next up previous
Next: About this document ...

Math examples

\begin{eqnarray}
\phi(\lambda) & = & \frac{1} {2 \pi i}\int^{c+i\infty}_{c-i\in...
...\epsilon , \bar{\epsilon} & = & \mbox{actual/average energy loss}
\end{eqnarray}

Since (6) or (7d) should hold for arbitrary $ \delta\mathbf{c}$-vectors, it is clear that $ \mathcal{N}(A) = \mathcal{R}(B)$ and that when $ y=B(x)$ one has...
...the Pythagorians knew infinitely many solutions in integers to $ a^2+b^2=c^2$. That no non-trivial integer solutions exist for $ a^n+b^n=c^n$ with integers $ n>2$ has long been suspected (Fermat, c.1637). Only during the current decade has this been proved (Wiles, 1995).


\begin{eqnarray}V \mathbf{\pi}^{sr} & = & \left< \sum_i M_i \mathbf{V}_i \mathbf...
...m_i \sum_\alpha \mathbf{p}_{i\alpha} \mathbf{f}_{i\alpha} \right>
\end{eqnarray}


$\displaystyle \begin{align}B_{ij}^\alpha & = \left(B_{ij}^\alpha\right)_0 + \le...
...} + \frac{\d N_k^\beta}{\d X_i} \frac{\d N_k^\alpha}{\d X_j} \right)\end{align}$


Subsections

Michel Goossens
1999-03-30