
macrolist – Create lists of macros and manipulate

them

Dennis Chen
proofprogram@gmail.com

v1.2.1, 2021/07/25∗

Abstract

The macrolist package allows you to create lists and manipulate them,
with utilities such as \listforeach and an implementation of arr.join() from
Javascript. Contrary to the name of the package, non-macros and groups of
macros can be put into an item of the list.

1 Usage

The scope of lists is always global. This provides the most consistency and func-
tionality for developers in places that are usually local (part of a group), such as
environments and loops.

To create a list, pass in \newlist{listname} to create a list with the name\newlist

listname.
The package checks that listname is not the name of another list, and will throw

an error if another list listname has already been defined.
Writing \listexists{listname}{true}{false} will execute true if listname\listexists

exists and false otherwise.
\listelement

To execute the ith element of listname, write \listelement{listname}{i}.
Note that lists are 1-indexed, meaning the first element is numbered 1, the second
element numbered 2, and so on.

An error will be thrown if listname is not a defined list, if i is empty, or if i is
greater than the size of the list.

\listindexof

This works similar to indexof in almost any ordinary programming language.
Write \listindexof{list}{element} to get the index of where element first ap-
pears in list. If it never does, then the macro will expand to 0.

The command uses \ifx instead of \if; this means that if you have \macro

as an element with the definition this is a macro (assuming that this is a macro

∗https://github/com/chennisden/macrolist

1

is not an element itself), then \listindexof{listname}{this is a macro} will
expand to 0.

Because of the implementation of this macro, it can’t actually be parsed as a
number. (See the ‘Limitations’ section for more information.)

\listcontains

Writing \listcontains{listname}{element}{true branch}{false branch}

checks whether list listname contains element, executing true branch if it does and
false branch if it does not.

\listadd

To add something to the list listname, pass in \listadd{listname}[position]{element},
where position is an optional argument. If nothing is passed in for position, then
by default element will be added to the end of the list.

\listremove

To remove an element in a list, write \listremove{listname}{index}.
\listremovelast

To remove the last element in a list, write \listremovelast{listname}. This
behaves like C++’s pop_back.

\listclear

To clear a list, write \listclear{listname}.
\listsize

To get the size of a list, write \listsize{listname}.
\listforeach

To write a for each loop, write

\listforeach{listname}{\element}[begin][end]{action}

Note that begin and end are optional arguments, and by default, they take the
values 1 and \listsize{listname}. If you pass in begin, you must also pass in
end.

\listjoin

Executing \listjoin{listname}{joiner} returns all of the elements sepa-
rated by joiner. This behaves like Javascript’s arr.join().

2 Example

Here is the source code for a small document using macrolist.

\documentclass{article}

\usepackage{macrolist}

\begin{document}

\newlist{mylist}

\listadd{mylist}{Some text}

% List: Some text

2

\newcommand\macro{This is a macro}

\listadd{mylist}{\macro}

% List: Some text, \macro

\listelement{mylist}{1}

% Prints out "Some text"

\listadd{mylist}[1]{Element inserted into beginning}

% List: Element inserted into beginning, Some text, \macro

\listremove{mylist}{1}

% List: Some text, \macro

\listforeach{mylist}{\element}{We’re printing out \textbf{\element}. }

% We’re printing out \textbf{Some text}. We’re printing out \textbf{\macro}.

\listjoin{mylist}{, }

% Some text, \macro

\end{document}

3 Limitations

The \listindexof macro cannot be parsed as a number. This is because we have
to compare each element of the list to the passed in element and requires storing
the index in a macro, which requires some unexpandable macros. (This is why we
do not directly use \listindexof when defining \listcontains.)

4 Implementation details

All internal macros are namespaced to prevent package conflicts.

\macrolist@exists One internal macro we use is \macrolist@exists{listname}, which checks that
listname exists. It throws an error otherwise.

1 \newcommand*{\macrolist@exists}[1]{%

2 \ifcsname c@macrolist@list@#1\endcsname

3 \else

4 \PackageError{macrolist}

5 {The first argument is not a defined list}

6 {Make sure you have defined the list before trying to operate on it.}

7 \fi

8 }

\macrolist@inbounds We use \macrolist@inbounds{listname}{index} to check that first, listname is
a defined list using \macrolist@exists, and second, that index is within bounds.

3

It throws an error otherwise.

9 \newcommand*{\macrolist@inbounds}[2]{%

10 \macrolist@exists{#1}%

11 %

12 \if\relax\detokenize{#2}

13 \PackageError{macrolist}

14 {No number has been passed into the second argument of your command

15 }{Pass in a number to the second argument of your command.}

16 \fi

17 %

18 \ifnum\numexpr#2 \relax>\listsize{#1}

19 \PackageError{macrolist}

20 {Index out of bounds}

21 {The number you have passed in to the second argument of your command\MessageBreak

22 is out of the bounds of list ’#1’.}

23 \fi

24 }

Change History

v1.0.0
General: Initial version 1

v1.0.1
General: Add “scope is always

global” to documentation 1
Fix date in initial version
changes entry 1

Fix v. appearing in front of date
in document title 1

Make a couple of defs and lets
global to prevent scoping issues 1

v1.0.2
General: Added comment markers

to remove pars and fix spacing

in listforeach 1
Print changelog in
documentation 1

v1.1.0
General: Add listexists 1

v1.1.1
General: Fix foreach doc by

removing incorrect begin 2
v1.2.0

General: Add listindexof and
listcontains 1

v1.2.1
General: Fix behavior of listindexof

and listcontains for empty lists 1

4

