The **xfp** package Floating Point Unit

The I₄T_EX3 Project*

Released 2018-08-23

This package provides a $IAT_EX 2_{\varepsilon}$ document-level interface to the IAT_EX3 floating point unit (part of expl3). It also provides a parallel integer expression interface for convenience.

 $\label{eq:linear} \begin{array}{c} \texttt{Appeval} \star \\ \hline \\ \texttt{The expandable command \fpeval takes as its argument a floating point expression and produces a result using the normal rules of mathematics. As this command is expandable it can be used where TEX requires a number and for example within a low-level \edef operation to give a purely numerical result. \end{array}$

Briefly, the floating point expressions may comprise:

- Basic arithmetic: addition x + y, subtraction x y, multiplication x * y, division x/y, square root \sqrt{x} , and parentheses.
- Comparison operators: x < y, x <= y, x >? y, x != y etc.
- Boolean logic: sign sign x, negation !x, conjunction x && y, disjunction x || y, ternary operator x ? y : z.
- Exponentials: $\exp x$, $\ln x$, x^y .
- Trigonometry: $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$ expecting their arguments in radians, and $\sin d x$, $\cos d x$, $\tan d x$, $\cot d x$, $\sec d x$, $\csc d x$ expecting their arguments in degrees.
- Inverse trigonometric functions: $a\sin x$, $a\cos x$, $a\tan x$, $a\cot x$, $a\sec x$, $a\csc x$ giving a result in radians, and $a\sin dx$, $a\cos dx$, $a\tan dx$, $a\cot dx$, $a\sec dx$, $a\csc dx$ giving a result in degrees.
- Extrema: $\max(x, y, \ldots), \min(x, y, \ldots), \operatorname{abs}(x)$.
- Rounding functions (n = 0 by default, t = NaN by default): trunc(x, n) rounds towards zero, floor(x, n) rounds towards $-\infty$, ceil(x, n) rounds towards $+\infty$, round(x, n, t) rounds to the closest value, with ties rounded to an even value by default, towards zero if t = 0, towards $+\infty$ if t > 0 and towards $-\infty$ if t < 0.
- Random numbers: rand(), randint(m, n) (not available in X_TT_FX).
- Constants: pi, deg (one degree in radians).

^{*}E-mail: latex-team@latex-project.org

- Dimensions, automatically expressed in points, *e.g.*, pc is 12.
- Automatic conversion (no need for **\number**) of integer, dimension, and skip variables to floating points numbers, expressing dimensions in points and ignoring the stretch and shrink components of skips.
- Tuples: (x_1, \ldots, x_n) that can be added together, multiplied or divided by a floating point number, and nested.

An example of use could be the following.

```
\LaTeX{} can now compute: $ \frac{\sin (3.5)}{2} + 2\cdot 10^{-3}
= \fpeval{sin(3.5)/2 + 2e-3} $.
```

\inteval \star

The expandable command **\inteval** takes as its argument an integer expression and produces a result using the normal rules of mathematics. The operations recognised are +, -, * and / plus parentheses. Division occurs with *rounding*, and ties are rounded away from zero. As this command is expandable it can be used where T_EX requires a number and for example within a low-level **\edef** operation to give a purely numerical result.

An example of use could be the following.

 $LaTeX{} can now compute: The sum of the numbers is <math>\frac{1 + 2 + 3}{s}$.

Index

The italic numbers denote the pages where the corresponding entry is described, numbers underlined point to the definition, all others indicate the places where it is used.

\mathbf{E}	I	
\edef 1, 2	\inteval	2
\mathbf{F}	Ν	
\fpeval 1	\number	2