\documentclass[fleqn]{article} \usepackage[fraktur,mdbch]{mathdesign} \title{A \LaTeX\ math test document} \author{for fonts created by Math Design} \raggedbottom \newcommand{\testsize}[1]{ #1 \texttt{\string#1}: \(a_{c_e}, b_{d_f}, C_{E_G}, 0_{1_2}, a_{0_a}, 0_{a_0}, \sum_{i=0}^\infty\) \\ } \newcommand{\testdelims}[3]{\sqrt{ #1|#1\|#1\uparrow #1\downarrow#1\updownarrow#1\Uparrow#1\Downarrow #1\Updownarrow#1\lfloor#1\lceil #1(#1\{#1[#1\langle #3 #2\rangle#2]#2\}#2) #2\rceil#2\rfloor#2\Updownarrow#2\Downarrow #2\Uparrow#2\updownarrow#2\downarrow#2\uparrow #2\|#2| }\\} \newcommand{\testglyphs}[1]{ \begin{quote} #1a#1b#1c#1d#1e#1f#1g#1h#1i#1j#1k#1l#1m #1n#1o#1p#1q#1r#1s#1t#1u#1v#1w#1x#1y#1z #1A#1B#1C#1D#1E#1F#1G#1H#1I#1J#1K#1L#1M #1N#1O#1P#1Q#1R#1S#1T#1U#1V#1W#1X#1Y#1Z #10#11#12#13#14#15#16#17#18#19 #1\Gammait#1\Deltait#1\Thetait#1\Lambdait#1\Xiit #1\Piit#1\Sigmait#1\Upsilonit#1\Phiit#1\Psiit#1\Omegait #1\alpha#1\beta#1\gamma#1\digamma#1\delta#1\epsilon #1\varepsilon#1\zeta#1\eta#1\theta#1\vartheta #1\iota#1\kappa#1\varkappa#1\lambda#1\mu#1\nu#1\xi#1\omicron #1\pi#1\varpi#1\rho#1\varrho #1\sigma#1\varsigma#1\tau#1\upsilon#1\phi #1\varphi#1\chi#1\psi#1\omega #1\Gamma#1\Delta#1\Theta#1\Lambda#1\Xi #1\Pi#1\Sigma#1\Upsilon#1\Phi#1\Psi#1\Omega #1\alphaup#1\betaup#1\gammaup#1\digammaup#1\deltaup#1\epsilonup #1\varepsilonup#1\zetaup#1\etaup#1\thetaup#1\varthetaup #1\iotaup#1\kappaup#1\varkappaup#1\lambdaup#1\muup#1\nuup#1\xiup#1\omicron #1\piup#1\varpiup#1\rhoup#1\varrhoup #1\sigmaup#1\varsigmaup#1\tauup#1\upsilonup#1\phiup #1\varphiup#1\chiup#1\psiup#1\omegaup #1\partial#1\ell#1\imath#1\jmath#1\wp \end{quote} } \newcommand{\parenthesis}[1]{ $(#1)$ } \newcommand{\sidebearings}[1]{ $|#1|$ } \newcommand{\subscripts}[1]{ $#1_\circ$ } \newcommand{\supscripts}[1]{ $#1^\_$ } \newcommand{\scripts}[1]{ $#1^2_\circ$ } \newcommand{\vecaccents}[1]{ $\vec#1$ } \newcommand{\tildeaccents}[1]{ $\tilde#1$ } \ifx\omicron\undefined \let\omicron=o \fi \parindent 0pt \mathindent 1em \def\test#1{#1} \def\testnums{% \test 0 \test 1 \test 2 \test 3 \test 4 \test 5 \test 6 \test 7 \test 8 \test 9 } \def\testupperi{% \test A \test B \test C \test D \test E \test F \test G \test H \test I \test J \test K \test L \test M } \def\testupperii{% \test N \test O \test P \test Q \test R \test S \test T \test U \test V \test W \test X \test Y \test Z } \def\testupper{% \testupperi\testupperii} \def\testloweri{% \test a \test b \test c \test d \test e \test f \test g \test h \test \imath \test \jmath \test k \test l \test m } \def\testlowerii{% \test n \test o \test p \test q \test r \test s \test t \test u \test v \test w \test x \test y \test z \test\imath \test\jmath } \def\testlower{% \testloweri\testlowerii} \def\testupgreeki{% \test A \test B \test\Gamma \test\Delta \test E \test Z \test H \test\Theta \test I \test K \test\Lambda \test M } \def\testupgreekii{% \test N \test\Xi \test O \test\Pi \test P \test\Sigma \test T \test\Upsilon \test\Phi \test X \test\Psi \test\Omega \test\nabla } \def\testupgreek{% \testupgreeki\testupgreekii} \def\testlowgreeki{% \test\alpha \test\beta \test\gamma \test\delta \test\epsilon \test\zeta \test\eta \test\theta \test\iota \test\kappa \test\lambda \test\mu } \def\testlowgreekii{% \test\nu \test\xi \test o \test\pi \test\rho \test\sigma \test\tau \test\upsilon \test\phi \test\chi \test\psi \test\omega } \def\testlowgreekiii{% \test\varepsilon \test\vartheta \test\varpi \test\varrho \test\varsigma \test\varphi} \def\testlowgreek{% \testlowgreeki\testlowgreekii\testlowgreekiii} \DeclareMathSymbol{\dit}{\mathord}{letters}{`d} \DeclareMathSymbol{\dup}{\mathord}{operators}{`d} \newenvironment{boldface}{\bgroup\mathversion{bold}% \def\it{\fontseries{b}\fontshape{it}\selectfont}% \fontseries{b}\selectfont }{\egroup} \begin{document} \maketitle \section*{Introduction} This document tests the math capabilities of the mdbchpackage, and is strongly modelled after a similar document by Alan Jeffrey. This test exercises the {\tt MathDesign mdbch} math fonts combined with the {\tt bch} text fonts. \section*{Math Alphabets} Math italic: $$ ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz $$ Text italic: $$ \mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz} $$ Roman: $$ \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz} $$ Bold: $$ \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz} $$ Typewriter: $$ \mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz} $$ AMS like Symbol: $$ \yen \geqq \circeq \daleth \varkappa \leftarrowtail \because \eqslantless \eqslantgtr \curlyeqprec $$ Greek: $$ \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega $$ {\mathversion{bold} $$ \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega $$} Calligraphic: $$A\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z$$ Sans: $$ A\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z \quad a\mathsf{abcdefghijklmnopqrstuvwxyz}z $$ Fraktur: $$ A\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z $$ $$ a\mathfrak{abcdefghijklmnopqrstuvwxyz}z $$ Blackboard Bold: $$ A\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z $$ \section*{Symbols} $$ \frac{\partial f}{\partial x} $$ $$ a \hookrightarrow b \hookleftarrow c \longrightarrow d \longleftarrow e \Longrightarrow f \Longleftarrow g \longleftrightarrow h \Longleftrightarrow i \mapsto j $$ $$\textstyle \oint \int \quad \bigodot \bigoplus \bigotimes \sum \prod \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod $$ $$ \oint \int \quad \bigodot \bigoplus \bigotimes \sum \prod \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod $$ $$ \bigodot_{i=1}^n \gamma_i = \bigoplus_{i=1}^n \gamma_i =\bigotimes_{i=1}^n \gamma_i = \sum_{i=1}^n \gamma_i = \prod_{i=1}^n \gamma_i = \bigcup_{i=1}^n \gamma_i = \bigcap_{i=1}^n \gamma_i = \biguplus_{i=1}^n \gamma_i = \bigwedge_{i=1}^n \gamma_i= \bigvee_{i=1}^n \gamma_i = \coprod_{i=1}^n \gamma_i $$ \clearpage \section*{Big operators} \def\testop#1{#1_{i=1}^{n} x^{n} \quad} \begin{displaymath} \testop\sum \testop\prod \testop\coprod \testop\int \testop\oint \end{displaymath} \begin{displaymath} \testop\bigotimes \testop\bigoplus \testop\bigodot \testop\bigwedge \testop\bigvee \testop\biguplus \testop\bigcup \testop\bigcap \testop\bigsqcup % \testop\bigsqcap \end{displaymath} \section*{Radicals} \begin{displaymath} \sqrt{x+y} \qquad \sqrt{x^{2}+y^{2}} \qquad \sqrt{x_{i}^{2}+y_{j}^{2}} \qquad \sqrt{\left(\frac{\cos x}{2}\right)} \qquad \sqrt{\left(\frac{\sin x}{2}\right)} \end{displaymath} \begingroup \delimitershortfall-1pt \begin{displaymath} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}} \end{displaymath} \endgroup % \delimitershortfall \section*{Over- and underbraces} \begin{displaymath} \overbrace{x} \quad \overbrace{x+y} \quad \overbrace{x^{2}+y^{2}} \quad \overbrace{x_{i}^{2}+y_{j}^{2}} \quad \underbrace{x} \quad \underbrace{x+y} \quad \underbrace{x_{i}+y_{j}} \quad \underbrace{x_{i}^{2}+y_{j}^{2}} \quad \end{displaymath} \section*{Normal and wide accents} \begin{displaymath} \dot{x} \quad \ddot{x} \quad \vec{x} \quad \bar{x} \quad \overline{x} \quad \overline{xx} \quad \tilde{x} \quad \widetilde{x} \quad \widetilde{xx} \quad \widetilde{xxx} \quad \hat{x} \quad \widehat{x} \quad \widehat{xx} \quad \widehat{xxx} \quad \end{displaymath} \def\testwilde#1{ \begin{displaymath} #1{a} \quad #1{ab} \quad #1{abc} \quad #1{abcde} \quad #1{abcdefg} \quad #1{abcdefghi} \quad #1{abcdefghijk} \quad \end{displaymath}} \testwilde\widehat \testwilde\widetilde \testwilde\widetriangle \testwilde\wideparen \section*{Long arrows} \begin{displaymath} \leftrightarrow \quad \longleftarrow \quad \longrightarrow \quad \longleftrightarrow \quad \Leftrightarrow \quad \Longleftarrow \quad \Longrightarrow \quad \Longleftrightarrow \quad \end{displaymath} \section*{Left and right delimters} \def\testdelim#1#2{ - #1 f #2 - } \begin{displaymath} \testdelim() \testdelim[] \testdelim\lfloor\rfloor \testdelim\lceil\rceil \testdelim\langle\rangle \testdelim\{\} \end{displaymath} \clearpage \section*{Big-g-g delimters} \def\testdelim#1#2{ - \left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1 #1 - #2 \right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2 -} \begingroup \delimitershortfall-1pt \begin{displaymath} \testdelim\lfloor\rfloor \qquad \testdelim() \end{displaymath} \begin{displaymath} \testdelim\lceil\rceil \qquad \testdelim\{\} \end{displaymath} \begin{displaymath} \testdelim\llbracket\rrbracket \qquad \testdelim\lwave\rwave \end{displaymath} \begin{displaymath} \testdelim[] \qquad \testdelim\lgroup\rgroup \end{displaymath} \begin{displaymath} \testdelim\langle\rangle \qquad \testdelim\lmoustache\rmoustache \end{displaymath} \begin{displaymath} \testdelim\uparrow\downarrow \quad \testdelim\Uparrow\Downarrow \quad \end{displaymath} \endgroup % \delimitershortfall \section*{Delimiters} Each row should be a different size, but within each row the delimiters should be the same size. First with \verb|\big|, etc: $$\begin{array}{c} \testdelims\relax\relax{J} \testdelims\bigl\bigr{J} \testdelims\Bigl\Bigr{J} \testdelims\biggl\biggr{J} \testdelims\Biggl\Biggr{J} \end{array}$$ Then with \verb|\left| and \verb|\right|: $$\begin{array}{c} \testdelims\left\right{\begin{array}{c} f \end{array}} \testdelims\left\right{\begin{array}{c} a\\f \end{array}} \testdelims\left\right{\begin{array}{c} a\\a\\f \end{array}} \testdelims\left\right{\begin{array}{c} a\\a\\a\\f \end{array}} \end{array}$$ \section*{Sizing} $$ abcde + x^{abcde} + 2^{x^{abcde}} $$ The subscripts should be appropriately sized: \begin{quote} \testsize\tiny \testsize\scriptsize \testsize\footnotesize \testsize\small \testsize\normalsize \testsize\large \testsize\Large \testsize\LARGE \testsize\huge \testsize\Huge \end{quote} \clearpage \section*{Spacing} This paragraph should appear to be a monotone grey texture. Suppose \(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function, since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in \mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\), then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f \rightarrow \hat f\) is a \emph{continuous} mapping of \(\mathcal S_n\) into \(\mathcal S_n\) follows now from the closed graph theorem. And thus for \(x_1\) through \(x_i\). \emph{Functional Analysis}, W.~Rudin, McGraw--Hill, 1973. \begin{boldface} This paragraph should appear to be a monotone dark texture. Suppose \(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function, since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in \mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\), then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f \rightarrow \hat f\) is a \emph{continuous} mapping of \(\mathcal S_n\) into \(\mathcal S_n\) follows now from the closed graph theorem. And thus for \(x_1\) through \(x_i\). \emph{Functional Analysis}, W.~Rudin, McGraw--Hill, 1973. \end{boldface} {\itshape This paragraph should appear to be a monotone grey texture. Suppose \(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function, since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in \mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\), then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f \rightarrow \hat f\) is a \emph{continuous} mapping of \(\mathcal S_n\) into \(\mathcal S_n\) follows now from the closed graph theorem. \emph{Functional Analysis}, W.~Rudin, McGraw--Hill, 1973.} The text in these boxes should spread out as much as the math does: $$\begin{array}{c} \framebox[.95\width][s]{For example \(x+y = \min\{x,y\} + \max\{x,y\}\) is a formula.} \\ \framebox[.975\width][s]{For example \(x+y = \min\{x,y\} + \max\{x,y\}\) is a formula.} \\ \framebox[\width][s]{For example \(x+y = \min\{x,y\} + \max\{x,y\}\) is a formula.} \\ \framebox[1.025\width][s]{For example \(x+y = \min\{x,y\} + \max\{x,y\}\) is a formula.} \\ \framebox[1.05\width][s]{For example \(x+y = \min\{x,y\} + \max\{x,y\}\) is a formula.} \\ \framebox[1.075\width][s]{For example \(x+y = \min\{x,y\} + \max\{x,y\}\) is a formula.} \\ \framebox[1.1\width][s]{For example \(x+y = \min\{x,y\} + \max\{x,y\}\) is a formula.} \\ \framebox[1.125\width][s]{For example \(x+y = \min\{x,y\} + \max\{x,y\}\) is a formula.} \\ \end{array}$$ \end{document} %% Local Variables: %% mode: latex %% End: