
Technical notes on equation breaking

Michael J. Downes Morten Høgholm

June 1, 2008

Chapter 1

Tag placement

The method used by the breqn package to place the equation number is rather more complicated than you
might think, and the whole reason is to allow the number to stay properly centered on the total height even
when the height fluctuates due to stretching or shrinking of the page.
Consider the following equation:

(3.15) N0 '
(

ν

‖u‖Hi

)
|I|−1/2

It will have only one line, if the column width is not too narrow.
Scrutinizing the vertical list will shed light on some of the basic properties shared by all breqn equations.

After that we will look at what would happen if two or more lines were needed. The numbers added on the
left in the following \showlists output mark the points of interest.

[1] \penalty 10000
\glue(\abovedisplayskip) 0.0
\penalty 10000
\glue(\belowdisplayskip) 0.0

[2] \glue 4.0 plus 4.0
\glue(\lineskip) 1.0

[3] \vbox(16.53902+0.0)x0.0, glue set 16.53902fil
.\glue 0.0 plus 1.0fil minus 1.0fil
\penalty 10000

[4] \glue -8.51945
[5] \hbox(7.5+2.5)x25.55563

.\OT1/cmr/m/n/10 (

.\OT1/cmr/m/n/10 3

.\OT1/cmr/m/n/10 .

.\OT1/cmr/m/n/10 1

.\OT1/cmr/m/n/10 5

.\kern 0.0

.\OT1/cmr/m/n/10)
\penalty 10000

1

[6] \glue(\parskip) -18.01956
[7] \hbox(16.53902+9.50012)x360.0, glue set 1.78647

1. These four lines are a hidden display structure from TEX’s primitive $$ mechanism. It is used only
to get the value of \predisplaysize so that we can later calculate by hand whether to use the short
display skips or the regular ones. (The reason that we have to do it by hand traces back to the fact that
TEX 3.x does not allow unhboxing in math mode.) The penalties come from \predisplaypenalty and
\postdisplaypenalty, which were locally set to 10000 to ensure there would be no unintended page
breaks at these glue nodes.

2. These two glue nodes are the ones that would normally have been produced at the top of a display;
the first one is the above-display skip node (though we had to put it in by hand with \vskip) and the
second one is the usual baselineskip/lineskip node.

3. This is a dummy copy of the equation’s first line, which is thrown in here to get the proper value of
baselineskip (or lineskip in this case). Why do we need this? Because this ensures that we get the
top spacing right before we fiddle with the glue nodes surrounding the equation number. And if the
equation has a frame, this box is a good place to add it from.

4. This is a special glue node that brings us to the right vertical position for adding the equation number.
Its value is calculated from the variables that you would expect, given the presence of the dummy first
line above the num- ber: starting position of the equation, height of first line, total height of equation
body. If the equation body had more than one line, with stretchable glue between the lines, half of the
stretch would be added in this glue node.

5. The hbox containing the equation number.

6. Backspace to bring the equation body to the right starting point. We use \parskip to put this glue in
place because we’re going to get a parskip node here in any case when we add the equation body with
(in essence). If we didn’t do this we’d get two glue nodes instead of one, to no purpose.
\ \unhbox\EQ@box.

7. And lastly we see here the first line of the equation body, which appears to have height 16.5pt and
depth 9.5pt.

For comparison, the vertical list produced from the above equation in standard LATEX would look like this,
if the same values of columnwidth and abovedisplayskip are used:

[1] \penalty 10000
[2] \glue(\abovedisplayskip) 4.0 plus 4.0

\glue(\lineskip) 1.0
\hbox(16.53902+9.50012)x232.94844

[3] .\hbox(7.5+2.5)x25.55563
..\hbox(7.5+2.5)x25.55563
...\OT1/cmr/m/n/10 (
...\OT1/cmr/m/n/10 3
...\OT1/cmr/m/n/10 .
...\OT1/cmr/m/n/10 1

2

...\OT1/cmr/m/n/10 5

...\kern 0.0

...\OT1/cmr/m/n/10)

.\kern101.49591
[4] .\hbox(16.53902+9.50012)x105.8969

...
[5] \penalty 0
[6] \glue(\belowdisplayskip) 4.0 plus 4.0

\glue(\lineskip) 1.0
\hbox(6.94444+1.94444)x345.0, glue set 62.1106fil

1. \predisplaypenalty

2. \abovedisplayskip

3. equation number box

4. equation body

5. \postdisplaypenaltly

6. \belowdisplayskip

3

Chapter 2

Equation Layouts

2.1 Misc examples
Let us consider which of these have 50% or more of
wasted whitespace within the bounding box of the vis-
ible material.

display width

L = R1

= R1

2.2 Ladder and step layouts
2.2.1 Straight ladder layout
This is distinguished by a relatively short LHS and
one or more RHS’s of any length.

display width

L = R1

= R2

= R3

. . .

The simplest kind of equation that fits on one line
and has only one RHS may be viewed as a trivial
subcase of the straight ladder layout:

display width

L = R

If some of the RHS’s are too wide to fit on a single line
they may be broken at binary operator symbols such

as plus or minus. This is still classified as a straight
ladder layout if none of the fragments intrude into
the LHS column, because the underlying parshape is
the same.

display width

L = R1a

+ R1b

= R2

= R3a

+ R3b

+ R3c

. . .

2.2.2 Skew ladder layout
display width

L = R1

= R2

= R3

. . .

In a skew ladder layout, the combined LHS width
plus width of R1 does not exceed the available width,
but one of the other RHS’s is so wide that align-
ing its relation symbol with the others cannot be
done without making it run over the right margin:

4

width(L) + widthmax(Ri) > widthavail. In that case
we next try aligning all but the first relation symbol,
allowing all the Ri after R1 to shift leftward.

2.2.3 Drop ladder layout
display width

L

= R1

= R2

= R3

. . .

The drop ladder layout is similar to the skew ladder
layout but with the width of R1 too large for it to
fit on the same line as the LHS. Then we move R1
down to a separate line and try again to align all
the relation symbols. Note that this layout consumes
more vertical space than the skew ladder layout.

2.2.4 Step layout
display width

Ra

+ Rb

+ Rc

+ Rd

. . .

The chief characteristic of the step layout is that there
is no relation symbol, so that the available line breaks
are (usually) all at binary operator symbols. Let w1
and wl be the widths of the first and last fragments.
We postulate that the ideal presentation is as follows:
Choose a small stairstep indent I (let’s say 1 or 2 em).
We want the last fragment to be offset at least I from
the start of the first fragment, and to end at least I
past the end of the first fragment. If there are only
two lines these requirements determine a target width
wT = max(w1 +I, wl+I). If there are more than two
lines (l > 2) then use wT = max(w1 + (l − 1)I, wl +
I, wavail and reset I to wT /(l − 1) if wT = wavail.

Furthermore, we would like the material to be dis-
tributed as evenly as possible over all the lines rather
than leave the last line exceedingly short. If the total
width is 1.1(widthavail), we don’t want to have .9 of
that on line 1 and .2 of it on line 2:

display width

Ra + Rb + Rc

+ Rd

Better to split it as evenly as possible, if the available
breakpoints permit.

display width

Ra + Rb

+ Rc + Rd

A degenerate step layout may arise if an unbreakable
fragment of the equation is so wide that indenting it
to its appointed starting point would cause it to run
over the right margin. In that case, we want to shift
the fragment leftward just enough to bring it within
the right margin:

display width

La

+ Lb

+ Lc

+ Ld

. . .

And then we may want to regularize the indents as
in the drop ladder layout. Let’s call this a dropped
step layout:

display width

La

+ Lb

+ Lc

+ Ld

. . .

5

2.3 Strategy
Here is the basic procedure for deciding which equa-
tion layout to use, before complications like equation
numbers and delimiter clearance come into the pic-
ture. Let A be the available width, wtotal the total
width of the equation contents, w(L) the width of the
left-hand side, wmax(R) the max width of the right-
hand sides, I the standard indent for step layout, and
O the standard offset for binary operators if a break
occurs in the middle of an RHS. Also let tL and tR
represent certain thresholds for the width of the LHS
or the RHS at which a layout decision may change,
as explained below.

(1) Does everything fit on one line? wtotal ≤ A?
Yes: print the equation on a single line (done).
No: Check whether the equation has both LHS and
RHS (2).

(2) Is there a left-hand side? Are there any relation
symbols in the equation?
Yes: Try a ladder layout (3).
No: Try a step layout (10).

(3) Does the LHS leave room to fit the widest RHS?
w(L) + wmax(R) < A?
Yes: Use a straight ladder layout (5).
No: Check the width of the LHS (4).

(4) Is the LHS relatively short? w(L) ≤ tL? (where tL
is typically 0.4A).
Yes: Subdividing one or more of the RHS’s may per-
mit us to use a straight ladder layout (5).
No: The straight ladder layout is unlikely to work.
Try a skew or drop ladder layout (6).

(5) Straight ladder layout Set up a straight ladder par-
shape [0pt A w(L) A−w(L)] and run a trial break. If
the combined width of the LHS plus the longest RHS
is no greater than A then we should get a satisfactory
layout with all line breaks occurring at major divi-
sion points (relation symbols). Otherwise, we hope,
some additional line breaks at minor division points
will allow everything to fit within the text column.
Line breaks OK?
Yes: The straight ladder layout succeeded (done).
No: Try a skew or drop ladder layout (6).

(6) Do the LHS and the first RHS fit on one line?
w(L) + w(R1) ≤ A?
Yes: Try a skew ladder layout (7).
No: Try a drop ladder layout (8).

(7) Skew ladder layout Set up a parshape [0pt A I A−I]
and run a trial break.
Line breaks OK?
Yes: Skew ladder layout succeeded (done).
No: One of the unbreakable fragments of the Ri (i >
1) is wider than A−I; try an almost-columnar layout
(9).

(8) Drop ladder layout Set up a parshape [0pt w(L) I
A − I] and run a trial break. This is the same par-
shape as for a skew ladder layout except that the
width of the first line is limited to the LHS width,

6

so that the RHS is forced to drop down to the next
line.
Line breaks OK?
Yes: Drop ladder layout succeeded (done).
No: One of the unbreakable fragments of the Ri (i >
1) is wider than A−I; try an almost-columnar layout
(9).

(9) Almost-columnar layout This presupposes a trial
break that yielded a series of expressions or frag-
ments, one per line. Let w(F) denote the width of
the first fragment and w(Ri) the widths of the re-
maining fragments. Set up a parshape [0pt w(F)
A − wmax(Ri) wmax(Ri)]: in other words, set the
first line flush left and the longest line flush right
and all other lines indented to the same position as
the longest line. But as a matter of fact there is one
other refinement for extreme cases: if wmax(Ri) > A
then the parshape can be simplified without loss to
[0pt w(F) 0pt A]—for that is the net effect of sub-
stituting min(A,wmax) in stead of wmax. (Done.)

(10) Step layout Set target width wT to A− 2I. Set par-
shape to [0pt wT I wT − I 2I wT − 2I . . . (l − 1)I
wT − (l− 1)I], where l = dwtotal/Ae is the expected
number of lines that will be required. Trial break
with that parshape in order to find out the width of
the last line.
Indents OK?
Yes: Step layout succeeded (done).
No: One of the fragments is too wide to fit in the al-
lotted line width, after subtracting the indent spec-
ified by the parshape. Try a dropped step layout
(11)

(11) Dropped step layout Set up a parshape [0pt A I A−I]
and run a trial break. Note that this is actually the
same parshape as for a skew ladder layout.
Line breaks OK?
Yes: Dropped step layout succeeded (done).
No: One of the unbreakable fragments of the Ri (i >
1) is wider than A−I; as a last resort try an almost-
columnar layout (9).

7

	Tag placement
	Equation Layouts
	Misc examples
	Ladder and step layouts
	Straight ladder layout
	Skew ladder layout
	Drop ladder layout
	Step layout

	Strategy

