commands.

474 \newboolean{minted@isinline}

We will need a way to actually use the lists of stored fancyvrb options later on.

475 \newcommand{\minted@fvset}{$%

476 \expandafter\fvset\expandafter{\minted@optlistfv@g}%

477 \expandafter\let\expandafter\minted@tmp$%

478 \csname minted@optlistfv@lang\minted@lang\endcsname
479 \expandafter\fvset\expandafter{\minted@tmp}$%

480 \ifthenelse{\boolean{minted@Risinline}}$%

481 {\expandafter\fvset\expandafter{\minted@optlistfv@gRi}%
482 \expandafter\let\expandafter\minted@tmp%

483 \csname mintedRoptlistfv@lang\minted@lang @i\endcsname
484 \expandafter\fvset\expandafter{\minted@tmp}}%

485 {1%

486 \expandafter\fvset\expandafter{\mintedQoptlistfv@cmd}$%
487 '}

We need a way to define minted-specific options at multiple levels of hierarchy, as
well as a way to retrieve these options. As with previous types of options, values
are stored in macros of the form \minted@opt@(level): (key), since they are not
meant to be accessed directly.

The order of precedence is cmd, lang@i, g@i, lang, g. A value specified at the
command or environment level should override other settings. In its absence, a
value specified for an inline command should override other settings, if we are
indeed in an inline context. Otherwise, language settings take precedence over
global settings.

Before actually creating the option-definition macro, we need a few helper macros.

We need a way to traverse the hierarchy of values for a given key and return the
current value that has precedence. In doing this, we need to specify a default value
to use if no value is found. When working with minted-specific values, there should
generally be a default value; in those cases, an empty default may be supplied. But
the macro should also work with Pygments settings, which are stored in macros of
the same form and will sometimes need to be accessed (for example, encoding).
In the Pygments case, there may very well be no default values on the KTEX side,

46

because we are falling back on Pygments’ own built-in defaults. There is no need
to duplicate those when very few Pygments values are ever needed; it is simpler to
specify the default fallback when accessing the macro value.

From a programming perspective, the default argument value needs to be manda-
tory, so that \minted@get@opt can be fully expandable. This significantly simpli-
fies accessing options.

488 \def\minted@getQopt#1#2{%

489 \ifcsname minted@opt@cmd:#1\endcsname

490 \csname minted@opt@cmd:#1\endcsname

491 \else

492 \ifminted@isinline

493 \ifcsname minted@opt@lang\minted@lang Qi:#1\endcsname
494 \csname minted@opt@lang\minted@lang @i:#1\endcsname
405 \else

496 \ifcsname minted@opt@g@i:#1l\endcsname

497 \csname minted@opt@g@i:#1\endcsname

408 \else

499 \ifcsname minted@opt@lang\minted@lang: #1\endcsname
500 \csname minted@opt@lang\minted@lang:#1\endcsname
501 \else

502 \ifcsname minted@opt@g:#1\endcsname

503 \csname minted@opt@g:#1\endcsname

504 \else

505 #2%

506 \fi

507 \fi

508 \fi

509 \fi

510 \else

511 \ifcsname minted@opt@lang\minted@lang:#1\endcsname
512 \csname mintedRopt@lang\minted@lang:#1\endcsname
513 \else

514 \ifcsname minted@opt@g:#1\endcsname

515 \csname mintedRopt@g:#1\endcsname

516 \else

517 #2%

518 \fi

519 \fi

520 \fi

521 \fi

522 }%

\minted@def@opt Finally, on to the actual option definitions for minted-specific options.
Usage: \minted@def@opt [(initial global value)] { (key name)}

{%

523 \newcommand{\minted@def@opt} [2] []
524 \define@key{minted@opt@g} {#2}{%

47

525
526
527
528
529
530
531
532
533
534 }

\@namedef {minted@opt@qg:#2} {##1}}
\define@key{minted@Ropt@gRi} {#2}{%

\@namedef{minted@opt@g@i:#2} {##1}}
\define@key{minted@opt@lang} {#2}{%

\@namedef {minted@opt@lang\minted@lang:#2} {##1}}
\define@key{minted@opt@lang@i} {#2}{$%

\@namedef {minted@opt@lang\minted@lang Q@i:#2}{##1}}
\define@key{minted@opt@cmd} {#2}{%

\@namedef{minted@opt@cmd:#2} {##1}}

\minted@def@opt@switch And we need a switch version.

It would be possible to create a special version of \minted@get@opt to work with
these, but that would be redundant. During the key processing, any values other
than true and false are filtered out. So when using \minted@get@opt later, we
know that that part has already been taken care of, and we can just use something
like \ifthenelse{\equal{\minted@RgetR@opt {<opt>}{<default>}}{true}}{..
Of course, there is the possibility that a default value has not been set, but
\minted@def@opt@switch sets a global default of false to avoid this. And
as usual, Pygments values shouldn’t be used without considering whether

e

\minted@getR@opt needs a fallback value.

535 \newcommand{\minted@def@opt@switch} [2] [false]{%

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552 }

\define@booleankey{minted@opt@g} {#2}%

{\@namedef {minted@optRg:#2}{true}}%

{\@namedef {mintedRopt@g:#2}{false}}
\define@booleankey{minted@Ropt@gRi} {#2}%

{\@namedef {mintedQ@opt@gRi:#2} {true}}%

{\@namedef {minted@opt@gR@i:#2}{false}}
\define@booleankey{minted@opt@lang} {#2}%

{\@namedef {minted@opt@lang\minted@lang:#2}{true}}%

{\@namedef {minted@opt@lang\minted@lang:#2}{false}}
\define@booleankey{minted@Ropt@langQi} {#2}%

{\@namedef {minted@opt@lang\minted@lang Q@i:#2}{true}}$%

{\@namedef {minted@opt@lang\minted@lang Qi:#2}{false}}
\define@booleankey{minted@Ropt@cmd} {#2}%

{\@namedef {minted@opt@cmd:#2} {true}}%

{\@namedef {minted@opt@cmd: #2}{false}}%
\@namedef{mintedQoptQRg:#2} {#1}%

Actual option definitions. Some of these must be defined conditionally depending
on whether we are in draft mode; in draft mode, we need to emulate Pygments
functionality with IATEX, particularly with fancyvrb, when possible. For example,
gobbling must be performed by Pygments when draft is off, but when draft is
on, fancyvrb can perform gobbling.

48

Lexers.

553
554
555
556
557
558
559
560
561
562

\minted@defRoptcl{encoding}{-P encoding} {#1}
\minted@def@optcl{outencoding}{-P outencoding} {#1}
\minted@def@optcl@e{escapeinside}{-P "escapeinside}{#1"}
\minted@def@optcl@switch{stripnl}{-P stripnl}
\minted@def@optcl@switch{stripall}{-P stripall}

% Python console

\minted@def@optcl@switch{python3}{-P python3}

% PHP

\minted@def@optcl@switch{funcnamehighlighting}{-P funcnamehighlighting}
\minted@def@optcl@switch{startinline}{-P startinline}

Filters.

563
564
565
566
567

\ifthenelse{\boolean{minted@draft}}%
{\minted@def@optfv{gobble}}%
{\minted@def@optcl{gobble}{-F gobble:n}{#1}}

\minted@def@optcl{codetagify}{-F codetagify:codetags}{#1}

\minted@def@optcl{keywordcase}{-F keywordcase:case}{#1}

ETEX formatter. Since fancyvrb currently doesn’t have a 1inenos key, we create
one (but only after checking to make sure that another package hasn’t already
patched this).

568
569
570
571
572
573
574
575
576

\minted@def@optcl@switch{texcl}{-P texcomments}
\minted@def@optcl@switch{texcomments}{-P texcomments}
\minted@def@optcl@switch{mathescape}{-P mathescape}
\ifcsname KV@FV@linenos\endcsname\else
\define@booleankey{FV}{linenos}%

{\@nameuse {FVENumbers@left}} {\Gnameuse{FVENumbers@none}}
\fi
\minted@def@optfv@switch{linenos}
\minted@defloptcl@style

fancyvrb options.

577
578
579
580
581
582
583
584
585
586
587
588
589
590

\minted@def@optfv{frame}
\minted@def@optfv{framesep}
\minted@def@optfv{framerule}
\minted@def@optfv{rulecolor}
\minted@def@optfv{numbersep}
\minted@def@optfv{numbers}
\minted@def@optfv{firstnumber}
\minted@def@optfv{stepnumber}
\minted@def@optfv{firstline}
\minted@def@optfv{lastline}
\minted@def@optfv{baselinestretch}
\minted@def@optfv{xleftmargin}
\minted@def@optfv{xrightmargin}
\minted@def@optfv{fillcolor}

49

501 \minted@def@optfv{tabsize}

592 \minted@def@optfv{fontfamily}

503 \minted@def@optfv{fontsize}

504 \minted@defQoptfv{fontshape}

595 \minted@def@optfv{fontseries}

506 \minted@def@optfv{formatcom}

597 \minted@defQoptfv{label}

598 \minted@defRoptfv@switch{numberblanklines}
509 \minted@def@optfv@switch{showspaces}

600 \minted@def@optfv@switch{resetmargins}
601 \mintedQ@defRoptfv@switch{samepage}

602 \minted@def@optfv@switch{showtabs}

603 \minted@def@optfv@switch{obeytabs}

604 % The following are patches currently added onto fancyvrb
605 \minted@def@optfv@switch{breaklines}

606 \minted@def@optfv{breakindent}

607 \mintedQdefQoptfv@switch{breakautoindent}
608 \minted@def@optfv{breaksymbol}

609 \minted@def@optfv{breaksymbolsep}

610 \mintedQ@defRoptfv{breaksymbolindent}

611 \minted@def@optfv{breaksymbolleft}

612 \mintedQRdefQRoptfv{breaksymbolsepleft}

613 \mintedQ@defQoptfv{breaksymbolindentleft}
614 \minted@def@optfv{breaksymbolright}

615 \mintedQ@defRoptfv{breaksymbolsepright}
616 \mintedQ@defQoptfv{breaksymbolindentright}

Finally, options specific to minted.

An option to force breaklines to work at the Pygments token level, rather than
at the character level. This is useful in keeping things like strings from being split
between lines.

617 \minted@def@opt@switch{breakbytoken}

bgcolor: The old bgcolor is retained for compatibility. A dedicated framing
package will often be preferable.

618 \minted@defQopt{bgcolor}

Autogobble. We create an option that governs when Python’s textwrap.dedent ()
is used to autogobble code.

619 \minted@def@opt@switch{autogobble}
\minted@encoding When working with encoding, we will need access to the current encoding. That

may be done via \minted@getQopt, but it is more convenient to go ahead and
define a shortcut with an appropriate default

620 \newcommand{\minted@encoding}{\minted@getRopt{encoding}{UTF8}}

50

FV@BreakLines

\FV@BreakIndent

FV@BreakAutoIndent

9.6 Additions to fancyvrb

The following code adds automatic line breaking functionality to fancyvrb’s
Verbatim environment. The code is intentionally written as an extension to
fancyvrb, rather than as part of minted. Once the code has received more use and
been further refined, it probably should be separated out into its own package as
an extension of fancyvrb.

The line breaking defined here is used in minted’s minted environment and \mint
command, which use Verbatim internally. The \mintinline command implements
line wrapping using a slightly different system (essentially, Bverbatim, with the
\vbox \let to \relax). This is implemented separately within minted, rather than
as an extension to fancyvrb, for simplicity and because Bverbatim wouldn’t be
itself without the box. Likewise, breaklines is not applied to fancyvrb’s \Verb
or short verb, since their implementation is different from that of \mintinline.
Ideally, an extension of fancyvrb would add line breaking to these, or (probable
better) provide equivalent commands that support breaks.

All of the additions to fancyvrb should be defined conditionally. If an
extension to fancyvrb (such as that proposed above) is loaded before minted, and if
this extension provides breaklines, then we don’t want to overwrite that definition
and create a conflict. We assume that any extension of fancyvrb would use the
keyval package, since that is what fancyvrb currently uses, and test for the existence
of a fancyrvb keyval key breaklines.

621 \ifcsname KV@FVQ@breaklines\endcsnamelelse

Begin by defining keys, with associated macros, bools, and dimens.

622
623
624
625
626
627
628

629
630
631

632
633

\newboolean{FV@BreakLines}
\let\FV@ListProcessLine@Orig\FV@ListProcessLine
\define@booleankey{FV}{breaklines}%
{\FV@BreakLinestrue
\let\FVQ@ListProcessLine\FV@RListProcessLine@Break}$%
{\FV@BreakLinesfalse
\let\FV@ListProcessLine\FV@ListProcessLine@Orig}

\newdimen\FV@BreakIndent
\define@key{FV}{breakindent} {\FV@BreakIndent=#1}
\fvset {breakindent=0pt}

\newboolean{FV@BreakAutoIndent}
\define@booleankey{FV}{breakautoindent}$%

ol

\FancyVerbBreakSymbolLeft

\FancyVerbBreakSymbolRight

\FV@BreakSymbolSepLeft

\FV@BreakSymbolSepRight

\FV@BreakSymbolIndentLeft

\FV@BreakSymbolIndentRight

634 {\FV@BreakAutoIndenttrue} {\FV@BreakAutoIndentfalse}
635 \fvset{breakautoindent=true}

The left-hand symbol indicating a break. Since breaking is done in such a way
that a left-hand symbol will often be desired while a right-hand symbol may not
be, a shorthand option breaksymbol is supplied. This shorthand convention is
continued with other options applying to the left-hand symbol.

636 \define@key{FV}{breaksymbolleft}{\def\FancyVerbBreakSymbolLeft {#1}}
637 \defineQRkey{FV}{breaksymbol}{\fvset{breaksymbolleft=#1}}
638 \fvset{breaksymbolleft=\tiny\ensuremath{\hookrightarrow}}

The right-hand symbol indicating a break.

639 \defineQRkey{FV}{breaksymbolright}{\def\FancyVerbBreakSymbolRight{#1}}
640 \fvset{breaksymbolright={}}

Separation of break symbols from the text.

641 \newdimen\FV@BreakSymbolSepLeft

642 \define@key{FV}{breaksymbolsepleft}{\FV@BreakSymbolSepLeft=4#1}
643 \defineQRkey{FV}{breaksymbolsep}{\fvset{breaksymbolsepleft=#1}}
644 \fvset{breaksymbolsepleft=lem}

645 \newdimen\FV@BreakSymbolSepRight
646 \define@key{FV}{breaksymbolsepright} {\FV@BreakSymbolSepRight=#1}
647 \fvset{breaksymbolsepright=lem}

Additional indentation to make room for the break symbols.

648 \newdimen\FV@BreakSymbolIndentLeft

649 \settowidth{\FV@BreakSymbolIndentLeft}{\ttfamily xxxx}

650 \define@key{FV}{breaksymbolindentleft}{\FV@BreakSymbolIndentLeft=#1}
651 \define@key{FV}{breaksymbolindent}{\fvset{breaksymbolindentleft=#1}}

652 \newdimen\FV@BreakSymbolIndentRight
653 \settowidth{\FV@BreakSymbolIndentRight}{\ttfamily xxxx}
654 \defineQRkey{FV}{breaksymbolindentright} {\FV@BreakSymbolIndentRight=4#1}

52

We need macros that contain the logic for typesetting the break symbols. By default,
the symbol macros contain everything regarding the symbol and its typesetting,
while these macros contain pure logic. The symbols should be wrapped in braces
so that formatting commands (for example, \tiny) don’t escape.

~yVerbFormatBreakSymbolLeft

655 \newcommand{\FancyVerbFormatBreakSymbolLeft} [1]{%
656 \ifnum\value{linenumber}=1\relax\else{#1}\fi}

FancyVerbLineBreakLast We need a counter for keeping track of the internal line number for the last segment
of a broken line, so that we can avoid putting a right continuation symbol there.

657 \newcounter{FancyVerbLineBreakLast}

\FV@SetLineBreakLast

658 \newcommand{\FV@SetLineBreakLast}{%
659 \setcounter{FancyVerbLineBreakLast}{\value{linenumber}}}

yVerbFormatBreakSymbolRight

660 \newcommand{\FancyVerbFormatBreakSymbolRight}[1]{%
661 \ifnum\value{linenumber}=\value{FancyVerbLineBreakLast}\relax\else{#1}\fi}

Define helper macros.

\FV@LineBox A box for saving a line of code, so that its dimensions may be determined and thus
we may figure out if it needs line breaking.

662 \newsavebox{\FV@LineBox}
\FV@LineIndentBox A box for saving the indentation of code, so that its dimensions may be determined
for use in autoindentation of continuation lines.
663 \newsavebox{\FV@LineIndentBox}
\FV@LineIndentChars A macro for storing the indentation characters, if any, of a given line. For use in
autoindentation of continuation lines
664 \let\FVQ@LineIndentChars\@empty
\FV@GetLineIndent A macro that takes a line and determines the indentation, storing the indentation
chars in \FV@LineIndentChars.

665 \def\FV@GetNextChar{\let\FV@NextChar=}
666 \def\FV@CleanRemainingChars#1\FV@Undefined{}

53

\FV@makeLineNumber

\FV@SaveLineBox

667 \def\FV@GetLineIndent{\afterassignment\FV@CheckIndentChar\FV@RGetNextChar}
668 \def\FV@CheckIndentChar{%
669 \1fx\FV@NextChar\FvV@Undefined

670 \let\FV@Next=\relax

671 \else

672 \expandafter\1ifx\FV@NextChar\FV@Space

673 \gladdto@macro{\FV@LineIndentChars}{\FV@Space}%
674 \let\FV@Next=\FV@GetLineIndent

675 \else

676 \expandafter\ifx\FV@NextChar\FV@Tab

677 \gRaddto@macro{\FV@RLineIndentChars} {\FV@Tab}%
678 \let \FV@Next=\FV@GetLineIndent

679 \else

680 \let\FV@Next=\FV@CleanRemainingChars

681 \fi

682 \fi

683 \fi

684 \FV@Next

685 }

And finally the really important things.

We need a version of lineno’s \makeLineNumber that is adapted for our purposes.
This is adapted directly from the example \makeLineNumber that is given in
the lineno documentation under the discussion of internal line numbers. The
\FV@SetLineBreakLast is needed to determine the internal line number of the
last segment of the broken line, so that we can disable the right-hand break symbol
on this segment. When a right-hand break symbol is in use, a line of code will
be processed twice: once to determine the last internal line number, and once to
use this information only to insert right-hand break symbols on the appropriate
lines. During the second run, \Fv@SetLineBreakLast is disabled by \letting it
to \relax.

686 \def\FV@makeLineNumber{%

687 \hss

688 \FancyVerbFormatBreakSymbolLeft {\FancyVerbBreakSymbolLeft}%
689 \hbox to \FV@BreakSymbolSepLeft{\hfill}%

690 \rlap{\hskip\linewidth

691 \hbox to \FV@BreakSymbolSepRight{\hfill}$%

692 \FancyVerbFormatBreakSymbolRight { \FancyVerbBreakSymbolRight}$%
693 \FV@SetLineBreakLast

694 }%

695 }

This is the macro that does most of the work. This was inspired by Marco Daniel’s
code at http://tex.stackexchange.com/a/112573/10742

This macro is invoked when a line is too long. We modify the \1linewidth
to take into account breakindent and breakautoindent, and insert \hboxes

54

http://tex.stackexchange.com/a/112573/10742

to fill the empty space. We also account for breaksymbolindentleft and
breaksymbolindentright, but only when there are actually break symbols.
The code is placed in a \parbox. Break symbols are inserted via lineno’s
internallinenumbers+, which does internal line numbers without continuity
between environments (the linenumber counter is automatically reset). The be-
ginning of the code has negative \hspace inserted to pull it out to the correct
starting position. \struts are used to maintain correct line heights. The \parbox
is followed by an empty \hbox that takes up the space needed for a right-hand
break symbol (if any).

696 \def\FV@SaveLineBox#1{%
697 \savebox {\FV@RLineBox}{%

698 \advance\linewidth by -\FV@BreakIndent

699 \hbox to \FV@BreakIndent{\hfill}$%

700 \ifthenelse{\boolean{FV@BreakAutoIndent}}$%

701 {\1let\FV@LineIndentChars\Qempty

702 \FV@GetLineIndent#1\FV@Undefined

703 \savebox{\FV@LineIndentBox} {\FV@LineIndentChars}$%
704 \hbox to \wd\FV@LineIndentBox{\hfill}%

705 \advance\linewidth by -\wd\FV@LineIndentBox}%
706 {1%

707 \ifdefempty{\FancyVerbBreakSymbolLeft}{}%

708 {\hbox to \FV@BreakSymbolIndentLeft{\hfill}$%
709 \advance\linewidth by -\FV@BreakSymbolIndentLeft}%
710 \ifdefempty{\FancyVerbBreakSymbolRight}{}%

711 {\advance\linewidth by -\FV@BreakSymbolIndentRight}%
712 \parbox[t] {\linewidth}{%

713 \raggedright

714 \leftlinenumbers=

715 \begin{internallinenumbersx}%

716 \let\makeLineNumber\FV@makeLineNumber

717 \noindent\hspacex{-\FV@BreakIndent}%

718 \ifdefempty{\FancyVerbBreakSymbolLeft}{}{%
719 \hspacex*{-\FV@BreakSymbolIndentLeft}}%

720 \ifthenelse{\boolean{FV@BreakAutoIndent}}%
721 {\hspacex{-\wd\FV@LineIndentBox}}%

722 {1%

723 \strut#l\strut

724 \end{internallinenumbersx}

725 1%

726 \ifdefempty{\FancyVerbBreakSymbolRight}{}%

727 {\hbox to \FV@BreakSymbolIndentRight{\hfill}}*%
728 1%

729 }

\FV@ListProcessLine@Break This macro is based on \FV@ListProcessLine and follows it as closely as possible.
The \linewidth is reduced by \FV@FrameSep and \FV@FrameRule so that text
will not overrun frames. This is done conditionally based on which frames are in
use. We save the current line in a box, and only do special things if the box is too

55

wide. For uniformity, all text is placed in a \parbox, even if it doesn’t need to be
wrapped.

If a line is too wide, then it is passed to \Fv@SaveLineBox. If there is no right-hand
break symbol, then the saved result in \Fve@LineBox may be used immediately.
If there is a right-hand break symbol, then the line must be processed a sec-
ond time, so that the right-hand break symbol may be removed from the final
segment of the broken line (since it does not continue). During the first use of
\FV@SaveLineBox, the counter FancyVerbLineBreakLast is set to the internal
line number of the last segment of the broken line. During the second use of
\FV@SaveLineBox, we disable this (\1let\FV@SetLineBreakLast\relax) so that
the value of FancyVerbLineBreakLast remains fixed and thus may be used to
determine when a right-hand break symbol should be inserted.

730 \def\FVQ@ListProcessLine@Break#1{%
731 \hbox to \hsize({%

732 \kern\leftmargin

733 \hbox to \linewidth{%

734 \1fx\FV@RightListFrame\relax\else

735 \advancel\linewidth by —-\FV@FrameSep
736 \advance\linewidth by —-\FVQ@FrameRule
737 \fi

738 \ifx\FV@LeftListFrame\relax\else

739 \advance\linewidth by —-\FVQ@FrameSep
740 \advance\linewidth by —-\FVQ@FrameRule
741 \fi

742 \sbox{\FVQ@LineBox} {\FancyVerbFormatLine{#1}}%
743 \1fdim\wd\FV@LineBox>\1linewidth

744 \setcounter{FancyVerbLineBreakLast}{0}%

745 \FV@SaveLineBox{#1}%

746 \ifdefempty{\FancyVerbBreakSymbolRight}{}{$%
747 \let\FV@SetLineBreakLast\relax

748 \FV@SaveLineBox{#1}}%

749 \FVQ@LeftListNumber

750 \FV@LeftListFrame

751 \FancyVerbFormatLine{\usebox{\FV@LineBox}}%
752 \FV@RightListFrame

753 \FV@RightListNumber

754 \else

755 \FVQ@LeftListNumber

756 \FVQ@LeftListFrame

757 \FancyVerbFormatLine{$%

758 \parbox[t]{\linewidth} {\noindent\strut#l\strut}}%
759 \FV@RightListFrame

760 \FVQ@RightListNumber

761 \fi}%

762 \hss}\baselineskip\z@\lineskip\z@}

56

Finally, end the conditional creation of fancyvrb extensions.

763 \fi

9.7 Internal helpers

\minted@bgbox Define an environment that may be wrapped around a minted environment to
assign a background color. This is retained as a holdover from version 1.0. In most
cases, it is probably better to use a dedicated framing package, such as tcolorbox
or mdframed.

First, we need to define a new save box.
764 \newsavebox{\minted@bgbox}

Now we can define the environment that captures a code fragment inside a minipage
and applies a background color.

765 \newenvironment {minted@colorbg} [1] {

766 $\setlength{\fboxsep}{-\fboxrule}

767 \def\minted@bgcol {#1}

768 \noindent

769 \begin{lrbox} {\minted@bgbox}

770 \begin{minipage}{\linewidth-2\fboxsep}}

77t {\end{minipage}

772 \end{lrbox}%

773 \colorbox{\minted@bgcol} {\usebox{\minted@bgbox}}}

\minted@code Create a file handle for saving code (and anything else that must be written to
temp files).

774 \newwrite\minted@code

\minted@savecode Save code to be pygmentized to a file.

775 \newcommand{\minted@savecode} [1] {

776 \immediate\openout\minted@code\ jobname.pyg\relax

777 \immediate\write\minted@code{\expandafter\detokenize\expandafter{#1}}%
778 \immediate\closeout\minted@code}

minted@FancyVerbLineTemp At various points, we will need a temporary counter for storing and then restoring
the value of FancyverbLine. When using the langlinenos option, we need
to store the current value of FancyVerbLine, then set FancyVerbLine to the
current value of a language-specific counter, and finally restore FancyVerbLine
to its initial value after the current chunk of code has been typeset. In patching
VerbatimOut, we need to prevent FancyVerbLine from being incremented during
the write process.

o7

\minted@FVB@VerbatimOut

\minted@FVE@VerbatimOut

\MintedPygmentize

\minted@pygmentize

779 \newcounter{minted@FancyVerbLineTemp}

We need a custom version of fancyvrb’s \FvB@verbatimout that supports Unicode
(everything written to file is \detokenized). We also need to prevent the value of
FancyVerbLine from being incorrectly incremented.

780 \newcommand{\minted@write@detok}[1]{%

781 \immediate\write\FV@OutFile{\detokenize{#1}}}

782 \newcommand{\minted@FVB@VerbatimOut} [1]{%

783 \setcounter{minted@FancyVerbLineTemp} {\value{FancyVerbLine}}$%
784 \@bsphack

785 \begingroup

786 \FV@UseKeyValues

787 \Fv@DefineWhiteSpace

788 \def\FV@Space{\space}$%

789 \FV@DefineTabOut

790 \let\FV@ProcessLine\minted@write@detok
791 \immediate\openout\FV@OutFile #1l\relax
792 \let\FV@FontScanPrep\relax

793 \let\@noligs\relax

794 \FV@Scan}

Likewise, we need a custom version of \FVE@VerbatimOut that completes the
protection of FancyVerbLine from being incremented.

795 \newcommand{\minted@FVE@VerbatimOut} {%
796 \immediate\closeout \FV@OutFile\endgroup\@esphack
797 \setcounter{FancyVerbLine} {\value{minted@FancyVerbLineTemp}}}$%

We need a way to customize the executable/script that is called to perform
highlighting. Typically, we will want pygmentize. But advanced users might wish
to use a custom Python script instead.

798 \newcommand{\MintedPygmentize} {pygmentize}

Pygmentize a file (default: \minted@outputdir\jobname.pyg) using the options
provided.

Unfortunately, the logic for caching is a little complex due to operations that are
OS- and engine-dependent.

The name of cached files is the result of concatenating the md5 of the code and
the md5 of the command. This results in a filename that is longer than ideal
(64 characters plus path and extension). Unfortunately, this is the only robust
approach that is possible using the built-in pdfTeX hashing capabilities.* LuaTeX

41t would be possible to use only the cache of the code, but that approach breaks down as
soon as the code is used multiple times with different options. While that may seem unlikely in
practice, it occurs in this documentation and may be expected to occur in other docs.

58

could do better, by hashing the command and code together. The Python script
that provides XeTeX capabilities simply runs both the command and the code
through a single shal hasher, but has the additional overhead of the \write18 call
and Python execution.

One potential concern is that caching should also keep track of the command from
which code originates. What if identical code is highlighted with identical settings
in both the minted environment and \mintinline command? In both cases, what
is actually saved by Pygments is identical. The difference in final appearance is
due to how the environment and command treat the Pygments output.

This macro must always be checked carefully whenever it is modified.
Under no circumstances should #1 be written to or opened by Python in write
mode. When \inputminted is used, #1 will be an external file that is brought in
for highlighting, so it must be left intact.

799 \newcommand{\minted@pygmentize} [2] [\mintedRoutputdir\jobname.pyg] {%
800 \ifthenelse{\equal{\minted@getQ@opt{autogobble}{false}}{true}}$s

801 {\def\minted@codefile{\minted@outputdir\ jobname.pyg}}$%

802 {\def\minted@codefile{#1}}%

803 \ifthenelse{\boolean{minted@isinline}}%

804 {\def\minted@optlistcl@inlines{%

805 \minted@optlistcl@g@i

806 \csname minted@optlistcl@lang\minted@lang Q@i\endcsname}}%
807 {\let\minted@optlistcl@inlines\@empty}%

808 \def\minted@cmd{%

809 \ifminted@kpsewhich\ifwindows powershell\space\fi\fi

810 \MintedPygmentize\space -1 #2

811 -f latex -F tokenmerge

812 \minted@optlistcl@g \csname minted@optlistcl@lang\minted@lang\endcsname
813 \minted@optlistcl@inlines

814 \minted@optlistcl@cmd -o "\minted@outputdir\minted@infile"
815 \ifminted@kpsewhich

816 \ifwindows

817 \detokenize{$} (kpsewhich "\minted@codefile")$%

818 \else

819 \detokenize{ ‘}kpsewhich "\minted@codefile"

820 \detokenize{ ||} "\mintedQcodefile"\detokenize{‘}%
821 \fi

822 \else

823 "\minted@codefile"

824 \fi}$%

825 For debugging, uncomment: %$%%%

o o o°

826 \immediate\typeout {\minted@cmd}%

827 %5%%

828 \ifthenelse{\boolean{minted@cache}}%

829 {%

830 \ifx\XeTeXinterchartoks\minted@undefined

831 \ifthenelse{\equal {\minted@get@opt{autogobble}{false}}{true}}%
832 {\edef\minted@hash{\pdf@filemdfivesum{#1}%

59

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

\pdf@mdfivesum{\minted@cmd autogobble}}}%
{\edef\minted@hash{\pdf@filemdfivesum{#1}%
\pdf@mdfivesum{\minted@cmd}}}$%
\else
\immediate\openout\minted@code\ jobname.mintedcmd\relax
\immediate\write\minted@code{\minted@Rcmd}%
\ifthenelse{\equal{\minted@get@opt{autogobble}{false}}{true}}s
{\immediate\write\minted@code{autogobble}}{}%
\immediate\closeout\minted@code
%Cheating a little here by using ASCII codes to write ‘{‘ and ‘}°
%in the Python code
\def\minted@hashcmd{%
\detokenize{python -c "import hashlib;
hasher = hashlib.shal();
f = open(\"}\minted@outputdir\jobname.mintedcmd\detokenize{\",
hasher.update (f.read());
f.close();
f = open (\"}#1l\detokenize{\", \"rb\");
hasher.update (f.read());
f.close();
f = open(\"}\minted@outputdir\jobname.mintedmd5\detokenize{\",
macro = \"\\edef\\minted@hash\" + chr(123) + hasher.hexdigest ()

\llrb\");
\"w\") ;
+ chr (1

f.write (\"\\makeatletter\" + macro + \"\\makeatother\\endinput\n\");

f.close();"}1}%

\immediate\writel8{\mintedRhashcmd}$%

\minted@input{\minted@outputdir\jobname.mintedmd5}%

\fi
\edef\minted@infile{\minted@cachedir/\minted@hash.pygtex}%
\IfFileExists{\minted@infile}{}{%

\ifthenelse{\equal {\minted@get@opt{autogobble}{false}}{true}}{%
%$Need a version of open() that supports encoding under Python 2
\edef\minted@autogobblecmd{%

\detokenize{python -c "import sys;
import textwrap;
from io import open;

f.read();

.close();

= open (\"}\minted@outputdir\jobname.pyg\detokenize{\", \"w\",
.write (textwrap.dedent (t));

.close();"}%

Fhobh FhoHh O Hh

1%
\immediate\writel8{\minted@Rautogobblecmd}}{}%
\immediate\writel8{\minted@cmd}}%
\expandafter\minted@addcachefile\expandafter{\minted@hash.pygtex}$%
\minted@inputpyg}%
{%
\ifthenelse{\equal{\minted@get@opt{autogobble}{false}}{true}}{%
%$Need a version of open() that supports encoding under Python 2
\edef\minted@autogobblecmd{%

60

= open (\"}#1\detokenize{\", \"r\", encoding=\"}\minted@encoding\detok

encodin

883
884
885
886
887
888
889
890
891
892
893
894
895
896 }

\detokenize{python -c "import sys;
import textwrap;
from io import open;

}%

£
t
f.
il
£
il

= open (\"}#1\detokenize{\", \"r\", encoding=\"}\minted@encoding\detoken
= f.read();

close();

= open(\"}\minted@outputdir\jobname.pyg\detokenize{\", \"w\", encoding=

.write (textwrap.dedent (t));
.close();"}%

\immediate\writel8{\minted@autogobblecmd}}{}%
\immediate\writel8{\minted@Rcmd}$%
\minted@inputpygl}%

\minted@inputpyg For increased clarity, the actual \input process is separated out into its own
macro. The bgcolor option needs to be dealt with in different ways depending
on whether we are using \mintinline. Also, if we are not inline, then the
breakbytoken option may apply. It is simplest to apply this option here, so that
the macro redefinitions may be local and thus do not need to be manually reset
later. \Fv@Space is also patched for math mode, so that space characters will
vanish rather than appear as literal spaces within math mode.

897 \def\FV@SpaceMMode{ }
898 \newcommand{\minted@inputpyg}{$%
\everymath\expandafter{\the\everymath\let\FV@Space\FV@SpaceMMode}%
\ifthenelse{\boolean{minted@Risinline}}%
{\ifthenelse{\equal{\minted@getQ@opt{breaklines}{false}}{true}}$%
{\let\FV@BeginVBox\relax
\let\FVQREndVBox\relax
\def\FV@BProcessLine##1{\FancyVerbFormatLine{##1}}%
\ifthenelse{\equal {\minted@get@opt {breakbytoken}{false}}{true}}%
{\expandafter\let\expandafter\minted@origQ@PYG%
\csname PYG\minted@get@opt{style}{default}\endcsname
\expandafter\def\csname PYG\minted@getQopt{style}{default}\endcsname##1##2{%
\allowbreak{}\hbox{\mintedRorigRPYG{##1} {##2}}1%
\minted@inputpyg@inline}%
{\minted@inputpyg@inline}}%
{\minted@inputpyg@inline}}%
{\ifthenelse{\equal{\minted@get@opt{breaklines}{false}}{true}}$%
{\ifthenelse{\equal {\minted@get@opt{breakbytoken} {false}}{true}}%
{\expandafter\let\expandafter\minted@orig@PYG%
\csname PYG\minted@get@opt{style}{default}\endcsname
\expandafter\def\csname PYG\minted@getQopt{style}{default}\endcsname##1##2{
\allowbreak{}\hbox{\mintedRorigRPYG{##1} {##2}1}}%
\minted@inputpyg@block}$%
{\minted@inputpyg@block}}$%
{\minted@inputpyg@block}}$%

899
900
go1
9o2
903
904
905
906
907
908

913
914
915
916
917
918
919
920
921
922 }

61

923 \def\minted@inputpyg@inline{$%
924 \ifthenelse{\equal{\minted@getQopt{bgcolor}{}}{}}%

925 {\minted@input {\minted@outputdir\minted@infile}}%
026 {\colorbox{\minted@get@opt {bgcolor}{}}{\minted@input {\minted@outputdir\minted@in
927 }

928 \def\minted@inputpyg@block{%
929 \ifthenelse{\equal{\minted@get@opt{bgcolor}{}}{}}%

930 {\minted@input {\minted@outputdir\minted@infile}}%
931 {\begin{minted@colorbg} {\minted@getQopt{bgcolor}{}}$%
032 \minted@input{\minted@outputdir\minted@infile}$%

933 \end{minted@colorbg}}}

We need a way to have line counters on a per-language basis.

\minted@langlinenoson

934 \newcommand{\minted@langlinenoson}{%

935 \ifcsname c@minted@lang\minted@lang\endcsnamel\else
936 \newcounter{minted@lang\minted@lang}$%
037 \fi

938 \setcounter {minted@FancyVerbLineTemp} {\value{FancyVerbLine}}%
939 \setcounter{FancyVerblLine} {\value{minted@lang\minted@lang}}%
940 }

\minted@langlinenosoff

941 \newcommand{\minted@langlinenosoff}{%

942 \setcounter{minted@lang\minted@lang} {\value{FancyVerbLine}}%
943 \setcounter{FancyVerbLine} {\value{minted@FancyVerbLineTemp}}%
944 }

Disable the language-specific settings if the package option isn’t used.

945 \ifthenelse{\boolean{minted@langlinenos}}{}{$%
946 \let\minted@langlinenoson\relax

947 \let\minted@langlinenosoff\relax

048 }

9.8 Public API

\setminted Set global or language-level options.

949 \newcommand{\setminted} [2][]{%

950 \ifthenelse{\equal{#1}{}}%

051 {\setkeys{minted@opt@g} {#2}}%

952 {\minted@configlang{#1}%

953 \setkeys{minted@opt@lang} {#2}}}

62

\setmintedinline Set global or language-level options, but only for inline (\mintinline) content.
These settings will override the corresponding \setminted settings.

954 \newcommand{\setmintedinline} [2][]{%
955 \ifthenelse{\equal{#1}{}}%

956 {\setkeys{minted@opt@RgRi} {#2}1%
957 {\minted@configlang{#1}%
958 \setkeys{minted@opt@lang@i} {#2}}}

Now that the settings macros exist, we go ahead and create any needed defaults.

959 \setmintedinline[php] {startinline=true}

\usemintedstyle Set style. This is a holdover from version 1, since \setminted can now accomplish
this, and a hierarchy of style settings are now possible.

960 \newcommand{\usemintedstyle}[2][]{\setminted[#1] {style=#2}}

\minted@defwhitespace@retok The \mint and \mintinline commands need to be able to retokenize the code
they collect, particularly in draft mode. Retokenizeation involves expansion
combined with \scantokens, with active space and tab characters. The active
characters need to expand to the appropriate fancyvrb macros, but the macros
themselves should not be expanded. We need a macro that will accomplish the
appropriate definitions.

961 \begingroup

962 \catcode'\ =\active

963 \catcode‘\""I=\active

064 \gdef\minted@defwhitespace@retok{\def {\noexpand\FV@Space}\def""I{\noexpand\FV@Tab}
965 \endgroup

\minted@writecmdcode The \mintinline and \mint commands will need to write the code they capture
to a temporary file for highlighting. It will be convenient to be able to accomplish
this via a simple macro, since that makes it simpler to deal with any expansion of
what is to be written. This isn’t needed for the minted environment, because the
(patched) verbatimout is used.

966 \newcommand{\minted@writecmdcode} [1]{$%

967 \immediate\openout\minted@code\ jobname.pyg\relax
968 \immediate\write\minted@code{\detokenize{#1}}%
969 \immediate\closeout\minted@code}

\mintinline Define an inline command. This requires some catcode acrobatics. The typical
verbatim methods are not used. Rather, a different approach is taken that is
generally more robust when used within other commands (for example, when used
in footnotes).

63

Pygments saves code wrapped in a Verbatim environment. Getting the inline com-
mand to work correctly require redefining verbatim to be Bverbatim temporarily.
This approach would break if Bverbatim were ever redefined elsewhere.

Everything needs to be within a \begingroup...\endgroup to prevent settings
from escaping.

In the case of draft mode, the code is captured and retokenized. Then the internals
of fancyvrb are used to emulate Saveverbatim, so that \BUseVerbatim may be
employed.

The FancyVerbLine counter is altered somehow within \minted@pygmentize, so
we protect against this.

g70 \newrobustcmd{\mintinline} [2][]{%
971 \begingroup
972 \setboolean{minted@isinline} {true}%

973 \minted@configlang{#2}%

974 \setkeys{minted@opt@cmd} {#1}%
975 \minted@fvset

976 \begingroup

977 \let\do\@makeother\dospecials
978 \catcode \ {=1

979 \catcode ‘\}=2

980 \catcode *\""I=\active

981 \@ifnextchar\bgroup

982 {\minted@inline@iii}%

983 {\catcode*\ {=12\catcode ‘\}=12
984 \minted@inline@i}}

985 \def\minted@inline@i#1{%

986 \endgroup

987 \def\minted@inline@ii##1#1{%
088 \minted@Rinline@iii{##1}}%
989 \begingroup

990 \let\do\@makeother\dospecials

991 \catcode *\""I=\active

992 \minted@inline@ii}

993 \ifthenelse{\boolean{minted@draft}}%
904 {\newcommand{\minted@inline@iii} [1]{%
995 \endgroup

996 \begingroup

997 \minted@defwhitespacel@retok

998 \everyeof{\noexpand}$%

999 \endlinechar-1\relax

1000 \let\do\@makeother\dospecials

1001 \catcode*\ =\active

1002 \catcode ‘\""I=\active

1003 \xdef\minted@tmp{\scantokens{#1}}%
1004 \endgroup

1005 \let\FV@Line\minted@tmp

64

\mint

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

\def\FV@SvV@minted@tmp{%
\FV@Gobble
\expandafter\FV@ProcessLine\expandafter{\FV@Line}}%
\ifthenelse{\equal{\minted@get@opt{breaklines}{false}}{true}}$%
{\let\FV@BeginVBox\relax
\let\FVQREndvVBox\relax
\def\FV@BProcessLine##1l{\FancyVerbFormatLine{##1}1}%
\BUseVerbatim{mintedQ@tmp}}%
{\BUseVerbatim{minted@tmp}}%
\endgroup}}%
{\newcommand{\minted@inline@iii} [1]{%
\endgroup
\minted@writecmdcode{#1}%
\RecustomVerbatimEnvironment {Verbatim} {BVerbatim}{}$%
\setcounter{minted@FancyVerbLineTemp} {\value{FancyVerbLine}}$%
\minted@pygmentize{\minted@lang}%
\setcounter{FancyVerbLine} {\value{minted@FancyVerbLineTemp}}$%
\endgroup} }

Highlight a small piece of verbatim code (a single line).

The draft version digs into a good deal of fancyvrb internals. We want to
employ \UseVerbatim, and this requires assembling a macro equivalent to
what SavevVerbatim would have created. Actually, this is superior to what
SaveVerbatim would yield, because line numbering is handled correctly.

1024 \newrobustcmd{\mint} [2] []{$%

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047

)

\begingroup
\mintedQconfiglang{#2}%
\setkeys{mintedRoptQ@cmd} {#1}%
\minted@fvset
\begingroup
\let\do\@makeother\dospecials
\catcode *\ {=1
\catcode *\}=2
\catcode*\""I=\active
\@ifnextchar\bgroup
{\mint@iii}$%
{\catcode*\ {=12\catcode*\}=12
\mint@i}}

\def\mint@i#1{%

\endgroup

\def\mint@ii##1#1{%
\mint@iii{##1}}%

\begingroup

\let\do\@makeother\dospecials

\catcode ‘\""I=\active

\mint@ii}

\ifthenelse{\boolean{minted@draft}}%

{\newcommand {\mint@iii} [1]{%

65

1048 \endgroup

1049 \begingroup

1050 \minted@defwhitespace@retok

1051 \everyeof {\noexpand}%

1052 \endlinechar-1\relax

1053 \let\do\@makeother\dospecials

1054 \catcode '\ =\active

1055 \catcode *\""I=\active

1056 \xdef\minted@tmp{\scantokens{#1}}%
1057 \endgroup

1058 \let\FV@Line\minted@tmp

1059 \def\FV@SV@minted@tmp{%

1060 \FV@CodeLineNo=1\FV@StepLineNo
1061 \FV@Gobble

1062 \expandafter\FV@ProcessLine\expandafter{\FV@Line}}%
1063 \minted@langlinenoson

1064 \UseVerbatim{minted@tmp}$%

1065 \minted@langlinenosoff

1066 \endgroup}}%

1067 {\newcommand{\mint@iii} [1]{%

1068 \endgroup

1069 \minted@writecmdcode {#1}%

1070 \minted@langlinenoson

1071 \minted@pygmentize{\minted@lang}%
1072 \minted@langlinenosoff

1073 \endgroup} }

minted Highlight a longer piece of code inside a verbatim environment.

1074 \ifthenelse{\boolean{minted@draft}}%

1075 {\newenvironment {minted} [2] []

1076 {\VerbatimEnvironment

1077 \minted@configlang{#2}%

1078 \setkeys{minted@opt@cmd} {#1}%

1079 \minted@fvset

1080 \minted@langlinenoson

1081 \begin{Verbatim}}%

1082 {\end{Verbatim}$%

1083 \minted@langlinenosoff}}%

1084 {\newenvironment {minted} [2] []

1085 {\VerbatimEnvironment

1086 \let\FVB@VerbatimOut\minted@FVB@VerbatimOut
1087 \let\FVE@VerbatimOut\minted@FVE@VerbatimOut
1088 \minted@configlang{#2}%

1089 \setkeys{minted@opt@cmd} {#1}%

1090 \minted@fvset

1091 \begin{VerbatimOut} [codes={\catcode‘*\""I=12}]{\jobname.pyg}}%
1092 {\end{VerbatimOut}$%

1003 \minted@langlinenoson

1094 \minted@pygmentize{\minted@lang}$%

66

1005 \minted@langlinenosoff}}

\inputminted Highlight an external source file.

1096 \ifthenelse{\boolean{minted@draft}}%

1097 {\newcommand{\inputminted} [3] []1{%
1098 \begingroup

1099 \minted@configlang{#2}%

1100 \setkeys{minted@optcmd} {#1}%
1101 \minted@fvset

1102 \VerbatimInput{#3}%

1103 \endgroup}}%

1104 {\newcommand{\inputminted} [3] []1{%
1105 \begingroup

1106 \minted@configlang{#2}%

1107 \setkeys{minted@optQ@cmd} {#1}%
1108 \minted@fvset

1109 \minted@pygmentize [#3] {#2}%

1110 \endgroup} }

9.9 Command shortcuts

We allow the user to define shortcuts for the highlighting commands.

\newminted Define a new language-specific alias for the minted environment.
1111 \newcommand{\newminted} [3] []{

First, we look whether a custom environment name was given as the first optional
argument. If that’s not the case, construct it from the language name (append
“code”).

1112 \ifthenelse{\equal{#1}{}}
1113 {\def\minted@envname{#2code}}
1114 {\def\mintedRenvname{#1}}

Now, we define two environments. The first takes no further arguments. The
second, starred version, takes an extra argument that specifies option overrides.

1115 \newenvironment {\minted@envname}

1116 {\VerbatimEnvironment

1117 \begin{minted} [#3] {#2}}

1118 {\end{minted}}

1119 \newenvironment {\minted@envname =} [1]

1120 {\VerbatimEnvironment\begin{minted} [#3, ##1]{#2}}
1121 {\end{minted}}}

67

\newmint Define a new language-specific alias for the \mint short form.

1122 \newcommand{\newmint} [3] [] {

Same as with \newminted, look whether an explicit name is provided. If not, take
the language name as command name.

1123
1124
1125

\ifthenelse{\equal{#1}{}}
{\def\minted@shortname{#2}}
{\def\minted@shortname{#1}}

And define the macro.

1126
1127

\expandafter\newcommand\csname\minted@shortname\endcsname [2] [] {
\mint [#3, ##1] {#2}##2}}

\newmintedfile Define a new language-specific alias for \inputminted.

1128 \newcommand{\newmintedfile} [3][]{

Here, the default macro name (if none is provided) appends “file” to the language

name.
1129 \ifthenelse{\equal{#1}{}}
1130 {\def\minted@shortname{#2file}}
1131 {\def\minted@shortname{#1}}

...and define the macro.

1132
1133

\expandafter\newcommand\csname\minted@shortname\endcsname [2] [] {
\inputminted [#3, ##1] (#2} {##2}}}

\newmintinline Define an alias for \mintinline.

As is usual with inline commands, a little catcode trickery must be employed.

1134 \newcommand{\newmintinline} [3][]{%

1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146 }

o)

\ifthenelse{\equal{#1}{}}%
{\def\minted@shortname{#2inline}}%
{\def\minted@shortname{#1}}%
\expandafter\newrobustcmd\csname\minted@shortname\endcsname{%
\begingroup
\let\do\@makeother\dospecials
\catcode*\ {=1
\catcode*\}=2
\@ifnextchar[{\endgroup\minted@inliner [#3] [#2]}%
{\endgroup\minted@inliner [#3] [#2][]}}%
\def\minted@inliner [##1] [##2] [##3] {\mintinline [#4#1, ##3]1{##2}1%

68

9.10 Float support

listing Define a new floating environment to use for floated listings. This is defined
conditionally based on the newfloat package option.

1147 \ifthenelse{\boolean{minted@newfloat}}%
1148 {\Q@ifundefined{minted@float@within}$%

1149 {\DeclareFloatingEnvironment [fileext=10l,placement=h]{listing}}*%

1150 {\def\minted@tmp#1{%

1151 \DeclareFloatingEnvironment [fileext=10l,placement=h, within=#1]{listing}}%
1152 \expandafter\minted@tmp\expandafter{\minted@float@within}}}%

1153 {\@ifundefined{minted@float@within}$%

1154 {\newfloat{listing}{h}{lol}}$%

1155 {\newfloat{listing}{h}{lol}[\minted@float@within]}}

The following macros only apply when 1isting is created with the float package.
When 1isting is created with newfloat, its properties should be modified using
newfloat’s \SetupFloatingEnvironment.

1156 \ifminted@newfloat\else

\listingcaption The name that is displayed before each individual listings caption and its number.
The macro \listingscaption can be redefined by the user.

1157 \newcommand{\listingscaption}{Listing}
The following definition should not be changed by the user.

1158 \floatname{listing}{\listingscaption}

\listoflistingscaption The caption that is displayed for the list of listings.

1159 \newcommand{\listoflistingscaption}{List of Listings}

\listoflistings Used to produce a list of listings (like \1istoffigures etc.). This may well clash
with other packages (for example, listings) but we choose to ignore this since these
two packages shouldn’t be used together in the first place.

1160 \providecommand{\listoflistings}{\listof{listing}{\listoflistingscaption}}

Again, the preceding macros only apply when float is used to create listings, so we
need to end the conditional.

1161 \fi

69

9.11 Epilogue

Check whether LaTeX was invoked with -shell-escape option, make sure
pygmentize exists, and set the default style.

1162 \AtEndOfPackage{%
1163 \ifthenelse{\boolean{minted@draft}}{}{%

1164 \ifnum\pdf@shellescape=1\relax\else

1165 \PackageError{minted}%

1166 {You must invoke LaTeX with the

1167 —-shell-escape flag}$s

1168 {Pass the -shell-escape flag to LaTeX. Refer to the minted.sty
1169 documentation for more information.}%

1170 \fi

1171 \TestAppExists{pygmentize}

1172 \ifAppExists\else

1173 \PackageError{minted}%

1174 {You must have ‘pygmentize’ installed

1175 to use this package}%

1176 {Refer to the installation instructions in the minted
1177 documentation for more information.}%

1178 \fi

1179 \setminted{style=default}$%

1180 1%

1181 }

9.12 Final cleanup

Clean up temp files. What actually needs to be done depends on caching and
engine.

1182 \AtEndDocument {
1183 \ifx\XeTeXinterchartoks\minted@undefined
1184 \else

1185 \DeleteFile[\minted@Qoutputdir] {\jobname.mintedcmd}$%
1186 \DeleteFile[\minted@outputdir] {\jobname.mintedmd5}$%
1187 \fi

1188 \DeleteFile[\mintedQoutputdir] {\jobname.pyg}%
1189 \DeleteFile[\minted@outputdir] {\jobname.out.pyg}%
1190 }

10 Implementation of compatibility package

minted version 2 is designed to be completely compatible with version 1.7. All of
the same options and commands still exist. As far as most users are concerned,
the only difference should be the new commands and options.

70

However, minted 2 does require some additional packages compared to minted 1.7.
More importantly, since minted 2 has almost completely new internal code, user
code that accessed the internals of 1.7 will generally not work with 2.0, at least
not without some modification. For these reasons, a copy of minted 1.7 is supplied
as the package mintedl. This is intended only for compatibility cases when using
the current version is too inconvenient.

The code in mintedl is an exact copy of minted version 1.7, except for two things:
(1) the package has been renamed, and (2) code has been added that allows mintedl
to act as (impersonate) minted, so that it can cooperate with other packages that
require minted to be loaded.” When minted1 is used, it must be loaded before any
other packages that would require minted.

All modifications to the original minted 1.7 source are indicated with comments.
All original code that has been replaced has been commented out rather than
deleted. Any future modifications of mintedl should only be for the purpose of
allowing it to serve better as a drop-in compatibility substitute for the current
release of minted.

\NeedsTeXFormat {LaTeX2e}

%%% Begin mintedl modification

%$\ProvidesPackage{minted} [2011/09/17 v1.7 Yet another Pygments shim for LaTeX]
ProvidesPackage{mintedl} [2015/01/31 v1.0 minted 1.7 compatibility package]

%$%% End mintedl modification
\RequirePackage{keyval}
\RequirePackage{fancyvrb}
\RequirePackage{xcolor}
\RequirePackage{float}
\RequirePackage{ifthen}

%$%%% Begin mintedl modification
\newboolean{mintedone@mintedloaded}

© Oo~N OO0 b~ W N KH
o° ~ od° o

HoH R
N =B O

13 \@ifpackageloaded{minted}$%

14 {\setboolean{mintedone@mintedloaded}{true}%

15 \PackageError{mintedl} {The package "mintedl" may not be loaded after

16 ~"*J"minted" has already been loaded--load "mintedl" only for "minted"

17 ~"Jversion 1.7 compatibility}$

18 {Load "mintedl" only when "minted" version 1.7 compatibility is required}}%
19 {}

20 \ifmintedone@mintedloaded\else

NN
N B

\expandafter\let\expandafter\minted@tmp\csname opt@mintedl.sty\endcsname
\expandafter\let\csname opt@minted.sty\endcsname\minted@tmp

24 \let\minted@tmp\relax

25 %$%%% End mintedl modification

26 \RequirePackage{calc}

27 \RequirePackage{ifplatform}

28 \DeclareOption{chapter}{\def\minted@float@within{chapter}}

N
w

5The approach used for doing this is described at http://tex.stackexchange.com/
a/39418/10742.

71

\@namedef{ver@minted.sty}{2011/09/17 v1l.7 Yet another Pygments shim for LaTeX}

http://tex.stackexchange.com/a/39418/10742
http://tex.stackexchange.com/a/39418/10742

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

53
54

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

\DeclareOption{section}{\def\minted@float@within{section}}
\ProcessOptions\relax
\ifwindows
\providecommand\DeleteFile[1l] {\immediate\writel8{del #1}}
\else
\providecommand\DeleteFile[1l] {\immediate\writel8{rm #1}}
\fi
\newboolean{AppExists}
\newcommand\TestAppExists[1] {
\ifwindows
\DeleteFile{\jobname.aex}
\immediate\writel8{for \string”\@percentchar i in (#l.exe #1l.bat #1.cmd)
do set >\jobname.aex <nul: /p x=\string”\@percentchar \string~$PATH:i>>\jobnal
\newread\@appexistsfile
\immediate\openin\@appexistsfile\ jobname.aex
\expandafter\defl\expandafter\@tmp@cr\expandafter{\the\endlinechar}
\endlinechar=-1\relax
\readline\@appexistsfile to \@apppathifexists
\endlinechar=\Q@tmplcr
\ifthenelse{\equal{\Qapppathifexists}{}}
{\AppExistsfalse}
{\AppExiststrue}
\immediate\closein\Qappexistsfile
\DeleteFile{\ jobname.aex}
\immediate\typeout{file deleted}
\else
\immediate\writel8{which #1 && touch \jobname.aex}
\IfFileExists{\jobname.aex}
{\AppExiststrue
\DeleteFile{\jobname.aex}}
{\AppExistsfalse}
\fi}
\newcommand\minted@resetoptions{}
\newcommand\minted@defopt [1] {
\expandafter\def\expandafter\minted@resetoptions\expandafter{$%
\minted@resetoptions
\@namedef {mintedRopt@#1}{}}}
\newcommand\minted@opt [1] {
\expandafter\detokenize%
\expandafter\expandafter\expandafter{\csname minted@opt@#1\endcsname}}
\newcommand\minted@define@opt [3] []{
\minted@defopt {#2}
\ifthenelse{\equal{#1}{}}{
\define@key{minted@opt}{#2}{\@namedef{mintedQopt@#2}{#3}}}
{\define@key{minted@opt}{#2} [#1] {\@namedef{mintedQopt@#2} {#3}}}}
\newcommand\minted@define@switch[3] []{
\minted@defopt {#2}
\define@booleankey{minted@opt}{#2}
{\@namedef {minted@opt@#2} {#3}}
{\@namedef {mintedRopt@#2} {#1}}}

72

79
80
81
82
83
84
85
86
87
38
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

\minted@defopt {extra}
\newcommand\minted@defineRextra[l] {
\define@key{minted@opt} {#1}{
\expandafter\def\expandafter\minted@opt@extralexpandafter{%
\mintedRopt@extra, #1=##1}}}
\newcommand\minted@defineRextra@switch[1]{
\define@booleankey{minted@opt} {#1}
{\expandafter\def\expandafter\mintedRopt@Rextral\expandafter{$%
\minted@opt@extra, #1}}
{\expandafter\defl\expandafter\minted@opt@extralexpandafter{%
\minted@opt@extra, #l=false}}}
\minted@define@switch{texcl}{-P texcomments}
\minted@define@switch{mathescape} {-P mathescape}
\minted@define@switch{linenos}{-P linenos}
\minted@define@switch{startinline}{-P startinline}
\minted@define@switch[-P funcnamehighlighting=Falsel]%
{funcnamehighlighting} {-P funcnamehighlighting}
\minted@define@opt {gobble} {-F gobble:n=#1}
\minted@define@opt {bgcolor} {#1}
\minted@defineRextra{frame}
\minted@define@extra{framesep}
\minted@Rdefine@extra{framerule}
\minted@definelRextra{rulecolor}
\minted@define@extra{numbersep}
\minted@defineRextra{firstnumber}
\minted@define@extra{stepnumber}
\minted@define@Rextra{firstline}
\minted@define@extra{lastline}
\minted@definelextra{baselinestretch}
\minted@define@extra{xleftmargin}
\minted@define@extra{xrightmargin}
\minted@define@extra{fillcolor}
\minted@define@Rextra{tabsize}
\minted@define@extra{fontfamily}
\minted@define@Rextra{fontsize}
\minted@define@extra{fontshape}
\minted@defineRextra{fontseries}
\minted@definelextra{formatcom}
\minted@defineRextra{label}
\minted@defineRextra@switch{numberblanklines}
\minted@define@extral@switch{showspaces}
\minted@define@extra@switch{resetmargins}
\minted@define@extra@switch{samepage}
\minted@definelextra@switch{showtabs}
\minted@define@extra@switch{obeytabs}
\newsavebox{\minted@bgbox}
\newenvironment {minted@colorbg} [1]{
\def\minted@bgcol {#1}
\noindent
\begin{lrbox}{\minted@bgbox}

73

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

\begin{minipage}{\linewidth-2\fboxsep}}
{\end{minipage}

\end{lrbox}%

\colorbox{\minted@bgcol} {\usebox{\minted@bgbox}}}
\newwrite\minted@code
\newcommand\minted@savecode [1] {

\immediate\openout\minted@code\ jobname.pyg

\immediate\write\minted@code{#1}

\immediate\closeout\minted@code}
\newcommand\minted@pygmentize[2] [\ jobname.pyg] {

\def\minted@cmd{pygmentize -1 #2 —-f latex -F tokenmerge

\minted@opt {gobble} \minted@opt{texcl} \minted@opt{mathescape}

\minted@opt{startinline} \minted@opt{funcnamehighlighting}
\minted@opt{linenos} -P "verboptions=\minted@opt{extra}"
-0 \jobname.out.pyg #1}
\immediate\writel8{\minted@cmd}
% For debugging, uncomment:
$\immediate\typeout {\minted@cmd}
\ifthenelse{\equal{\minted@opt@bgcolor}{}}
{}
{\begin{minted@colorbg} {\minted@opt@bgcolor}}
\input {\ jobname.out .pyg}
\ifthenelse{\equal{\minted@opt@bgcolor}{}}
{}
{\end{minted@colorbg}}

\DeleteFile{\jobname.out.pyg}}
\newcommand\minted@usedefaultstyle{\usemintedstyle{default}}
\newcommand\usemintedstyle[1] {

\renewcommand\minted@usedefaultstyle{}

\immediate\writel8{pygmentize -S #1 -f latex > \Jjobname.pyg}

\input {\ jobname.pyg}}

\newcommand\mint [3] [] {

\DefineShortVerb{#3}

\minted@resetoptions

\setkeys{minted@opt} {#1}

\SaveVerb[aftersave={

\UndefineShortVerb{#3}
\minted@savecode{\FV@SV@minted@verb}
\minted@pygmentize{#2}
\DeleteFile{\jobname.pyg}}]{minted@verb}#3}
\newcommand\minted@proglang[1]{}
\newenvironment {minted} [2] []
{\VerbatimEnvironment

\renewcommand{\minted@proglang} [1]{#2}

\minted@resetoptions

\setkeys{minted@opt} {#1}

\begin{VerbatimOut} [codes={\catcode*\""I=12}]{\jobname.pyg}}%

{\end{VerbatimOut }

\minted@pygmentize{\minted@proglang{}}

\DeleteFile{\jobname.pyg}}

74

179 \newcommand\inputminted[3] []{
180 \minted@resetoptions

181 \setkeys{mintedRopt} {#1}
182 \minted@pygmentize [#3] {#2}}

183 \newcommand\newminted[3] [] {

184 \ifthenelse{\equal{#1}{}}

185 {\def\minted@envname {#2code}}

186 {\def\minted@envname{#1}}

187 \newenvironment {\minted@envname}

188 {\VerbatimEnvironment\begin{minted} [#3] {#2}}

189 {\end{minted}}

190 \newenvironment {\minted@envname =} [1]

191 {\VerbatimEnvironment\begin{minted} [#3, ##1] {#2}}
192 {\end{minted}}}

193 \newcommand\newmint [3] []{

104 \ifthenelse{\equal{#1}{}}

195 {\def\minted@shortname {#2}}

196 {\def\minted@shortname{#1}}

197 \expandafter\newcommand\csname\minted@shortname\endcsname [2] [] {
198 \mint [#3, ##1] {#2}##2}}

199 \newcommand\newmintedfile[3] []{
200 \ifthenelse{\equal{#1}{}}

201 {\def\minted@shortname{#2file}}

202 {\def\minted@shortname{#1}}

203 \expandafter\newcommand\csname\minted@shortname\endcsname [2] [] {
204 \inputminted [#3, ##1] {#2} {##2}}}

205 \@ifundefined{minted@float@within}

206 {\newfloat{listing}{h}{lol}}

207 {\newfloat{listing}{h}{lol}[\minted@float@within]}
208 \newcommand\listingscaption{Listing}

209 \floatname{listing}{\listingscaption}

210 \newcommand\listoflistingscaption{List of listings}
211 \providecommand\listoflistings{\listof{listing}{\listoflistingscaption}}
212 \AtBeginDocument {

213 \minted@usedefaultstyle}

214 \AtEndOfPackage{

215 \ifnum\pdf@shellescape=1\relax\else

216 \PackageError{minted}

217 {You must invoke LaTeX with the

218 —-shell-escape flag}

219 {Pass the -shell-escape flag to LaTeX. Refer to the minted.sty
220 documentation for more information.}\fi

221 \TestAppExists{pygmentize}
222 \1fAppExists\else

223 \PackageError{minted}

224 {You must have ‘pygmentize’ installed

225 to use this package}

226 {Refer to the installation instructions in the minted
227 documentation for more information.}

228 \fi}

(0]

%$%%% Begin mintedl modification

%$%%% End mintedl modification

76

	Introduction
	Installation
	Prerequisites
	Required packages
	Installing minted

	Transitioning to version 2
	Basic usage
	Preliminary
	A minimal complete example
	Formatting source code
	Using different styles
	Supported languages

	Floating listings
	Options
	Package options
	Macro option usage
	Available options

	Defining shortcuts
	FAQ and Troubleshooting
	Version History
	Implementation
	Required packages
	Package options
	Input, caching, and temp files
	OS interaction
	Option processing
	Additions to fancyvrb
	Internal helpers
	Public API
	Command shortcuts
	Float support
	Epilogue
	Final cleanup

	Implementation of compatibility package

