
The media9 Package, v0.27

Alexander Grahn

27th March 2013

Abstract
A LATEX package for embedding interactive Adobe Flash (SWF) and 3D
files (Adobe U3D & PRC) as well as video and sound files or streams
(FLV, MP4/H.246, MP3) into PDF documents with Adobe Reader-9/X
compatibility.

Keywords: embed flash movie LaTeX pdf 3d include sound swf mp3 video
mp4 h.264 aac flv audio multimedia streamed media rtmp YouTube
animation JavaScript pdfLaTeX dvips ps2pdf dvipdfmx XeLaTeX u3d prc
Adobe Reader RichMedia annotation LuaLaTeX

Contents
1 Introduction 2

2 Requirements 3

3 Installation 3

4 Using the package 3

5 The user interface 4
5.1 Media inclusion . 4
5.2 Command options . 5
5.3 Control buttons . 15

6 Embedding Flash, video and sound (with examples) 17

7 Embedding 3D objects (with examples) 25
7.1 Introduction . 25
7.2 3D quick-start guide . 31

8 Caveats 32

9 Acknowledgements 33

1

1 Introduction

This package provides an interface to embed, in the first place, interactive
Flash (SWF) and 3D objects (Adobe U3D & PRC) into PDF documents. Video
and sound files or streams in the popular MP4, FLV and MP3 formats can
be embedded as well. However, a media player Flash component is required
for playback, as will be explained shortly. Playback of multimedia files uses
Adobe Flash Player, which was bundled with Adobe Reader 9 and 10 versions.
Unfortunately, beginning with Adobe Reader 11, it must be installed as a separate
plug-in.

Among the supported media types, video and sound files require an additional
Flash (SWF) application for playback, which must be either embedded into the
PDF or loaded at runtime from the internet. There are numerous such players,
both open-source and commercial, available on the internet. One of them is the
highly configurable open-source ‘StrobeMediaPlayback.swf’ [1], maintained by
Adobe and hosted on SourceForge.net. Package ‘media9’ comes with an enhanced
version of ‘StrobeMediaPlayback.swf’. In addition, two simple players for video
and audio, ‘VPlayer.swf’ and ‘APlayer.swf’ are included, which can be used
instead. They provide sufficient functionality for playing embedded files and
streamed media.

Flash Player supports the efficient H.264 codec for video compression. MP4/H.264
video files can be encoded from existing video files and from numbered bitmap
sequences using the ffmpeg command line tool (http://ffmpeg.org). In order
to allow for precise seeking within video files it is necessary to encode them with
a sufficient number of key frames. The command line for recoding an existing
video file video.avi into video.mp4 reads

ffmpeg -i video.avi -vcodec libx264 -x264opts keyint=30 -r 30 video.mp4

From a sequence frame-0.png, frame-1.png, ... of bitmap files, an MP4 video
is produced by

ffmpeg -i frame-%d.png -vcodec libx264 -x264opts keyint=30 -r 30 video.mp4

Both examples insert a key frame at every second since the frame rate is set to
30 fps.

Note: ‘media9’ package replaces the now obsolete ‘movie15’ package. ‘media9’ is
based on the RichMedia Annotation (Annotations are the interactive elements
in a document, in PDF specification parlance.), an Adobe addition to the PDF
specification [2], while ‘movie15’ uses the old multimedia framework (‘Screen
Annotation’) of pre-9 Readers which depends on third-party plug-ins and which
does not support recent media file formats.

Package ‘media9’ supports the usual PDF making workflows, i. e. pdfLATEX,
LuaLATEX, LATEX → dvips → ps2pdf/Distiller and (X E)LATEX → (x)dvipdfmx.

The final PDF can be viewed in current Adobe Readers on MS Windows and
other platforms. On Unix platforms including Linux, however, support of Flash,
video and sound was discontinued at Reader version 9.4.2, probably for security
reasons. On tablets and phones running Android or iOS, ezPDF Reader was
reported to play video and sound files embedded with ‘media9’.

2

http://sourceforge.net/projects/osmf.adobe/files/
http://ffmpeg.org

2 Requirements

l3kernel (LATEX package), version ≥ 2012/07/16

l3packages (LATEX package), version ≥ 2012/07/16

pdfTEX, version ≥ 1.30

Ghostscript, version ≥ 8.31 or Adobe Distiller for PS to PDF conversion

dvipdfmx, version ≥ 20120420 for DVI to PDF conversion

Adobe Reader, version ≥ 9

3 Installation

MiKTEX and TEXLive users should run the package manager for installation
and updates.

Otherwise, a manual installation into the local TeX-Directory-Structure (TDS)
root directory is done along the following steps:

1. Download the TDS compliant package file ‘media9.tds.zip’ from CTAN.

2. Find the local TDS root directory by running
kpsewhich -var-value TEXMFLOCAL

on the command line. The local TDS root directory is intended for packages
that are not maintained by the TEXLive package manager.

3. Unzip ‘media9.tds.zip’ into the local TDS root directory previously found.
Depending on the location of this directory, you may need to be logged in
as Root/Administrator.

4. After installation, update the filename database by running ‘texhash’ on
the command line. Again, Root/Administrator privileges may be required.

For updating the package, repeat the steps given above.

4 Using the package

Invoke the package by putting the line

\usepackage[<package options>]{media9}

to the preamble of your document, i. e. somewhere between \documentclass
and \begin{document}.

‘media9’ honours the package options:

dvipdfmx
xetex
bigfiles
draft
final

3

http://tug.ctan.org/tex-archive/install/macros/latex/contrib/media9.tds.zip
http://tug.ctan.org/tex-archive/install/macros/latex/contrib/media9.tds.zip

activate=...
deactivate=...
windowed=...
transparent
passcontext
3Dplaytype=...
3Dplaycount=...
3Dplayspeed=...
3Dtoolbar
3Dnavpane
3Dpartsattrs=...
3Dmenu
3Dbg=...
3Dlights=...
3Drender=...

Except for ‘dvipdfmx’, ‘xetex’ and ‘bigfiles’, the options above are also
available (among others) as command options and will be explained shortly.
However, if used as package options they have global scope, taking effect on all
embedded media in the document. In turn, command options locally override
global settings. Options without an argument are boolean options and can be
negated by appending ‘=false’.

X ELATEX will be auto-detected. Therefore package option ‘xetex’ is optional.
However, in the case of dvipdfmx, package option ‘dvipdfmx’ is mandatory
because it cannot be auto-detected.

If PDF is generated via DVI and Postscript by the command se-
quence latex→ dvips→ ps2pdf, dvips option ‘-Ppdf’ should not be set when
converting the intermediate DVI into Postscript. If you cannot do without, put
‘-D 1200’ after ‘-Ppdf’ on the command line. Users of LATEX-aware text editors
with menu-driven toolchain invocation, such as TEXnicCenter, should check the
configuration of the dvips call.

Option ‘bigfiles’ is only relevant for the latex → dvips → ps2pdf work-
flow. It may be needed if large media files cause latex to abort with error
‘TeX capacity exceeded’. See Sect. 8.

5 The user interface

Package ‘media9’ provides commands for media inclusion (\includemedia) and
insertion of media control buttons (\mediabutton). The latter is introduced in
Sect. 5.3.

5.1 Media inclusion

\includemedia[<options>]{<poster text>}{
<main Flash (SWF) file or URL | 3D (PRC, U3D) file>}

4

The last argument, <main Flash (SWF) file or URL | 3D (PRC, U3D) file>,
is the main interactive application to be inserted into the PDF. In the case of
Flash, this can be a local SWF file, or a URL, such as a YouTube video player. A
local file will become part of the final PDF file, while Flash content from a URL
requires an internet connection when the user activates it in Adobe Reader. A
URL must be fully qualified, i. e., starting with either ‘http[s]://’ or ‘ftp://’.
As for 3D content, Adobe Reader only supports U3D or PRC files embedded in
the PDF; they cannot be loaded or streamed during runtime. The most frequent
use of \includemedia will likely be embedding video or sound files for playback
in Adobe Reader. For this we need some media player, which is an SWF file we
embed as our main application. It will be configured to load, upon activation, a
particular video or sound file that was embedded as a resource into the PDF
or is to be streamed from the internet. This will be shown later. Note that a
local file (main application or resource) will only once be physically embedded
in order to keep the final PDF file size small. If the same file (identified by MD5
checksum) appears in other \includemedia commands, only a reference will be
inserted that points to the same storage location in the PDF.

Argument <poster text> defines the size of the rectangular region of the
document page in which the media will be displayed. Moreover, <poster text>
will be shown in case the media has not been activated. <poster text> can
be anything that LATEX can typeset, such as an \includegraphics command
serving as a poster image, a PGF/TikZ/PSTricks inline graphics or just ordinary
text. Alternatively, <poster text> can be left blank in which case the size of
the media rectangle should be set with options ‘width’, ‘height’ and optionally
with ‘depth’. If sizing options ‘width’ and ‘height’ are given together with
<poster text>, <poster text> will be shrunk or stretched to fit exactly into
the rectangle defined by the options, possibly changing the original aspect ratio
of the poster text. On the other hand, if only one of ‘width’ or ‘height’ is given,
the other dimension of <poster text> is scaled such that the original aspect
ratio is preserved.

A list of directories where TEX searches for media and resource files can be set-up
by means of

\addmediapath{<directory>}

This command appends one directory at a time to the search list. To specify more
directories, just use it repeatedly. The path separator is always ‘/’, independent
from the operating system.

The following section explains all command options provided. They are passed
to the media inclusion command as a comma separated list enclosed in a pair of
square brackets.

5.2 Command options

A subset of the command options (see Sect. 4) can also be used as package
options, which lets them apply to all embedded media. Some of the options listed
here are meaningful only for a specific media type (either Flash or 3D), which

5

will be noted explicitly if not obvious. Dedicated sections covering Flash, video
and sound as well as 3D inclusion will follow later on in this document.

width=<width>,
height=<height>,
depth=<depth>

Resize the media playback area, overriding the original dimensions of the <poster
text> argument. Option ‘depth’ specifies how far the playback area should extend
below the base line of the running text. If only one of ‘width’ or ‘height’ is given,
the other dimension is scaled to maintain the aspect ratio of <poster text>.
Any valid TEX dimension is accepted as a parameter. In addition, the length
commands \width, \height, \depth and \totalheight can be used to refer to
the original dimensions of <poster text>.

label=<label key>

The media annotation is given a label, <label key>, which should be unique.
Labelled media annotations can be targeted by the media actions of a control
button (see description of the \mediabutton command in Sect. 5.3). Moreover,
a reference to the RichMedia Annotation object (of type ‘AnnotRichMedia’)
is assigned to the JavaScript variable annotRM[’<label key>’] in order to
facilitate its access in JavaScript. Note that the JavaScript reference is known
only after the first opening of the page containing the media.

scale=<factor>

Scales the playback area by <factor>.

addresource=<local file>,
addresource=<another local file>,
...

Every invocation of this option embeds another local file that is required to
run the main Flash application or 3D file (last argument of \includemedia).
Typically, this option is used to embed video files, media player skins, XML files
(such as databases), additional objects to appear in a 3D scene etc. If an already
embedded file is needed in another \includemedia command, this option must
be given there again. However, the file in question will only once be physically
embedded in order to keep the PDF file small.

flashvars={<some_var=some_val&another_var=another_val&...>}

(Flash only) Usually, Flash applications can be configured via ActionScript
(AS) variables the programmer of the application has made visible from outside.
A typical use would be to set the video source of a media player to point to
an embedded MP4 file or to a live stream, or to set the speaker volume for
playback of an MP3 file. The argument of the flashvars option is a list of
<AS variable>=<value> pairs separated by ‘&’ and enclosed in a pair of braces
({...}).

Note: If a variable is to be set to point to an embedded resource, the value of the
variable must be given in exactly the same way as with the ‘addresource’ option.
Otherwise the name of the embedded file cannot be resolved. For example,

addresource=path/to/video.mp4

6

implies

flashvars={vid=path/to/video.mp4&...}

if, for a particular media player, the video source is set through ActionScript
variable ‘vid’.

(Note for 3D) Resource files used in 3D scenes cannot be loaded by means of
ActionScript variables. This must be done by 3D JavaScript during activation
of the 3D scene in the Reader. 3D JavaScript can be attached using option
‘add3Djscript’, see below.

activate=onclick | pageopen | pagevisible

Decides on how to activate the media annotation. ‘activate=onclick’ is default
behaviour and does not need be given explicitly; embedded media is activated
when the user clicks on it or by a JavaScript. It is recommended to provide a
poster image with the <poster text> argument in that case. ‘pageopen’ and
‘pagevisible’ automatically activate the media when the page becomes visible;
‘pagevisible’ is better for two-up and continuous page display.

deactivate=onclick | pageclose | pageinvisible

Decides on how to de-activate the media annotation. ‘deactivate=pageclose’
is default behaviour and does not need be given explicitly; media is automatically
de-activated when the user leaves the page containing the media. ‘pageinvisible’
is similar, but may be better for two-up and continuous page display. Setting
‘deactivate=onclick’ requires user interaction for de-activating the media,
either by right-click and chosing ‘Disable Content’ or by a JavaScript.

draft
final

With ‘draft’ the media is not embedded. Instead, a box is inserted that has the
dimensions of <poster text>, subject to the resizing options ‘width’, ‘height’,
‘depth’ and ‘scale’. Option ‘final’ does the opposite as it forces the media
to be embedded. Both options can be used to reduce compilation time during
authoring of a document. To get the most out of them it is recommended to
set ‘draft’ globally as a package or class option and to set ‘final’ locally as a
command option of the media annotation that is currently worked on. After the
document has been finished, the global ‘draft’ option can be removed.

windowed[= false | [<width>x<height>][@<position>]]

The media is played in a floating window, instead of being played in an em-
bedded fashion. The floating window size is specified via the optional argument
<width>x<height>, where <width> and <height> are given in pixels (integer
numbers without unit). If the size is not given, a default size is guessed from the
annotation size. Optionally, the position of the floating window on the screen
can be specified through @<position>, where <position> may assume one of
‘tl’, ‘cl’, ‘bl’, ‘bc’, ‘br’, ‘cr’, ‘tr’, ‘tc’ or ‘cc’. The position specifiers have the
following meaning: tl tc tr

cl cc cr
bl bc br

7

Default window position is ‘cc’, that is, centred on the screen. ‘false’ can be
set to override a global setting via package options.

transparent

Indicates whether underlying page content is visible through transparent areas of
the embedded media. Default is ‘transparent=false’; media artwork is drawn
over an opaque background prior to composition over the page content.

passcontext

(Flash only) If set, user right-clicks are passed through to the context menu of the
embedded Flash application, replacing the default Adobe Reader context menu.
Useful for cases where the Flash programmer provided additional functionality
through the context menu of his application.

3Dtoolbar

Indicates whether a 3D toolbar should be shown in the Reader on top of the
embedded 3D model.

3Dnavpane

If set, the 3D navigation pane displaying the 3D Model Tree becomes visible in
the Reader when the content is initially activated.

3Dcoo=<x> <y> <z>

<x> <y> <z> specify the positional vector −−−→COO of the centre of orbit of the
virtual camera. Real numbers in fixed and floating point notation are accepted.

3Dc2c=<x> <y> <z>

<x> <y> <z> specify a direction vector −−→C2C of arbitrary length, originating in
the centre of orbit and pointing to the virtual camera. Real numbers in fixed
and floating point notation are accepted.

3Droll=<roll>

Prescribes an initial camera roll around the optical axis (in clockwise direction,
if <roll> is greater that zero); measured in degrees and given as fixed or floating
point real number.

3Dc2w=<12 element camera-to-world matrix>

This option directly sets the camera-to-world transformation matrix according to
the PDF specification. This is an expert option to be used instead of the ‘3Dc2c’,
‘3Dcoo’ and ‘3Droll’ options. Only fixed point real numbers are accepted.

3Dpsob=Min | Max | W | H

Expert option which directly sets either the /PS entry in the case of perspective
projection or the /OB entry in the case of orthographic projection to one of the
four possible values. Default value is Min.

3Droo=<r>

<r> is a positive fixed or floating point number specifying the radius of orbit
ROO of the virtual camera. Good values can be found by means of the ‘3Dmenu’
option.

8

3Daac=<angle>

This option sets the aperture angle of the camera, measured in degrees, for the
perspective view mode. Fixed and floating point real numbers between 0 and
180 are admissible. A sensible value of 30 is pre-set by default. Larger values can
be used to achieve wide-angle or fish-eye effects. See example 7 in section 7.1.
This option excludes the use of the ‘3Dortho’ option.

3Dortho[=<orthographic scaling factor>]

Switches from the default perspective to orthographic view mode. In orthographic
view, the 3D object is parallelly projected onto the virtual camera chip. The
projected image is scaled by <orthographic scaling factor> before reaching
the camera chip; default value is 1. The optimal value for the scaling factor is
given by 1/D, where D is the diameter of the smallest enclosing sphere of the
3D object in World coordinate units. Fixed and floating point real numbers are
accepted. The camera should be positioned outside the 3D object. For this, the
radius of orbit (option ‘3Droo’) should be greater than D/2. Good values for
orthographic scaling and orbital radius can easily be found by means of the
‘3Dmenu’ option. Option ‘3Dortho’ excludes the use of the ‘3Daac’ option.

3Dmenu

Mainly used during document authoring. Adds three entries, ‘Generate Default
View ’, ‘Get Current View ’ and ‘Cross Section’ to the context (right-click) menu of
an activated 3D annotation. Moreover, it allows individual parts of the scene
to be scaled, translated and rotated against the remaining scene objects using
the keyboard. Their new position can be saved in the current view. Parts to be
modified should be highlighted with the mouse first (the part’s bounding box
becomes visible). Then, arrow keys , let the part spin around its vertical
axis, and , tilt against the vertical position. X , + X , Y , +

Y , Z , + Z translate the selected part along the World axes and S ,
+ S scale the part.

‘Generate Default View ’ computes optimal camera settings such that the visible
parts of the 3D scene fit tightly into the viewing area. The result is printed,
formatted as a list of \includemedia options, into the JavaScript console. The
calculation is based on the 3D object size and its position in the World coordinate
system as well as the current viewing mode (perspective or orthographic).

‘Cross Section’ is a toggle switch to add or remove a cross section to or from
the current view. If a part of the 3D scene was previously selected, the central
rotating point of the section plane is put into the part’s centre, otherwise into
the target point of the camera. The section plane can be rotated around the
vertical axis and tilted against its upright position using the arrow keys ,

, and . Keys X , + X , Y , + Y , Z , + Z move the
section plane along the World axes.

‘Get Current View ’ writes camera settings, any part alterations, an optional cross
section as well as part and scene rendering attributes of the current view into
the JavaScript console. The output is a readily formatted VIEW section to be
inserted into or appended to a file of predefined views. See option ‘3Dviews’. All
settings reachable via the ‘Part Options’ and ‘Viewing Options’ context menu
items are written to the VIEW section.

9

3Dbg=<r> <g>

This option sets the background colour of the 3D scene. Only fixed point real
numbers in the range from 0 to 1 are allowed for the colour components. Option
‘transparent’ may not be set at the same time.

3Dlights=<lighting scheme>

Sets the default lighting scheme. The following values are honoured: ‘None’,
‘White’, ‘Day’, ‘Night’, ‘Hard’, ‘Primary’, ‘Blue’, ‘Red’, ‘Cube’, ‘CAD’, ‘HeadLamp’.
The default is to use the lighting scheme as specified within the 3D artwork.

3Drender=<render mode>

Sets the default render mode. The following values are honoured: ‘Solid’,
‘SolidWireframe’, ‘Transparent’, ‘TransparentWireframe’, ‘BoundingBox’,
‘TransparentBoundingBox’, ‘TransparentBoundingBoxOutline’, ‘Wireframe’,
‘ShadedWireframe’, ‘HiddenWireframe’, ‘Vertices’, ‘ShadedVertices’,
‘SolidOutline’, ‘Illustration’, ‘ShadedIllustration’.

3Dpartsattrs=restore | keep

When the user selects another view from the list of predefined views (see option
‘3Dviews’), attributes of individual parts, such as opacity, visibility, render mode,
translation in space, which all can be set from within the Reader or by means
of a file of predefined views, are reset to their original states as defined in
the embedded 3D file, before any new part settings are applied. This default
behaviour can be overridden by ‘3Dpartsattrs=keep’. This will preserve current
part attributes when the user selects another predefined 3D view in the Reader.

3Dviews=<views file>

Instead of or in addition to the default view (options ‘3Dcoo’, ‘3Dc2c’, ‘3Droll’,
‘3Droo’, ‘3Daac’, ‘3Dortho’), further named views can be predefined in an aux-
iliary file <views file>. Besides the virtual camera position, it is possible to
adjust the rendering attributes, such as visibility and transparency, as well as
position and scaling of every single part in the 3D scene. Moreover, background
colour and scene lighting can be set individually for every view. The additional
views can later be selected either from a drop down list in the tool bar that is
associated with the activated 3D object in the Reader or from the context menu
of the 3D object.

The file <views file> is structured into view sections, one for every view:

VIEW[=<optional name>]
COO=<x> <y> <z>
C2C=<x> <y> <z>
ROLL=<roll>

% C2W=<camera-to-world matrix> % instead of COO, C2C and ROLL
ROO=<roo>
AAC=<aac>

% ORTHO[=<othographic scaling factor>] % instead of AAC
BGCOLOR=<r> <g>
RENDERMODE=<render mode>
LIGHTS=<lighting scheme>

10

CROSSSECT
CENTER=<x> <y> <z>
NORMAL=<x> <y> <z>

END
PARTSATTRS=keep
PART=<part name as in the Model Tree (required, optional if UTF16NAME present)>

UTF16NAME=<part name as hex encoded Unicode string>
VISIBLE=true | false
OPACITY=<part opacity>
RENDERMODE=<part render mode>
TRANSFORM=<12 element transformation matrix>

END
PART=<...>

...
END
etc.

END

VIEW
...

END

etc.

A view section starts with the keyword VIEW, optionally followed by a name for
the view, and ends with the keyword END. If no name is given to the view, a
default one is created, consisting of ‘View’ followed by the number of the current
VIEW section in the file. A VIEW section may contain optional entries for setting
the camera position and global rendering attributes of the scene, a CROSSSECT
subsection as well as PART subsections for setting rendering and other attributes
of parts individually. Table 1 lists the entries in a VIEW section.

Part sub-sections are opened by PART=<part name> and closed by END. There
may be as many part subsections as there are parts in a 3D scene. Table 2 lists
the possible entries in a PART sub-section. All entries are optional. However, a
UTF16NAME entry is recommended, as the part name may contain non-ASCII
characters. The value of the UTF16NAME key is the part name as a hex-encoded
Unicode string. If UTF16NAME is not used, the part name in the 3D file must be
entirely composed of ASCII characters. In that case, <part name> is mandatory
and must match the part name as indicated in the Model Tree of the 3D object
(accessible via right-click onto the model in the Reader). The part can be scaled
and repositioned by means of a TRANSFORM entry which takes a 12-element
transformation matrix as its value. Remaining entries in a part sub-section
control the visual appearance of the part.

A view section may contain at most one CROSSSECT sub-section. It inserts a
section plane at a definite position and orientation in the 3D space, controlled
by optional CENTER and NORMAL entries. See Table 3 for explanation.

The views file can be commented. As usual, comments start with the percent
sign.

11

To facilitate the creation of a views file, option ‘3Dmenu’ can be added to
\includemedia (see above). It creates context (right-click) menu entry ‘Get
Current View’ which outputs a complete VIEW section corresponding to the
current view of the 3D object in the Reader, including camera position, an
optional cross section, and all part and viewing options that can be modified
via the 3D toolbar (option ‘3Dtoolbar’) or the context menu of the 3D object
(entries ‘Part Options’, ‘Viewing Options’). Hence, apart from tweaking one or
another entry, there should be no need for writing views files by hand.

3Dplaytype=linear | oscillating

According to the PDF specification, embedded keyframe animations can be
played in two ways. If set to ‘linear’, keyframe animations are driven linearly
from beginning to end, while ‘oscillating’ lets the animation play in a forth-
and-back manner.

3Dplaycount=<integer number>

A non-negative <integer number> represents the number of times the animation
is played. A negative integer indicates that the animation is infinitely repeated.
This value is ignored if option 3Dplaytype is not set.

3Dplayspeed=<positive number>

This option can be used to adjust the keyframe animation speed. A value of ‘1’
corresponds to the default speed defined in the 3D file.

add3Djscript=<3D JavaScript file>,
add3Djscript=<another 3D JavaScript file>,
...

Things like animation, lighting, background of 3D objects etc. may also be
script driven. Every invocation of ‘add3Djscript’ associates another JavaScript
file with the 3D object. Upon activation of the 3D object, the scripts are
executed once in the order of their inclusion. Refer to the Acrobat 3D JavaScript
Reference [3] for syntax details. The following 3D JavaScript loads an image
file that was attached by ‘addresource=images/sunset.jpg’ and uses it as the
scene background.

sunset = new Image(new Resource(’pdf://images/sunset.jpg’));
reh = new RenderEventHandler();
reh.onEvent = function(event) {

runtime.removeEventHandler(this);
event.canvas.background.image=sunset;

}
runtime.addEventHandler(reh);

For convenience, subdirectory ‘javascript’ of the ‘media9’ installation contains
three 3D JavaScript files which may come in handy at times: ‘animation.js’
enables embedded keyframe animation in 3D files; ‘3Dspintool.js’ enables the
Spin tool of the 3D plugin for easier rotating the 3D object with the mouse;
‘asylabels.js’ adds ‘billboard behaviour’ to text labels in Asymptote (≥ v2.17)
generated PRC files for improved visibility; text labels always face the camera
while rotating the 3D object with the mouse.

12

Table 1: Entries in a VIEW section.

key type remarks

COO three numbers centre of orbit, see option
‘3Dcoo’

C2C three numbers centre of orbit to camera vector,
see option ‘3Dc2c’

ROO number radius of orbit, see option
‘3Droo’

C2W 12 numbers camera-to-world transformation
matrix, see option ‘3Dc2w’

AAC number camera aperture angle, see op-
tion ‘3Daac’

ORTHO number (optional) enables orthographic view, see
option ‘3Dortho’

PSOB string expert setting, see option
‘3Dpsob’

ROLL number camera roll, see option ‘3Droll’
BGCOLOR three numbers 3D scene background colour

(RGB), see option ‘3Dbg’
RENDERMODE string render mode of the 3D object,

see option ‘3Drender’
LIGHTS string lighting scheme, see option

‘3Dlights’
PARTSATTRS string allowed values are ‘keep’ and

‘restore’; decides on whether
to restore or not original part
attributes before applying new
ones from this view; see option
‘3Dpartsattrs’

PART (sub-section) string part name as in the model tree;
optional if a UTF16NAME entry
is present in the sub-section
opened by a PART keyword, oth-
erwise required; see Table 2 for
list of possible entries

CROSSSECT (sub-
section)

– see Table 3 for list of possible
entries

13

Table 2: Entries in a PART sub-section.

key type remarks

UTF16NAME hex string part name in UTF-16 (aka Unicode), en-
coded as a hexadecimal string; optional,
but useful for part names composed of
non-latin characters;

VISIBLE boolean a flag (‘true’ or ‘false’) indicating the
visibility of this part

OPACITY number a number between 0.0 and 1.0 specifying
the opacity of this part

RENDERMODE string rendermode of this part, overrides global
RENDERMODE value in parent VIEW sec-
tion, see option ‘3Drender’

TRANSFORM 12 numbers transformation matrix defining the
part’s position and scaling

Table 3: Entries in a CROSSSECT sub-section.

key type remarks

CENTER three numbers central point coordinates of the section
plane

NORMAL three numbers normal vector coordinates of the section
plane pointing into the cut-off region

14

5.3 Control buttons

\mediabutton[<options>]{<normal button text or graphic>}

This command inserts a clickable button for media control. Actions to be
performed are specified through options ‘mediacommand’, ‘3Dgotoview’ and
‘jsaction’. By using these options repeatedly and in any combination, several
actions can be bound to one media button, and one media button can be used
to control several media at the same time. Media actions are started in the given
order but performed in parallel, because they do not wait for each other to finish.
The target of an action is specified via the label key that was also given to a
particular media by the ‘label’ option of ‘\includemedia’. Individual button
faces can be defined for the ‘mouse-over’ and ‘mouse-button-down’ events using
the ‘overface’ and ‘downface’ options. Without options, the button produced
does nothing. The options provided are as follows:

overface=<mouse-over text or graphic>

If specified, the media button changes its appearance when the mouse pointer is
moved over it. Without this option, the button appearance does not change. An
\includegraphics command may need to be enclosed in braces.

downface=<mouse-button-down text or graphic>

If specified, the media button changes its appearance when the mouse but-
ton is pressed while the pointer is over it. Without this option, the pressed
button is visualized by colour inversion of the normal button appearance. An
\includegraphics command may need to be enclosed in braces.

3Dgotoview=<label key>[:<view specification>]

Selects a view from the list of predefined views associated with a 3D media
inclusion (see option ‘3Dviews’). The target media is specified by <label key>,
as defined by the ‘label’ option of ‘\includemedia’. <label key> alone without
a view specification simply activates the 3D object if not yet activated. <view
specification> which is separated from the label key by a colon (:) can be
one of the following: an integer specifying the zero-based index into the list of
views in the 3D views file; one of ‘D’, ‘F’, ‘L’, ‘N’, ‘P’ indicating the default, first,
last, next or previous view in the list of views; a string delimited by ‘(’ and ‘)’
matching the name of a view as specified by the ‘VIEW=...’ entry in the views
file. The option can be given several times to simultaneously change the view in
more than one 3D inclusion. However, it cannot be used to create an animation
effect within the same 3D inclusion, because 3Dgotoview actions are executed
in parallel.

mediacommand=<label key>[:<command> [<arg1> <arg2> ...]]

A media command <command>, with arguments if required, is sent to a me-
dia inclusion identified by <label key>, as defined by the ‘label’ option of
‘\includemedia’. <label key> alone without a command specification simply
activates the media, if not yet activated. The option can be multiply used within
the same button to target different media inclusions at the same time or to
execute several commands for the same media. Depending on the type of the

15

target media (3D or Flash), <command> is either the name of a JavaScript func-
tion defined in a 3D JavaScript file associated with the 3D media (see option
‘add3Djscript’) or the name of an ActionScript function that was exposed by the
embedded Flash file. ActionScript functions are exposed to the scripting context
of the hosting document by using the ExternalInterface call within the Flash
file. Arguments to be passed to <command> must be separated by spaces and the
whole list be enclosed in ‘[’ and ‘]’. Arguments can be of Boolean type (true,
false), numbers (integer, reals) and strings. String arguments must be passed
as (string arg), i. e. enclosed in parentheses, while numbers and Booleans are
passed as they are. Of course, the number of arguments and their types must
match the definition of the function to be called. Media players VPlayer.swf and
APlayer.swf shipping with media9 expose a number of ActionScript functions that
can be used with this option (see Tab. 6). <command> [<arg1> <arg2> ...]
must be enclosed in braces if there are embedded equals signs or commas.

jsaction=[<label key>:]{<JavaScript code>}

The JavaScript code is executed in the context of the document’s instance of
the JavaScript engine (there is one instance of the JavaScript engine per open
document in Adobe Reader). <JavaScript code> is required and must be en-
closed in braces. Unlike media actions defined with options ‘mediacommand’ and
‘3Dgotoview’, the JavaScript action defined here is not targeted at a particular
embedded media and can be used to run arbitrary code. Therefore, <label key>
is optional. If provided, it must be separated from <JavaScript code> by
a colon. However, it is recommended to provide a label key. It ensures that
annotRM[’<label key>’] is a valid JavaScript reference to the AnnotRichMedia
object. annotRM[’<label key>’] can be used to get access to the global con-
text of the annotation’s instance of the 3D JavaScript engine (there is one
instance of the 3D JavaScript engine per activated RichMedia Annotation with
3D content). The 3D JavaScript context of a 3D model can be accessed as
annotRM[’<label key>’].context3D. Refer to the Acrobat 3D JavaScript Ref-
erence [3] for details on built-in JavaScript objects that are available in the
3D context. The annotRM[’<label key>’].callAS() method may be used as
an alternative to the ‘mediacommand‘ option in order run exposed ActionScript
functions of an embedded Flash file. See [4] for details.

16

6 Embedding Flash, video and sound

A YouTube video clip, as shown in Fig. 1, may serve as a basic example of
loading Flash content from a URL to be displayed in an embedded fashion
in a PDF document. Indeed, a YouTube clip is nothing more than a small
SWF file which loads a video stream and other necessary resources, such as
user controls and a player skin from a remote server. It can be configured
via ActionScript variables to play several videos in a row, to play a video in
a loop etc. Player parameters are documented on http://code.google.com/
apis/youtube/player_parameters.html and can be passed to the player using
either the ‘flashvars’ option, as in the example, or appended to the URL string
after the video ID. A question mark ‘?’ must be put between the video ID and
the parameter string. Some of the documented parameters, such as ‘rel’, seem
to have an effect only if they are passed as part of the URL.

\includemedia[
width=0.6\linewidth,height=0.45\linewidth,
activate=pageopen,
flashvars={

modestbranding=1 % no YT logo in control bar
&autohide=1 % controlbar autohide
&showinfo=0 % no title and other info before start
&rel=0 % no related videos after end

}
]{}{http://www.youtube.com/v/Mdc3o7wOwNA?rel=0}

Figure 1: A YouTube video as an example of a Flash application loaded from a
URL.

Video and sound files are always loaded and then played by a media player
application. Three players are installed along with the ‘media9.sty’ package file:
two simple players, ‘VPlayer.swf’ for video and ‘APlayer.swf’ for sound, and a fully
blown one, ‘StrobeMediaPlayback.swf’, with some fixes to improve its usability.
The simple ones are ‘chromeless’ players, that is, they do not have graphical
user controls. Nevertheless, interactivity is provided through the keyboard, as
summarized in Table 4, and through left mouse button press and release for

17

http://code.google.com/apis/youtube/player_parameters.html
http://code.google.com/apis/youtube/player_parameters.html

playing, pausing and resuming media. ‘VPlayer.swf’ and ‘APlayer.swf’ were
compiled, using the free Adobe Flex SDK [5], from XML source files which reside
in the doc/ folder of the package installation. For ‘StrobeMediaPlayback.swf’,
only a patch file is included, as the sources can be downloaded elsewhere.

The improvements of ‘StrobeMediaPlayback.swf’ in comparision to the original
version on SourceForge.net are

• fix: video could not be restarted after end of playback if ActionScript
variable ‘autoRewind’ is set to ‘false’

• new: first frame of video is shown as default poster instead of black stage

• new: play/pause video by clicking on the stage (as with ‘VPlayer.swf’),
useful in a lecture situation

There is no need to copy the installed players into the directory of the document
source for embedding. They will be found by LATEX without taking any further
action.

Like YouTube videos, media players are configured via ActionScript variables
which are passed using option ‘flashvars’. Table 5 lists parameters available
for ‘VPlayer.swf’ and ‘APlayer.swf’, table 7 for ‘StrobeMediaPlayback.swf’.

Playback of embedded video files is shown in Fig. 2. Besides embedded files,
also video streamed from remote servers via HTTP and RTMP protocols is
supported, as shown in Fig. 3.

‘VPlayer.swf’ and ‘APlayer.swf’ expose a number of ActionScript functions to
the JavaScript engine of Adobe Reader, allowing for playback control of media
through push buttons (see Sect. 5.3) and various trigger events. The functions
and their calling convention are listed in Table 6. An example of playing and
pausing a video clip and setting the video source via interactive push buttons is
given in Fig. 2.

Sound files and streams in the MP3 format can be played with ‘APlayer.swf’.
Fig. 4 contains examples of an audio live stream and a remote MP3 sound file.
In one of the sound examples, the player is loaded from a CTAN mirror during
runtime because an internet connection is required anyway for streaming the
audio. If a local sound file is to be embedded into the PDF this would have to
be done in the same way as with the video file in one of the previous examples
using the ‘addresource’ option.

18

Table 4: Keyboard control of media players ‘VPlayer.swf’ and ‘APlayer.swf’. The
media must have the focus to have effect. Click onto the media if necessary.

keys action

Space play/pause
Home , End go to start/end

, seek backwards/forwards
, decrease/increase speaker volume

m mute/unmute
ctrl + , ctrl + , ctrl + (APlayer.swf only) change sound speaker

balance

Table 5: Parameters (ActionScript variables) for media players ‘VPlayer.swf’ and
‘APlayer.swf’ shipping with media9. Parameters are passed as a ‘&’-separated
string using ‘flashvars’ option.

parameter description

source=<file path or URL> (required) path to embedded media file
(see option ‘addresource’), or URL
(http, rtmp) to online media file

autoPlay=true|false if =true, automatically starts play-
back after activation (see option
‘activation)’

loop=true|false if =true, media is played in a loop
stepping=true|false (VPlayer.swf only) if =true, the video ad-

vances by roughly one frame per mouse
click

scaleMode=letterbox|none|
stretch|zoom

default: stretch; determines how to
scale the video in order to fit into player

hideBar=true|false (APlayer.swf only) if =true, the progress
bar indicating the play position is not
shown

volume=<value between 0.0
and 1.0>

sets volume of the sound

balance=<value between
-1.0 and 1.0>

(APlayer.swf only) sets balance of sound
speakers

19

Table 6: Exposed ActionScript functions of media players ‘VPlayer.swf’ and
‘APlayer.swf’, that can be called from within media buttons (see Sect. 5.3) or
from JavaScript using the ‘callAS’ method of the ‘AnnotRichMedia’ JavaScript
object (see [4] for further information).

function argument description

play play media
pause pause media
playPause toggle between play and pause
stepping (VPlayer.swf only) toggle stepping mode

(one frame per click)
setSource string load another media file (path to file, em-

bedded using option ‘addresource’, or
URL)

seek number move the play location to a time offset
from the beginning of the media; argu-
ment measured in seconds

rewind rewind media to the beginning (without
pausing it)

volume number between 0
and 1

set volume level

balance number between −1
and +1

(APlayer.swf only) set speaker balance

mute mute or unmute (toggle) the audio of
the media

20

Table 7: Parameters (ActionScript variables) for ‘StrobeMediaPlayback.swf’
shipping with media9. Parameters are passed as a ‘&’-separated string using
‘flashvars’ option.

parameter description

src=<file path or URL> (required) path to embedded media file
(see option ‘addresource’), or URL
(http, rtmp) of online media file

autoPlay=true|false default: false; if =true, automatically
starts playback after activation (see op-
tion ‘activation)’

autoRewind=true|false default: true; if =false, keep last frame
after end of playback

loop=true|false if =true, media is played in a loop
scaleMode=letterbox|none|

stretch|zoom
default: letterbox; determines how to
scale the video in order to fit into player

controlBarMode=docked|
floating|none

default: docked; determines position and
visibility of control bar

controlBarAutoHide=
true|false

default: true; automatically hide or not
control bar

controlBarAutoHideTimeout=
<number [s]>

default: 3; time span before auto-hide

volume=<value between 0.0
and 1.0>

sets volume of the sound

audioPan=<value between
-1.0 and 1.0>

default: 0; sets balance of sound speakers

muted=true|false default: false; mute or not sound

21

\includemedia[
label=some_dice,
width=0.4\linewidth,height=0.3\linewidth,
activate=pageopen,
addresource=random.mp4, %two video files
addresource=cube.mp4,
flashvars={

source=random.mp4
&loop=true % loop video
&scaleMode=letterbox % preserve aspect ratio while scaling the video

}
]{}{VPlayer.swf}

\mediabutton[
mediacommand=some_dice:playPause,
overface=\color{blue}{\fbox{\strut Play/Pause}},
downface=\color{red}{\fbox{\strut Play/Pause}}

]{\fbox{\strut Play/Pause}}
\mediabutton[

mediacommand=some_dice:setSource [(random.mp4)]
]{\fbox{\strut random.mp4}}
\mediabutton[

mediacommand=some_dice:setSource [(cube.mp4)]
]{\fbox{\strut cube.mp4}}

Figure 2: Example of playing back two different embedded MP4 video files in
the same video player instance. The player, ‘VPlayer.swf’, is also embedded
in the PDF. Exposed ActionScript functions ‘playPause’ and ‘setSource’ of
‘VPlayer.swf’ (Table 6) are used to set-up media control buttons. Different button
faces have been defined for the Play/Pause button.

22

\includemedia[
width=0.6\linewidth,height=0.3375\linewidth, % 16:9
activate=pageopen,
flashvars={

src=rtmp://streaming.music.indiana.edu:1935/onDemand/mp4:media/%
20090327_VarRussianTheme-h264-480.m4v

&scaleMode=stretch
}

]{}{StrobeMediaPlayback.swf}

Figure 3: Example of video streamed from an RTMP server. This example uses
media player ‘StrobeMediaPlayBack.swf’, physically embedded in the PDF.

23

\includemedia[
addresource=bird.mp3,
flashvars={

source=bird.mp3
&autoPlay=true

},
transparent

]{\color{blue}\framebox[0.4\linewidth][c]{Singing bird}}{APlayer.swf}
a) Singing bird

\includemedia[
flashvars={

source=http://mp3.live.tv-radio.com/franceculture%
/all/franceculturehautdebit.mp3

&autoPlay=true
},
transparent

]{\color{blue}\fbox{Listen live to Radio France Culture}}{%
http://mirrors.ibiblio.org/pub/mirrors/CTAN/macros/latex/%
contrib/media9/players/APlayer.swf%

}
b) Listen live to Radio France Culture

\includemedia[
flashvars={

source=http://www.openbsd.org/songs/song49.mp3
&autoPlay=true

},
transparent

]{\color{blue}\fbox{Listen to OpenBSD 4.9 release song}}{APlayer.swf}
c) Listen to OpenBSD 4.9 release song

Figure 4: Example of (a) embedded sound file, (b) streamed audio and (c)
progressively downloaded MP3. ID3 tags ‘title’, ‘artist’ and ‘album’ are displayed
if contained in the MP3 stream or file. In (b), the sound player, APlayer.swf, is
loaded from a CTAN mirror upon activation.

24

Birdsong mild sunny day

Stephan

36.54539

7 Embedding 3D objects

7.1 Introduction

Adobe Acrobat/Reader 7 was the first version to allow for embedding 3-dimen-
sional graphic objects, such as CAD models or 3D scientific data, that can
be manipulated interactively by the user. U3D was the first supported format
and was mainly developed by Right Hemisphere and Adobe. U3D had some
deficiencies and was later replaced by the PRC format after Adobe purchased
the original developer, the French company ‘Trade and Technology France’. U3D
is still supported, but PRC is preferred as it allows for exact representation of
curved surfaces and better compression. Both, U3D and PRC specifications are
public [6, 7].

Currently, two open-source software packages are known to export into the PRC
file format. The first one is Asymptote [8], which is a descriptive 2D and 3D
vector graphics language and interpreter and which uses TEX to typeset labels
and equations. It allows for high quality mathematical figures and technical
drawings. An impressive gallery of examples can be found on its Web site. The
second one is MathGL [9], a library for scientific data visualization. It provides
interfaces to a number of programming and scripting languages as well as an
interpreter for its own command language ‘MGL’.

MeshLab [11] is an open-source conversion and processing software for 3D mesh
data which can import from and export to a number of file formats. Its U3D
export filter is based on the open-source ‘Universal 3D Sample Software’ [10].

There are a few options to \includemedia which define how the 3D object is
positioned within the view port of a virtual camera, or conversely, how the
virtual camera is positioned and oriented within a coordinate system, called
‘The World’, which bears the 3D object at a fixed position. Fig. 5 should help to
visualize the scenery: The virtual camera is orbiting at a distance of ROO (option
‘3Droo’) around the centre of orbit, specified by the position vector −−−→COO (option
‘3Dcoo’); ^AAC (option ‘3Daac’) is the camera’s aperture angle. The direction
vector −−→C2C (option ‘3Dc2c’) is needed to specify the initial camera position. The
camera may be given an initial roll angle (option ‘3Droll’) around its optical
axis (−1) · −−→C2C. Fig. 5 shows the camera parameters for the perspective view
mode. Alternatively, the orthographic view mode may be chosen. In orthographic
view, the 3D object is parallelly projected onto the virtual camera chip. Before
reaching the camera chip, the projected image must be scaled in order to fit onto
the chip. Orthographic view can be enabled using the ‘3Dortho’ option which
takes the scaling factor as its argument.

Above options define the default view, i. e. the view that is shown initially after
activating the 3D object in the Reader. Of course, once activated, the camera
position can be changed using the mouse and one can change forth and back
between perspective and orthographic viewing modes using the 3D tool bar.

By default, the virtual camera sits at the origin (0, 0, 0) of the World, looking
in the positive Y direction, i. e. default settings of 3Droo=0, 3Dcoo=0 0 0 and
3Dc2c=0 -1 0 are assumed. (Note that −−→C2C is the opposite of the optical axis

25

−−→
C2C Y

X

Z

−−−→
COO

(0, 0, 0)

^AAC

ROO

Figure 5: Camera and 3D object in the World System XY Z; centre of orbit
position vector −−−→COO, centre of orbit to camera direction vector −−→C2C, radius of
orbit ROO, aperture angle of camera ^AAC.

vector.) Thus, in order to get a ‘front view’ of the 3D object it is sufficient to set
the radius of orbit, i. e. the distance between camera and object appropriately.
Sometimes you may want to adjust the orbital centre, i. e. the target of the
camera as well, in particular, if the object is irregularly shaped or if it is not
centred around the World origin. Fortunately, it is possible to let the values of the
corresponding options be determined automatically. Choosing option ‘3Dmenu’
adds ‘Generate Default View ’ to the context menu of the activated 3D scene.
Selecting this entry calculates and outputs optimal camera settings which can
be inserted into the option list of \includemedia.

Additional resource files that are needed to render the 3D scene can be embed-
ded using the ‘addresource’ option. Typical resources are bitmaps and Flash
files (even animated and interactive ones), to be used as materials or scene
backgrounds, as well as additional 3D objects in the U3D or PRC file format.
The allowed file formats of bitmapped image files depend on the LATEXworkflow.
LATEX → dvips → ps2pdf/Distiller accepts PS and EPS files; pdfLATEX accepts

26

PNG, JPEG and JBIG2; (X E)LATEX → (x)dvipdfmx accepts PNG and JPEG.
3D JavaScript is necessary to load these resources upon activation. 3D JavaScript
files are attached using the ‘add3Djscript’ option.

Below, several examples of embedded 3D files are shown. The first one, Fig. 6
is a PRC file generated with Asymptote. Note the text labels always facing
the camera thanks to the attached 3D JavaScript file ‘asylabels.js’. The second
example, Fig. 7, demonstrates the use of a views file which defines additional
named views of the 3D object. Moreover, the possibilities of the extended 3D
context menu can be evaluated. They were enabled by adding the ‘3Dmenu’ option
to \includemedia. All part and scene rendering attributes that can be changed
via the ‘Part Options’ and ‘Viewing Options’ menu entries, as well as a cross
section to be added with the ‘Cross Section’ menu entry can be saved into a
new view (‘Get Current View ’). Position, orientation and scaling of individual
parts and of the cross section can be changed using the keyboard (keys , ,

, , X , + X , Y , + Y , Z , + Z , S , + S). The
third example, Fig. 8, shows an animated 3D object. The animation itself and
the functions called by pressing the controls are defined in a 3D JavaScript file
attached to the model.

27

\includemedia[
width=0.8\linewidth,height=0.8\linewidth,
activate=pageopen,
add3Djscript=asylabels.js, %upright text labels
add3Djscript=3Dspintool.js, %let scene rotate about z-axis
% 3Dcoo, 3Droo values found with ‘Generate Default View’ from
% context menu
3Dmenu,
3Dc2c=4 2 3,
3Dcoo=6.01792049407959 12.437679290771484 0.18967819213867188,
3Droo=479.9268773794643,

]{}{epix.prc}

Figure 6: Embedded PRC file produced with Asymptote, making use of conveni-
ence 3D JavaScripts ‘asylabels.js’ and ‘3Dspintool.js’ mentioned above.

28

//
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
//
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
// http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
//

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh)
{
 var t=new Matrix4x4(mesh.transform);
 if(mesh.parent.name != "") {
 var parentTransform=fulltransform(mesh.parent);
 t.multiplyInPlace(parentTransform);
 return t;
 } else
 return t;
}

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
 var node=nodes.getByIndex(i);
 var name=node.name;
 var end=name.lastIndexOf(".")-1;
 if(end > 0) {
 if(name.charAt(end) == "\001") {
 var start=name.lastIndexOf("-")+1;
 if(end > start) {
 node.name=name.substr(0,start-1);
 var nodeMatrix=fulltransform(node.parent);
 var c=nodeMatrix.translation; // position
 var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
 bbnodes.push(node);
 bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
 }
 }
 }
}

var camera=scene.cameras.getByIndex(0);
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
 var T=new Matrix4x4();
 T.setView(zero,camera.position.subtract(camera.targetPosition),
 camera.up.subtract(camera.position));

 for(var j=0; j < bbcount; j++)
 bbnodes[j].transform.set(T.multiply(bbtrans[j]));
 runtime.refresh();
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();

//
//
// (C) 2012, Alexander Grahn
//
// 3Dspintool.js
//
// version 20120301
//
//
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript')
//
// enables the Spin tool (also accessible via 3D toolbar or context menu)
// upon activation of the 3D scene; the scene then rotates around the upright
// axis while dragging with the mouse
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
// http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
//

runtime.setCurrentTool(runtime.TOOL_NAME_SPIN);

//
//
// (C) 2012, Alexander Grahn
//
// 3Dmenu.js
//
// version 20120912
//
//
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
// 1.) Adds the following items to the 3D context menu:
//
// * `Generate Default View'
//
// Finds good default camera settings, returned as options for use with
// the \includemedia command.
//
// * `Get Current View'
//
// Determines camera, cross section and part settings of the current view,
// returned as `VIEW' section that can be copied into a views file of
// additional views. The views file is inserted using the `3Dviews' option
// of \includemedia.
//
// * `Cross Section'
//
// Toggle switch to add or remove a cross section into or from the current
// view. The cross section can be moved in the x, y, z directions using x,
// y, z and X, Y, Z keys on the keyboard and be tilted against and spun
// around the upright Z axis using the Up/Down and Left/Right arrow keys.
//
// 2.) Enables manipulation of position and orientation of indiviual parts in
// the 3D scene. Parts which have been selected with the mouse can be
// moved around and rotated like the cross section as described above, as
// well as scaled using the s and S keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
// http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
//
//host.console.show();

//constructor for doubly linked list
function List(){
 this.first_node=null;
 this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
 var new_node=new Node(x);
 if(this.first_node==null){
 this.first_node=new_node;
 new_node.prev=null;
 }else{
 new_node.prev=this.last_node.prev;
 new_node.prev.next=new_node;
 }
 new_node.next=this.last_node;
 this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
 var node=it.get();
 if(node.next!=null && node.prev!=null){
 node.next.prev=node.prev;
 node.prev.next=node.next;
 node.prev=null;
 node.next=this.first_node;
 this.first_node.prev=node;
 this.first_node=node;
 }
};
List.prototype.begin=function(){
 var i=new Iterator();
 i.target=this.first_node;
 return(i);
};
List.prototype.end=function(){
 var i=new Iterator();
 i.target=this.last_node;
 return(i);
};
function Iterator(it){
 if(it!=undefined){
 this.target=it.target;
 }else {
 this.target=null;
 }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
 if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
 this.prev=null;
 this.next=null;
 this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
 this.m=0;
 this.q0=new Array(3);
 this.z=new Array(4);
 this.f=new Array(4);
 this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.sqr_r=new Array(4);
 this.current_c=this.c[0];
 this.current_sqr_r=0;
 this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
 var e=-this.current_sqr_r;
 for(var k=0;k<3;++k){
 e+=sqr(p[k]-this.current_c[k]);
 }
 return(e);
};
Basis.prototype.reset=function(){
 this.m=0;
 for(var j=0;j<3;++j){
 this.c[0][j]=0;
 }
 this.current_c=this.c[0];
 this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
 var i, j;
 var eps=1e-32;
 if(this.m==0){
 for(i=0;i<3;++i){
 this.q0[i]=p[i];
 }
 for(i=0;i<3;++i){
 this.c[0][i]=this.q0[i];
 }
 this.sqr_r[0]=0;
 }else {
 for(i=0;i<3;++i){
 this.v[this.m][i]=p[i]-this.q0[i];
 }
 for(i=1;i<this.m;++i){
 this.a[this.m][i]=0;
 for(j=0;j<3;++j){
 this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
 }
 this.a[this.m][i]*=(2/this.z[i]);
 }
 for(i=1;i<this.m;++i){
 for(j=0;j<3;++j){
 this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
 }
 }
 this.z[this.m]=0;
 for(j=0;j<3;++j){
 this.z[this.m]+=sqr(this.v[this.m][j]);
 }
 this.z[this.m]*=2;
 if(this.z[this.m]<eps*this.current_sqr_r) return(false);
 var e=-this.sqr_r[this.m-1];
 for(i=0;i<3;++i){
 e+=sqr(p[i]-this.c[this.m-1][i]);
 }
 this.f[this.m]=e/this.z[this.m];
 for(i=0;i<3;++i){
 this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
 }
 this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
 }
 this.current_c=this.c[this.m];
 this.current_sqr_r=this.sqr_r[this.m];
 ++this.m;
 return(true);
};
function Miniball(){
 this.L=new List();
 this.B=new Basis();
 this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
 var i=new Iterator(it);
 this.support_end.set(this.L.begin());
 if((this.B.size())==4) return;
 for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
 var j=new Iterator(k);
 k.incr();
 if(this.B.excess(j.deref()) > 0){
 if(this.B.push(j.deref())){
 this.mtf_mb(j);
 this.B.pop();
 if(this.support_end.get()==j.get())
 this.support_end.incr();
 this.L.move_to_front(j);
 }
 }
 }
};
Miniball.prototype.check_in=function(b){
 this.L.push_back(b);
};
Miniball.prototype.build=function(){
 this.B.reset();
 this.support_end.set(this.L.begin());
 this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
 return(this.B.center());
};
Miniball.prototype.radius=function(){
 return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
 //create Miniball object
 var mb=new Miniball();
 //auxiliary vector
 var corner=new Vector3();
 //iterate over all visible mesh nodes in the scene
 for(i=0;i<scene.meshes.count;i++){
 var mesh=scene.meshes.getByIndex(i);
 if(!mesh.visible) continue;
 //local to parent transformation matrix
 var trans=mesh.transform;
 //build local to world transformation matrix by recursively
 //multiplying the parent's transf. matrix on the right
 var parent=mesh.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 //get the bbox of the mesh (local coordinates)
 var bbox=mesh.computeBoundingBox();
 //transform the local bounding box corner coordinates to
 //world coordinates for bounding sphere determination
 //BBox.min
 corner.set(bbox.min);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //BBox.max
 corner.set(bbox.max);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //remaining six BBox corners
 corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 }
 //compute the smallest enclosing bounding sphere
 mb.build();
 //
 //current camera settings
 //
 var camera=scene.cameras.getByIndex(0);
 var res=''; //initialize result string
 //aperture angle of the virtual camera (perspective projection) *or*
 //orthographic scale (orthographic projection)
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov*180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf('\n3Daac=%s,', aac);
 }else{
 camera.viewPlaneSize=2.*mb.radius();
 res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
 }
 //camera roll
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf('\n3Droll=%s,',roll);
 //target to camera vector
 var c2c=new Vector3();
 c2c.set(camera.position);
 c2c.subtractInPlace(camera.targetPosition);
 c2c.normalize();
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
 //
 //new camera settings
 //
 //bounding sphere centre --> new camera target
 var coo=new Vector3();
 coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
 if(coo.length)
 res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
 //radius of orbit
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
 }else{
 //orthographic projection
 var roo=mb.radius();
 }
 res+=host.util.printf('\n3Droo=%s,', roo);
 //update camera settings in the viewer
 var currol=camera.roll;
 camera.targetPosition.set(coo);
 camera.position.set(coo.add(c2c.scale(roo)));
 camera.roll=currol;
 //determine background colour
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
 //determine lighting scheme
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=host.util.printf('\n3Dlights=%s,', curlights);
 //determine global render mode
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 }
 if(currender!='Solid')
 res+=host.util.printf('\n3Drender=%s,', currender);
 //write result string to the console
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Copy and paste the following text to the\n'+
 '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
 var camera=scene.cameras.getByIndex(0);
 var coo=camera.targetPosition;
 var c2c=camera.position.subtract(coo);
 var roo=c2c.length;
 c2c.normalize();
 var res='VIEW%=insert optional name here\n';
 if(!(coo.x==0 && coo.y==0 && coo.z==0))
 res+=host.util.printf(' COO=%s %s %s\n', coo.x, coo.y, coo.z);
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf(' C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
 if(roo > 1e-9)
 res+=host.util.printf(' ROO=%s\n', roo);
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf(' ROLL=%s\n', roll);
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov * 180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf(' AAC=%s\n', aac);
 }else{
 if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
 res+=host.util.printf(' ORTHO=%s\n', 1./camera.viewPlaneSize);
 }
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf(' BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=' LIGHTS='+curlights+'\n';
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 defaultrender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 defaultrender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 defaultrender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 defaultrender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 defaultrender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 defaultrender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 defaultrender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 defaultrender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 defaultrender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 defaultrender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 defaultrender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 defaultrender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 defaultrender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 defaultrender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 defaultrender='HiddenWireframe';break;
 }
 if(defaultrender!='Solid')
 res+=' RENDERMODE='+defaultrender+'\n';
 for(var i=0;i<scene.meshes.count;i++){
 var mesh=scene.meshes.getByIndex(i);
 var meshUTFName = '';
 for (var j=0; j<mesh.name.length; j++) {
 var theUnicode = mesh.name.charCodeAt(j).toString(16);
 while (theUnicode.length<4) theUnicode = '0' + theUnicode;
 meshUTFName += theUnicode;
 }
 var end=mesh.name.lastIndexOf('.');
 if(end>0) var meshUserName=mesh.name.substr(0,end);
 else var meshUserName=mesh.name;
 respart=' PART='+meshUserName+'\n';
 respart+=' UTF16NAME='+meshUTFName+'\n';
 defaultvals=true;
 if(!mesh.visible){
 respart+=' VISIBLE=false\n';
 defaultvals=false;
 }
 if(mesh.opacity<1.0){
 respart+=' OPACITY='+mesh.opacity+'\n';
 defaultvals=false;
 }
 currender=defaultrender;
 switch(mesh.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 //case scene.RENDER_MODE_DEFAULT:
 // currender='Default';break;
 }
 if(currender!=defaultrender){
 respart+=' RENDERMODE='+currender+'\n';
 defaultvals=false;
 }
 if(!mesh.transform.isEqual(origtrans[mesh.name])){
 var lvec=mesh.transform.transformDirection(new Vector3(1,0,0));
 var uvec=mesh.transform.transformDirection(new Vector3(0,1,0));
 var vvec=mesh.transform.transformDirection(new Vector3(0,0,1));
 respart+=' TRANSFORM='
 +lvec.x+' '+lvec.y+' '+lvec.z+' '
 +uvec.x+' '+uvec.y+' '+uvec.z+' '
 +vvec.x+' '+vvec.y+' '+vvec.z+' '
 +mesh.transform.translation.x+' '
 +mesh.transform.translation.y+' '
 +mesh.transform.translation.z+'\n';
 defaultvals=false;
 }
 respart+=' END\n';
 if(!defaultvals) res+=respart;
 }

 //detect existing Clipping Plane (3D Cross Section)
 var clip=null;
 for(i=0; i<scene.nodes.count; i++){
 if(
 scene.nodes.getByIndex(i).name == '$$$$$$' ||
 scene.nodes.getByIndex(i).name == 'Clipping Plane'
) {
 clip=scene.nodes.getByIndex(i);
 }
 }
 if(clip){
 var centre=clip.transform.translation;
 var normal=clip.transform.transformDirection(new Vector3(0,0,1));
 res+=' CROSSSECT\n';
 if(!(centre.x==0 && centre.y==0 && centre.z==0))
 res+=host.util.printf(
 ' CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
 if(!(normal.x==1 && normal.y==0 && normal.z==0))
 res+=host.util.printf(
 ' NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
 res+=' END\n';
 }
 res+='END\n';
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
 '%% predefined views (See option "3Dviews"!).\n%%\n' +
 '%% The view may be given a name after VIEW=...\n' +
 '%% (Remove \'%\' in front of \'=\'.)\n%%');
 host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
 switch(e.menuItemName){
 case "dfltview": calc3Dopts(); break;
 case "currview": get3Dview(); break;
 case "csection":
 addremoveClipPlane(e.menuItemChecked);
 break;
 }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected mesh node;
var mshSelected=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
 if(e.selected && e.node.constructor.name=="Mesh"){
 mshSelected=e.node;
 }else{
 mshSelected=null;
 }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
 for(i=0; i<scene.nodes.count; i++){
 if(
 scene.nodes.getByIndex(i).name == '$$$$$$' ||
 scene.nodes.getByIndex(i).name == 'Clipping Plane'
) {
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
 }
 }
}
runtime.addEventHandler(cameraEventHandler);

//key event handler for moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
 var target=null;
 var backtrans=new Matrix4x4();
 if(mshSelected){
 target=mshSelected;
 var trans=target.transform;
 var parent=target.parent;
 while(parent.transform){
 //build local to world transformation matrix
 trans.multiplyInPlace(parent.transform);
 //also build world to local back-transformation matrix
 backtrans.multiplyInPlace(parent.transform.inverse.transpose);
 parent=parent.parent;
 }
 backtrans.transposeInPlace();
 }else{
 try {
 target=scene.nodes.getByName("Clipping Plane");
 }catch(e){
 var ndcnt=scene.nodes.count;
 target=scene.createClippingPlane();
 if(ndcnt!=scene.nodes.count){
 target.remove();
 target=null;
 }
 }
 }
 if(!target) return;
 switch(e.characterCode){
 case 30://tilt up
 tiltTarget(target, -Math.PI/900);
 break;
 case 31://tilt down
 tiltTarget(target, Math.PI/900);
 break;
 case 28://spin right
 spinTarget(target, -Math.PI/900);
 break;
 case 29://spin left
 spinTarget(target, Math.PI/900);
 break;
 case 120: //x
 translateTarget(target, new Vector3(1,0,0), e);
 break;
 case 121: //y
 translateTarget(target, new Vector3(0,1,0), e);
 break;
 case 122: //z
 translateTarget(target, new Vector3(0,0,1), e);
 break;
 case 88: //shift + x
 translateTarget(target, new Vector3(-1,0,0), e);
 break;
 case 89: //shift + y
 translateTarget(target, new Vector3(0,-1,0), e);
 break;
 case 90: //shift + z
 translateTarget(target, new Vector3(0,0,-1), e);
 break;
 case 115: //s
 scaleTarget(target, 1, e);
 break;
 case 83: //shift + s
 scaleTarget(target, -1, e);
 break;
 }
 if(mshSelected)
 target.transform.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

function tiltTarget(t,a){
 var centre=new Vector3();
 if(mshSelected) {
 centre.set(t.transform.transformPosition(t.computeBoundingBox().center));
 }else{
 centre.set(t.transform.translation);
 }
 var rotVec=t.transform.transformDirection(new Vector3(0,1,0));
 rotVec.normalize();
 t.transform.translateInPlace(centre.scale(-1));
 t.transform.rotateAboutVectorInPlace(a, rotVec);
 t.transform.translateInPlace(centre);
}

function spinTarget(t,a){
 var centre=new Vector3();
 var rotVec=new Vector3(0,0,1);
 if(mshSelected) {
 centre.set(t.transform.transformPosition(t.computeBoundingBox().center));
 rotVec.set(t.transform.transformDirection(rotVec));
 rotVec.normalize();
 }else{
 centre.set(t.transform.translation);
 }
 t.transform.translateInPlace(centre.scale(-1));
 t.transform.rotateAboutVectorInPlace(a, rotVec);
 t.transform.translateInPlace(centre);
}

//translates object by amount calculated based on Canvas size
function translateTarget(t, d, e){
 var cam=scene.cameras.getByIndex(0);
 if(cam.projectionType==cam.TYPE_PERSPECTIVE){
 var scale=Math.tan(cam.fov/2)
 *cam.targetPosition.subtract(cam.position).length
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }else{
 var scale=cam.viewPlaneSize/2
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }
 t.transform.translateInPlace(d.scale(scale));
}

//scales object by amount calculated based on Canvas size
function scaleTarget(t, d, e){
 if(mshSelected) {
 var bbox=t.computeBoundingBox();
 var diag=new Vector3(bbox.max.x, bbox.max.y, bbox.max.z);
 diag.subtractInPlace(bbox.min);
 var dlen=diag.length;

 var cam=scene.cameras.getByIndex(0);
 if(cam.projectionType==cam.TYPE_PERSPECTIVE){
 var scale=Math.tan(cam.fov/2)
 *cam.targetPosition.subtract(cam.position).length
 /dlen
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }else{
 var scale=cam.viewPlaneSize/2
 /dlen
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }
 var centre=new Vector3();
 centre.set(t.transform.transformPosition(t.computeBoundingBox().center));
 t.transform.translateInPlace(centre.scale(-1));
 t.transform.scaleInPlace(1+d*scale);
 t.transform.translateInPlace(centre);
 }
}

function addremoveClipPlane(chk) {
 var clip=scene.createClippingPlane();
 if(chk){
 //add Clipping Plane and place its center either into the camera target
 //position or into the centre of the currently selected mesh node
 var centre=new Vector3();
 if(mshSelected){
 //local to parent transformation matrix
 var trans=mshSelected.transform;
 //build local to world transformation matrix by recursively
 //multiplying the parent's transf. matrix on the right
 var parent=mshSelected.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 //get the centre of the mesh (local coordinates)
 centre.set(mshSelected.computeBoundingBox().center);
 //transform the local coordinates to world coords
 centre.set(trans.transformPosition(centre));
 mshSelected=null;
 }else{
 centre.set(scene.cameras.getByIndex(0).targetPosition);
 }
 clip.transform.setView(
 new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
 clip.transform.translateInPlace(centre);
 }else{
 clip.remove();
 }
}

//function to store current transformation matrix of all mesh nodes in the scene
function getCurTrans() {
 var nc=scene.meshes.count;
 var tA=new Array(nc);
 for(var i=0; i<nc; i++){
 var cm=scene.meshes.getByIndex(i);
 tA[cm.name]=new Matrix4x4(cm.transform);
 }
 return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
 for(var i=0; i<tA.length; i++){
 var msh=scene.meshes.getByIndex(i);
 msh.transform.set(tA[msh.name]);
 }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();

\includemedia[
label=dice,
width=0.5\linewidth,height=0.5\linewidth,
activate=pageopen,
3Dtoolbar, 3Dmenu,
3Dviews=dice.vws,

]{}{dice.u3d}

\mediabutton[3Dgotoview=dice:N]{\fbox{Next view}}
\mediabutton[3Dgotoview=dice:(Back)]{\fbox{View ‘Back’}}
\mediabutton[3Dgotoview=dice:5]{\fbox{6th view in the list}}

Contents of ‘dice.vws’:
VIEW=Front

ROO=27
END
VIEW=Back

ROO=27
C2C=0 1 0

END
VIEW=Left

ROO=27
C2C=-1 0 0

END
VIEW=Right

ROO=27
C2C=1 0 0

END
VIEW=Top

ROO=27
C2C=0 0 1

END
VIEW=Bottom

ROO=27
C2C=0 0 -1

END
VIEW=Fish Eye at Centre

AAC=130
END

Figure 7: Embedded U3D file, based on a VRML model by Peter Whitehouse,
http://www.wonko.info/vrml/index.htm; conversion to U3D was done using
DeepExploration R©[12]. The file ‘dice.vws’ provides predefined views. Buttons
are created with \mediabutton using the ‘3Dgotoview’ option.

29

http://www.wonko.info/vrml/index.htm

\includemedia[
label=malte,
width=0.5\linewidth,height=0.5\linewidth,
activate=pageopen,
3Dmenu,
3Dc2c=1 1 1,
3Dcoo=-0.001042630523443222 1.4577869224116568e-19 0.028235001489520073,
3Droo=0.2604540212188131,
add3Djscript=malte.js

]{}{malte.u3d}

\mediabutton[
jsaction=malte:{annotRM[’malte’].context3D.cntrClockWise();}

]{\includegraphics[height=1.44em]{boutona}}
\mediabutton[

jsaction=malte:{annotRM[’malte’].context3D.pause();}
]{\includegraphics[height=1.44em]{boutonb}}
\mediabutton[

jsaction=malte:{annotRM[’malte’].context3D.clockWise();}
]{\includegraphics[height=1.44em]{boutonc}}
\hspace{1em}
\mediabutton[

jsaction=malte:{annotRM[’malte’].context3D.scaleSpeed(1/1.1);}
]{\includegraphics[height=1.44em]{boutond}}
\mediabutton[

jsaction=malte:{annotRM[’malte’].context3D.origSpeed();}
]{\includegraphics[height=1.44em]{boutone}}
\mediabutton[

jsaction=malte:{annotRM[’malte’].context3D.scaleSpeed(1.1);}
]{\includegraphics[height=1.44em]{boutonf}}

Figure 8: Animated U3D example of a Maltese drive contributed by Jean-Luc
Chesnot. The animation and the functions called in the JavaScript actions of
the media buttons are defined in the JavaScript file ‘malte.js’.

30

crank=this.scene.nodes.getByName("manivelle-1-1");
cross=this.scene.nodes.getByName("croix-1-1");

function cntrClockWise(){dir=1; speed=lastspeed;}
function pause(){if(speed)lastspeed=speed; speed=0;}
function clockWise(){dir=-1; speed=lastspeed;}
function scaleSpeed(s){lastspeed*=s; if(speed) speed=lastspeed;}
function origSpeed(){lastspeed=1; if(speed) speed=lastspeed;}

Ocrank=new Vector3(-0.025, 0, 0);
Ocross=new Vector3(0.025, 0, 0);

axeZ=new Vector3(0,0,1);
mx4x4=new Matrix4x4();

var omega0=Math.PI; // init. angular frequency (half turn per second)
var dir=1; // init. direction
var speed=0; // speed multiplier
var lastspeed=1;
var alpha=0;

timeEvHnd=new TimeEventHandler();
timeEvHnd.onEvent=function(event) {
 var dalpha=dir*speed*omega0*event.deltaTime;
 if (dalpha!=0){
 mx4x4.setIdentity();
 mx4x4.rotateAboutLineInPlace(alpha,Ocrank,axeZ);
 crank.transform.set(mx4x4);
 with (Math){
 if (alpha<3*PI/2) beta=0;
 else beta=-atan(sin(alpha+PI/4)/(sqrt(2)-cos(alpha+PI/4)))+PI/4;
 }
 mx4x4.setIdentity();
 mx4x4.rotateAboutLineInPlace(beta,Ocross,axeZ);
 cross.transform.set(mx4x4);
 alpha+=dalpha+2*Math.PI;
 alpha%=2*Math.PI;
 scene.update();
 }
}

runtime.addEventHandler(timeEvHnd);

7.2 3D quick-start guide

1. Insert the 3D object with default camera settings and with extended
context menu enabled (option ‘3Dmenu’):

\includemedia[
width=0.5\linewidth,height=0.5\linewidth,
activate=pageopen,
3Dmenu

]{}{myfile.u3d}

2. Compile the document.

3. Open the PDF document in Adobe Reader and go to the page containing
the 3D object. Select ‘Generate Default View ’ from the 3D context menu
(right mouse click) and wait for the JavaScript console to pop up. Optionally,
drag the object with the mouse to change the viewpoint of the camera
and select ‘Generate Default View ’ again. This will re-adjust the distance
between camera and target to fit all visible parts tightly into the viewport.
The options printed into the console are updated accordingly.

4. Copy the camera settings (3Droo=..., 3Dcoo=..., etc.) from the console
into the option list of \includemedia.

5. Compile the document again.

Optional steps (option ‘3Dmenu’ required):

6. Additional, named views; cross sections; rescaled, repositioned parts:

a) Open a text file, e. g. ‘myviews.vws’, to be populated with additional
views of the 3D object.

b) Manipulate the 3D object using the mouse (camera position) and via
3D context menu items ‘Part Options’ and ‘Viewing Options’ (visibility,
rendering attributes, background etc.); the camera target can be
moved into the centre of a single part via ‘Part Options’→‘Zoom to
Part’.

c) Add a cross section plane (select ‘Cross Section’ from the 3D context
menu), adjust its position using the keyboard; keyboard keys are
given here.

d) Adjust scaling and position of individual parts using the keyboard;
keyboard keys are given here.

e) Re-adjust the camera distance using either ‘Generate Default View ’ or
‘Part Options’→‘Fit Visible’.

f) When you are done, select ‘Get Current View ’ to get the VIEW section,
readily formatted for insertion into the views file. Repeat steps (a)–(f)
to get any number of views you want to define. The views file can be
edited manually to give meaningful names to the views (change the
value of the VIEW key), or to further tweak camera settings, opacity,
part options etc.

31

g) Attach the views file with option ‘3Dviews’:

\includemedia[
width=0.5\linewidth,height=0.5\linewidth,
activate=pageopen,
3Dviews=myviews.vws,
3Dmenu

]{}{myfile.u3d}

If you are satisfied with the predefined views in the views file, the
default view first specified through the options of \includemedia can
be deleted. The first view in the views file becomes the default view
then.

7. Associate any number of 3D JavaScript files with the 3D object:

\includemedia[
width=0.5\linewidth,height=0.5\linewidth,
activate=pageopen,
add3Djscript=somescript.js,
add3Djscript=otherscript.js,
3Dviews=myviews.vws,
3Dmenu

]{}{myfile.u3d}

A few 3D JavaScript files ready to be used are already installed along with
‘media9.sty’, see above.

8 Caveats

Large media files may cause TEX to interrupt with error

! TeX capacity exceeded, sorry [main memory size=3000000].

when using latex in dvips mode. While writing the DVI file, media files in the
current page that are about to be embedded are kept in TEX’s memory until
shipping out of the readily typeset page. In the case of large or many files, this
may be more than TEX can cope with by default.

There are two options to handle such situations:

The first one is to increase TEX’s main memory. You may follow the steps in
the Bugs section of the ‘animate’ package documentation. In TEXLive-2012, the
maximum value that can be set is main_memory = 12435455.

If increasing TEX’s main memory does not help, use the package option ‘bigfiles’
with media9. It defers file embedding from the DVI producing to the PDF produ-
cing step. However, this requires that ps2pdf be called with option ‘-dNOSAFER’.
Otherwise, ps2pdf aborts with error /invalidfileaccess.

32

http://www.ctan.org/tex-archive/macros/latex/contrib/animate/animate.pdf#dest:mem

9 Acknowledgements

This package was written using the new LATEX3 syntax which was a lot of fun.
Many thanks to the LATEX3 team!

References

[1] Adobe Systems Inc.: Strobe Media Playback, 2010, available at http://osmf.
org/strobe_mediaplayback.html

[2] Adobe Systems Inc.: Adobe Supplement to ISO 32000, BaseVersion
1.7, ExtensionLevel 3, 2008, available at http://wwwimages.adobe.
com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/adobe_
supplement_iso32000.pdf

[3] Adobe Systems Inc.: JavaScript for Acrobat 3D Annotations API Reference,
available at http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_
HTMLHelp/JS_3D_Intro.90.1.html

[4] Adobe Systems Inc.: JavaScript for Acrobat API Reference, available
at http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/
JS_API_AcroJSPreface.87.1.html

[5] Adobe Systems Inc.: Adobe Flex SDK, available at http://www.adobe.com/
products/flex.html

[6] ECMA International: Universal 3D File Format (ECMA-363), 4th Edition,
2007, available at http://www.ecma-international.org/publications/
files/ECMA-ST/ECMA-363%204th%20Edition.pdf

[7] Adobe Systems Inc.: PRC Format Specification, available at http:
//livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/API_
References/PRCReference/PRC_Format_Specification/index.html

[8] A. Hammerlindl, J. Bowman and T. Prince: Asymptote: The Vector Graphics
Language, available at http://asymptote.sourceforge.net

[9] A. A. Balakin: MathGL - library for scientific graphics, available at http:
//mathgl.sourceforge.net

[10] T. O’Rourke, T. Strelchun: Universal 3D Sample Software, available at
http://sourceforge.net/projects/u3d

[11] P. Cignoni et al.: MeshLab, available at http://meshlab.sourceforge.net

[12] RightHemisphere Inc.: DeepExploration, http://www.righthemisphere.
com/products/dexp/

33

http://osmf.org/strobe_mediaplayback.html
http://osmf.org/strobe_mediaplayback.html
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/adobe_supplement_iso32000.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/adobe_supplement_iso32000.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/adobe_supplement_iso32000.pdf
http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/JS_3D_Intro.90.1.html
http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/JS_3D_Intro.90.1.html
http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/JS_API_AcroJSPreface.87.1.html
http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/JS_API_AcroJSPreface.87.1.html
http://www.adobe.com/products/flex.html
http://www.adobe.com/products/flex.html
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-363%204th%20Edition.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-363%204th%20Edition.pdf
http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/index.html
http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/index.html
http://livedocs.adobe.com/acrobat_sdk/10/Acrobat10_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/index.html
http://asymptote.sourceforge.net
http://mathgl.sourceforge.net
http://mathgl.sourceforge.net
http://sourceforge.net/projects/u3d
http://meshlab.sourceforge.net
http://www.righthemisphere.com/products/dexp/
http://www.righthemisphere.com/products/dexp/

	1 Introduction
	2 Requirements
	3 Installation
	4 Using the package
	5 The user interface
	5.1 Media inclusion
	5.2 Command options
	5.3 Control buttons

	6 Embedding Flash, video and sound (with examples)
	7 Embedding 3D objects (with examples)
	7.1 Introduction
	7.2 3D quick-start guide

	8 Caveats
	9 Acknowledgements

	0.0:
	0.1:
	0.2:
	anm0:

