
The xparse package
Document command parser∗

The LATEX3 Project†

Released 2012/07/16

The xparse package provides a high-level interface for producing document-level com-
mands. In that way, it is intended as a replacement for the LATEX2ε \newcommand macro.
However, xparse works so that the interface to a function (optional arguments, stars
and mandatory arguments, for example) is separate from the internal implementation.
xparse provides a normalised input for the internal form of a function, independent of the
document-level argument arrangement.

At present, the functions in xparse which are regarded as “stable” are:

• \DeclareDocumentCommand

• \NewDocumentCommand

• \RenewDocumentCommand

• \ProvideDocumentCommand

• \DeclareDocumentEnvironment

• \NewDocumentEnvironment

• \RenewDocumentEnvironment

• \ProvideDocumentEnvironment

• \DeclareExpandableDocumentCommand

• \IfNoValue(TF)

• \IfBoolean(TF)

with the other functions currently regarded as “experimental”. Please try all of the com-
mands provided here, but be aware that the experimental ones may change or disappear.
∗This file describes v3990, last revised 2012/07/16.
†E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

0.1 Specifying arguments
Before introducing the functions used to create document commands, the method for
specifying arguments with xparse will be illustrated. In order to allow each argument to
be defined independently, xparse does not simply need to know the number of arguments
for a function, but also the nature of each one. This is done by constructing an argument
specification, which defines the number of arguments, the type of each argument and
any additional information needed for xparse to read the user input and properly pass it
through to internal functions.

The basic form of the argument specifier is a list of letters, where each letter defines
a type of argument. As will be described below, some of the types need additional
information, such as default values. The argument types can be divided into two, those
which define arguments that are mandatory (potentially raising an error if not found)
and those which define optional arguments. The mandatory types are:

m A standard mandatory argument, which can either be a single token alone or mul-
tiple tokens surrounded by curly braces. Regardless of the input, the argument will
be passed to the internal code surrounded by a brace pair. This is the xparse type
specifier for a normal TEX argument.

l An argument which reads everything up to the first open group token: in standard
LATEX this is a left brace.

r Reads a “required” delimited argument, where the delimiters are given as 〈token1 〉
and 〈token2 〉: r〈token1 〉〈token2 〉. If the opening 〈token〉 is missing, the default
marker -NoValue- will be inserted after a suitable error.

R As for r, this is a “required” delimited argument but has a user-definable recovery
〈default〉, given as R〈token1 〉〈token2 〉{〈default〉}.

u Reads an argument “until” 〈tokens〉 are encountered, where the desired 〈tokens〉
are given as an argument to the specifier: u{〈tokens〉}.

v Reads an argument “verbatim”, between the following character and its next oc-
currence, in a way similar to the argument of the LATEX2ε command \verb. Thus
a v-type argument is read between two matching tokens, which cannot be any of
%, \, #, {, }, ^ or ␣. The verbatim argument can also be enclosed between braces,
{ and }. A command with a verbatim argument will not work when it appears
within an argument of another function.

The types which define optional arguments are:

o A standard LATEX optional argument, surrounded with square brackets, which will
supply the special -NoValue- marker if not given (as described later).

d An optional argument which is delimited by 〈token1 〉 and 〈token2 〉, which are given
as arguments: d〈token1 〉〈token2 〉. As with o, if no value is given the special marker
-NoValue- is returned.

O As for o, but returns 〈default〉 if no value is given. Should be given as O{〈default〉}.

2

D As for d, but returns 〈default〉 if no value is given: D〈token1 〉〈token2 〉{〈default〉}.
Internally, the o, d and O types are short-cuts to an appropriated-constructed D
type argument.

s An optional star, which will result in a value \BooleanTrue if a star is present and
\BooleanFalse otherwise (as described later).

t An optional 〈token〉, which will result in a value \BooleanTrue if 〈token〉 is present
and \BooleanFalse otherwise. Given as t〈token〉.

g An optional argument given inside a pair of TEX group tokens (in standard LATEX,
{ . . . }), which returns -NoValue- if not present.

G As for g but returns 〈default〉 if no value is given: G{〈default〉}.

Using these specifiers, it is possible to create complex input syntax very easily. For
example, given the argument definition ‘s o o m O{default}’, the input ‘*[Foo]{Bar}’
would be parsed as:

• #1 = \BooleanTrue
• #2 = {Foo}
• #3 = -NoValue-
• #4 = {Bar}
• #5 = {default}

whereas ‘[One][Two]{}[Three]’ would be parsed as:
• #1 = \BooleanFalse
• #2 = {One}
• #3 = {Two}
• #4 = {}
• #5 = {Three}

Note that after parsing the input there will be always exactly the same number of
〈balanced text〉 arguments as the number of letters in the argument specifier. The
\BooleanTrue and \BooleanFalse tokens are passed without braces; all other argu-
ments are passed as brace groups.

Delimited argument types (d, o and r) are defined such that they require matched
pairs of delimiters when collecting an argument. For example

\DeclareDocumentCommand{\foo}{o}{#1}
\foo[[content]] % #1 = "[content]"
\foo[[] % Error: missing closing "]"

Also note that { and } cannot be used as delimiters as they are used by TEX as grouping
tokens. Arguments to be grabbed inside these tokens must be created as either m- or
g-type arguments.

Two more tokens have a special meaning when creating an argument specifier. First,
+ is used to make an argument long (to accept paragraph tokens). In contrast to
LATEX2ε’s \newcommand, this applies on an argument-by-argument basis. So modify-
ing the example to ‘s o o +m O{default}’ means that the mandatory argument is now
\long, whereas the optional arguments are not.

3

Secondly, the token > is used to declare so-called “argument processors”, which
can be used to modify the contents of an argument before it is passed to the macro
definition. The use of argument processors is a somewhat advanced topic, (or at least a
less commonly used feature) and is covered in Section 0.7.

By default, an argument of type v must be at most one line. Prefixing with + allows
line breaks within the argument. The argument is given as a string of characters with
category codes 12 or 13, except spaces, which have category code 10.

0.2 Spacing and optional arguments
TEX will find the first argument after a function name irrespective of any intervening
spaces. This is true for both mandatory and optional arguments. So \foo[arg] and
\foo␣␣␣[arg] are equivalent. Spaces are also ignored when collecting arguments up to
the last mandatory argument to be collected (as it must exist). So after
\DeclareDocumentCommand \foo { m o m } { ... }

the user input \foo{arg1}[arg2]{arg3} and \foo{arg1}␣␣[arg2]␣␣␣{arg3} will both
be parsed in the same way. However, spaces are not ignored when parsing optional
arguments after the last mandatory argument. Thus with
\DeclareDocumentCommand \foo { m o } { ... }

\foo{arg1}[arg2] will find an optional argument but \foo{arg1}␣[arg2] will not. This
is so that trailing optional arguments are not picked up “by accident” in input.

0.3 Required delimited arguments
The contrast between a delimited (D-type) and “required delimited” (R-type) argument
is that an error will be raised if the latter is missing. Thus for example
\DeclareDocumentCommand\foo{r()m}
\foo{oops}

will lead to an error message being issued. The marker -NoValue- (r-type) or user-
specified default (for R-type) will be inserted to allow error recovery.

Users should note that support for required delimited arguments is somewhat ex-
perimental. Feedback is therefore very welcome on the LaTeX-L mailing list.

0.4 Verbatim arguments
Arguments of type v are read in verbatim mode, which will result in the grabbed argument
consisting of tokens of category codes 12 (“other”) and 13 (“active”), except spaces, which
are given category code 10 (“space”). The argument is delimited in a similar manner to
the LATEX2ε \verb function.

Functions containing verbatim arguments cannot appear in the arguments of other
functions. The v argument specifier includes code to check this, and will raise an error if
the grabbed argument has already been tokenized by TEX in an irreversible way.

Users should note that support for verbatim arguments is somewhat experimental.
Feedback is therefore very welcome on the LaTeX-L mailing list.

4

0.5 Declaring commands and environments
With the concept of an argument specifier defined, it is now possible to describe the
methods available for creating both functions and environments using xparse.

The interface-building commands are the preferred method for creating document-
level functions in LATEX3. All of the functions generated in this way are naturally robust
(using the ε-TEX \protected mechanism).

\DeclareDocumentCommand 〈Function〉 {〈arg spec〉} {〈code〉}

This family of commands are used to create a document-level 〈function〉. The argument
specification for the function is given by 〈arg spec〉, and expanding to be replaced by the
〈code〉.

As an example:

\DeclareDocumentCommand \chapter { s o m }
{
\IfBooleanTF {#1}
{ \typesetnormalchapter {#2} {#3} }
{ \typesetstarchapter {#3} }

}

would be a way to define a \chapter command which would essentially behave like the
current LATEX2ε command (except that it would accept an optional argument even when
a * was parsed). The \typesetnormalchapter could test its first argument for being
-NoValue- to see if an optional argument was present.

The difference between the \Declare..., \New... \Renew... and \Provide...
versions is the behaviour if 〈function〉 is already defined.

• \DeclareDocumentCommand will always create the new definition, irrespective of
any existing 〈function〉 with the same name.

• \NewDocumentCommand will issue an error if 〈function〉 has already been defined.

• \RenewDocumentCommand will issue an error if 〈function〉 has not previously been
defined.

• \ProvideDocumentCommand creates a new definition for 〈function〉 only if one has
not already been given.

TEXhackers note: Unlike LATEX 2ε’s \newcommand and relatives, the \DeclareDocumentCommand
function do not prevent creation of functions with names starting \end....

\DeclareDocumentCommand
\NewDocumentCommand
\RenewDocumentCommand
\ProvideDocumentCommand

5

\DeclareDocumentEnvironment {〈environment〉} {〈arg spec〉}
{〈start code〉} {〈end code〉}

\DeclareDocumentEnvironment
\NewDocumentEnvironment
\RenewDocumentEnvironment
\ProvideDocumentEnvironment

These commands work in the same way as \DeclareDocumentCommand, etc., but create
environments (\begin{〈function〉} . . . \end{〈function〉}). Both the 〈start code〉 and 〈end
code〉 may access the arguments as defined by 〈arg spec〉.

0.6 Testing special values
Optional arguments created using xparse make use of dedicated variables to return infor-
mation about the nature of the argument received.

\IfNoValueTF {〈argument〉} {〈true code〉} {〈false code〉}

The \IfNoValue tests are used to check if 〈argument〉 (#1, #2, etc.) is the special
-NoValue- marker For example

\DeclareDocumentCommand \foo { o m }
{
\IfNoValueTF {#1}
{ \DoSomethingJustWithMandatoryArgument {#2} }
{ \DoSomethingWithBothArguments {#1} {#2} }

}

will use a different internal function if the optional argument is given than if it is not
present.

As the \IfNoValue(TF) tests are expandable, it is possible to test these values later,
for example at the point of typesetting or in an expansion context.

It is important to note that -NoValue- is constructed such that it will not match
the simple text input -NoValue-, i.e. that

\IfNoValueTF{-NoValue-}

will be logically false.

\IfNoValueTF ?

\IfValueTF {〈argument〉} {〈true code〉} {〈false code〉}

The reverse form of the \IfNoValue(TF) tests are also available as \IfValue(TF). The
context will determine which logical form makes the most sense for a given code scenario.

\IfValueTF ?

The true and false flags set when searching for an optional token (using s or t〈token〉)
have names which are accessible outside of code blocks.

\BooleanFalse
\BooleanTrue

6

\IfBooleanTF 〈argument〉 {〈true code〉} {〈false code〉}

Used to test if 〈argument〉 (#1, #2, etc.) is \BooleanTrue or \BooleanFalse. For example

\DeclareDocumentCommand \foo { s m }
{
\IfBooleanTF #1
{ \DoSomethingWithStar {#2} }
{ \DoSomethingWithoutStar {#2} }

}

checks for a star as the first argument, then chooses the action to take based on this
information.

\IfBooleanTF ?

0.7 Argument processors
xparse introduces the idea of an argument processor, which is applied to an argument
after it has been grabbed by the underlying system but before it is passed to 〈code〉. An
argument processor can therefore be used to regularise input at an early stage, allowing
the internal functions to be completely independent of input form. Processors are applied
to user input and to default values for optional arguments, but not to the special \NoValue
marker.

Each argument processor is specified by the syntax >{〈processor〉} in the argument
specification. Processors are applied from right to left, so that

>{\ProcessorB} >{\ProcessorA} m

would apply \ProcessorA followed by \ProcessorB to the tokens grabbed by the m
argument.

xparse defines a very small set of processor functions. In the main, it is anticipated that
code writers will want to create their own processors. These need to accept one argument,
which is the tokens as grabbed (or as returned by a previous processor function). Proces-
sor functions should return the processed argument as the variable \ProcessedArgument.

\ProcessedArgument

\ReverseBoolean

This processor reverses the logic of \BooleanTrue and \BooleanFalse, so that the the
example from earlier would become

\DeclareDocumentCommand \foo { > { \ReverseBoolean } s m }
{
\IfBooleanTF #1
{ \DoSomethingWithoutStar {#2} }
{ \DoSomethingWithStar {#2} }

}

\ReverseBoolean

7

\SplitArgument {〈number〉} {〈token〉}

This processor splits the argument given at each occurrence of the 〈token〉 up to a max-
imum of 〈number〉 tokens (thus dividing the input into 〈number〉 + 1 parts). An error
is given if too many 〈tokens〉 are present in the input. The processed input is placed
inside 〈number〉 + 1 sets of braces for further use. If there are fewer than {〈number〉}
of {〈tokens〉} in the argument then empty brace groups are added at the end of the
processed argument.

\DeclareDocumentCommand \foo
{ > { \SplitArgument { 2 } { ; } } m }
{ \InternalFunctionOfThreeArguments #1 }

Any category code 13 (active) 〈tokens〉 will be replaced before the split takes place.
Spaces are trimmed at each end of each item parsed.

\SplitArgument

Updated: 2012-02-12

\SplitList {〈token(s)〉}

This processor splits the argument given at each occurrence of the 〈token(s)〉 where the
number of items is not fixed. Each item is then wrapped in braces within #1. The result
is that the processed argument can be further processed using a mapping function.

\DeclareDocumentCommand \foo
{ > { \SplitList { ; } } m }
{ \MappingFunction #1 }

If only a single 〈token〉 is used for the split, any category code 13 (active) 〈token〉 will be
replaced before the split takes place.

\SplitList

\ProcessList {〈list〉} {〈function〉}

To support \SplitList, the function \ProcessList is available to apply a 〈function〉 to
every entry in a 〈list〉. The 〈function〉 should absorb one argument: the list entry. For
example

\DeclareDocumentCommand \foo
{ > { \SplitList { ; } } m }
{ \ProcessList {#1} { \SomeDocumentFunction } }

This function is experimental.

\ProcessList ?

8

\TrimSpaces

Removes any leading and trailing spaces (tokens with character code 32 and category
code 10) for the ends of the argument. Thus for example declaring a function

\DeclareDocumentCommand \foo
{ > { \TrimSpaces } }
{ \showtokens {#1} }

and using it in a document as

\foo{ hello world }

will show hello world at the terminal, with the space at each end removed. \TrimSpaces
will remove multiple spaces from the ends of the input in cases where these have been
included such that the standard TEX conversion of multiple spaces to a single space does
not apply.

This function is experimental.

\TrimSpaces

0.8 Fully-expandable document commands
There are very rare occasion when it may be useful to create functions using a fully-
expandable argument grabber. To support this, xparse can create expandable functions
as well as the usual robust ones. This imposes a number of restrictions on the nature of
the arguments accepted by a function, and the code it implements. This facility should
only be used when absolutely necessary; if you do not understand when this might be, do
not use these functions!

9

\DeclareExpandableDocumentCommand
〈function〉 {〈arg spec〉} {〈code〉}

\DeclareExpandableDocumentCommand

This command is used to create a document-level 〈function〉, which will grab its argu-
ments in a fully-expandable manner. The argument specification for the function is given
by 〈arg spec〉, and the function will execute 〈code〉. In general, 〈code〉 will also be fully
expandable, although it is possible that this will not be the case (for example, a function
for use in a table might expand so that \omit is the first non-expandable token).

Parsing arguments expandably imposes a number of restrictions on both the type of
arguments that can be read and the error checking available:

• The last argument (if any are present) must be one of the mandatory types m or r.

• All arguments are either short or long: it is not possible to mix short and long
argument types.

• The mandatory argument types l and u are not available.

• The “optional group” argument types g and G are not available.

• The “verbatim” argument type v is not available.

• It is not possible to differentiate between, for example \foo[and \foo{[}: in both
cases the [will be interpreted as the start of an optional argument. As a result
result, checking for optional arguments is less robust than in the standard version.

xparse will issue an error if an argument specifier is given which does not conform to the
first three requirements. The last item is an issue when the function is used, and so is
beyond the scope of xparse itself.

0.9 Access to the argument specification
The argument specifications for document commands and environments are available for
examination and use.

\GetDocumentCommandArgSpec 〈function〉
\GetDocumentEnvironmentArgSpec 〈environment〉

\GetDocumentCommandArgSpec
\GetDocumentEnvironmentArgSpec

These functions transfer the current argument specification for the requested 〈function〉 or
〈environment〉 into the token list variable \ArgumentSpecification. If the 〈function〉
or 〈environment〉 has no known argument specification then an error is issued. The
assignment to \ArgumentSpecification is local to the current TEX group.

\ShowDocumentCommandArgSpec 〈function〉
\ShowDocumentEnvironmentArgSpec 〈environment〉

\ShowDocumentCommandArgSpec
\ShowDocumentEnvironmentArgSpec

These functions show the current argument specification for the requested 〈function〉 or
〈environment〉 at the terminal. If the 〈function〉 or 〈environment〉 has no known argument
specification then an error is issued.

10

1 Load-time options
The package recognises the load-time option log-declarations, which is a key–valuelog-declarations
option taking the value true and false. By default, the option is set to true, meaning
that each command or environment declared is logged. By loading xparse using

\usepackage[log-declarations=false]{xparse}

this may be suppressed and no information messages are produced.

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

B
\BooleanFalse . 6
\BooleanTrue . 6

D
\DeclareDocumentCommand 5
\DeclareDocumentEnvironment 6
\DeclareExpandableDocumentCommand . . 10

G
\GetDocumentCommandArgSpec 10
\GetDocumentEnvironmentArgSpec 10

I
\IfBooleanTF . 7
\IfNoValueTF . 6
\IfValueTF . 6

L
log-declarations (option) 11

N
\NewDocumentCommand 5
\NewDocumentEnvironment 6

O
log-declarations 11

P
\ProcessedArgument 7
\ProcessList . 8
\ProvideDocumentCommand 5
\ProvideDocumentEnvironment 6

R
\RenewDocumentCommand 5
\RenewDocumentEnvironment 6
\ReverseBoolean 7

S
\ShowDocumentCommandArgSpec 10
\ShowDocumentEnvironmentArgSpec 10
\SplitArgument 8
\SplitList . 8

T
\TrimSpaces . 9

11

	0.1 Specifying arguments
	0.2 Spacing and optional arguments
	0.3 Required delimited arguments
	0.4 Verbatim arguments
	0.5 Declaring commands and environments
	0.6 Testing special values
	0.7 Argument processors
	0.8 Fully-expandable document commands
	0.9 Access to the argument specification
	1 Load-time options
	Index
	B
	D
	G
	I
	L
	N
	O
	P
	R
	S
	T

