\NeedsTeXFormat{LaTeX2e}[1994/12/01] \documentclass{article} \usepackage[lithuanian]{babel} \usepackage[L7x]{fontenc} \begin{document} \showhyphens{A� einu � mi�k� kirsti �ali� malk�, ant pe�i� ne�damasis standartinio normaliojo skirstinio funkcij�} \usefont{L7x}{uag}{m}{n}\selectfont \noindent �iandien: \today\par A� einu � mi�k� kirsti �ali� malk�, ant pe�i� ne�damasis standartinio normaliojo skirstinio funkcij� $$ \Phi (x)=\frac{1}{\sqrt{2 \pi}}\int _{-\infty }^x e^{-\frac{t^2}{2}} dt .$$ \usefont{L7x}{ubk}{m}{n}\selectfont \noindent �iandien: \today\par A� einu � mi�k� kirsti �ali� malk�, ant pe�i� ne�damasis standartinio normaliojo skirstinio funkcij� $$ \Phi (x)=\frac{1}{\sqrt{2 \pi}}\int _{-\infty }^x e^{-\frac{t^2}{2}} dt .$$ \usefont{L7x}{ucr}{m}{n}\selectfont \noindent �iandien: \today\par A� einu � mi�k� kirsti �ali� malk�, ant pe�i� ne�damasis standartinio normaliojo skirstinio funkcij� $$ \Phi (x)=\frac{1}{\sqrt{2 \pi}}\int _{-\infty }^x e^{-\frac{t^2}{2}} dt .$$ \usefont{L7x}{uhv}{m}{n}\selectfont \noindent �iandien: \today\par A� einu � mi�k� kirsti �ali� malk�, ant pe�i� ne�damasis standartinio normaliojo skirstinio funkcij� $$ \Phi (x)=\frac{1}{\sqrt{2 \pi}}\int _{-\infty }^x e^{-\frac{t^2}{2}} dt .$$ \usefont{L7x}{uhv}{mc}{n}\selectfont \noindent �iandien: \today\par A� einu � mi�k� kirsti �ali� malk�, ant pe�i� ne�damasis standartinio normaliojo skirstinio funkcij� $$ \Phi (x)=\frac{1}{\sqrt{2 \pi}}\int _{-\infty }^x e^{-\frac{t^2}{2}} dt .$$ \usefont{L7x}{unc}{m}{n}\selectfont \noindent �iandien: \today\par A� einu � mi�k� kirsti �ali� malk�, ant pe�i� ne�damasis standartinio normaliojo skirstinio funkcij� $$ \Phi (x)=\frac{1}{\sqrt{2 \pi}}\int _{-\infty }^x e^{-\frac{t^2}{2}} dt .$$ \usefont{L7x}{upl}{m}{n}\selectfont \noindent �iandien: \today\par A� einu � mi�k� kirsti �ali� malk�, ant pe�i� ne�damasis standartinio normaliojo skirstinio funkcij� $$ \Phi (x)=\frac{1}{\sqrt{2 \pi}}\int _{-\infty }^x e^{-\frac{t^2}{2}} dt .$$ \usefont{L7x}{utm}{m}{n}\selectfont \noindent �iandien: \today\par A� einu � mi�k� kirsti �ali� malk�, ant pe�i� ne�damasis standartinio normaliojo skirstinio funkcij� $$ \Phi (x)=\frac{1}{\sqrt{2 \pi}}\int _{-\infty }^x e^{-\frac{t^2}{2}} dt .$$ \usefont{L7x}{uzc}{b}{it}\selectfont \noindent �iandien: \today\par A� einu � mi�k� kirsti �ali� malk�, ant pe�i� ne�damasis standartinio normaliojo skirstinio funkcij� $$ \Phi (x)=\frac{1}{\sqrt{2 \pi}}\int _{-\infty }^x e^{-\frac{t^2}{2}} dt .$$ \end{document}