The minted package:
Highlighted source code in IXTEX

Geoffrey M. Poore

gpoore@gmail.com

github.com/gpoore/minted

Originally created and maintained (2009-2013) by
Konrad Rudolph

v2.2.1 from 2016/06/15

Abstract

minted is a package that facilitates expressive syntax highlighting using the
powerful Pygments library. The package also provides options to customize
the highlighted source code output.

License

LaTeX Project Public License (LPPL) version 1.3.

Additionally, the project may be distributed under the terms of the 3-Clause
(“New”) BSD license: http://opensource.org/licenses/BSD-3-Clause.

gpoore@gmail.com
https://github.com/gpoore/minted
http://www.latex-project.org/lppl.txt
http://opensource.org/licenses/BSD-3-Clause

Contents

1 Introduction 4
2 Installation 4
2.1 Prerequisites e 4
2.2 Required packages 5
2.3 Imstalling minted Lo 5
3 Transitioning to version 2 6
4 Basic usage 6
4.1 Preliminary 6
4.2 A minimal complete example L. 7
4.3 Formatting source code L oo 8
4.4 Using different styles L oL o 9
4.5 Supported languages Lo 9
5 Floating listings 9
6 Options 11
6.1 Packageoptions L Lo L 11
6.2 Macro option usage Lo 15
6.3 Available options oL L 16
7 Defining shortcuts 26
8 FAQ and Troubleshooting 28
Version History 31
9 Implementation 37
9.1 Required packageso e 37
9.2 Packageoptions L L L 38
9.3 Input, caching, and temp files 41
9.4 OSinteraction 43
9.5 Option processing L 44
9.6 Additions to fancyvrb 60
9.6.1 Setup 61

9.6.2 Line breaking 61

9.7 1inenoso e e 76
9.8 Cleanup o o i e 76
9.9 Imternal helpers L 76
9.10 Public APT 86
9.11 Command shortcuts L oL 91
9.12 Float support e 93
9.13 Epilogue e 94
9.14 Final cleanup 94
10 Implementation of compatibility package 95

1 Introduction

minted is a package that allows formatting source code in IMTEX. For example:

\begin{minted} {<language>}
<code>
\end{minted}

will highlight a piece of code in a chosen language. The appearance can be
customized with a number of options and color schemes.

Unlike some other packages, most notably listings, minted requires the installation
of additional software, Pygments. This may seem like a disadvantage, but there
are also significant advantages.

Pygments provides superior syntax highlighting compared to conventional packages.
For example, listings basically only highlights strings, comments and keywords.
Pygments, on the other hand, can be completely customized to highlight any kind
of token the source language might support. This might include special formatting
sequences inside strings, numbers, different kinds of identifiers and exotic constructs
such as HTML tags.

Some languages make this especially desirable. Consider the following Ruby code
as an extreme, but at the same time typical, example:

class Foo

def init
pi = Math::PI
@var = "Pi is approx. #{pi}"
end
end

Here we have four different colors for identifiers (five, if you count keywords) and
escapes from inside strings, none of which pose a problem for Pygments.

Additionally, installing Pygments is actually incredibly easy (see the next section).

2 Installation

2.1 Prerequisites

Pygments is written in Python, so make sure that you have Python 2.6 or later
installed on your system. This may be easily checked from the command line:

$ python --version
Python 2.7.5

If you don’t have Python installed, you can download it from the Python website
or use your operating system’s package manager.

Some Python distributions include Pygments (see some of the options under
“Alternative Implementations” on the Python site). Otherwise, you will need
to install Pygments manually. This may be done by installing setuptools, which
facilitates the distribution of Python applications. You can then install Pygments
using the following command:

$ sudo easy_install Pygments

Under Windows, you will not need the sudo, but may need to run the command
prompt as administrator. Pygments may also be installed with pip:

$ pip install Pygments

If you already have Pygments installed, be aware that the latest version is recom-
mended (at least 1.4 or later). Some features, such as escapeinside, will only
work with 2.0+. minted may work with versions as early as 1.2, but there are no
guarantees.

2.2 Required packages

minted requires that the following packages be available and reasonably up to date
on your system. All of these ship with recent TEX distributions.

e keyval e calc e xcolor
e kvoptions e ifplatform e lineno
e fancyvrb e pdftexcmds e framed
o float e etoolbox

e shellesc (for
e ifthen e xstring luatex 0.87+)

2.3 Installing minted

You can probably install minted with your TEX distribution’s package manager.
Otherwise, or if you want the absolute latest version, you can install it manually
by following the directions below.

You may download minted. sty from the project’s homepage. We have to install
the file so that TEX is able to find it. In order to do that, please refer to the TEX
FAQ. If you just want to experiment with the latest version, you could locate your
current minted. sty in your TEX installation and replace it with the latest version.
Or you could just put the latest minted.sty in the same directory as the file you
wish to use it with.

http://www.python.org/download/
http://pypi.python.org/pypi/setuptools
https://github.com/gpoore/minted
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

3

Transitioning to version 2

Transitioning from minted 1.7 to 2.0+ should require no changes in almost all cases.
Version 2 provides the same interface and all of the same features.

In cases when custom code was used to hook into the minted internals, it may still
be desirable to use the old minted 1.7. For those cases, the new package mintedl is
provided. Simply load this before any other package attempts to load minted, and
you will have the code from 1.7.

A brief summary of new features in version 2.0 is provided below. More detail is
available in the Version History.

4

New inline command \mintinline.

Support for caching highlighted code with new package option cache. This
drastically reduces package overhead. Caching is on by default. A cache
directory called _minted-{document name) will be created in the document
root directory. This may be modified with the cachedir package option.

Automatic line breaking for all commands and environments with new option
breaklines. Many additional options for customizing line breaking.

Support for Unicode under the pdfTeX engine.

Set document-wide options using \setminted{{opts)}. Set language-specific
options using \setminted[(lang)] {{opts)}. Similarly, set inline-specific
options using \setmintedinline.

Package option langlinenos: do line numbering by language.

Many new options, including encoding, autogobble, and escapeinside
(requires Pygments 2.0+).

New package option outputdir provides compatibility with command-line
options —output-directory and —aux-directory.

New package option draft disables Python use to give maximum perfor-
mance.

\mint can now take code delimited by matched curly braces {}.

Basic usage

4.1 Preliminary

Since minted makes calls to the outside world (that is, Pygments), you need to
tell the IATEX processor about this by passing it the —shell-escape option or it
won’t allow such calls. In effect, instead of calling the processor like this:

$ latex input
you need to call it like this:

$ latex -shell-escape input

The same holds for other processors, such as pdflatex or xelatex.

You should be aware that using -shell-escape allows ETEX to run potentially
arbitrary commands on your system. It is probably best to use -shell-escape
only when you need it, and to use it only with documents from trusted sources.

Working with OS X

If you are using minted with some versions/configurations of OS X, and are using
caching with a large number of code blocks (> 256), you may receive an error like

OSError: [Errno 24] Too many open files:
This is due to the way files are handled by the operating system, combined with
the way that caching works. To resolve this, you may use the OS X commands

launchctl limit maxfiles or ulimit -n to increase the number of files that
may be used.

4.2 A minimal complete example

The following file minimal.tex shows the basic usage of minted.

\documentclass{article}
\usepackage {minted}

\begin{document }

\begin{minted} {c}

int main() {
printf ("hello, world");
return 0;

}

\end{minted}

\end{document }

By compiling the source file like this:

$ pdflatex —-shell-escape minimal

minted

\mint

\mintinline

we end up with the following output in minimal.pdf:
int main () {

printf ("hello, world");
return O;

4.3 Formatting source code

Using minted is straightforward. For example, to highlight some Python source
code we might use the following code snippet (result on the right):

\begin{minted} {python}

def boring(args = None): def boring(args = None):
pass pass
\end{minted}

Optionally, the environment accepts a number of options in key=value notation,
which are described in more detail below.

For a single line of source code, you can alternatively use a shorthand notation:

\mint {python} |import this| import this

This typesets a single line of code using a command rather than an environment,
so it saves a little typing, but its output is equivalent to that of the minted
environment.

The code is delimited by a pair of identical characters, similar to how \verb works.
The complete syntax is \mint [{options)] {(language) } (delim){code){delim), where
the code delimiter can be almost any punctuation character. The {code) may also
be delimited with matched curly braces {}, so long as (code) itself does not contain
unmatched curly braces. Again, this command supports a number of options
described below.

Note that the \mint command is not for inline use. Rather, it is a shortcut for
minted when only a single line of code is present. The \mintinline command is
provided for inline use.

Code can be typeset inline:

X\mintinline{python} {print (x**2) }X Xprint(x**Z)X: ‘

The syntax is \mintinline[{options)] {{language)}(delim)(code)(delim). The
delimiters can be a pair of characters, as for \mint. They can also be a matched
pair of curly braces, {}.

The command has been carefully crafted so that in most cases it will function
correctly when used inside other commands.!

IFor example, \mintinline works in footnotes! The main exception is when the code

\inputminted

\usemintedstyle

listing

Finally, there’s the \inputminted command to read and format whole files. Its
syntax is \inputminted[{options)] { {language)} { {filename)}.

4.4 Using different styles

Instead of using the default style you may choose another stylesheet provided by
Pygments. This may be done via the following;:

\usemintedstyle{name}

The full syntax is \usemintedstyle [{language)] {(style)}. The style may be set
for the document as a whole (no language specified), or only for a particular
language. Note that the style may also be set via \setminted and via the optional
argument for each command and environment.?

To get a list of all available stylesheets, see the online demo at the Pygments
website or execute the following command on the command line:

$ pygmentize -L styles

Creating your own styles is also easy. Just follow the instructions provided on the
Pygments website.

4.5 Supported languages

Pygments supports over 300 different programming languages, template languages,
and other markup languages. To see an exhaustive list of the currently supported
languages, use the command

$ pygmentize -L lexers

5 Floating listings

minted provides the listing environment to wrap around a source code block.
This puts the code into a floating box. You can also provide a \caption and a
\label for such a listing in the usual way (that is, as for the table and figure
environments):

contains the percent % or hash # characters, or unmatched curly braces.
2Version 2.0 added the optional language argument and removed the restriction that the
command be used in the preamble.

http://pygments.org/demo/
http://pygments.org/demo/
http://pygments.org/docs/styles/#creating-own-styles

\listoflistings

\listingscaption

\begin{listing} [H]
\mint{cl}/(car (cons 1 '(2)))/
\caption{Example of a listing.}
\label{lst:example}
\end{listing}

Listing \ref{lst:example} contains an example of a listing.

will yield:
(car (cons 1 '(2)))

Listing 1: Example of a listing.

Listing 1 contains an example of a listing.

The \listoflistings macro will insert a list of all (floated) listings in the
document:

List of Listings

\listoflistings

1 Example of a listing. 10

Customizing the 1isting environment

By default, the 1isting environment is created using the float package. In that
case, the \listingscaption and \listoflistingscaption macros described
below may be used to customize the caption and list of listings. If minted is loaded
with the newfloat option, then the 1isting environment will be created with the
more powerful newfloat package instead. newfloat is part of caption, which provides
many options for customizing captions.

When newfloat is used to create the 1isting environment, customization should be
achieved using newfloat’s \SetupFloatingEnvironment command. For example,
the string “Listing” in the caption could be changed to “Program code” using
\SetupFloatingEnvironment {listing}{name=Program code}

And “List of Listings” could be changed to “List of Program Code” with

\SetupFloatingEnvironment {listing}{listname=List of Program Code}

Refer to the newfloat and caption documentation for additional information.

)

(Only applies when package option newfloat is not used.) The string “Listing’

10

http://www.ctan.org/pkg/newfloat
http://www.ctan.org/pkg/caption

\listoflistingscaption

chapter

cache=(boolean)
(default: true)

cachedir=(directory)
(def: _minted—{jobname))

in a listing’s caption can be changed. To do this, simply redefine the macro
\listingscaption, for example:

\renewcommand{\listingscaption} {Program code}

(Only applies when package option newfloat is not used.) Likewise, the
caption of the listings list, “List of Listings,” can be changed by redefining
\listoflistingscaption:

\renewcommand{\1istoflistingscaption}{List of Program Code}

6 Options

6.1 Package options

To control how IXTEX counts the 1isting floats, you can pass either the section
or chapter option when loading the minted package. For example, the following
will cause listings to be counted by chapter:

\usepackage [chapter] {minted}

minted works by saving code to a temporary file, highlighting the code via Pygments
and saving the output to another temporary file, and inputting the output into the
ETEX document. This process can become quite slow if there are several chunks of
code to highlight. To avoid this, the package provides a cache option. This is on
by default.

The cache option creates a directory _minted-{jobname) in the document’s root
directory (this may be customized with the cachedir option).® Files of highlighted
code are stored in this directory, so that the code will not have to be highlighted
again in the future. In most cases, caching will significantly speed up document
compilation.

Cached files that are no longer in use are automatically deleted.*

This allows the directory in which cached files are stored to be specified. Paths

3The directory is actually named using a “sanitized” copy of (jobname), in which spaces and
asterisks have been replaced by underscores, and double quotation marks have been stripped. If
the file name contains spaces, \ jobname will contain a quote-wrapped name, except under older
versions of MiKTeX which used the name with spaces replaced by asterisks. Using a “sanitized”
(jobname) is simpler than accomodating the various escaping conventions.

4This depends on the main auxiliary file not being deleted or becoming corrupted. If that
happens, you could simply delete the cache directory and start over.

11

finalizecache=(boolean)

(default:

frozencache=(boolean)

(default:

false)

false)

should use forward spaces, even under Windows.

Special characters must be escaped. For example, cachedir=~/mintedcache
would not work because the tilde ~ would be converted into the IXTEX com-
mands for a non-breaking space, rather than being treated literally. Instead,
use \string~/mintedcache, \detokenize{~/mintedcache}, or an equhmdent
solution.

Paths may contain spaces, but only if the entire (directory) is wrapped in curly
braces {}, and only if the spaces are quoted. For example,

cachedir = {\detokenize{~/"minted cache"/"with spaces"}}

Note that the cache directory is relative to the outputdir, if an outputdir is
specified.

In some cases, it may be desirable to use minted in an environment in which
—-shell-escape is not allowed. A document might be submitted to a publisher or
preprint server or used with an online service that does not support —shell-escape.
This is possible as long as minted content does not need to be modified.

Compiling with the finalizecache option prepares the cache for use in an envi-
ronment without ~shell-escape.® Once this has been done, the finalizecache
option may be swapped for the frozencache option, which will then use the frozen
(static) cache in the future, without needing -shell-escape.

Use a frozen (static) cache created with the finalizecache option. When
frozencache is on, —shell-escape is not needed, and Python and Pygments are
not required. In addition, any external files accessed through \inputminted are
no longer necessary.

This option must be used with care. A document must be in final form,
as far as minted is concerned, before frozencache is turned on, and the
document must have been compiled with finalizecache. When this
option is on, minted content cannot be modified, except by editing the
cache files directly. Changing any minted settings that require Pygments
or Python is not possible. If minted content is incorrectly modified after
frozencache is turned on, minted cannot detect the modification.

If you are using frozencache, and want to verify that minted settings or content
have not been modified in an invalid fashion, you can test the cache using the
following procedure.

1. Obtain a copy of the cache used with frozencache.

50rdinarily, cache files are named using an MD5 hash of highlighting settings and highlighted
text. finalizecache renames cache files using a 1isting<number>.pygtex scheme.
This makes it simpler to match up document content and cache files, and is also necessary for the
XeTeX engine since prior to TeX Live 2016 it lacked the built-in MD5 capabilities that pdfTeX
and LuaTeX have.

12

draft=(boolean)

(default:

final=(boolean)

(default:

kpsewhich=(boolean)

(default:

false)

true)

false)

2. Compile the document in an environment that supports —-shell-escape,
with finalizecache=true and frozencache=false. This essentially re-
generates the frozen (static) cache.

3. Compare the original cache with the newly generated cache. Under Linux
and OS X, you could use diff; under Windows, you probably want fc. If
minted content and settings have not been modified in an invalid fashion, all
files will be identical (assuming that compatible versions of Pygments are
used for both caches).

This uses fancyvrb alone for all typesetting; Pygments is not used. This trades syntax
highlighting and some other minted features for faster compiling. Performance
should be essentially the same as using fancyvrb directly; no external temporary
files are used. Note that if you are not changing much code between compiles, the
difference in performance between caching and draft mode may be minimal. Also
note that draft settings are typically inherited from the document class.

Draft mode does not support autogobble. Regular gobble, 1inenos, and most
other options not related to syntax highlighting will still function in draft mode.

Documents can usually be compiled without shell escape in draft mode. The
ifplatform package may issue a warning about limited functionality due to shell
escape being disabled, but this may be ignored in almost all cases. (Shell escape
is only really required if you have an unusual system configuration such that the
\ifwindows macro must fall back to using shell escape to determine the system.
See the ifplatform documentation for more details: http://www.ctan.org/pkg/
ifplatform)

If the cache option is set, then all existing cache files will be kept while draft
mode is on. This allows caching to be used intermitently with draft mode without
requiring that the cache be completely recreated each time. Automatic cleanup of
cached files will resume as soon as draft mode is turned off. (This assumes that the
auxiliary file has not been deleted in the meantime; it contains the cache history
and allows automatic cleanup of unused files.)

This is the opposite of draft; it is equivalent to draft=false. Again, note that
draft and final settings are typically inherited from the document class.

This option uses kpsewhich to locate files that are to be highlighted. Some build
tools such as texi2pdf function by modifying TEXINPUTS; in some cases, users
may customize TEXINPUTS as well. The kpsewhich option allows minted to work
with such configurations.

This option may add a noticeable amount of overhead on some systems, or with
some system configurations.

This option does mot make minted work with the -output-directory and
—aux—-directory command-line options for WTEX. For those, see the outputdir
package option.

13

http://www.ctan.org/pkg/ifplatform
http://www.ctan.org/pkg/ifplatform

langlinenos=(boolean)

(default:

newfloat=(boolean)

(default:

outputdir=(directory)

(default:

false)

false)

(none))

Under Windows, this option currently requires that PowerShell be installed. It
may need to be installed in versions of Windows prior to Windows 7.

minted uses the fancyvrb package behind the scenes for the code typesetting.
fancyvrb provides an option firstnumber that allows the starting line number of an
environment to be specified. For convenience, there is an option firstnumber=1last
that allows line numbering to pick up where it left off. The 1anglinenos option
makes firstnumber work for each language individually with all minted and
\mint usages. For example, consider the code and output below.

\begin{minted} [linenos] {python}
def f(x):

return x#*=*2
\end {minted}

\begin{minted} [linenos] {ruby}
def func
puts "message"
end
\end{minted}

\begin{minted} [linenos, firstnumber=last] {python}
def g(x):

return 2+*x
\end {minted}

1 def f(x):
2 return xx#*2

1 def func
2 puts "message"
3 end

3 def g(x):
4 return 2x+x

Without the 1langlinenos option, the line numbering in the second Python envi-
ronment would not pick up where the first Python environment left off. Rather, it
would pick up with the Ruby line numbering.

By default, the 1isting environment is created using the float package. The
newfloat option creates the environment using newfloat instead. This provides
better integration with the caption package.

The -output-directory and —aux-directory (MiKTeX) command-line options
for N TEX cause problems for minted, because the minted temporary files are saved
in <outputdir>, but minted still looks for them in the document root directory.
There is no way to access the value of the command-line option so that minted
can automatically look in the right place. But it is possible to allow the output
directory to be specified manually as a package option.

The output directory should be specified using an absolute path or a path relative
to the document root directory. Paths should use forward spaces, even under

14

section

Windows. Special characters must be escaped, while spaces require quoting and
need the entire (directory) to be wrapped in curly braces {}. See cachedir above
for examples of escaping and quoting.

To control how ETEX counts the 1isting floats, you can pass either the section
or chapter option when loading the minted package.

6.2 Macro option usage

All minted highlighting commands accept the same set of options. Options are
specified as a comma-separated list of key=value pairs. For example, we can
specify that the lines should be numbered:

\begin{minted} [linenos=true] {c++}
#include <iostream> 1 #include <iostream>
int main () { 2 int main () {
std::cout << "Hello " 3 std::cout << "Hello "
<< "world" 4 << "world"
<< std::endl; 5 << std::endl;
} 6 }
\end{minted}
An option value of true may also be omitted entirely (including the “=”). To

customize the display of the line numbers further, override the \theFancyvVerbLine
command. Consult the fancyvrb documentation for details.

\mint accepts the same options:

\mint [1inenos] {perl}|S$Sx=~/foo/| 1 $Sx=~/foo/

Here’s another example: we want to use the BTEX math mode inside comments:

\begin{minted} [mathescape] {python}

Returns $\sum_{i=1}"{n}i$ # Returns .. i

def sum_from one_to(n): def sum_from_ one_to(n):
r = range(l, n + 1) r = range(l, n + 1)
return sum(r) return sum(r)

\end{minted}

To make your XTEX code more readable you might want to indent the code inside
a minted environment. The option gobble removes these unnecessary whitespace
characters from the output. There is also an autogobble option that detects the
length of this whitespace automatically.

15

\setminted

\setmintedinline

autogobble

baselinestretch

breakafter

\begin{minted} [gobble=2,
showspaces] {python}

def boring(args = None): def_boring(args_=,_None) :
pass Lo Pass
\end {minted}
versus versus

\begin{minted} [showspaces] {python} wo.def boring(args = None):
def boring(args = None) : e Pass
pass
\end{minted}

You may wish to set options for the document as a whole, or for an entire language.
This is possible via \setminted[{language)] { {key=value,...)}. Language-specific
options override document-wide options. Individual command and environment
options override language-specific options.

You may wish to set separate options for \mintinline, either for the document as
a whole or for a specific language. This is possible via \setmintedinline. The
syntax is \setmintedinline[{language)] {{key=value,...)}. Language-specific
options override document-wide options. Individual command options override
language-specific options. All settings specified with \setmintedinline override
those set with \setminted. That is, inline settings always have a higher precedence
than general settings.

6.3 Available options

Following is a full list of available options. For more detailed option descriptions
please refer to the fancyvrb and Pygments documentation.

(boolean) (default: false)
Remove (gobble) all common leading whitespace from code. Essentially a version
of gobble that automatically determines what should be removed. Good for code
that originally is not indented, but is manually indented after being pasted into a
ETEX document.

... text.
\begin{minted} [autogobble] {python} ...text.
def f(x):)
return xx*2 def f(i). ,
\end{minted} return x#*x*
(auto|dimension) (default: auto)

Value to use as for baselinestretch inside the listing.

(string) (default: (none))
Break lines after specified characters, not just at spaces, when breaklines=true.
For example, breakafter=-/ would allow breaks after any hyphens or slashes.
Special characters given to breakafter should be backslash-escaped (usually #, {,
}, %, [, 1; the backslash \ may be obtained via \\).

16

breakaftergroup

breakaftersymbolpre

breakaftersymbolpost

breakanywhere

breakanywheresymbolpre

breakanywheresymbolpost

breakautoindent

breakbefore

For an alternative, see breakbefore. When breakbefore and breakafter are
used for the same character, breakbeforegroup and breakaftergroup must both
have the same setting.

\begin{minted} [breaklines, breakafter=d]{python}

\end{minted}

some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCould
— NeverFitOnOneLine'

(boolean) (default: true)
When breakafter is used, group all adjacent identical characters together, and
only allow a break after the last character. When breakbefore and breakafter
are used for the same character, breakbeforegroup and breakaftergroup must
both have the same setting.

(string) (default: \, \footnotesize\ensuremath{_\rfloor}, J)
The symbol inserted pre-break for breaks inserted by breakafter.
(string) (default: (none))
The symbol inserted post-break for breaks inserted by breakafter.
(boolean) (default: false)
Break lines anywhere, not just at spaces, when breaklines=true.
\begin{minted} [breaklines, breakanywhere]{python}
some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCouldNeverFitOnOneLine'
\end {minted}
some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCouldNev
— erFitOnOnelLine'

(string) (default: \, \footnotesize\ensuremath{_\rfloor}, |)
The symbol inserted pre-break for breaks inserted by breakanywhere.

(string) (default: (none))
The symbol inserted post-break for breaks inserted by breakanywhere.

(boolean) (default: true)
When a line is broken, automatically indent the continuation lines to the indentation
level of the first line. When breakautoindent and breakindent are used together,
the indentations add. This indentation is combined with breaksymbolindentleft
to give the total actual left indentation. Does not apply to \mintinline.

(string) (default: (none))
Break lines before specified characters, not just at spaces, when breaklines=true.
For example, breakbefore=A would allow breaks before capital A’s. Special

17

some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCouldNeverFitOnOneLine'

breakbeforegroup

breakbeforesymbolpre

breakbeforesymbolpost

breakbytoken

breakbytokenanywhere

breakindent

characters given to breakbefore should be backslash-escaped (usually #, {, }, %,
[, 1; the backslash \ may be obtained via \\).

For an alternative, see breakafter. When breakbefore and breakafter are
used for the same character, breakbeforegroup and breakaftergroup must both
have the same setting.

\begin{minted} [breaklines, breakbefore=A]{python}

\end{minted}

some_string = 'SomeTextThatGoesOnJ
— AndOnForSoLongThatItCouldNeverFitOnOneLine'

(boolean) (default: true)
When breakbefore is used, group all adjacent identical characters together, and
only allow a break before the first character. When breakbefore and breakafter
are used for the same character, breakbeforegroup and breakaftergroup must
both have the same setting.

(string) (default: \, \footnotesize\ensuremath{_\rfloor},)
The symbol inserted pre-break for breaks inserted by breakbefore.

(string) (default: (none))
The symbol inserted post-break for breaks inserted by breakbefore.

(boolean) (default: false)
Only break lines at locations that are not within tokens; prevent tokens from
being split by line breaks. By default, breaklines causes line breaking at the
space nearest the margin. While this minimizes the number of line breaks that
are necessary, it can be inconvenient if a break occurs in the middle of a string or
similar token.

This is not compatible with draft mode. A complete list of Pygments tokens
is available at http://pygments.org/docs/tokens/. If the breaks provided by
breakbytoken occur in unexpected locations, it may indicate a bug or shortcoming
in the Pygments lexer for the language.

(boolean) (default: false)
Like breakbytoken, but also allows line breaks between immediately adja-
cent tokens, not just between tokens that are separated by spaces. Using
breakbytokenanywhere with breakanywhere is redundant.

(dimension) (default: opt)
When a line is broken, indent the continuation lines by this amount. When
breakautoindent and breakindent are used together, the indentations add.
This indentation is combined with breaksymbolindentleft to give the total
actual left indentation. Does not apply to \mintinline.

18

some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCouldNeverFitOnOneLine'

http://pygments.org/docs/tokens/

breaklines

(boolean) (default: false)
Automatically break long lines in minted environments and \mint commands, and
wrap longer lines in \mintinline.

This is not compatible with the option obeytabs. Additional information
about the incompatibility is on GitHub.

By default, automatic breaks occur at space characters. Use breakanywhere
to enable breaking anywhere; use breakbytoken, breakbytokenanywhere, and
breakafter for more fine-tuned breaking. Using escapeinside to escape to
ETEX and then insert a manual break is also an option. For example, use
escapeinside=| |, and then insert |\\| at the appropriate point. (Note that
escapeinside does not work within strings.)

...text. ...text.
\begin{minted} [breaklines] {python}
def f(x): def f(x):
return 'Some text ' + str(x) return 'Some text ' +
\end{minted} < str(x)

Breaking in minted and \mint may be customized in several ways. To customize the
indentation of broken lines, see breakindent and breakautoindent. To customize
the line continuation symbols, use breaksymbolleft and breaksymbolright.
To customize the separation between the continuation symbols and the code,
use breaksymbolsepleft and breaksymbolsepright. To customize the ex-
tra indentation that is supplied to make room for the break symbols, use
breaksymbolindentleft and breaksymbolindentright. Since only the left-
hand symbol is used by default, it may also be modified using the alias options
breaksymbol, breaksymbolsep, and breaksymbolindent. Note than none of
these options applies to \mintinline, since they are not relevant in the inline
context.

An example using these options to customize the minted environment is shown
below. This uses the \carriagereturn symbol from the dingbat package.

19

https://github.com/gpoore/minted/issues/99

breaksymbol

breaksymbolleft

breaksymbolright

\begin{minted} [breaklines,
breakautoindent=false,
breaksymbolleft=\raisebox{0.8ex} {
\small\reflectbox{\carriagereturn}},
breaksymbolindentleft=0pt,
breaksymbolsepleft=0pt,
breaksymbolright=\small\carriagereturn,
breaksymbolindentright=0pt,
breaksymbolsepright=0pt] {python}

def f(x):
return 'Some text ' + str(x) + ' some more text ' +
— str(x) + ' even more text that goes on for a
— while'
\end{minted}
def f(x):
return 'Some text ' + str(x) + ' some more text ' +)
Cstr(x) + ' even more text that goes on for a while'

Automatic line breaks are limited with Pygments styles that use a colored back-
ground behind large chunks of text. This coloring is accomplished with \colorbox,
which cannot break across lines. It may be possible to create an alternative to
\colorbox that supports line breaks, perhaps with TikZ, but the author is unaware
of a satisfactory solution. The only current alternative is to redefine \colorbox
so that it does nothing. For example,

\AtBeginEnvironment {minted} {\renewcommand{\colorbox} [3] []{#3}}

uses the etoolbox package to redefine \colorbox within all minted environments.

Automatic line breaks will not work with showspaces=true unless you use
breakanywhere. You may be able to change the definition of \Fv@Space if
you need this; see the fancyvrb implementation for details.

(string) (default: breaksymbolleft)
Alias for breaksymbolleft.

@tﬁng) (deﬁuﬂt \tiny\ensuremath{\hookrightarrow},LJ
The symbol used at the beginning (left) of continuation lines when breaklines=true.
To have no symbol, simply set breaksymbolleft to an empty string (“=,” or
“={}”). The symbol is wrapped within curly braces {} when used, so there is no
danger of formatting commands such as \tiny “escaping.”

The \hookrightarrow and \hookleftarrow may be further customized by the
use of the \rotatebox command provided by graphicx. Additional arrow-type
symbols that may be useful are available in the dingbat (\carriagereturn) and
mnsymbol (hook and curve arrows) packages, among others.

Does not apply to \mintinline.

(string) (default: (none))

20

breaksymbolindent

breaksymbolindentleft

breaksymbolindentright

breaksymbolsep

breaksymbolsepleft

breaksymbolsepright

bgcolor

The symbol used at breaks (right) when breaklines=true. Does not appear at
the end of the very last segment of a broken line.

(dimension)
Alias for breaksymbolindentleft.

(default: breaksymbolindentleft)

(dimension) (default: width of 4 characters in teletype font at default point size)
The extra left indentation that is provided to make room for breaksymbolleft.
This indentation is only applied when there is a breaksymbolleft.

This may be set to the width of a specific number of (fixed-width) characters by
using an approach such as

\newdimen\temporarydimen
\settowidth{\temporarydimen} {\ttfamily aaaa}

and then using breaksymbolindentleft=\temporarydimen.
Does not apply to \mintinline.

(dimension) (default: width of 4 characters in teletype font at default point size)
The extra right indentation that is provided to make room for breaksymbolright.
This indentation is only applied when there is a breaksymbolright.

(dimension)
Alias for breaksymbolsepleft

(default: breaksymbolsepleft)

(dimension) (default: 1em)
The separation between the breaksymbolleft and the adjacent code. Does not
apply to \mintinline.

(dimension) (default: 1em)
The separation between the breaksymbolright and the adjacent code.

(string) (default: (none))
Background color of the listing. Be aware that this option has several limitations
(described below); see “Framing alternatives” below for more powerful alternatives.

The value of this option must not be a color command. Instead, it must be a color
name, given as a string, of a previously-defined color:

\definecolor{bg}{rgb}{0.95,0.95,0.95}
\begin{minted} [bgcolor=bg] {php}

<?php

<?ph *

gcﬁo "Hello, Sx"; 7 echo "Hello, $x";
2> o2

\end{minted}

This option puts minted environments and \mint commands in a snugshadex
environment from the framed package, which supports breaks across pages. (Prior
to minted 2.2, a minipage was used, which prevented page breaks and gave
undesirable spacing from surrounding text.) Be aware that if bgcolor is used with
breaklines=true, and a line break occurs just before a page break, then text

21

codetagify

encoding

escapeinside

may extend below the colored background in some instances. It is best to use a
more advanced framing package in those cases; see “Framing alternatives” below.

This option puts \mintinline inside a \colorbox, which does not al-
low line breaks. If you want to use \setminted to set background col-
ors, and only want background colors on minted and \mint, you may use
\setmintedinline{bgcolor={}} to turn off the coloring for inline commands.

Framing alternatives

If you want more reliable and advanced options for background colors and framing,
you should consider a more advanced framing package such as mdframed or tcolorbox.
It is easy to add framing to minted commands and environments using the etoolbox
package, which is automatically loaded by minted. For example, using mdframed:

\BeforeBeginEnvironment {minted}{\begin{mdframed}}
\AfterEndEnvironment {minted} {\end{mdframed}}

Some framing packages also provide built-in commands for such purposes. For
example, mdframed provides a \surroundwithmdframed command, which could
be used to add a frame to all minted environments:

\surroundwithmdframed{minted}

tcolorbox even provides a built-in framing environment with minted support. Sim-
ply use \tcbuselibrary{minted} in the preamble, and then put code within a
tcblisting environment:

\begin{tcblisting}{<tcb options>,
minted language=<language>,
minted style=<style>,
minted options={<option list>} }
<code>
\end{tcblisting}

tcolorbox provides other commands and environments for fine-tuning listing ap-
pearance and for working with external code files.

(list of strings) (default: highlight xxx, ToDO, BUG, and NOTE)
Highlight special code tags in comments and docstrings.

(string) (default: system-specific)
Sets the file encoding that Pygments expects. See also outencoding.

(string) (default: (none))
Escape to ITEX between the two characters specified in (string). All code
between the two characters will be interpreted as BTEX and typeset accordingly.
This allows for additional formatting. The escape characters need not be identical.

22

firstline

firstnumber

fontfamily

fontseries

fontsize

fontshape

formatcom

frame

Special I¥TEX characters must be escaped when they are used as the escape
characters (for example, escapeinside=\#\%). Requires Pygments 2.0+.

Escaping does not work inside strings and comments (for comments,
there is texcomments). As of Pygments 2.0.2, this means that escaping
is “fragile” with some lexers. Due to the way that Pygments implements
escapeinside, any “escaped” IXTEX code that resembles a string or comment for
the current lexer may break escapeinside. There is a Pygments issue for this
case. Additional details and a limited workaround for some scenarios are available
on the minted GitHub site.

\begin{minted} [escapeinside=||]{py}
def f(x): def f(x):
y = x|\colorbox{green} {*x}|2 y = X k% 2

return y
\end{minted}

return y

Note that when math is used inside escapes, in a few cases ligature
handling may need to be modified. The single-quote character (') is normally
a shortcut for “\prime in math mode, but this is disabled in verbatim content as a
byproduct of ligatures being disabled. For the same reason, any package that relies
on active characters in math mode (for example, icomma) will produce errors along
the lines of TeX capacity exceeded and \leavevmode\kern\z@. This may be
fixed by modifying \@noligs, as described at http://tex.stackexchange.com/
questions/223876. minted currently does not attempt to patch \@noligs due
to the potential for package conflicts.

(integer) (default: 1)
The first line to be shown. All lines before that line are ignored and do not appear
in the output.

(autolinteger) (default: auto = 1)

Line number of the first line.

(family name) (default: tt)
The font family to use. tt, courier and helvetica are pre-defined.

(series name) (default: auto — the same as the current font)

The font series to use.

(font size) (default: auto — the same as the current font)
The size of the font to use, as a size command, e.g. \footnotesize.

(font shape) (default: auto — the same as the current font)

The font shape to use.

(command) (default: (none))

A format to execute before printing verbatim text.

(deﬁnﬂt none)

(none|leftline|topline|bottomline|lines|single)
The type of frame to put around the source code listing.

23

https://bitbucket.org/birkenfeld/pygments-main/issue/1118
https://github.com/gpoore/minted/issues/70#issuecomment-111729930
http://tex.stackexchange.com/questions/223876
http://tex.stackexchange.com/questions/223876

framerule

framesep

funcnamehighlighting

gobble

keywordcase

label

labelposition

lastline

linenos

numbers

mathescape

(dimension) (default: 0.4pt)
Width of the frame.

(dimension) (default: \fboxsep)
Distance between frame and content.

(boolean) (default: true)
[For PHP only] If t rue, highlights built-in function names.

(integer) (default: 0)
Remove the first n characters from each input line.

(string) (default: ’ lower’)
Changes capitalization of keywords. Takes ’ lower’, 'upper’, or 'capitalize’.

(string) (default: empty)
Add a label to the top, the bottom or both of the frames around the code. See the
fancyvrb documentation for more information and examples. Note: This does not
add a \label to the current listing. To achieve that, use a floating environment
(section 5) instead.

(none|toplinelbottomline|all) (default: topline, all or none)
Position where to print the label (see above; default: topline if one label is
defined, all if two are defined, none else). See the fancyvrb documentation for
more information.

(integer) (default: last line of input)
The last line to be shown.

(boolean) (default: false)
Enables line numbers. In order to customize the display style of line numbers, you
need to redefine the \theFancyVerbLine macro:

\renewcommand{ \theFancyVerbLine} {\sffamily
\textcolor[rgb]{0.5,0.5,1.0}{\scriptsize
\oldstylenums{\arabic{FancyVerbLine}}}}

\begin{minted} [linenos, i def 2ii(itiia?i2;;ble-
firstnumber=11] {python} 1‘ if not i: :
def all(iterable): li return False
for iflgoéti¥able: 15 return True

return False
return True

\end{minted}

(left|right) (default: none)

Essentially the same as 1inenos, except the side on which the numbers appear
may be specified.

(boolean) (default: false)
Enable BTEX math mode inside comments. Usage as in package listings. See the
note under escapeinside regarding math and ligatures.

24

numberblanklines

numbersep

obeytabs

outencoding

python3

resetmargins

rulecolor

samepage

showspaces

showtabs

startinline

style

stepnumber

stripall

stripnl

(boolean) (default: true)
Enables or disables numbering of blank lines.

(dimension) (default: 12pt)
Gap between numbers and start of line.

(boolean) (default: false)
Due to the many issues with fancyvrb’s implementation of obeytabs, this
option should be avoided if possible.

Treat tabs as tabs instead of converting them to spaces.
This is not compatible with the option breaklines.

This will cause errors with tabbed indentation inside multiline com-
ments.

There is a GitHub issue with additional technical details.

(string) (default: system-specific)
Sets the file encoding that Pygments uses for highlighted output. Overrides any
encoding previously set via encoding.

(boolean) (default: false)
[For PythonConsoleLexer only] Specifies whether Python 3 highlighting is applied.

(boolean) (default: false)
Resets the left margin inside other environments.

(color command) (default: black)
The color of the frame.

(boolean) (default: false)
Forces the whole listing to appear on the same page, even if it doesn’t fit.

(boolean) (default: false)
Enables visible spaces: visible spaces.

(boolean) (default: false)
Enables visible tabs—only works in combination with obeytabs.

(boolean) (default: false)
[For PHP only] Specifies that the code starts in PHP mode, i.e., leading <?php is
omitted.

(string) (default: default)
Sets the stylesheet used by Pygments.

(integer) (default: 1)
Interval at which line numbers appear.

(boolean) (default: false)
Strip all leading and trailing whitespace from the input.

(boolean) (default: true)

25

https://github.com/gpoore/minted/issues/99

tabsize

texcl

texcomments

xleftmargin

xrightmargin

\newminted

Strip leading and trailing newlines from the input.

(integer) (default: 8)
The number of spaces a tab is equivalent to. If obeytabs is not active, tabs will
be converted into this number of spaces. If obeytabs is active, tab stops will be
set this number of space characters apart.

(boolean) (default: false)
Enables IMTEX code inside comments. Usage as in package listings. See the note
under escapeinside regarding math and ligatures.

(boolean) (default: false)
Enables TEX code inside comments. The newer name for texcl. See the note
under escapeinside regarding math and ligatures.

As of Pygments 2.0.2, texcomments fails with multiline C/C++ preprocessor
directives, and may fail in some other circumstances. This is because preprocessor
directives are tokenized as Comment .Preproc, SO texcomments causes preprocessor
directives to be treated as literal I#TEX code. An issue has been opened at the
Pygments site; additional details are also available on the minted GitHub site.

(dimension) (default: 0)
Indentation to add before the listing.

(dimension) (default: 0)
Indentation to add after the listing.

7 Defining shortcuts

Large documents with a lot of listings will nonetheless use the same source language
and the same set of options for most listings. Always specifying all options is
redundant, a lot to type and makes performing changes hard.

One option is to use \setminted, but even then you must still specify the language
each time.

minted therefore defines a set of commands that lets you define shortcuts for the
highlighting commands. Each shortcut is specific for one programming language.

\newminted defines a new alias for the minted environment:

\newminted{cpp} {gobble=2, linenos}

\begin{cppcode}
template <typename T>
T 1d(T value) {
return value;

template <typename T>
T id(T wvalue) {
return value;

AW e

}

}
\end{cppcode}

26

http://pygments.org/docs/tokens/
https://bitbucket.org/birkenfeld/pygments-main/issue/1086/wrong-processing-of-in-c-c-macros-if-is
https://github.com/gpoore/minted/issues/66

If you want to provide extra options on the fly, or override existing default options,
you can do that, too:

\newminted{cpp} {gobble=2, linenos}

\begin{cppcodex}{linenos=false,
frame=single}
int const answer = 42;
\end{cppcodex}

int const answer = 42;

Notice the star “” behind the environment name—due to restrictions in fancyvrb’s
handling of options, it is necessary to provide a separate environment that accepts
options, and the options are not optional on the starred version of the environment.

The default name of the environment is (language)code. If this name clashes with
another environment or if you want to choose an own name for another reason,
you may do so by specifying it as the first argument: \newminted[{environment
name)] {{language)} {{options)}.

Like normal minted environments, environments created with \newminted may
be used within other environment definitions. Since the minted environments use
fancyvrb internally, any environment based on them must include the fancyvrb
command \VerbatimEnvironment. This allows fancyvrb to determine the name
of the environment that is being defined, and correctly find its end. It is best to
include this command at the beginning of the definition. For example,

\newminted{cpp} {gobble=2, linenos}
\newenvironment {env} {\VerbatimEnvironment\begin{cppcode}} {\end{cppcode}}

\newmint The above macro only defines shortcuts for the minted environment. The main
reason is that the short command form \mint often needs different options—at
the very least, it will generally not use the gobble option. A shortcut for \mint is
defined using \newmint [{macro name)1 {(language)} { {options)}. The arguments
and usage are identical to \newminted. If no (macro name) is specified, (language)
is used.

\newmint {perl} {showspaces}
my_$foo_=_Sbar;
\perl/my $foo = Sbar;/

\newmintinline This creates custom versions of \mintinline. The syntax is the same as that
for \newmint: \newmintinline[{macro name)] {{language)} {{options)}. If a
(macro name) is not specified, then the created macro is called \{language)inline.

\newmintinline{perl} {showspaces}

Xmy, $foo_=_Sbar;X

X\perlinline/my $foo = S$bar;/X

\newmintedfile This creates custom versions of \inputminted. The syntax is

\newmintedfile [{macro name)] {{language)} { {options)}

27

If no {(macro name) is given, then the macro is called \{language)file.

8 FAQ and Troubleshooting

In some cases, minted may not give the desired result due to other document settings
that it cannot control. Common issues are described below, with workarounds or
solutions. You may also wish to search tex.stackexchange.com or ask a question
there, if you are working with minted in a non-typical context.

e I receive a “Font Warning: Some font shapes were not available”
message, or bold or italic seem to be missing. This due to a limitation
in the font that is currently in use for typesetting code. In some cases, the
default font shapes that I TEX substitutes are perfectly adequate, and the
warning may be ignored. In other cases, the font substitutions may not clearly
indicate bold or italic text, and you will want to switch to a different font.
See The KTEX Font Catalogue’s section on Typewriter Fonts for alternatives.
If you like the default IXTEX fonts, the Imodern package is a good place to
start. The beramono and courier packages may also be good options.

e I receive a “Too many open files” error under OS X when using
caching. See the note on OS X under Section 4.1.

¢ Weird things happen when I use the fancybox package. fancybox
conflicts with fancyvrb, which minted uses internally. When using fancybox,
make sure that it is loaded before minted (or before fancyvrb, if fancyvrb is
not loaded by minted).

¢ When I use minted with KOMA-Script document classes, I get
warnings about \float@addtolists. minted uses the float package to
produce floated listings, but this conflicts with the way KOMA-Script does
floats. Load the package scrhack to resolve the conflict. Or use minted’s
newfloat package option.

e Tilde characters ~ are raised, almost like superscripts. This is a font
issue. You need a different font encoding, possibly with a different font.
Try \usepackage[T1]{fontenc}, perhaps with \usepackage{lmodern},
or something similar.

e I’'m getting errors with math, something like TeX capacity exceeded
and \leavevmode\kern\z@. This is due to ligatures being disabled within
verbatim content. See the note under escapeinside.

¢ Quotation marks and backticks don’t look right. Backtick char-
acters ' are appearing as left quotes. Single quotes are appear-
ing as curly right quotes. This is due to how Pygments outputs
KTEX code, combined with how IXTEX deals with verbatim content. Try
\usepackage {upquote}.

28

http://tex.stackexchange.com/
http://www.tug.dk/FontCatalogue/typewriterfonts.html

¢ I’'m getting errors with Beamer. Due to how Beamer treats verbatim
content, you may need to use either the fragile or fragile=singleslide
options for frames that contain minted commands and environments.
fragile=singleslide works best, but it disables overlays. fragile works
by saving the contents of each frame to a temp file and then reusing them. This
approach allows overlays, but will break if you have the string \end{frame}
at the beginning of a line (for example, in a minted environment). To work
around that, you can indent the content of the environment (so that the
\end{frame} is preceded by one or more spaces) and then use the gobble
or autogobble options to remove the indentation.

e Tabs are eaten by Beamer. This is due to a bug in Beamer’s treatment
of verbatim content. Upgrade Beamer or use the linked patch. Otherwise,
try fragile=singleslide if you don’t need overlays, or consider using
\inputminted or converting the tabs into spaces.

o I’'m trying to create several new minted commands/environments,
and want them all to have the same settings. I’m saving the set-
tings in a macro and then using the macro when defining the com-
mands/environments. But it’s failing. This is due to the way that
keyval works (minted uses it to manage options). Arguments are not ex-
panded. See this and this for more information. It is still possible to do what
you want; you just need to expand the options macro before passing it to
the commands that create the new commands/environments. An example is
shown below. The \expandafter is the vital part.

\def\args{linenos, frame=single, fontsize=\footnotesize, style=bw}

\newcommand{\makenewmintedfiles} [1]{%
\newmintedfile[inputlatex] {latex}{#1}%
\newmintedfile[inputc] {c} {#1}%

}

\expandafter\makenewmintedfiles\expandafter{\args}

e I want to use \mintinline in a context that normally doesn’t allow
verbatim content. The \mintinline command will already work in many
places that do not allow normal verbatim commands like \verb, so make
sure to try it first. If it doesn’t work, one of the simplest alternatives is to
save your code in a box, and then use it later. For example,

\newsavebox\mybox
\begin{lrbox} {\mybox}
\mintinline{cpp}{std::cout}
\end{lrbox}

\commandthatdoesnotlikeverbatim{Text \usebox{\mybox}}

29

https://bitbucket.org/rivanvx/beamer/issue/310/tab-characters-in-listings-lost-when-using
https://bitbucket.org/rivanvx/beamer/issue/310/tab-characters-in-listings-lost-when-using
http://tex.stackexchange.com/questions/13563/building-keyval-arguments-using-a-macro/13564#13564
http://tex.stackexchange.com/questions/145363/why-does-includegraphics-varone-vartwo-not-compile/145366#145366

Extended characters do not work inside minted commands and
environments, even when the inputenc package is used. Version 2.0
adds support for extended characters under the pdfTeX engine. But if you
need characters that are not supported by inputenc, you should use the XeTeX
or LuaTeX engines instead.

The polyglossia package is doing undesirable things to code. (For
example, adding extra space around colons in French.) You may
need to put your code within \begin{english}...\end{english}. This
may done for all minted environments using etoolbox in the preamble:

\usepackage{etoolbox}
\BeforeBeginEnvironment {minted} {\begin{english}}
\AfterEndEnvironment {minted} {\end{english}}

Tabs are being turned into the character sequence ~~1I. This
happens when you use XeLaTeX. You need to use the -8bit
command-line option so that tabs may be written correctly to tem-
porary files. See http://tex.stackexchange.com/questions/58732/
how-to-output-a-tabulation-into—a-file for more on XeLaTeX’s han-
dling of tab characters.

The caption package produces an error when \captionof and other
commands are used in combination with minted. Load the caption
package with the option compatibility=false. Or better yet, use minted’s
newfloat package option, which provides better caption compatibility.

I need a listing environment that supports page breaks. The built-in
listing environment is a standard float; it doesn’t support page breaks. You
will probably want to define a new environment for long floats. For example,

\usepackage{caption}
\newenvironment {longlisting} {\captionsetup{type=listing}}{}

With the caption package, it is best to use minted’s newfloat package
option. See http://tex.stackexchange.com/a/53540/10742 for more on
listing environments with page breaks.

I want to use a custom script/executable to access Pygments,
rather than pygmentize. Redefine \MintedPygmentize:

\renewcommand{\MintedPygmentize}{...}
I want to use the command-line option —output-directory, or MiK-
TeX’s —aux-directory, but am getting errors. Use the package option

outputdir to specify the location of the output directory. Unfortunately,
there is no way for minted to detect the output directory automatically.

30

http://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file
http://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file
http://tex.stackexchange.com/a/53540/10742

o I want extended characters in frame labels, but am getting errors.
This can happen with minted <2.0 and Python 2.7, due to a terminal encoding
issue with Pygments. It should work with any version of Python with minted
2.0+, which processes labels internally and does not send them to Python.

e minted environments have extra vertical space inside tabular. It
is possible to create a custom environment that eliminates the extra space.
However, a general solution that behaves as expected in the presence of
adjacent text remains to be found.

e I’'m receiving a warning from lineno.sty that “Command \@parboxrestore
has changed.” This can happen when minted is loaded after csquotes. Try
loading minted first. If you receive this message when you are not using
csquotes, you may want to experiment with the order of loading packages
and might also open an issue.

Acknowledgements

Konrad Rudolph: Special thanks to Philipp Stephani and the rest of the guys from
comp.text.tex and tex.stackexchange.com.

Geoffrey Poore: Thanks to Marco Daniel for the code on tex.stackexchange.com
that inspired automatic line breaking. Thanks to Patrick Vogt for improving TikZ
externalization compatibility.

Version History

v2.2.1 (2016/06/15)

e The shellesc package is loaded before ifplatform and other packages
that might invoke \writels (#112).

e When caching is enabled, XeTeX uses the new \mdfivesum macro from
TeX Live 2016 to hash cache content, rather than using \ShellEscape
with Python to perform hashing.

v2.2 (2016/06/08)

o All uses of \shellEscape (\writel8) no longer wrap file names and
paths with double quotes. This allows a cache directory to be speci-
fied relative to a user’s home directory, for example, ~/minted_cache.
cachedir and outputdir paths containing spaces will now require
explicit quoting of the parts of the paths that contain spaces, since
minted no longer supplies quoting. See the updated documentation for
examples (#89).

31

https://bitbucket.org/birkenfeld/pygments-main/issue/801/python-2-fails-to-detect-terminal-encoding
https://bitbucket.org/birkenfeld/pygments-main/issue/801/python-2-fails-to-detect-terminal-encoding
https://github.com/gpoore/minted/issues/82
tex.stackexchange.com

e Added breakbefore, breakbeforegroup, breakbeforesymbolpre,
and breakbeforesymbolpost. These parallel breakafterx. It is possi-
ble to use breakbefore and breakafter for the same character, so long
as breakbeforegroup and breakaftergroup have the same setting
(#117).

e Added package options finalizecache and frozencache. These al-
low the cache to be prepared for (finalizecache) and then used
(frozencache) in an environment in which -shell-escape, Python,
and/or Pygments are not available. Note that this only works if minted
content does not need to be modified, and if no settings that depend on
Pygments or Python need to be changed (#113).

o Style names containing hyphens and underscores (paraiso-light,
paraiso-dark, algol_nu) now work (#111).

e The shellesc package is now loaded, when available, for compatibility
with LuaTeX 0.874 (TeX Live 2016+, etc.). \ShellEscape is now
used everywhere instead of \immediate\writel8. If shellesc is not
available, then a \ShellEscape macro is created. When shellesc is
loaded, there is a check for versions before v0.01c to patch a bug in
v0.01b (present in TeX Live 2015) (#112).

e The bgcolor option now uses the snugshadex environment from the
framed package, so bgcolor is now compatible with page breaks. When
bgcolor is in use, immediately preceding text will no longer push the
minted environment into the margin, and there is now adequate spacing
from surrounding text (#121).

o Added missing support for fancyvrb’s labelposition (#102).

o Improved fix for TikZ externalization, thanks to Patrick Vogt (#73).

e Fixed breakautoindent; it was disabled in version 2.1 due to a bug in
breakanywhere.

o Properly fixed handling of \MintedPygmentize (#62).

¢ Added note on incompatibility of breaklines and obeytabs options.
Trying to use these together will now result in a package error (#99).
Added note on issues with obeytabs and multiline comments (#88).
Due to the various obeytabs issues, the docs now discourage using
obeytabs.

o Added note to FAQ on fancybox and fancyvrb conflict (#87).

¢ Added note to docs on the need for \VerbatimEnvironment in envi-
ronment definitions based on minted environments.

v2.1 (2015/09/09)

e Changing the highlighting style now no longer involves re-highlighing
code. Style may be changed with almost no overhead.

32

e Improved control of automatic line breaks. New option breakanywhere
allows line breaks anywhere when breaklines=true. The pre-
break and post-break symbols for these types of breaks may be
set with breakanywheresymbolpre and breakanywheresymbolpost
(#79). New option breakafter allows specifying characters after
which line breaks are allowed. Breaks between adjacent, identical
characters may be controlled with breakaftergroup. The pre-break
and post-break symbols for these types of breaks may be set with
breakaftersymbolpre and breakaftersymbolpost.

e breakbytoken now only breaks lines between tokens that are sep-
arated by spaces, matching the documentation. The new option
breakbytokenanywhere allows for breaking between tokens that are
immediately adjacent. Fixed a bug in \mintinline that produced a fol-
lowing linebreak when \mintinline was the first thing in a paragraph
and breakbytoken was true (#77).

o Fixed a bug in draft mode option handling for \inputminted (#75).

e Fixed a bug with \MintedPygmentize when a custom pygmentize was
specified and there was no pygmentize on the default path (#62).

e Added note to docs on caching large numbers of code blocks under OS X
(#78).

o Added discussion of current limitations of texcomments (#66) and
escapeinside (#70).

o PGF/TikZ externalization is automatically detected and supported
(#73).

e The package is now compatible with I#TEX files whose names contain
spaces (#85).

v2.0 (2015/01/31)

e Added the compatibility package mintedl, which provides the minted
1.7 code. This may be loaded when 1.7 compatibility is required. This
package works with other packages that \RequirePackage{minted},
so long as it is loaded first.

e Moved all old \changes into changelog.
Development releases for 2.0 (2014-January 2015)

o Caching is now on by default.

o Fixed a bug that prevented compiling under Windows when file names
contained commas.

e Added breaksymbolleft, breaksymbolsepleft, breaksymbolindentleft,
breaksymbolright, breaksymbolsepright, and breaksymbolindentright
options. breaksymbol, breaksymbolsep, and breaksymbolindent
are now aliases for the correspondent xleft options.

33

Added kpsewhich package option. This uses kpsewhich to locate the
files that are to be highlighted. This provides compatibility with build
tools like texi2pdf that function by modifying TEXINPUTS (#25).
Fixed a bug that prevented \ inputminted from working with outputdir.
Added informative error messages when Pygments output is missing.
Added final package option (opposite of draft).

Renamed the default cache directory to _minted-<jobname> (replaced
leading period with underscore). The leading period caused the cache
directory to be hidden on many systems, which was a potential source
of confusion.

breaklines and breakbytoken now work with \mintinline (#31).
bgcolor may now be set through \setminted and \setmintedinline.
When math is enabled via texcomments, mathescape, Or escapeinside,
space characters now behave as in normal math by vanishing, instead of
appearing as literal spaces. Math need no longer be specially formatted
to avoid undesired spaces.

In default value of \1istoflistingscaption, capitalized “Listings”
so that capitalization is consistent with default values for other lists
(figures, tables, algorithms, etc.).

Added newfloat package option that creates the 1isting environment
using newfloat rather than float, thus providing better compatibility
with the caption package (#12).

Added support for Pygments option stripall.

Added breakbytoken option that prevents breaklines from breaking
lines within Pygments tokens.

\mintinline uses a \colorbox when bgcolor is set, to give more

reasonable behavior (#57).

For PHP, \mintinline automatically begins with startinline=true

(#23).

Fixed a bug that threw off line numbering in minted when langlinenos=false
and firstnumber=last. Fixed a bug in \mintinline that threw off
subsequent line numbering when langlinenos=false and firstnumber=1last.

Improved behavior of \mint and \mintinline in draft mode.

The \mint command now has the additional capability to take code
delimited by paired curly braces {}.

It is now possible to set options only for \mintinline using the new
\setmintedinline command. Inline options override options specified
via \setminted.

Completely rewrote option handling. fancyvrb options are now handled
on the ITEX side directly, rather than being passed to Pygments and
then returned. This makes caching more efficient, since code is no longer
rehighlighted just because fancyvrb options changed.

34

Fixed buffer size error caused by using cache with a very large number
of files (#61).

Fixed autogobble bug that caused failure under some operating sys-
tems.

Added support for escapeinside (requires Pygments 2.0+; #38).
Fixed issues with XeTeX and caching (#40).

The upquote package now works correctly with single quotes when
using Pygments 1.6+ (#34).

Fixed caching incompatibility with Linux and OS X under xelatex (#18
and #42).
Fixed autogobble incompatibility with Linux and OS X.

\mintinline and derived commands are now robust, via \newrobustcmd
from etoolbox.

Unused styles are now cleaned up when caching.
Fixed a bug that could interfere with caching (#24).

Added draft package option (#39). This typesets all code using
fancyvrb; Pygments is not used. This trades syntax highlighting for
maximum speed in compiling.

Added automatic line breaking with breaklines and related options
(#1).

Fixed a bug with boolean options that needed a False argument to
cooperate with \setminted (#48).

v2.0-alpha3 (2013/12/21)

Added autogobble option. This sends code through Python’s
textwrap.dedent () to remove common leading whitespace.

Added package option cachedir. This allows the directory in which
cached content is saved to be specified.

Added package option outputdir. This allows an output directory
for temporary files to be specified, so that the package can work with
LaTeX’s —output-directory command-line option.

The kvoptions package is now required. It is needed to process key-
value package options, such as the new cachedir option.

Many small improvements, including better handling of paths under
Windows and improved key system.

v2.0-alpha2 (2013/08/21)

\DeleteFile now only deletes files if they do indeed exist. This elimi-
nates warning messages due to missing files.

Fixed a bug in the definition of \DeleteFile for non-Windows systems.

35

Added support for Pygments option stripnl.

Settings macros that were previously defined globally are now defined lo-
cally, so that \ setminted may be confined by \begingroup. ..\endgroup
as expected.

Macro definitions for a given style are now loaded only once per docu-
ment, rather than once per command/environment. This works even

without caching.

A custom script/executable may now be substituted for pygmentize
by redefining \MintedPygmentize.

v2.0alpha (2013/07/30)

Added the package option cache. This significantly increases com-
pilation speed by caching old output. For example, compiling the
documentation is around 5x faster.

New inline command \mintinline. Custom versions can be created

via \newmintinline. The command works inside other commands (for

example, footnotes) in most situations, so long as the percent and hash
characters are avoided.

The new \setminted command allows options to be specified at the
document and language levels.

All extended characters (Unicode, etc.) supported by inputenc now
work under the pdfTeX engine. This involved using \detokenize on
everything prior to saving.

New package option langlinenos allows line numbering to pick up
where it left off for a given language when firstnumber=last.

New options, including style, encoding, outencoding, codetagify,
keywordcase, texcomments (same as texcl), python3 (for the
PythonConsoleLexer), and numbers.

\usemintedstyle now takes an optional argument to specify the style
for a particular language, and works anywhere in the document.

xcolor is only loaded if color isn’t, preventing potential package
clashes.

1.7 (2011/09/17)

Options for float placement added [2011/09/12]

Fixed tabsize option [2011/08/30]

More robust detection of the ~shell-escape option [2011/01/21]
Added the 1abel option [2011/01/04]

Installation instructions added [2010/03/16]

Minimal working example added [2010/03/16]

36

o Added PHP-specific options [2010/03/14]
o Removed unportable flag from Unix shell command [2010/02/16]

1.6 (2010/01/31)

o Added font-related options [2010/01/27]
o Windows support added [2010/01/27]

o Added command shortcuts [2010/01/22]
o Simpler versioning scheme [2010/01/22]

0.1.5 (2010/01/13)

o Added fillcolor option [2010/01/10]
o Added float support [2010/01/10]

o Fixed firstnumber option [2010/01/10]
o Removed caption option [2010/01/10]

0.0.4 (2010/01,/08)
o Initial version [2010/01/08]

9 Implementation

9.1 Required packages

Load required packages. For compatibility reasons, most old functionality should
be supported with the original set of packages. More recently added packages, such
as etoolbox and xstring, should only be used for new features when possible.
shellesc must be loaded before any packages that invoke \writel8, since it is

possible that they haven’t yet been patched to work with LuaTeX 0.87+.

\RequirePackage{keyval}
\RequirePackage{kvoptions}
\RequirePackage{fancyvrb}
\RequirePackage{float}
\RequirePackage{ifthen}
\RequirePackage{calc}
\IfFileExists{shellesc.sty}
{\RequirePackage{shellesc}
\Q@ifpackagelater{shellesc}{2016/04/29}
{}
{\protected\def\ShellEscape{\immediate\writel8 }}}
{\protected\def\ShellEscape{\immediate\writel8 }}
\RequirePackage{ifplatform}
\RequirePackage{pdftexcmds}

© 0O~N OO0 B W N K

H R R R R
H W N H O

37

\minted@float@within

newfloat

cache

\minted@jobname

15 \RequirePackage{etoolbox}
16 \RequirePackage{xstring}
17 \RequirePackage{lineno}
18 \RequirePackage{framed}

Make sure that either color or xcolor is loaded by the beginning of the document.

19 \AtBeginDocument{$%

20 \Q@ifpackageloaded{color}{}{%

21 \Q@ifpackageloaded{xcolor}{}{\RequirePackage{xcolor}}}%
22 }

9.2 Package options

Define an option that controls the section numbering of the 1isting float.

23 \DeclareVoidOption{chapter}{\def\minted@float@within{chapter}}
24 \DeclareVoidOption{section}{\def\minted@float@within{section}}

Define an option to use newfloat rather than float to create a floated 1isting
environment.

25 \DeclareBoolOption{newfloat}

Define an option that determines whether highlighted content is cached. We use a
boolean to keep track of its state.

26 \DeclareBoolOption[true] {cache}

At various points, temporary files and directories will need to be named after
the main .tex file. The typical way to do this is to use \jobname. However,
if the file name contains spaces, then \ jobname will contain the name wrapped
in quotes (older versions of MiKTeX replace spaces with asterisks instead, and
XeTeX apparently allows double quotes within file names, in which case names are
wrapped in single quotes). While that is perfectly fine for working with I¥TEX
internally, it causes problems with \writel8, since quotes will end up in unwanted
locations in shell commands. It would be possible to strip the wrapping quotation
marks when they are present, and maintain any spaces in the file name. But it is
simplest to create a “sanitized” version of \ jobname in which spaces and asterisks
are replaced by underscores, and double quotes are stripped.

27 \StrSubstitute{\jobname}{ }{_}[\minted@jobname]
28 \StrSubstitute{\minted@jobname}{*}{_}[\minted@jobname]
29 \StrSubstitute{\minted@jobname}{"}{}[\minted@ jobname]

38

http://tex.stackexchange.com/a/93829/10742

\minted@cachedir Set the directory in which cached content is saved. The default uses a minted-
prefix followed by the sanitized \minted@jobname.

30 \newcommand{\minted@cachedir} {\detokenize{_}minted-\minted@jobname}

31 \let\minted@cachedir@windows\minted@cachedir

32 \define@key{minted} {cachedir}{%

33 \@namedef{minted@cachedir} {#1}%

34 \StrSubstitute{\minted@cachedir} {/}{\@backslashchar} [\minted@cachedir@windows]}

finalizecache Define an option that switches the naming of cache files from an MD5-based system
to a listing<number> scheme. Compiling with this option is a prerequisite to
turning on frozencache.

35 \DeclareBoolOption{finalizecache}

frozencache Define an option that uses a fixed set of cache files, using 1isting<number> file
naming with \write18 disabled. This is convenient for working with a document
in an environment in which \write18 support is disabled and minted content does
not need to be modified.

36 \DeclareBoolOption{frozencache}

\minted@outputdir The -output-directory command-line option for ITEX causes problems for
minted, because the minted temporary files are saved in the output directory,
but minted still looks for them in the document root directory. There is no way
to access the value of the command-line option. But it is possible to allow the
output directory to be specified manually as a package option. A trailing slash is
automatically appended to the outputdir, so that it may be directly joined to
cachedir. This may be redundant if the user-supplied value already ends with
a slash, but doubled slashes are ignored under *nix and Windows, so it isn’t a
problem.

37 \let\minted@outputdir\@empty

38 \let\minted@outputdir@windows\@empty

39 \define@key{minted} {outputdir}{%

40 \@namedef {mintedQoutputdir} {#1/}%

41 \StrSubstitute{\minted@outputdir}{/}%

42 {\@backslashchar} [\minted@outputdir@windows] }

kpsewhich Define an option that invokes kpsewhich to locate the files that are to be
pygmentized. This isn’t done by default to avoid the extra overhead, but can be
useful with some build tools such as texi2pdf that rely on modifying TEXINPUTS.

43 \DeclareBoolOption{kpsewhich}

langlinenos Define an option that makes all minted environments and \mint commands for a
given language share cumulative line numbering (if firstnumber=last).

39

44 \DeclareBoolOption{langlinenos}

draft Define an option that allows fancyvrb to do all typesetting directly, without using
Pygments. This trades syntax highlighting for speed. Note that in many cases, the
difference in performance between caching and draft mode will be minimal. Also
note that draft settings may be inherited from the document class.

45 \DeclareBoolOption{draft}

final Define a final option that is the opposite of draft, since many packages do this.

46 \DeclareComplementaryOption{final}{draft}

Process package options. Proceed with everything that immediately relies upon
them. If PGF/TikZ externalization is in use, switch on draft mode and turn off
cache. Externalization involves compiling the entire document; all parts not related
to the current image are “silently thrown away.” minted needs to cooperate with that
by not writing any temp files or creating any directories. Two checks are done for
externalization. The first, using \tikzifexternalizing, works if externalization
is set before minted is loaded. The second, using \tikzexternalreal job, works
if externalization is set after minted is loaded.

47 \ProcessKeyvalOptionsx*

48 \ifthenelse{\boolean{minted@newfloat}}{\RequirePackage{newfloat}}{}
49 \ifcsname tikzifexternalizing\endcsname

50 \tikzifexternalizing{\minted@drafttrue\minted@cachefalse}{}

51 \else

52 \ifcsname tikzexternalrealjob\endcsname
53 \minted@drafttrue

54 \minted@cachefalse

55 \else

56 \fi

57 \fi

58 \ifthenelse{\boolean{minted@finalizecache}}%
59 {\ifthenelse{\boolean{minted@frozencache}}$%

60 {\PackageError{minted}$%

61 {Options "finalizecache" and "frozencache" are not compatible}%
62 {Options "finalizecache" and "frozencache" are not compatible}}%
63 {11%

64 {}

65 \ifthenelse{\boolean{minted@cache}}%
66 {\ifthenelse{\boolean{minted@frozencache}}%

67 {1%
68 {\AtEndOfPackage{\ProvideDirectory{\mintedQoutputdir\minted@cachedir}}}}%
69 {}

40

9.3 Input, caching, and temp files

\minted@input We need a wrapper for \input. In most cases, \input failure will be due to
attempts to use \inputminted with files that don’t exist, but we also want to give
informative error messages when outputdir is needed or incompatible build tools
are used.

70 \newcommand{\minted@input}[1]{%
71 \IfFileExists{#1}%

72 {\input {#1}1%

73 {\PackageError{minted}{Missing Pygments output; \string\inputminted\space
74 was”"Jprobably given a file that does not exist--otherwise, you may need
75 ~"~Jthe outputdir package option, or may be using an incompatible build
76 tool\ifwindows, **Jor may be using the kpsewhich option without having

77 PowerShell installed\fi,""Jor may be using frozencache with a missing file}%
78 {This could be caused by using -output-directory or -aux-directory

79 "~ Jwithout setting minted’s outputdir, or by using a build tool that

8o ~~Jchanges paths in ways minted cannot detect\ifwindows, or by using the
81 ~"~Jkpsewhich option without PowerShell\fi,

82 ~“~Jor using frozencache with a missing file.}}%

83 }

\minted@infile Define a default name for files of highlighted content that are brought it. Caching
will redefine this. We start out with the default, non-caching value.

84 \newcommand{\minted@infile}{\minted@jobname.out.pyg}

We need a way to track the cache files that are created, and delete those that
are not in use. This is accomplished by creating a comma-delimited list of cache
files and saving this list to the .aux file so that it may be accessed on subsequent
runs. During subsequent runs, this list is compared against the cache files that
are actually used, and unused files are deleted. Cache file names are created with
MD5 hashes of highlighting settings and file contents, with a .pygtex extension, so
they never contain commas. Thus comma-delimiting the list of file names doesn’t
introduce a potential for errors.

\minted@cachelist This is a list of the current cache files.
85 \newcommand{\minted@cachelist}{}
\minted@addcachefile This adds a file to the list of cache files. It also creates a macro involving the hash,
so that the current usage of the hash can be easily checked by seeing if the macro
exists. The list of cache files must be created with built-in linebreaks, so that when

it is written to the .aux file, it won’t all be on one line and thereby risk buffer
errors.

86 \newcommand{\minted@addcachefile}[1]{%

41

87 \expandafter\long\expandafter\gdef\expandafter\minted@cachelist\expandafter{%

88 \minted@cachelist, ~"*J%

89 \space\space#l}%

90 \expandafter\gdef\csname minted@cached@#l\endcsname{}%
91 }

\minted@savecachelist We need to be able to save the list of cache files to the .aux file, so that we can
reload it on the next run.

92 \newcommand{\minted@savecachelist}{%
93 \ifdefempty{\minted@cachelist}{}{%

94 \immediate\write\@mainaux{$%

95 \string\gdef\string\minted@oldcachelist\string{$%
96 \minted@cachelist\string}}%

97 1%

98 }

\minted@cleancache Clean up old cache files that are no longer in use.

99 \newcommand{\minted@cleancache}{%

100 \ifcsname minted@oldcachelist\endcsname

101 \def\do##1{%

102 \ifthenelse{\equal {##1}{}}{}{%

103 \ifcsname minted@cached@##1\endcsname\else

104 \DeleteFile[\minted@outputdir\minted@cachedir] {##1}%
105 \fi

106 1%

107 1%

108 \expandafter\docsvlist\expandafter{\minted@oldcachelist}%
109 \else

110 \fi

111 }

At the end of the document, save the list of cache files and clean the cache. If
in draft mode, don’t clean up the cache and save the old cache file list for next
time. This allows draft mode to be switched on and off without requiring that all
highlighted content be regenerated. The saving and cleaning operations may be
called without conditionals, since their definitions already contain all necessary
checks for their correct operation.

112 \i1fthenelse{\boolean{minted@Rdraft}}%
113 {\AtEndDocument {%

114 \ifcsname minted@oldcachelist\endcsname

115 \StrSubstitute{\minted@Roldcachelist}{, }{,”"J }[\minted@cachelist]
116 \minted@savecachelist

117 \fi}}%

118 {\ifthenelse{\boolean{minted@frozencache}}%

119 {\AtEndDocument {%

120 \ifcsname mintedQoldcachelist\endcsname

42

121 \StrSubstitute{\minted@Roldcachelist}{, }{,”"J }[\minted@cachelist]

122 \minted@savecachelist
123 \fi}}%

124 {\AtEndDocument {%

125 \minted@savecachelist

126 \minted@Rcleancache}}}%

9.4 OS interaction

We need system-dependent macros for communicating with the “outside world.”

\DeleteFile Delete a file. Define conditionally in case an equivalent macro has already been

defined.
127 \ifwindows
128 \providecommand{\DeleteFile} [2] []{%
129 \ifthenelse{\equal {#1}{}}%
130 {\IfFileExists{#2}{\ShellEscape{del #2}}{}}%
131 {\IfFileExists{#1/#2}{%
132 \StrSubstitute{#1}{/}{\@backslashchar}[\minted@windir]
133 \ShellEscape{del \minted@windir\@backslashchar #2}}{}}}
134 \else
135 \providecommand{\DeleteFile} [2] []{%
136 \ifthenelse{\equal{#1}{}}%
137 {\IfFileExists{#2}{\ShellEscape{rm #2}}{}}%
138 {\IfFileExists{#1/#2}{\ShellEscapef{rm #1/#2}}{}}}
139 \fi

\ProvideDirectory We need to be able to create a directory, if it doesn’t already exist. This is primarily
for storing cached highlighted content.

140 \ifwindows

141 \newcommand{\ProvideDirectory} [1]{%

142 \StrSubstitute{#1}{/}{\@backslashchar} [\minted@windir]

143 \ShellEscape{if not exist \minted@windir\space mkdir \minted@windir}}
144 \else

145 \newcommand{\ProvideDirectory}[1]{%

146 \ShellEscape{mkdir -p #1}}

147 \fi

\TestAppExists Determine whether a given application exists.

Usage is a bit roundabout, but has been retained for backward compatibil-
ity. At some point, it may be worth replacing this with something using
\@Q@input" | <command>". That would require MiKTeX users to ——enable-pipes,
however, which would make things a little more complicated. If Windows XP

43

compatibility is ever no longer required, the where command could be used instead
of the approach for Windows.

To test whether an application exists, use the following code:

\TestAppExists{appname}
\ifthenelse{\boolean{AppExists}}{app exists}{app doesn't exist}

148 \newboolean{AppExists}

149 \newread\minted@appexistsfile
150 \newcommand{\TestAppExists} [1]{
151 \ifwindows

On Windows, we need to use path expansion and write the result to a file. If the
application doesn’t exist, the file will be empty (except for a newline); otherwise,
it will contain the full path of the application.

152 \DeleteFile{\minted@jobname.aex}

153 \ShellEscape{for \string”\@percentchar i in (#l.exe #1l.bat #1.cmd)
154 do set > \minted@jobname.aex <nul: /p

155 x=\string”\@percentchar \string~$PATH:i>> \minted@jobname.aex}
156 %$$ <- balance syntax highlighting

157 \immediate\openin\minted@appexistsfile\minted@jobname.aex

158 \expandafter\def\expandafter\@tmpRcr\expandafter{\the\endlinechar}
159 \endlinechar=-1\relax

160 \readline\minted@appexistsfile to \minted@apppathifexists

161 \endlinechar=\@tmpQcr

162 \ifthenelse{\equal{\mintedQapppathifexists}{}}

163 {\AppExistsfalse}

164 {\AppExiststrue}

165 \immediate\closein\minted@appexistsfile

166 \DeleteFile{\minted@jobname.aex}

167 \else

On Unix-like systems, we do a straightforward which test and create a file upon
success, whose existence we can then check.

168 \ShellEscape{which #1 && touch \minted@jobname.aex}
169 \IfFileExists{\minted@jobname.aex}

170 {\AppExiststrue

171 \DeleteFile{\minted@jobname.aex} }

172 {\AppExistsfalse}

173 \fi

174 '}

9.5 Option processing

Option processing is somewhat involved, because we want to be able to define
options at various levels of hierarchy: individual command/environment, language,

44

global (document). And once those options are defined, we need to go through
the hierarchy in a defined order of precedence to determine which option to apply.
As if that wasn’t complicated enough, some options need to be sent to Pygments,
some need to be sent to fancyvrb, and some need to be processed within minted
itself.

To begin with, we need macros for storing lists of options that will later be passed
via the command line to Pygments (optlistcl). These are defined at the global
(cleg), language (cl@lang), and command or environment (cl@cmd) levels, so
that settings can be specified at various levels of hierarchy. The language macro is
actually a placeholder. The current language will be tracked using \minted@lang.
Each individual language will create a \minted@optlistcl@lang(language) macro.
\minted@optlistcl@lang may be \let to this macro as convenient; otherwise,
the general language macro merely serves as a placeholder.

The global- and language-level lists also have an inline (i) variant. This allows
different settings to be applied in inline settings. An inline variant is not needed at
the command /environment level, since at that level settings would not be present
unless they were supposed to be applied.

\minted@optlistcl@g

175 \newcommand{\minted@optlistcl@qg}{}

\minted@optlistcl@g@i

176 \newcommand{\minted@optlistcl@g@i}{}

\minted@lang

177 \let\minted@lang\Q@empty

\minted@optlistcl@lang

178 \newcommand{\minted@optlistcl@lang}{}

\minted@optlistcl@lang@i

179 \newcommand{\minted@Qoptlistcl@lang@i} {}

\minted@optlistcl@cmd

180 \newcommand{\minted@optlistcl@cmd}{}

We also need macros for storing lists of options that will later be passed to fancyvrb
(optlistfv). As before, these exist at the global (fveg), language (fv@lang),
and command or environment (fv@cmd) levels. Pygments accepts fancyvrb options,

45

but in almost all cases, these options may be applied via \ fvset rather than via
running Pygments. This is significantly more efficient when caching is turned on,
since it allows formatting changes to be applied without having to re-highlight the

code.

\minted@optlistfv@g

181 \newcommand{\minted@optlistfv@g}{}

\minted@optlistfvRg@i

182 \newcommand{\minted@optlistfv@g@i}{}

\minted@optlistfv@lang

183 \newcommand{\minted@optlistfv@lang}{}

\minted@optlistfv@lang@i

184 \newcommand{\minted@optlistfv@lang@i}{}

\minted@optlistfv@cmd

185 \newcommand{\minted@optlistfv@cmd} {}

\minted@configlang We need a way to check whether a language has had all its option list macros
created. This generally occurs in a context where \minted@lang needs to be set.
So we create a macro that does both at once. If the language list macros do not
exist, we create them globally to simplify future operations.

186 \newcommand{\minted@configlang} [1]{%

187
188
189
190
191
192
193
194
195
196
197
198
199
200 }

\def\minted@lang{#1}%

\ifcsname minted@optlistcl@lang\minted@lang\endcsname\else
\expandafter\gdef\csname minted@optlistcl@lang\minted@lang\endcsname{}%

\fi

\ifcsname minted@optlistcl@lang\minted@lang @il\endcsnamel\else
\expandafter\gdef\csname minted@optlistcl@lang\minted@lang Q@i\endcsname{}%

\fi

\ifcsname mintedQoptlistfv@lang\minted@lang\endcsname\else
\expandafter\gdef\csname minted@optlistfv@lang\minted@lang\endcsname{}%

\fi

\ifcsname minted@optlistfv@lang\minted@lang @i\endcsnamel\else
\expandafter\gdef\csname minted@optlistfv@lang\minted@lang Q@i\endcsname{}%

\fi

We need a way to define options in bulk at the global, language, and command
levels. How this is done will depend on the type of option. The keys created are

46

\minted@def@optcl

grouped by level: minted@opt@g, mintedRopt@lang, and minted@Ropt@cmd, plus
inline variants. The language-level key groupings use \minted@lang internally, so
we don’t need to duplicate the internals for different languages. The key groupings
are independent of whether a given option relates to Pygments, fancyvrb, etc.
Organization by level is the only thing that is important here, since keys are
applied in a hierarchical fashion. Key values are stored in macros of the form
\minted@opt@(level): (key), so that they may be retrieved later. In practice, these
key macros will generally not be used directly (hence the colon in the name).
Rather, the hierarchy of macros will be traversed until an existing macro is found.

Define a generic option that will be passed to the command line. Options are given
in a {key}{value} format that is transformed into key=value and then passed to
pygmentize. This allows value to be easily stored in a separate macro for later
access. This is useful, for example, in separately accessing the value of encoding
for performing autogobble.

If a key option is specified without =value, the default is assumed. Options are
automatically created at all levels.

Options are added to the option lists in such a way that they will be detokenized.
This is necessary since they will ultimately be used in \writel8.

201 \newcommand{\minted@addto@optlistcl}[2]{%
202 \expandafter\def\expandafter#l\expandafter{#1%

203 \detokenize{#2}\space}}
204 \newcommand{\minted@addtoQoptlistcl@lang}[2]{%
205 \expandafter\let\expandafter\minted@tmp\csname #1l\endcsname

206 \expandafter\defl\expandafter\minted@tmp\expandafter{\minted@tmp%
207 \detokenize{#2}\space}%

208 \expandafter\let\csname #1l\endcsname\minted@tmp}

209 \newcommand{\minted@def@optcl} [4][]{%

210 \ifthenelse{\equal {#1}{}}%

211 {\define@key{mintedQRoptRg} {#2}{%

212 \minted@addtoRoptlistcl{\minted@optlistcl@qg} {#3=#4}%
213 \@namedef {mintedRopt@qg:#2} {#4}1}%

214 \defineQRkey{mintedRoptQ@gRi} {#2}{%

215 \minted@addtoRoptlistcl{\mintedRoptlistcl@gR@i}{#3=#4}%
216 \@namedef {mintedRoptRgRi:#2} {#4}}%

217 \defineQRkey{minted@opt@lang} {#2}{%

218 \minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang} {#3=#4}%
219 \@namedef{minted@opt@lang\minted@lang:#2}{#4}}%

220 \define@key{minted@opt@lang@i}{#2}{%

221 \minted@addto@optlistcl@lang{$%

222 minted@Qoptlistcl@lang\minted@lang @i} {#3=#41%

223 \@namedef{minted@opt@lang\minted@lang Qi:#2}{#4}}%

224 \definelkey{minted@opt@cmd} {#2}{%

225 \minted@addto@optlistcl{\minted@optlistcl@cmd} {#3=#4}%
226 \@namedef{minted@opt@cmd: #2}{#4}}}%

227 {\define@key{minted@opt@g} {#2} [#1]{%

47

\minted@Rescchars

228 \minted@addto@optlistcl{\minted@optlistcl@qg} {#3=#4}%

229 \@namedef {mintedQoptRg:#2} {#4}}%

230 \define@key{mintedRopt@gQ@i} {#2} [#1]{%

231 \minted@addto@optlistcl{\minted@optlistcl@g@i} {#3=#4}%
232 \@namedef{minted@optQ@gRi:#2}{#4}}%

233 \definelkey{minted@Ropt@lang}{#2} [#1]{%

234 \minted@addtoloptlistcl@lang{minted@optlistcl@lang\minted@lang} {#3=#4}%
235 \@namedef{minted@opt@lang\minted@lang:#2} {#4}}%

236 \define@key{minted@opt@lang@i} {#2} [#1]1{%

237 \minted@addto@optlistcl@lang{$%

238 minted@Qoptlistcl@lang\minted@lang @i} {#3=#41}%

239 \@namedef{minted@opt@lang\minted@lang Qi:#2}{#4}}%

240 \definelRkey{minted@opt@cmd} {#2} [#1]{%

241 \minted@RaddtoQoptlistcl{\mintedQoptlistcl@cmd}{#3=#4}%
242 \@namedef {minted@opt@cmd: #2}{#4}}}%

243 '}

This covers the typical options that must be passed to Pygments. But some,
particularly escapeinside, need more work. Since their arguments may contain
escaped characters, expansion rather than detokenization is needed. Getting
expansion to work as desired in a \writel8 context requires the redefinition of
some characters.

We need to define versions of common escaped characters that will work correctly
under expansion for use in \writel8.

244 \edef\minted@hashchar{\string#}

245 \edef\minted@dollarchar{\strings}

246 \edef\minted@ampchar{\string&}

247 \edef\minted@underscorechar{\string_}
248 \edef\minted@tildechar{\string~}

249 \edef\minted@leftsquarebracket{\stringl}
250 \edef\minted@rightsquarebracket{\string]}
251 \newcommand{\minted@escchars}{%

252 \let\#\minted@hashchar

253 \let\%\@percentchar

254 \let\{\@Qcharlb

255 \let\}\@Qcharrb

256 \let\$\minted@dollarchar

257 \let\&\minted@ampchar

258 \let_\minted@Runderscorechar

259 \let\\\@backslashchar

260 \let~\minted@tildechar

261 \let\~\minted@tildechar

262 \let\[\minted@leftsquarebracket

263 \let\]\minted@rightsquarebracket
264 } %$ <- highlighting

48

\minted@def@optcl@e

Now to define options that are expanded.

265 \newcommand{\minted@addto@optlistcl@e} [2]{%

266
267
268
269
270
271
272

273 \newcommand{\minted@addtoQoptlistcl@lang@e} [2]{%
\begingroup

\minted@escchars

\xdef\minted@xtmp{#2}$%

\endgroup
\expandafter\minted@addto@optlistcl@lang@eli\expandafter{\minted@xtmp} {#1}}

274
275
276
277
278

\begingroup

\minted@escchars

\xdef\minted@xtmp{#2}%

\endgroup

\expandafter\minted@addto@optlistcl@ReRil\expandafter{\minted@xtmp} {#1}}
\def\minted@addtoQoptlistclQ@eQRi#1#2{%

\expandafter\def\expandafter#2\expandafter{#2#1\space}}

o

279 \def\minted@addto@optlistcl@langQRe@i#1#2{%

280
281
282

\expandafter\let\expandafter\minted@tmp\csname #2\endcsname
\expandafter\def\expandafter\minted@tmp\expandafter{\minted@tmp#1\space}$%
\expandafter\let\csname #2\endcsname\minted@tmp}

283 \newcommand{\minted@def@optcl@e} [4][]1{%

284
285
286
287
288
289
2090
201
202
203
204
295
296
297
2098
299
300
301
302
303
304
305
306
307
308
309
310
311
312

\ifthenelse{\equal{#1}{}}%

{\define@key{minted@opt@g} {#2}{%
\minted@addto@optlistcl@e{\minted@optlistcl@g}{#3=#4}%
\@namedef {mintedQoptRg:#2} {#4}}%

\define@key{mintedRopt@gRi} {#2}{%
\minted@addto@optlistcl@e{\minted@optlistcl@gRi} {#3=#41}%
\@namedef{mintedQoptQ@gRi:#2}{#4}}%

\definelRkey{minted@opt@lang} {#2}{$%
\minted@RaddtoQRoptlistcl@langlRe{mintedRoptlistcl@lang\minted@lang} {#3=#41%
\@namedef{minted@opt@lang\minted@lang:#2} {#4}}%

\define@key{minted@opt@lang@i} {#2}{%
\minted@RaddtoQRoptlistcl@langRe{%

minted@Qoptlistcl@lang\minted@lang @i} {#3=#41}%
\@namedef{minted@opt@lang\minted@lang Qi:#2}{#4}}%

\define@Rkey{minted@opt@cmd} {#2}{%
\minted@addtoQoptlistcl@e{\minted@optlistcl@cmd} {#3=#4}%
\@namedef {minted@opt@cmd: #2}{#4}}}%

{\define@key{mintedQopt@g} {#2} [#1]{%
\minted@addtoRoptlistcl@e{\minted@optlistcl@qg} {#3=#4}%
\@namedef {minted@opt@qg:#2} {#4}1}%

\defineRkey{mintedRopt@gRi} {#2} [#1]1{%
\minted@addtoQoptlistcl@e{\minted@optlistcl@gRi} {#3=#4}%

\Q@namedef {minted@optRgRi:#2}{#4}}%

\defineRkey{mintedRopt@lang} {#2} [#1]1{%
\minted@addto@optlistcl@lang@e{minted@optlistcl@lang\minted@lang} {#3=#4}%
\@namedef {minted@opt@lang\minted@lang: #2} {#4}}%

\definelRkey{minted@opt@lang@i} {#2} [#1]1{%

\mintedRaddto@optlistcl@langle{%
minted@optlistcl@lang\minted@lang @i} {#3=#4}%

49

313 \@namedef{minted@opt@lang\minted@lang Qi:#2}{#4}}%

314 \definelRkey{mintedRopt@cmd} {#2} [#1]1{%

315 \minted@addto@optlistcl@e{\minted@optlistcl@cmd} {#3=#41}%
316 \@namedef{minted@opt@cmd: #2}{#4}}}%

317 }

\minted@def@optcl@switch Define a switch or boolean option that is passed to Pygments, which is true when
no value is specified.

318 \newcommand{\minted@def@optcl@switch} [2]{%
319 \define@booleankey{minted@opt@qg} {#1}%

320 {\minted@addto@optlistcl{\minted@optlistcl@g} {#2=True}%

321 \@namedef{minted@opt@g:#1}{true}}

322 {\minted@addto@optlistcl{\mintedRoptlistclQqg}{#2=False}%

323 \@namedef {minted@opt@g:#1}{false}}

324 \define@booleankey{minted@opt@g@i} {#1}%

325 {\minted@addtoRoptlistcl{\mintedRoptlistclQg@i} {#2=True}%

326 \@namedef {minted@opt@g@i:#1}{true}}

327 {\minted@addto@optlistcl{\minted@optlistcl@g@i}{#2=False}$%

328 \@namedef{minted@opt@gRi:#1}{false}}

329 \define@booleankey{minted@opt@lang} {#1}%

330 {\minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang}{#2=True}%
331 \@namedef {minted@opt@lang\minted@lang:#1}{true}}

332 {\minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang}{#2=False}$%
333 \@namedef{minted@opt@lang\minted@lang:#1}{false}}

334 \define@booleankey{minted@Ropt@lang@i} {#1}%

335 {\minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang @i} {#2=True}%
336 \@namedef{minted@opt@lang\minted@lang Q@i:#1}{true}}

337 {\minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang QRi}{#2=False}%
338 \@namedef {minted@opt@lang\minted@lang Q@i:#1}{false}}

339 \define@booleankey{mintedQ@opt@cmd} {#1}%

340 {\minted@addto@optlistcl{\mintedRoptlistcl@cmd} {#2=True}%

341 \@namedef {minted@opt@cmd: #1}{true}}

342 {\minted@addtoRoptlistcl{\minted@optlistcl@cmd} {#2=False}%

343 \@namedef {minted@opt@Rcmd:#1}{false}}

344 '}

Now that all the machinery for Pygments options is in place, we can move on to
fancyvrb options.

\minted@def@optfv Define fancyvrb options.

345 \newcommand{\minted@def@optfv}[1]{%
346 \defineQRkey{minted@opt@g} {#1}{%

347 \expandafter\defl\expandafter\minted@optlistfv@g\expandafter{$%
348 \minted@optlistfvQRg#l=##1,1%

349 \@namedef {minted@opt@qg:#1} {##1}}

350 \define@key{minted@opt@gRi} {#1}{%

351 \expandafter\def\expandafter\mintedRoptlistfv@g@i\expandafter{%

50

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374 }

\minted@optlistfvRgRi#l=##1,1%
\@namedef {mintedQopt@g@i:#1} {##1}}
\define@key{minted@opt@lang} {#1}{%
\expandafter\let\expandafter\minted@tmp%
\csname minted@optlistfv@lang\minted@lang\endcsname
\expandafter\def\expandafter\minted@tmp\expandafter{%
\minted@tmp#l=##1,}%
\expandafter\let\csname minted@optlistfv@lang\minted@lang\endcsname%
\minted@tmp
\@namedef {minted@Ropt@lang\minted@lang:#1} {##1}}
\define@key{minted@opt@lang@i}{#1}{%
\expandafter\let\expandafter\minted@tmp$%
\csname mintedRoptlistfv@lang\minted@lang @i\endcsname
\expandafter\def\expandafter\minted@tmp\expandafter{%
\minted@tmp#l=##1,}%
\expandafter\let\csname minted@optlistfv@lang\minted@lang @i\endcsname%
\minted@tmp
\@namedef{minted@opt@lang\minted@lang Q@i:#1}{##1}}
\define@key{minted@opt@cmd} {#1}{%
\expandafter\def\expandafter\mintedRoptlistfv@cmd\expandafter{%
\minted@optlistfv@cmd#l=##1,1}%
\@namedef {mintedQopt@cmd:#1} {##1}}

\minted@def@optfv@switch Define fancyvrb boolean options.

375 \newcommand{\minted@defQ@optfv@switch}[1]{%

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
301
302
393
394
305
396
397
398

\define@booleankey{minted@optQ@g}{#1}%
{\expandafter\def\expandafter\minted@optlistfvlg\expandafter{$%
\minted@optlistfv@g#l=true, }%
\@namedef {minted@opt@g:#1}{true}}$s
{\expandafter\def\expandafter\minted@optlistfvlg\expandafter{$%
\minted@optlistfv@g#l=false, }%
\@namedef {minted@opt@g:#1}{false}}%
\define@booleankey{mintedRoptQ@gRi} {#1}%
{\expandafter\def\expandafter\minted@optlistfv@g@i\expandafter{%
\minted@optlistfv@gQ@Ri#l=true,}%
\@namedef{mintedQoptRgRi:#1}{true}}%
{\expandafter\def\expandafter\minted@optlistfv@g@i\expandafter{%
\minted@optlistfv@g@i#l=false, }%
\@namedef{mintedQoptQRgRi:#1}{false}}%
\define@booleankey{minted@opt@lang} {#1}%
{\expandafter\let\expandafter\minted@tmp%
\csname minted@optlistfv@lang\minted@lang\endcsname
\expandafter\def\expandafter\minted@tmp\expandafter{%
\minted@tmp#l=true, }%
\expandafter\let\csname minted@optlistfv@lang\minted@lang\endcsname%
\minted@tmp
\@namedef{minted@opt@lang\minted@lang:#1}{true}}%
{\expandafter\let\expandafter\minted@tmp%

51

399 \csname minted@optlistfv@lang\minted@lang\endcsname

400 \expandafter\def\expandafter\minted@tmp\expandafter{%

401 \minted@tmp#l=false, }%

402 \expandafter\let\csname minted@optlistfv@lang\minted@lang\endcsname$%
403 \minted@tmp

404 \@namedef {minted@opt@lang\minted@lang:#1}{false}}*%

405 \define@booleankey{minted@opt@lang@i}{#1}%

406 {\expandafter\let\expandafter\minted@tmp%

407 \csname minted@optlistfv@lang\minted@lang @il\endcsname

408 \expandafter\def\expandafter\minted@tmp\expandafter{%

409 \minted@tmp#l=true, }%

410 \expandafter\let\csname minted@optlistfv@lang\minted@lang @i\endcsname%
411 \minted@tmp

412 \@namedef{minted@opt@lang\minted@lang Qi:#1}{true}}%

413 {\expandafter\let\expandafter\minted@tmp%

414 \csname mintedRoptlistfv@lang\minted@lang @i\endcsname

415 \expandafter\def\expandafter\mintedQ@tmp\expandafter{%

416 \minted@tmp#l=false, }%

417 \expandafter\let\csname minted@optlistfv@lang\minted@lang @i\endcsname%
418 \minted@tmp

419 \@namedef {minted@opt@lang\minted@lang Qi:#1}{false}}%

420 \define@booleankey{minted@Ropt@cmd} {#1}%

421 {\expandafter\def\expandafter\minted@optlistfv@cmd\expandafter{%

422 \minted@optlistfv@cmd#l=true, }%

423 \@namedef {minted@opt@cmd:#1}{true}}%

424 {\expandafter\def\expandafter\minted@optlistfv@cmd\expandafter{%

425 \minted@optlistfv@cmd#l=false, }%

426 \@namedef {minted@opt@cmd:#1}{false}}%

427 }

minted@isinline In resolving value precedence when actually using values, we need a way to
determine whether we are in an inline context. This is accomplished via a boolean
that is set at the beginning of inline commands.

428 \newboolean{minted@isinline}

\minted@fvset We will need a way to actually use the lists of stored fancyvrb options later on.

429 \newcommand{\minted@fvset}{$%

430 \expandafter\fvset\expandafter{\minted@optlistfv@g}%
431 \expandafter\let\expandafter\minted@tmp$%

432 \csname minted@optlistfv@lang\minted@lang\endcsname
433 \expandafter\fvset\expandafter{\minted@tmp}%

434 \ifthenelse{\boolean{minted@Risinline}}$%

435 {\expandafter\fvset\expandafter{\minted@optlistfv@g@i}$%
436 \expandafter\let\expandafter\minted@tmp%

437 \csname minted@Roptlistfv@lang\minted@lang @i\endcsname
438 \expandafter\fvset\expandafter{\minted@tmp}}%

439 {1%

52

\minted@def@opt

\minted@defl@opt@style

440 \expandafter\fvset\expandafter{\minted@optlistfv@cmd}%
441}

We need a way to define minted-specific options at multiple levels of hierarchy, as
well as a way to retrieve these options. As with previous types of options, values
are stored in macros of the form \minted@opt@(level): (key), since they are not
meant to be accessed directly.

The order of precedence is cmd, lang@i, g@i, lang, g. A value specified at the
command or environment level should override other settings. In its absence, a
value specified for an inline command should override other settings, if we are
indeed in an inline context. Otherwise, language settings take precedence over
global settings.

Before actually creating the option-definition macro, we need a few helper macros.

Finally, on to the actual option definitions for minted-specific options.
Usage: \minted@def@opt [(initial global value)] { {(key name)}

442 \newcommand{\mintedQ@defQopt} [2] []1{%
443 \defineQRkey{mintedRopt@g} {#2}{%

444 \@namedef {minted@opt@g:#2} {##1}}

445 \defineRkey{minted@opt@gRi} {#2}{%

446 \@namedef{minted@opt@g@i:#2} {##1}}

447 \define@key{minted@opt@lang} {#2}{%

448 \@namedef {minted@opt@lang\minted@lang:#2} {##1}}
449 \define@key{minted@opt@lang@i} {#2}{%

450 \@namedef {minted@opt@lang\minted@lang Q@i:#2}{##1}}
451 \define@key{minted@opt@cmd} {#2}{%

452 \@namedef {minted@opt@cmd:#2} {##1}}

453 }

Define an option for styles. These are defined independently because styles need
slightly different handling. It is conventient to create style macros when styles are
set. Otherwise, it would be necessary to check for the existence of style macros at
the beginning of every command or environment.

454 \newcommand{\minted@defRopt@style}{%
455 \define@key{minted@opt@g} {style}{%

456 \minted@checkstyle{##1}%

457 \@namedef{minted@opt@g:style} {##1}}%

458 \define@key{minted@opt@gRi}{style}{$%

459 \minted@checkstyle{##1}%

460 \@namedef{mintedQopt@gRi:style}{##1}}%

461 \define@key{minted@opt@lang} {style}{%

462 \minted@checkstyle{##1}%

463 \@namedef{minted@opt@lang\minted@lang:style} {##1}}%

464 \define@key{minted@opt@lang@i}{style}{%

53

465 \minted@checkstyle{##1}%

466 \@namedef {minted@opt@lang\minted@lang QRi:style} {##1}}%
467 \define@key{minted@opt@cmd}{style}{$%

468 \minted@checkstyle{##1}%

469 \@namedef {mintedQopt@cmd:style} {##1}}%

470 '}

\minted@checkstyle Make sure that style macros exist.

We have to do some tricks with \endlinechar to prevent \input from inserting
unwanted whitespace. That is primarily for inline commands, where it would
introduce a line break. There is also the very unorthodox \let\def\gdef to
make sure that macros are defined globally. The catcodes for - and _ must be
changed during macro definition to accomodate style names like paraiso-light,
paraiso-dark, and algol_nu.

If a style is not given, then revert to the default style, but create macros with
prefix PYG, and create default-pyg-prefix.pygstyle if caching is on. This
allows a graceful fallback in the event that style is empty. It is also purposefully
used to create a complete set of macros with prefix PYG, so that the symbol macros
may be used, as described next.

The typical style macros created by \minted@checkstyle, which are of the form
\PYG<style>, are used indirectly. All code is highlighted with commandprefix=PYG,
so that it uses \PYG. Then \PYG is \let to \PYG<style> as appropriate. This
way, code need not be highlighted again when the style is changed. This has
the disadvantage that none of the \PYG<symbol> macros will be defined; rather,
only \PYG<style><symbol> macros will be defined. It would be possible to \1let
\PYG<symbol> to \PYG<style><symbol>, but it is simpler to define a complete
set of symbol macros using the PYG prefix, so that all symbol macros will be defined
by default.b

471 \newcommand{\minted@checkstyle}[1]{%
472 \ifcsname minted@styleloaded@\ifstrempty{#1}{default-pyg-prefix}{#1}\endcsnamel\el

473 \expandafter\gdef%

474 \csname minted@styleloaded@\ifstrempty{#1}{default-pyg-prefix}{#1}\endcsname {
475 \ifthenelse{\boolean{minted@Rcache}}%

476 {\IfFileExists

477 {\minted@outputdir\minted@cachedir/\ifstrempty{#1}{default-pyg-prefix}{#1l}.p
478 {1%

479 {%

480 \ifthenelse{\boolean{minted@frozencache}}%

481 {\PackageError{minted}%

482 {Missing style definition for #1 with frozencache}$%

6Tt would be possible to hard-code the symbol macros in minted itself, but that would have
the disadvantage of tying minted more closely to a particular version of Pygments. Similarly,
\ leting symbol macros assumes a complete, fixed list of symbol macros. The current approach
is harder to break than these alternatives; the worst-case scenario should be needing to purge the
cache, rather than dealing with an undefined macro.

54

483 {Missing style definition for #1 with frozencache}}%
484 {\ifwindows

485 \ShellEscape({%

486 \MintedPygmentize\space -S \ifstrempty{#1l}{default}{#1} -f latex
487 -P commandprefix=PYG#1

488 > \minted@outputdir@windows\minted@cachedir@windows\@backslashchar%
489 \ifstrempty{#1}{default-pyg-prefix}{#1}.pygstyle}$%

490 \else

491 \ShellEscape({%

492 \MintedPygmentize\space —-S \ifstrempty{#1}{default}{#1} -f latex
493 —-P commandprefix=PYG#1

494 > \minted@outputdir\minted@cachedir/%

495 \ifstrempty{#1}{default-pyg-prefix}{#1}.pygstyle}%

496 \fi}$%

497 1%

498 \begingroup

499 \let\def\gdef

500 \catcode*_=11

501 \catcode ‘\-=11

502 \endlinechar=-1\relax

503 \minted@input{%

504 \minted@outputdir\minted@cachedir/\ifstrempty{#1}{default-pyg-prefix}{#1}
505 \endgroup

506 \minted@addcachefile{\ifstrempty{#1}{default-pyg-prefix}{#1}.pygstyle}}%
507 {%

508 \ifwindows

509 \ShellEscape({%

510 \MintedPygmentize\space -S \ifstrempty{#1}{default}{#1} —-f latex
511 -P commandprefix=PYG#1l > \minted@outputdir@windows\minted@jobname.out.p
512 \else

513 \ShellEscape{%

514 \MintedPygmentize\space -S \ifstrempty{#1l}{default}{#1} -f latex
515 -P commandprefix=PYG#1l > \minted@outputdir\minted@jobname.out.pyg}%
516 \fi

517 \begingroup

518 \let\def\gdef

519 \catcode*_=11

520 \catcode ‘\-=11

521 \endlinechar=-1\relax

522 \minted@input {\mintedQRoutputdir\minted@jobname.out.pyg}%

523 \endgroup}$%

524 \fi

525 }

526 \ifthenelse{\boolean{minted@draft}}{\renewcommand{\minted@checkstyle} [1]1{}}{}

At the beginning of the document, create the symbol macros with PG prefix and
generate the default style. This must wait until \AtBeginDocument, because the
existence of pygmentize isn’t tested and may not be final until \AtEndPreamble.

527 \AtBeginDocument {\minted@checkstyle{}\setminted{style=default}}

55

\minted@patch@PYGZsqg Patch the Pygments single quote macro for upquote. The single quote macro
from Pygments 1.6+ needs to be patched if the upquote package is in use. The
conditionals for the patch definition are borrowed from upquote. Patching is done
\AtBeginDocument, after the macros will have been created. Patching is only
attempted if the macro exists, so that there is a graceful fallback in the event of a
custom Pygments stylesheet.

528 \newcommand{\minted@patch@PYGZsq}{$%

529 \ifcsname PYGZsg\endcsname

530 \ifx\upquote@Rcmtt\minted@Rundefined\else

531 \ifx\encodingdefault\upquote@OTone

532 \ifx\ttdefault\upquote@cmtt

533 \expandafter\ifdefstring\expandafter{\csname PYGZsg\endcsname} {\char‘\’}%
534 {\expandafter\gdef\csname PYGZsg\endcsname{\charl3 }}{}%

535 \else

536 \expandafter\ifdefstring\expandafter{\csname PYGZsg\endcsname} {\char‘\’}%
537 {\expandafter\gdef\csname PYGZsg\endcsname{\textquotesingle}}{}%

538 \fi

539 \else

540 \expandafter\ifdefstring\expandafter{\csname PYGZsqg\endcsname} {\char‘\’}$%
541 {\expandafter\gdef\csname PYGZsg\endcsname{\textquotesingle}}{}%

542 \fi

543 \fi

544 \fi

545 }

546 \ifthenelse{\boolean{minted@draft}}{}{\AtBeginDocument {\minted@patch@PYGZsq}}

\minted@def@opt@switch And we need a switch version.

It would be possible to create a special version of \minted@get@opt to work with

these, but that would be redundant. During the key processing, any values other

than true and false are filtered out. So when using \minted@get@opt later, we

know that that part has already been taken care of, and we can just use something

like \ifthenelse{\equal{\minted@RgetRopt {<opt>}{<default>}}{true}}{...}{...}.
Of course, there is the possibility that a default value has not been set, but
\minted@def@opt@switch sets a global default of false to avoid this. And

as usual, Pygments values shouldn’t be used without considering whether
\minted@getQopt needs a fallback value.

547 \newcommand{\minted@def@opt@switch} [2] [false]{%
548 \define@booleankey{minted@opt@g} {#21}%

549 {\@namedef {minted@optRg:#2}{true}}%

550 {\@namedef {mintedRopt@g:#2}{false}}

551 \define@booleankey{minted@opt@g@i} {#21}%

552 {\@namedef {mintedRopt@gRi:#2}{true}}%

553 {\@namedef {minted@opt@gR@i:#2}{false}}

554 \define@booleankey{minted@opt@lang}{#2}%

555 {\@namedef {minted@opt@lang\minted@lang:#2}{true}}%
556 {\@namedef {minted@opt@lang\minted@lang:#2}{false}}

56

\minted@get@opt

557 \define@booleankey{minted@opt@lang@i} {#2}%
558 {\@namedef {minted@opt@lang\minted@lang Qi:#2}{true}}%
559 {\@namedef {minted@opt@lang\minted@lang Qi:#2}{false}}
560 \define@booleankey{minted@opt@cmd} {#2}%
561 {\@namedef {mintedRopt@cmd:#2} {true}}%
562 {\@namedef {minted@opt@cmd:#2}{false}}%
563 \@namedef {mintedRopt@qg:#2} {#1}%
564 }
We need a way to traverse the hierarchy of values for a given key and return the

current value that has precedence. In doing this, we need to specify a default value
to use if no value is found. When working with minted-specific values, there should
generally be a default value; in those cases, an empty default may be supplied. But
the macro should also work with Pygments settings, which are stored in macros of
the same form and will sometimes need to be accessed (for example, encoding).
In the Pygments case, there may very well be no default values on the KTEX side,
because we are falling back on Pygments’ own built-in defaults. There is no need
to duplicate those when very few Pygments values are ever needed; it is simpler to
specify the default fallback when accessing the macro value.

From a programming perspective, the default argument value needs to be manda-
tory, so that \minted@get@opt can be fully expandable. This significantly simpli-

fies accessing options.

565 \def\mintedQ@getRopt#1#2{%

566 \ifcsname minted@opt@cmd:#1\endcsname

567 \csname minted@opt@cmd:#1\endcsname

568 \else

569 \ifminted@isinline

570 \ifcsname minted@opt@lang\minted@lang @i:#1\endcsname
571 \csname minted@Ropt@lang\minted@lang @i:#1\endcsname
572 \else

573 \ifcsname mintedRopt@gRi:#1\endcsname

574 \csname minted@opt@g@i:#1\endcsname

575 \else

576 \ifcsname minted@opt@lang\minted@lang:#1\endcsname
577 \csname minted@opt@lang\minted@lang:#1\endcsname
578 \else

579 \ifcsname minted@opt@g:#1\endcsname

580 \csname minted@opt@g:#1l\endcsname

581 \else

582 #2%

583 \fi

584 \Nfi

585 \fi

586 \fi

587 \else

588 \ifcsname minted@opt@lang\minted@lang:#1l\endcsname
589 \csname minted@opt@lang\minted@lang:#1\endcsname

57

590
591
592
593
594
595
596
597
598
599

\else
\ifcsname mintedQopt@g:#1\endcsname
\csname minted@opt@g:#1l\endcsname
\else
#2%
\fi
\fi
\fi
\fi

}%

Actual option definitions. Some of these must be defined conditionally depending
on whether we are in draft mode; in draft mode, we need to emulate Pygments
functionality with ITEX, particularly with fancyvrb, when possible. For example,
gobbling must be performed by Pygments when draft is off, but when draft is
on, fancyvrb can perform gobbling.

Lexers.

600
601
602
603
604
605
606
607
608
609

\minted@def@optcl{encoding}{-P encoding} {#1}
\minted@def@optcl{outencoding}{-P outencoding} {#1}
\minted@def@optcl@e{escapeinside} {-P "escapeinside}{#1"}
\minted@def@optcl@switch{stripnl}{-P stripnl}
\minted@def@optcl@switch{stripall}{-P stripall}

% Python console

\minted@def@optcl@switch{python3}{-P python3}

% PHP

\minted@def@optcl@switch{funcnamehighlighting}{-P funcnamehighlighting}
\minted@def@optcl@switch{startinline}{-P startinline}

Filters.

610
611
612
613
614

\ifthenelse{\boolean{minted@draft}}%
{\minted@def@optfv{gobble}}$%
{\minted@def@optcl{gobble}{-F gobble:n} {#1}}

\minted@def@optcl{codetagify}{-F codetagify:codetags}{#1}

\minted@def@optcl{keywordcase} {-F keywordcase:case}{#1}

ETEX formatter.

615
616
617
618
619

\minted@def@optcl@switch{texcl}{-P texcomments}
\minted@def@optcl@switch{texcomments}{-P texcomments}
\minted@def@optcl@switch{mathescape}{-P mathescape}
\minted@def@optfv@switch{linenos}
\minted@def@opt@style

fancyvrb options.

620
621

\minted@defRoptfv{frame}
\minted@def@optfv{framesep}

58

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

\minted@def@optfv{framerule}
\minted@def@optfv{rulecolor}
\minted@def@optfv{numbersep}
\minted@def@optfv{numbers}
\minted@def@optfv{firstnumber}
\minted@def@optfv{stepnumber}
\minted@def@optfv{firstline}
\minted@def@optfv{lastline}
\minted@def@optfv{baselinestretch}
\minted@def@optfv{xleftmargin}
\minted@def@optfv{xrightmargin}
\minted@def@optfv{fillcolor}
\minted@def@optfv{tabsize}
\minted@def@optfv{fontfamily}
\minted@def@optfv{fontsize}
\minted@def@optfv{fontshape}
\minted@def@optfv{fontseries}
\minted@def@optfv{formatcom}
\minted@def@optfv{label}
\minted@def@optfv{labelposition}
\minted@def@optfv@switch{numberblanklines}
\minted@def@optfv@switch{showspaces}
\minted@def@optfv@switch{resetmargins}
\minted@def@optfv@switch{samepage}
\minted@def@optfvl@switch{showtabs}
\minted@def@optfv@switch{obeytabs}

% The following are patches currently added onto fancyvrb
\minted@def@optfv@switch{breaklines}
\minted@def@optfv{breakindent}
\minted@def@optfv@switch{breakautoindent}
\minted@def@optfv{breaksymbol}
\minted@def@optfv{breaksymbolsep}
\minted@def@optfv{breaksymbolindent}
\minted@def@optfv{breaksymbolleft}
\minted@def@optfv{breaksymbolsepleft}
\minted@def@optfv{breaksymbolindentleft}
\minted@def@optfv{breaksymbolright}
\minted@def@optfv{breaksymbolsepright}
\minted@def@optfv{breaksymbolindentright}
\minted@def@optfv{breakbefore}
\minted@def@optfv{breakbeforesymbolpre}
\minted@def@optfv{breakbeforesymbolpost}
\minted@def@optfv@switch{breakbeforegroup}
\minted@def@optfv{breakafter}
\minted@def@optfv@switch{breakaftergroup}
\minted@def@optfv{breakaftersymbolpre}
\minted@def@optfv{breakaftersymbolpost}
\minted@def@optfv@switch{breakanywhere}
\minted@def@optfv{breakanywheresymbolpre}
\minted@def@optfv{breakanywheresymbolpost}

59

Finally, options specific to minted.

An option to force breaklines to work at the Pygments token level, rather than
at the character level. This is useful in keeping things like strings from being split
between lines.

672 \minted@def@opt@switch{breakbytoken}
673 \minted@def@opt@switch{breakbytokenanywhere}

bgcolor. The original, minipage- and \colorbox-based solution was replaced
with a framed-based solution in version 2.2. A dedicated framing package will
often be preferable.

674 \mintedQ@defQopt{bgcolor}

Autogobble. We create an option that governs when Python’s textwrap.dedent ()
is used to autogobble code.

675 \minted@def@opt@switch{autogobble}

\minted@encoding When working with encoding, we will need access to the current encoding. That
may be done via \minted@get@opt, but it is more convenient to go ahead and
define a shortcut with an appropriate default

676 \newcommand{\minted@encoding}{\minted@get@opt{encoding} {UTF8}}

9.6 Additions to fancyvrb

The following code adds automatic line breaking functionality to fancyvrb’s
Verbatim environment. The code is intentionally written as an extension to
fancyvrb, rather than as part of minted. Once the code has received more use and
been further refined, it probably should be separated out into its own package as
an extension of fancyvrb.

The line breaking defined here is used in minted’s minted environment and \mint
command, which use Verbatim internally. The \mintinline command implements
line wrapping using a slightly different system (essentially, Bverbatim, with the
\vbox \let to \relax). This is implemented separately within minted, rather than
as an extension to fancyvrb, for simplicity and because Bverbatim wouldn’t be
itself without the box. Likewise, breaklines is not applied to fancyvrb’s \Verb
or short verb, since their implementation is different from that of \mintinline.
Ideally, an extension of fancyvrb would add line breaking to these, or (probable
better) provide equivalent commands that support breaks.

60

9.6.1 Setup

All of the additions to fancyvrb should be defined conditionally. If an
extension to fancyvrb (such as that proposed above) is loaded before minted, and if
this extension provides breaklines, then we don’t want to overwrite that definition
and create a conflict. We assume that any extension of fancyvrb would use the
keyval package, since that is what fancyvrb currently uses, and test for the existence
of a fancyrvb keyval key breaklines.

677 \ifcsname KV@FV@breaklines\endcsname\else

9.6.2 Line breaking
Begin by defining keys, with associated macros, bools, and dimens.

FV@BreakLines Turn line breaking on of off.

678 \newboolean{FV@BreakLines}

679 \let\FVQ@ListProcessLine@Orig\FV@ListProcessLine
680 \define@booleankey{FV}{breaklines}$%

681 {\FV@BreakLinestrue

682 \let\FV@ListProcessLine\FV@ListProcessLine@Break}$%
683 {\FV@BreakLinesfalse
684 \let\FV@ListProcessLine\FV@ListProcessLine@Orig}

\FV@BreakIndent

685 \newdimen\FV@BreakIndent
686 \define@key{FV}{breakindent} {\FV@BreakIndent=#1}
687 \fvset{breakindent=0pt}

FV@BreakAutoIndent

688 \newboolean{FV@BreakAutoIndent}

689 \define@booleankey{FV}{breakautoindent}%

690 {\FV@BreakAutoIndenttrue} {\FV@BreakAutoIndentfalse}
691 \fvset{breakautoindent=true}

\FancyVerbBreakSymbolLeft The left-hand symbol indicating a break. Since breaking is done in such a way
that a left-hand symbol will often be desired while a right-hand symbol may not
be, a shorthand option breaksymbol is supplied. This shorthand convention is
continued with other options applying to the left-hand symbol.

692 \defineQRkey{FV}{breaksymbolleft}{\def\FancyVerbBreakSymbolLeft {#1}}
693 \defineQRkey{FV}{breaksymbol}{\fvset{breaksymbolleft=#1}}
694 \fvset{breaksymbolleft=\tiny\ensuremath{\hookrightarrow}}

61

\FancyVerbBreakSymbolRight The right-hand symbol indicating a break.

695 \define@Rkey{FV}{breaksymbolright} {\def\FancyVerbBreakSymbolRight {#1}}
696 \fvset{breaksymbolright={}}

Separation of break symbols from the text.

\FV@BreakSymbolSepLeft

697 \newdimen\FV@BreakSymbolSepLeft

698 \define@Rkey{FV}{breaksymbolsepleft}{\FV@BreakSymbolSepLeft=4#1}
699 \define@key{FV}{breaksymbolsep}{\fvset{breaksymbolsepleft=4#1}}
700 \fvset{breaksymbolsepleft=lem}

\FV@BreakSymbolSepRight

701 \newdimen\FV@BreakSymbolSepRight
702 \define@key{FV}{breaksymbolsepright} {\FV@BreakSymbolSepRight=#1}
703 \fvset{breaksymbolsepright=1lem}

Additional indentation to make room for the break symbols.

\FV@BreakSymbolIndentLeft

704 \newdimen\FV@BreakSymbolIndentLeft

705 \settowidth{\FV@BreakSymbolIndentLeft}{\ttfamily xxxx}

706 \defineQkey{FV}{breaksymbolindentleft}{\FV@BreakSymbolIndentLeft=#1}
707 \define@key{FV}{breaksymbolindent}{\fvset{breaksymbolindentleft=4#1}}

\FV@BreakSymbolIndentRight

708 \newdimen\FV@BreakSymbolIndentRight
709 \settowidth{\FV@BreakSymbolIndentRight}{\ttfamily xxxx}
710 \define@key{FV}{breaksymbolindentright} {\FV@BreakSymbolIndentRight=#1}

We need macros that contain the logic for typesetting the break symbols. By default,
the symbol macros contain everything regarding the symbol and its typesetting,
while these macros contain pure logic. The symbols should be wrapped in braces
so that formatting commands (for example, \tiny) don’t escape.

~yVerbFormatBreakSymbolLeft

711 \newcommand{\FancyVerbFormatBreakSymbolLeft} [1]{$%
712 \ifnum\value{linenumber}=1\relax\else{#1}\fi}

FancyVerbLineBreakLast We need a counter for keeping track of the internal line number for the last segment
of a broken line, so that we can avoid putting a right continuation symbol there.

713 \newcounter{FancyVerbLineBreakLast}

62

\FV@SetLineBreakLast

714 \newcommand{\FV@SetLineBreakLast}{%
715 \setcounter{FancyVerbLineBreakLast}{\value{linenumber}}}

/VerbFormatBreakSymbolRight

716 \newcommand{\FancyVerbFormatBreakSymbolRight} [1]{%
717 \ifnum\value{linenumber}=\value{FancyVerbLineBreakLast}\relax\else{#1}\fi}

Fv@BreakAnywhere Allow line breaking (almost) anywhere.

718 \newboolean{FV@BreakAnywhere}
719 \define@booleankey{FV}{breakanywhere}$
720 {\FV@BreakAnywheretrue

721 \let\FancyVerbBreakStart\FV@Break

722 \let\FancyVerbBreakStop\FV@EndBreak

723 \let\FV@Break@Token\FV@Break@AnyToken}%
724 {\FV@BreakAnywherefalse

725 \let\FancyVerbBreakStart\relax

726 \let\FancyVerbBreakStop\relax}

727 \fvset{breakanywhere=false}

\FancyVerbBreakStart

728 \let\FancyVerbBreakStart\relax

\FancyVerbBreakStop

7290 \let\FancyVerbBreakStop\relax

\FV@EscChars We need to define versions of common escaped characters that reduce to raw
characters.

730 \edef\FV@hashchar{\string#}

731 \edef\FV@dollarchar{\string$}

732 \edef\FV@ampchar{\string&}

733 \edef\FV@underscorechar{\string_}
734 \edef\FV@tildechar{\string~}

735 \edef\FV@leftsquarebracket{\stringl[}
736 \edef\FV@rightsquarebracket{\string]}
737 \newcommand{\FV@EscChars}{%

738 \let\#\FV@hashchar

739 \let\%\@percentchar

740 \let\{\@charlb

741 \let\}\@Qcharrb

742 \let\$\FV@dollarchar

743 \let\&\FV@ampchar

744 \let_\FV@underscorechar

63

\FV@BreakBefore

FV@BreakBeforeGroup

\FV@BreakBeforePrep

745 \let\\\@backslashchar

746 \let~\FV@tildechar

747 \let\~\FV@tildechar

748 \let\[\FV@leftsquarebracket
749 \let\]\FV@rightsquarebracket
750 } %$ <- highlighting

Allow line breaking (almost) anywhere, but only before specified characters.

751 \define@key{FV} {breakbefore}{%
752 \ifstrempty{#1}$%

753 {\1let\FV@BreakBefore\Qempty

754 \let\FancyVerbBreakStart\relax

755 \let\FancyVerbBreakStop\relax}$%

756 {\def\FV@BreakBefore{#1}%

757 \let\FancyVerbBreakStart\FV@Break

758 \let\FancyVerbBreakStop\FV@EndBreak

759 \let\FV@Break@Token\FV@Break@BeforeAfterToken}$%
760 }

761 \fvset{breakbefore={}}

Determine whether breaking before specified characters is always allowed before
each individual character, or is only allowed before the first in a group of identical
characters.

762 \newboolean{FV@BreakBeforeGroup}

763 \define@booleankey{FV} {breakbeforegroup}$%
764 {\FV@BreakBeforeGrouptrue}%

765 {\FV@BreakBeforeGroupfalse}%

766 \fvset {breakbeforegroup=true}

We need a way to break before characters if they have been specified as breaking
characters. It would be possible to do that via a nested conditional, but that would
be messy. It is much simpler to create an empty macro whose name contains the
character, and test for the existence of this macro. This needs to be done inside
a \begingroup. ..\endgroup so that the macros do not have to be cleaned up
manually. A good place to do this is in \FV@FormattingPrep, which is inside a
group and before processing starts. The macro is added to \FV@FormattingPrep
below, after \FV@BreakAfterPrep is defined.

The procedure here is a bit roundabout. We need to use \FV@EscChars to handle
character escapes, but the character redefinitions need to be kept local, requiring
that we work within a \begingroup...\endgroup. So we loop through the
breaking tokens and assemble a macro that will itself define character macros. Only
this defining macro is declared global, and it contains expanded characters so that
there is no longer any dependence on \FV@EscChars.

767 \def\FV@BreakBeforePrep{%

64

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788 }

\1ifx\FV@BreakBefore\@empty\relax
\else

\gdef\FV@BreakBefore@Def{}%
\begingroup
\def\FV@BreakBefore@Process##1##2\FVRUndefined{$%
\expandafter\FV@BreakBefore@Process@i\expandafter{##1}%
\expandafter\ifx\expandafter\relax\detokenize{##2}\relax
\else
\FV@BreakBefore@Process##2\FVQ@Undefined
\fi
1%
\def\FV@BreakBefore@ProcessQRi##1{%
\g@addto@macro\FV@BreakBefore@Def{%
\@namedef {FVRBreakBefore@RToken\detokenize{##1}}{}}%
1%
\FV@EscChars
\expandafter\FV@BreakBefore@Process\FV@BreakBefore\FVQ@Undefined
\endgroup
\FV@BreakBefore@Def

\fi

\FV@eBreakAfter Allow line breaking (almost) anywhere, but only after specified characters.

789 \defineRkey{FV}{breakafter}{%

790
791
792
793
794
795
796
797
798 }

\ifstrempty{#1}%

{\let\FV@BreakAfter\Q@empty
\let\FancyVerbBreakStart\relax
\let\FancyVerbBreakStop\relax}$%

{\def\FV@BreakAfter{#1}%
\let\FancyVerbBreakStart\FV@Break
\let\FancyVerbBreakStop\FV@EndBreak
\let\FV@Break@Token\FV@Break@BeforeAfterToken}%

799 \fvset{breakafter={}}

FV@BreakAfterGroup Determine whether breaking after specified characters is always allowed after each
individual character, or is only allowed after groups of identical characters.

800 \newboolean{FV@BreakAfterGroup}
801 \define@Rbooleankey{FV}{breakaftergroup}%

802
803

{\FV@BreakAfterGrouptrue}$%
{\FV@BreakAfterGroupfalse}$%

804 \fvset{breakaftergroup=true}

\FV@BreakAfterPrep We need a way to break after characters if they have been specified as breaking
characters. It would be possible to do that via a nested conditional, but that would
be messy. It is much simpler to create an empty macro whose name contains the
character, and test for the existence of this macro. This needs to be done inside

65

a \begingroup...\endgroup so that the macros do not have to be cleaned up
manually. A good place to do this is in \FV@FormattingPrep, which is inside a
group and before processing starts.

The procedure here is a bit roundabout. We need to use \FV@EscChars to handle
character escapes, but the character redefinitions need to be kept local, requiring
that we work within a \begingroup...\endgroup. So we loop through the
breaking tokens and assemble a macro that will itself define character macros. Only
this defining macro is declared global, and it contains expanded characters so that
there is no longer any dependence on \FV@REscChars.

805 \def\FV@BreakAfterPrep{%
806 \1fx\FV@BreakAfter\Q@empty\relax
807 \else

808 \gdef\FV@BreakAfter@Def{}%

809 \begingroup

810 \def\FV@BreakAfter@Process##1##2\FVQRUndefined{$%

811 \expandafter\FV@BreakAfter@Process@i\expandafter{##1}%

812 \expandafter\ifx\expandafter\relax\detokenize{##2}\relax

813 \else

814 \FV@BreakAfter@Process##2\FVQ@Undefined

815 \fi

816 1%

817 \def\FV@BreakAfter@ProcessQi##1{%

818 \ifcsname FV@BreakBefore@RToken\detokenize{##1}\endcsname

819 \ifthenelse{\boolean{FV@BreakBeforeGroup}}%

820 {\ifthenelse{\boolean{FV@BreakAfterGroup}}%

821 {1%

822 {\PackageError{minted}$%

823 {Conflicting breakbeforegroup and breakaftergroup for "\detokenize{##1}
824 {Conflicting breakbeforegroup and breakaftergroup for "\detokenize{##1}
825 {\ifthenelse{\boolean{FV@BreakAfterGroup}}%

826 {\PackageError{minted}%

827 {Conflicting breakbeforegroup and breakaftergroup for "\detokenize{##1
828 {Conflicting breakbeforegroup and breakaftergroup for "\detokenize{##1
829 {11%

830 \else

831 \fi

832 \gladdto@macro\FV@BreakAfter@Def{%

833 \@namedef {FV@BreakAfter@Token\detokenize{##1}}{}}%

834 1%

835 \FV@EscChars

836 \expandafter\FV@BreakAfter@Process\FV@BreakAfter\FvVQ@Undefined

837 \endgroup

838 \FV@BreakAfter@Def

839 \fi

840 }

Now that \FVeBreakBeforePrep and \FV@BreakAfterPrep are defined, add them

66

/VerbBreakAnywhereSymbolPre

JerbBreakAnywhereSymbolPost

1cyVerbBreakBeforeSymbolPre

~yVerbBreakBeforeSymbolPost

ancyVerbBreakAfterSymbolPre

to \FV@FormattingPrep. The ordering here is important, since \FV@BreakAfterPrep
contains compatibility checks with \FvV@BreakBeforePrep, and thus must be used
after it.

841 \expandafter\def\expandafter\FV@FormattingPrep\expandafter{%
842 \expandafter\FV@BreakBeforePrep\expandafter\FV@BreakAfterPrep\FV@FormattingPrep}

The pre-break symbol for breaks introduced by breakanywhere. That is, the
symbol before breaks that occur between characters, rather than at spaces.

843 \definelkey{FV}{breakanywheresymbolpre}{%

844 \ifstrempty{#1}%

845 {\def\FancyVerbBreakAnywhereSymbolPre{}}$%

846 {\def\FancyVerbBreakAnywhereSymbolPre{\hbox{#1}}}}

847 \fvset{breakanywheresymbolpre={\, \footnotesize\ensuremath{_\rfloor}}}

The post-break symbol for breaks introduced by breakanywhere.

848 \define@key{FV}{breakanywheresymbolpost}{$%

849 \ifstrempty{#1}%

850 {\def\FancyVerbBreakAnywhereSymbolPost{}}%

851 {\def\FancyVerbBreakAnywhereSymbolPost {\hbox{#1}}}}
852 \fvset{breakanywheresymbolpost={}}

The pre-break symbol for breaks introduced by breakbefore.

853 \defineRkey{FV}{breakbeforesymbolpre}{%

854 \ifstrempty{#1}%

855 {\def\FancyVerbBreakBeforeSymbolPre{}}%

856 {\def\FancyVerbBreakBeforeSymbolPre{\hbox{#1}}}}

857 \fvset{breakbeforesymbolpre={\, \footnotesize\ensuremath{_\rfloor}}}

The post-break symbol for breaks introduced by breakbefore.

858 \definelRkey{FV}{breakbeforesymbolpost}{%

859 \ifstrempty{#1}%

860 {\def\FancyVerbBreakBeforeSymbolPost{}}%

861 {\def\FancyVerbBreakBeforeSymbolPost {\hbox{#1}}}}
862 \fvset{breakbeforesymbolpost={}}

The pre-break symbol for breaks introduced by breakafter.

863 \define@key{FV}{breakaftersymbolpre}{$%

864 \ifstrempty{#1}%

865 {\def\FancyVerbBreakAfterSymbolPre{}}$%

866 {\def\FancyVerbBreakAfterSymbolPre{\hbox{#1}}}}

867 \fvset{breakaftersymbolpre={\, \footnotesize\ensuremath{_\rfloor}}}

67

1cyVerbBreakAfterSymbolPost The post-break symbol for breaks introduced by breakafter.

868 \define@key{FV}{breakaftersymbolpost}{%

869 \ifstrempty{#1}%

870 {\def\FancyVerbBreakAfterSymbolPost{}}%

871 {\def\FancyVerbBreakAfterSymbolPost{\hbox{#1}}}}
872 \fvset{breakaftersymbolpost={}}

"ancyVerbBreakAnywhereBreak When breakanywhere=true, line breaks may occur at almost any location. This
is the macro that governs the breaking in those cases. By default, \discretionary
is used. \discretionary takes three arguments: a character to insert before the
break, a character to insert after the break, and a character to insert if there is no
break.

\discretionary will generally only insert breaks when breaking at spaces sim-
ply cannot make lines short enough (this may be tweaked to some extent with
hyphenation settings). This can produce a somewhat ragged appearance in some
cases. If you want breaks exactly at the margin (or as close as possible) regardless
of whether a break at a space is an option, you may want to use \allowbreak
instead.

873 \newcommand{\FancyVerbBreakAnywhereBreak} {%
874 \discretionary{\FancyVerbBreakAnywhereSymbolPre}%
875 {\FancyVerbBreakAnywhereSymbolPost}{}}

\FancyVerbBreakBeforeBreak The macro governing breaking for breakbefore=true

876 \newcommand{\FancyVerbBreakBeforeBreak}{$%
877 \discretionary{\FancyVerbBreakBeforeSymbolPre}$%
878 {\FancyVerbBreakBeforeSymbolPost}{}}

\FancyVerbBreakAfterBreak The macro governing breaking for breakafter=true.

879 \newcommand{\FancyVerbBreakAfterBreak}{%
880 \discretionary{\FancyVerbBreakAfterSymbolPre}%
881 {\FancyVerbBreakAfterSymbolPost}{}}

Define helper macros.

\FV@LineBox A box for saving a line of code, so that its dimensions may be determined and thus
we may figure out if it needs line breaking.

882 \newsavebox{\FVQLineBox}

\FV@LineIndentBox A box for saving the indentation of code, so that its dimensions may be determined
for use in autoindentation of continuation lines.

883 \newsavebox{\FV@LineIndentBox}

68

\FV@RLineIndentChars

\FV@GetLineIndent

\FV@Break

A macro for storing the indentation characters, if any, of a given line. For use in
autoindentation of continuation lines

884 \let\FV@LineIndentChars\@empty

A macro that takes a line and determines the indentation, storing the indentation
chars in \FvV@LineIndentChars.

885 \def\FV@GetNextChar{\let\FV@NextChar=}

886 \def\FV@CleanRemainingChars#1\FV@Undefined{}

887 \def\FVQ@GetLineIndent{\afterassignment\FV@CheckIndentChar\FV@GetNextChar}
888 \def\FV@CheckIndentChar{$%

889 \1fx\FV@NextChar\FvV@Undefined

890 \let\FV@Next=\relax

891 \else

892 \expandafter\i1fx\FV@NextChar\FV@Space

893 \glRaddto@macro{\FV@LineIndentChars} {\FV@Space}%
894 \let\FV@Next=\FV@GetLineIndent

895 \else

896 \expandafter\ifx\FV@NextChar\FVQ@Tab

897 \gladdto@macro{\FV@LineIndentChars} {\FV@Tab}%
898 \let\FV@Next=\FV@GetLineIndent

899 \else

900 \let\FV@Next=\FV@CleanRemainingChars

go1 \fi

902 \fi

903 \fi

904 \FV@Next

905 }

Define the macros that actually perform breakanywhere, breakbefore, and
breakafter.

The entry macro for breaking lines, either anywhere or before/after specified
characters. The current line (or argument) will be scanned token by token/group
by group, and accumulated (with added potential breaks) in \FveTmp. After
scanning is complete, \FveTmp will be inserted. It would be possible to insert
each token/group into the document immediately after it is scanned, instead of
accumulating them in a “buffer.” But that would interfere with macros. Even in
the current approach, macros that take optional arguments are problematic.”

906 \def\FV@Break{%

907 \def\FVQ@Tmp{}%

908 \let\FV@LastToken\minted@Qundefined
909 \FV@Break@Scan

910 }

"Through a suitable definition that tracks the current state and looks for square brackets, this
might be circumvented. Then again, in verbatim contexts, macro use should be minimal, so the
restriction to macros without optional arguments should generally not be an issue.

69

\FV@EndBreak

911 \def\FV@EndBreak {\FVETmp}

\FV@Break@Scan Look ahead via \@ifnextchar. Don’t do anything if we’re at the end of the region
to be scanned. Otherwise, invoke a macro to deal with what’s next based on
whether it is math, or a group, or something else.

This and some following macros are defined inside of groups, to ensure proper
catcodes.

912 \begingroup

913 \catcode ‘\$=3%

914 \gdef\FV@BreakQ@Scan{%

915 \@ifnextchar\FV@EndBreak$%

916 {1%

917 {\ifx\@let@token$\relax

918 \let\FV@Break@Next\FV@Break@Math
919 \else

920 \ifx\@let@token\bgroup\relax

921 \let\FV@Break@Next\FV@Break@Group
922 \else

923 \let\FV@Break@Next \FV@Break@Token
924 \fi

925 \fi

926 \FV@Break@Next }%

927 }

928 \endgroup

\FV@Break@Math Grab an entire math span, and insert it into \Fv@Tmp. Due to grouping, this works
even when math contains things like \text {x}. After dealing with the math
span, continue scanning.

929 \begingroup

930 \catcode‘\$=3%

931 \gdef\FV@Break@Math$#1${%

932 \gRaddto@macro{\FVRTmp} {S#15}%

933 \let\FV@LastToken\minted@Qundefined
934 \FV@Break@Scan}

935 \endgroup

\FV@Break@Group Grab the group, and insert it into \Fv@Tmp (as a group) before continuing scanning.

936 \def\FV@Break@Group#1l{%

937 \gladdto@macro{\FVRTmp} {{#1}}%

038 \ifstrempty{#1}{}{\let\FV@LastToken\minted@undefined}$%
939 \FV@Break@Scan}

70

\FV@Break@Token

\FV@Break@AnyToken

\FV@Break@BeforeAfterToken

This macro is \1let to \FV@Break@AnyToken or \FV@Break@BeforeAfterToken
by the breakanywhere and breakbefore/breakafter options, so it is not explic-
itly defined.

Deal with breaking around any token.

If it is ever necessary, it would be possible to create a more sophisticated version
involving catcode checks via \ifcat. Something like this:

\begingroup
\catcode \a=11
\catcode \+=12
\gdef\FV@Break. ..
\ifcat\noexpand#la
\gRaddto@macro{\FVRTmp}...
\else

\endgroup

This doesn’t break macros with mandatory arguments, because \FancyVerbBreakAnywhereBreak
is inserted before the token. Groups themselves are added without any special

handling. So a macro would end up right next to its original arguments, without

anything being inserted. Optional arguments will cause this approach to fail; there

is currently no attempt to identify them, since that is a much harder problem.

940 \def\FV@Break@AnyToken#1{%
941 \g@addto@macro{\FV@Tmp} { \FancyVerbBreakAnywhereBreak#1}%
942 \FV@Break@Scan}

Deal with breaking around only specified tokens. This is a bit trickier. We only
break if a macro corresponding to the token exists. We also need to check whether
the specified token should be grouped, that is, whether breaks are allowed between
identical characters. All of this has to be written carefully so that nothing is
accidentally inserted into the stream for future scanning.

Dealing with tokens followed by empty groups (for example, \x{}) is particularly
challenging when we want to avoid breaks between identical characters. When a
token is followed by a group, we need to save the current token for later reference
(\x in the example), then capture and save the following group, and then—only if
the group was empty—see if the following token is identical to the old saved token.

943 \def\FV@Break@BeforeAfterToken#1l{$%
944 \ifcsname FV@BreakBefore@Token\detokenize{#1}\endcsname

945 \let\FV@Break@Next \FV@Break@BeforeTokenBreak

946 \else

947 \ifcsname FV@BreakAfter@Token\detokenize{#1}\endcsname
948 \let\FV@Break@Next \FV@Break@AfterTokenBreak

949 \else

950 \let\FV@Break@Next\FV@Break@BeforeAfterTokenNoBreak
951 \fi

71

952 \fi

953 \FV@Break@Next {#1}%

954 }

955 \def\FV@Break@BeforeAfterTokenNoBreak#1l{%

956 \gRaddto@macro{\FVRTmp} {#1}%

957 \let\FV@LastToken#1%

958 \FV@Break@Scan}

059 \def\FV@Break@BeforeTokenBreak#1{%

960 \ifthenelse{\boolean{FV@BreakBeforeGroup}}%

961 {\ifx#1\FV@LastToken\relax

962 \ifcsname FV@BreakAfter@Token\detokenize{#1}\endcsname
963 \let \FV@Break@Next \FV@Break@BeforeTokenBreak@AfterRescan
964 \def\FV@RescanToken{#1}%

965 \else

966 \gQRaddto@macro{\FV@Tmp} {#1}%

967 \let\FV@Break@Next \FV@Break@Scan

968 \let\FV@LastToken#1%

969 \fi

970 \else

971 \ifcsname FV@BreakAfter@Token\detokenize{#1l}\endcsname
972 \gQ@addto@macro{\FV@Tmp} { \FancyVerbBreakBeforeBreak}%
973 \let\FV@Break@Next\FV@Break@BeforeTokenBreak@AfterRescan
974 \def\FVQRRescanToken{#1}%

975 \else

976 \g@addto@macro{\FV@Tmp} { \FancyVerbBreakBeforeBreak#1}%
977 \let\FV@Break@Next \FV@Break@Scan

978 \let\FV@LastToken#1%

979 \fi

980 \fi}%

981 {\ifcsname FV@BreakAfter@Token\detokenize{#1l}\endcsname

982 \gRaddto@macro{\FV@Tmp} { \FancyVerbBreakBeforeBreak}%

983 \let\FV@Break@Next\FV@Break@BeforeTokenBreak@AfterRescan
984 \def\FV@RescanToken{#1}%

985 \else

986 \gRaddto@macro{\FV@Tmp} { \FancyVerbBreakBeforeBreak#1}%
987 \let\FV@Break@Next \FV@Break@Scan

988 \let\FV@LastToken#1%

939 \fi}%

990 \FV@Break@Next }

991 \def\FV@Break@BeforeTokenBreak@AfterRescan{%

992 \expandafter\FV@Break@AfterTokenBreak\FV@RescanToken}
993 \def\FV@Break@AfterTokenBreak#1l{%

994 \let\FV@LastToken#1%

995 \Q@ifnextchar\FV@Space%

996 {\gRaddto@macro{\FV@Tmp} {#1}\FV@Break@Scan}%
997 {\ifthenelse{\boolean{FV@BreakAfterGroup}}%
998 {\ifx\Q@let@token#l\relax

999 \gladdto@macro{\FV@Tmp} {#11}%

1000 \let\FV@Break@Next \FV@Break@Scan

1001 \else

72

1002 \ifx\@let@token\bgroup\relax

1003 \gRaddto@macro{\FVRTmp} {#1}%

1004 \let\FV@Break@Next \FV@Break@AfterTokenBreak@Group
1005 \else

1006 \gRaddto@macro{\FV@Tmp} {#1\FancyVerbBreakAfterBreak}$%
1007 \let\FV@Break@Next \FV@Break@Scan

1008 \fi

1009 \fi}%

1010 {\gladdto@macro{\FV@Tmp} {#1\FancyVerbBreakAfterBreak}$%
1011 \let\FV@Break@Next\FV@Break@Scan}$

1012 \FV@Break@Next}$%

1013 }

1014 \def\FV@Break@AfterTokenBreak@Group#l{%

1015 \gRaddto@macro{\FV@Tmp} { {#1}}%

1016 \ifstrempty{#1}%

1017 {\1let\FV@Break@Next \FV@Break@AfterTokenBreak@Group@i}$%

1018 {\let\FV@Break@Next\FV@Break@Scan\let\FV@LastToken\mintedRundefined}$%
1019 \FV@Break@Next }

1020 \def\FV@Break@AfterTokenBreak@GroupQi{$%

1021 \@ifnextchar\FV@LastToken%

1022 {\FV@Break@Scan}$%
1023 {\gRaddto@macro{\FV@Tmp} { \FancyVerbBreakAfterBreak}$%
1024 \FV@Break@Scan}}

And finally the really important things.

\FV@makeLineNumber We need a version of lineno’s \makeLineNumber that is adapted for our purposes.
This is adapted directly from the example \makeLineNumber that is given in
the lineno documentation under the discussion of internal line numbers. The
\FV@SetLineBreakLast is needed to determine the internal line number of the
last segment of the broken line, so that we can disable the right-hand break symbol
on this segment. When a right-hand break symbol is in use, a line of code will
be processed twice: once to determine the last internal line number, and once to
use this information only to insert right-hand break symbols on the appropriate
lines. During the second run, \FV@SetLineBreakLast is disabled by \letting it
to \relax.

1025 \def\FV@makeLineNumber{%

1026 \hss

1027 \FancyVerbFormatBreakSymbolLeft { \FancyVerbBreakSymbolLeft}%
1028 \hbox to \FV@BreakSymbolSepLeft{\hfill}$%

1029 \rlap{\hskip\linewidth

1030 \hbox to \FV@BreakSymbolSepRight {\hfill}%

1031 \FancyVerbFormatBreakSymbolRight { \FancyVerbBreakSymbolRight}%
1032 \FV@SetLineBreakLast

1033 1%

1034 }

\FV@SaveLineBox This is the macro that does most of the work. This was inspired by Marco Daniel’s

73

code at http://tex.stackexchange.com/a/112573/10742.

This macro is invoked when a line is too long. We modify the \1linewidth
to take into account breakindent and breakautoindent, and insert \hboxes
to fill the empty space. We also account for breaksymbolindentleft and
breaksymbolindentright, but only when there are actually break symbols.
The code is placed in a \parbox. Break symbols are inserted via lineno’s
internallinenumbers+, which does internal line numbers without continuity
between environments (the 1inenumber counter is automatically reset). The be-
ginning of the code has negative \hspace inserted to pull it out to the correct
starting position. \struts are used to maintain correct line heights. The \parbox
is followed by an empty \hbox that takes up the space needed for a right-hand
break symbol (if any).

1035 \def\FV@SaveLineBox#1{%
1036 \savebox {\FV@LineBox}{%

1037 \advance\linewidth by -\FV@BreakIndent

1038 \hbox to \FV@BreakIndent{\hfill}$%

1039 \ifthenelse{\boolean{FV@BreakAutoIndent}}$%

1040 {\let\FV@LineIndentChars\@empty

1041 \FV@GetLineIndent#1\FV@Undefined

1042 \savebox {\FV@LineIndentBox} {\FV@LineIndentChars}$%
1043 \hbox to \wd\FV@LineIndentBox{\hfill}$%

1044 \advance\linewidth by —-\wd\FV@LineIndentBox}%
1045 {1%

1046 \ifdefempty{\FancyVerbBreakSymbolLeft}{}%

1047 {\hbox to \FV@BreakSymbolIndentLeft{\hfill}$%

1048 \advance\linewidth by -\FV@BreakSymbolIndentLeft}%
1049 \ifdefempty{\FancyVerbBreakSymbolRight}{}%

1050 {\advance\linewidth by —-\FV@BreakSymbolIndentRight}$%
1051 \parbox[t]{\linewidth}{%

1052 \raggedright

1053 \leftlinenumbersx

1054 \begin{internallinenumbersx}%

1055 \let\makeLineNumber\FV@makeLineNumber

1056 \noindent\hspacex {-\FV@BreakIndent}$%

1057 \ifdefempty{\FancyVerbBreakSymbolLeft}{}{%

1058 \hspacex*{-\FV@BreakSymbolIndentLeft}}%

1059 \ifthenelse{\boolean{FV@BreakAutoIndent}}$%

1060 {\hspacex{-\wd\FV@LineIndentBox}}%

1061 {}%

1062 \strut\FancyVerbFormatText {%

1063 \FancyVerbBreakStart#1l\FancyVerbBreakStop}\nobreak\strut
1064 \end{internallinenumbersx}

1065 1%

1066 \ifdefempty{\FancyVerbBreakSymbolRight}{}%

1067 {\hbox to \FV@BreakSymbolIndentRight{\hfill}}%

1068 1%

1069 }

74

http://tex.stackexchange.com/a/112573/10742

\FancyVerbFormatText

The introduction of line breaks introduces an issue for \FancyVerbFormatLine.
Does it format the entire line (outside the \parbox), or only the text part of the
line (inside the \parbox)? Since both might be desirable, \FancyvVerbFormatLine
is assigned to the entire line, and a new macro \FancyVerbFormatText is assigned
to the text, within the \parbox.

1070 \def\FancyVerbFormatText#1 {#1}

\FV@ListProcessLine@Break

This macro is based on \FV@ListProcessLine and follows it as closely as possible.
The \1inewidth is reduced by \FV@FrameSep and \FV@FrameRule so that text
will not overrun frames. This is done conditionally based on which frames are in
use. We save the current line in a box, and only do special things if the box is too
wide. For uniformity, all text is placed in a \parbox, even if it doesn’t need to be
wrapped.

If a line is too wide, then it is passed to \FV@SaveLineBox. If there is no right-hand
break symbol, then the saved result in \Fve@LineBox may be used immediately.
If there is a right-hand break symbol, then the line must be processed a sec-
ond time, so that the right-hand break symbol may be removed from the final
segment of the broken line (since it does not continue). During the first use of
\FV@SaveLineBox, the counter FancyVerbLineBreakLast is set to the internal
line number of the last segment of the broken line. During the second use of
\FV@SaveLineBox, we disable this (\let\FV@SetLineBreakLast\relax) so that
the value of FancyVerbLineBreakLast remains fixed and thus may be used to
determine when a right-hand break symbol should be inserted.

1071 \def\FV@ListProcessLine@Break#1l{%
1072 \1fx\FV@ObeyTabsInit\relax\else

1073 \PackageError{minted}%
1074 {the options obeytabs and breaklines are not compatible}{}%
1075 \fi

1076 \hbox to \hsize{%

1077 \kern\leftmargin

1078 \hbox to \linewidth{$%

1079 \1ifx\FV@RightListFrame\relax\else

1080 \advance\linewidth by -\FV@FrameSep

1081 \advance\linewidth by —-\FVQ@FrameRule

1082 \fi

1083 \ifx\FV@LeftListFrame\relax\else

1084 \advance\linewidth by —-\FV@FrameSep

1085 \advance\linewidth by —-\FV@FrameRule

1086 \fi

1087 \sbox{\FVQ@LineBox} {\FancyVerbFormatLine{\FancyVerbFormatText{#1}}}%
1088 \ifdim\wd\FVQ@LineBox>\1linewidth

1089 \setcounter{FancyVerbLineBreakLast}{0}%

1090 \FV@SaveLineBox{#1}%

1091 \ifdefempty{\FancyVerbBreakSymbolRight} {}{%
1092 \let\FV@SetLineBreakLast\relax

1093 \FV@SaveLineBox{#1}}%

(0]

1004 \FVQ@LeftListNumber

1095 \FVQ@LeftListFrame

1096 \FancyVerbFormatLine{\usebox{\FV@LineBox}}%
1097 \FV@RightListFrame

1008 \FVQ@RightListNumber

1099 \else

1100 \FV@LeftListNumber

1101 \FV@LeftListFrame

1102 \FancyVerbFormatLine{$%

1103 \parbox[t] {\linewidth} {\noindent\strut\FancyVerbFormatText {#1}\strut}}%
1104 \FVQ@RightListFrame

1105 \FV@RightListNumber

1106 \fil}$%
1107 \hss}\baselineskip\z@\lineskip\z@}

9.7 1linenos

Since fancyvrb currently doesn’t have a linenos key, we create one that mimics
numbers=1left (but only after checking to make sure that another package hasn’t
already patched this).

1108 \ifcsname KV@FV@linenos\endcsnamel\else

1109 \define@booleankey{FV}{linenos}$%

1110 {\@nameuse {FV@Numbers@left}} {\@nameuse {FVENumbers@none}}
1111 \fi

9.8 Cleanup

Finally, end the conditional creation of fancyvrb extensions.

1112 \fi

9.9 Internal helpers

\minted@bgbox Define an environment that may be wrapped around a minted environment to
assign a background color. This is retained as a holdover from version 1.0. In most
cases, it is probably better to use a dedicated framing package, such as tcolorbox
or mdframed.

First, we need to define a new save box.
1113 \newsavebox{\minted@bgbox}
Now we can define the environment that applies a background color. Prior to

minted 2.2, this involved a minipage. However, that approach was problematic
because it did not allow linebreaks, would be pushed into the margin by immediately

76

preceding text, and had very different whitespace separation from preceding and
following text compared to no background color. In version 2.2, this was replaced
with an approach based on framed. \Fv@NumberSep is adjusted by \fboxsep to
ensure that line numbers remain in the same location in the margin regardless of
whether bgcolor is used.

1114 \newenvironment {minted@colorbg} [1]{%
1115 \setlength{\OuterFrameSep}{Opt}$%
1116 \colorlet{shadecolor}{#1}%

1117 \let\minted@tmp\FV@NumberSep

1118 \edef\FV@NumberSep{%

1119 \the\numexpr\dimexpr\minted@tmp+\number\fboxsep\relax sp\relax}%
1120 \medskip
1121 \begin{snugshadex}}

1122 {\end{snugshadex*}%
1123 \medskip\noindent}

\minted@code Create a file handle for saving code (and anything else that must be written to
temp files).

1124 \newwrite\minted@code

\minted@savecode Save code to be pygmentized to a file.

1125 \newcommand{\minted@savecode} [1]{

1126 \immediate\openout\minted@code\minted@jobname.pyg\relax
1127 \immediate\write\minted@code{\expandafter\detokenize\expandafter{#1}}%
1128 \immediate\closeout\minted@code}

minted@FancyVerbLineTemp At various points, we will need a temporary counter for storing and then restoring
the value of FancyverbLine. When using the langlinenos option, we need
to store the current value of FancyVerbLine, then set FancyVerbLine to the
current value of a language-specific counter, and finally restore FancyvVerbLine
to its initial value after the current chunk of code has been typeset. In patching
VerbatimOut, we need to prevent FancyVerbLine from being incremented during
the write process.

1129 \newcounter{minted@FancyVerbLineTemp}

\minted@FVB@VerbatimOut We need a custom version of fancyvrb’s \FVB@VerbatimOut that supports Unicode
(everything written to file is \detokenized). We also need to prevent the value of
FancyVerbLine from being incorrectly incremented.

1130 \newcommand{\minted@write@detok} [1]{%

1131 \immediate\write\FV@OutFile{\detokenize{#1}}}

1132 \newcommand{\minted@FVB@VerbatimOut} [1]{$%

1133 \setcounter{minted@FancyVerbLineTemp} {\value{FancyVerbLine}}%
1134 \@bsphack

7

1135 \begingroup

1136 \FVQ@UseKeyValues

1137 \FV@DefineWhiteSpace

1138 \def\FV@Space{\space}$%

1139 \FV@DefineTabOut

1140 \let\FV@ProcessLine\minted@write@Rdetok
1141 \immediate\openout\FV@OutFile #1l\relax
1142 \let\FV@FontScanPrep\relax

1143 \let\@noligs\relax

1144 \FV@Scan}

\minted@FVE@VerbatimOut

Likewise, we need a custom version of \FVE@VerbatimOut that completes the
protection of FancyVerbLine from being incremented.

1145 \newcommand{\minted@FVEQ@VerbatimOut}{%
1146 \immediate\closeout \FV@OutFile\endgroup\@esphack

1147 \setcounter{FancyVerbLine} {\value{minted@FancyVerbLineTemp}}}$%
We need a way to customize the executable/script that is called to perform

\MintedPygmentize

highlighting. Typically, we will want pygmentize. But advanced users might wish
to use a custom Python script instead. The command is only defined if it does not
exist. In general, the command should be \renewcommanded after the package is
loaded, but this way, it will work if defined before minted is loaded.

1148 \ifcsname MintedPygmentizel\endcsname\else
1149 \newcommand{\MintedPygmentize} {pygmentize}
1150 \fi

minted@pygmentizecounter

We need a counter to keep track of how many files have been pygmentized. This
is primarily used with finalizecache for naming cache files sequentially in
listing<number>.pygtex form.

1151 \newcounter{minted@pygmentizecounter}

\minted@pygmentize

Pygmentize a file (default: \minted@outputdir\minted@jobname.pyg) using the
options provided.

Unfortunately, the logic for caching is a little complex due to operations that are
OS- and engine-dependent.

The name of cached files is the result of concatenating the md5 of the code and
the mdb of the command. This results in a filename that is longer than ideal
(64 characters plus path and extension). Unfortunately, this is the only robust
approach that is possible using the built-in pdfTeX hashing capabilities.® LuaTeX
could do better, by hashing the command and code together. The Python script

8Tt would be possible to use only the cache of the code, but that approach breaks down as
soon as the code is used multiple times with different options. While that may seem unlikely in
practice, it occurs in this documentation and may be expected to occur in other docs.

78

that provides XeTeX capabilities simply runs both the command and the code
through a single shal hasher, but has the additional overhead of the \write18 call
and Python execution.

One potential concern is that caching should also keep track of the command from
which code originates. What if identical code is highlighted with identical settings
in both the minted environment and \mintinline command? In both cases, what
is actually saved by Pygments is identical. The difference in final appearance is
due to how the environment and command treat the Pygments output.

This macro must always be checked carefully whenever it is modified.
Under no circumstances should #1 be written to or opened by Python in write
mode. When \inputminted is used, #1 will be an external file that is brought in
for highlighting, so it must be left intact.

1152 \newcommand{\minted@pygmentize} [2] [\minted@outputdir\minted@jobname.pygl {%

1153 \stepcounter{minted@pygmentizecounter}$%

1154 \ifthenelse{\equal{\minted@getQopt{autogobble}{false}}{true}}$%
1155 {\def\minted@codefile{\minted@outputdir\minted@jobname.pyg}}%
1156 {\def\minted@codefile{#1}}%

1157 \ifthenelse{\boolean{minted@isinline}}%

1158 {\def\minted@optlistcl@inlines{%

1159 \minted@optlistcl@g@i

1160 \csname minted@optlistcl@lang\minted@lang Q@i\endcsname}}$%
1161 {\let\minted@optlistcl@inlines\@empty}%

1162 \def\minted@cmd{%

1163 \ifminted@kpsewhich\ifwindows powershell\space\fi\fi

1164 \MintedPygmentize\space -1 #2

1165 -f latex -P commandprefix=PYG -F tokenmerge

1166 \minted@optlistcl@g \csname minted@optlistcl@lang\minted@lang\endcsname
1167 \minted@optlistcl@inlines

1168 \minted@optlistcl@cmd —-o \minted@outputdir\minted@infile\space
1169 \ifminted@kpsewhich

1170 \ifwindows

1171 \detokenize{$} (kpsewhich \minted@codefile)$%

1172 \else

1173 \detokenize{ ‘}kpsewhich \minted@codefile\space

1174 \detokenize{ ||} \minted@codefile\detokenize{‘}%

1175 \fi

1176 \else

1177 \minted@codefile

1178 \fi}%

1179 % For debugging, uncomment: %%%%

1180 % \immediate\typeout{\minted@cmd}$%

1181 % %%%%

1182 \ifthenelse{\boolean{minted@cache}}%

1183 {%

1184 \ifminted@frozencache

1185 \else

1186 \ifx\XeTeXinterchartoks\minted@undefined

79

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236

\ifthenelse{\equal{\minted@get@opt{autogobble}{false}}{true}}$%

{\edef\minted@Rhash{\pdf@filemdfivesum{#1}%
\pdf@mdfivesum{\minted@cmd autogobble}}}%

{\edef\minted@hash{\pdf@filemdfivesum{#1}%
\pdf@mdfivesum{\minted@cmd}}}%

\else
\ifx\mdfivesum\minted@undefined

\immediate\openout\minted@code\minted@jobname.mintedcmd\relax
\immediate\write\mintedQ@code{\minted@Rcmd}$%
\ifthenelse{\equal {\minted@get@opt{autogobble}{false}}{true}}%

{\immediate\write\minted@code{autogobble}}{}%
\immediate\closeout\minted@code
\edef\minted@argonelesc{#1}%
\StrSubstitute{\minted@argone@esc}{\@backslashchar} {\@backslashchar\@ba
\StrSubstitute{\minted@argone@esc}{"}{\@backslashchar"} [\minted@argone@
\edef\minted@tmpfname@esc{\minted@outputdir\minted@jobname}%
\StrSubstitute{\minted@tmpfname@esc} {\Q@backslashchar}{\@backslashchar\Q
\StrSubstitute{\minted@tmpfname@esc}{"}{\@backslashchar"} [\minted@tmpfn
%Cheating a little here by using ASCII codes to write ‘{' and ‘}°‘
%in the Python code
\def\minted@hashcmd{$%

\detokenize{python —-c "import hashlib; import os;

hasher = hashlib.shal();

f = open (os.path.expanduser (os.path.expandvars (\"}\minted@tmpfname@:
hasher.update (f.read());

f.close();

f = open(os.path.expanduser (os.path.expandvars (\"}\minted@argoneles
hasher.update (f.read());

f.close();

f = open (os.path.expanduser (os.path.expandvars (\"}\minted@tmpfname@

macro = \"\\edef\\minted@hash\" + chr(123) + hasher.hexdigest () + c
f.write (\"\\makeatletter\" + macro + \"\\makeatother\\endinput\n\")
f.close();"}}%

\ShellEscape{\minted@hashcmd}%

\minted@input {\mintedQ@outputdir\minted@ jobname.mintedmd5}%

\else

\ifthenelse{\equal{\minted@getQ@opt{autogobble}{false}}{true}}%
{\edef\minted@hash{\mdfivesum file {#1}%
\mdfivesum{\minted@cmd autogobble}}}%
{\edef\minted@hash{\mdfivesum file {#1}%
\mdfivesum{\minted@cmd}}}%

\fi

\edef\minted@infile{\minted@cachedir/\minted@hash.pygtex}$%
\IfFileExists{\minted@infile}{}{%
\ifthenelse{\equal {\minted@getQ@opt{autogobble}{false}}{true}}{%

\edef\minted@argone@esc{#1}%

\StrSubstitute{\minted@Rargonelesc} {\@backslashchar}{\@backslashchar\@ba
\StrSubstitute{\minted@argone@esc}{"}{\@backslashchar"} [\minted@argonel
\edef\minted@tmpfnamelesc{\minted@outputdir\minted@jobname}%

80

1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286

oe

\StrSubstitute{\minted@tmpfnamelesc} {\@backslashchar}{\@backslashchar\@l
\StrSubstitute{\minted@tmpfnamelesc}{"}{\@backslashchar"} [\minted@tmpfn
%$Need a version of open() that supports encoding under Python 2
\edef\minted@autogobblecmd{%

\detokenize{python —-c "import sys; import os;

import textwrap;

from io import open;
= open (os.path.expanduser (os.path.expandvars (\"}\minted@argone@esc\
= f.read();
.close();
= open (os.path.expanduser (os.path.expandvars (\"}\minted@tmpfnameles
.write (textwrap.dedent (t));
.close();"}%

FhoFh oHh Fh O Fh

1%
\ShellEscape{\mintedQautogobblecmd}}{}%
\ShellEscape{\minted@cmd}}%

\fi
\ifthenelse{\boolean{minted@finalizecache}}%

{%
\edef\minted@cachefilename{listing\arabic{minted@pygmentizecounter}.pygte
\edef\mintedQRactualinfile{\minted@Rcachedir/\minted@cachefilename}$%
\ifwindows
\StrSubstitute{\minted@infile}{/}{\@backslashchar} [\minted@infile@windo
\StrSubstitute{\mintedRactualinfile}{/}{\@backslashchar} [\mintedQRactual
\ShellEscape{move /y \minted@infile@windows\space\mintedQRactualinfileQw
\else
\ShellEscape{mv —-f \minted@infile\space\minted@Ractualinfile}$%
\fi
\let\minted@infile\mintedRactualinfile
\expandafter\minted@addcachefile\expandafter{\minted@cachefilename}%
1%
{\ifthenelse{\boolean{minted@frozencache}}%
{%
\edef\minted@cachefilename{listing\arabic{minted@pygmentizecounter}.pyg
\edef\minted@infile{\minted@Rcachedir/\minted@cachefilename}$%
\expandafter\minted@addcachefile\expandafter{\minted@cachefilename}}$%
{\expandafter\mintedQRaddcachefile\expandafter{\minted@hash.pygtex}}%

1%

\minted@inputpyg}$%

\ifthenelse{\equal{\minted@get@opt{autogobble}{false}}{true}}{%

\edef\minted@argone@esc{#1}%
\StrSubstitute{\minted@argonelesc} {\@backslashchar} {\@backslashchar\@backsl
\StrSubstitute{\minted@argonelesc} {"}{\@backslashchar"} [\minted@argonelesc]
\edef\minted@tmpfnamelesc{\minted@outputdir\minted@jobname}$%
\StrSubstitute{\minted@tmpfname@esc} {\@backslashchar}{\@backslashchar\@back
\StrSubstitute{\minted@tmpfname@esc}{"}{\@backslashchar"} [\minted@tmpfname@
%Need a version of open() that supports encoding under Python 2
\edef\minted@autogobblecmd{%

\detokenize{python -c "import sys; import os;

81

1287
1288
1289
1290
1291
1202
1203
1204
1295
1296
1297
1298
1299 }

import textwrap;
from io import open;
f = open(os.path.expanduser (os.path.expandvars (\"}\minted@Rargone@esc\deto
t = f.read();
f.close();
f = open(os.path.expanduser (os.path.expandvars (\"}\minted@tmpfname@esc.py
f.write (textwrap.dedent (t));
f.close();"}%
}%
\ShellEscape{\minted@Rautogobblecmd}}{}%
\ShellEscape{\minted@cmd}%
\minted@inputpyg}$%

\minted@inputpyg For increased clarity, the actual \ input process is separated out into its own macro.
The bgcolor option needs to be dealt with in different ways depending on whether
we are using \mintinline. It is simplest to apply this option here, so that the
macro redefinitions may be local and thus do not need to be manually reset later.
\FV@Space is also patched for math mode, so that space characters will vanish
rather than appear as literal spaces within math mode. To simplify the logic,
breakbytoken is turned on if breakbytokenanywhere is on.

At the last possible moment, \PYG is \let to \PYG<style>. All modifications to
the style macro for breaking are made to \PYG<style> rather than \PYG, so that
the \leting that must ultimately take place will indeed do what is intended.

1300 \def\FV@SpaceMMode{ }
1301 \def\minted@BreakBeforePrep@extension{%

1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322

\ifcsname FV@BreakBefore@Token\@backslashchar\endcsname
\@namedef {FV@BreakBefore@Token\detokenize{\PYGZbs}}{}%

\fi

\ifcsname FV@BreakBefore@Token\FV@underscorechar\endcsname
\@namedef {FV@BreakBefore@Token\detokenize{\PYGZus}}{}%

\fi

\ifcsname FV@BreakBefore@RToken\@charlb\endcsname
\@namedef {FV@BreakBefore@Token\detokenize{\PYGZob}}{}%

\fi

\ifcsname FV@BreakBefore@RToken\@charrb\endcsname
\@namedef {FV@BreakBefore@Token\detokenize{\PYGZcb}}{}%

\fi

\ifcsname FV@BreakBefore@Token\detokenize{”"}\endcsname
\@namedef {FV@BreakBefore@Token\detokenize{\PYGZca}}{}%

\fi

\ifcsname FV@BreakBefore@RToken\FV@Rampchar\endcsname
\@namedef {FV@BreakBefore@Token\detokenize{\PYGZam}}{}%

\fi

\ifcsname FV@BreakBefore@Token\detokenize{<}\endcsname
\@namedef {FV@BreakBefore@Token\detokenize {\PYGZ1lt}}{}%

\fi

82

1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

}

\ifcsname FV@BreakBefore@Token\detokenize{>}\endcsname
\@namedef {FV@BreakBefore@Token\detokenize{\PYGZgt}}{}%

\fi

\ifcsname FV@BreakBefore@Token\FV@hashchar\endcsname
\@namedef {FV@BreakBefore@RToken\detokenize{\PYGZsh}}{}%

\fi

\ifcsname FV@BreakBefore@Token\@percentchar\endcsname
\@namedef {FV@BreakBefore@Token\detokenize{\PYGZpc}}{}%

\fi

\ifcsname FV@BreakBefore@Token\FV@dollarchar\endcsname
\@namedef {FV@BreakBefore@RToken\detokenize{\PYGZd1l}}{}%

\fi

\ifcsname FV@BreakBefore@Token\detokenize{-}\endcsname
\@namedef {FV@BreakBefore@RToken\detokenize{\PYGZhy}}{}%

\fi

\ifcsname FV@BreakBefore@Token\detokenize{’}\endcsname
\@namedef {FV@BreakBefore@Token\detokenize{\PYGZsqg}}{}%

\fi

\ifcsname FV@BreakBefore@Token\detokenize{"}\endcsname
\@namedef {FV@BreakBefore@Token\detokenize{\PYGZdg}}{}%

\fi

\ifcsname FV@BreakBefore@Token\FV@tildechar\endcsname
\@namedef {FV@BreakBefore@RToken\detokenize {\PYGZti}}{}%

\fi

\ifcsname FV@BreakBefore@Token\detokenize{@}\endcsname
\@namedef {FV@BreakBefore@RToken\detokenize{\PYGZat}}{}%

\fi

\ifcsname FV@BreakBefore@Token\detokenize{[}\endcsname
\@namedef {FV@BreakBefore@RToken\detokenize{\PYGZ1lb}}{}%

\fi

\ifcsname FV@BreakBefore@Token\detokenize{]}\endcsname
\@namedef {FV@BreakBefore@RToken\detokenize{\PYGZrb}}{}%

\fi

\def\minted@BreakAfterPrepl@extension{%

\ifcsname FV@BreakAfter@Token\@backslashchar\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZbs}}{}%

\fi

\ifcsname FV@BreakAfter@Token\FV@underscorechar\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZus}}{}%

\fi

\ifcsname FV@BreakAfter@Token\@charlb\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZob}}{}%

\fi

\ifcsname FV@BreakAfter@Token\@charrb\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZcb}}{}%

\fi

\ifcsname FV@BreakAfter@Token\detokenize{"}\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZcal}}{}%

\fi

83

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1301
1392
1303
1394
13905
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422

}

\ifcsname FV@BreakAfter@Token\FV@ampchar\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZam}}{}%

\fi

\ifcsname FV@BreakAfter@Token\detokenize{<}\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZ1lt}}{}%

\fi

\ifcsname FV@BreakAfter@Token\detokenize{>}\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZgt}}{}%

\fi

\ifcsname FV@BreakAfter@Token\FV@hashchar\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZsh}}{}%

\fi

\ifcsname FV@BreakAfter@Token\@percentchar\endcsname
\@namedef {FV@BreakAfterQ@Token\detokenize{\PYGZpc}}{}%

\fi

\ifcsname FV@BreakAfterQ@Token\FV@dollarchar\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZd1l}}{}%

\fi

\ifcsname FV@BreakAfter@Token\detokenize{-}\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZhy}}{}%

\fi

\ifcsname FV@BreakAfter@Token\detokenize{’}\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZsq}}{}%

\fi

\ifcsname FV@BreakAfter@Token\detokenize{"}\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZdqg}}{}%

\fi

\ifcsname FV@BreakAfterQ@Token\FV@tildechar\endcsname
\@namedef {FV@BreakAfter@Token\detokenize {\PYGZti}}{}%

\fi

\ifcsname FV@BreakAfter@Token\detokenize{RQ}\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZat}}{}%

\fi

\ifcsname FV@BreakAfter@Token\detokenize{[}\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZ1lb}}{}%

\fi

\ifcsname FV@BreakAfter@Token\detokenize{]}\endcsname
\@namedef {FV@BreakAfter@Token\detokenize{\PYGZrb}}{}%

\fi

\newcommand{\minted@inputpyg}{%

\let\FV@BreakBeforePrepl@orig\FV@BreakBeforePrep

\def\FV@BreakBeforePrep{%
\FV@BreakBeforePrepQRorig\minted@BreakBeforePreplextension}%

\let\FV@BreakAfterPrep@orig\FV@BreakAfterPrep

\def\FV@BreakAfterPrep{%
\FV@BreakAfterPrep@orig\minted@BreakAfterPrepl@extension}$%

\everymath\expandafter{\the\everymath\let\FV@Space\FV@SpaceMMode}%

\ifthenelse{\equal{\minted@getQopt {breakbytokenanywhere}{false}}{true}}%
{\setkeys{mintedQopt@cmd} {breakbytoken=true}}{}$%

84

1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

\ifthenelse{\boolean{FV@BreakAnywhere}}$%
{\expandafter\let\expandafter\minted@orig@PYGRbreakanywhere%
\csname PYG\minted@get@opt{style}{default}\endcsname
\expandafter\def\csname PYG\minted@get@opt{style}{default}\endcsname##1##2{%
\minted@orig@PYGRbreakanywhere{##1}$%
{\FancyVerbBreakStart##2\FancyVerbBreakStop}}}{}%
\ifx\FV@BreakBefore\Q@empty
\1fx\FV@BreakAfter\Q@empty
\else
\expandafter\let\expandafter\minted@orig@PYG@breakbeforeafter%
\csname PYG\minted@get@opt{style}{default}\endcsname
\expandafter\def\csname PYG\minted@get@opt{style}{default}\endcsname##1l##2{%
\mintedRorig@PYG@breakbeforeafter{##1}%
{\FancyVerbBreakStart##2\FancyVerbBreakStop}}%
\fi
\else
\expandafter\let\expandafter\minted@orig@PYGRbreakbeforeafter$%
\csname PYG\minted@get@opt{style}{default}\endcsname
\expandafter\def\csname PYG\mintedQ@getQopt{style}{default}\endcsname##1##2{%
\minted@orig@PYGRbreakbeforeafter{##1}%
{\FancyVerbBreakStart##2\FancyVerbBreakStop}}%
\fi
\ifthenelse{\boolean{minted@Risinline}}$%
{\ifthenelse{\equal{\minted@getQ@opt{breaklines}{false}}{true}}$%
{\let\FV@BeginVBox\relax
\let\FVQREndVBox\relax
\def\FV@BProcessLine##1{\FancyVerbFormatLine{##1}}%
\ifthenelse{\equal {\minted@getQRopt {breakbytoken}{false}}{true}}%
{\minted@inputpyg@breakbytoken
\minted@inputpyg@inline}%
{\minted@inputpyg@inline}}%
{\minted@inputpyg@inline}}%
{\ifthenelse{\equal{\minted@getQ@opt{breaklines}{false}}{true}}$%
{\ifthenelse{\equal {\minted@get@opt{breakbytoken} {false}}{true}}%
{\minted@inputpyg@breakbytoken
\minted@inputpyg@block}$%
{\minted@inputpyg@block}}$%
{\minted@inputpyg@block}}$%
}
\def\minted@inputpyg@breakbytoken{%
\expandafter\let\expandafter\minted@orig@PYGRbreakbytoken%
\csname PYG\minted@get@opt{style}{default}\endcsname
\ifthenelse{\equal{\minted@getQopt {breakbytokenanywhere}{false}}{true}}%
{\let\minted@origRallowbreak\allowbreak
\defl\allowbreak{\let\allowbreak\minted@orig@allowbreak}%
\expandafter\def\csname PYG\minted@getQopt{style}{default}\endcsname##1##2{%
\allowbreak{}\leavevmode\hbox{\minted@orig@PYGRbreakbytoken{##1} {##2}}}1}%
{\expandafter\defl\csname PYG\minted@get@opt{style}{default}\endcsname##1##2{%
\leavevmode\hbox{\mintedRorig@PYG@breakbytoken{##1} {##2}}1}}%

85

1473 \def\minted@inputpyg@inline{$%
1474 \expandafter\let\expandafter\PYG%

1475 \csname PYG\minted@get@opt{style}{default}\endcsname
1476 \ifthenelse{\equal{\minted@get@opt{bgcolor}{}}{}}%
1477 {\minted@input {\minted@outputdir\minted@infile}}%
1478 {\colorbox{\minted@get@opt {bgcolor}{}}{%

1479 \minted@input{\minted@outputdir\minted@infile}}}%
1480 }

1481 \def\minted@inputpyg@block{%
1482 \expandafter\let\expandafter\PYG%

1483 \csname PYG\minted@get@opt{style}{default}\endcsname
1484 \ifthenelse{\equal{\minted@get@opt{bgcolor}{}}{}}%
1485 {\minted@input { \minted@outputdir\minted@infile}}$%
1486 {\begin{minted@colorbg} {\minted@getQopt{bgcolor}{}}$%
1487 \minted@input {\minted@outputdir\minted@infile}$%

1488 \end{minted@colorbg}}}

We need a way to have line counters on a per-language basis.

\minted@langlinenoson

1489 \newcommand{\minted@langlinenoson}{%

1490 \ifcsname c@minted@lang\minted@lang\endcsnamel\else
1491 \newcounter{minted@lang\minted@lang}%
1492 \fi

1493 \setcounter{minted@FancyVerbLineTemp} {\value{FancyVerbLine}}$%
1494 \setcounter{FancyVerbLine} {\value{minted@lang\minted@lang}}%
1495 }

\minted@langlinenosoff

1496 \newcommand{\minted@langlinenosoff}{%

1497 \setcounter{minted@lang\minted@lang} {\value{FancyVerbLine}}%
1498 \setcounter{FancyVerbLine} {\value{minted@FancyVerbLineTemp}}%
1499 }

Disable the language-specific settings if the package option isn’t used.

1500 \ifthenelse{\boolean{minted@langlinenos}}{}{$%

1501 \let\minted@langlinenoson\relax
1502 \let\minted@langlinenosoff\relax
1503 }

9.10 Public API

\setminted Set global or language-level options.

86

1504 \newcommand{\setminted} [2][]1{$%
1505 \ifthenelse{\equal {#1}{}}%

1506 {\setkeys{mintedQopt@g}{#2}}%
1507 {\minted@configlang{#1}%
1508 \setkeys{minted@opt@lang} {#2}}}

\setmintedinline Set global or language-level options, but only for inline (\mintinline) content.
These settings will override the corresponding \setminted settings.

1509 \newcommand{\setmintedinline} [2][]{%
1510 \ifthenelse{\equal{#1}{}}%

1511 {\setkeys{mintedQoptQRgRi} {#2}}%
1512 {\minted@configlang{#1}%
1513 \setkeys{minted@opt@lang@i} {#2}}}

Now that the settings macros exist, we go ahead and create any needed defaults.

1514 \setmintedinline[php] {startinline=true}

\usemintedstyle Set style. This is a holdover from version 1, since \setminted can now accomplish
this, and a hierarchy of style settings are now possible.

1515 \newcommand{\usemintedstyle} [2] []{\setminted[#1] {style=#2}}

\minted@defwhitespace@retok The \mint and \mintinline commands need to be able to retokenize the code
they collect, particularly in draft mode. Retokenizeation involves expansion
combined with \scantokens, with active space and tab characters. The active
characters need to expand to the appropriate fancyvrb macros, but the macros
themselves should not be expanded. We need a macro that will accomplish the
appropriate definitions.

1516 \begingroup

1517 \catcode‘\ =\active

1518 \catcode *\""I=\active

1519 \gdef\minted@defwhitespace@retok{\def {\noexpand\FV@Space}\def""I{\noexpand\FV@Tab}
1520 \endgroup

\minted@writecmdcode The \mintinline and \mint commands will need to write the code they capture
to a temporary file for highlighting. It will be convenient to be able to accomplish
this via a simple macro, since that makes it simpler to deal with any expansion of
what is to be written. This isn’t needed for the minted environment, because the
(patched) verbatimout is used.

1521 \newcommand{\minted@writecmdcode} [1]{%

1522 \immediate\openout\minted@code\minted@jobname.pyg\relax
1523 \immediate\write\minted@code{\detokenize{#1}}%
1524 \immediate\closeout\minted@code}

87

\mintinline

Define an inline command. This requires some catcode acrobatics. The typical
verbatim methods are not used. Rather, a different approach is taken that is
generally more robust when used within other commands (for example, when used
in footnotes).

Pygments saves code wrapped in a Verbatim environment. Getting the inline com-
mand to work correctly require redefining verbatim to be Bverbatim temporarily.
This approach would break if Bverbatim were ever redefined elsewhere.

Everything needs to be within a \begingroup...\endgroup to prevent settings
from escaping.

In the case of draft mode, the code is captured and retokenized. Then the internals
of fancyvrb are used to emulate Saveverbatim, so that \BUseVerbatim may be
employed.

The FancyVerbLine counter is altered somehow within \minted@pygmentize, so
we protect against this.

1525 \newrobustcmd{\mintinline}[2][]{%
1526 \begingroup

1527 \setboolean{minted@isinline} {true}%
1528 \minted@configlang{#2}%

1529 \setkeys{minted@opt@cmd} {#1}%
1530 \minted@fvset

1531 \begingroup

1532 \let\do\@makeother\dospecials
1533 \catcode ‘\{=1

1534 \catcode ‘*\}=2

1535 \catcode *\""I=\active

1536 \Q@ifnextchar\bgroup

1537 {\minted@inline@iii}%
1538 {\catcode*\{=12\catcode ‘\}=12
1539 \minted@inline@i}}

1540 \def\minted@inline@i#1{%

1541 \endgroup

1542 \def\minted@inline@ii##1#1{%

1543 \minted@Rinline@iii{##1}}%

1544 \begingroup

1545 \let\do\@makeother\dospecials

1546 \catcode *\""I=\active

1547 \minted@inline@ii}

1548 \ifthenelse{\boolean{minted@draft}}%

1549 {\newcommand{\minted@inline@iii} [1]{%
1550 \endgroup

1551 \begingroup

1552 \minted@defwhitespace@retok

1553 \everyeof{\noexpand}$%

1554 \endlinechar-1\relax

1555 \let\do\@makeother\dospecials

1556 \catcode*\ =\active

88

\mint

1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

\catcode*\""I=\active
\xdef\minted@tmp{\scantokens{#1}}%
\endgroup
\let\FV@Line\minted@tmp
\def\FV@SV@minted@tmp{%
\FV@Gobble
\expandafter\FV@ProcessLine\expandafter{\FVQ@Line}}%
\ifthenelse{\equal{\minted@getQopt{breaklines}{false}}{true}}%
{\1let\FV@BeginVBox\relax
\let \FVQREndVBox\relax
\def\FV@BProcessLine##1l{\FancyVerbFormatLine{##1}}%
\BUseVerbatim{minted@tmp}}%
{\BUseVerbatim{minted@tmp}}$%
\endgroup}}%
{\newcommand{\minted@inline@iii} [1]1{%
\endgroup
\minted@writecmdcode{#1}%
\RecustomVerbatimEnvironment {Verbatim} {BVerbatim}{}%
\setcounter{minted@FancyVerbLineTemp} {\value{FancyVerbLine}}%
\minted@pygmentize{\minted@lang}%
\setcounter{FancyVerbLine} {\value{minted@FancyVerbLineTemp}}$%
\endgroup}}

Highlight a small piece of verbatim code (a single line).

The draft version digs into a good deal of fancyvrb internals. We want to
employ \UseVerbatim, and this requires assembling a macro equivalent to
what Saveverbatim would have created. Actually, this is superior to what
SaveVerbatim would yield, because line numbering is handled correctly.

1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
15903
1594
1595
1506
1597
1598

\newrobustcmd{\mint} [2] []{%
\begingroup
\minted@configlang{#2}$%
\setkeys{minted@opt@cmd} {#1}%
\minted@fvset
\begingroup
\let\do\@makeother\dospecials
\catcode *\ {=1
\catcode *\ }=2
\catcode ‘\""I=\active
\Q@ifnextchar\bgroup

{\mint@iii}%
{\catcode*\{=12\catcode*\}=12
\mint@i}}
\def\mint@i#1{%
\endgroup
\def\mintQRii##14#1{%
\mintQ@iii{##1}}%
\begingroup
\let\do\@makeother\dospecials

89

1599
1600

1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628

\catcode ‘\""I=\active
\mint@ii}

\ifthenelse{\boolean{minted@draft}}%

{\newcommand{\mint@iii} [1]{%
\endgroup
\begingroup
\minted@defwhitespacel@retok
\everyeof{\noexpand}$%
\endlinechar-1\relax
\let\do\@makeother\dospecials
\catcode*\ =\active
\catcode*\""I=\active
\xdef\minted@tmp{\scantokens{#1}}%
\endgroup
\let\FV@Line\minted@tmp
\def\FV@SV@minted@tmp{%
\FV@CodeLineNo=1\FV@StepLineNo
\FV@Gobble
\expandafter\FV@ProcessLine\expandafter{\FVQLine}}%
\minted@langlinenoson
\UseVerbatim{minted@tmp}$%
\minted@langlinenosoff
\endgroup}}%
{\newcommand{\mint@iii} [1]{%
\endgroup
\minted@writecmdcode{#1}%
\minted@langlinenoson
\minted@pygmentize{\minted@lang}$%
\minted@langlinenosoff
\endgroup} }

minted Highlight a longer piece of code inside a verbatim environment.

1629 \ifthenelse{\boolean{minted@draft}}%

1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645

{\newenvironment {minted} [2] []
{\VerbatimEnvironment
\minted@configlang{#2}%
\setkeys{minted@opt@cmd} {#1}%
\minted@fvset
\minted@langlinenoson
\begin{Verbatim}}%
{\end{Verbatim}$%
\minted@langlinenosoff}}%
{\newenvironment {minted} [2] []
{\VerbatimEnvironment
\let\FVB@VerbatimOut\minted@FVBQ@VerbatimOut
\let\FVE@QVerbatimOut\mintedQRFVE@RVerbatimOut
\minted@configlang{#2}%
\setkeys{minted@opt@cmd} {#1}%
\minted@fvset

90

1646 \begin{VerbatimOut} [codes={\catcode ‘\""I=12}] {\minted@jobname.pyg}}%

1647 {\end{VerbatimOut}%

1648 \minted@langlinenoson

1649 \minted@pygmentize{\minted@lang}$%
1650 \minted@langlinenosoff}}

\inputminted Highlight an external source file.

1651 \ifthenelse{\boolean{minted@draft}}%

1652 {\newcommand{\inputminted} [3] []1{%
1653 \begingroup

1654 \minted@configlang{#2}%

1655 \setkeys{minted@optQ@cmd} {#1}%
1656 \minted@fvset

1657 \VerbatimInput{#3}%

1658 \endgroup}}%

1659 {\newcommand{\inputminted} [3] []1{$%
1660 \begingroup

1661 \minted@configlang{#2}%

1662 \setkeys{minted@opt@cmd} {#1}%
1663 \minted@fvset

1664 \minted@pygmentize [#3] {#2}%

1665 \endgroup} }

9.11 Command shortcuts

We allow the user to define shortcuts for the highlighting commands.

\newminted Define a new language-specific alias for the minted environment.

1666 \newcommand{\newminted} [3] []{

First, we look whether a custom environment name was given as the first optional
argument. If that’s not the case, construct it from the language name (append
“code”).

1667 \ifthenelse{\equal{#1}{}}
1668 {\def\minted@Renvname{#2code}}
1669 {\def\minted@envname {#1}}

Now, we define two environments. The first takes no further arguments. The
second, starred version, takes an extra argument that specifies option overrides.

1670 \newenvironment {\minted@envname}
1671 {\VerbatimEnvironment

1672 \begin{minted} [#3] {#2}}

1673 {\end{minted}}

91

1674 \newenvironment {\minted@envname x}[1]
1675 {\VerbatimEnvironment\begin{minted} [#3, ##1] {#2}}
1676 {\end{minted}}}

\newmint Define a new language-specific alias for the \mint short form.

1677 \newcommand{\newmint} [3] []{

Same as with \newminted, look whether an explicit name is provided. If not, take
the language name as command name.

1678 \ifthenelse{\equal{#1}{}}
1679 {\def\minted@shortname{#2}}
1680 {\def\minted@shortname{#1}}

And define the macro.
1681 \expandafter\newcommand\csname\minted@shortname\endcsname [2] [] {
1682 \mint [#3, ##1] {#2} ##2}}
\newmintedfile Define a new language-specific alias for \inputminted.
1683 \newcommand{\newmintedfile} [3] []{

Here, the default macro name (if none is provided) appends “file” to the language
name.

1684 \ifthenelse{\equal{#1}{}}
1685 {\def\minted@shortname{#2file}}
1686 {\def\minted@shortname{#1}}

...and define the macro.

1687 \expandafter\newcommand\csname\minted@shortname\endcsname [2] [] {
1688 \inputminted [#3, ##1] {#2} {(##2}}}

\newmintinline Define an alias for \mintinline.

As is usual with inline commands, a little catcode trickery must be employed.

o)

1689 \newcommand{\newmintinline} [3][]{%
1690 \ifthenelse{\equal {#1}{}}%

1691 {\def\minted@shortname{#2inline}}%

1692 {\def\minted@shortname{#1}}%

1693 \expandafter\newrobustcmd\csname\minted@shortname\endcsname {%
1694 \begingroup

1695 \let\do\@makeother\dospecials

1696 \catcode *\ {=1

1697 \catcode *\ }=2

1698 \@ifnextchar[{\endgroup\minted@inliner [#3] [#2]}%

92

1699 {\endgroup\minted@inliner [#3] [#2][]1}}%
1700 \def\minted@inliner [##1] [##2] [##3]{\mintinline [##1, ##3]1{##2}}%
1701 }

9.12 Float support

listing Define a new floating environment to use for floated listings. This is defined
conditionally based on the newfloat package option.

1702 \ifthenelse{\boolean{minted@newfloat}}$%
1703 {\@ifundefined{minted@float@within}$%

1704 {\DeclareFloatingEnvironment [fileext=10l,placement=h]{listing}}%

1705 {\def\minted@tmp#1{%

1706 \DeclareFloatingEnvironment [fileext=10l,placement=h, within=#1]{listing}}%
1707 \expandafter\minted@tmp\expandafter{\minted@float@within}}}%

1708 {\@ifundefined{minted@float@within}$%

1709 {\newfloat{listing}{h}{lol}}$%

1710 {\newfloat{listing}{h}{lol}[\minted@float@within]}}

The following macros only apply when 1isting is created with the float package.
When 1isting is created with newfloat, its properties should be modified using
newfloat’s \SetupFloatingEnvironment.

1711 \ifminted@newfloat\else

\listingcaption The name that is displayed before each individual listings caption and its number.
The macro \listingscaption can be redefined by the user.

1712 \newcommand{\listingscaption}{Listing}
The following definition should not be changed by the user.

1713 \floatname{listing}{\listingscaption}

\listoflistingscaption The caption that is displayed for the list of listings.

1714 \newcommand{\listoflistingscaption}{List of Listings}

\listoflistings Used to produce a list of listings (like \1istoffigures etc.). This may well clash
with other packages (for example, listings) but we choose to ignore this since these
two packages shouldn’t be used together in the first place.

1715 \providecommand{\listoflistings}{\listof{listing}{\listoflistingscaption}}

Again, the preceding macros only apply when float is used to create listings, so we
need to end the conditional.

1716 \fi

93

9.13 Epilogue

Check whether LaTeX was invoked with —shell-escape option, set the default
style, and make sure pygmentize exists. Checking for pygmentize must wait until
the end of the preamble, in case it is specified via \MintedPygmentize (which
would typically be after the package is loaded).

1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745

\AtEndOfPackage({%
\ifthenelse{\boolean{minted@draft}}%
{1%
{%
\ifthenelse{\boolean{minted@frozencache}} {}{%
\ifnum\pdf@shellescape=1\relax\else
\PackageError{minted}%
{You must invoke LaTeX with the
—-shell-escape flag}$s
{Pass the -shell-escape flag to LaTeX. Refer to the minted.sty
documentation for more information.}%
\fi}%

}
\AtEndPreamble{%
\ifthenelse{\boolean{minted@Rdraft}}%
{1%
{%
\ifthenelse{\boolean{minted@frozencache}}{}{%
\TestAppExists{\MintedPygmentize}%
\ifAppExists\else
\PackageError{minted}%
{You must have ‘pygmentize’ installed
to use this packagel}l$
{Refer to the installation instructions in the minted
documentation for more information.}%
\fi}%

}%

9.14 Final cleanup

Clean up temp files. What actually needs to be done depends on caching and

engine.
1746 \AfterEndDocument{$%
1747 \ifthenelse{\boolean{minted@draft}}%
1748 {1%
1749 {\ifthenelse{\boolean{minted@frozencache}}%
1750 {}
1751 {\ifx\XeTeXinterchartoks\minted@undefined

94

1752 \else

1753 \DeleteFile[\minted@outputdir] {\minted@jobname.mintedcmd}$%
1754 \DeleteFile[\minted@outputdir] {\minted@jobname.mintedmd5}%
1755 \fi

1756 \DeleteFile[\minted@outputdir] {\minted@jobname.pyg}$%

1757 \DeleteFile[\minted@outputdir] {\minted@jobname.out.pyg}%

1758 1%

1759 1%

1760 }

10 Implementation of compatibility package

minted version 2 is designed to be completely compatible with version 1.7. All of
the same options and commands still exist. As far as most users are concerned,
the only difference should be the new commands and options.

However, minted 2 does require some additional packages compared to minted 1.7.
More importantly, since minted 2 has almost completely new internal code, user
code that accessed the internals of 1.7 will generally not work with 2.0, at least
not without some modification. For these reasons, a copy of minted 1.7 is supplied
as the package mintedl. This is intended only for compatibility cases when using
the current version is too inconvenient.

The code in mintedl is an exact copy of minted version 1.7, except for two things:
(1) the package has been renamed, and (2) code has been added that allows mintedl
to act as (impersonate) minted, so that it can cooperate with other packages that
require minted to be loaded.” When minted1 is used, it must be loaded before any
other packages that would require minted.

All modifications to the original minted 1.7 source are indicated with comments.
All original code that has been replaced has been commented out rather than
deleted. Any future modifications of mintedl should only be for the purpose of
allowing it to serve better as a drop-in compatibility substitute for the current
release of minted.

\NeedsTeXFormat {LaTeX2e}

%% Begin mintedl modification

$\ProvidesPackage{minted} [2011/09/17 v1.7 Yet another Pygments shim for LaTeX]
\ProvidesPackage{mintedl}[2015/01/31 v1.0 minted 1.7 compatibility package]

%$%% End mintedl modification

\RequirePackage{keyval}

\RequirePackage{fancyvrb}

\RequirePackage{xcolor}

\RequirePackage{float}

\RequirePackage{ifthen}

oe
oo

o\

© Oo~N OO0 W N K
oe

[
o

9The approach used for doing this is described at http://tex.stackexchange.com/
a/39418/10742.

95

http://tex.stackexchange.com/a/39418/10742
http://tex.stackexchange.com/a/39418/10742

11 $%%% Begin mintedl modification

12 \newboolean{mintedone@mintedloaded}

13 \@ifpackageloaded{minted}$%

14 {\setboolean{mintedone@mintedloaded}{true}%

15 \PackageError{mintedl} {The package "mintedl" may not be loaded after

16 " J"minted" has already been loaded--load "mintedl" only for "minted"

17 ~Jversion 1.7 compatibility}$

18 {Load "mintedl" only when "minted" version 1.7 compatibility is required}}%
19 {}

20 \ifmintedone@mintedloaded\else

21 \@namedef{ver@minted.sty}{2011/09/17 v1l.7 Yet another Pygments shim for LaTeX}
22 \expandafter\let\expandafter\minted@tmp\csname opt@mintedl.sty\endcsname
23 \expandafter\let\csname opt@minted.sty\endcsname\minted@tmp

24 \let\minted@tmp\relax

25 %$%%% End mintedl modification

26 \RequirePackage{calc}

27 \RequirePackage{ifplatform}

28 \DeclareOption{chapter}{\def\minted@float@within{chapter}}

29 \DeclareOption{section}{\def\minted@float@within{section}}

30 \ProcessOptions\relax

31 \ifwindows

32 \providecommand\DeleteFile[1l] {\immediate\writel8{del #1}}

33 \else

34 \providecommand\DeleteFile[1l] {\immediate\writel8{rm #1}}

35 \fi

36 \newboolean{AppExists}

37 \newcommand\TestAppExists[1] {

38 \ifwindows

39 \DeleteFile{\jobname.aex}

40 \immediate\writel8{for \string”\@percentchar i in (#l.exe #1l.bat #1.cmd)
41 do set >\jobname.aex <nul: /p x=\string”\@percentchar \string~$PATH:i>>\jobnai
42 \newread\@appexistsfile

43 \immediate\openin\@appexistsfile\ jobname.aex

44 \expandafter\def\expandafter\@tmpRcr\expandafter{\the\endlinechar}
45 \endlinechar=-1\relax

46 \readline\@appexistsfile to \@apppathifexists

47 \endlinechar=\@tmpQcr

48 \ifthenelse{\equal{\Qapppathifexists}{}}

49 {\AppExistsfalse}

50 {\AppExiststrue}

51 \immediate\closein\Qappexistsfile

52 \DeleteFile{\jobname.aex}

53 \immediate\typeout{file deleted}

54 \else

55 \immediate\writel8{which #1 && touch \jobname.aex}

56 \IfFileExists{\jobname.aex}

57 {\AppExiststrue

58 \DeleteFile{\jobname.aex}}

59 {\AppExistsfalse}

60 \fi}

96

61 \newcommand\minted@resetoptions{}
62 \newcommand\minted@defopt [1] {
63 \expandafter\defl\expandafter\minted@resetoptions\expandafter{$%

64 \minted@resetoptions

65 \@namedef {mintedRopt@#1}{}}}

66 \newcommand\minted@opt [1] {

67 \expandafter\detokenize%

68 \expandafter\expandafter\expandafter{\csname mintedQopt@#1\endcsname}}

69 \newcommand\minted@define@opt [3] [] {

70 \minted@defopt {#2}

71 \ifthenelse{\equal {#1}{}}{

72 \define@key{minted@opt} {#2}{\@namedef{mintedQ@opt@#2}{#3}}}
73 {\define@key{minted@opt} {#2} [#1] {\@namedef{mintedQoptQ@#2} {#3}}}}
74 \newcommand\minted@define@switch[3] []{

75 \minted@defopt {#2}

76 \define@booleankey{minted@opt} {#2}

77 {\@namedef {mintedQopt@#2} {#3}}

78 {\@namedef{minted@opt@#2} {#1}}}

79 \minted@defopt{extra}

80 \newcommand\mintedQ@define@Rextral[l] {

81 \define@key{minted@opt} {#1}{

82 \expandafter\def\expandafter\mintedRoptRextra\expandafter{%
83 \minted@opt@extra, #1=##1}}}

84 \newcommand\minted@define@extra@switch[1] {

85 \define@booleankey{minted@opt} {#1}

86 {\expandafter\def\expandafter\minted@opt@Rextral\expandafter{%
87 \minted@opt@extra, #1}}

88 {\expandafter\def\expandafter\mintedQRoptRextra\expandafter{%
89 \minted@opt@extra, #1=false}}}

go \minted@define@switch{texcl}{-P texcomments}

91 \minted@define@switch{mathescape}{-P mathescape}
92 \minted@define@switch{linenos}{-P linenos}

93 \minted@define@switch{startinline}{-P startinline}
94 \minted@define@switch[-P funcnamehighlighting=False]%
95 {funcnamehighlighting} {-P funcnamehighlighting}
96 \minted@defineQopt{gobble} {-F gobble:n=#1}

97 \minted@defineQopt{bgcolor}{#1}

98 \minted@defineQRextra{frame}

99 \minted@define@extra{framesep}

100 \minted@define@Rextra{framerule}

101 \minted@define@Rextra{rulecolor}

102 \minted@define@extra{numbersep}

103 \minted@definelRextra{firstnumber}

104 \minted@definelextra{stepnumber}

105 \minted@define@extra{firstline}

106 \minted@define@Rextra{lastline}

107 \minted@definelextra{baselinestretch}

108 \minted@definelextra{xleftmargin}

109 \minted@define@extra{xrightmargin}

110 \minted@define@Rextra{fillcolor}

97

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

\minted@define@extra{tabsize}
\minted@define@extra{fontfamily}
\minted@define@extra{fontsize}
\minted@define@extra{fontshape}
\minted@defineRextra{fontseries}
\minted@definelRextra{formatcom}
\minted@define@extra{label}
\minted@defineRextra@switch{numberblanklines}
\minted@define@extra@switch{showspaces}
\minted@define@extra@switch{resetmargins}
\minted@define@extralswitch{samepage}
\minted@Rdefine@Rextra@switch{showtabs}
\minted@define@Rextra@switch{obeytabs}
\newsavebox{\minted@bgbox}
\newenvironment {minted@colorbg} [1] {
\def\minted@bgcol {#1}
\noindent
\begin{lrbox}{\minted@bgbox}
\begin{minipage}{\linewidth-2\fboxsep}}
{\end{minipage}
\end{lrbox}%
\colorbox{\minted@bgcol} {\usebox{\minted@bgbox}}}
\newwrite\minted@code
\newcommand\minted@savecode[1] {
\immediate\openout\minted@code\ jobname.pyg
\immediate\write\mintedQcode{#1}
\immediate\closeout\minted@code}
\newcommand\minted@pygmentize[2] [\ jobname.pyg] {
\def\minted@cmd{pygmentize -1 #2 —-f latex -F tokenmerge
\minted@opt {gobble} \minted@opt{texcl} \minted@opt{mathescape}
\minted@opt{startinline} \minted@opt{funcnamehighlighting}
\minted@opt{linenos} -P "verboptions=\minted@opt{extra}"
-0 \jobname.out.pyg #1}
\immediate\writel8{\minted@cmd}
% For debugging, uncomment:
$\immediate\typeout {\minted@cmd}
\ifthenelse{\equal{\minted@opt@bgcolor}{}}

{}

{\begin{minted@colorbg} {\minted@opt@bgcolor}}
\input {\ jobname.out .pyg}
\ifthenelse{\equal{\minted@opt@bgcolor}{}}

{}

{\end{minted@colorbg}}
\DeleteFile{\jobname.out.pyg}}

\newcommand\minted@usedefaultstyle{\usemintedstyle{default}}
\newcommand\usemintedstyle[1] {

\renewcommand\minted@usedefaultstyle{}
\immediate\writel8{pygmentize -S #1 -f latex > \Jjobname.pyg}
\input {\jobname.pyg}}

\newcommand\mint [3] [] {

98

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

\DefineShortVerb{#3}

\minted@resetoptions

\setkeys{minted@opt}{#1}

\SaveVerb[aftersave={

\UndefineShortVerb{#3}

\minted@savecode{\FV@SV@mintedQRverb}

\minted@pygmentize{#2}

\DeleteFile{\jobname.pyg}}]{minted@verb}#3}
\newcommand\minted@proglang[1]{}
\newenvironment {minted} [2] []

{\VerbatimEnvironment
\renewcommand{\minted@proglang} [1] {#2}
\minted@resetoptions
\setkeys{minted@opt} {#1}

\begin{VerbatimOut} [codes={\catcode*\""I=12}]{\jobname.pyg}}%

{\end{VerbatimOut}
\minted@pygmentize{\minted@proglang{}}
\DeleteFile{\jobname.pyg}}

\newcommand\inputminted[3] [] {

\minted@resetoptions

\setkeys{minted@opt}{#1}

\minted@pygmentize [#3]{#2}}

\newcommand\newminted[3] [] {

\ifthenelse{\equal{#1}{}}

{\def\minted@envname {#2code}}
{\def\minted@envname {#1}}

\newenvironment {\minted@envname}
{\VerbatimEnvironment\begin{minted} [#3] {#2}}
{\end{minted}}

\newenvironment {\minted@envname x}[1]
{\VerbatimEnvironment\begin{minted} [#3, ##1] {#2}}
{\end{minted}}}

\newcommand\newmint [3] [] {

\ifthenelse{\equal{#1}{}}
{\def\minted@shortname{#2}}
{\def\minted@shortname{#1}}

\expandafter\newcommand\csname\minted@shortname\endcsname [2] [] {

\mint [#3, ##1]1 {#2}##2}}
\newcommand\newmintedfile[3][]{

\ifthenelse{\equal{#1}{}}
{\def\minted@shortname{#2file}}
{\def\minted@shortname{#1}}

\expandafter\newcommand\csname\minted@shortname\endcsname [2] [] {

\inputminted [#3, ##1] {#2} {##2}}}
\@ifundefined{minted@float@within}
{\newfloat{listing}{h}{lol}}
{\newfloat{listing}{h}{lol} [\minted@float@within]}
\newcommand\listingscaption{Listing}
\floatname{listing}{\listingscaption}
\newcommand\listoflistingscaption{List of listings}

99

211 \providecommand\listoflistings{\listof{listing}{\listoflistingscaption}}
212 \AtBeginDocument {

213 \minted@usedefaultstyle}

214 \AtEndOfPackage{

215 \ifnum\pdf@shellescape=1\relax\else

216 \PackageError{minted}

217 {You must invoke LaTeX with the

218 —-shell-escape flag}

219 {Pass the -shell-escape flag to LaTeX. Refer to the minted.sty
220 documentation for more information.}\fi

221 \TestAppExists{pygmentize}
222 \ifAppExists\else

223 \PackageError{minted}

224 {You must have ‘pygmentize’ installed

225 to use this package}

226 {Refer to the installation instructions in the minted
227 documentation for more information.}

228 \fi}

229 %$%%% Begin mintedl modification

230 \fi

231 $%%% End mintedl modification

100

	Introduction
	Installation
	Prerequisites
	Required packages
	Installing minted

	Transitioning to version 2
	Basic usage
	Preliminary
	A minimal complete example
	Formatting source code
	Using different styles
	Supported languages

	Floating listings
	Options
	Package options
	Macro option usage
	Available options

	Defining shortcuts
	FAQ and Troubleshooting
	Version History
	Implementation
	Required packages
	Package options
	Input, caching, and temp files
	OS interaction
	Option processing
	Additions to fancyvrb
	Setup
	Line breaking

	linenos
	Cleanup
	Internal helpers
	Public API
	Command shortcuts
	Float support
	Epilogue
	Final cleanup

	Implementation of compatibility package

