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Abstract

This is a sample document to illustrate the typesetting of vectors, matrices and tensors
according to the matrix tensor notation of Hassenpflug (1993a,b). The first section
describes the bare basics of the notation and please note that there is much more
to the notation than the little bit described here. The second and third sections are
applications of the notation in rotation kinematics.

Keywords: vector, matrix, tensor, notation.

N.B.: This document is neither a guide nor a reference document for the
Hassenpflug notation. For any reference to the material in section §1,
please cite the original copyrighted articles (Hassenpflug 1993a,b).
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1 Hassenpflug matrix tensor notation

1.1 Basic vector Notation

All vectors are in the 3-dimensional Euclidean space R3 and tensors in R3×3. Any other
vector space will be explicitly stated. The rest of this section lists the basic definitions
of the notation of Hassenpflug (1993a,b)

Physical vector: v-→ ≡ -→e1 v1 + -→e2 v2 + -→e3 v3 (1.1)

The physical vector is the general representation of a vector in any coordinate system.
The unit vectors -→ei, (i = 1,2,3), define the direction of the axes in a right-handed
orthogonal Cartesian system. The components, -→ei vi, are the components of the vector
and the scalar quantities, vi, the elements of the vector.

Column vector: va ≡

va1

va2

va3

 (1.2)

The column matrix of the elements of a vector is called a column vector and is the
algebraic representation of a vector. The bar above the symbol of the vector indicates
a column vector and the superscript (a) the index of the specific coordinate system in
which the elements of the vector are expressed.

Row vector: va ≡
[
va
]T = [va1 va2 va3

]
(1.3)

The row matrix of the elements of a vector is called a row vector. The bar below the
symbol of the vector indicates a row vector and the subscript (a) indicates the index
of the specific coordinate system in which the elements of the vector are expressed.
It is important to note that in general

[
va
]T = vT

a for skew and curved coordinates,
(see Hassenpflug 1993b). The format in (1.3) without the transpose sign is only valid
in Cartesian coordinates.

Norm: ‖v-→‖ ≡ v, (1.4a)

‖v‖ ≡ v ≡
√
v · v =

√
v2

1 + v2
2 + v2

3 (1.4b)

The norm of a vector is the algebraic size or length of the vector. The second equation,
(1.4b), in element form, is only valid in Cartesian coordinates or Euclidean space.

Scalar, dot or inner product: v-→• u-→ ≡ v-→ · u
-→ = v u cosϕ, (1.5a)

v •u ≡ v ·u = v1u1 + v2u2 + v3u3 (1.5b)

The scalar product of two vectors results in a scalar. The angle ϕ is the angle in space
between v-→ and u-→.

Dyad or outer product: v ◦u ≡ v ·u =

v1u1 v1u2 v1u3

v2u1 v2u2 v2u3

v3u1 v3u2 v3u3

 (1.6)
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The dyad or outer product of two vectors results in a square matrix. There exists a well-
defined algebra for dyads. It is sometimes convenient to handle second-rank Cartesian
tensors such as inertia tensors as a linear polynomial of dyads, called a dyadic.

Vector or cross product: v-→× u-→ ≡ (v2u3 − v3u2)
-→e1

+ (v3u1 − v1u3)
-→e2

+ (v1u2 − v2u1)
-→e3, (1.7a)

‖a-→× c-→‖ = v u sinϕ (1.7b)

The cross product of the two vector v-→ and u-→ results in a vector perpendicular to both
v-→ and u-→. This operation is only defined in 3-dimensional Cartesian space. The angle
ϕ is the angle in space between v-→ and u-→. The cross product can also be defined in
terms of a matrix-vector operation v ×u ≡ ṽ ·u

Cross product tensor: ṽ ≡

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 (1.8)

Various identities for the cross product tensor can be verified. These identities will
be extensively used throughout this article.[

ṽ
]T
= −ṽ

[
ṽ
]2
= v · v − v2I ṽ +u = ṽ + ũ

ṽ ·u = −ũ · v
[
ṽ
]3
= −v2ṽ ˜̃v ·u = ṽ · ũ− ũ · ṽ

(1.9)

with I the 3× 3 identity matrix.

I ≡

 1 0 0
0 1 0
0 0 1

 (1.10)

1.2 Vector Transformations

In this section only a basic overview of vector rotations and transformations is given to
establish the basic nomenclature and definitions. For a more in-depth discussion refer
to Hassenpflug (1993a).

Consider two Cartesian axis systems denoted by s and r as shown in figure 1.1(a) on
the following page. From the general definition of a vector, (1.1), follows

v-→ =
[ -→es1 -→es2

-→es3
]
·

vs1vs2
vs3

 = -→
E s · vs (1.11)

The quantity,
-→
E s = [ -→es1

-→es2
-→es3], is the base of the axis system denoted by s. It

consists of the three orthogonal vectors parallel to the axes. From the outer product
(1.6) follows for the inverse of base

-→
E s :[ -→

E s
]T
· -→E s = E-→

s · -→E s = I ⇒
[ -→
E s
]T
=
[ -→
E s
]−1

= E-→
s

(1.12)
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s1 s1

s2 s2

r1 r1

r2 r2

-→es1
-→es1

-→es2
-→es2

-→er1

-→er2
-→er2

vs1 vs1

vr1

vs2

vr2

v-→

v-→

-→vR

vRs1

vRr1

Figure 1.1(a): Vector transformation Figure 1.1(b): Vector rotations

We can repeat the procedure of (1.11) for the vector v-→ in terms of base
-→
E r . The

relationship of the elements of vector v-→ in terms of base
-→
E s and base

-→
E r is then

v-→ = -→
E r · v r =

-→
E s · v s ⇒


v s = E-→

s · -→E r = E
s
r · v r

v r = E-→
r · -→E s = E

r
s · v s

(1.13)

The matrix quantities Esr and Ers are then the transformation matrices of the compo-

nents of a vector between the two bases
-→
E s and

-→
E r . The columns of the transformation

matrix Esr are the elements of the unit vector -→esi expressed in base E-→s
and the rows

are the unit vectors -→e
sj expressed in base

-→
E r .

Esr =
[
ser1

ser2
ser3

]
=

 res1

res2

res3

 (1.14)

The properties of the transformation matrix are well-known, for example[
Esr
]T
=
[
Esr
]−1

= Ers (1.15)

1.3 Vector rotations

Consider the case of a vector in space with initial position v-→. The vector is rotated to
a new position in space, -→vR. Define the rotation tensor operation then as

-→vR =
-→
R-→ · v

-→ (1.16)

If the operation is applied to the rotation of all the direction vectors of a base
-→
E s

to a new rotated base
-→
E r , then

-→
E r =

-→
R-→ ·

-→
E s (1.17)

or
Esr = E-→

s · -→R-→ ·
-→
E s = R

s
s (1.18)

With reference to figure 1.1(b), consider the case of a vector fixed in a rotating
base

-→
E r with initial position v-→ and final position after a rotation of -→vR. If the initial
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orientation of
-→
E r corresponds with that of

-→
E s , the numerical values of the components

of v s and vR
r are equal. From the transformation of -→vR it then follows that

svR = E
s
r · vRr = R

s
s · v s (1.19)

If the rotation matrix is transformed between bases, then

Rrr = E
r
s · R

s
s · E

s
r = R

s
s (1.20)

The rotation matrix is therefore identical in terms of both bases and we can denote it
without the base indices, except when there is more than one rotation. The rotation
matrix between bases

-→
E s and

-→
E r in terms of the transformation matrix is given by

R =Esr (1.21)[
R
]−1

=
[
R
]T
= Ers (1.22)

2 Rotation kinematics

2.1 The rotation matrix (Rodriguez formula)

a-→

ϑv-→
-→vR

s1

s2

s3

r1r2

r3

Figure 2.1: General vector rotation

Euler’s theorem states that the most general displacement of a rigid body with
one point fixed is equivalent to a single rotation about some axis through that point.
With reference to figure 2.1, consider a vector with initial position v-→. The vector is
rotated about an axis defined by the unit vector a-→, through an angle ϑ. The vector
after rotation is denoted by -→vR. From the geometry in figure 2.1, it can be shown (e.g.,

Argyris 1982) for the vector components in terms of the stationary base
-→
E s that

svR = v s + sinϑ (as × v s)+ (1− cosϑ)
(
as × (as × v s)

)
(2.1a)

=
[
I + sinϑ ã

s
s + (1− cosϑ) ã

s
s · ã

s
s

]
· v s (2.1b)

Equation (2.1b) was obtained from (2.1a) with the aid of the cross product tensor
(1.8) while I is the 3× 3 unit matrix.
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By comparing (2.1b) with (1.20), the general format of the rotation matrix for a
rotation through an angle ϑ about an axis as fixed in base

-→
E s is given by

R = I + 2 cos ϑ2 sin ϑ
2 ã

s
s + 2 sin2 ϑ

2 ã
s
s · ã

s
s (2.2)

RT = I − 2 cos ϑ2 sin ϑ
2 ã

s
s + 2 sin2 ϑ

2 ã
s
s · ã

s
s (2.3)

Equation 2.2 is also known as the Rodriguez formula. The equations were rewritten in
terms of ϑ/2 for the convenience of definitions that follow later in the article.

If v-→ is fixed to a rotating base
-→
E r , with v s = vR

r (see figures 1.1(a) and 1.1(b) on

page 4), then Esr is the transformation matrix from base
-→
E r to base

-→
E s and

Esr = R (2.4)

Ers = R
T

(2.5)

Note for the transformation of the cross product tensor associated with the rotation
axis, is ã

s
s = ã

r
r = ã, because the components are identical in both the bases. In the

rest of this article the basis reference indexes for ã are not shown except where a
distinction must be made between two different rotations.

For numerical purposes (2.2) can be written as a single matrix. Let c = cosϑ and
s = sinϑ, then the rotation or transformation matrix is given by

R = Esr =

 a2
1(1−c)+c a1a2(1−c)−a3s a1a3(1−c)+a2s

a1a2(1−c)+a3s a2
2(1−c)+c a2a3(1−c)−a1s

a1a3(1−c)−a2s a2a3(1−c)+a1s a2
3(1−c)+c

 (2.6)

It is frequently necessary to find the rotation axis a-→ and rotation angle ϑ for a
known transformation matrix, Esr = Eij . From (2.6) various relationships can be de-
ducted. Two of the more important ones are

2 cosϑ = E11 + E22 + E33 − 1 (2.7)

2 sinϑa =

E32 − E23

E13 − E31

E21 − E12

 (2.8)

When ϑ ≈ π equation (2.8) cannot be used to find a. Another, more general, ap-
proach is to consider the characteristic polynomial of Esr .

det
[
Esr − λI

]
= (λ2 + 2λ cosϑ + 1)(1− λ) = 0 (2.9)

It leads to the eigenvalues λ = eiϑ, e−iϑ, 1. It can therefore be stated that λ = 1 is
always an eigenvalue of Esr and that an eigenvector or axis a = as = ar exists that is
unchanged by the rotation. The rotation axis can be obtained with a numerical method
by solving the eigenvector problem Esr · a = a.

2.2 Angular velocity

Define the vectors xs and ẋs = dxs/dt as the position and velocity of a particle or
point with components in terms of a static base

-→
E s , while xr and ẋr are the position

and apparent velocity in terms of a rotating base
-→
E r .

xs = Esr · xr (2.10)
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and

ẋs = Esr ·
[
ẋr + Ers · Ė

s
r · xr

]
= Esr ·

[
ẋr + ω̃r

r · xr
]

(2.11)

It can be proven (e.g., Meirovitch 1970, §3.2) that the tensor

ω̃
r
r = E

r
s · Ė

s
r

ω̃
s
s = E

s
r · ω̃

r
r · E

r
s = Ė

r
s · E

r
s

(2.12)

is the cross product tensor of angular velocity ω----→.
We proceed next to obtain ω----→ as a function of a-→ and ϑ. The following identities

can then be verified from the fact that a-→ is a unit vector, (a · a = 1), implying that
(a · ȧ = 0):

ã · ˙̃a · ã = −(a · ȧ) ã = 0

ã · ã · ˙̃a · ã = −(a · ȧ) ã · ã = 0
(2.13)

The angular velocity tensor in (2.12), after the differentiation of the transformation
matrix (2.2) and algebraic manipulation with the aid of (2.13) and (1.9) is

ω̃
r
r = ϑ̇ ã+ sinϑ ˙̃a− 2 sin2 ϑ

2

[
ã · ˙̃a− ˙̃a · ã

]
= ϑ̇ ã+ sinϑ ˙̃a− 2 sin2 ϑ

2
˜̃a · ȧ

(2.14)

From (2.14), the vector equation for ωr and ωs (where the latter can be derived
with the same arguments), follows then as

ωr = ϑ̇ a+ sinϑ ȧ− 2 sin2 ϑ
2 ã · ȧ

ωs = ϑ̇ a+ sinϑ ȧ+ 2 sin2 ϑ
2 ã · ȧ

(2.15)

The inner or scalar product of (2.15) gives the norm of the angular velocity

ω2 =ωr ·ωr =ωs ·ωs = ϑ̇2 + 4 sin ϑ
2 ȧ

2 (2.16)

From (2.15) the time derivative of the rotation angle ϑ is

ϑ̇ = a ·ωr = a ·ωs (2.17)

which leads to

ϑ̇ a = (a ·ωr )a =ωr + ã · ã ·ωr

= (a ·ωs)a =ωs + ã · ã ·ωs
(2.18)

At this point it is important to note that in many good reference texts (e.g., Wertz
1978, pp. 511–512) the authors make the incorrect statement thatω----→ =ωa-→. Inspection
of (2.15) – (2.17) reveals that a-→·ω

----→ = ϑ̇ ≠ω. The angular velocity vector ω----→ is therefore

in general not in the direction of the instantaneous rotation axis a-→.
The vector ȧ can be obtained from (2.15) by the substitution of (2.18) and assuming

a solution of the form [ I + α ã + β ã · ã ]. With the aid of the identities in (2.13) and
(1.9), it leads to

ȧ = 1
2

[
+ã− cot ϑ2 ã · ã

]
·ωr ≡ Kr ·ωr

= 1
2

[
−ã− cot ϑ2 ã · ã

]
·ωs ≡ Ks ·ωs

(2.19)
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Note the notation in (2.19) for Kr . It is a tensor in a mixed base (see Hassenpflug
1993a), because ar = as . For the transformation between bases it can also be con-
firmed that

Kr = Ks · E
s
r (2.20)

The general kinematic equations for a rotating base are given by (2.17) and (2.19).
The four scalar equations describe only three degrees of freedom and are constrained
by ‖a‖ = 1. These equations can be integrated to obtain Esr as a function of time,
but (2.19) is singular for values of ϑ = 0,±2π, · · · . This renders a general numeric
solution impractical.

The equations for the angular velocity, (2.15) are well-known, see for example Sha-
bana (1994, §5.14). The author could not find any reference to the inverse form for ϑ̇,
(2.17), and ȧ, (2.19), in terms of ω----→, although it is highly likely that they might exist in
the classical literature.

2.3 Attitude determination

The classic problem in rotation kinematics is that the angular velocity cannot be inte-
grated to obtain the orientation of a rotating base, because the integral is dependent
on the path of integration. The most basic method to find the orientation of

-→
E r as a

function of time is to integrate (2.12) directly,

Ėsr = ω̃
s
s · E

s
r =

[
ωs × ser1 ωs × ser2 ωs × ser3

]
Ėrs = −ω̃

r
r · E

r
s = −

[
ωr × res1 ωr × res2 ωr × res3

] (2.21)

Only two of the vectors need to be integrated. The third vector can be obtained from
the cross product (e1 × e2 = e3). This method involves six parameters while there are
only three degrees of freedom. With a lot of effort and by careful selection of elements
from the orthogonality constraint requirement Esr · E

r
s = I, it can be refined to three

parameters . It is also advisable that the constraint equation be enforced through
frequent normalization, to compensate for the fact that the constraints are not taken
into account during integration.

3 Euler symmetric parameters

3.1 Background

Throughout history many parameterization methods were devised to obtain the rela-
tionships between the orientation of a rotating base and its angular velocity.

The Euler symmetric parameter method is one of the classic methods. It has gained
popularity in the aerospace engineering environment for foolproof attitude determina-
tion algorithms, because it contains no numerical singularities. It has the disadvantage
that it is a four-parameter method describing three degrees of freedom, and therefore
an additional differential equation, together with its constraint, must be solved.

It is also called the rotation quaternion because it can be represented as a unit
quaternion, obeying all the rules of quaternion algebra.

3.2 Transformation matrix

After inspection of (2.2), define the four Euler parameters

q0 = cos ϑ2 q = sin ϑ
2 a =

q1

q2

q3

 (3.1)
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The transformation matrix (2.2), in terms of the Euler parameters, is then

Esr (q0, q) = I + 2q0 q̃ + 2 q̃ · q̃ (3.2)

Ers (q0, q) = E
s
r (q0, −q) (3.3)

or in element form

Esr (q0, q) =

 2q2
0 + 2q2

1 − 1 2(q1q2 − q3q0) 2(q1q3 + q2q0)
2(q1q2 + q3q0) 2q2

0 + 2q2
2 − 1 2(q2q3 − q1q0)

2(q1q3 − q2q0) 2(q2q3 + q1q0) 2q2
0 + 2q2

3 − 1

 (3.4)

The four Euler parameters are not independent, but are constrained by the condi-
tion for the transformation matrix, Esr · E

r
s = I, which implies that

q2
0 + q2

1 + q2
2 + q2

3 = q2
0 + q · q = 1 (3.5)

and which is indeed satisfied by (3.1).
From (3.2) it is clear that changing the signs of all the Euler parameters simultane-

ously does not affect the transformation matrix

Esr (−q0,−q) = E
s
r (q0, q) (3.6)

The initial values of q0 and q can be obtained for a known transformation matrix
Esr = Eij from (3.4). The following equations are the relationships that can be deducted

4q2
0 = 1+ E11 + E22 + e33

4q2
1 = 1+ E11 − E22 − e33

4q2
2 = 1− E11 + E22 − E33

4q2
3 = 1− E11 − E22 + E33

(3.7)

4q1q0 = E32 − E23

4q2q0 = E13 − E31

4q3q0 = E21 − E12

and

4q1q2 = E12 + E21

4q1q3 = E13 + E31

4q2q3 = E23 + E32

(3.8)

The absolute values of Euler parameters are obtained from (3.7).

|2q0| =
√

1+ E11 + E22 + E33

|2q1| =
√

1+ E11 − E22 − E33

|2q2| =
√

1− E11 + E22 − E33

|2q3| =
√

1− E11 − E22 + E33

(3.9)

The unity constraint (3.5), implies that at least one of the Euler parameters is not
zero. Furthermore, a simultaneous sign change of all the Euler parameters has no
effect on the transformation matrix, see (3.6). To avoid singularities and for the best
numerical accuracy, select the absolute value of the largest parameter from (3.9) as
initial value and then calculate the Euler parameters accordingly from (3.7) and (3.8).



q0

q1

q2

q3

 =


|2q0|
2

E32−E23
2 |2q0|
E13−E31
2 |2q0|
E21−E12
2 |2q0|


or



E32−E23
2 |2q1|
|2q1|

2

E12+E21
2 |2q1|
E13+E31
2 |2q1|


or



E13−E31
2 |2q2|
E12+E21
2 |2q2|
|2q2|

2

E23+E32
2 |2q2|


or



E21−E12
2 |2q3|
E13+E31
2 |2q3|
E23+E32
2 |2q3|
|2q3|

2


(3.10)
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3.3 Time derivatives of the Euler parameters

The time derivatives of the Euler parameters (3.1), with the aid of (2.17) and (2.19), are
for ω----→ in terms of base

-→
E r

q̇0 = −1
2 sin ϑ

2 ϑ̇ q̇ = 1
2 cos ϑ2 ϑ̇ a+ sin ϑ

2 ȧ

= −1
2 sin ϑ

2 a ·ω
r = 1

2 cos ϑ2 ω
r + 1

2 sin ϑ
2 ã ·ω

r (3.11)

= −1
2 q ·ω

r = 1
2 q0 ωr + 1

2 q̃ ·ω
r

The same procedure can be repeated forω----→ in terms of base
-→
E s . Equation (3.11) can

be rewritten in the more familiar matrix formatq̇0

q̇

 = 1
2

 0 −ωr

ωr −ω̃r
r

 ·
q0

q

 = 1
2

 0 −ωs

ωs +ω̃s
s

 ·
q0

q

 (3.12)

The constraint equation (3.5) in differential form is

q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3 =
[
q0 q

]
·
q̇0

q̇

 = 0 (3.13)

If (3.12) is substituted into (3.13), it confirms, as expected, that (3.12) still satisfies
the constraint condition.

3.4 Notes on numerical integration

Equation (3.12) in general cannot be integrated analytically and we must resort to nu-
merical integration methods. For illustration purposes, consider the simplest numeri-
cal integration scheme, namely the first order Euler method. Let

Q =
q0

q

 and Q̇ =
q̇0

q̇

 = 1
2 Ωr · Q =

1
2 Ωs · Q (3.14)

with Ωr , Ωr ∈ R4×4 from (3.12)

Ωr =
 0 −ωr

ωr −ω̃r
r

 and Ωs =
 0 −ωs

ωs +ω̃s
s

 (3.15)

The Euler parameters at time t can then be updated over a time step ∆t with

Q(t+∆t) ≈ Q(t)+∆t Q̇(t) =
[
I +∆t Ω(t)

]
·Q(t) (3.16)

where Ω is either Ωr or Ωs .
Assume that Q(t) conforms to the constraint condition, then after the integration

time step it is found that

QT(t+∆t) ·Q(t+∆t) = 1+ 1
4

(
∆tω(t)

)2 (3.17)

It is thus clear that the integration process results in an updated set of parameters
that violates the required constraint. This condition only vanishes in the limit when
∆t→0. This necessitates that the parameters be normalized at regular intervals for
most numerical integration methods or that the integration method be tailored to take
the constraint into consideration.

Wertz (1978, §17.1) discusses a useful approximate integrator of the Euler param-
eters kinematic equations, by Wilcox (1967) and Iwens and Farrenkopf (1971). This
integration method is used for realtime onboard attitude determination of spacecraft
from gyro telemetry.
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