The mdframed package

Examples for framemethod=default
Marco Daniel
1.9a
2013/06/21

In this document I collect various examples for framemethod=default. Some presented examples are more or less exorbitant.

Contents

1	Loading	1	Example 4 - framed picture which is centered	
2	Examples	1	Example 5 - Theorem environments	
	Example 1 - very simple	2	Example 6 - theorem with separate header and the help of TikZ (com-	
	Example 2 - hidden line + frame title	2	plex)	
	Example 3 - colored frame title	2	Example 7 - hide only a part of a line	

1 Loading

In the preamble only the package mdframed with the option framemethod=default is loaded. All other modifications will be done by \mdfdefinestyle or \mdfsetup.

Note

Every \global inside the examples is necessary to work with my own created environment tltxmdfexample*.

2 Examples

All examples have the following settings:

```
\ \text { mdfsetup\{skipabove=\topskip,skipbelow=\\topskip\}}
\ \text { newrobustcmd \ExampleText\{\%}
    An \textit{inhomogeneous linear} differential equation has the form
    \ \text { begin\{align\}}
        L[v]=f,
    \end{align}
    where $L$ is a linear differential operator, $v$ is the dependent
    variable, and $f$ is a given non-zero function of the independent
    variables alone.
}
```


Example 1 - very simple

```
global\mdfdefinestyle{exampledefault}{%
    linecolor=red,linewidth=3pt,%
    leftmargin}=1\textrm{cm},\mathrm{ rightmargin}=1\textrm{cm
}
\ \text { begin\{mdframed\}[style=exampledefault]}
\ \text { ExampleText}
\end{mdframed}
```

An inhomogeneous linear differential equation has the form

$$
\begin{equation*}
L[v]=f \tag{1}
\end{equation*}
$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

Example 2 - hidden line + frame title

```
global\mdfapptodefinestyle{exampledefault}{%
    topline=false,bottomline=false}
begin{mdframed}[style=exampledefault,frametitle={Inhomogeneous linear}]
\ \text { ExampleText}
end{mdframed}
```


Inhomogeneous linear

An inhomogeneous linear differential equation has the form

$$
\begin{equation*}
L[v]=f \tag{2}
\end{equation*}
$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

Example 3 - colored frame title

```
global\mdfapptodefinestyle{exampledefault}{%
```

 rightline \(=\) true, innerleftmargin \(=10\),innerrightmargin \(=10\),
 frametitlerule=true,frametitlerulecolor=green,
 frametitlebackgroundcolor=yellow,
 frametitlerulewidth \(=2 \mathrm{pt}\}\)
 \backslash begin $\{$ mdframed $\}[$ style $=$ exampledefault,frametitle $=\{$ Inhomogeneous linear $\}]$

ExampleText

end\{mdframed\}

Inhomogeneous linear

An inhomogeneous linear differential equation has the form

$$
\begin{equation*}
L[v]=f \tag{3}
\end{equation*}
$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

Example 4 - framed picture which is centered

```
\ \text { begin \{mdframed\}[userdefinedwidth } = 6 \mathrm { cm } , \text { align =center,}
    linecolor=blue,linewidth=4pt]
textit{CTAN lion drawing by Duane Bibby; thanks to \url{www.ctan.org}}
IfFileExists{ctan-lion.png}%
    {\includegraphics[width=\linewidth]{ctan-lion.png}}%
    {\rule{\linewidth}{4cm}}%
end{mdframed}
```


Example 5 - Theorem environments

```
mdfdefinestyle{theoremstyle}{%
    linecolor=red,linewidth=2pt,%
    frametitlerule=true,%
    frametitlebackgroundcolor=gray!20,
    innertopmargin=\topskip,
    }
mdtheorem[style=theoremstyle]{definition}{Definition}
begin{definition}
```

```
ExampleText
end{definition}
begin{definition}[Inhomogeneous linear]
ExampleText
end{definition}
begin{definition*}[Inhomogeneous linear]
ExampleText
end{definition*}
```


Definition 1

An inhomogeneous linear differential equation has the form

$$
\begin{equation*}
L[v]=f \tag{4}
\end{equation*}
$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

Definition 2: Inhomogeneous linear

An inhomogeneous linear differential equation has the form

$$
\begin{equation*}
L[v]=f \tag{5}
\end{equation*}
$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

Definition: Inhomogeneous linear

An inhomogeneous linear differential equation has the form

$$
\begin{equation*}
L[v]=f \tag{6}
\end{equation*}
$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

Example 6 - theorem with separate header and the help of TikZ (complex)

```
newcounter{theo}[section]
newenvironment{theo}[1][]{%
    stepcounter{theo}%
    ifstrempty{#1}%
    {\mdfsetup{%
        frametitle={%
                        \ \text { tikz[baseline=(current bounding box.east),outer sep=0pt]}
```

```
                \ \text { node[anchor=east,rectangle,fill=blue!20]}
                {\strut Theorem~\thetheo};}}
    }%
    {\mdfsetup{%
        frametitle={%
            tikz[baseline=(current bounding box.east),outer sep=0pt]
            \ \text { node[anchor=east,rectangle,fill=blue!20]}
            {\strut Theorem~\thetheo:~ #1};}}%
    }%
    \ \text { mdfsetup\{innertopmargin=10pt,linecolor=blue!20,\%}
                        linewidth=2pt,topline=true,
                frametitleaboveskip=\dimexpr-\ht \strutbox \relax,}
    \begin{mdframed}[|\relax%
    }{\end{mdframed}}
begin{theo}[Inhomogeneous Linear]
\ \text { ExampleText}
end{theo}
begin{theo}
\ \text { ExampleText}
end{theo}
```


Theorem 1: Inhomogeneous Linear

An inhomogeneous linear differential equation has the form

$$
\begin{equation*}
L[v]=f \tag{7}
\end{equation*}
$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

Theorem 2

An inhomogeneous linear differential equation has the form

$$
\begin{equation*}
L[v]=f \tag{8}
\end{equation*}
$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

Example 7 - hide only a part of a line

The example below is inspired by the following post on StackExchange Theorem decorations that stay with theorem environment

```
makeatletter
\newlength{\interruptlength}
newrobustcmd\interruptrule[3]{%
```

```
    \color{#1}%
    \hspace*{\dimexpr\mdfboundingboxwidth+
            \mdf@innerrightmargin@length\relax}%
\mathrm{ rule }\\\mathrm{ dimexpr-\mdfboundingboxdepth }+
            #2\interruptlength \relax]%
        {\mdf@middlelinewidth@length}%
        {\dimexpr\mdfboundingboxtotalheight-#3\interruptlength \relax}%
}
newrobustcmd\overlaplines[2][white]{%
    mdfsetup{everyline=false}%
    \setlength{\interruptlength}{#2}
    \appto\mdf@frame@leftline@single{\llap{\interruptrule{#1}{1}{2}}}
    \appto\mdf@frame@rightline@single{\rlap{\interruptrule{#1}{1}{2}}}
    \appto\mdf@frame@leftline@first{\llap{\interruptrule{#1}{0}{1}}}
    \appto\mdf@frame@rightline@first{\rlap{\interruptrule{#1}{0}{1}}}
    \appto\mdf@frame@leftline@second{\llap{\interruptrule{#1}{1}{1}}}
    \appto\mdf@frame@rightline@second {\rlap{\interruptrule{#1}{1}{1}}}
    \appto\mdf@frame@leftline@middle{\llap{\interruptrule{#1}{0}{0}}}
    \appto\mdf@frame@rightline@middle{\rlap{\interruptrule{#1}{0}{0}}}
}
makeatother
overlaplines{2.5ex}
\begin{mdframed}[linecolor=blue,linewidth=8pt]
ExampleText
end{mdframed}
overlaplines[blue!70!black!20]{2.5ex}
begin{mdframed}[linecolor=blue,linewidth=8pt]
ExampleText
end{mdframed}
```

An inhomogeneous linear differential equation has the form

$$
\begin{equation*}
L[v]=f, \tag{9}
\end{equation*}
$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

An inhomogeneous linear differential equation has the form

$$
\begin{equation*}
L[v]=f, \tag{10}
\end{equation*}
$$

where L is a linear differential operator, v is the dependent variable, and f is a given non-zero function of the independent variables alone.

