The mathfont Package in Action: Two Mathematical Snippets Rendered in Times New Roman Conrad Kosowsky

Mathematicians usually define e in one of two ways: as the horizontal asymptote of a certain function or as the limit of an infinite series. Specifically, it's most common to see e defined as either

$$
e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
$$

or

$$
e=\sum_{k=0}^{\infty} \frac{1}{k!} .
$$

The first definition is simpler in that involves a limit of a single expression, not a limit of partial sums, but in practice, the second tends to be more tractable. The power series expression of e^{x} is given by

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!},
$$

and the relationship between this expression and the series definition is much more apparent than it is for the first limit. This relationship arises in a variety of different mathematical contexts, for example the famous Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$ or the related definition of the characteristic function for a random variable X :

$$
\phi_{X}(t)=\mathbb{E}\left(e^{i X}\right)
$$

Expanding $e^{i X}$ as a power series gives an expression for ϕ_{X} that we can differentiate term by term.

A smooth manifold consists of a topological space M equipped with a smooth maximal atlas $\left\{\phi_{i}\right\}$. The maps $\phi_{i}: U_{i} \longrightarrow \mathbb{R}$ technically aren't themselves differentiable, but their compositions $\phi_{i} \circ \phi_{j}^{-1}$ are diffeomorphisms on subsets of \mathbb{R}^{n}. If we have a map $f: M \longrightarrow N$ between manifolds, this structure allows us to talk about differentiability of f. Specifically, we say that f is smooth if for any i and j, the composition

$$
\psi_{j} \circ f \circ \phi_{i}^{-1}
$$

is itself smooth, where $\left\{\psi_{i}\right\}$ is a smooth atlas for N. Differentiating f produces the associated tangent map $D f$. The function $D f$ maps the tangent space $T M$ to the tangent space $T N$ and is linear when restricted to individual tangent spaces $T_{p} M$. If M can be written as a product $M_{1} \times M_{2}$, we can consider the partial tangent maps $\partial_{1} f$ and $\partial_{2} f$ by considering the compositions $f \circ l_{1}$ and $f \circ l_{2}$, where l_{1} and l_{2} are inclusion maps with respect to a particular point. Combining both maps, we have the equation

$$
D f(u, v)=\partial_{1} f(u)+\partial_{2} f(v)
$$

and this relationship can be thought of as an adaption of the standard product rule.

