
Package mathfont v. 2.2a User Guide
Conrad Kosowsky

December 2022
kosowsky.latex@gmail.com

For easy, off-the-shelf use, type the following in your
preamble and compile with X ELATEX or LuaLATEX:

\usepackage[〈font name〉]{mathfont}

As of version 2.0, using LuaLATEX is recommended.

Overview
The mathfont package adapts unicode text fonts for math mode. The package allows
the user to specify a default unicode font for different classes of math symbols, and
it provides tools to change the font locally for math alphabet characters. When
typesetting with LuaTEX, mathfont adds resizable delimiters, big operators, and a
MathConstants table to text fonts.

Handling fonts in TEX and LATEX is a notoriously difficult task because fonts are compli-
cated.1 The mathfont package loads TrueType and OpenType fonts for use in math mode,
and this document explains the package’s user-level commands. For version history and
code implementation, see mathfont_code.pdf, and for a list of all symbols accessible with
mathfont, see mathfont_symbol_list.pdf. The mathfont installation also includes four ex-
ample files, and all mathfont pdf documentation files are available on ctan. Because unicode
text fonts outnumber unicode math fonts, I hope that my package will expand the set of
possibilities for typesetting math in LATEX.

1 Loading and Basic Functionality
Loading fonts for math typesetting is more complicated than for regular text. First, selecting
fonts for math mode, both in plain TEX and in the nfss, involves additional macros above
and beyond what we need to load text fonts. Second, TEX expects fonts for math to contain

Acknowledgements: Thanks to Lyric Bingham for her work checking my unicode hex values. Thanks to
Shyam Sundar, Adrian Vollmer, Herbert Voss, and Andreas Zidak for pointing out bugs in previous versions
of mathfont. Thanks to Jean-François Burnol for pointing out an error in the documentation in reference to
their mathastext package.

1The last 30 years have seen huge advances in loading fonts with TEX. Donald Knuth originally de-
signed TEX to load fonts created with Metafont, and only more recent engines such as Jonathan Kew’s
X ETEX and Hans Hagen, et al.’s LuaTEX have extended TEX’s font-loading capabilities to unicode. X ETEX
supports OpenType and TrueType fonts natively, and LuaTEX can load OpenType fonts through the luaot-
fload package. Information on X ETEX is available at https://tug.org/xetex/, and information on LuaTEX
is available at the official website for LuaTEX: http://www.luatex.org/. See also Ulrike Fischer, et al.,
“luaotfload—OpenType ‘loader’ for Plain TEX and LATEX,” https://ctan.org/pkg/luaotfload.

1

https://tug.org/xetex/
http://www.luatex.org/
https://ctan.org/pkg/luaotfload

2 User Guide Loading and Basic Functionality

extra information for formatting equations.2 Broadly speaking, we say that a math font
contains this extra information, whereas a text font does not, and typesetting math with
glyphs from one or more text fonts usually results in equations that are less aesthetically
pleasing than using a properly prepared math font. The functionality of mathfont then is
twofold: (1) provide a wrapper around the nfss commands for math typesetting that serves
as a high-level interface; and (2) implement LuaTEX callbacks that artificially convert text
fonts into math fonts at loading.3 Although mathfont tries its best to get your fonts right, it
may run into trouble when picking fonts to load. If this happens, you should declare your
font family and shapes in the nfss before setting any fonts with mathfont.

You must use one of X ELATEX or LuaLATEX to typeset a document with mathfont. You
can load mathfont with the standard \usepackage{mathfont} syntax, and the package ac-
cepts three optional arguments. If you use LuaTEX, the options adjust or no-adjust will
manually specify whether mathfont should adapt text fonts for math mode, and mathfont
selects adjust by default. If you use X ETEX, mathfont cannot adjust any font objects with
Lua callbacks, and either of these package options will cause an error.4 For this reason, us-
ing LuaTEX with mathfont is recommended as of version 2.0. If you load mathfont with any
other optional argument, the package will interpret it as a font name and call \setfont (de-
scribed in the next section) on your argument. Doing so selects that font for the text of your
document and for the character classes in the upper section of Table 1.

The mathfont package is closely related to several other LATEX packages. The functionality
is closest to that of mathspec by Andrew Gilbert Moschou, which is compatible with X ETEX
only and selects characters from text fonts for math.5 The unicode-math package is the
standard LATEX package for loading actual unicode math fonts, and if you have a unicode
font with proper math support, rather than a text font that you want to use for equations,
consider using this package instead of mathfont.6 Users who want to a text font for math with
pdfLATEX should consider Jean-François Burnol’s mathastext because mathfont is incompatible
with pdfTEX.7 Finally, you will probably be better off using fontspec if your document does

2Specifically, this extra information is a set of large variants, math-specific parameter values associated
with individual characters, and a MathConstants table. Also, math fonts often use slightly wider bounding
boxes for letters in math mode—the Computer Modern f is a well-known example. (Compare f and f .)
For this reason, mathfont also provides an interface to enlarge the bounding boxes of Latin letters when they
appear in math mode. See section 5 for details.

3Values for MathConstants table are different from but inspired by Ulrik Vieth, “Understanding the Æs-
thetics of Math Typesetting,” (BachoTEX Conference, 2008) and Ulrik Vieth “OpenType Math Illuminated,”
TUGboat 30 (2009): 22–31. See also Bogusław Jackowski, “Appendix G Illuminated,” TUGboat 27 (2006):
83–90.

4With X ELATEX, mathfont does not add big operators or resizable delimiters. This means you will have
to use the Computer Modern defaults, load a separate math font for resizable characters, or end up with a
document where large operators and delimiters do not scale like they do normally.

5Andrew Gilbert Moschou, “mathspec—Specify arbitrary fonts for mathematics in X ETEX,” https://
ctan.org/pkg/mathspec.

6Will Robertson, et al., “unicode-math—Unicode mathematics support for XeTeX and LuaTeX,” https:
//ctan.org/pkg/unicode-math.

7Jean-François Burnol, “mathastext—Use the text font in maths mode,” https://ctan.org/pkg/
mathastext. In several previous versions of this documentation, I mischaracterized the approach of mathas-
text to TEX’s internal mathematics spacing. In fact, mathastext preserves and in some cases extends rules for
space between various math-mode characters.

https://ctan.org/pkg/mathspec
https://ctan.org/pkg/mathspec
https://ctan.org/pkg/unicode-math
https://ctan.org/pkg/unicode-math
https://ctan.org/pkg/mathastext
https://ctan.org/pkg/mathastext

Setting the Default Font User Guide 3

Table 1: Character Classes
Keyword Meaning Default Shape Alphabetic?

upper Upper-Case Latin Italic Yes
lower Lower-Case Latin Italic Yes
diacritics Diacritics Upright Yes
greekupper Upper-Case Greek Upright Yes
greeklower Lower-Case Greek Italic Yes
digits Arabic Numerals Upright Yes
operator Operator Font Upright Yes
delimiters Delimiter Upright No
radical Square Root Symbol Upright No
symbols Basic Math Symbols Upright No
bigops Big Operators Upright No

agreekupper Upper-Case Ancient Greek Upright Yes
agreeklower Lower-Case Ancient Greek Italic Yes
cyrillicupper Upper-Case Cyrillic Upright Yes
cyrilliclower Lower-Case Cyrillic Italic Yes
hebrew Hebrew Upright Yes
extsymbols Extended Math Symbols Upright No
arrows Arrows Upright No
extbigops Extended Big Operators Upright No
bb Blackboard Bold (double-struck) Upright No
cal Caligraphic Upright No
frak Fraktur Upright No
bcal Bold Caligraphic Upright No
bfrak Bold Fraktur Upright No

not contain any math.8 The fontspec package is designed to load TrueType and OpenType
fonts for text and provides a high-level interface for selecting OpenType font features.

2 Setting the Default Font
The \mathfont command sets the default font for certain classes of characters when they
appear in math mode. It accepts a single mandatory argument, which should be a system
font name or a family name already present in the nfss. The macro also accepts an optional
argument, which should be a comma-separated list of keywords from Table 1, as in

\mathfont[〈keywords〉]{〈font name〉},

and mathfont sets the default font face for every character in those keywords to an upright
or italic version of the font from the mandatory argument. See mathfont_symbol_list.pdf

8Will Robertson and Khaled Hosny, “fontspec—Advanced font selection in X ELATEX and LuaLATEX,”
https://ctan.org/pkg/fontspec.

https://ctan.org/pkg/fontspec

4 User Guide Setting the Default Font

Table 2: Commands Defined by \setfont

Command Series Shape

\mathrm Medium Upright
\mathit Medium Italic
\mathbf Bold Upright
\mathbfit Bold Italic
\mathsc Medium Small Caps
\mathscit Medium Italic Small Caps
\mathbfsc Bold Small Caps
\mathbfscit Bold Italic Small Caps

for a list of symbols corresponding to each keyword. If you do not include an optional ar-
gument, \mathfont acts on all keywords in the upper section of Table 1 (but not including
delimiters, radical, or bigops characters in X ETEX), so calling \mathfont with no op-
tional argument is a fast way to change the font for most common math characters. To
change the shape, you should say “=upright” or “=italic” immediately after the keyword
and before the following comma, and spaces are allowed throughout the optional argument.
For example, the command

\mathfont[lower=upright, upper=upright]{Times New Roman}

changes all Latin letters to upright Times New Roman. Once mathfont has set the default
font for a keyword in Table 1, it will ignore any future instructions to do so and prints a
warning to the terminal instead.

If you want to change the font for both text and math, you should use \setfont instead
of \mathfont. This command accepts a single mandatory argument:

\setfont{〈font name〉}.

It calls \mathfont without an optional argument—i.e. for the default keywords—on your
〈font name〉 and sets your document’s default text font to be the 〈font name〉. The command
also defines the eight commands in Table 2 using the 〈font name〉 and the \new macros in
the next section. Both \mathfont and \setfont should appear in the preamble only.

To select OpenType features, you should put a colon after the font name and follow it
with appropriate OpenType tags. For example adding “onum=true” tells TEX to load your
font with oldstyle numbering, assuming that feature is present in the font.9 Whenever you
select a font, mathfont first checks whether you previously loaded fontspec, and if so, the
package feeds your entire 〈font name〉 argument to fontspec. (You can also say “fontspec”
as the 〈font name〉 to select the most recent font used by fontspec.) If you have not loaded
fontspec, the package uses its own fontloader. I recommend letting mathfont handle font-
loading because when using LuaTEX, mathfont takes care to load fonts in such a way that
full OpenType features are accessible in text and limited OpenType features are accessible

9By default, mathfont enables standard ligatures, traditional TEX ligatures, and lining numbers. The
package sets smcp to true or false depending on whether it is attempting to load a small-caps font. For
the full list of OpenType features, see https://docs.microsoft.com/en-us/typography/opentype/spec/
featurelist.

https://docs.microsoft.com/en-us/typography/opentype/spec/featurelist
https://docs.microsoft.com/en-us/typography/opentype/spec/featurelist

Local Font Changes User Guide 5

in math. While it is also possible to do this in fontspec, it takes some doing.10

The last five keywords in Table 1 are a bit different. If you call \mathfont on a 〈keyword〉
from the last five rows in Table 1, the package defines the macro

\math〈keyword〉{〈text〉}
to typeset them. For example,

\mathfont[bb]{STIXGeneral}

sets STIXGeneral as the font for bold calligraphic characters and defines \mathbb to access
them. These are not for use with any double-struck, caligraphic, or fraktur font. Rather,
they access Unicode’s math alphanumeric symbols block. If you want to use a font where
the regular letters appear double-struck, caligraphic, or fraktur, consider the font-changing
control sequences in the next section.

3 Local Font Changes
With mathfont, it is possible to create commands that locally change the font for math alpha-
bet characters, i.e. those marked as alphabetic in Table 1. The eight commands in Table 3
accept a 〈control sequence〉 as their first mandatory argument and a 〈font name〉 as the sec-
ond, and they define the 〈control sequence〉 to typeset any math alphabet characters in their
argument into the 〈font name〉. For example, the macro \newmathrm looks like

\newmathrm{〈control sequence〉}{〈font name〉}.
It defines the control sequence in its first argument to accept a string of characters that it
then converts to the font name in the second argument with upright shape and medium
weight. Writing

\newmathrm{\matharial}{Arial}

creates the macro
\matharial{〈argument〉},

which can be used only in math mode and which converts the math alphabet characters in
its 〈argument〉 into the Arial font with upright shape and medium weight. The other com-
mands in Table 3 function in the same way except that they select different series or shape
values. Finally, know that if the user specifies the font for Greek letters using \mathfont,
macros created with the commands from this section will affect those characters, unlike in
traditional LATEX. Similarly, the local font-change commands will affect Cyrillic and Hebrew
characters after the user calls \mathfont for those keywords.

Together these eight commands will provide users with tools for most local font changes,
but they won’t be able to address everything. Accordingly, mathfont provides the more gen-

10The luaotfload package supports two main modes for loading fonts: node mode is the default setting,
and it supports full OpenType features in text but no OpenType features in math. The base mode supports
limited OpenType features, but the features will work for both text and math. When mathfont loads a font,
it does so twice, once in node mode, which is primarily for setting the text font with \setfont, and once in
base mode, which is for the package’s other font declarations. This way you will be able to use OpenType
features throughout your document.

6 User Guide Lua Font Adjustments

Table 3: Macros to Create Local Font-Change Commands
Command Series Shape

\newmathrm Medium Upright
\newmathit Medium Italic
\newmathbf Bold Upright
\newmathbfit Bold Italic
\newmathsc Medium Small Caps
\newmathscit Medium Italic Small Caps
\newmathbfsc Bold Small Caps
\newmathbfscit Bold Italic Small Caps

eral \newmathfontcommand macro. Its structure is
\newmathfontcommand{〈control sequence〉}{〈font name〉}{〈series〉}{〈shape〉},

where the 〈control sequence〉 in the first argument again becomes the macro that changes
characters to the 〈font name〉. You are welcome to use a system font name with
\newmathfontcommand, but the intention behind this command is that you can use an
nfss family name for the 〈font name〉. Then the series and shape values can correspond
to more obscure font faces from the nfss family that you would be otherwise unable to ac-
cess. The commands from Table 3 as well as \newmathfontcommand should appear in the
preamble only.

4 Default Math Parameters
LuaTEX uses the MathConstants table from the most recent font assigned for use in math
mode, and this means that in a document with multiple math fonts, the choice of MathCon-
stants table can depend on the order of font declaration and be unpredictable. To avoid
potential problems from using the wrong MathConstants table, mathfont provides the com-
mand

\mathconstantsfont[〈shape〉]{〈prev arg〉},
where 〈shape〉 is an optional argument that can be “upright” (default) or “italic,” and
〈prev arg〉 should be any argument that you have previously fed to \mathfont. When you
call \mathconstantsfont, mathfont forces LuaTEX to always use the MathConstants table
from the font that corresponded to that instance of \mathfont in the specified 〈shape〉. You
don’t need to set the MathConstants table when you use \setfont because the package calls
\mathconstantsfont automatically when you use \setfont. This command will not work
in X ETEX and should appear only in the preamble.

5 Lua Font Adjustments
The mathfont package provides six user-level commands to change positioning of characters
in math mode. The commands \CharmLine and \CharmFile affect specific to various char-

Lua Font Adjustments User Guide 7

Table 4: Number of Integers Required in \CharmLine

Type of Character Total Number of Entries

Latin Letters 5
Delimiters, Radical Sign (Surd Character), Big Operators 33
Everything Else 3

acters. (Charm stands for “character metric.”) The argument of \CharmLine should be a
list of integers and/or asterisks separated by commas and/or spaces, and Table 4 shows how
many integers you need for different types of characters. The first integer from the argument
should be a unicode encoding number, and that tells mathfont how to handle the remaining
values.

• If the unicode value corresponds to a Latin letter, the next two integers tell LuaTEX
how much to stretch the left and right sides of the glyph’s bounding box when it ap-
pears in math mode. The final two integers determine horizontal placement of top and
bottom math accents respectively.

• If the unicode value corresponds to a delimiter, the radical (surd) symbol, or a big
operator, you will need to specify 16 pairs numbers, for a total of 32 entries. The first
15 pairs are horizontal and vertical scale factors that mathfont uses to create large
variants, where successive pairs correspond to the next-larger glyph. The last two
integers determine horizontal placement of top and bottom math accents respectively.

• If the unicode value corresponds to any other symbol, you should specify two more in-
tegers, which will determine the horizontal placement of top and bottom math accents
respectively.

Writing an asterisk tells mathfont to use whatever value it has saved in memory, either the
default value or the value from the most recent call to \CharmLine or \CharmFile. If you
specify too few charm values, mathfont will raise an error, but if you provide too many,
mathfont will silently ignore the extras.

For most applications, you can probably ignore charm information altogether, but if you
find bounding boxes or accent placement to be off slightly or if you want to change the scal-
ing for a delimiter or big operator, you should try calling \CharmLine with different values
to see what works. As is typical with decimal inputs in TEX, mathfont divides your inputs by
1000 before computing with them. Positive integers mean “increase,” and negative integers
mean “decrease.” For a given character, the scale is usually the glyph width. For example,

\CharmLine{97, 200, -200, *, 50}

Table 5: Commands to Adjust Individual Characters
Command Default Value What It Does

\RuleThicknessFactor 1000 Thickness of fraction rule and radical overbar
\IntegralItalicFactor 400 Positioning of limits for integrals
\SurdVerticalFactor 1000 Vertical positioning of radical overbar
\SurdHorizontalFactor 1000 Horizontal positioning of radical overbar

8 User Guide Lua Font Adjustments

Table 6: Lua Callbacks Created by mathfont
Callback Name What It Does By Default

"mathfont.inspect_font" Nothing

"mathfont.pre_adjust" Nothing
"mathfont.disable_nomath" Tell LuaTEX that we have a math font
"mathfont.add_math_constants" Create a MathConstants table
"mathfont.fix_character_metrics" Adjust bounding boxes, add character-specific

math fields, create large variants
"mathfont.post_adjust" Nothing

tells mathfont to take the lower-case “a” (unicode encoding value of 97), increase the bound-
ing box on the left side by 20% of the glyph width, decrease the bounding box on the right
side by 20% of the glyph width, do nothing to the top accent, and shift the bottom accent
right by 5% of the glyph width. There is no general formula for what charm values to use for
a given font! Rather, you will need to make a design choice based on what looks best, and if
you regularly use a particular font, consider making a custom set of charm values uploading
it to ctan. Additionally, if you store your charm information in a file, you can read it in
with \CharmFile. The argument of this command should be a file name, and mathfont reads
the file and feeds each line individually to \CharmLine.

The commands in Table 5 adjust other aspects of the font as indicated. Each command
accepts a single integer as an argument, and mathfont once again divides the input by 1000.
With each of these macros, mathfont multiplies the quotient by some default length, so values
greater than or less than 1000 mean “scale up” or “scale down” respectively. For example,

\RuleThicknessFactor{2000}

doubles the thickness of the fraction rule and radical overbar relative to the default, which
varies between fonts. Changing the \RuleThicknessFactor is useful for fonts with particu-
larly heavy or light weight, and the \IntegralItalicFactor is important for making limits
better fit integral signs, and the \SurdVerticalFactor and \SurdHorizontalFactor com-
mands are essential when the top of the surd glyph differs from the top of its bounding box.
The six control sequences from this section should appear in the preamble only.

Finally, advanced users who want to interact with the font adjustment process directly
should use the six callbacks in Table 6. When luaotfload loads a font, mathfont (1) al-
ways calls mathfont.inspect_font and (2) calls the other five callbacks in the order that
they appear in Table 6 if the font object contains nomath=true. Functions added to these
callbacks should accept a font object as a single argument and return nothing. Further,
please be careful when loading functions in the disable_nomath, add_math_constants, and
fix_character_metrics callbacks. If you add a function there, LuaTEX will not carry out
the default behvaior associated with the callback, so do not mess with these three callbacks
unless you are duplicating the default behavior or you really know what you’re doing. Oth-
erwise, you risk breaking the package. See mathfont_code.pdf for more information.

	1 Loading and Basic Functionality
	2 Setting the Default Font
	3 Local Font Changes
	4 Default Math Parameters
	5 Lua Font Adjustments

