\documentclass{scrartcl} \usepackage{tikz} \usetikzlibrary{matrix.skeleton} \usepackage[justification=centering,labelfont={sf,bf,up},labelsep=period,font=small]{caption} \captionsetup[figure]{position=bottom,singlelinecheck=false} \usepackage[font=small,justification=centering]{subcaption} \usepackage{float} \floatstyle{komabelow} \restylefloat{figure} \usepackage{xspace} \usepackage{hyperref} \hypersetup{ colorlinks=true , linkcolor=blue!75 , citecolor=black , urlcolor=blue!75 } \usepackage[noabbrev, capitalize]{cleveref} \tikzset{highlight/.style={draw=#1!75, fill=#1!25, rounded corners=1pt}} \newcommand\code\texttt \newcommand{\TikZ}{Ti\textit{k}Z\xspace} \title{\texttt{matrix.skeleton}'s Manual} \author{Nicolas Dudebout} \date{} \begin{document} \maketitle \section{Introduction} The \TikZ \code{matrix} library places nodes on a grid. However, this grid is discarded after the nodes have been placed. As a result, certain constructions involving multiple nodes become cumbersome. The following two examples highlight some of the difficulties. \subsection{Alignment Issues with \code{fit}} The \code{fit} library is used to highlight a subset of nodes in a matrix. If all the nodes in the matrix have the same dimension, as in~\cref{fig:highlighting_identical_dimensions}, \code{fit} produces the desired output. \begin{figure}[h] \centering \begin{subfigure}{0.45\textwidth} \centering \begin{tikzpicture} \matrix (m) [matrix of math nodes, column sep = 3pt, row sep = 3pt] { 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ }; \end{tikzpicture} \caption{Input matrix} \end{subfigure} % \begin{subfigure}{0.45\textwidth} \centering \begin{tikzpicture} \matrix (m) [matrix of math nodes, column sep = 3pt, row sep = 3pt] { 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ }; \fitandstyle[background]{(m-1-1) (m-2-1)}{highlight = yellow} \fitandstyle[background]{(m-1-2) (m-2-2)}{highlight = red} \fitandstyle[background]{(m-3-1) (m-3-2)}{highlight = green} \end{tikzpicture} \caption{Desired output and result with \code{fit}} \end{subfigure} \caption{Highlighting in a matrix with nodes of identical dimensions} \label{fig:highlighting_identical_dimensions} \end{figure} However, if the nodes have different heights and widths, as illustrated in~\cref{fig:highlighting_different_dimensions}, some alignment issues arise. \begin{figure}[h] \centering \begin{subfigure}{0.3\textwidth} \centering \begin{tikzpicture} \matrix (m) [matrix of math nodes, column sep = 3pt, row sep = 3pt] { 1 & \frac{\frac{16}{4}}{1 + \frac{2}{2}} \\ 2.999999 & 4 \\ 5 & 6.000001 \\ }; \end{tikzpicture} \caption{Input matrix} \end{subfigure} % \begin{subfigure}{0.3\textwidth} \centering \begin{tikzpicture} \matrix (m) [matrix of math nodes, column sep = 3pt, row sep = 3pt, label skeleton] { 1 & \frac{\frac{16}{4}}{1 + \frac{2}{2}} \\ 2.999999 & 4 \\ 5 & 6.000001 \\ }; \fitandstyle[background]{(m-cell-1-1) (m-cell-2-1)}{highlight = yellow} \fitandstyle[background]{(m-cell-1-2) (m-cell-2-2)}{highlight = red} \fitandstyle[background]{(m-cell-3-1) (m-cell-3-2)}{highlight = green} \end{tikzpicture} \caption{Desired output} \end{subfigure} % \begin{subfigure}{0.3\textwidth} \centering \begin{tikzpicture} \matrix (m) [matrix of math nodes, column sep = 3pt, row sep = 3pt] { 1 & \frac{\frac{16}{4}}{1 + \frac{2}{2}} \\ 2.999999 & 4 \\ 5 & 6.000001 \\ }; \fitandstyle[background]{(m-1-1) (m-2-1)}{highlight = yellow} \fitandstyle[background]{(m-1-2) (m-2-2)}{highlight = red} \fitandstyle[background]{(m-3-1) (m-3-2)}{highlight = green} \end{tikzpicture} \caption{Result with \code{fit}} \end{subfigure} \caption{Highlighting in a matrix with nodes of different dimensions} \label{fig:highlighting_different_dimensions} \end{figure} These problems can be addressed using \code{minimum width} and \code{minimum height}. However, adjusting manually these parameters in every matrix is a waste of time. The \code{matrix.skeleton} library provides a clean solution through the use of nodes called~\code{cells}. These \code{cells} and other skeleton nodes are described in~\cref{sec:skeleton}. \subsection{Working with Rows and Columns} The readability of a matrix can sometimes be improved by adding a background on every other row. This simple task is not easily achievable with \code{matrix} alone. The style \code{every odd column} only affects the nodes of the said columns. There is no real column object to work with. The \code{matrix.skeleton} library provides \TikZ styles to achieve this goal easily. These styles are described in~\cref{sec:styling} \section{Skeleton} \label{sec:skeleton} \subsection{Nodes} \code{matrix.skeleton} works by positioning a set of nodes to recreate the \code{matrix} grid. The eight types of such nodes are illustrated in~\cref{fig:skeleton_nodes}. \begin{figure}[h] \centering \begin{subfigure}{0.3\textwidth} \centering \begin{tikzpicture} \matrix (m) [draw, matrix of nodes, column sep=10pt, row sep=10pt, label skeleton] { 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ }; \fitandstyle[background]{(m-cell-1-1)}{fill=yellow!30} \fitandstyle[background]{(m-row-2)}{fill=red!25} \fitandstyle[background]{(m-column-3)}{fill=green!25, opacity=.75} \end{tikzpicture} \caption{\textcolor{yellow!80!orange}{Cell}, \textcolor{red!50}{row}, and \textcolor{green!60}{column}} \end{subfigure} % \begin{subfigure}{0.3\textwidth} \centering \begin{tikzpicture} \matrix (m) [draw, matrix of nodes, column sep=10pt, row sep=10pt, label skeleton] { 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ }; \fitandstyle[background]{(m-inter-row-1)}{fill=red!25} \fitandstyle[background]{(m-inter-column-2)}{fill=green!25, opacity=.75} \end{tikzpicture} \caption{\textcolor{red!50}{Inter-row} and \textcolor{green!60}{inter-column}} \end{subfigure} % \begin{subfigure}{0.3\textwidth} \centering \begin{tikzpicture} \matrix (m) [draw, matrix of nodes, column sep=10pt, row sep=10pt, label skeleton] { 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ }; \fitandstyle[background]{(m-tiling-cell-1-1)}{fill=yellow!30} \fitandstyle[background]{(m-tiling-row-2)}{fill=red!25} \fitandstyle[background]{(m-tiling-column-3)}{fill=green!25, opacity=.75} \end{tikzpicture} \caption{\textcolor{yellow!80!orange}{Tiling cell}, \textcolor{red!50}{tiling row}, and \textcolor{green!60}{tiling column}} \end{subfigure} \caption{Skeleton nodes} \label{fig:skeleton_nodes} \end{figure} \subsection{Using \code{matrix.skeleton}} The recommended way of using \code{matrix.skeleton} is through \TikZ. First, load the library with: \begin{verbatim} \usetikzlibrary{matrix.skeleton} \end{verbatim} Then add an option to your matrix: \begin{verbatim} \matrix (m) [label skeleton] {...}; \end{verbatim} This creates a set of nodes that can be used for styling. For example, the nodes illustrated in~\cref{fig:skeleton_nodes} are named: \code{m-cell-1-1}, \code{m-row-2}, \code{m-column-3}, \code{m-inter-row-1}, \code{m-inter-column-2}, \code{m-tiling-cell-1}, \code{m-tiling-row-2}, and \code{m-tiling-column-3}. \section{Styling} \label{sec:styling} The skeleton nodes are PGF nodes not meant to be styled. Styles should be applied to nodes whose shapes depend on the skeleton ones. \subsection{Macros} Styling in \code{matrix.skeleton} is done with the~\code{fit} library. The following macro creates a \code{fit} node with the specified style: \begin{verbatim} \fitandstyle{(m-cell-1-1) (m-cell-2-2)}{draw=red}; \end{verbatim} It takes an optional argument to place the node in a \code{pgfonlayer} environment: \begin{verbatim} \fitandstyle[background]{(m-cell-1-1) (m-cell-2-2)}{fill=red}; \end{verbatim} \subsection{\TikZ \code{matrix} Options} Common styling options are also provided as \TikZ options. These options call~\code{label skeleton} before styling the appropriate nodes. They take the following form: \begin{verbatim} \matrix (m) [style odd rows = {draw=red}] {...}; \end{verbatim} \begin{verbatim} \matrix (m) [style odd tiling rows = {draw=red}] {...}; \end{verbatim} \begin{verbatim} \matrix (m) [style grid = {draw}] {...}; \end{verbatim} \begin{verbatim} \matrix (m) [style tiling grid = {draw}] {...}; \end{verbatim} All of these options have an \code{on layer} variant taking the following form: \begin{verbatim} \matrix (m) [style odd rows on layer = {background}{fill=red}] {...}; \end{verbatim} \section{Examples} The following examples illustrate the styling capabilities offered by \code{matrix.skeleton}. \subsection{Grid} \begin{figure}[h] \centering \begin{tikzpicture} \matrix (m) [matrix of math nodes, style contour = {draw, very thick}, style grid = {draw, thin}] { 1 & \frac{\frac{16}{4}}{1 + \frac{2}{2}} & 3 \\ 3.999999 & 5 & 6 \\ 7 & 8.000001 & 3 + 3 + 3 \\ }; \end{tikzpicture} \end{figure} \begin{verbatim} \begin{tikzpicture} \matrix (m) [matrix of math nodes, style contour = {draw, very thick}, style grid = {draw, thin}] { 1 & \frac{\frac{16}{4}}{1 + \frac{2}{2}} & 3 \\ 3.999999 & 5 & 6 \\ 7 & 8.000001 & 3 + 3 + 3 \\ }; \end{tikzpicture} \end{verbatim} \subsection{Rows} \begin{figure}[h] \centering \begin{tikzpicture} \matrix (m) [matrix of math nodes, row sep = 10pt, style odd rows on layer={background}{fill=green!25}, style even rows on layer={background}{fill=yellow!30}] { 1 & \frac{\frac{16}{4}}{1 + \frac{2}{2}} & 3 \\ 3.999999 & 5 & 6 \\ 7 & 8.000001 & 3 + 3 + 3 \\ }; \fitandstyle{(m-inter-row-1)}{fill=red!25} \fitandstyle{(m-inter-row-2)}{fill=red!25} \end{tikzpicture} \end{figure} \begin{verbatim} \begin{tikzpicture} \matrix (m) [matrix of math nodes, row sep = 10pt, style odd rows on layer={background}{fill=green!25}, style even rows on layer={background}{fill=yellow!30}] { 1 & \frac{\frac{16}{4}}{1 + \frac{2}{2}} & 3 \\ 3.999999 & 5 & 6 \\ 7 & 8.000001 & 3 + 3 + 3 \\ }; \fitandstyle{(m-inter-row-1)}{fill=red!25} \fitandstyle{(m-inter-row-2)}{fill=red!25} \end{tikzpicture} \end{verbatim} \subsection{Checker Board} This example is inspired by the following \href{http://tex.stackexchange.com}{\TeX{} - \LaTeX{} Stack Exchange} question: \href{http://tex.stackexchange.com/questions/14061/how-can-i-set-the-background-color-of-the-rows-and-columns-of-a-matrix-node-in-t}{How can I set the background color of the rows and columns of a matrix node in Tikz?} \begin{figure}[h] \centering \begin{tikzpicture} \matrix (m) [draw, matrix of nodes, row sep=2mm, column sep=1mm, nodes={draw, thick, circle, inner sep=1pt}, label skeleton] { & 1 & &[2mm]|[gray]|1\\ & & 2 &|[gray]|2\\ |[gray]|2 & & &|[gray]|2\\[4mm] 3 & & & 3\\ }; \foreach \row in {1, ..., 4} { \foreach \col in {1, ..., 4} { \pgfmathparse{Mod(\row + \col, 2) ? "red!25" : "yellow!30"} \colorlet{squarebg}{\pgfmathresult} \fitandstyle[background]{(m-tiling-cell-\row-\col)}{fill = squarebg} } } \end{tikzpicture} \end{figure} \newpage \begin{verbatim} \begin{tikzpicture} \matrix (m) [draw, matrix of nodes, row sep=2mm, column sep=1mm, nodes={draw, thick, circle, inner sep=1pt}, label skeleton] { & 1 & &[2mm]|[gray]|1\\ & & 2 &|[gray]|2\\ |[gray]|2 & & &|[gray]|2\\[4mm] 3 & & & 3\\ }; \foreach \row in {1, ..., 4} { \foreach \col in {1, ..., 4} { \pgfmathparse{Mod(\row + \col, 2) ? "red!25" : "yellow!30"} \colorlet{squarebg}{\pgfmathresult} \fitandstyle[background]{(m-tiling-cell-\row-\col)}{fill = squarebg} } } \end{tikzpicture} \end{verbatim} \section{Internals} \code{matrix.skeleton} was heavily inspired by \href{http://tex.stackexchange.com/users/86/andrew-stacey}{Andrew Stacey}'s \code{matrixcells} \LaTeX{} package. It has three distinctive features. First, it works with any \code{anchor}. Second, it provides finer control with respect to \code{row sep}, \code{column sep}, and \code{inner sep}. Third, the skeleton node positioning relies only on \TeX{} and PGF, not on \LaTeX{} or \TikZ. \code{matrixcells} properly aligns its \code{cells} when the node \code{anchor} is \code{base}. However, when the alignment is different it runs into problems, as exposed in the following \href{http://tex.stackexchange.com}{\TeX{} - \LaTeX{} Stack Exchange} question: \href{http://tex.stackexchange.com/questions/128045/matrixcells-problem-with-the-y-axis-only}{Matrixcells problem with the y-axis only}. This shortcoming is the result of some loss of information in \code{pgfmodulematrix.code.tex}. A dimension used during the placement of nodes is overwritten. Therefore, this information is not available to build the grid. In \code{matrixcells}, this lost dimension is reconstructed as the average of two other dimensions. This method only gives the right dimension when the nodes are anchored at \code{base}. To always get proper alignment, the~\code{pgfmodulematrix.code.tex} macro erasing the dimension was rewritten. Following \href{http://tex.stackexchange.com/users/3235/percusse}{\code{@percusse}}'s recommendation this change is transparent to the user and does not require updating PGF/\TikZ. \code{matrixcells} only provides \code{cells} corresponding the \code{tiling-cells} in \code{matrix.skeleton}. This tiling behavior is sometimes desired. However, it can result in unexpected behaviors when: using a non-base \code{anchor}, using \code{row sep} or \code{column sep}, or when working on boundary nodes. \end{document}