
marginfix package documentation

Stephen Hicks
sdh33@cornell.edu

http://shicks.github.com/marginfix

v0.9.1 – 2010/08/28

Usage

1 Overview

Authors using LATEX to typeset books with significant margin material often run
into the problem of long notes running off the bottom of the page. A typical
workaround is to insert \vshifts by hand, but this is a tedious process that is
invalidated when pagination changes. Another workaround is memoir’s \sidebar

function, but this can be unsatisfying for short textual notes, and standard margin-
pars cannot be mixed with sidebars. This package implements a solution to make
marginpars ”just work” by keeping a list of floating inserts and arranging them
intelligently in the output routine.

2 Options

There are currently no options that do anything yet.

3 Commands

For the most part, this is a drop-in replacement. Simply add \usepackage{marginfix}

to the preamble, use \marginpar normally and hope for the best. In the event,
however, that it doesn’t work exactly as hoped, there are a number of tweaks that
the user can apply.
Calling \marginskip{〈length〉} will insert an incompressible skip in the margin.\marginskip

These skips will force neighboring notes on the same page to be separated, but
will disappear at the top or bottom of a margin.
In an analog to \clearpage, \clearmargin prevents any further material from\clearmargin

\softclearmargin being added to the current margin. These calls are cumulative, so that two
\clearmargins in a row will produce a completely empty margin on the next
page as well. If this is not the desired effect, use \softclearmargin, which is

1

effectively idempotent: multiple calls have the same effect as one call to end the
current margin.
If a page has too much margin material to fit and an important note is floating to\extendmargin

the next page, \extendmargin{〈length〉} will extend the margin (for the current
page only) by the given length. If the length is negative, the margin will shrink.
Multiple calls on the same page are cumulative.
To adjust the position of a single note, use \mparshift{〈length〉} before \marginpar.\mparshift

Positive lengths move it down the page. This essentially shifts the call-out loca-
tion, so the actual position of the note might not change if the margin is sufficiently
crowded. Multiple calls before the same note are cumulative.
If all the margins are the wrong size, the height of the margin on every\marginheightadjustment

page can be adjusted by assigning a non-zero value to the dimension register
\marginheightadjustment (as in \marginheightadjustment=〈length〉). This is
effectively the same as a call to \extendmargin on every page.
Similarly, if all the margins are in the wrong place, the callout positions can be ad-\marginposadjustment

justed by assigning a non-zero value to the dimension register \marginposadjustment.
This is effectively the same as a call to \mparshift before every note. This is par-
ticularly useful at present because the height of the line on which the margin note
is called is currently only estimated, and appears to be off by a point or two. This
may get fixed in the future, but until then, the adjustment is possibly the easiest
workaround.

4 Interaction with other packages

4.1 memoir

There are no known issues with memoir at present, provided that \sidebar is not
used.

4.2 mparhack

mparhack was designed to deal with the problem of margin notes showing up in
the wrong margin because the left/right was decided before it was known exactly
which page the note would be on. Because we defer this decision to shipout time
in this package, we are not susceptible to this problem, so mparhack is no longer
needed and should not be included (though I’m unaware whether it causes any
actual problems).

4.3 Multiple columns

There is currently no support for multiple columns.

2

5 Coming attractions and known issues

Here is a list of things to possibly look forward to in a future version. If any of
them are particularly important, please let me know.

• Margin phantoms.

• Use of pdfTEX’s \pdfsavepos and \pdflastypos for more accurate margin
placement.

• \vadjust to correct inconsistencies with \@pageht.

• Better interaction with floats. (We can set a default one way or the other
and then allow a macro to override it (presumably with a CS defined in
terms of the box name/meaning, so as not to get in the way of LATEX’s use
of the insert registers). We would then add or not add phantoms in the right
spots. We’d also need to shift all the callout points by the size of the top
figures (unless we’re using \pdfsavepos).)

Implementation

6 Initial Setup

\@ight

\f@ur

\@C

Make the @-sign into a letter for use in macro names. We also define a few
other (hopefully) obvious and unambiguous macros that other packages won’t
destructively clobber.

1 〈∗package〉
2 \makeatletter

3 \chardef\@ight=8

4 \chardef\f@ur=4

5 \chardef\@c=100

\MFX@debug We have some optionally-included code for debugging. \MFX@debug prints a new
line followed by “MFX: ” and then the message. The newline can be suppressed
with a *. We’ll also ask for more error context in the debug mode.

6 〈debug〉\def\MFX@debug{\@ifstar\message{\message{^^JMFX:}\message}}
7 〈debug〉\errorcontextlines=20

The reader might begin to note at this point a convention we adopt throughout
this package. While we strive to avoid introducing new names as much as possible
(using the inlinedef package whenever we can), any new names we do introduce
will be prefixed by \MFX@, \Mfx@, or \mfx@, depending on the type of name.
The all-capitol \MFX@ is used for fully-constant macros. The initial-caps \Mfx@ is
used for control sequences that are technically constant, but that refer to things
that change, such as counters, token lists, dimension registers, etc. Finally, the
lowercase \mfx@ is used for control sequences whose meaning changes dynamically
(i.e. variable macros).

3

7 Options

Here we define the various package options.

\ifmfx@ypos The ypos option signifies that we should use the pdfTEX primitives \pdfsavepos

and \pdflastypos to improve positioning of margin notes relative to their callouts.
This requires two passes to work, and the first time through, the margin notes will
be positioned very näıvely.

8 \newif\ifmfx@ypos

9 \DeclareOption{ypos}{\mfx@ypostrue}

Now we actually process the options.

10 \ProcessOptions\relax

8 Variables

\mfx@marginlist We need a place to store our list of marginal material. We store material in this
variable using insert registers and a variety of macros, to be explained later.

11 \let\mfx@marginlist\@empty

\Mfx@marginbox While we’re building the margin, we need to put it in a box before we can attach
it to the main columm.

12 \newbox\Mfx@marginbox

\Mfx@marginboxspace

\Mfx@marginpos

While we build up the margin box, we need to keep track of both where we are
in the margin (\Mfx@marginpos) and how much of that space is incompressible
(\Mfx@marginboxspace).

13 \newdimen\Mfx@marginboxspace

14 \newdimen\Mfx@marginpos

\Mfx@marginheight Because the margin height can be altered by, \extendmargin, we must maintain
a dimension for the height of the current margin.

15 \newdimen\Mfx@marginheight

\Mfx@mparshift We store the current shift in a dimension register.

16 \newdimen\Mfx@mparshift

9 User-configurable dimensions

We export a few dimensions that the user can redefine to tweak behavior.

\marginheightadjustment This length will be added to the total margin height of each page (the default is
zero).

17 \newdimen\marginheightadjustment

\marginposadjustment We will offset each margin note from its callout location by this length (the default
is zero).

18 \newdimen\marginposadjustment

4

10 Plan of attack

10.1 \marginpar

The default sequence of events for a \marginpar is roughly the following (assuming
no errors):

\marginpar:

let \@floatpenalty := (horizontal ? -10002 : -10003)

allocate inserts \@currbox and \@marbox from \@freelist

let \count\@marbox := -1 % signifies marginpar (not float)

if optional argument then \@xmpar else \@ympar

\@xmpar:

\@savemarbox \@currbox := required argument

\@savemarbox \@marbox := optional argument

\@xympar

\@ympar:

\@savemarbox \@currbox := required argument

copy \@marbox := \@currbox

\@xympar

\@xympar:

append \@marbox to \@currlist

\end@float

\end@float:

append \@currbox to \@currlist

if horizontal then following two lines are in \vadjust:

\penalty -10004

\penalty \@floatpenalty

To get the rest of the picture, we need to peek into the output routine. The
pertinent parts are as follows (in vanilla LATEX):

\output:

if \outputpenalty < -10000 then

\@specialoutput

else

do regular output...

details for dealing with footnotes...

\@specialoutput:

switch \outputpenalty:

case -10001: \@doclearpage

case -10004: set box \@holdpg := \vbox{\unvbox255}

case -10002 or -10003:

set box \@holdpg := \vbox{\unvbox\@holdpg \unvbox255}

let \@pageht := \ht\@holdpg, \@pagedp := \dp\@holdpg

\unvbox\@holdpg

pop \@currbox off of \@currlist

\@addmarginpar (assuming \count\@currbox <= 0)

\@addmarginpar:

pop \@marbox off of \@currlist

5

free \@currbox and \@marbox back to \@freelist

if left-hand margin then let \@marbox := \@currbox

let \@tempdima := \@mparbottom - \@pageht + \ht\@marbox

if \@tempdima < 0 then let \@tempdima := 0

let \@mparbottom := \@pageht + \@tempdima + \dp\@marbox + \marginparpush

decrement \@tempdima := \@tempdima - \ht\@marbox

prepend \vskip\@tempdima to \@marbox

let \ht\@marbox := \dp\@marbox := 0

\kern -\@pagedp, \nointerlineskip

set an \hbox to \columnwidth (zero height/depth):

attach \@marbox to correct margin

set a \vbox with height 0 and depth \@pagedp

We see from here that \@addmarginpar is the place where LATEX does the work
of calculating the current page position and where the next note should go, and
then actually puts it there. We will need to completely replace this routine, but
can leave everything else as is.

10.2 \output

While LATEX’s margin routines end with \@addmarginpar, we must dig even
deeper to apply our patch, since we need to insert some code to run during the
main output routine that ships out each page. Thus, we’ll expand “do regular

output...” from the previous \output listing.

do regular output...:

\@makecol

do { \@opcol \@startcolumn } while @fcolmade

\@makecol:

set box \@outputbox := box255 (plus any footnotes)

let \@freelist := \@freelist + \@midlist, \@midlist := \@empty

\@combinefloats

add \@texttop and \@textbottom to \@outputbox (default no-op)

\@opcol:

\@outputpage (of \@outputdblcol in twocolumn mode)

let \@mparbottom := \@textfloatsheight := 0

\@floatplacement

\@startcolumn:

try to make a float column from \@deferlist, setting @fcolmade

if !@fcolmade then add floats from \@deferlist to next column

\@combinefloats:

aggregate \@toplist floats into a box and prepend to \@outputbox

aggregate \@botlist floats into a box and append to \@coutputbox

free inserts from \@toplist and \@botlist

\@outputpage:

ship out the page

reset a bunch of stuff

let \@colht := \textheight (in \@outputpage)

6

We’ve seen two main times when action occurs: callout time and shipout time.
We proceed chronologically with our patches.

11 Callout-time patches

\@addmarginpar The first thing we must modify is that at callout time, we need to get the inserts
into \mfx@marginlist. This should happen in the output routine so that we can
get ahold of the current page position. Even if we have a better idea of the page
position (e.g. from pdfTEX), we still might as well do this in the OR.

19 \def\@addmarginpar{%

20 \@next\@marbox\@currlist{}\MFX@bug

21 〈debug〉\MFX@debug{addmarginpar (running insert) \@marbox/\@currbox at

22 〈debug〉 \the\c@page:\the\@pageht, marginlist=\meaning\mfx@marginlist}%

23 \MFX@getypos

24 \MFX@cons\mfx@marginlist{% TODO: later this will be a run@marginlist

25 \noexpand\mfx@margin@note\@marbox\@currbox{\mfx@ypos}% (^i.e. for phantoms)

26 \noexpand\mfx@margin@skip{\the\marginparpush}%

27 }%

28 〈debug〉\MFX@debug{addmarginpar (exit): marginlist=\meaning\mfx@marginlist}%

29 }

\MFX@cons

\MFX@snoc

In passing we’ll define the cons macro, which fully-expands its second argument,
but makes sure to only expand the first one once, so that any fragile control se-
quences in it are corectly protected. We also define snoc, which prepends. Note
that we could put the \temp@ definition into a group if it was really gonna mat-
ter. . .

30 \def\MFX@cons#1#2{%

31 \edef\temp@{#2}%

32 \expandafter\expandafter\expandafter\gdef

33 \expandafter\expandafter\expandafter#1%

34 \expandafter\expandafter\expandafter{\expandafter#1\temp@}%

35 }

36

37 \def\MFX@snoc#1#2{%

38 \edef\temp@{#2}%

39 \expandafter\expandafter\expandafter\gdef

40 \expandafter\expandafter\expandafter#1%

41 \expandafter\expandafter\expandafter{\expandafter\temp@#1}%

42 }

\MFX@getypos

\mfx@ypos

We now need to settle on a way to determine the vertical position. Ultimately
this will be an option, and will depend on a variety of factors. But for starters, we
define the simplest version. Note the subtraction of \Mfx@strutheight. Ideally
we would simply grab a copy of \@holdpg from the middle of \@specialoutput

and then discard the last box to figure out what height we’re really at, since
\@holdpg includes the box from the line we’re currently on, and we want to be
level with the top of that box, rather than the baseline. But since \@holdpg is

7

accessible only deep within \@specialoutput, and it’s not worth the risky job of
performing surgery on it (which is unfortunately brittle if anyone else has a similar
idea), we instead resort to this approximation. And since this will ultimately be
only a fallback for when \pdflastypos isn’t available, it should be good enough.
NOTE: we might be able to use a \vadjust instead here?

43 \def\MFX@getypos{%

44 \edef\mfx@ypos{%

45 \the\dimexpr\@pageht - \Mfx@strutheight

46 + \marginposadjustment + \Mfx@mparshift\relax}%

47 \global\Mfx@mparshift\z@

48 }

\marginpar

\Mfx@strutheight

We need to make sure \Mfx@strutheight gets defined somewhere, and the best
time is probably right before the \marginpar does its work, since that will most
likely ensure we’re using the right font for the line.

49 \newdimen\Mfx@strutheight

50 \edef\marginpar{%

51 \unexpanded{\setbox\@tempboxa\hbox{\strut}\Mfx@strutheight\ht\@tempboxa}%

52 \expandafter\unexpanded\expandafter{\marginpar}%

53 }

12 Shipout-time patches

\@combinefloats

\MFX@combinefloats@before

We need to patch in somewhere before \@combinefloats at the latest, so that
any heights calculated from \@pageht are correct—otherwise the top figures will
confuse us. So we’ll start by simply adding our own \MFX@combinefloats@before

at the very beginning of \@combinefloats

54 \expandafter\def\expandafter\@combinefloats\expandafter{\expandafter

55 \MFX@combinefloats@before\@combinefloats}

\MFX@combinefloats@before is then responsible for picking the needed notes
from \mfx@marginlist, building them into a box, and attaching said box onto
the correct side of \@outputbox. This is also a convenient place to reset
\Mfx@marginheight to zero (since we reuse the register for one-time extensions).

56 \def\MFX@combinefloats@before{%

57 \MFX@buildmargin

58 \MFX@attachmargin

59 \Mfx@marginheight\marginheightadjustment

60 }

\MFX@attachmargin We’ll start with the second half of \MFX@combinefloats@before, since it’s sim-
pler. We need to do several things here.

61 \def\MFX@attachmargin{%

62 〈debug〉\MFX@debug{attachmargin}%
First, we need to make sure that the boxes we’re combining are the same size.

63 \ifdim\ht\@outputbox<\ht\Mfx@marginbox

64 \setbox\@outputbox\vbox to \ht\Mfx@marginbox{%

8

65 \box\@outputbox

66 \vfill

67 }%

68 \else

69 \setbox\Mfx@marginbox\vbox to \ht\@outputbox{%

70 \unvbox\Mfx@marginbox

71 \vfill

72 }%

73 \fi

Next we need to figure out which side of \@outputbox to attach the \Mfx@marginbox
on.

74 \setbox\@outputbox\vbox to \ht\@outputbox{%

75 \hbox to \wd\@outputbox{%

76 \if\MFX@leftmargin

77 \llap{\box\Mfx@marginbox\hskip\marginparsep}%

78 \box\@outputbox

79 \else

80 \box\@outputbox

81 \rlap{\hskip\marginparsep\box\Mfx@marginbox}%

82 \fi

83 }}%

84 }

\MFX@buildmargin When \MFX@buildmargin is called, we have a list of tokens in \mfx@marginlist

that need to be processed. After it’s done working, \mfx@marginlist should
have the first n > 0 of these removed, and leaving only notes that were deferred
to the next page. Additionally, \Mfx@marginbox must contain a box the same
height as \@outputbox. We do this in several steps. We start with a height of
\@colroom rather than \textheight because \@colroom has already subtracted
off the top/bottom floats that have been set. Eventually we will want to encroach
on these floats, particularly if they don’t encroach on the margin, but that will be
tricky...

85 \def\MFX@buildmargin{%

86 \advance\Mfx@marginheight\@colroom

87 〈debug〉\MFX@debug{buildmargin: marginheight=\the\Mfx@marginheight}%

88 \MFX@buildmargin@down

89 \MFX@buildmargin@up

90 }

12.1 First pass

\MFX@buildmargin@down The first step is the “down” step, in which we move the notes that will go on the
current page into \mfx@marginout in reverse order, and anything that will be de-
ferred gets put back in \mfx@marginlist. This behavior is configured by changing
the meaning of \mfx@margin@note, \mfx@margin@skip, and \mfx@margin@clear.
Note that during the course of processing \mfx@marginlist, these meanings will
continue to change.

9

91 \def\MFX@buildmargin@down{%

92 〈debug〉\MFX@debug{buildmargin@down: ENTRY}%

93 〈debug〉\MFX@debug{marginlist=\meaning\mfx@marginlist}%
94 \let\mfx@margin@note\MFX@margin@note@down

95 \let\mfx@margin@skip\@gobble

96 \let\mfx@margin@clear\MFX@margin@clear@down

97 \let\mfx@marginout\@empty

We do a little bit of \expandafter trickery here to first expand the current mean-
ing of \mfx@marginlist, then clear it before actually executing anything.

98 \expandafter\global\expandafter\let

99 \expandafter\mfx@marginlist\expandafter\@empty

100 \mfx@marginlist

101 〈debug〉\MFX@debug{buildmargin@down: RETURN}%

102 〈debug〉\MFX@debug{marginlist=\meaning\mfx@marginlist}%
103 }

We must now define the different meanings for the \mfx@margin@... macros.

\MFX@margin@note@down

\MFX@whichbox

\MFX@margin@skip@down

\MFX@margin@clear@down

We’ll dive right into the notes first. When we see a note in the \marginlist, we
need to do several things.

1. optionally add a compressible skip before it, of length #3−\Mfx@marginpos,
to line it up with the callout location

2. figure out which box we need for the current page, not yet freeing the allo-
cated boxes, since we may still end up deferring

3. add the height of the correct box to \Mfx@marginboxspace and \Mfx@marginpos

4. if \Mfx@marginboxspace exceeds \Mfx@marginheight, then we defer this
note and change the meaning of \mfx@margin@note to defer all remaining
notes

5. otherwise, we add tokens to construct the box to \toks@ and free the allo-
cated inserts.

6. redefine \mfx@margin@skip to \MFX@margin@skip@down, now that we’ve
gotten a real note (it starts out as \@gobble since we don’t want to ap-
ply skips at the very beginning).

104 \def\MFX@margin@note@down#1#2#3{%

105 〈debug〉\MFX@debug{note@down: ENTRY: #1/#2 at #3}%

106 \ifdim#3>\Mfx@marginpos

107 \dimen@\dimexpr#3-\Mfx@marginpos\relax

108 〈debug〉\MFX@debug{note@down: adding compressible \the\dimen@}%

109 \MFX@snoc\mfx@marginout{\noexpand\mfx@margin@compressible{\the\dimen@}}%

110 \advance\Mfx@marginpos\the\dimen@

111 \fi

112 \MFX@whichbox#1#2%

113 \advance\Mfx@marginboxspace\dimexpr\ht\@marbox+\dp\@marbox\relax

114 \ifdim\Mfx@marginboxspace>\Mfx@marginheight

10

We’ve run out of margin space, so we now defer every following box, which means
appending them back to \mfx@marginlist, except with a callout position of zero,
since we want them as high up as possible (also, the position should be monotonic).

115 〈debug〉\MFX@debug{note@down: out of space:

116 〈debug〉 \the\Mfx@marginboxspace>\the\Mfx@marginheight}%

117 \advance\Mfx@marginboxspace\dimexpr-\ht\@marbox-\dp\@marbox\relax

118 \mfx@margin@clear

119 \mfx@margin@note#1#2{#3}%

120 \else

At this point, the box is definitely going onto this page, so we can arrange for the
boxes to be freed and then add the correct box to the output list.

121 〈debug〉\MFX@debug{note@down: adding \@marbox

122 〈debug〉 ht \the\ht\@marbox dp \the\dp\@marbox}%

123 \advance\Mfx@marginpos\dimexpr\ht\@marbox+\dp\@marbox\relax

124 \MFX@snoc\mfx@marginout{%

125 \noexpand\mfx@margin@note\@marbox

126 \noexpand\@cons\noexpand\@freelist#1%

127 \noexpand\@cons\noexpand\@freelist#2%

128 }%

129 \fi

130 \let\mfx@margin@skip\MFX@margin@skip@down

131 〈debug〉\MFX@debug{note@down: RETURN space=\the\Mfx@marginboxspace,

132 〈debug〉 pos=\the\Mfx@marginpos}%

133 }

We need to figure out which box to set. This macro calls \MFX@leftmargin and
then sets the correct box into \@marbox for use by \MFX@margin@box@down.

134 \def\MFX@whichbox#1#2{%

135 \if\MFX@leftmargin

136 \def\@marbox{#1}%

137 \else

138 \def\@marbox{#2}%

139 \fi

140 〈debug〉\MFX@debug{whichbox: \@marbox}%

141 }

The next macro we’ll write is the skip. This one just has to save itself onto
whichever list we’re working on (output or deferred) and in the case of output,
update \@Mfx@marginpos.

142 \def\MFX@margin@skip@down#1{%

143 〈debug〉\MFX@debug{skip@down #1}%

144 \advance\Mfx@marginpos#1\relax

145 \advance\Mfx@marginboxspace#1\relax

146 \MFX@snoc\mfx@marginout{\noexpand\mfx@margin@skip{#1}}%

147 }

Finally, \MFX@margin@clear@down simply signals the end of this margin. All fur-
ther material will be deferred, so we redefine \mfx@margin@note, \mfx@margin@skip,
and \mfx@margin@clear to defer.

11

148 \def\MFX@margin@clear@down{%

149 〈debug〉\MFX@debug{clear@down}%
150 \def\mfx@margin@note##1##2##3{%

151 \MFX@cons\mfx@marginlist{\noexpand\mfx@margin@note##1##2{\MFX@minus@inf}}}%

152 \def\mfx@margin@skip##1{%

153 \MFX@cons\mfx@marginlist{\noexpand\mfx@margin@skip{##1}}}%

154 \def\mfx@margin@clear{%

155 \MFX@cons\mfx@marginlist{\noexpand\mfx@margin@clear}}%

156 }

\MFX@minus@inf Note that when we added deferred boxes to the list, we put them at \MFX@minus@inf.
We’ll define that to be a large negative dimension.

157 \def\MFX@minus@inf{-4000pt}

\MFX@leftmargin Here we figure out which box to use based on the page number and other flags. This
is a conditional that should be used after \if, as in \if\MFX@leftmargin. . . \else. . . \fi.
This is different from the corresponding code in the LATEX routines because we
don’t support double columns. In addition, we would ideally allow \if@reversemargin

to work on a per-note basis (i.e. at callout time) but we also need something work-
ing at shipout time so we can figure out which margin to use. Thus, until we figure
out how to use multiple margins.

158 \def\MFX@leftmargin{%

159 00\fi % close out the \if

160 \@tempcnta\@ne

161 \if@mparswitch

162 \unless\ifodd\c@page

163 \@tempcnta\m@ne

164 \fi

165 \fi

166 \if@reversemargin

167 \@tempcnta-\@tempcnta

168 \fi

169 〈debug〉\MFX@debug{margin on \ifnum\@tempcnta<\z@ left\else right\fi}%

170 \ifnum\@tempcnta<\z@ % start a new \if

171 }

12.2 Second pass

\MFX@buildmargin@up Next is the “up” step. Here we simply take the reversed list in \mfx@marginout

and prepend each item in turn to \Mfx@marginbox. We start by automatically
discarding any skips, though we can’t do this with a simple \@gobble anymore
since we need to deduct them from \Mfx@marginpos. Once we hit a note, we’ll
change the skips to be their normal meanings. Note that there are no clears in
\mfx@marginout.

172 \def\MFX@buildmargin@up{%

173 〈debug〉\MFX@debug{buildmargin@up: excess=\the\dimexpr

174 〈debug〉 \Mfx@marginpos-\Mfx@marginheight\relax}%

175 〈debug〉\MFX@debug{marginout=\meaning\mfx@marginout}

12

176 \let\mfx@margin@note\MFX@margin@note@up

177 \let\mfx@margin@compressible\MFX@margin@skip@gobble@up

178 \let\mfx@margin@skip\MFX@margin@skip@gobble@up

179 \mfx@marginout

180 }

\MFX@margin@skip@gobble@up In case we have any skips at the beginning of \mfx@marginout, we’ll gobble them
and deduct their lenghts from \Mfx@marginpos.

181 \def\MFX@margin@skip@gobble@up#1{%

182 〈debug〉\MFX@debug{skip@gobble@up: #1}%

183 \advance\Mfx@marginpos-#1\relax

184 }

\MFX@margin@note@up Once we actually do hit a note, we need to set it in \Mfx@marginbox. We also
redefine \mfx@margin@skip and \mfx@margin@compressible here. Hopefully any
skips aren’t being dropped by our \unvboxing.

185 \def\MFX@margin@note@up#1{%

186 〈debug〉\MFX@debug{note@up: #1}%

187 \setbox\Mfx@marginbox\vbox{\box#1\unvbox\Mfx@marginbox}%

188 \let\mfx@margin@skip\MFX@margin@skip@up

189 \let\mfx@margin@compressible\MFX@margin@compressible@up

190 }

\MFX@margin@skip@up This one is even easier—all we have to do is add a skip to the margin output box.
We also need to make sure it’s not getting dropped, which might entail adding
some \vbox{}s.

191 \def\MFX@margin@skip@up#1{%

192 〈debug〉\MFX@debug{skip@up: #1}%

193 \setbox\Mfx@marginbox\vbox{\vskip#1\relax\unvbox\Mfx@marginbox}%

194 }

\MFX@margin@compressible@up This token gets put into \mfx@marginout during the first pass. When it exe-
cutes, it inserts a \vskip depending on how much extra margin space (stored in
\Mfx@marginpos) we need to excise. If also updates \Mfx@marginpos.

195 \def\MFX@margin@compressible@up#1{%

196 〈debug〉\MFX@debug{compressible@up: #1, excess=\the\dimexpr

197 〈debug〉 \Mfx@marginpos-\Mfx@marginheight\relax}%

198 \dimen@#1\relax

199 \ifdim\Mfx@marginpos>\Mfx@marginheight

200 \advance\dimen@\dimexpr\Mfx@marginheight-\Mfx@marginpos\relax

201 \ifdim\dimen@<\z@

202 \dimen@\z@

203 \fi

204 \advance\Mfx@marginpos\dimexpr\dimen@-#1\relax

205 \fi

206 \ifdim\dimen@>\z@

207 \MFX@margin@skip@up\dimen@

208 \fi

209 }

13

13 Cleaning up

We need to worry about a few more things. First, what happens if we reach the
end of the document and there are still deferred margin notes? We need to be able
to dump all the margin notes whenever the user wants (i.e. before a new chapter),
so we’ll make a macro \dumpmargins to do this, and then make sure it gets called
\AtEndDocument. Since we’re looping to do this, we need to make darned sure
that every \newpage shrinks the marginlist.

\dumpmargins

210 \def\dumpmargins{%

211 〈debug〉\MFX@debug{dumpmargins}%
212 \loop

213 \unless\ifx\mfx@marginlist\@empty

214 \let\temp@\mfx@marginlist

215 \vbox{}\clearpage

216 \ifx\temp@\mfx@marginlist

217 \PackageError{marginfix}{lost some margin notes%

218 〈debug〉: \meaning\mfx@marginlist

219 }\@eha

220 \let\mfx@marginlist\@empty % be nicer by just dropping one?

221 % TODO: also, set an emergency mode to allow oversized notes

222 \fi

223 \repeat

224 }

225 \AtEndDocument{\dumpmargins}

14 User macros

\marginskip Inserting a skip in the margin list is simple. We need only append \mfx@margin@skip

to \mfx@marginlist.

226 \def\marginskip#1{%

227 \MFX@cons\mfx@marginlist{\noexpand\mfx@margin@skip{#1}}%

228 }

\clearmargin

\softclearmargin

Likewise, \clearmargin is easy too.

229 \def\clearmargin{%

230 \MFX@cons\mfx@marginlist{\noexpand\mfx@margin@clear}%

231 }

While we call \softclearmargin a “clear margin”, it’s actually just a big
\marginskip. This allows us to stack multiple copies without backing them all
up.

232 \def\softclearmargin{%

233 \marginskip{\the\textheight}%

234 }

14

\extendmargin We overload \Mfx@marginheight to be the amount of extension at all times except
shipout-time.

235 \def\extendmargin#1{%

236 \advance\Mfx@marginheight#1\relax

237 }

\mparshift This is as simple as setting the dimen register. We advance so that the shifts are
cumulative, but there’s not really any point either way.

238 \def\mparshift#1{%

239 \advance\Mfx@mparshift#1\relax

240 }

15 Random scribbles

Later we’ll get fancier with putting notes next to top/bottom figures but for now,
not so much.
In the future we will support the use of \pdfsavepos and \pdflastypos for more
accurately determining where the callouts actually were, which will end up going
right around here. But in order to work with older versions of LATEX, we still need
to support the old style of using \@pageht to figure that out, so for now that’s all
we’ll do.

16 Parting words

Finish it up

241 \makeatother

242 〈/package〉

15

