
The labelcas package∗

Ulrich Diez
ulrich.diez@alumni.uni-tuebingen.de

April 27, 2006

Abstract

This LATEX2ε-package provides macros \eachlabelcase and \lotlabelcase

as a means of forking dependent on whether specific labels are defined in the
current document.

Contents

1 Introduction 2
1.1 Space notation . 2

2 Package-loading 2

3 The macros 2
3.1 Basic usage . 2

3.1.1 Possible problems . 3
3.1.2 Examples . 4

3.2 Advanced usage (brace-matching,\if... , defining macros) 5

4 Package option—Different spaces, different separators 6

5 Thanks, Acknowledgements 8

6 Legal Notes 9

7 Implementation 9
7.1 A note about removing leading and trailing spaces 9
7.2 Flow of work . 10
7.3 Code . 11

∗This document corresponds to labelcas v1.07, dated 2006/04/27.

1

1 Introduction

The package’s name labelcas is an eight-letter abbreviation for the phrases “la-
bel” and “case”.

There are rare occasions where the author of a document would like to have
detected whether specific labels are defined/in use within the document so that
proper forking/referencing can take place. This package provides the macros
\eachlabelcase and \lotlabelcase which might facilitate this task.

A mechanism for branching dependent on the existence of labels might be
handy, e.g., when extracting a “snippet” from a large document: In case that
within the snippet a label/document-part is referenced which is outside the snip-
pet’s scope, ugly ‘?’ will intersperse the resulting output-file and warnings about
undefined references will accumulate within the log-file.

By testing the label’s existence, you can catch up the error and either change
the way of referencing (e.g., refer to the snippet’s bibliography instead) or com-
pletely suppress referencing for those cases. (By using David Carlisle’s xr- or
xr-hyper-package, you can make available labels of the large document to the
snippet also. A label not defined in the snippet can be picked up from the large
document. . .)

1.1 Space notation

When listing some piece of TEX-source-code, you may need to visibly distinguish
word-separation from single space-characters. The symbol is chosen whenever it
is important to give a visible impression of a space-character in a (possibly ASCII-
encoded) TEX-input-file. x does not represent a character of an input-file but a
token which occurs after tokenizing the input. The token’s category-code is x, the
character-number usually is 32, which is the ASCII-number of the space-character.

2 Package-loading

The package is loaded within in the document-preamble by \usepackage.

\usepackage{labelcas} or
\usepackage[DefineLabelcase]{labelcas}.

The only package-option is DefineLabelcase. It’s usage is described in sec-
tion 4 “Package option—Different spaces, different separators”.

3 The macros

3.1 Basic usage

The macro \eachlabelcase iterates on a comma-separated list of “argument-\eachlabelcase

triplets”, whereby each triplet specifies: 1. a label,
2. action if the label is defined,
3. action if the label is undefined.

During the iteration, an “action-queue” is gathered up from these specifications.
After iterating, the “action-queue” will be executed. You can also specify a new
macro-name within an optional argument. If you do so, the “action-queue” will

2

not be executed but the macro will be defined to perform the actions specified in
the queue:

\eachlabelcase[\macro]{ {〈label 1 〉}{〈action if label 1 defined〉}{〈action if label 1 undefined〉},
{〈label 2 〉}{〈action if label 2 defined〉}{〈action if label 2 undefined〉} ,

...

{〈label n〉}{〈action if label n defined〉}{〈action if label n undefined〉} }

Space-tokens which might surround the comma-separated triplets will be gobbled.

The macro \lotlabelcase iterates on a comma-separated list of label-names and\lotlabelcase

tests for each name if the corresponding label is defined. Within the arguments you
can specify actions for the cases: 1. all labels are defined,

2. none of the labels are defined,
3. some labels are defined/some are undefined,
4. the list does not contain any label.

Like in \eachlabelcase, you can also specify a new macro-name within an op-
tional argument. If you do so, the action will not be executed but the macro will
be defined to perform the action:

\lotlabelcase[\macro]{〈label 1 〉,〈label 2 〉,...,〈label n〉}
{〈actions if all labels are defined〉}
{〈actions if all labels are undefined〉}
{〈actions if some labels are defined and some labels are undefined〉}
{〈actions if list is empty〉}

Space-tokens which might surround the label-names will be gobbled. One level of
braces will also be gobbled so that you can also test for labels the names of which
start or end by a space or contain some comma.

3.1.1 Possible problems

• Testing for labels which are not definable according to the syntax-rules
will lead to TEX-internal error-messages and deliver unexpected/unwanted
results!

• “Label- and referencing management” in LATEX2ε is done by means of
the aux-file, the content of which is gathered and corrected during several
LATEX-runs, and which does not yet exist in the first run. So, in the first
run, all labels from the current document are undefined—when applying
\...labelcase to labels of the current document, it will in any case take
at least two LATEX-runs until everything matches out correctly.

• It was mentioned that, in the macros \eachlabelcase and \lotlabelcase,
space-tokens which surround the argument-triplets/label-names, will be gob-
bled. There are situations where the category-code of the input-character
 is changed—e.g., due to a preceding \obeyspaces or when using some
package where the encoding of TEX-input-files it is played around with. In
such cases, the input-character does not get tokenized as space-token any
more but as some 6=10-token, so that in such cases, triplets/labels in these
macros may, in the input-file, not be surrounded by -characters.
If you want to have these 6=10-tokens gobbled anyway, you can easily achieve

3

this by defining another set of these macros where the appropriate token,
e.g., 13 (active-space) instead of 10 (space-token), is taken into account.
How this is done, is described in section 4 “Package option—Different spaces,
different separators”.

• In the very unlikely case1 that you wish \lotlabelcase (or variants
thereof 2) to scan for the label \@nil, \@nil has to be put in braces and/or
has to be surrounded by space-tokens. This is because the internal iterator-
macros terminate on \@nil.

• Internally token-registers are used and temporary-macros get defined. So
the macros \eachlabelcase and \lotlabelcase (and all variants2) are not
“full-expandable”. This means, \edef or \write or control-sequences the
like which evaluate their arguments fully, cannot be applied to them.3 There-
fore they are declared robust.

• \lotlabelcase and \eachlabelcase can be nested. Inner instances will be
gathered into the action-queues of outer instances.

• If the optional argument for defining a 〈macro〉 rather than having the ac-
tion(s) executed immediately, is used, 〈macro〉 will only be defined within
the group where the \...labelcase-command occurred.
\@ifdefinable is involved into the assignment-process, so that an “already-
defined”-error is forced whenever an existing macro is about to be overridden.
If you need it global, you can achieve this—after having 〈macro〉 defined—by
something like \global\let\macro=\macro.
If you need a “long”-macro, you can achieve this—after having 〈macro〉
defined—by something like:
\expandafter\renewcommand\expandafter\macro\expandafter{\macro}.
But think about it. These macros don’t take arguments!

3.1.2 Examples

Within this document, only the labels sec1, sec2, sec3 and sec4 are defined.
\lotlabelcase{sec1, sec2 , {sec3} ,sec4}

{All labels are defined.}
{None of the labels is defined.}
{Some labels are defined, some not.}
{The list is empty.}

yields: All labels are defined.

1The case is very unlikely because it is a convention in LATEX2ε to leave \@nil undefined.
If labels are defined in terms of macros, these macros are to expand to something that can be
evaluated by a \csname...\endcsname-construct. If they are to expand to something, they must
be defined. . .

2→section 4 “Package option—Different spaces, different separators”.
3In any case it cannot be ensured that all arguments supplied are “full-expandable”. . .

4

\lotlabelcase{sec1, sec2 , UNDEFINED ,sec3}
{All labels are defined.}
{None of the labels is defined.}
{Some labels are defined, some not.}
{The list is empty.}

yields: Some labels are defined, some not.

\lotlabelcase{UNDEF1, UNDEF2 , {UNDEF3} ,UNDEF4}
{All labels are defined.}
{None of the labels is defined.}
{Some labels are defined, some not.}
{The list is empty.}

yields: None of the labels is defined.

\lotlabelcase{ ,, ,}
{All labels are defined.}
{None of the labels is defined.}
{Some labels are defined, some not.}
{The list is empty.}

yields: The list is empty.

\lotlabelcase[\test]{sec1, sec2 , UNDEFINED ,sec3}
{All labels are defined.}
{None of the labels is defined.}
{Some labels are defined, some not.}
{The list is empty.}

defines: \test: macro:->Some labels are defined, some not.

\eachlabelcase{ {sec1}{sec1 defined/}{sec1 undefined/},
{sec2}{sec2 defined/}{sec2 undefined/} ,
{UNDEF}{UNDEF defined/}{UNDEF undefined/} ,
{sec3}{sec3 defined.}{sec3 undefined.} }

yields: sec1 defined/sec2 defined/UNDEF undefined/sec3 defined.

\eachlabelcase[\test]{ {sec1}{sec1 defined/}{sec1 undefined/},
{sec2}{sec2 defined/}{sec2 undefined/} ,
{UNDEF}{UNDEF defined/}{UNDEF undefined/} ,
{sec3}{sec3 defined.}{sec3 undefined.} }

defines: \test:
macro:->sec1 defined/sec2 defined/UNDEF undefined/sec3 defined.

3.2 Advanced usage (brace-matching,\if... , defining macros)

• Braces within the arguments/comma-separated items must be balanced.

• Within the “action-parts” of \eachlabelcase’s argument-triplets from
which the action-queue is formed, balancing \if...\else...\fi-constructs
is not required. But ensured must be, that in the resulting action-queue
everything is balanced correctly in any case.

5

\eachlabelcase{ {sec1} {\if aa} {\if ab},
{sec2} {a is a\else} {a is b\else} ,
{sec3}{a is not a\fi.}{a is not b\fi.} }

is gathered to: \if aaa is a\else a is not a\fi.
Executing the queue yields: a is a.

\eachlabelcase{ {sec1} {\if aa} {\if ab},
{UNDEF} {a is a\else} {a is b\else} ,
{sec3} {a is not a\fi.}{a is not b\fi.} }

is gathered to: \if aaa is b\else a is not a\fi.
Executing the queue yields: a is b.

When trying such obscure things, you must be aware that brace/group-
nesting is independent from conditional-nesting! You might easily end up
with a “forgotten-endgroup”-error or some “extra \else. . . ”-error when
placing such things into other \if...\else...\fi-constructs!

• If you wish to use the arguments/comma-separated items for defining
macros, no extra #-level is needed as everything is accumulated within/pro-
cessed by means of token-registers.

\eachlabelcase{ {sec1}{\def\testA#1#2#3}{\def\testB#1#2#3},
{sec2} {{#1,#2,#3}} {{#3,#2,#1}} }

is gathered to: \def\testA#1#2#3{#1,#2,#3} .
Executing the queue defines: \testA: macro:#1#2#3->#1,#2,#3

\testB: undefined .

\eachlabelcase{ {sec1}{\def\testA#1#2#3}{\def\testB#1#2#3},
{UNDEF} {{#1,#2,#3}} {{#3,#2,#1}} }

is gathered to: \def\testA#1#2#3{#3,#2,#1} .
Executing the queue defines: \testA: macro:#1#2#3->#3,#2,#1

\testB: undefined .

4 Package option—Different spaces, different se-
parators

Above was said that space-tokens (10-tokens) which surround the comma-list-
arguments of \eachlabelcase and \lotlabelcase are gobbled.

There are circumstances where the category-code which gets assigned to
the input-character during the tokenizing-process is changed, and thus the
gobbling-mechanism is broken for these input-characters. E.g., due to a preceding
\obeyspaces or when using some package where the encoding of TEX-input-files
is played around with. This is because space-gobbling internally is implemented
by means of macros with 10-token-delimited arguments.

In normal circumstances, -characters in the input-file which trail a control-
word do not get tokenized when TEX “reads” an input. So it’s kind of a problem
to get space-tokens right behind the name of a control-word, e.g., as first items

6

of the parameter-text when defining macros. A space within braces { } does get
tokenized as it is not preceded by a control-word, but by a brace-character. So a
solution to the problem is: Define a macro which takes an (en-braced) argument
and use this macro for defining the desired control-word whereby the argument is
placed right behind the name of the control-word which is about to be defined.
(Henceforth the term definer-macro is applied in order to call special attention to
the fact that defining other control-sequences is the only purpose of such a macro.)
A in the definer-macro’s argument gets tokenized while this argument is used as
the first item of the desired control-word’s parameter-text → the first item of the
desired control-word’s parameter-text will be a space-token.

In case of the labelcas-package, the problem of getting space-tokens as\DefineLabelcase

delimiters right behind control-words, is also solved by implementing such a
definer-macro. It is called \DefineLabelcase and used for defining both the
user-level-macros \eachlabelcase and \lotlabelcase and the internal-macros
\lc@iterate, \lc@remtrailspace and \lc@remleadspace. Usually it is dis-
carded/destroyed when defining these macros has taken place. But you can spec-
ify the package-option DefineLabelcase. When you do so, \DefineLabelcase
does not get destroyed, and you can use it for creating “new variants” of
\eachlabelcase and \lotlabelcase plus internals while specifying proper space-
tokens and separators. \DefineLabelcase takes four mandatory arguments:

\DefineLabelcase{〈space〉}{〈delimiter〉}{〈prefix 〉}{〈global-indicator〉}

〈space〉 specifies the argument-surrounding token that is to be removed. Usually
surrounding space-tokens shall be discarded. Default: 10 (space).

〈delimiter〉 specifies the delimiter/separator. Usually the argument-triplets or
label-lists are comma-separated. Default: ,12 (comma).

〈prefix 〉 specifies the macro-name-prefix. You cannot assign the same name at
the same time to different control-sequences. Therefore, when creating new
variants of \eachlabelcase and \lotlabelcase, you have to specify a pre-
fix which gets inserted at the beginning of the macro-name. E.g., specifying
the prefix FOO leads to defining the macro-set:
\FOOeachlabelcase, \FOOlotlabelcase (user-macros) and
\FOOlc@iterate, \FOOlc@remtrailspace, \FOOlc@remleadspace (inter-
nal).
The original versions are just called \eachlabelcase, \lotlabelcase,
\lc@iterate. . . (without a prefix in the macro-name). Default: (empty).

〈global-indicator〉: In case that this argument contains only the token \global,
defining the new macro-set takes place in terms of \global. Otherwise the
scope is restricted to the current grouping-level. Default: \global.

Don’t try weird things like specifying the same token both for 〈space〉 and
〈delimiter〉, or leaving any of those empty, or specifying any of those to \@nil
(, which is reserved for terminating the recursion)—unless you like error-messages!
Please only specify tokens which may be used for separating parameters from each
other within the parameter-text of a definition! Also please specify the 〈prefix 〉
only in terms of letter-character-tokens! There is no error-checking imple-
mented on these things!

7

\begingroup
\obeyspaces
\endlinechar=-1\relax
\DefineLabelcase{ }{/}{SPACEOBEYED}{local}%
\SPACEOBEYEDlotlabelcase[\test]{sec1/ sec2 / UNDEFINED /sec3}%
{All labels are defined.}%
{None of the labels is defined.}%
{Some labels are defined, some not.}%
{The list is empty.}%
\global\let\test\test
\endgroup

defines: \test: macro:->Some labels are defined, some not.

\begingroup
\endlinechar=-1\relax
\DefineLabelcase{-}{/}{BAR}{local}%
\BARlotlabelcase[\test]{sec1/-sec2-/--%

---/sec3}%
{All labels are defined.}%
{None of the labels is defined.}%
{Some labels are defined, some not.}%
{The list is empty.}%
\global\let\test\test
\endgroup

defines: \test: macro:->All labels are defined.

\begingroup
\endlinechar=-1\relax
\DefineLabelcase{.}{/}{DOT}{local}%
\DOTeachlabelcase{.{sec1}..{sec1 defined/}{sec1 undefined/}/%
..................{sec2}...{sec2 defined/}...{sec2 undefined/}./..%
..................{UNDEF}{UNDEF defined/}...{UNDEF undefined/}./%
..................{sec3}{sec3 defined.}{sec3 undefined.}..}
\endgroup

yields: sec1 defined/sec2 defined/UNDEF undefined/sec3 defined.

5 Thanks, Acknowledgements

• Many thanks to all who encouraged me in making the attempt of getting
things in this package less error-prone.

• Thanks to everybody who took the macro-writing challenges presented in
the INFO-TEX-‘Around the bend’-department which was initiated back
in the early 90’s by Michael Downes and regularly took place under his
guidance. His summaries of the solutions are archived and on-line available
at http://www.tug.org/tex-archive/info/aro-bend/. The information
therein helps a great deal in understanding TEX in general and learning about
basic problem solving strategies—e.g., the removal of leading- and trailing
spaces from an (almost) arbitrary token-sequence (exercise.015/answer.015).

8

• Thanks to everybody who provides valuable information at the TEX news
groups and mailing lists. I received great help especially at comp.text.tex,
where my—often trivial—questions were answered patiently again and again.

• Thanks to the LATEX-package authors, not only for providing means of
achieving special typesetting-goals, but also for hereby delivering informative
programming-examples. labelcas actually was inspired by David Carlisle’s
xr- and xr-hyper-packages which make available the labels of other LATEX-
documents to the current one.

6 Legal Notes

labelcas is released under the LATEX Project Public Licence.

Usage of the labelcas-package is at your own risk. There is no warranty—
neither for documentation nor for any other part of the labelcas-package. If
something breaks, you may keep the pieces.

7 Implementation

7.1 A note about removing leading and trailing spaces

The matter of removing trailing spaces from an (almost) arbitrary token-sequence
is elaborated in detail by Michael Downes, ‘Around the Bend #15, answers’, a
summary of internet-discussion which took place under his guidance primarily at
the INFO-TEX list, but also in usenet (comp.text.tex) and via private e-mail;
December 1993. Online archived at:
http://www.tug.org/tex-archive/info/aro-bend/answer.015.

One basic approach suggested therein is using TEX’s scanning of delimited
parameters in order to detect and discard the ending space of an argument:

. . . scan for a pair of tokens: a space-token and some well-chosen bizarre
token that can’t possibly occur in the scanned text. If you put the
bizarre token at the end of the text, and if the text has a trailing
space, then TEX’s delimiter matching will match at that point and not
before, because the earlier occurrences of space don’t have the requisite
other member of the pair.

Next consider the possibility that the trailing space is absent: TEX
will keep on scanning ahead for the pair 〈space〉〈bizarre〉 until either it
finds them or it decides to give up and signal a ‘Runaway argument?’
error. So you must add a stop pair to catch the runaway argument
possibility: a second instance of the bizarre token, preceded by a space.
If TEX doesn’t find a match at the first bizarre token, it will at the
second one.

(Look up the macros \KV@@sp@def, \KV@@sp@b, \KV@@sp@c and \KV@@sp@d in
David Carlisle’s keyval-package for an interesting variation on this approach.)

When scanning for parameters ##1〈space〉〈bizarre〉##2〈B1 〉 the sequence:
〈stuff where to remove trail-space〉〈bizarre〉〈space〉〈bizarre〉〈B1 〉
, you can fork two cases:

9

1. Trailing-space:
##1=〈stuff where to remove trail-space〉, but with removed space. (And
possibly one removed brace-level!)
##2 = 〈space〉〈bizarre〉.

2. No trailing-space:
##1=〈stuff where to remove trail-space〉〈bizarre〉.
##2 is empty.

So forking can be implemented dependent on the emptiness of ##2.
You can easily prevent the brace-removal in the first case, e.g. by adding (and

later removing) something in front of the 〈stuff where to remove trail-space〉.
You can choose 〈B1 〉=〈bizarre〉〈space〉.

‘Around the Bend #15, answers’ also presents a similar way for the removal
of leading spaces from an (almost) arbitrary token-sequence:

The latter method is perhaps most straightforwardly done as a mirror-
image of the method for removing a trailing space: make the delimiter
〈bizarre〉〈space〉, and call the macro [. . .] by putting 〈bizarre〉 before
the scanned text and a stop pair 〈bizarre〉〈space〉 after it, in case a
leading space is not present

When scanning for parameters ##1〈bizarre〉〈space〉##2〈bizarre〉〈B2 〉 the
sequence:
〈bizarre〉〈stuff where to remove lead-space〉〈bizarre〉〈space〉〈bizarre〉〈B2 〉
, you can fork two cases:

1. Leading space:
##1= is empty.
##2 = 〈stuff where to remove lead-space〉〈bizarre〉〈space〉 (but with a leading-
space removed from 〈stuff where to remove lead-space〉).

2. No leading space:
##1=〈bizarre〉〈stuff where to remove lead-space〉.
##2 is empty.

Thus forking can be implemented dependent on the emptiness of either of the
two arguments.

You can choose 〈B2 〉=〈bizarre〉.

7.2 Flow of work

Both \〈prefix 〉eachlabelcase and \〈prefix 〉lotlabelcase iterate on (e.g.,
comma-) separated lists:

1. The list is passed as an argument to the user-macro.
2. The list is passed from the user-macro to \〈prefix 〉lc@iterate whereby a

leading 〈space〉 is added for brace-removal-protection.
3. \〈prefix 〉lc@iterate recursively iterates on the list-items until the item

〈space〉\@nil occurs:
a) If the item (with leading 〈space〉 stripped-off) is not empty, it will be

passed to

10

b) \〈prefix 〉lc@remtrailspace. Here trailing 〈space〉 is removed recur-
sively. Afterwards, it is passed by \〈prefix 〉lc@remtrailspace to

c) \〈prefix 〉lc@remleadspace where leading 〈space〉 (also the previously in-
serted one) is removed recursively. After that \〈prefix 〉lc@remleadspace
passes the item to the macro

d) \@tempa for further processing. \@tempa at this stage will be locally
defined within the user-macro. \@tempa initiates the actual work which
(hopefully!) results in adding the appropriate action-sequence to the
queue which is represented by \@temptokena.

e) Before processing the next item in the next iteration-round, a leading
〈space〉 for brace-removal-protection will be added in front of the remain-
ing list by \〈prefix 〉lc@iterate.

4. After iterating the list within the user-macro, the routine
\lc@macrodefiner will check for the user-macro’s optional argument
and, in case that it is present, modify the action-queue-register, so that,
when flushing it, a macro will be produced instead of queue-execution.

5. The final step within the user-macro is flushing the action-queue-register.

7.3 Code

\DefineLabelcase \DefineLabelcase is used for providing parameters during the definition of the
macros \〈prefix 〉eachlabelcase, \〈prefix 〉lotlabelcase (user),

\〈prefix 〉lc@iterate, \〈prefix 〉lc@remtrailspace,
\〈prefix 〉lc@remleadspace (internal).

Parameters are: #1=〈space〉; #2=〈delimiter〉; #3=〈prefix 〉; #4=〈global-indicator〉.
Defining of \DefineLabelcase takes place within a group, so that after closing

the group it gets discarded. Package-options will also be evaluated within that
group, right after defining \DefineLabelcase. By the option DefineLabelcase,
\DefineLabelcase can be “globalized” before closing the group:
1 〈∗labelcas〉
2 \DeclareOption{DefineLabelcase}%

3 {\global\let\DefineLabelcase\DefineLabelcase}%

4 \begingroup

5 \newcommand\DefineLabelcase[4]{%

\〈prefix〉lc@remtrailspace It is assured that 〈delimiter〉 does not occur in the top-level of the 〈stuff where
to remove trail-space〉, for 〈delimiter〉 is used in the list for separating the single
items of 〈stuff where to remove trail-space〉 from each other. Therefore you can
choose 〈bizarre〉=〈delimiter〉 and 〈B1 〉=〈delimiter〉〈space〉:
6 \expandafter\@ifdefinable\csname#3lc@remtrailspace\endcsname{%

7 \expandafter\long

8 \expandafter\def

9 \csname#3lc@remtrailspace\endcsname##1#1#2##2#2#1{%

Above was said that forking can take place depending on emptiness of the second
argument. The arguments come from the items of the comma-separated list—thus
they might contain macro-definitions and/or unbalanced \if...\else...\fi-
constructs. So put the second argument into a macro \@tempa by means of a
token-register in order to prevent errors related to parameter-numbering:
10 \begingroup

11 \toks@{##2}%

11

12 \edef\@tempa{\the\toks@}%

When forking takes place, the content of the arguments might—when placed into
the corresponding \if- or \else-branches directly—erroneously match up those
constructs. In order to prevent this, the action related to the different branches
is handled by means of \@firstoftwo and \@secondoftwo which get expanded
when “choosing the forking-route” is already accomplished:
13 \expandafter\endgroup

14 \ifx\@tempa\@empty

15 \expandafter\@firstoftwo

16 \else

17 \expandafter\@secondoftwo

18 \fi

The appropriate action in case of no more trailing 〈space〉 is removing leading
〈space〉. In this case ##1 is terminated by 〈bizarre〉, so add only 〈space〉〈bizarre〉〈B2 〉
at the end instead of 〈bizarre〉〈space〉〈bizarre〉〈B2 〉
(〈B2 〉=〈bizarre〉=〈delimiter〉 in \〈prefix 〉lc@remleadspace):
19 {\csname#3lc@remleadspace\endcsname#2##1#1#2#2}%

The appropriate action in case of trailing 〈space〉 is checking and removing more
thereof:
20 {\csname#3lc@remtrailspace\endcsname##1#2#1#2#2#1}%

21 }%

22 }%

\〈prefix〉lc@remleadspace \〈prefix 〉lc@remleadspace is similar to \〈prefix 〉lc@remtrailspace, but with
〈B2 〉=〈bizarre〉=〈delimiter〉:
23 \expandafter\@ifdefinable\csname#3lc@remleadspace\endcsname{%

24 \expandafter\long

25 \expandafter\def

26 \csname#3lc@remleadspace\endcsname##1#2#1##2#2#2{%

Above was said that forking can take place e.g., depending on emptiness of the first
argument. Arguments still come from the list-items, so let’s use token-registers
for the same reasons as in \〈prefix 〉lc@remtrailspace:
27 \begingroup

28 \toks@{##1}%

29 \edef\@tempa{\the\toks@}%

The single list-items might still contain macro-definitions, \if-forking and the
like, therefore again choose the forking-route in terms of \@firstoftwo and
\@secondoftwo:
30 \expandafter\endgroup

31 \ifx\@tempa\@empty

32 \expandafter\@firstoftwo

33 \else

34 \expandafter\@secondoftwo

35 \fi

The appropriate action in case of leading 〈space〉 is checking and removing more
thereof:
36 {\csname#3lc@remleadspace\endcsname#2##2#2#2}%

12

In case of no more leading 〈space〉, the actual work, which is defined in user-macro’s
\@tempa, can be done:
37 {\@tempa##1#2}%

38 }%

39 }%

\〈prefix〉lc@iterate \〈prefix 〉lc@iterate iterates on arguments which are delimited by 〈delimiter〉.
40 \expandafter\@ifdefinable\csname#3lc@iterate\endcsname{%

41 \expandafter\long

42 \expandafter\def

43 \csname#3lc@iterate\endcsname##1#2{%

Let’s put the 〈space〉, which needs to be inserted for brace-removal-protection, into
a token-register—just in case: Maybe some day somebody might specify weird \fi-
or multiple-token-〈space〉 or the like. . . :
44 \toks@{#1}%

Make locally available the arguments as macros:
\@tempa=current argument without leading 〈space〉
\@tempb=current argument
\@tempc=recursion-stop-item
\@tempd=call for trailing-〈space〉-removal
(\〈prefix 〉lc@remleadspace launches \@tempa when no more leading 〈space〉 is
present—therefore before starting the leading-〈space〉-removal, \@tempa is defined
to redefine itself to the desired value) :
45 \begingroup

46 \long\def\@tempa#2####1#2{\toks@{####1}\edef\@tempa{\the\toks@}}%

47 \csname#3lc@remleadspace\endcsname#2##1#2#1#2#2%

48 \toks@{##1}%

49 \edef\@tempb{\the\toks@}%

50 \toks@{#1\@nil}%

51 \edef\@tempc{\the\toks@}%

52 \toks@{\csname#3lc@remtrailspace\endcsname##1#2#1#2#2#1}%

53 \edef\@tempd{\the\toks@}%

Test if the current argument equals the recursion-stop-item:
54 \ifx\@tempb\@tempc

If so terminate the iteration—do nothing but closing the current group:
55 \expandafter\endgroup

56 \else

Otherwise check—before closing the group—if the current argument minus leading
〈space〉 is empty:
57 \ifx\@tempa\@empty

If so, do nothing but ending the group:
58 \expandafter\endgroup

59 \else

Otherwise launch trailing-〈space〉-removal:
60 \expandafter\expandafter

61 \expandafter \endgroup

62 \expandafter\@tempd

63 \fi

13

Then continue iterating the list and hereby add a preceding 〈space〉 to the next
item for brace-protection during trailing-〈space〉-removal in the next run:
64 \csname#3lc@iterate\expandafter\expandafter

65 \expandafter\endcsname

66 \expandafter\the

67 \expandafter\toks@

68 \fi

69 }%

70 }%

\〈prefix〉eachlabelcase \〈prefix 〉eachlabelcase’s optional argument is the possibly-to-be-defined control-
sequence. The mandatory-argument contains the argument-triplet-list.
71 \expandafter\@ifdefinable\csname#3eachlabelcase\endcsname{%

72 \expandafter\DeclareRobustCommand

73 \csname#3eachlabelcase\endcsname[2][]{%

Locally define \@tempa—it is called by \〈prefix 〉lc@remleadspace for working on
a list-item when all surrounding 〈space〉 has been removed:
74 {%

The stuff that results from 〈space〉-removing is surrounded by 〈delimiter〉. It
cannot be processed at this place, as first the triplet needs to be split into it’s
components by \@tempb:
75 \long\def\@tempa#2####1#2{%

76 \@tempb####1#2#1#2#2%

77 }%

\@tempb is used for splitting the triplet and removing 〈space〉 between the triplet’s
components. In this process it redefines itself several times. In case that no label
is defined the name thereof corresponds to the first component, add the third
component to \@temptokena, otherwise add the second:
78 \long\def\@tempb####1{%

79 \begingroup

80 \long\def\@tempb########1########2########3{%

81 \expandafter\expandafter

82 \expandafter\endgroup

83 \expandafter\ifx

84 \csname r@########1\endcsname\relax

85 \expandafter\@firstoftwo

86 \else

87 \expandafter\@secondoftwo

88 \fi

89 {\@temptokena\expandafter{\the\@temptokena########3}}%

90 {\@temptokena\expandafter{\the\@temptokena########2}}%

91 }%

92 \begingroup

93 \toks@{}%

94 \long\def\@tempb########1{%

95 \long\def\@tempa#2################1#2{%

96 \toks@\expandafter{\the\toks@{################1}}%

97 \expandafter\endgroup\expandafter\@tempb\the\toks@

98 }%

99 \toks@\expandafter{\the\toks@{########1}}%

100 \csname#3lc@remleadspace\endcsname#2%

14

101 }%

102 \toks@{{####1}}\csname#3lc@remleadspace\endcsname#2%

103 }%

Let’s clear the register where the action-queue is accumulated:
104 \@temptokena{}%

Let’s iterate on the list:
105 \csname#3lc@iterate\endcsname#1##2#2\@nil#2%

In case that the optional argument is specified, the routine \lc@macrodefiner
will modify the register to define a macro:

106 \lc@macrodefiner{##1}%

Close the group and “flush” the register:
107 \expandafter}\the\@temptokena

108 }%

109 }%

\〈prefix〉lotlabelcase \〈prefix 〉lotlabelcase’s optional argument is the possibly-to-be-defined control-
sequence. The five mandatory-arguments contain the label-list and the actions
that shall take place in the cases: All of the labels are defined / none are defined /
just some are defined / list is empty:

110 \expandafter\@ifdefinable\csname#3lotlabelcase\endcsname{%

111 \expandafter\DeclareRobustCommand

112 \csname#3lotlabelcase\endcsname[6][]{%

Locally define \@tempa—it is called by \〈prefix 〉lc@remleadspace for working on
a list-item when all surrounding 〈space〉 has been removed:

113 {%

114 \long\def\@tempa#2####1#2{%

The list item is a label. In case that it is undefined, have the helper-macro \@tempb
defined/switched to \relax, otherwise do the same but use \@tempc instead:

115 {\expandafter\expandafter\expandafter}\expandafter

116 \ifx\csname r@####1\endcsname\relax

117 \let\@tempb\relax

118 \else

119 \let\@tempc\relax

120 \fi

121 }%

Define \@tempb and \@tempc to empty. They may be “switched” to \relax when
\@tempa is called during iteration.

122 \def\@tempb{}%

123 \def\@tempc{}%

Let’s iterate on the list:
124 \csname#3lc@iterate\endcsname#1##2#2\@nil#2%

Assign the register according to the label-defining-cases which are now represented
by the definitions of \@tempb and \@tempc which are defined either \relax or
empty:

125 \ifx\@tempb\@empty

126 \ifx\@tempc\@empty

127 \@temptokena{##6}%

128 \else

15

129 \@temptokena{##3}%

130 \fi

131 \else

132 \ifx\@tempc\@empty

133 \@temptokena{##4}%

134 \else

135 \@temptokena{##5}%

136 \fi

137 \fi

In case that the optional argument is specified, the routine \lc@macrodefiner
will modify the register to define a macro:

138 \lc@macrodefiner{##1}%

Close the group and “flush” the register:
139 \expandafter}\the\@temptokena

140 }%

141 }%

If the 〈global-indicator〉-argument equals \global, the above definitions need to
be made \global:

142 {\toks@{#4}\edef\@tempa{\the\toks@}\def\@tempb{\global}\expandafter}%

143 \ifx\@tempa\@tempb

144 \expandafter\global\expandafter\let

145 \csname#3lc@remtrailspace\expandafter\endcsname

146 \csname#3lc@remtrailspace\endcsname

147 \expandafter\global\expandafter\let

148 \csname#3lc@remleadspace\expandafter\endcsname

149 \csname#3lc@remleadspace\endcsname

150 \expandafter\global\expandafter\let

151 \csname#3lc@iterate\expandafter\endcsname

152 \csname#3lc@iterate\endcsname

153 \expandafter\global\expandafter\let

154 \csname#3eachlabelcase\expandafter\endcsname

155 \csname#3eachlabelcase\endcsname

156 \expandafter\global\expandafter\let

157 \csname#3lotlabelase\expandafter\endcsname

158 \csname#3lotlabelcase\endcsname

159 \fi

Now the definition of \DefineLabelcase is complete:
160 }%

Remember that a group was started for performing \DefineLabelcase’s defin-
ition and that \DefineLabelcase will be gone when that group gets closed—
unless some “globalizing” takes place before. So this is the time for checking if
\DefineLabelcase shall be available to the user and in this case for making it
global:

161 \ProcessOptions\relax

Now the group which was started for defining \DefineLabelcase can be closed—
right after using it for defining the basic-usage-macros:

162 \expandafter\endgroup\DefineLabelcase{ }{,}{}{\global}%

\lc@macrodefiner There is still the routine left which is applied by the user-macros for having the
action-queue-register modified, so that when flushing it, a macro will be produced

16

instead of queue-execution. \lc@macrodefiner takes as it’s argument the optional
argument of a user-macro. In case that the argument is not empty, the action-
queue-register is modified, so that it’s flushing yields the attempt of defining a
macro from the argument which expands to the former content of the register:

163 \newcommand\lc@macrodefiner[1]{%

164 {\def\@tempa{#1}\expandafter}%

165 \ifx\@tempa\@empty

166 \else

167 \@temptokena\expandafter{%

168 \expandafter\begingroup

169 \expandafter\toks@

170 \expandafter\expandafter

171 \expandafter {%

172 \expandafter\expandafter

173 \expandafter \@temptokena

174 \expandafter\expandafter

175 \expandafter {%

176 \expandafter\the

177 \expandafter\@temptokena

178 \expandafter}%

179 \expandafter}%

180 \expandafter\@temptokena

181 \expandafter{%

182 \expandafter\@temptokena

183 \expandafter{%

184 \the\@temptokena}%

185 \@ifdefinable#1{\edef#1{\the\@temptokena}}}%

186 \expandafter\expandafter

187 \expandafter \endgroup

188 \expandafter\the

189 \expandafter\@temptokena

190 \the\toks@

191 }%

192 \fi

193 }%

194 〈/labelcas〉

Change History

v1.0

General: Initial public release 1

v1.01

\<prefix>lc@remleadspace: Let
〈B2 〉=〈bizarre〉 12

\<prefix>lc@remtrailspace: Let
〈B1 〉=〈bizarre〉〈space〉 11

General: Fixed documentation-
inaccuracies 1

v1.02

General: Fixed documentation-
inaccuracies 1

v1.03

\<prefix>eachlabelcase: Chan-
ged forking-mechanism
from token-register to
\@firstoftwo/\@secondoftwo 14

\<prefix>lc@remleadspace:
Changed forking-mechanism
from token-register to
\@firstoftwo/\@secondoftwo 12

\<prefix>lc@remtrailspace:
Changed forking-mechanism
from token-register to

17

\@firstoftwo/\@secondoftwo 11
v1.04

General: Fixed documentation-
inaccuracies 1

v1.05
General: Fixed documentation-

inaccuracies 1
v1.06

\<prefix>eachlabelcase: Use
\@ifdefinable instead of
\newcommand 14

\<prefix>lc@iterate: Use
\@ifdefinable instead of
\newcommand 13

\<prefix>lc@remleadspace: Use

\@ifdefinable instead of
\newcommand 12

\<prefix>lc@remtrailspace: Use
\@ifdefinable instead of
\newcommand 11

\<prefix>lotlabelcase: Use
\@ifdefinable instead of
\newcommand 15

\lc@macrodefiner: Use \@ifdefinable
instead of \newcommand 16

v1.07
\<prefix>lc@iterate: Define

\@tempa in terms of \long . . . 13
General: Fixed documentation-

inaccuracies 1

Index

Numbers written in italics refer to the page where the corresponding entry is
described; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\<prefix>eachlabelcase

. 71

\<prefix>lc@iterate 40

\<prefix>lc@remleadspace

. 23

\<prefix>lc@remtrailspace

. 6

\<prefix>lotlabelcase

. 110

\@tempa 12, 14,
29, 31, 37, 46,
57, 75, 95, 114,
142, 143, 164, 165

\@tempb 49, 54, 76, 78,
80, 94, 97, 117,
122, 125, 142, 143

\@tempc 51, 54,
119, 123, 126, 132

\@tempd 53, 62

D
\DefineLabelcase . .

. 1, 7, 162

E
\eachlabelcase 2

L
\lc@macrodefiner . .

. . . . 106, 138, 163
\lotlabelcase 3

18

