
makedtx v0.93b : a Perl script to help create a

DTX file from source code

Nicola Talbot
http://theoval.cmp.uea.ac.uk/~nlct/

2nd August 2007

Contents

1 Introduction 1

2 Installation 2

3 makedtx.pl 3
3.1 Compulsory Arguments . 3
3.2 Options . 3

4 The creatdtx Package 5

5 Examples 6

6 Troubleshooting 9
6.1 Known Bugs . 9
6.2 Possible errors encountered using makedtx.pl 10

A Perl Regular Expressions 10

B creatdtx.sty code 11

References 11

Index 12

Abstract

The makedtx bundle is provided to help developers to write the code and
documentation in separate files, and then combine them into a single DTX
file for distribution. It automatically generates the character table, and also
writes the associated installation (.ins) script.

1 Introduction

Authors of LATEX2ε class files or packages are encouraged to bundle their source
and documentation together into a single DTX file. This makes distribution much
easier, as users need only download the DTX file and possibly a corresponding

1

http://theoval.cmp.uea.ac.uk/~nlct/

installation script (INS file) instead of a multitude of .sty, .cls, .def etc files.
However, having the documentation and code bundled together can cause problems
if a developer wants to, say, use ispell to spell check the documentation, or
convert the documentation to a format other than DVI, PostScript or PDF (such
as HTML).

Why should I want to convert my documentation to HTML when I can just use
PDFLATEX? The more general purpose packages that I write (such as datetime
and glossary) I upload to CTAN, however most of the packages I write are specific
to the School of Computing Sciences at the University of East Anglia, so these I
keep on my web site, and as some of the faculty either don’t have a PDF plug in or
prefer to view HTML rather than PDF documents, I have taken to writing both
PDF and HTML versions of my package documentation. However, LATEX2HTML
doesn’t work on a .dtx file so I used to convert them manually which is fine for one
or two small documents, but becomes rather cumbersome as soon as I have large
documents or a lot of packages. Therefore I decided to write the documentation
separately, and use a Perl script to bundle everything together. It also has the
added convenience in that I don’t have to keep copying and pasting the character
table every time I write a new package, and it saves the laborious task of writing
the installation script1.

This document is structured as follows: Section 2 describes how to install
the makedtx bundle, Section 3 gives an overview of the makedtx.pl Perl script,
Section 4 describes the creatdtx package, Section 5 illustrates the use of the
makedtx bundle with examples and Section 6 gives a list of possible errors and
their solutions.

2 Installation

You need to download both makedtx.dtx and makedtx.ins, and run the instal-
lation script through LATEX:

latex makedtx.ins
The following files will be created:

makedtx.pl Perl script

creatdtx.sty LATEX package for use with makedtx.pl

creatdtx.perl Corresponding Perl script for use with LaTeX2HTML

If you are using UNIX/Linux etc you will need to make makedtx.pl executable
using chmod:

chmod a+x makedtx.pl

and place it somewhere on your path. If perl is located somewhere other than
/usr/bin/ you will need to edit the first line of makedtx.pl. (If you don’t
know where perl is located, you can use the command: which perl.) The
package creatdtx.sty needs to be placed somewhere on the LATEX path and
creatdtx.perl should be placed in a directory searched by LATEX2HTML. (See
the LATEX2HTML documentation for details.)

1or at least, it’s laborious if there are rather a lot of files associated with a package

2

3 makedtx.pl

The Perl script makedtx.pl has the following syntax:
makedtx.pl [〈options〉] -src "〈expr1 〉=>〈expr2 〉" -doc 〈filename〉 〈basename〉

3.1 Compulsory Arguments

The very last argument 〈basename〉 is the basename of the .dtx and .ins files
you want to create. The -doc 〈filename〉 switch indicates the file containing the
documentation and -src "〈expr1 〉=>〈expr2 〉" indicates the original source file(s),
given by 〈expr1 〉, and the corresponding file name when it has been extracted
from the .dtx file, given by 〈expr2 〉. This switch is a little complicated, so it’s
best described using examples.

Suppose you have your documentation in the file foodoc.tex, and the original
source code is in the file foosrc.sty. You want to create the files foo.dtx and
foo.ins. When you LATEX foo.dtx you want the documentation as specified in
foodoc.tex and when you LATEX foo.ins you want the file foo.sty to be created,
using the code specified in foosrc.sty. You will need to do:

makedtx.pl -src "foosrc\.sty=>foo.sty" -doc foodoc.tex foo

You may have multiple invocations of the -src switch. For example, suppose
you also have the file barsrc.sty which you want to be extracted from the .dtx
file as bar.sty, you can do:

makedtx.pl -src "foosrc\.sty=>foo.sty" -src "barsrc\.sty=>bar.sty" -doc foodoc.tex foo

Alternatively, you can use Perl-type regular expressions:

makedtx.pl -src "(.*)src\.sty=>\1.sty" -doc foodoc.tex foo

(Note the use of double quotes to prevent shell expansion.) Appendix A gives a
brief overview of Perl regular expressions for the uninitiated.

3.2 Options

-h or -help Prints on-line help, and exits.

-version Prints version number, and exits.

-v Uses verbose mode.

-dir 〈name〉 Specifies directory containing source files, as specified by the -src
switch. For example, suppose you have source files foo.sty, bar.sty in the
subdirectory sourcefiles you can do:

makedtx.pl -dir sourcefiles -src "(.*)\.sty=>\1.sty" -doc foodoc.tex foo

-op 〈character〉 sets the Perl pattern matching operator (the default is set to =
symbol since the / character is used as the directory divider).

-askforoverwrite uses \askforoverwritetrue in the installation script.

-noaskforoverwrite uses \askforoverwritefalse in the installation script (de-
fault).

3

-noins Don’t create the installation script (.ins file). This is useful if you want to
tweak the file manually and you don’t want your modifications overwritten.

-preamble 〈text〉 Set the preamble to text. The default preamble is:

Copyright (C) 〈date 〉 〈author 〉, all rights reserved. If you modify
this file, you must change its name first. You are NOT ALLOWED
to distribute this file alone. You are NOT ALLOWED to take money
for the distribution or use of either this file or a changed version,
except for a nominal charge for copying etc.

where 〈date〉 is the copyright date, and 〈author〉 is the author’s name (see
below).

-postamble 〈text〉 Set the postamble to text. If this is omitted the \postamble
command is omitted from the installation script.

-author 〈name〉 The author’s name (as used in the default preamble). If omitted
the user’s name is used.

-date 〈text〉 The copyright date (as used in the default preamble). If omitted
the current year is used.

-stopeventually 〈text〉 Insert 〈text〉 into the argument of \StopEventually.
For example: -stopeventually "\\PrintIndex" will result in the line:
\StopEventually{\PrintIndex}. If makedtx.pl encounters a \StopEventually
command within the document, this will be used instead. If there is no
\StopEventually command in the document and the -stopeventually
switch is absent \StopEventually{〈〉} will be inserted in the DTX file.

-prefinale 〈text〉 Inset 〈text〉 immediately prior to \Finale in the dtx file.

-setambles "〈expr〉=>〈text〉" Sets the pre- and postambles for files matching
〈expr〉 within the \file command in the installation script. To illustrate
this, let’s suppose you have source files foo.sty, bar.sty and foobar.pl
in the subdirectory sourcefiles. Since foo.sty and bar.sty are LATEX
files, they should have pre- and postambles, but foobar.pl is a Perl file,
and since the percent symbol (%) is not a comment character in Perl, there
should be no pre- and postambles for this file. Therefore you would need to
do something like:

makedtx.pl -dir sourcefiles -src "(.*)\.sty=>\1.sty" -src "foobar.pl=>foobar.pl"

-setambles "foobar\.pl=>\\nopreamble\\nopostamble" -doc foodoc.tex foo

(Note that the line is only broken to fit it onto the page, and there should
be no line break when entering at the command prompt.)

If the argument to -setambles contains the string \\nopreamble, the char-
acter table will be excluded from the corresponding files. So, in the above
example, when you do: latex foo.ins the resulting files foo.sty and
bar.sty will contain the character table, but foobar.pl won’t. (If for some
reason you don’t want a preamble but you do want the character table in-
cluded use \\usepreamble\\empty instead of \\nopreamble. Conversely, if
you want a preamble but don’t want the character table do something like

4

\\nopreamble\\usepreamble\\defaultpreamble, although I can’t think of
a good reason for wanting either of these situations.)

Note that the =>〈text〉 part is optional. If it is omitted, 〈text〉 is assumed to
be empty.

-macrocode "〈expr〉" If source file matches the Perl regular expression given by
〈expr〉, the source code is inserted into a macrocode environment in the DTX
file.

-comment "〈expr〉" If the source file matches the Perl regular expression given by
〈expr〉, the source code will be inserted between \iffalse \fi commands.
The contents of this file will be included in the DTX file, but will be excluded
from the documentation. Since this is provided mainly for non-TeX files
(such as Perl scripts) the -comment switch will typically need to be used in
conjunction with -macrocode.

-codetitle "〈title〉" This sets the title for the code section. The default is The
Code.

4 The creatdtx Package

The documentation source code, as specified using the -doc switch will typically
be a standard LATEX document using the ltxdoc class file. Unlike the DTX file,
there is no \DocInput command, and the lines do not begin with a percent symbol,
which means that the document can be, say, passed to the LATEX2HTML converter,
or some other application that would otherwise be confused by a DTX file. The
creatdtx package can be used in this document using

\usepackage{creatdtx}

although this package will be not be included in the DTX file by makedtx.pl.
There is only one command defined in this package:\ifmakedtx{〈dtx text〉}{〈non
dtx text〉}. The first argument 〈dtx text〉 will be copied to the DTX file by
makedtx.pl, but the second argument 〈non dtx text〉 won’t. However, if you
LATEX the document, the first argument will be ignored, and the second argument
will be used.

For example, if your code (in foodoc.tex) contains the line:

\ifmakedtx{}{\usepackage{html}}

the html package will only be loaded if you LATEX foodoc.tex, but not when you
LATEX foo.dtx.

The Perl script creatdtx.perl ignores the following commands (and any
associated arguments): \OnlyDescription, \RecordChanges, \MakeShortVerb,
\DeleteShortVerb, \DoNotIndex, \EnableCrossrefs, \CodelineIndex, \GetFileInfo,
\PrintChanges, \changes, \CheckSum, \DescribeMacro and \DescribeEnvironment.
So even if you don’t use the \ifmakedtx command, using the creatdtx package
will help ensure that extraneous text does not appear in the HTML document
when using LATEX2HTML.

As from version 0.93b, creatdtx.perl also defines the commands \cs, \marg,
\oarg and \parg, since there is no LATEX2HTML implementation of the ltxdoc
class file.

5

5 Examples

Let’s first consider a very simple example. Suppose you want to create a package
that redefines \today so that the date is displayed in the form: yyyy-m-d. Let’s
call this package dashdate. The file dashdate.sty should look something like:

% First define package:

% \begin{macrocode}

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{dashdate}

% \end{macrocode}

% Redefine |\today| command:

% \begin{macrocode}

\renewcommand{\today}{\the\year-\the\month-\the\day}

% \end{macrocode}

Now let’s make some (very brief) documentation. Let’s call the file, say
manual.tex2:

\documentclass{ltxdoc}

\usepackage{creatdtx}

\begin{document}

\title{A Sample Package}

\author{AN Other}

\maketitle

The \texttt{dashdate} package redefines |\today|

to produce the current date in the form: yyyy-m-d.

\end{document}

Suppose you have saved dashdate.sty and manual.tex in the subdirectory
source. You can now create the .dtx and .ins file using the command:

makedtx.pl -author "AN Other" -dir source -src "dashdate\.sty=>dashdate.sty"

-doc source/manual.tex dashdate

The file dashdate.dtx is created, and contains the following code:

%\iffalse

% dashdate.dtx generated using makedtx.pl version 0.9b (c) Nicola Talbot

% Command line args:

% -dir "source"

% -src "dashdate\.sty=>dashdate.sty"

% -author "AN Other"

% -doc "source/manual.tex"

% dashdate

% Created on 2005/2/10 22:22

%\fi

%\iffalse

%<*package>

%% \CharacterTable

%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z

2Note: if you want to use LATEX2HTML on this document, you will need to use, e.g.,
\verb!\today! instead of |\today| since it doesn’t recognise \MakeShortVerb.

6

%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z

%% Digits \0\1\2\3\4\5\6\7\8\9

%% Exclamation \! Double quote \" Hash (number) \#

%% Dollar \$ Percent \% Ampersand \&

%% Acute accent \’ Left paren \(Right paren \)

%% Asterisk * Plus \+ Comma \,

%% Minus \- Point \. Solidus \/

%% Colon \: Semicolon \; Less than \<

%% Equals \= Greater than \> Question mark \?

%% Commercial at \@ Left bracket \[Backslash \\

%% Right bracket \] Circumflex \^ Underscore _

%% Grave accent \‘ Left brace \{ Vertical bar \|

%% Right brace \} Tilde \~}

%</package>

%\fi

% \iffalse

% Doc-Source file to use with LaTeX2e

% Copyright (C) 2005 AN Other, all rights reserved.

% \fi

% \iffalse

%<*driver>

\documentclass{ltxdoc}

\begin{document}

\DocInput{dashdate.dtx}

\end{document}

%</driver>

%\fi

%\title{A Sample Package}

%\author{AN Other}

%\maketitle

%

%The \texttt{dashdate} package redefines "\today"

%to produce the current date in the form: yyyy-m-d.

%\end{document}

%

%\StopEventually{}

%\section{The Code}

%\iffalse

% \begin{macrocode}

%<*dashdate.sty>

% \end{macrocode}

%\fi

% First define package:

% \begin{macrocode}

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{dashdate}

% \end{macrocode}

% Redefine |\today| command:

% \begin{macrocode}

\renewcommand{\today}{\the\year-\the\month-\the\day}

% \end{macrocode}

%\iffalse

% \begin{macrocode}

7

%</dashdate.sty>

% \end{macrocode}

%\fi

%\Finale

\endinput

The installation file dashdate.ins looks like:

% dashdate.ins generated using makedtx.pl version 0.9b 2005/2/10 22:22

\input docstrip

\preamble

Copyright (C) 2005 AN Other, all rights reserved.

If you modify this file, you must change its name first.

You are NOT ALLOWED to distribute this file alone. You are NOT

ALLOWED to take money for the distribution or use of either this

file or a changed version, except for a nominal charge for copying

etc.

\endpreamble

\askforoverwritefalse

\generate{\file{dashdate.sty}{\usepreamble\defaultpreamble

\usepostamble\defaultpostamble\from{dashdate.dtx}{dashdate.sty,package}}

}

\endbatchfile

Note that the command \usepackage{creatdtx} has not been transcribed to
dashdate.dtx (although in this simple example it’s not really needed).

Now let’s extend the example: suppose you want to create an analogous Perl
script for use with LATEX2HTML. This will need to be called dashdate.perl and
will look something like:

package main;

sub do_cmd_today{

local($_) = @_;

local($today) = &get_date();

$today =~ s|(\d+)/(\d+)/(\d+)|$3-$1-$2|;

"$today$_";

}

1;

You will now need to call makedtx.pl as follows:

makedtx.pl -author "AN Other" -dir source -src "dashdate\.sty=>dashdate.sty"

-src "dashdate\.perl=>dashdate.perl"

-setambles "dashdate\.perl=>\\nopreamble\\nopostamble"

-macrocode "dashdate\.perl" -doc source/manual.tex dashdate

(Note that the line is only broken to allow it to fit onto the page, there should be
no line break when you enter it on the command line.) Alternatively, you could
save typing and do:

8

makedtx.pl -author "AN Other" -dir source -src "dashdate\.(.*)=>dashdate.\1"

-setambles "dashdate\.perl=>\\nopreamble\\nopostamble" -macrocode "dashdate\.perl"

-doc source/manual.tex dashdate

Note the use of the -setambles switch which suppresses the insertion of text at
the start and end of the Perl script which would only confuse Perl. Note also the
use of the -macrocode switch. This is not needed for dashdate.sty since it has
already been included in the source code, but since % is not a comment character
in Perl, the macrocode environment is not included in the source code, and needs
to be added. (If you are unfamiliar with DocStrip and the use of the macrocode
environment, I suggest you read either A guide to LATEX [2, Appendix D] or The
LATEX companion [1, Chapter 14].)

It’s likely that you may not want the Perl code to appear in the document, but
you still want it included in the DTX file. In addition to the -macrocode switch,
you would then also need to use the -comment switch:

makedtx.pl -author "AN Other" -dir source -src "dashdate\.(.*)=>dashdate.\1"

-setambles "dashdate\.perl=>\\nopreamble\\nopostamble" -macrocode "dashdate\.perl"

-comment "dashdate\.perl" -doc source/manual.tex dashdate

As another example, consider the datetime package. Version 2.42 of this
package has 2 .sty files and 42 .def files. The documentation is written in the
file manual.tex, and the .sty and .def files are saved in a subdirectory called
source. Since these are the only files in this directory, they can easily be merged
into one .dtx file using:

makedtx.pl -author "Nicola Talbot" -dir source -src "(.+)\.(.+)=>\1.\2"

-doc manual.tex datetime

This creates the files datetime.dtx and datetime.ins which can then be dis-
tributed. The PDF version of the documentation is obtained by doing:

pdflatex datetime.dtx

and the HTML version (manual.html) is obtained by doing:

latex2html -split 0 -nonavigation -nofootnode -numbered_footnotes -noinfo manual

Any minor differences between the HTML and PDF versions are dealt by using
\ifmakedtx in the original file manual.tex.

6 Troubleshooting

The makedtx bundle has only been tested under Linux using Perl v5.6.0. There
are no guarantees whether or not it will work on other operating systems or on
different versions (in fact, there are no guarantees or warranties at all).

6.1 Known Bugs

It’s possible to confuse makedtx.pl by placing either the command \end{〈document〉}
or the command \ifmakedtx in a \verb command, or by having the \ifmakedtx
command on the same line as \begin{〈document〉}. You will also need to take
care about lines beginning with a percent symbol (%) in the documentation, as

9

this will get converted into a line beginning with %% in the .dtx file, which has a
special meaning. Either place a space immediately prior the percent symbol, or
do \relax% if you really don’t want the extra space (or place your comment in an
\iffalse . . . \fi conditional).

6.2 Possible errors encountered using makedtx.pl

Note: be careful to use double quotes around arguments that contain characters
that the shell might try interpreting, e.g. * or >.

Syntax error messages:

1. No document source specified (missing -doc)

You must use the -doc switch.

2. No source code specified (missing -src)

You must specify at least one -src switch.

3. No basename specified

You must specify the basename of the .dtx and .ins files. This should be
the last argument passed to makedtx.pl.

4. -src ... argument invalid (no output file specified)

You have omitted the => separator in the argument of the -src switch.

5. -src argument ... invalid (too many => specified)

You have used too many => separators in the argument of the -src switch.
(Similarly for the -setambles switch.)

A Perl Regular Expressions

This section gives a very brief overview of Perl regular expressions. For more
detail, look at the Perl documentation (use man perlre for the man page.)

\ Quote the next character
. Match any character
| Alternation
() Grouping
[] Character class
* Match 0 or more times
+ Match 1 or more times
? Match 1 or 0 times
{n} Match exactly n times
{n,} Match at least n times
{n,m} Match at least n but no more than m times.

In the replacement text, a backslash followed by a number 〈n〉 indicates the
text from the 〈n〉th group.

For example, suppose you have the following files:

abcsrc.sty

abcsrc.bst

abcsrc.perl

10

foosrc.sty

foobarsrc.sty

then if you pass the following switch to makedtx.pl:

• -src "abcsrc\.([styb]+)=>abc.\1" will be equivalent to:

-src "abcsrc.sty=>abc.sty" -src "abcsrc.bst=>abc.bst"

since [styb]+ will match one or more of the letters styb (so it will match
sty and bst). \1 indicates the text found in the first group, which in this
example will either be sty or bst.

• -src "abcsrc\.(.+)=>abc.\1" will be equivalent to:

-src "abcsrc.sty=>abc.sty" -src "abcsrc.bst=>abc.bst" -src "abcsrc.perl=>abc.perl"

Note that a full stop represents any character so .+ means any string of
length 1 or more, whereas \. means an actual full stop character.

• -src "foo(.*)src\.sty=>foo\1.sty" will be equivalent to:

-src "foosrc.sty=>foo.sty" -src "foobarsrc.sty=>foobar.sty"

• -src "(.+)src\.(.+)=>\1.\2" will be equivalent to

-src "abcsrc.sty=>abc.sty"

-src "abcsrc.bst=>abc.bst"

-src "abcsrc.perl=>abc.perl"

-src "foosrc.sty=>foo.sty"

-src "foobarsrc.sty=>foobar.sty"

B creatdtx.sty code

This is the code for the creatdtx package. This package should not be used in a
.dtx file. First define the package:
1 \NeedsTeXFormat{LaTeX2e}

2 \ProvidesPackage{creatdtx}[2005/02/11 v0.9b (N.L.C. Talbot)]

Define \fmakedtx. The first argument will always be ignored by LATEX:
3 \newcommand{\ifmakedtx}[2]{#2}

Redefine \StopEventually so that it simply prints its argument
4 \providecommand{\StopEventually}{}

5 \renewcommand{\StopEventually}[1]{#1}

References

[1] The LATEX companion. Michel Goossens, Frank Mittelbach and Alexan-
der Samarin. Addison-Wesley 1993.

[2] A guide to LATEX. Helmut Kopka and Patrick W. Daly. Addison-Wesley 1998.

11

Change History

0.9
General: Initial beta release 1

0.91
General: prefinale switch added . . 4

0.93
General: Added codetitle switch . . 4

comment switch added 4
version switch added 3

Index

A
\askforoverwritefalse

. 3
\askforoverwritetrue 3

C
\changes 5
\CheckSum 5
\CodelineIndex 5
\cs 5

D
\DeleteShortVerb . . . 5
\DescribeEnvironment 5
\DescribeMacro 5
\DocInput 5
\DoNotIndex 5

E
\EnableCrossrefs . . . 5

G
\GetFileInfo 5

I
\ifmakedtx 5, 9

M
makedtx switches

-askforoverwrite . 3
-author 3
-codetitle 4
-comment 4, 8
-date 3
-dir 3
-doc 2, 5, 9
-h 3
-help 3
-macrocode 4, 8
-noaskforoverwrite

. 3
-noins 3
-op 3
-postamble 3
-preamble 3
-prefinale 4

-setambles . . 4, 8, 10
-src 2, 3, 9, 10
-stopeventually . 4
-v 3
-version 3

\MakeShortVerb . . . 5, 6
\marg 5

O
\oarg 5
\OnlyDescription . . . 5

P
\parg 5
\postamble 3
\PrintChanges 5

R
\RecordChanges 5

S
\StopEventually 4

12

	Introduction
	Installation
	makedtx.pl
	Compulsory Arguments
	Options

	The creatdtx Package
	Examples
	Troubleshooting
	Known Bugs
	Possible errors encountered using makedtx.pl

	Perl Regular Expressions
	creatdtx.sty code
	References
	Index

