The IXTEX3 Sources

The BTEX3 Project™
Released 2019-09-30

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for KTEX commands, which
allow the BTEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level I¥TEX3 programming
language.

At present, the expl3 modules are designed to be loaded on top of I¥TEX 2¢. In time,
a IMTEX3 format will be produced based on this code. This allows the code to be
used in B TEX 2¢ packages now while a stand-alone I¥TEX3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly
stable. The syntax conventions and functions provided are now ready
for wider use. There may still be changes to some functions, but these
will be minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they
reach maturity.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

Contents

I Introduction to expl3 and this document

1

I1

II1

IV

Naming functions and variables

1.1 Terminological inexactitude

Documentation conventions
Formal language conventions which apply generally

TEX concepts not supported by BTEX3

The I13bootstrap package: Bootstrap code

Using the BTEX3 modules

The 13names package: Namespace for primitives

Setting up the BTEX3 programming language

The 13basics package: Basic definitions
No operation functions
Grouping material

Control sequences and functions

3.1 Defining functions oo oL o
3.2 Defining new functions using parameter text
3.3 Defining new functions using the signature
3.4 Copying control sequences.
3.5 Deleting control sequences Lo
3.6 Showing control sequences
3.7 Converting to and from control sequences

Analysing control sequences

Using or removing tokens and arguments

5.1 Selecting tokens from delimited arguments

Predicates and conditionals

6.1 Tests on control sequences L
6.2 Primitive conditionals L.

Starting a paragraph

ii

17

18
20

21
22
22

24

10

VI

10
11
12

13

The I13expan package: Argument expansion

Defining new variants

Methods for defining variants
Introducing the variants
Manipulating the first argument
Manipulating two arguments
Manipulating three arguments
Unbraced expansion

Preventing expansion
Controlled expansion

Internal functions

The 13tl package: Token lists

Creating and initialising token list variables

Adding data to token list variables
Modifying token list variables
Reassigning token list category codes
Token list conditionals

Mapping to token lists

Using token lists

Working with the content of token lists
The first token from a token list
Using a single item

Viewing token lists

Constant token lists

Scratch token lists

VII The I3str package: Strings

iii

25
25
26
27
29
31
32
33
33
35

37

38
38
39
40
40
41
43
46
46
48
51
53
53

54

55

10

VIII The I3str-convert package: string encoding conversions

1

2

Building strings

Adding data to string variables
Modifying string variables

String conditionals

Mapping to strings

Working with the content of strings
String manipulation

Viewing strings

Constant token lists

Scratch strings

Encoding and escaping schemes
Conversion functions
Creating 8-bit mappings

Possibilities, and things to do

The 13quark package: Quarks
Quarks

Defining quarks

Quark tests

Recursion

An example of recursion with quarks

Scan marks

The I13seq package: Sequences and stacks
Creating and initialising sequences
Appending data to sequences

Recovering items from sequences

iv

55
56
57
58
59
61
64
65
66

66

67
67
67
69

69

70
70
70
71
71
72

73

75
75
76

76

4 Recovering values from sequences with branching
5 Modifying sequences

6 Sequence conditionals

7 Mapping to sequences

8 Using the content of sequences directly

9 Sequences as stacks

10 Sequences as sets

11 Constant and scratch sequences

12 Viewing sequences

XI The 13int package: Integers

1 Integer expressions
2 Creating and initialising integers
3 Setting and incrementing integers

4 Using integers

5 Integer expression conditionals

6 Integer expression loops

7 Integer step functions

8 Formatting integers

9 Converting from other formats to integers

10 Random integers
11 Viewing integers
12 Constant integers

13 Scratch integers
13.1 Direct number expansiono L0

14 Primitive conditionals

XII The I3flag package: Expandable flags

1 Setting up flags

78
79
80
80
82
83
84
85

86

87
88
89
90
91
91
93
95
96
97
98
99
99

99

100

102

102

2 Expandable flag commands

XIIT The I3prg package: Control structures
1 Defining a set of conditional functions

2 The boolean data type

3 Boolean expressions

4 Logical loops

5 Producing multiple copies

6 Detecting TEX’s mode

7 Primitive conditionals

8 Nestable recursions and mappings

8.1 Simple mappings

9 Internal programming functions

XIV The 13sys package: System/runtime functions
1 The name of the job

2 Date and time

3 Engine

4 Output format

5 Platform

6 Random numbers

7 Access to the shell
7.1 Loading configuration data L.

XV The I3clist package: Comma separated lists
1 Creating and initialising comma lists
2 Adding data to comma lists

3 Modifying comma lists

4 Comma list conditionals

vi

103

104
104
106
108
110
111
111
112

112
112

113

114
114
114
114
115
115

115

118
120
120

122

5 Mapping to comma lists 122

6 Using the content of comma lists directly 124
7 Comma lists as stacks 125
8 Using a single item 126
9 Viewing comma lists 126
10 Constant and scratch comma lists 127
XVI The I3token package: Token manipulation 128
1 Creating character tokens 128
2 Manipulating and interrogating character tokens 130
3 Generic tokens 133
4 Converting tokens 133
5 Token conditionals 134
6 Peeking ahead at the next token 137
7 Description of all possible tokens 140
XVII The 13prop package: Property lists 143
1 Creating and initialising property lists 143
2 Adding entries to property lists 144
3 Recovering values from property lists 144
4 Modifying property lists 145
5 Property list conditionals 145
6 Recovering values from property lists with branching 146
7 Mapping to property lists 147
8 Viewing property lists 148
9 Scratch property lists 148
10 Constants 149

XVIII The I3msg package: Messages 150

vii

1 Creating new messages 150

2 Contextual information for messages 151
3 Issuing messages 152
4 Redirecting messages 154
XIX The I13file package: File and I/O operations 156
1 Input—output stream management 156

1.1 Reading from files 157

1.2 Writing tofiles L 160

1.3 Wrapping lines in output Lo 162

1.4 Constant input—output streams, and variables 163

1.5 Primitive conditionals oL 163
2 File operation functions 163
XX The I3skip package: Dimensions and skips 168
1 Creating and initialising dim variables 168
2 Setting dim variables 169
3 Utilities for dimension calculations 169
4 Dimension expression conditionals 170
5 Dimension expression loops 172
6 Dimension step functions 173
7 Using dim expressions and variables 174
8 Viewing dim variables 175
9 Constant dimensions 176
10 Scratch dimensions 176
11 Creating and initialising skip variables 176
12 Setting skip variables 177
13 Skip expression conditionals 178
14 Using skip expressions and variables 178

15 Viewing skip variables 178

viii

16

17

18

19

20

21

22

23

24

25

Constant skips

Scratch skips

Inserting skips into the output

Creating and initialising muskip variables
Setting muskip variables

Using muskip expressions and variables
Viewing muskip variables

Constant muskips

Scratch muskips

Primitive conditional

XXI The I13keys package: Key—value interfaces

1

2

Creating keys

Sub-dividing keys

Choice and multiple choice keys
Setting keys

Handling of unknown keys
Selective key setting

Utility functions for keys

Low-level interface for parsing key—val lists

XXII The I3intarray package: fast global integer arrays

1

13intarray documentation

1.1 TImplementation notes,

XXIIT The 13fp package: Floating points

1

2

3

Creating and initialising floating point variables
Setting floating point variables

Using floating points

ix

179
179
179
180
180
181
181
182
182

182

183
184
188
188
191
191
192
193

194

200

200

4 Floating point conditionals 202

5 Floating point expression loops 203
6 Some useful constants, and scratch variables 205
7 Floating point exceptions 206
8 Viewing floating points 207
9 Floating point expressions 208
9.1 Input of floating point numbers oo 208
9.2 Precedence of operators L Lo 209
9.3 Operations e 209
10 Disclaimer and roadmap 216

XXIV The I3fparray package: fast global floating point arrays219

1 13fparray documentation 219
XXV The I3sort package: Sorting functions 220
1 Controlling sorting 220
XXVI The I3tl-analysis package: Analysing token lists 221
1 13tl-analysis documentation 221

XXVII The I3regex package: Regular expressions in TEX 222

1 Syntax of regular expressions 222
2 Syntax of the replacement text 227
3 Pre-compiling regular expressions 229
4 Matching 229
5 Submatch extraction 230
6 Replacement 231
7 Constants and variables 231
8 Bugs, misfeatures, future work, and other possibilities 232
XXVIII The I13box package: Boxes 235

10

11

12

13

14

XXIX The I3coffins package: Coffin code layer

1

2

XXX The 13color-base package: Color support

1

XXXI The I3luatex package: LuaTgpX-specific functions

1

Creating and initialising boxes
Using boxes

Measuring and setting box dimensions
Box conditionals

The last box inserted
Constant boxes

Scratch boxes

Viewing box contents

Boxes and color

Horizontal mode boxes
Vertical mode boxes

Using boxes efficiently

Affine transformations

Primitive box conditionals

Creating and initialising coffins
Setting coffin content and poles
Coffin affine transformations
Joining and using coffins
Measuring coffins

Coffin diagnostics

Constants and variables

Color in boxes

Breaking out to Lua

Xi

235
235
236
237
237
237
238
238
238
238
240
241
242

245

246
246
246
248
248
249
249

250

251

251

252

252

2

XXXII The I3unicode package: Unicode support functions

Lua interfaces

253

254

XXXIII The I3legacy package: Interfaces to legacy concepts 255

XXXIV The I3candidates package: Experimental additions to

13kernel

1 Important notice

2 Additions to I3basics

3 Additions to 13box
3.1 Viewing part of a box

4 Additions to I3expan

5 Additions to 13fp

6 Additions to I3file

7 Additions to I3flag

8 Additions to I3intarray
8.1 Working with contents of integer arrays

9 Additions to 13msg

10 Additions to 13prg

11 Additions to 13prop

12 Additions to I3seq

13 Additions to I13sys

14 Additions to 13tl

15 Additions to I3token

XXXV Implementation

xii

256
256
257

257
257

258
258
258
259

259
259

260
261
261
261
263
263

268

269

13bootstrap implementation

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Format-specificcode
The \pdfstrcmp primitive in XqfITpX
Loading support Lua code
Engine requirements Lo
Extending allocators
Character data L e
The INTEX3 code environment

13names implementation

2.1

Deprecated functions

Internal kernel functions

Kernel backend functions

I13basics implementation

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

Renaming some TEX primitives (again)
Defining some constants L oo
Defining functions L L oo
Selecting tokens L oL
Gobbling tokens from input L
Debugging and patching later definitions
Conditional processing and definitions
Dissecting a control sequence Lo
Exist or free Lo
Preliminaries for new functions oo
Defining new functions L oo
Copying definitions L L o
Undefining functions oL o oo
Generating parameter text from argument count
Defining functions from a given number of arguments
Using the signature to define functions.
Checking control sequence equality
Diagnostic functions L oL o
Decomposing a macro definition o000
Doing nothing functionso L.
Breaking out of mapping functions
Starting a paragraph L L o

13expan implementation

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

General expansion oL 0o e
Hand-tuned definitions
Last-unbraced versions o
Preventing expansion Lo oo
Controlled expansion L e
Emulating e-type expansion. Lo
Defining function variants L Lo oL
Definitions with the automated technique

xiii

269
269
270
270
271
273
273
275

277
300

312

316

317
317
319
320
320
322
322
323
329
331
333
334
336
336
337
338
339
341
341
343
343
344
344

13tl implementation 373

7.1 Functions e 374
7.2 Constant token lists Lo 375
7.3 Adding to token list variables oL 376
7.4 Reassigning token list category codes 377
7.5 Modifying token list variables Lo 380
7.6 Token list conditionals L Lo oL 384
7.7 Mapping to token listso oo 389
7.8 Using token lists L L 391
7.9 Working with the contents of token lists 391
7.10 Token by token changes Lo L. 394
7.11 The first token from a token list 396
7.12 Using a single item L oo 400
7.13 Viewing token lists L o 403
7.14 Scratch token lists 404
I13str implementation 405
8.1 Creating and setting string variables 405
8.2 Modifying string variables o o o 406
8.3 String comparisonso .o o 407
8.4 Mapping to strings L L 410
8.5 Accessing specific characters in a string L. 412
8.6 Counting characters 417
8.7 The first character inastring L. 418
8.8 String manipulation oo 419
8.9 Viewing strings L L 421
I13str-convert implementation 421
9.1 Helpers e 421
9.1.1 Variables and constants 421
9.2 String conditionals 422
9.3 Conversionso e e e 424
9.3.1 Producing one byte or character 424
9.3.2 Mapping functions for conversions L. 425
9.3.3 Error-reporting during conversion 426
9.3.4 Framework for conversions L. 426
9.3.5 Byte unescape and escapeo e 431
9.3.6 Nativestrings L Lo 432
9.3.7 CliSt . . . o . 433
9.3.8 8Dbitencodings Lo 433
9.4 MeSSages i e e e e e 436
9.5 Escaping definitions oL oL 437
9.5.1 Unescape methods 437
9.5.2 Escape methods 442
9.6 Encoding definitions L Lo oo 444
9.6.1 UTF-8support e 444
9.6.2 UTF-16 support« o o vt e e 449
9.6.3 UTF-32support e 454
9.6.4 1SO 8859 SUPPOrto 457

Xiv

10

11

12

13

14

13quark implementation

10.1
10.2

Quarks

Scan marks e e e e e

13seq implementation

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

Allocation and initialisation
Appending data to eitherendo
Modifying sequences Lo
Sequence conditionals L oo
Recovering data from sequences oL
Mapping to Sequences it e e e e
Using sequenceso e
Sequence stacks L. L e e
Viewing sequences Lo oo

11.10Scratch sequences Lo

13int implementation

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

Integer expressions Lo
Creating and initialising integers
Setting and incrementing integers
Using integers L
Integer expression conditionals 0oL
Integer expression loops L oL oo
Integer step functions L oo
Formatting integers
Converting from other formats to integers

12.10Viewing integer Lo
12.11Random integersol L
12.12Constant integers Lo
12.13Scratch integerso Lo
12.14Integers for earlier modules oL L.

13flag implementation

13.1
13.2

Non-expandable flag commands
Expandable flag commands Lo o000

13prg implementation

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

Primitive conditionals Lo o
Defining a set of conditional functions
The boolean data type.
Boolean expressions e e
Logical loops e
Producing multiple copies o oo
Detecting TEX's mode L o
Internal programming functions L0

XV

473
473
476

477
478
481
481
484
486
489
492
493
494
494

495
495
498
499
500
500
504
505
507
513
515
516
016
517
517

517
517
518

15

16

17

18

19

13sys implementation

15.1 The name of thejob
15.2 Detecting theengineo Lo Lo
15.3 Timeand date e
15.4 Detecting the output L o oo
15.5 Randomness L Lo
15.6 Platform
15.7 Random numbers
15.8 Access totheshell oL
15.9 Configurations L

13clist implementation

16.1 Removing spaces around items
16.2 Allocation and initialisation L.
16.3 Adding data to comma lists oL Lo
16.4 Comma lists as stacks Lo o
16.5 Modifying comma lists. o oo
16.6 Comma list conditionals L.
16.7 Mapping to comma lists oL oL
16.8 Using comma lists Lo
16.9 Using asingleitem oL Lo
16.10Viewing comma lists o Lo oo
16.11Scratch comma lists

I13token implementation

17.1 Manipulating and interrogating character tokens
17.2 Creating character tokens
17.3 Generic tokenso
17.4 Token conditionals oL
17.5 Peeking ahead at the next token

13prop implementation

18.1 Allocation and initialisation
18.2 Accessing data in property lists oL
18.3 Property list conditionals L oo
18.4 Recovering values from property lists with branching
18.5 Mapping to property lists L Lo
18.6 Viewing property listso Lo

13msg implementation

19.1 Creating messages o v v v i vt e
19.2 Messages: support functions and text
19.3 Showing messages: low level mechanism
19.4 Displaying messages L o
19.5 Kernel-specific functions 0.
19.6 Expandable errors L Lo

XVi

530
530
531
532
933
933
933
533
534
536

538
539
540
542
543
545
548
549
552
953
555
555

556
556
558
562
963
970

576
oT7
580
584
585
585
o87

20

21

13file implementation 610

20.1 Input operationso 610
20.1.1 Variables and constants 610
20.1.2 Stream managemento 611
20.1.3 Reading input o o 614

20.2 Output operations Lo 617
20.2.1 Variables and constants Lo 617

20.3 Stream management oo . e e e e e 618
20.3.1 Deferred writing L Lo 620
20.3.2 Immediate writing oL oo 620
20.3.3 Special characters for writingo 621
20.3.4 Hard-wrapping lines to a character count 621

20.4 File operations L Lo 631

20.5 GetlfInfo L 646

20.6 MesSsages 647

20.7 Functions delayed from earlier modules 648

13skip implementation 649

21.1 Length primitives renamed L. 649

21.2 Creating and initialising dim variables 649

21.3 Setting dim variables. oL 650

21.4 Utilities for dimension calculations 651

21.5 Dimension expression conditionals 652

21.6 Dimension expression loopso 654

21.7 Dimension step functions Lo 655

21.8 Using dim expressions and variables 656

21.9 Viewing dim variables L o L o 658

21.10Constant dimensions 658

21.11Scratch dimensions 659

21.12Creating and initialising skip variables 659

21.13Setting skip variables oo L 660

21.14Skip expression conditionals oL oL oL 660

21.15Using skip expressions and variables 661

21.16Inserting skips into the output 661

21.17Viewing skip variables L o oo o 662

21.18Constant skipso Lo 662

21.19Scratch skips Lo 662

21.20Creating and initialising muskip variables 662

21.21Setting muskip variables.o oL o 663

21.22Using muskip expressions and variables 664

21.23Viewing muskip variables oL oL 664

21.24Constant muskips oo 665

21.25Scratch muskips L. 665

xXvii

13keys Implementation 665

22.1 Low-level interface L 665
22.2 Constants and variables L. 669
22.3 The key defining mechanism L L. 671
22.4 Turning properties into actions o L oL 673
22.5 Creating key properties oo 678
22.6 Setting keys e 683
22.7 Utilities o e e 691
22.8 MeSsageso 693
I13intarray implementation 694
23.1 Allocating arrays oo e e e 694
23.2 Array 1tems oo 695
23.3 Working with contents of integer arrays 698
23.4 Random arrayst c i e e e e e e 699
13fp implementation 700
13fp-aux implementation 701
25.1 Access to primitives L. e 701
25.2 Internal representation oL 701
25.3 Using arguments and semicolons oL 702
25.4 Constants, and structure of floating points 703
25.5 Overflow, underflow, and exact zero 705
25.6 Expanding after a floating point number 705
25.7 Other floating point types L o 707
25.8 Packing digitso 710
25.9 Decimate (dividing by a power of 10) 712
25.10Functions for use within primitive conditional branches 714
25.11Integer floating points oL o 716
25.12Small integer floating points 716
25.13Fast string comparison L oo 717
25.14Name of a function from its 13fp-parse name 717
25.15MeSSageS e e e e e e e 718
13fp-traps Implementation 718
26.1 Flags o o e 718
26.2 Traps . . . o e e e e e e e 718
26.3 EITors Lo e e e e 722
26.4 MeSsages 722
13fp-round implementation 723
27.1 Rounding tools 723
27.2 The round function 727

xXviii

28

29

30

13fp-parse implementation

28.1

Work plan oL

28.1.1 Storing results L. Lo
28.1.2 Precedence and infix operators L.
28.1.3 Prefix operators, parentheses, and functions
28.1.4 Numbers and reading tokens one by one

28.2
28.3
28.4

Main auxiliary functions
Helpers o o o e
Parsing one number L oL Lo

28.4.1 Numbers: trimming leading zeros
28.4.2 Number: small significand
28.4.3 Number: large significand
28.4.4 Number: beyond 16 digits, rounding
28.4.5 Number: finding the exponent

28.5

Constants, functions and prefix operators

28.5.1 Prefix operators o o
28.5.2 Constants e
28.5.3 Functions e

28.6
28.7

Main functions e
Infix operators

28.7.1 Closing parentheses and commas
28.7.2 Usual infix operators oo
28.7.3 Juxtapositiono
28.7.4 Multi-character cases oo
28.7.5 Ternary operator Lo oL
28.7.6 CompariSons v ot e

28.8
28.9

Tools for functions
MeESSAZES + v v e e e e e e e e e e e e e e e e

13fp-assign implementation

29.1
29.2
29.3
294

Assigning values L. e
Updating values L
Showing values
Some useful constants and scratch variables

13fp-logic Implementation

30.1
30.2
30.3
30.4
30.5
30.6
30.7

Syntax of internal functions oL oL
Tests . . . o e
Comparison oL
Floating point expression loops
Extrema e
Boolean operationso L L oo
Ternary operator

Xix

31

32

33

13fp-basics Implementation
31.1 Addition and subtraction oL oL
31.1.1 Sign, exponent, and special numbers
31.1.2 Absolute addition
31.1.3 Absolute subtractiono
31.2 Multiplication
31.2.1 Signs, and special numbers L.
31.2.2 Absolute multiplication
31.3 Division e
31.3.1 Signs, and special numbers
31.32 Workplan oL o
31.3.3 Implementing the significand division
31.4 Square To0t e
31.5 About the sign and exponent
31.6 Operationson tuples Lo

13fp-extended implementation

32.1 Description of fixed point numberso
32.2 Helpers for numbers with extended precision
32.3 Multiplying a fixed point number by a short one
32.4 Dividing a fixed point number by a small integer
32.5 Adding and subtracting fixed points
32.6 Multiplying fixed points oL o
32.7 Combining product and sum of fixed points
32.8 Extended-precision floating point numberso
32.9 Dividing extended-precision numbers. Lo
32.10Inverse square root of extended precision numbers
32.11Converting from fixed point to floating point

13fp-expo implementation

33.1 Logarithm e
33.1.1 Workplan
33.1.2 Some constantso
33.1.3 Sign, exponent, and special numberso
33.1.4 AbsoluteIn

33.2 Exponential Lo
33.2.1 Sign, exponent, and special numbers

33.3 Power e

33.4 Factorial e

789
789
790
792
794
798
798
799
802
802
803
805
810
817
818

819
820
820
821
822
823
824
825
827
830
833
835

34

35

36

37

38

13fp-trig Implementation

34.1 Direct trigonometric functions
34.1.1 Filtering special caseso oL
34.1.2 Distinguishing small and large arguments
34.1.3 Small arguments L L
34.1.4 Argument reduction in degrees
34.1.5 Argument reduction in radians
34.1.6 Computing the power series

34.2 Inverse trigonometric functions oL
34.2.1 Arctangent and arccotangent
34.2.2 Arcsine and arccosineo
34.2.3 Arccosecant and arcsecant oL oL

13fp-convert implementation

35.1 Dealing with tupleso
35.2 Trimming trailing zeros
35.3 Scientific notation
35.4 Decimal representation e
35.5 Token list representationo
35.6 Formatting Lo
35.7 Convert to dimension or integer L.
35.8 Convert from a dimension
35.9 Useand eval L
35.10Convert an array of floating points to a comma list

13fp-random Implementation

36.1 Engine support Lo Lo e
36.2 Random floating point oL oo
36.3 Random integer

13fparray implementation
37.1 Allocating arrays« ..o i i e
37.2 Array items

I13sort implementation

38.1 Variables
38.2 Finding available \toks registers
38.3 Protected user commands Lo Lo
38.4 Merge sort
38.5 Expandable sorting oL o
38.6 Messages

XX1

858
859
859
862
863
863
865
872
875
876
881
883

884
884
885
885
886
888
889
890
890
891
892

893
893
897
897

902
902
903

39

40

13tl-analysis implementation 921

39.1 Internal functions L oL 921
39.2 Internal format 921
39.3 Variables and helper functions 922
39.4 Planof attack L 924
39.5 Disabling active characters L. 925
39.6 First pass o e e e e 925
39.7 Second Pass i e e e e e 930
39.8 Mapping through the analysis 933
39.9 Showing the results Lo 934
39.10MeSSAgES e e e e e e e e e e e 936
13regex implementation 936
40.1 Plan of attack oL o 936
40.2 Helpers o e e 938
40.2.1 Constants and variables 939
40.2.2 Testing characters L oo 941
40.2.3 Character property tests L. 944
40.2.4 Simple character escape 946
40.3 Compiling Lo 951
40.3.1 Variables used when compiling 952
40.3.2 Generic helpers used when compiling 953
40.3.3 Mode 954
40.3.4 Framework 957
40.3.5 Quantifiers oL 960
40.3.6 Raw characters L 962
40.3.7 Character properties 964
40.3.8 Anchoring and simple assertions 965
40.3.9 Character classes 966
40.3.10 Groups and alternations oL 969
40.3.11 Catcodes and csnames oo 972
40.3.12Raw token lists with \u L oL 975
40.3.130ther 977
40.3.14 Showing regexes vttt e e e e e 978
404 Building L 982
40.4.1 Variables used while building 982
40.4.2 Framework L L L e 982
40.4.3 Helpers for building an NFA L. 984
40.4.4 Building classes L L 985
40.4.5 Building groups e 987
40.4.6 Others oL e 991
40.5 Matching Lo 993
40.5.1 Variables used when matching 993
40.5.2 Matching: framework 0oL 996
40.5.3 Using states of the NFA oL oL 999
40.5.4 Actions when matching o oL, 1000
40.6 Replacement L e 1002
40.6.1 Variables and helpers used in replacement 1002
40.6.2 Query and brace balance 0oL, 1003
40.6.3 Framework 1005

41

42

43

44

45

46

40.6.4 Submatches L
40.6.5 Csnames in replacement
40.6.6 Characters in replacement
40.6.7 Anerror e
40.7 User functions oL e
40.7.1 Variables and helpers for user functions
40.7.2 Matching e
40.7.3 Extracting submatches Lo oo
40.7.4 Replacement
40.7.5 Storing and showing compiled patterns.
40.8 MESSAZES .« . v v v e e e e e e e e e e e
40.9 Code for tracing

13box implementation

41.1 Support code
41.2 Creating and initialising boxes
41.3 Measuring and setting box dimensions
41.4 Using boxes o o e e
41.5 Box conditionals e
41.6 The last box inserted o
41.7 Constant boxes e e e
41.8 Scratch boxes
41.9 Viewing box contents L Lo Lo
41.10Horizontal mode boxes Lo
41.11Vertical mode boxeso
41.12Affine transformations

13coffins Implementation

42.1 Coffins: data structures and general variables
42.2 Basic coffin functions o oL Lo
42.3 Measuring coffins
42.4 Coffins: handle and pole management
42.5 Coffins: calculation of pole intersections
42.6 Affine transformationso Lo
42.7 Aligning and typesetting of coffins oL
42.8 Coffin diagnostics e
429 MeSSageSo e e e e

13color-base Implementation

13luatex implementation

44.1 BreakingouttoLua
44.2 MESSAZES .« v v v v e e e e e e e e e e e e e
44.3 Lua functions for internal use
44.4 Generic Lua and font support

13unicode implementation

13legacy Implementation

xxiii

47 13candidates Implementation 1090
47.1 Additions to I3box 1090
47.1.1 Viewing partof abox L oo oo 1090
47.2 Additions to I3flag 1092
47.3 Additions to I3msg 1092
47.4 Additions to I3prgo 1094
47.5 Additions to I3prop 1094
47.6 Additions to 13seq 1095
47.7 Additions to I3syso 1097
47.8 Additions to I3file oL 1098
47.9 Additions to I3tlo 1099
47.9.1 Unicode case changing 1099
47.9.2 Building a token list oo oo 1123
47.9.3 Other additions to I13tl L 1127
47.10Additions to I3token oL 1127

48 I3deprecation implementation 1129
48.1 Helpers and variables 1129
48.2 Patching definitions to deprecate oo L. 1130
48.3 Removed functionso 1133
48.4 Deprecated primitives L Lo 1135
48.5 Loading the patches oo 1136
48.6 Deprecated 13box functions 1137
48.7 Deprecated 13int functions L oL 0. 1137
48.8 Deprecated I3luatex functionso L oL 1138
48.9 Deprecated 13msg functionso oL oL 1139
48.10Deprecated 13prg functions 1140
48.11Deprecated 13str functions o Lo 1141
48.11.1 Deprecated 13tl functions 1141
48.12Deprecated I13tl-analysis functionso 0oL 1142
48.13Deprecated 13token functionso oo 1142
48.14Deprecated 13file functions o oL 1143

Index 1144

XXiv

Part 1
Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the IMTEX3 programming language is found in expl3.pdf.

1 Naming functions and variables

TEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example
\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means ezxpansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are not
expandable.

e The e specifier is in many respects identical to x, but with a very different imple-
mentation. Functions which feature an e-type argument may be expandable. The
drawback is that e is extremely slow (often more than 200 times slower) in older
engines, more precisely in non-LuaTgEX engines older than 2019.

f The f specifier stands for full expansion, and in contrast to x stops at the first non-
expandable token (reading the argument from left to right) without trying to expand
it. If this token is a (space token), it is gobbled, and thus won’t be part of the
resulting argument. For example, when setting a token list variable (a macro used
for storage), the sequence

\tl_set:Nn \1l_mya_tl { A }
\tl_set:Nn \1_myb_tl { B }
\tl_set:Nf \1_mya_tl { \1_mya_tl \1_myb_tl }

will leave \1_mya_t1 with the content A\1_myb_t1, as A cannot be expanded and
so terminates expansion before \1_myb_t1 is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some specified string).

D The D specifier means do not use. All of the TEX primitives are initially \let to a D
name, and some are then given a second name. Only the kernel team should use
anything with a D specifier!

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

¢ Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module! name and then a descriptive part. Variables end with a short
identifier to show the variable type:

clist Comma separated list.
dim “Rigid” lengths.
fp Floating-point values;

int Integer-valued count register.

1The module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

muskip “Rubber” lengths for use in mathematics.

seq “Sequence”: a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.
str String variables: contain character data.
t1 Token list variables: placeholder for a token list.

Applying V-type or v-type expansion to variables of one of the above types is supported,
while it is not supported for the following variable types:

bool Either true or false.
box Box register.

coffin A “box with handles” — a higher-level data type for carrying out box alignment
operations.

flag Integer that can be incremented expandably.

fparray Fixed-size array of floating point values.

intarray Fixed-size array of integers.

ior/iow An input or output stream, for reading from or writing to, respectively.
prop Property list: analogue of dictionary or associative arrays in other languages.

regex Regular expression.

1.1 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and
a “token list variable” are almost the same.? On the other hand, some “variables” are
actually registers that must be initialised and their values set and retrieved with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

2TgEXnically, functions with no arguments are \long while token list variables are not.

\ExplSyntaxOn
\ExplSyntaxOff

\seq_new:N
\seq_new:c

\cs_to_str:N *

\seq_map_function:NN 7

2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntax0ff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

For programming functions, which use _ and : in their name there are a few addi-
tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

\seq_new:N (sequence)

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type or e-type argument (in plain TEX terms, inside an \edef or
\expanded), as well as within an f-type argument. These fully expandable functions are
indicated in the documentation by a star:

\cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a {control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN (seq) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\sys_if_engine_xetex:TF x

\1_tmpa_tl

\token_to_str:N *

\sys_if_engine_xetex:TF {(true code)} {(false code)}

The underlining and italic of TF indicates that three functions are available:
e \sys_if_engine_xetex:T
e \sys_if_engine_xetex:F
e \sys_if_engine_xetex:TF

Usually, the illustration will use the TF variant, and so both (true code) and (false code)

will be shown. The two variant forms T and F take only (true code) and (false code),

respectively. Here, the star also shows that this function is expandable. With some minor

exceptions, all conditional functions in the expl3 modules should be defined in this way.
Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.

In some cases, the function is similar to one in IATEX 2¢ or plain TEX. In these cases,
the text will include an extra “TgpXhackers note” section:

\token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or I TEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way wnless they impact on the
expected behaviour.

3 Formal language conventions which apply generally

As this is a formal reference guide for ¥TEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left

in the input stream: this will typically be part of a larger logical construct.

4 TgX concepts not supported by BXTEX3

The TEX concept of an “\outer” macro is not supported at all by IWTEX3. As such, the
functions provided here may break when used on top of IATEX 2¢ if \outer tokens are
used in the arguments.

\ExplSyntax0On

\ExplSyntax0ff

Updated: 2011-08-13

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2017-03-19

\GetIdInfo

Updated: 2012-06-04

Part 11
The I13bootstrap package
Bootstrap code

1 Using the KTEX3 modules

The modules documented in source3 are designed to be used on top of KTEX 2¢ and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions. These modules will also form the basis of the IXTEX3 format, but work in
this area is incomplete and not included in this documentation at present.

As the modules use a coding syntax different from standard I¥TEX 2¢ it provides a
few functions for setting it up.

\ExplSyntaxOn (code) \ExplSyntax0ff

The \ExplSyntaxOn function switches to a category code régime in which spaces are
ignored and in which the colon (:) and underscore (_) are treated as “letters”, thus
allowing access to the names of code functions and variables. Within this environment,
~ is used to input a space. The \ExplSyntax0ff reverts to the document category code
régime.

\RequirePackage{expl3}

\ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

These functions act broadly in the same way as the corresponding IATEX 2¢ kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntaxOn for the remainder of the code with the file. At the end
of the file, \ExplSyntax0ff will be called to reverse this. (This is the same concept as
KTEX 2 provides in turning on \makeatletter within package and class code.) The
(date) should be given in the format (year)/{month)/(day). If the (version) is given then
it will be prefixed with v in the package identifier line.

\RequirePackage{13bootstrap}

\GetIdInfo $Id: (SVN info field) $ {(description)}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion
for version and \ExplFileDescription for the description.

To summarize: Every single package using this syntax should identify itself using
one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual IXTEX 2¢ category codes and the
TREX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

Part 111
The I13names package
Namespace for primitives

1 Setting up the KTEX3 programming language

This module is at the core of the M TEX3 programming language. It performs the following
tasks:

o defines new names for all TEX primitives;
o switches to the category code régime for programming;
e provides support settings for building the code as a TEX format.

This module is entirely dedicated to primitives, which should not be used directly
within ITEX3 code (outside of “kernel-level” code). As such, the primitives are not
documented here: The TgXbook, TEX by Topic and the manuals for pdfTEX, XHTEX,
LuaTgX, pIEX and uplEX should be consulted for details of the primitives. These are
named \tex_(name):D, typically based on the primitive’s (name) in pdf TEX and omitting
a leading pdf when the primitive is not related to pdf output.

\prg_do_nothing: x

\scan_stop:

\group_begin:
\group_end:

\group_insert_after:N

Part IV
The I3basics package
Basic definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

2 Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends. The
list of (tokens) to be inserted is empty at the beginning of a group: multiple applications
of \group_insert_after:N may be used to build the inserted list one (token) at a time.
The current group level may be closed by a \group_end: function or by a token with
category code 2 (close-group), namely a } if standard category codes apply.

3 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” are fully expanded inside an x expansion. In
contrast, “protected” functions are not expanded within x expansions.

3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen is checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new. ..
functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, ...).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and results in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and does not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset:Npn. The definition
is global and does not result in an error if the function is already defined.

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an x-type or e-type expansion.

Finally, the functions in Subsections 3.2 and 3.3 are primarily meant to define base
functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 2.

10

\cs_new:Npn
\cs_new:cpn
\cs_new:Npx
\cs_new:cpx

\cs_new_nopar:Npn
\cs_new_nopar:cpn
\cs_new_nopar : Npx
\cs_new_nopar:cpx

\cs_new_protected:Npn
\cs_new_protected:cpn
\cs_new_protected:Npx
\cs_new_protected:cpx

3.2 Defining new functions using parameter text

\cs_new:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Npn (function) (parameters) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npn (function) (parameters) {({code)}
\cs_new_protected_nopar:cpn

\cs_new_protected_nopar:Npx

\cs_new_protected_nopar:cpx

\cs_set:Npn
\cs_set:cpn
\cs_set:Npx
\cs_set:cpx

\cs_set_nopar:Npn
\cs_set_nopar:cpn
\cs_set_nopar:Npx
\cs_set_nopar:cpx

\cs_set_protected:Npn
\cs_set_protected:cpn
\cs_set_protected:Npx
\cs_set_protected:cpx

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_set:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Npn (function) (parameters) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The assignment
of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an x-type or e-type argument.

11

\cs_set_protected_nopar:Npn \cs_set_protected_nopar:Npn (function) (parameters) {{code)}
\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:Npx
\cs_set_protected_nopar:cpx

\cs_gset:Npn
\cs_gset:cpn
\cs_gset :Npx
\cs_gset:cpx

\cs_gset_nopar:Npn
\cs_gset_nopar:cpn
\cs_gset_nopar:Npx
\cs_gset_nopar:cpx

\cs_gset_protected:Npn
\cs_gset_protected:cpn
\cs_gset_protected:Npx
\cs_gset_protected:cpx

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The as-
signment of a meaning to the (function) is restricted to the current TEX group level. The
(function) will not expand within an x-type or e-type argument.

\cs_gset:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_protected:Npn (function) (parameters) {{code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global. The (function) will not expand within an x-type or
e-type argument.

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {{code)}
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpx

\cs_new:Nn
\cs_new: (cn|Nx|cx)

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group level:
the assignment is global. The (function) will not expand within an x-type argument.

3.3 Defining new functions using the signature

\cs_new:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

12

\cs_new_nopar:Nn
\cs_new_nopar: (cn|Nx|cx)

\cs_new_protected:Nn
\cs_new_protected: (cn|Nx|cx)

\cs_new_nopar:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Nn (function) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_new_protected_nopar:Nn \cs_new_protected_nopar:Nn (function) {<code>}
\cs_new_protected_nopar:(cn|Nx|cx)

\cs_set:Nn
\cs_set:(cn|Nx|cx)

\cs_set_nopar:Nn
\cs_set_nopar:(cn|Nx|cx)

\cs_set_protected:Nn
\cs_set_protected:(cn|Nx|cx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_set:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {({code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is restricted to the current TEX group level.

13

\cs_set_protected_nopar:Nn \cs_set_protected_nopar:Nn (function) {(code)}
\cs_set_protected_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is restricted to the current TEX group level.

\cs_gset:Nn \cs_gset:Nn (function) {(code)}
\cs_gset:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is global.

\cs_gset_nopar:Nn \cs_gset_nopar:Nn (function) {(code)}
\cs_gset_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2. etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is global.

\cs_gset_protected:Nn \cs_gset_protected:Nn (function) {(code)}
\cs_gset_protected: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is global.

\cs_gset_protected_nopar:Nn \cs_gset_protected_nopar:Nn (function) {(code)}
\cs_gset_protected_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is global.

\cs_generate_from_arg_count:NNnn \cs_generate_from_arg_count:NNnn (function) (creator) {(number)}
\cs_generate_from_arg_count:(cNnn|Ncnn) {(code)}

Updated: 2012-01-14

Uses the (creator) function (which should have signature Npn, for example \cs_new:Npn)
to define a (function) which takes (number) arguments and has (code) as replacement
text. The (number) of arguments is an integer expression, evaluated as detailed for
\int_eval:n.

14

\cs_new_eq:NN
\cs_new_eq:(Nc|cN|cc)

\cs_set_eq:NN
\cs_set_eq:(Nc|cN|cc)

\cs_gset_eq:NN
\cs_gset_eq:(Nc|cN|cc)

\cs_undefine:N
\cs_undefine:c

Updated: 2011-09-15

\cs_meaning:N x
\cs_meaning:c *

Updated: 2011-12-22

3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN (cs1) (cs2)
\cs_new_eq:NN (csi) (token)

Globally creates (control sequence;) and sets it to have the same meaning as (control
sequenceg) or (token). The second control sequence may subsequently be altered without
affecting the copy.

\cs_set_eq:NN (cs1) (cs2)
\cs_set_eq:NN (csi) (token)

Sets (control sequence;) to have the same meaning as (control sequences) (or (token)).
The second control sequence may subsequently be altered without affecting the copy.
The assignment of a meaning to the (control sequence;) is restricted to the current TEX
group level.

\cs_gset_eq:NN (cs1) (cs2)
\cs_gset_eq:NN (csi) (token)

Globally sets (control sequence;) to have the same meaning as (control sequences) (or
(token)). The second control sequence may subsequently be altered without affecting the
copy. The assignment of a meaning to the (control sequence;) is not restricted to the
current TEX group level: the assignment is global.

3.5 Deleting control sequences
There are occasions where control sequences need to be deleted. This is handled in a

very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

3.6 Showing control sequences

\cs_meaning:N (control sequence)
This function expands to the meaning of the (control sequence) control sequence. For a

macro, this includes the (replacement text).

TEXhackers note: This is TEX’s \meaning primitive. For tokens that are not control
sequences, it is more logical to use \token_to_meaning:N. The ¢ variant correctly reports
undefined arguments.

15

\cs_show:N
\cs_show:c

Updated: 2017-02-14

\cs_log:N
\cs_log:c

New: 2014-08-22
Updated: 2017-02-14

\use:c *

\cs_if_exist_use:N
\cs_if_exist_use:c
\cs_if_exist_use:NTF

*
*
*
\cs_if_exist_use:cTF *

New: 2012-11-10

\cs_show:N (control sequence)
Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_log:N (control sequence)

Writes the definition of the {control sequence) in the log file. See also \cs_show:N which
displays the result in the terminal.

3.7 Converting to and from control sequences

\use:c {(control sequence name)}

Expands the (control sequence name) until only characters remain, and then converts
this into a control sequence. This process requires two expansions. As in other c-type
arguments the (control sequence name) must, when fully expanded, consist of character
tokens, typically a mixture of category code 10 (space), 11 (letter) and 12 (other).

TEXhackers note: Protected macros that appear in a c-type argument are expanded
despite being protected; \exp_not :n also has no effect. An internal error occurs if non-characters
or active characters remain after full expansion, as the conversion to a control sequence is not
possible.

As an example of the \use:c function, both
\use:c { a bc
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc}
\use:c { \tl_use:N \l_my_tl }

would be equivalent to
\abc
after two expansions of \use:c.

\cs_if_exist_use:N (control sequence)
\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined according to the conditional
\cs_if_exist:NTF (whether as a function or another control sequence type), and if it is
inserts the (control sequence) into the input stream followed by the (true code). Otherwise
the (false code) is used.

16

\cs:w *
\cs_end: x

\cs_to_str:N =

\cs_split_function:N =

New: 2018-04-06

\cs:w (control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for (control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically of category
code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TgXhackers note: These are the TEX primitives \csname and \endcsname

As an example of the \cs:w and \cs_end: functions, both
\cs:w a b ¢ \cs_end:
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc}
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to
\abc

after one expansion of \cs:w.

\cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code 12
(other), except spaces, of category code 10. The result does not include the current
escape token, contrarily to \token_to_str:N. Full expansion of this function requires
exactly 2 expansion steps, and so an x-type or e-type expansion, or two o-type expansions
are required to convert the (control sequence) to a sequence of characters in the input
stream. In most cases, an f-expansion is correct as well, but this loses a space at the
start of the result.

4 Analysing control sequences

\cs_split_function:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). This information is then placed in the input stream in three
parts: the (name), the (signature) and a logic token indicating if a colon was found (to
differentiate variables from function names). The (name) does not include the escape
character, and both the (name) and (signature) are made up of tokens with category
code 12 (other).

The next three functions decompose TEX macros into their constituent parts: if the
(token) passed is not a macro then no decomposition can occur. In the latter case, all
three functions leave \scan_stop: in the input stream.

17

\cs_prefix_spec:N *

New: 2019-02-27

\cs_argument_spec:N *

New: 2019-02-27

\cs_replacement_spec:N *

New: 2019-02-27

\cs_prefix_spec:N (token)

If the (token) is a macro, this function leaves the applicable TEX prefixes in input stream
as a string of tokens of category code 12 (with spaces having category code 10). Thus
for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_prefix_spec:N \next:nn

leaves \long in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: The prefix can be empty, \long, \protected or \protected\long with
backslash replaced by the current escape character.

\cs_argument_spec:N (token)

If the (token) is a macro, this function leaves the primitive TEX argument specification
in input stream as a string of character tokens of category code 12 (with spaces having
category code 10). Thus for example

\cs_set:Npn \next:nn #1#2 { x #1 y #2 }
\cs_argument_spec:N \next:nn

leaves #1#2 in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: If the argument specification contains the string ->, then the function
produces incorrect results.

\cs_replacement_spec:N (token)

If the (token) is a macro, this function leaves the replacement text in input stream as
a string of character tokens of category code 12 (with spaces having category code 10).
Thus for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_replacement_spec:N \next:nn

leaves x#1,y#2 in the input stream. If the (foken) is not a macro then \scan_stop: is
left in the input stream.

TEXhackers note: If the argument specification contains the string ->, then the function
produces incorrect results.

5 Using or removing tokens and arguments
Tokens in the input can be read and used or read and discarded. If one or more tokens

are wrapped in braces then when absorbing them the outer set is removed. At the same
time, the category code of each token is set when the token is read by a function (if it

18

\use:n
\use:nn
\use:nnn
\use:nnnn

\use_i:nn
\use_ii:nn

\use_i:nnn
\use_ii:nnn
\use_iii:nnn

*
*
*
*

*
*

*

\use_i:nnnn
\use_ii:nnnn
\use_iii:nnnn
\use_iv:nnnn

L I

is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

\use:n {(group1)
\use:nn {(group:)
\use:nnn {(group:)
\use:nnnn {(group:)

}
} {{group2)}

} {(groupz)} {(groups)}

} {(groups)} {(groups)} {(groups)}

As illustrated, these functions absorb between one and four arguments, as indicated by
the argument specifier. The braces surrounding each argument are removed and the
remaining tokens are left in the input stream. The category code of these tokens is also
fixed by this process (if it has not already been by some other absorption). All of these

functions require only a single expansion to operate, so that one expansion of
\use:nn { abc } { { def } }

results in the input stream containing
abc { def }

i.e. only the outer braces are removed.

hackers note: The \use:n function is equivalent to I& 2¢’s \@firstofone.
TEX q

\use_i:nn {(argi)} {(argz)}

These functions absorb two arguments from the input stream. The function \use_i:nn
discards the second argument, and leaves the content of the first argument in the input
stream. \use_ii:nn discards the first argument and leaves the content of the second
argument in the input stream. The category code of these tokens is also fixed (if it
has not already been by some other absorption). A single expansion is needed for the
functions to take effect.

TEXhackers note: These are equivalent to TEX 2¢’s \@firstoftwo and \@secondoftwo.

\use_i:nnn {(arg:i)} {(arge)} {(args)}

These functions absorb three arguments from the input stream. The function \use_i:nnn
discards the second and third arguments, and leaves the content of the first argument in
the input stream. \use_ii:nnn and \use_iii:nnn work similarly, leaving the content
of second or third arguments in the input stream, respectively. The category code of
these tokens is also fixed (if it has not already been by some other absorption). A single
expansion is needed for the functions to take effect.

\use_i:nnnn {(argi)} {(arg:)} {(args)} {(args)}

These functions absorb four arguments from the input stream. The function \use_-
i:nnnn discards the second, third and fourth arguments, and leaves the content of the
first argument in the input stream. \use_ii:nnnn, \use_iii:nnnn and \use_iv:nnnn
work similarly, leaving the content of second, third or fourth arguments in the input
stream, respectively. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the functions to take
effect.

19

\use_i_ii:nnn *

\use_ii_i:nn *

New: 2019-06-02

\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:

n *
nn *
nnn *
nnnn *
nnnnn *
nnnnnn *
nnnnnnn *
nnnnnnnn *
nnnnnnnnn *

\use:e *

New: 2018-06-18

\use:x

Updated: 2011-12-31

\use_i_ii:nnn {(argi)} {(arg:)} {(args)}

This function absorbs three arguments and leaves the content of the first and second in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
results in the input stream containing
abc { def }

i.e. the outer braces are removed and the third group is removed.

\use_ii_i:nn {(argi)} {(argz)}

This function absorbs two arguments and leaves the content of the second and first in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect.

\use_none:n {(group:)}

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

TEXhackers note: These are equivalent to E'TEX 2¢’s \@gobble, \@gobbbletwo, etc.

\use:e {(expandable tokens)}
Fully expands the (token list) in an x-type manner, but the function remains fully ex-
pandable, and parameter character (usually #) need not be doubled.

TgXhackers note: \use:e is a wrapper around the primitive \expanded where it is avail-
able: it requires two expansions to complete its action. When \expanded is not available this
function is very slow.

\use:x {(expandable tokens)}

Fully expands the (ezpandable tokens) and inserts the result into the input stream at the
current location. Any hash characters (#) in the argument must be doubled.

5.1 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

20

\use_none_delimit_by_q _nil:w * \use_none_delimit_by_q_nil:w (balanced text) \g_nil

\use_none_delimit_by_q_stop

W * \use_none_delimit_by_q_stop:w (balanced text) \g_stop

\use_none_delimit_by_q_recursion_stop:w * \use_none_delimit_by_q_recursion_stop:w <balanced text)

\gq_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.

\use_i_delimit_by_q_nil:nw
\use_i_delimit_by_q_stop:nw

* \use_i_delimit_by_q_nil:nw {(inserted tokens)} (balanced text)
* \g_nil

\use_i_delimit_by_q_recursion_stop:nw * \use_i_delimit_by_q_stop:nw {(inserted tokens)} (balanced

text) \g_stop
\use_i_delimit_by_q_recursion_stop:nw {(inserted tokens)}
(balanced text) \g_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

6

Predicates and conditionals

IXTEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending

on its result, either the code supplied as the (true code) or the (false code). These
arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abc} {(true code)} {(false code)}

a function that turns the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carries out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it is usually accompanied by T and F functions as well. These are provided
for convenience when the branch only needs to go a single way. Package writers
are free to choose which types to define but the kernel definitions always provide
all three versions.

Important to note is that these branching conditionals with (true code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they are accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which

can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

21

\c_true_bool

\c_false_boo

1

\cs_if_eq_p:NN
\cs_if_eq:NNTF

\cs_if_exist_p:N
\cs_if_exist_p:c
\cs_if_exist:NTF
\cs_if_exist:cTF

Ll S

\cs_if_free_p:N
\cs_if_free_p:c
\cs_if_free:NTF
\cs_if_free:cTF

L I

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {(false code)}

For each predicate defined, a “branching conditional” also exists that behaves like
a conditional described above.

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and BTEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

Constants that represent true and false, respectively. Used to implement predicates.

6.1 Tests on control sequences

\cs_if_eq_p:NN (cs1) (cs2)

\cs_if_eq:NNTF (cs1) (cs2) {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true if they are the
same, i.e. if they have exactly the same definition when examined with \cs_show:N.

\cs_if_exist_p:N (control sequence)
\cs_if_exist:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type). Any definition of {control sequence) other than \relax evaluates
as true.

\cs_if_free_p:N (control sequence)
\cs_if_free:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently free to be defined. This test is false if
the (control sequence) currently exists (as defined by \cs_if_exist:N).

6.2 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions
often contains a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if _int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We prefix primitive conditionals with \if_.

22

\if_true: *
\if_false: *
\else: *
\fi: *
\reverse_if:N *
\if _meaning:w *
\if:w *
\if _charcode:w *
\if_catcode:w x
\if_cs_exist:N x

\if_cs_exist:w *

\if_mode_horizontal:
\if _mode_vertical:
\if_mode_math:
\if_mode_inner:

*
*
*
*

\if_true: (true code) \else: (false code) \fi:
\if_false: (true code) \else: (false code) \fi:
\reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false code).
\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. The function \or: is documented in 13int and used in
case switches.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is e-TEX’s \unless

\if_meaning:w (argi) (arge) (true code) \else: (false code) \fi:

\if_meaning:w executes (true code) when (arg,) and (arge) are the same, otherwise it
executes (false code). (arg:) and (arge) could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TgXhackers note: This is TEX’s \ifx.

\if:w (tokeni) (tokenz) (true code) \else: (false code) \fi:
\if_catcode:w (tokeni) (tokens) (true code) \else: (false code) \fi:

These conditionals expand any following tokens until two unexpandable tokens are left.
If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if _catcode:w tests if the category codes of the two tokens are the same whereas \if :w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if :w.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:
\if _cs_exist:w (tokens) \cs_end: (true code) \else: (false code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

\if_mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Sim-
ilar for the other functions.

23

\mode_leave_vertical:

New: 2017-07-04

7 Starting a paragraph

\mode_leave_vertical:

Ensures that TEX is not in vertical (inter-paragraph) mode. In horizontal or math mode
this command has no effect, in vertical mode it switches to horizontal mode, and inserts
a box of width \parindent, followed by the \everypar token list.

TEXhackers note: This results in the contents of the \everypar token register being
inserted, after \mode_leave_vertical: is complete. Notice that in contrast to the KTEX 2¢
\leavevmode approach, no box is used by the method implemented here.

24

Part V
The 13expan package
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the I¥TEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions of the form \exp_-
.... They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo expands the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
{ \1_tmpa_t1 }

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_generate_variant:Nn \seq_gpush:Nn { No }
results in the definition of \seq_gpush:No
\cs_new:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is safe as the \cs_generate_variant:Nn
function will only create new definitions if there is not already one available. Therefore
adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

25

2 Methods for defining variants

We recall the set of available argument specifiers.

e N is used for single-token arguments while ¢ constructs a control sequence from its
name and passes it to a parent function as an N-type argument.

o Many argument types extract or expand some tokens and provide it as an n-type
argument, namely a braced multiple-token argument: V extracts the value of a
variable, v extracts the value from the name of a variable, n uses the argument as
it is, o expands once, f expands fully the front of the token list, e and x expand
fully all tokens (differences are explained later).

e A few odd argument types remain: T and F for conditional processing, otherwise
identical to n-type arguments, p for the parameter text in definitions, w for argu-
ments with a specific syntax, and D to denote primitives that should not be used
directly.

26

\cs_generate_variant:Nn
\cs_generate_variant :cn

Updated: 2017-11-28

\cs_generate_variant:Nn (parent control sequence) {(variant argument specifiers)}

This function is used to define argument-specifier variants of the (parent control sequence)
for IXTEX3 code-level macros. The (parent control sequence) is first separated into the
(base name) and (original argument specifier). The comma-separated list of (variant
argument specifiers) is then used to define variants of the (original argument specifier)
if these are not already defined. For each (variant) given, a function is created that
expands its arguments as detailed and passes them to the (parent control sequence). So
for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { ¢ }

creates a new function \foo:cn which expands its first argument into a control sequence
name and passes the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

generates the functions \foo:NV and \foo:cV in the same way. The \cs_generate_-
variant:Nn function can only be applied if the (parent control sequence) is already de-
fined. If the (parent control sequence) is protected or if the (variant) involves any x ar-
gument, then the (variant control sequence) is also protected. The (variant) is created
globally, as is any \exp_args:N(variant) function needed to carry out the expansion.

Only n and N arguments can be changed to other types. The only allowed changes
are

e c variant of an N parent;
e 0,V, v, f, e, or x variant of an n parent;
e N,n, T, F, or p argument unchanged.

This means the (parent) of a (variant) form is always unambiguous, even in cases where
both an n-type parent and an N-type parent exist, such as for \t1l_count:n and \tl_-
count:N.

For backward compatibility it is currently possible to make n, o, V, v, £, e, or x-type
variants of an N-type argument or N or c-type variants of an n-type argument. Both
are deprecated. The first because passing more than one token to an N-type argument
will typically break the parent function’s code. The second because programmers who
use that most often want to access the value of a variable given its name, hence should
use a V-type or v-type variant instead of c-type. In those cases, using the lower-level
\exp_args:No or \exp_args:Nc functions explicitly is preferred to defining confusing
variants.

3 Introducing the variants

The V type returns the value of a register, which can be one of t1, clist, int, skip,
dim, muskip, or built-in TEX registers. The v type is the same except it first creates a
control sequence out of its argument before returning the value.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only

27

when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The e type expands all tokens fully, starting from the first. More precisely the
expansion is identical to that of TEX’s \message (in particular # needs not be doubled).
It was added in May 2018. In recent enough engines (starting around 2019) it relies
on the primitive \expanded hence is fast. In older engines it is very much slower. As
a result it should only be used in performance critical code if typical users will have a
recent installation of the TEX ecosystem.

The x type expands all tokens fully, starting from the first. In contrast to e, all macro
parameter characters # must be doubled, and omitting this leads to low-level errors. In
addition this type of expansion is not expandable, namely functions that have x in their
signature do not themselves expand when appearing inside x or e expansion.

The £ type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and £-
expansion provides an alternative that expands the front of the token list as much as can
be done in such contexts. For instance, say that we want to evaluate the integer expression
3 + 4 and pass the result 7 as an argument to an expandable function \example:n. For
this, one should define a variant using \cs_generate_variant:Nn \example:n { f },
then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }
results in the call

\example:n { 3 , \int_eval:n { 3 + 4 } }
while using \example:x or \example:e instead results in

\example:n { 3 , 7 }

at the cost of being protected (for x type) or very much slower in old engines (for e type).
If you use f type expansion in conditional processing then you should stick to using TF
type functions only as the expansion does not finish any \if... \fi: itself!

It is important to note that both f- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the first non-expandable token. This means
for example that both

\tl_set:No \1_tmpa_tl { { \g_tmpb_tl } }

28

\exp_args:Nc *
\exp_args:cc *

and
\tl_set:Nf \1_tmpa_tl { { \g_tmpb_tl } }

leave \g_tmpb_t1 unchanged: { is the first token in the argument and is non-expandable.
It is usually best to keep the following in mind when using variant forms.

o Variants with x-type arguments (that are fully expanded before being passed to
the n-type base function) are never expandable even when the base function is.
Such variants cannot work correctly in arguments that are themselves subject to
expansion. Consider using f or e expansion.

o In contrast, e expansion (full expansion, almost like x except for the treatment of #)
does not prevent variants from being expandable (if the base function is). The draw-
back is that e expansion is very much slower in old engines (before 2019). Consider
using f expansion if that type of expansion is sufficient to perform the required
expansion, or x expansion if the variant will not itself need to be expandable.

e Finally £ expansion only expands the front of the token list, stopping at the first
non-expandable token. This may fail to fully expand the argument.

When speed is essential (for functions that do very little work and whose variants are
used numerous times in a document) the following considerations apply because internal
functions for argument expansion come in two flavours, some faster than others.

e Arguments that might need expansion should come first in the list of arguments.

e Arguments that should consist of single tokens N, c, V, or v should come first among
these.

e Arguments that appear after the first multi-token argument n, f, e, or o require
slightly slower special processing to be expanded. Therefore it is best to use the
optimized functions, namely those that contain only N, ¢, V, and v, and, in the last
position, o, £, e, with possible trailing N or n or T or F, which are not expanded.
Any x-type argument causes slightly slower processing.

4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

\exp_args:Nc (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a control
sequence. The result is inserted into the input stream after reinsertion of the (function).
Thus the (function) may take more than one argument: all others are left unchanged.

The :cc variant constructs the (function) name in the same manner as described for
the (tokens).

TEXhackers note: Protected macros that appear in a c-type argument are expanded
despite being protected; \exp_not :n also has no effect. An internal error occurs if non-characters
or active characters remain after full expansion, as the conversion to a control sequence is not
possible.

29

\exp_args:No *

\exp_args:NV x

\exp_args:Nv *

\exp_args:Ne *

New: 2018-05-15

\exp_args:Nf x

\exp_args:No (function) {(tokens)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded once, and the result is inserted in braces into the input stream af-
ter reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:NV (function) (variable)

This function absorbs two arguments (the names of the (function) and the (variable)).
The content of the (variable) are recovered and placed inside braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:Nv (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. This control sequence should be the name of a (variable). The content of
the (variable) are recovered and placed inside braces into the input stream after reinser-
tion of the (function). Thus the (function) may take more than one argument: all others
are left unchanged.

TEXhackers note: Protected macros that appear in a v-type argument are expanded
despite being protected; \exp_not :n also has no effect. An internal error occurs if non-characters
or active characters remain after full expansion, as the conversion to a control sequence is not
possible.

\exp_args:Ne (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and exhaus-
tively expands the (tokens). The result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

TEXhackers note: This relies on the \expanded primitive when available (in LuaTEX and
starting around 2019 in other engines). Otherwise it uses some fall-back code that is very much
slower. As a result it should only be used in performance-critical code if typical users have a
recent installation of the TEX ecosystem.

\exp_args:Nf (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are fully expanded until the first non-expandable token is found (if that is a
space it is removed), and the result is inserted in braces into the input stream after rein-
sertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

30

\exp_args:Nx

\exp_args:NNc =
\exp_args:NNo =
\exp_args:NNV *
\exp_args:NNv x
\exp_args:NNe *
\exp_args:NNf *
\exp_args:Ncc =
\exp_args:Nco *
\exp_args:NcV *
\exp_args:Ncv *
\exp_args:Ncf *
\exp_args:NVV *

Updated: 2018-05-15

\exp_args:Nnc *
\exp_args:Nno x
\exp_args:NnV x
\exp_args:Nnv *
\exp_args:Nne *
\exp_args:Nnf x
\exp_args:Noc *
\exp_args:Noo x
\exp_args:Nof x
\exp_args:NVo *
\exp_args:Nfo *
\exp_args:Nff x

Updated: 2018-05-15

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNx
Ncx
Nnx
Nox
Nxo
Nxx

\exp_args:Nx (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and exhaus-
tively expands the (tokens). The result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

5 Manipulating two arguments

\exp_args:NNc (tokem) (tokens) {(tokens)}

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Noo (token) {(tokensi)} {(tokenss)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions need slower processing.

\exp_args:NNx (token;) (tokenz) {(tokens)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable due to their x-type argument.

31

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNo
NNNV
NNNv
Nccce
NcNc
NcNo
Ncco

Lol S S . D I o

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNcf
NNno
NNnV
NNoo
NNVV
Ncno
NcnV
Ncoo
NcVV
Nnnc
Nnno
Nnnf
Nnff
Nooo
Noof
Nffo

Xk X b X X b X o X X ok X ot X X

\exp_args:NNNx
\exp_args:NNnx
\exp_args:NNox
\exp_args:Nccx
\exp_args:Ncnx
\exp_args:Nnnx
\exp_args:Nnox
\exp_args:Noox

New: 2015-08-12

6 Manipulating three arguments

\exp_args:NNNo (token:) (tokens) (tokens) {(tokens)}

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
ete.

\exp_args:NNoo (token:) (tokens) {(tokens)} {(tokens)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc. These
functions need slower processing.

\exp_args:NNnx (tokeni) (tokens) {(tokensi)} {(tokensy)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

32

\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:

No
NV
Nv
Ne
Nf
NNo
NNV
NN
Nco
NcV
Nno
Noo
Nfo
NNNo
NNNV
NNN£
NnNo

Lol D . S S . . D . I R

*

NNNNo *
NNNNf *

Updated: 2018-05-15

\exp_last_unbraced:Nx

7 Unbraced expansion

\exp_last_unbraced:Nno (token) {(tokensi)} {(tokens:)}

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, :Nfo and :NnNo variants
need slower processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \foo_bar:w { } \q_stop leads to an infinite loop, as the quark is £f-
expanded.

\exp_last_unbraced:Nx (function) {(tokens)}

This function fully expands the (tokens) and leaves the result in the input stream after
reinsertion of the (function). This function is not expandable.

\exp_last_two_unbraced:Noo *

\exp_last_two_unbraced:Noo (token) {(tokensi)} {(tokens:)}

\exp_after:wN x

This function absorbs three arguments and expands the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

\exp_after:wN (tokem;) (tokens)

Carries out a single expansion of (tokeny) (which may consume arguments) prior to the
expansion of (tokeny). If (tokeny) has no expansion (for example, if it is a character) then
it is left unchanged. It is important to notice that (token;) may be any single token, in-
cluding group-opening and -closing tokens ({ or } assuming normal TEX category codes).
Unless specifically required this should be avoided: expansion should be carried out using
an appropriate argument specifier variant or the appropriate \exp_arg:N function.

TgXhackers note: This is the TEX primitive \expandafter renamed.

8 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-

33

\exp_not:N =

\exp_not:c *

\exp_not:n *

\exp_not:o *

\exp_not:V *

able’ since they themselves disappear after the expansion has completed.

\exp_not:N (token)

Prevents expansion of the (token) in a context where it would otherwise be expanded,
for example an x-type argument or the first token in an o or e or £ argument.

TEXhackers note: This is the TEX \noexpand primitive. It only prevents expansion. At
the beginning of an £-type argument, a space (token) is removed even if it appears as \exp_not:N
\c_space_token. In an x-expanding definition (\cs_new:Npx), a macro parameter introduces
an argument even if it appears as \exp_not:N # 1. This differs from \exp_not:n.

\exp_not:c {(tokens)}

Expands the (tokens) until only characters remain, and then converts this into a control
sequence. Further expansion of this control sequence is then inhibited using \exp_not:N.

TEXhackers note: Protected macros that appear in a c-type argument are expanded
despite being protected; \exp_not :n also has no effect. An internal error occurs if non-characters
or active characters remain after full expansion, as the conversion to a control sequence is not
possible.

\exp_not:n {(tokens)}

Prevents expansion of the (tokens) in an e or x-type argument. In all other cases the
(tokens) continue to be expanded, for example in the input stream or in other types of
arguments such as c, £, v. The argument of \exp_not:n must be surrounded by braces.

TEXhackers note: This is the e-TEX \unexpanded primitive. In an x-expanding definition
(\cs_new:Npx), \exp_not:n {#1} is equivalent to ##1 rather than to #1, namely it inserts the
two characters # and 1. In an e-type argument \exp_not:n {#} is equivalent to #, namely it
inserts the character #.

\exp_not:o {(tokens)}

Expands the (tokens) once, then prevents any further expansion in x-type or e-type
arguments using \exp_not:n.

\exp_not:V (variable)

Recovers the content of the (variable), then prevents expansion of this material in x-type
or e-type arguments using \exp_not:n.

34

\exp_not:v *

\exp_not:e *

\exp_not:f *

\exp_stop_£f: «*

Updated: 2011-06-03

\exp_not:v {(tokens)}

Expands the (tokens) until only characters remains, and then converts this into a control
sequence which should be a (variable) name. The content of the (variable) is recovered,
and further expansion in x-type or e-type arguments is prevented using \exp_not:n.

TEXhackers note: Protected macros that appear in a v-type argument are expanded
despite being protected; \exp_not :n also has no effect. An internal error occurs if non-characters
or active characters remain after full expansion, as the conversion to a control sequence is not
possible.

\exp_not:e {(tokens)}

Expands (tokens) exhaustively, then protects the result of the expansion (including any
tokens which were not expanded) from further expansion in e or x-type arguments using
\exp_not:n. This is very rarely useful but is provided for consistency.

\exp_not:f {(tokens)}

Expands (tokens) fully until the first unexpandable token is found (if it is a space it
is removed). Expansion then stops, and the result of the expansion (including any to-
kens which were not expanded) is protected from further expansion in x-type or e-type
arguments using \exp_not:n.

\foo_bar:f { (tokens) \exp_stop_f: (more tokens) }

This function terminates an f-type expansion. Thus if a function \foo_bar:f starts
an f-type expansion and all of (tokens) are expandable \exp_stop_f: terminates the
expansion of tokens even if (more tokens) are also expandable. The function itself is an
implicit space token. Inside an x-type expansion, it retains its form, but when typeset it
produces the underlying space ().

9 Controlled expansion

The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to
calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. These commands
are used throughout the kernel code, but we hope that outside the kernel there will be
little need to resort to them. Instead the argument manipulation methods document
above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to
expand several tokens in one go. The next set of commands provide this functionality.
Be aware that it is absolutely required that the programmer has full control over the
tokens to be expanded, i.e., it is not possible to use these functions to expand unknown
input as part of (expandable-tokens) as that will break badly if unexpandable tokens are
encountered in that place!

35

\exp:w *
\exp_end: *

New: 2015-08-23

\exp:w *
\exp_end_continue_f:w *

New: 2015-08-23

\exp:w (expandable tokens) \exp_end:

Expands (ezpandable-tokens) until reaching \exp_end: at which point expansion stops.
The full expansion of (expandable tokens) has to be empty. If any token in {expandable
tokens) or any token generated by expanding the tokens therein is not expandable the
expansion will end prematurely and as a result \exp_end: will be misinterpreted later
on.?

In typical use cases the \exp_end: is hidden somewhere in the replacement text of
(expandable-tokens) rather than being on the same expansion level than \exp:w, e.g., you

may see code such as
\exp:w \@Q_case:NnTF #1 {#2} { } { }
where somewhere during the expansion of \@@_case :NnTF the \exp_end: gets generated.

TEXhackers note: The current implementation uses \romannumeral hence ignores space
tokens and explicit signs + and - in the expansion of the (ezpandable tokens), but this should
not be relied upon.

\exp:w (expandable-tokens) \exp_end_continue_f:w (further-tokens)

Expands (expandable-tokens) until reaching \exp_end_continue_f:w at which point ex-
pansion continues as an f-type expansion expanding (further-tokens) until an unexpand-
able token is encountered (or the f-type expansion is explicitly terminated by \exp_-
stop_£f:). As with all f-type expansions a space ending the expansion gets removed.

The full expansion of (ezxpandable-tokens) has to be empty. If any token in
(expandable-tokens) or any token generated by expanding the tokens therein is not ex-
pandable the expansion will end prematurely and as a result \exp_end_continue_f:w
will be misinterpreted later on.*

In typical use cases (expandable-tokens) contains no tokens at all, e.g., you will see
code such as

\exp_after:wN { \exp:w \exp_end_continue_f:w #2 }

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical
reasons this has to happen using two tokens (if they would be hidden inside another
command \exp_after:wN would only expand the command but not trigger any additional
f-expansion).

You might wonder why there are two different approaches available, after all the
effect of

\exp:w (expandable-tokens) \exp_end:
can be alternatively achieved through an f-type expansion by using \exp_stop_f:, i.e.
\exp:w \exp_end_continue_f:w (expandable-tokens) \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and
less expansion internally) so in places where such performance really matters and where
we want to explicitly stop the expansion at a defined point the first form is preferable.

3Due to the implementation you might get the character in position 0 in the current font (typically
“¢”) in the output without any error message!
4In this particular case you may get a character into the output as well as an error message.

36

\exp:w * \exp:w (expandable-tokens) \exp_end_continue_f:nw (further-tokens)

\exp_end_continue f:nw * The difference to \exp_end_continue_f:w is that we first we pick up an argument which

New: 2015-08-23 i3 then returned to the input stream. If (further-tokens) starts with space tokens then
these space tokens are removed while searching for the argument. If it starts with a brace
group then the braces are removed. Thus such spaces or braces will not terminate the
f-type expansion.

10 Internal functions

\::n \cs_new:Npn \exp_args:Ncof { \::c \::o \::f \::: }
t N Internal forms for the base expansion types. These names do not conform to the general
\: IC) WTEX3 approach as this makes them more readily visible in the log and so forth. They
\ ;0 should not be used outside this module.
\::e
\::f
\::x
\::v
\::V
\ . .
::o_unbraced \cs_new:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }

::e_unbraced
::f_unbraced
::X_unbraced
::v_unbraced
::V_unbraced

Internal forms for the expansion types which leave the terminal argument unbraced.
These names do not conform to the general I2TEX3 approach as this makes them more
readily visible in the log and so forth. They should not be used outside this module.

P

37

\tl_new:N
\tl_new:c

\tl_const:Nn
\tl_const:(Nx|cn|cx)

\tl_clear:N

\tl_clear:c
\tl_gclear:N

\tl_gclear:c

Part VI
The 13tl package
Token lists

TEX works with tokens, and ITEX3 therefore provides a number of functions to deal with
lists of tokens. Token lists may be present directly in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored in a so-called “token list variable”, which have the suffix t1: a token
list variable can also be used as the argument to a function, for example

\foo:N \1_some_tl

In both cases, functions are available to test and manipulate the lists of tokens, and these
have the module prefix t1. In many cases, functions which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”,
or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single
non-space token or a brace group, with optional leading explicit space characters (each
item is thus itself a token list). A token is either a normal N argument, or , {, or }
(assuming normal TEX category codes). Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, 1 and d), but thirteen tokens ({, H, e, 1, 1, o, },), w,
o, r, 1 and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

1 Creating and initialising token list variables

\tl_new:N (tl var)

Creates a new (tl var) or raises an error if the name is already taken. The declaration is
global. The (¢l var) is initially empty.

\tl_const:Nn (t1 var) {(token list)}

Creates a new constant (¢l var) or raises an error if the name is already taken. The value
of the (tl var) is set globally to the (token list).

\tl_clear:N (tl var)

Clears all entries from the (t var).

38

\tl_clear_new:N
\tl_clear_new:c
\tl_gclear_new:N
\tl_gclear_new:c

\tl_set_eq:NN
\tl_set_eq:(cN|Nc|cc)
\tl_gset_eq:NN
\tl_gset_eq:(cN|Nc|cc)

\t1l_concat:NNN
\tl_concat:ccc
\tl_gconcat :NNN
\tl_gconcat:ccc

New: 2012-05-18

\tl_if_exist_p:N
\tl_if_exist_p:c *
\tl_if exist:NTF *
\tl_if exist:cTF %

New: 2012-03-03

\tl_clear_new:N (tl var)

Ensures that the (¢l var) exists globally by applying \t1_new:N if necessary, then applies
\tl_(g)clear:N to leave the (¢ var) empty.

\tl_set_eq:NN (tl1 var;) (tl vars)

Sets the content of (¢l var;) equal to that of (tl vars).

\tl_concat:NNN (tl1 vari) (tl vars) (tl vars)

Concatenates the content of (tl vary) and (¢l vars) together and saves the result in
(tl vary). The (#l vary) is placed at the left side of the new token list.

\tl_if_exist_p:N (tl var)
\tl_if_exist:NTF (tl var) {(true code)} {(false code)}

Tests whether the (tl var) is currently defined. This does not check that the (¢ var)
really is a token list variable.

2 Adding data to token list variables

\tl_set:Nn

\tl_set:Nn (t1 var) {(tokens)}

\tl_set:(NV|Nv|No|Nf|Nx|cn|cV|cv|co|cf|cx)

\tl_gset:Nn

\tl_gset:(NV|Nv|No|Nf|Nx|cn|cV|cv|co|cE|cx)

Sets (tl var) to contain (tokens), removing any previous content from the variable.

\tl_put_left:Nn

\tl_put_left:Nn (t1 var) {(tokemns)}

\tl_put_left:(NV|No|Nx|cn|cV|co|cx)

\tl_gput_left:Nn

\tl_gput_left:(NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the left side of the current content of (¢l var).

\tl_put_right:Nn

\tl_put_right:Nn (t1 var) {(tokens)}

\tl_put_right:(NV|No|Nx|cn|cV|co|cx)

\tl_gput_right:Nn

\tl_gput_right:(NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the right side of the current content of (¢l var).

39

\tl_replace_once:Nnn
\tl_replace_once:cnn
\tl_greplace_once:Nnn
\tl_greplace_once:cnn

Updated: 2011-08-11

\tl_replace_all:Nnn
\tl_replace_all:cnn
\tl_greplace_all:Nnn
\tl_greplace_all:cnn

Updated: 2011-08-11

\tl_remove_once:Nn
\tl_remove_once:cn
\tl_gremove_once:Nn
\tl_gremove_once:cn

Updated: 2011-08-11

\tl_remove_all:Nn
\tl_remove_all:cn
\tl_gremove_all:Nn
\tl_gremove_all:cn

Updated: 2011-08-11

3 Modifying token list variables

\tl_replace_once:Nnn (tl1 var) {(old tokens)} {(new tokens)}

Replaces the first (leftmost) occurrence of (old tokens) in the (tl var) with (new tokens).
(Old tokens) cannot contain {, } or # (more precisely, explicit character tokens with
category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_replace_all:Nnn (tl var) {(old tokens)} {(new tokens)}

Replaces all occurrences of (old tokens) in the (] var) with (new tokens). (Old tokens)
cannot contain {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function
operates from left to right, the pattern (old tokens) may remain after the replacement
(see \t1l_remove_all:Nn for an example).

\tl_remove_once:Nn (t1 var) {(tokens)}

Removes the first (leftmost) occurrence of (tokens) from the (¢ var). (Tokens) cannot
contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_remove_all:Nn (tl1 var) {(tokens)}

Removes all occurrences of (tokens) from the (¢ var). (Tokens) cannot contain {, } or #
(more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-
group), and tokens with category code 6). As this function operates from left to right,
the pattern (tokens) may remain after the removal, for instance,

\tl_set:Nn \1_tmpa_t1l {abbccd} \tl_remove_all:Nn \1_tmpa_t1l {bc}

results in \1_tmpa_t1 containing abcd.

4 Reassigning token list category codes

These functions allow the rescanning of tokens: re-apply TEX’s tokenization process to
apply category codes different from those in force when the tokens were absorbed. Whilst
this functionality is supported, it is often preferable to find alternative approaches to
achieving outcomes rather than rescanning tokens (for example construction of token lists
token-by-token with intervening category code changes or using \char_generate:nn).

40

\tl_set_rescan:Nnn

\tl_set_rescan:Nnn (t1 var) {(setup)} {(tokens)}

\tl_set_rescan:(Nno|Nnx|cnn|cno|cnx)

\tl_gset_rescan:Nnn

\tl_gset_rescan:(Nno|Nnx|cnn|cno|cnx)

Updated: 2015-08-11

\tl_rescan:nn

Updated: 2015-08-11

\tl_if_blank_p:n *
\tl_if_blank_p:(e|V]o) *
\tl_if_blank:nTF *

\tl_if_blank:(e|V|o)TF *

Updated: 2019-09-04

Sets (tl var) to contain (tokens), applying the category code régime specified in the (setup)
before carrying out the assignment. (Category codes applied to tokens not explicitly
covered by the (setup) are those in force at the point of use of \t1l_set_rescan:Nnn.)
This allows the (# var) to contain material with category codes other than those that
apply when (tokens) are absorbed. The (setup) is run within a group and may contain
any valid input, although only changes in category codes are relevant. See also \tl_-
rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \tl_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

\tl_rescan:nn {(setup)} {(tokens)}

Rescans (tokens) applying the category code régime specified in the (setup), and leaves
the resulting tokens in the input stream. (Category codes applied to tokens not explicitly
covered by the (setup) are those in force at the point of use of \tl_rescan:nn.) The
(setup) is run within a group and may contain any valid input, although only changes in
category codes are relevant. See also \t1l_set_rescan:Nnn, which is more robust than
using \t1l_set:Nn in the (tokens) argument of \t1_rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \t1l_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

5 Token list conditionals

\tl_if_blank_p:n {(token list)}
\tl_if_blank:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) consists only of blank spaces (i.e. contains no item). The test is
true if (token list) is zero or more explicit space characters (explicit tokens with character
code 32 and category code 10), and is false otherwise.

41

\tl_if_empty_p:N
\tl_if_empty_p:c
\tl_if_empty:NTF
\tl_if_empty:cTF

L I o

\tl_if_empty_p:n
\tl_if_empty_p:(V]o)
\tl_if_empty:nTF
\tl_if_empty:(V|o)TF

L D I o

New: 2012-05-24
Updated: 2012-06-05

\tl_if_eq_p:NN
\tl_if_eq_p:(Nc|cN|cc)
\tl_if_eq:NNTF
\tl_if_eq:(Nc|cN|cc)TF

L S

\tl_if_eq:nnTF

\tl_if_in:NnTF
\tl_if_in:cnTF

\tl_if_in:nnTF
\tl_if_in:(Vn|on|no)TF

\tl_if_novalue_p:n =%
\tl_if_novalue:nTF x

New: 2017-11-14

\tl_if_empty_p:N (t1 var)
\tl_if_empty:NTF (tl var) {(true code)} {(false code)}

Tests if the (token list variable) is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:n {(token list)}
\tl_if_empty:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) is entirely empty (i.e. contains no tokens at all).

\tl_if_eq_p:NN (tl1 var;) (tl varp)
\tl_if_eq:NNTF (t1 vari) (tl vars) {(true code)} {(false code)}

Compares the content of two (token list variables) and is logically true if the two contain
the same list of tokens (i.e. identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \1_tmpa_tl { abc }
\tl_set:Nx \1_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NNTF \1_tmpa_tl \1_tmpb_tl { true } { false }

yields false.

\tl_if_eq:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token list;) and (token lists) contain the same list of tokens, both in respect of
character codes and category codes.

\tl_if_in:NnTF (t1 var) {(token list)} {(true code)} {(false code)}

Tests if the (token list) is found in the content of the (¢l var). The (token list) cannot
contain the tokens {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:nnTF {(token listi)} {(token listqs)} {(true code)} {(false code)}

Tests if (token listz) is found inside (token list;). The (token listy) cannot contain the
tokens {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_if_novalue_p:n {(token list)}
\tl_if_novalue:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) is exactly equal to the special \c_novalue_t1l marker. This
function is intended to allow construction of flexible document interface structures in
which missing optional arguments are detected.

42

\tl_if_single_p:N x
\tl_if_single_p:c =
\tl_if_single:NTF *
\tl_if_single:cTF %

Updated: 2011-08-13

\tl_if_single_p:n *
\tl_if_single:nTF x

Updated: 2011-08-13

\tl_if_single_token_p:n *
\tl_if_single_token:nTF x

\tl_case:Nn *
\tl_case:cn *
\tl_case:NnTF x*
\tl_case:cnTF *

New: 2013-07-24

\t1l_map_function:NN ¢
\tl_map_function:cN 3w

Updated: 2012-06-29

\tl_if_single_p:N (tl1 var)

\tl_if_single:NTF (t1 var) {(true code)} {(false code)}

Tests if the content of the (¢l var) consists of a single item, i.e. is a single normal token
(neither an explicit space character nor a begin-group character) or a single brace group,
surrounded by optional spaces on both sides. In other words, such a token list has token
count 1 according to \tl_count:N.

\tl_if_single_p:n {(token list)}

\tl_if_single:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) has exactly one item, i.e. is a single normal token (neither an
explicit space character nor a begin-group character) or a single brace group, surrounded
by optional spaces on both sides. In other words, such a token list has token count 1
according to \t1l_count:n.

\tl_if_single_token_p:n {(token list)}

\tl_if_single_token:nTF {(token list)} {(true code)} {(false code)}

Tests if the token list consists of exactly one token, i.e. is either a single space character
or a single “normal” token. Token groups ({...}) are not single tokens.

\tl_case:NnTF (test token list variable)
{
(token list variable casei) {(code casei)}
(token list variable cases) {(code case)}

(token list variable case,) {{code casen)}

}
{(true code)}
{(false code)}

This function compares the (test token list variable) in turn with each of the (token
list variable cases). If the two are equal (as described for \t1_if_eq:NNTF) then the
associated (code) is left in the input stream and other cases are discarded. If any of
the cases are matched, the (true code) is also inserted into the input stream (after the
code for the appropriate case), while if none match then the (false code) is inserted. The
function \t1l_case:Nn, which does nothing if there is no match, is also available.

6 Mapping to token lists

All mappings are done at the current group level, 7.e. any local assignments made by the
(function) or (code) discussed below remain in effect after the loop.

\tl_map_function:NN (tl var) (function)

Applies (function) to every (item) in the (¢l var). The (function) receives one argument
for each iteration. This may be a number of tokens if the (item) was stored within
braces. Hence the (function) should anticipate receiving n-type arguments. See also
\tl_map_function:nN.

43

\tl_map_function:nN 3

Updated: 2012-06-29

\tl_map_inline:Nn
\tl_map_inline:cn

Updated: 2012-06-29

\tl_map_inline:nn

Updated: 2012-06-29

\tl_map_tokens:Nn ¥
\tl_map_tokens:cn w

e

\tl_map_tokens:nn

New: 2019-09-02

\tl_map_variable:NNn
\tl_map_variable:cNn

Updated: 2012-06-29

\tl_map_variable:nNn

Updated: 2012-06-29

\tl_map_function:nN {(token list)} (function)

Applies (function) to every (item) in the (token list), The (function) receives one ar-
gument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:NN.

\tl_map_inline:Nn (t1 var) {(inline function)}

Applies the (inline function) to every (item) stored within the (¢l var). The (inline
function) should consist of code which receives the (item) as #1. See also \t1l_map_-
function:NN.

\tl_map_inline:nn {(token list)} {(inline function)}

Applies the (inline function) to every (item) stored within the (token list). The (inline
function) should consist of code which receives the (item) as #1. See also \t1l_map_-
function:nN.

\tl_map_tokens:Nn (tl1 var) {(code)}

\tl_map_tokens:nn (tokens) {(code)}

Analogue of \t1l_map_function:NN which maps several tokens instead of a single func-
tion. The (code) receives each item in the (¢l var) or (tokens) as two trailing brace groups.
For instance,

\tl_map_tokens:Nn \1_my_tl { \prg_replicate:nn { 2 } }

expands to twice each item in the (sequence): for each item in \1_my_t1 the function
\prg_replicate:nn receives 2 and (item) as its two arguments. The function \tl_-
map_inline:Nn is typically faster but is not expandable.

\tl_map_variable:NNn (tl1 var) (variable) {{code)}

Stores each (item) of the (¢l var) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. Its value after the loop is the last (item) in the
(tl var), or its original value if the (¢l var) is blank. See also \t1_map_inline:Nn.

\tl_map_variable:nNn {(token 1list)} (variable) {(code)}

Stores each (item) of the (token list) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. Its value after the loop is the last (item) in the
(tl var), or its original value if the (¢ var) is blank. See also \t1_map_inline:nn.

44

\tl_map_break: 3

Updated: 2012-06-29

\tl_map_break:n w

Updated: 2012-06-29

\tl_map_break:

Used to terminate a \t1_map_. .. function before all entries in the (token list variable)
have been processed. This normally takes place within a conditional statement, for
example

\tl_map_inline:Nn \1l_my_tl
{
\str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
% Do something useful

}

See also \tl_map_break:n. Use outside of a \tl_map_... scenario leads to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (tokens) are inserted into the input stream. This depends on the design of the mapping
function.

\tl_map_break:n {(code)}

Used to terminate a \t1_map_... function before all entries in the (token list variable)
have been processed, inserting the (code) after the mapping has ended. This normally
takes place within a conditional statement, for example

\tl_map_inline:Nn \1_my_tl
{
\str_if_eq:nnT { #1 } { bingo }
{ \tl_map_break:n { <code> } }
% Do something useful

}
Use outside of a \t1_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

45

\tl_to_str:n *
\tl to_str:V «%

\tl_to_str:N x*
\tl _to_str:c =

\tl_use:N *
\tl use:c *

\tl_count:n *
\tl_count:(V|o) =

New: 2012-05-13

7 Using token lists

\tl_to_str:n {(token list)}

Converts the (token list) to a (string), leaving the resulting character tokens in the input
stream. A (string) is a series of tokens with category code 12 (other) with the exception
of spaces, which retain category code 10 (space). This function requires only a single
expansion. Its argument must be braced.

TgXhackers note: This is the e-TEX primitive \detokenize. Converting a (token list) to
a (string) yields a concatenation of the string representations of every token in the (token list).
The string representation of a control sequence is
e an escape character, whose character code is given by the internal parameter \escapechar,
absent if the \escapechar is negative or greater than the largest character code;

e the control sequence name, as defined by \cs_to_str:N;

e a space, unless the control sequence name is a single character whose category at the time
of expansion of \t1l_to_str:n is not “letter”.

The string representation of an explicit character token is that character, doubled in the case
of (explicit) macro parameter characters (normally #). In particular, the string representation
of a token list may depend on the category codes in effect when it is evaluated, and the value
of the \escapechar: for instance \tl_to_str:n {\a} normally produces the three character
“backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the
escape character is negative and a is currently not a letter.

\tl_to_str:N (tl1 var)

Converts the content of the (tl var) into a series of characters with category code 12
(other) with the exception of spaces, which retain category code 10 (space). This (string)
is then left in the input stream. For low-level details, see the notes given for \t1l_to_-
str:n.

\tl_use:N (tl1 var)

Recovers the content of a (tl var) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
(tl var) directly without an accessor function.

8 Working with the content of token lists

\tl_count:n {(tokens)}

Counts the number of (items) in (tokens) and leaves this information in the input stream.
Unbraced tokens count as one element as do each token group ({...}). This process
ignores any unprotected spaces within (tokens). See also \t1l_count:N. This function
requires three expansions, giving an (integer denotation).

46

\tl_count:N *
\tl_count:c =%

New: 2012-05-13

\tl_count_tokens:n x

New: 2019-02-25

\tl_reverse:n *
\tl_reverse:(V|o) *

Updated: 2012-01-08

\tl_reverse:N
\tl_reverse:c
\tl_greverse:N
\tl_greverse:c

Updated: 2012-01-08

\tl_reverse_items:n *

New: 2012-01-08

\tl_trim_spaces:n x
\tl_trim_spaces:o =

New: 2011-07-09
Updated: 2012-06-25

\tl_count:N (tl1 var)

Counts the number of token groups in the (¢l var) and leaves this information in the
input stream. Unbraced tokens count as one element as do each token group ({...}).
This process ignores any unprotected spaces within the (¢l var). See also \t1_count:n.
This function requires three expansions, giving an (integer denotation).

\tl_count_tokens:n {(tokens)}

Counts the number of TEX tokens in the (tokens) and leaves this information in the input
stream. Every token, including spaces and braces, contributes one to the total; thus for
instance, the token count of a~{bc} is 6.

\tl_reverse:n {(token list)}

Reverses the order of the (items) in the (token list), so that (item;)(items) (items)
... (item,) becomes (itemy,). .. (itemg)(itemsa)(itemy). This process preserves unprotected
space within the (token list). Tokens are not reversed within braced token groups, which
keep their outer set of braces. In situations where performance is important, consider
\tl_reverse_items:n. See also \tl_reverse:N.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type argument expansion.

\tl_reverse:N (tl1 var)

Reverses the order of the (items) stored in (tl war), so that (item;)(items) (items)
... (item,) becomes (itemy,). .. (itemg)(items)(itemy). This process preserves unprotected
spaces within the (token list variable). Braced token groups are copied without reversing
the order of tokens, but keep the outer set of braces. See also \tl_reverse:n, and, for
improved performance, \t1l_reverse_items:n.

\tl_reverse_items:n {(token list)}

Reverses the order of the (items) stored in (tl var), so that {(item;)}{(itema)H{ (items)}
... {(item,)} becomes {(item,)} ... {(items)}{{itema)}{(items)}. This process removes
any unprotected space within the (token list). Braced token groups are copied without
reversing the order of tokens, and keep the outer set of braces. Items which are initially
not braced are copied with braces in the result. In cases where preserving spaces is
important, consider the slower function \t1l_reverse:n.

TgXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type argument expansion.

\tl_trim_spaces:n {(token list)}

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and leaves the result in the input
stream.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type argument expansion.

47

\tl_trim_spaces_apply:nN *
\tl_trim_spaces_apply:oN x

New: 2018-04-12

\tl_trim_spaces:N
\tl_trim_spaces:c
\tl_gtrim_spaces:N
\tl_gtrim_spaces:c

New: 2011-07-09

\tl_sort:Nn
\tl_sort:cn
\tl_gsort:Nn
\tl_gsort:cn

New: 2017-02-06

\tl_sort:nN x*

New: 2017-02-06

\tl_trim_spaces_apply:nN {(token list)} (function)

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and passes the result to the (function)
as an n-type argument.

\tl_trim_spaces:N (tl1 var)

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the content of the (tl var). Note that this therefore
resets the content of the variable.

\tl_sort:Nn (tl var) {(comparison code)}

Sorts the items in the (¢ var) according to the {comparison code), and assigns the result
to (tl var). The details of sorting comparison are described in Section 1.

\tl_sort:nN {(token list)} (conditional)

Sorts the items in the (token list), using the (conditional) to compare items, and leaves
the result in the input stream. The (conditional) should have signature :nnTF, and return
true if the two items being compared should be left in the same order, and false if the
items should be swapped. The details of sorting comparison are described in Section 1.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an x-type or e-type argument expansion.

9 The first token from a token list

Functions which deal with either only the very first item (balanced text or single normal
token) in a token list, or the remaining tokens.

48

\tl_head:N *
\tl_head:n *
\tl_head:(V|v|f) x

Updated: 2012-09-09

\tl_head:w *

\tl_tail:N *
\tl_tail:n *
\tl_tail:(V|v|]f) *

Updated: 2012-09-01

\tl_head:n {(token list)}

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded; for example

\tl_head:n { abc }
and
\tl_head:n { ~ abc }

both leave a in the input stream. If the “head” is a brace group, rather than a single
token, the braces are removed, and so

\tl_head:n { ~ { ~ab } c }

yields ab. A blank (token list) (see \t1_if_blank:nTF) results in \t1_head:n leaving
nothing in the input stream.

TgXhackers note: The result is returned within \exp_not :n, which means that the token
list does not expand further when appearing in an x-type argument expansion.

\tl_head:w (token list) { } \q_stop

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded. A blank (token list) (which consists only of space
characters) results in a low-level TEX error, which may be avoided by the inclusion of an
empty group in the input (as shown), without the need for an explicit test. Alternatively,
\tl_if_blank:nF may be used to avoid using the function with a “blank” argument. This
function requires only a single expansion, and thus is suitable for use within an o-type
expansion. In general, \t1l_head:n should be preferred if the number of expansions is
not critical.

\tl_tail:n {(token list)}

Discards all leading explicit space characters (explicit tokens with character code 32 and
category code 10) and the first (item) in the (token list), and leaves the remaining tokens
in the input stream. Thus for example

\tl_tail:n { a ~ {bc} d }
and
\tl_tail:n { ~ a ~ {bc} d }

both leave _{bc}d in the input stream. A blank (token list) (see \t1l_if_blank:nTF)
results in \t1l_tail:n leaving nothing in the input stream.

TgXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an x-type argument expansion.

49

\tl_if_head_eq_catcode_p:nN
\tl_if_head_eq_catcode_p:oN
\tl_if_head_eq_catcode:nNTF
\tl_if_head_eq_catcode:oNTF

\tl_if_head_eq_catcode_p:nN {(token list)
\tl_if_head_eq_catcode:nNTF {(token list)
{(true code)} {(false code)}

(test token)

}
} (test token)

* % o

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same category code as the (test token).
In the case where the (token list) is empty, the test is always false.

\tl_if_head_eq_charcode_p:nN
\tl_if_head_eq_charcode_p:£fN
\tl_if_head_eq_charcode:nNTF
\tl_if_head_eq_charcode:fNTF

\tl_if_head_eq_charcode_p:nN {(token list)} (test token)
\tl_if_head_eq_charcode:nNTF {(token list)} (test token)

*
*
* {(true code)} {(false code)}
*

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same character code as the (test token).
In the case where the (token list) is empty, the test is always false.

\tl_if_head_eq_meaning_p:nN x \tl_if_head_eq_meaning p:nN {(token list)
\tl_if_head_eq_meaning:nNTF * \tl_if_head_eq_meaning:nNTF {(token list)

(test token)

}
} (test token)

Updated: 2012-07-09

{(true code)} {(false code)}

\tl_if_head_is_group_p:n *
\tl_if_head_is_group:nTF *

New: 2012-07-08

Tests if the first (token) in the (token list) has the same meaning as the (test token). In
the case where (token list) is empty, the test is always false.

\tl_if_head_is_group_p:n {(token list)}

\tl_if_head_is_group:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit begin-group character (with
category code 1 and any character code), in other words, if the (token list) starts with a
brace group. In particular, the test is false if the (token list) starts with an implicit token
such as \c_group_begin_token, or if it is empty. This function is useful to implement
actions on token lists on a token by token basis.

\tl_if_head_is_N_type_p:n * \tl_if_head_is_N_type_p:n {(token list)}
\tl_if_head_is_N_type:nTF * \tl_if_head_is_N_type:nTF {(token 1list)} {(true code)} {(false code)}

New: 2012-07-08

\tl_if_head_is_space_p:n *
\tl_if_head_is_space:nTF *

Updated: 2012-07-08

Tests if the first (token) in the (token list) is a normal N-type argument. In other words, it
is neither an explicit space character (explicit token with character code 32 and category
code 10) nor an explicit begin-group character (with category code 1 and any character
code). An empty argument yields false, as it does not have a “normal” first token. This
function is useful to implement actions on token lists on a token by token basis.

\tl_if_head_is_space_p:n {(token list)}

\tl_if_head_is_space:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit space character (explicit token
with character code 12 and category code 10). In particular, the test is false if the
(token list) starts with an implicit token such as \c_space_token, or if it is empty. This
function is useful to implement actions on token lists on a token by token basis.

50

\tl_item:nn *
\tl_item:Nn =%
\tl_item:cn =%

New: 2014-07-17

\tl_rand_item:N %
\tl_rand_item:c *
\tl_rand_item:n x

New: 2016-12-06

10 Using a single item

\tl_item:nn {(token list)} {(integer expression)}

Indexing items in the (token list) from 1 on the left, this function evaluates the (integer
expression) and leaves the appropriate item from the (token list) in the input stream.
If the (integer expression) is negative, indexing occurs from the right of the token list,
starting at —1 for the right-most item. If the index is out of bounds, then the function
expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion.

\tl_rand_item:N (tl var)
\tl_rand_item:n {(token list)}

Selects a pseudo-random item of the (token list). If the (token list) is blank, the result
is empty. This is not available in older versions of XHTEX.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion.

o1

\tl_range:Nnn x
\tl_range:nnn *

New: 2017-02-17
Updated: 2017-07-15

\tl_range:Nnn (tl1 var) {(start index)} {(end index)}
\tl_range:nnn {(token list)} {(start index)} {(end index)}

Leaves in the input stream the items from the (start index) to the {(end index) inclusive.
Spaces and braces are preserved between the items returned (but never at either end of
the list). Here (start index) and {end index) should be integer denotations. For describing
in detail the functions’ behavior, let m and n be the start and end index respectively. If
either is 0, the result is empty. A positive index means ‘start counting from the left end’,
and a negative index means ‘from the right end’. Let [be the count of the token list.

The actual start point is determined as M = mif m > 0and as M =1+ m +1
if m < 0. Similarly the actual end point is N =nifn>0and N =1+n+1if n <0.
If M > N, the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s < 0 or s > [.

Spaces in between items in the actual range are preserved. Spaces at either end
of the token list will be removed anyway (think to the token list being passed to
\tl_trim_spaces:n to begin with.

Thus, with [= 7 as in the examples below, all of the following are equivalent and
result in the whole token list

\tl_range:nnn { abcd~{e{}}fg >} {1} {7}

\tl_range:nnn { abcd~{e{}}fg } {1} { 12 }
\tl_range:nnn { abcd~{e{}}fg } { -7 } { 7 2}
\tl_range:nnn { abcd~{e{}}fg } { -12 } { 7 }

Here are some more interesting examples. The calls

5311}
-3 11}
531}

abcd{e{}}fg L
abcd{e{}}fg P A{
abcd{e{}}fg 6 1
abcd{e{}}fg } { -6 > { -3}

\iow_term:x { \tl_range:nnn {
\iow_term:x { \tl_range:nnn {
\iow_term:x { \tl_range:nnn {
\iow_term:x { \tl_range:nnn {

}{2
{2
L

are all equivalent and will print bcd{e{}} on the terminal; similarly

\iow_term:x { \tl_range:nnn { abcd~{e{}}fg } {23} {51} }

\iow_term:x { \tl_range:nnn { abcd~{e{}}fg } {2} { -3} }
\iow_term:x { \tl_range:nnn { abcd~{e{}}fg >} { 6 >} { 5} }
\iow_term:x { \tl_range:nnn { abcd~{e{}}fg >} { -6 + { -3 } }

are all equivalent and will print bed {e{}} on the terminal (note the space in the middle).
To the contrary,

\tl_range:nnn { abcd~{e{}}f } {2} { 4}

will discard the space after ‘d’.

If we want to get the items from, say, the third to the last in a token list <t1>, the
call is \t1l_range:nnn { <t1> } { 3 } { -1 }. Similarly, for discarding the last item,
we can do \tl_range:nnn { <t1> } {1 } { -2 }.

For better performance, see \t1_range_braced:nnn and \tl_range_unbraced:nnn.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion.

52

\t1l_show:N
\tl_show:c

Updated: 2015-08-01

\tl_show:n

Updated: 2015-08-07

\tl_log:N
\tl_log:c

New: 2014-08-22
Updated: 2015-08-01

\tl_log:n

New: 2014-08-22
Updated: 2015-08-07

\c_empty_t1

\c_novalue_t1l

New: 2017-11-14

\c_space_tl

11 Viewing token lists

\tl_show:N (t1 var)

Displays the content of the (¢l var) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\tl_show:n {(token list)}

Displays the (token list) on the terminal.

TgXhackers note: This is similar to the e-TEX primitive \showtokens, wrapped to a fixed
number of characters per line.

\tl_log:N (tl1 var)

Writes the content of the (¢ var) in the log file. See also \t1_show:N which displays the
result in the terminal.

\tl_log:n {(token list)}

Writes the (token list) in the log file. See also \t1l_show:n which displays the result in
the terminal.

12 Constant token lists

Constant that is always empty.

A marker for the absence of an argument. This constant t1 can safely be typeset (¢f. \q_-
nil), with the result being -NoValue-. It is important to note that \c_novalue_t1 is
constructed such that it will not match the simple text input -NoValue-, i.e. that

\tl_if_eq:VnTF \c_novalue_tl { -NoValue- }

is logically false. The \c_novalue_t1 marker is intended for use in creating document-
level interfaces, where it serves as an indicator that an (optional) argument was omitted.
In particular, it is distinct from a simple empty t1.

An explicit space character contained in a token list (compare this with \c_space_token).
For use where an explicit space is required.

53

\1_tmpa_tl
\1_tmpb_tl

\g_tmpa_t1l
\g_tmpb_t1l

13 Scratch token lists

Scratch token lists for local assignment. These are never used by the kernel code, and so
are safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch token lists for global assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

54

\str_new:N

\str_new:c

New: 2015-09-18

\str_const:Nn
\str_const: (NV|Nx|cn|cV|cx)

New: 2015-09-18
Updated: 2018-07-28

Part VII
The 13str package: Strings

TEX associates each character with a category code: as such, there is no concept of
a “string” as commonly understood in many other programming languages. However,
there are places where we wish to manipulate token lists while in some sense “ignoring”
category codes: this is done by treating token lists as strings in a TEX sense.

A TEX string (and thus an expl3 string) is a series of characters which have category
code 12 (“other”) with the exception of space characters which have category code 10
(“space”). Thus at a technical level, a TEX string is a token list with the appropriate
category codes. In this documentation, these are simply referred to as strings.

String variables are simply specialised token lists, but by convention should be named
with the suffix ...str. Such variables should contain characters with category code 12
(other), except spaces, which have category code 10 (blank space). All the functions in
this module which accept a token list argument first convert it to a string using \t1_to_-
str:n for internal processing, and do not treat a token list or the corresponding string
representation differently.

As a string is a subset of the more general token list, it is sometimes unclear when
one should be used over the other. Use a string variable for data that isn’t primarily
intended for typesetting and for which a level of protection from unwanted expansion is
suitable. This data type simplifies comparison of variables since there are no concerns
about expansion of their contents.

The functions \cs_to_str:N, \t1l_to_str:n, \tl_to_str:N and \token_to_str:N
(and variants) generate strings from the appropriate input: these are documented in
I3basics, 13tl and 13token, respectively.

Most expandable functions in this module come in three flavours:

e \str_...:N, which expect a token list or string variable as their argument;
e \str_...:n, taking any token list (or string) as an argument;
e \str_..._ignore_spaces:n, which ignores any space encountered during the op-

eration: these functions are typically faster than those which take care of escaping
spaces appropriately.

1 Building strings

\str_new:N (str var)

Creates a new (str var) or raises an error if the name is already taken. The declaration
is global. The (str var) is initially empty.

\str_const:Nn (str var) {(token list)}

Creates a new constant (str var) or raises an error if the name is already taken. The
value of the (str var) is set globally to the (token list), converted to a string.

55

\str_clear:N

\str_clear:c
\str_gclear:N

\str_gclear:c

New: 2015-09-18

\str_clear_new:N
\str_clear_new:c

New: 2015-09-18

\str_set_eq:NN
\str_set_eq:(cN|Nc|cc)
\str_gset_eq:NN
\str_gset_eq:(cN|Nc|cc)

New: 2015-09-18

\str_concat : NNN
\str_concat:ccc
\str_gconcat :NNN
\str_gconcat:ccc

New: 2017-10-08

\str_set:Nn
\str_set:(NV|Nx|cn|cV|cx)
\str_gset:Nn
\str_gset:(NV|Nx|cn|cV|cx)

New: 2015-09-18
Updated: 2018-07-28

\str_clear:N (str var)

Clears the content of the (str var).

\str_clear_new:N (str var)

Ensures that the (str var) exists globally by applying \str_new:N if necessary, then
applies \str_(g)clear:N to leave the (str var) empty.

\str_set_eq:NN (str vari) (str vars)

Sets the content of (str var) equal to that of (str vars).

\str_concat:NNN (str vari) (str vars) (str vars)

Concatenates the content of (str vare) and (str vars) together and saves the result in
(str vary). The (str vary) is placed at the left side of the new string variable. The
(str vary) and (str vars) must indeed be strings, as this function does not convert their
contents to a string.

2 Adding data to string variables

\str_set:Nn (str var) {(token list)}

Converts the (token list) to a (string), and stores the result in (str var).

\str_put_left:Nn

\str_put_left:Nn (str var) {(token list)}

\str_put_left:(NV|Nx|cn|cV|cx)

\str_gput_left:Nn

\str_gput_left:(NV|Nx|cn|cV|cx)

New: 2015-09-18
Updated: 2018-07-28

Converts the (token list) to a (string), and prepends the result to (str var). The current
contents of the (str var) are not automatically converted to a string.

56

\str_put_right:Nn

\str_put_right:Nn (str var) {(token list)}

\str_put_right:(NV|Nx|cn|cV|cx)

\str_gput_right:Nn

\str_gput_right:(NV|Nx|cn|cV|cx)

New: 2015-09-18
Updated: 2018-07-28

\str_replace_once:Nnn
\str_replace_once:cnn
\str_greplace_once:Nnn
\str_greplace_once:cnn

New: 2017-10-08

\str_replace_all:Nnn
\str_replace_all:cnn
\str_greplace_all:Nnn
\str_greplace_all:cnn

New: 2017-10-08

\str_remove_once:Nn
\str_remove_once:cn
\str_gremove_once:Nn
\str_gremove_once:cn

New: 2017-10-08

\str_remove_all:Nn
\str_remove_all:cn
\str_gremove_all:Nn
\str_gremove_all:cn

New: 2017-10-08

Converts the (token list) to a (string), and appends the result to (str var). The current
contents of the (str var) are not automatically converted to a string.

3 Modifying string variables

\str_replace_once:Nnn (str var) {(old)} {(mew)}

Converts the (old) and (new) token lists to strings, then replaces the first (leftmost)
occurrence of (old string) in the (str var) with (new string).

\str_replace_all:Nnn (str var) {(old)} {(new)}

Converts the (old) and (new) token lists to strings, then replaces all occurrences of (old
string) in the (str var) with (new string). As this function operates from left to right,
the pattern (old string) may remain after the replacement (see \str_remove_all:Nn for
an example).

\str_remove_once:Nn (str var) {(token list)}

Converts the (token list) to a (string) then removes the first (leftmost) occurrence of
(string) from the (str var).

\str_remove_all:Nn (str var) {(token list)}

Converts the (token list) to a (string) then removes all occurrences of (string) from the
(str var). As this function operates from left to right, the pattern (string) may remain
after the removal, for instance,

\str_set:Nn \1_tmpa_str {abbccd} \str_remove_all:Nn \1_tmpa_str
{bc}

results in \1_tmpa_str containing abcd.

57

\str_if_exist_p:N x
\str_if_exist_p:c =
\str_if_exist:NTF x
\str_if exist:cTF %

New: 2015-09-18

\str_if_empty_p:N =
\str_if_empty_p:c *
\str_if_empty:NTF x
\str_if_empty:cTF *

New: 2015-09-18

\str_if_eq_p:NN *
\str_if_eq_p:(Nc|cN|cc) *
\str_if_eq:NNTF *
\str_if_eq:(Nc|cN|cc)TF *

New: 2015-09-18

4 String conditionals

\str_if_exist_p:N (str var)
\str_if_exist:NTF (str var) {(true code)} {(false code)}

Tests whether the (str var) is currently defined. This does not check that the (str var)
really is a string.

\str_if_empty_p:N (str var)
\str_if_empty:NTF (str var) {(true code)} {(false code)}

Tests if the (string variable) is entirely empty (i.e. contains no characters at all).

\str_if_eq_p:NN (str vari) (str vary)
\str_if_eq:NNTF (str vari) (str vars) {(true code)} {(false code)}

Compares the content of two (str variables) and is logically true if the two contain the
same characters in the same order.

\str_if_eq_p:nn

\str_if_eq_p:(Vn|on|no|nV|VV|vn|nv|jee) x \str_if_eq:nnTF {(tl1)

\str_if_eq:nnTF

(t12)}

* \str_if_eq_p:nn {(t11)}
} {(t12)} {{true code)} {(false code)}

{
{

*

\str_if_eq:(Vn|on|no|nV|VV|vn|nv|ee)TF *

Updated: 2018-06-18

\str_if_in:NnTF
\str_if_in:cnTF

New: 2017-10-08

\str_if_in:nnTF

New: 2017-10-08

Compares the two (token lists) on a character by character basis (namely after converting
them to strings), and is true if the two (strings) contain the same characters in the same
order. Thus for example

\str_if_eq_p:no { abc } { \tl_to_str:n { abc } }
is logically true.

\str_if_in:NnTF (str var) {(token list)} {(true code)} {(false code)}

Converts the (token list) to a (string) and tests if that (string) is found in the content of
the (str var).

\str_if_in:nnTF (t1:) {(t12)} {(true code)} {(false code)}

Converts both (token lists) to (strings) and tests whether (strings) is found inside
(string;).

58

\str_case:

\str_case
\str_case
\str_case

nn
: (Vn|on|nV|nv)
:nnTF

: (Vn|on|nV|nv)TF

L I o

New: 2013-07-24
Updated: 2015-02-28

\str_case_e:nn *
\str_case_e:nnTF *

New: 2018-06-19

\str_map_function:NN 3
\str_map_function:cN W

New: 2017-11-14

\str_map_function:nN 7

New: 2017-11-14

\str_case:nnTF {(test string)}
{
{(string casei)} {{code case:i)}
{(string cases)} {{code cases)}

%(.s.tring case,)} {(code case,)}
}
{(true code)}
{(false code)}

Compares the (test string) in turn with each of the (string cases) (all token lists are
converted to strings). If the two are equal (as described for \str_if_eq:nnTF) then the
associated (code) is left in the input stream and other cases are discarded. If any of
the cases are matched, the (true code) is also inserted into the input stream (after the
code for the appropriate case), while if none match then the (false code) is inserted. The
function \str_case:nn, which does nothing if there is no match, is also available.

\str_case_e:nnTF {(test string)}
{

{(string case1)

{(string cases)

(code case1)}
(code casez)}

}{
L

-.{<.s.tring casen)} {(code case,)}
}
{{true code)}
{(false code)}

Compares the full expansion of the (test string) in turn with the full expansion of the
(string cases) (all token lists are converted to strings). If the two full expansions are
equal (as described for \str_if_eq:nnTF) then the associated (code) is left in the input
stream and other cases are discarded. If any of the cases are matched, the (true code)
is also inserted into the input stream (after the code for the appropriate case), while
if none match then the (false code) is inserted. The function \str_case_e:nn, which
does nothing if there is no match, is also available. The (test string) is expanded in each
comparison, and must always yield the same result: for example, random numbers must
not be used within this string.

5 Mapping to strings
All mappings are done at the current group level, i.e. any local assignments made by the

(function) or {code) discussed below remain in effect after the loop.

\str_map_function:NN (str var) (function)

Applies (function) to every (character) in the (str var) including spaces. See also \str_-
map_function:nN.

\str_map_function:nN {(token 1list)} (function)

Converts the (token list) to a (string) then applies (function) to every (character) in the
(string) including spaces. See also \str_map_function:NN.

59

\str_map_inline:Nn
\str_map_inline:cn

New: 2017-11-14

\str_map_inline:nn

New: 2017-11-14

\str_map_variable:NNn
\str_map_variable:cNn

New: 2017-11-14

\str_map_variable:nNn

New: 2017-11-14

\str_map_break: w

New: 2017-10-08

\str_map_inline:Nn (str var) {(inline function)}

Applies the (inline function) to every (character) in the (str var) including spaces. The
(inline function) should consist of code which receives the (character) as #1. See also
\str_map_function:NN.

\str_map_inline:nn {(token list)} {(inline functiom)}

Converts the (token list) to a (string) then applies the (inline function) to every
(character) in the (string) including spaces. The (inline function) should consist of
code which receives the (character) as #1. See also \str_map_function:NN.

\str_map_variable:NNn (str var) (variable) {(code)}

Stores each (character) of the (string) (including spaces) in turn in the (string or token
list) (variable) and applies the (code). The (code) will usually make use of the (variable),
but this is not enforced. The assignments to the (variable) are local. Its value after the
loop is the last (character) in the (string), or its original value if the (string) is empty.
See also \str_map_inline:Nn.

\str_map_variable:nNn {(token list)} (variable) {(code)}

Converts the (token list) to a (string) then stores each (character) in the (string) (in-
cluding spaces) in turn in the (string or token list) (variable) and applies the (code). The
(code) will usually make use of the (variable), but this is not enforced. The assignments
to the (variable) are local. Its value after the loop is the last (character) in the (string),
or its original value if the (string) is empty. See also \str_map_inline:Nn.

\str_map_break:

Used to terminate a \str_map_... function before all characters in the (string) have
been processed. This normally takes place within a conditional statement, for example

\str_map_inline:Nn \1_my_str
{
\str_if_eq:nnT { #1 } { bingo } { \str_map_break: }
% Do something useful

}

See also \str_map_break:n. Use outside of a \str_map_. .. scenario leads to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
continuing with the code that follows the loop. This depends on the design of the mapping
function.

60

\str_map_break:n 5

New: 2017-10-08

\str_use:N *
\str_use:c x

New: 2015-09-18

\str_map_break:n {({code)}

Used to terminate a \str_map_... function before all characters in the (string) have
been processed, inserting the (code) after the mapping has ended. This normally takes
place within a conditional statement, for example

\str_map_inline:Nn \1l_my_str
{
\str_if_eq:nnT { #1 } { bingo }
{ \str_map_break:n { <code> } }
% Do something useful

}
Use outside of a \str_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

6 Working with the content of strings

\str_use:N (str var)

Recovers the content of a (str var) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
(stry directly without an accessor function.

\str_count:N
\str_count:c
\str_count:n

\str_count_ignore_spaces:n

\str_count:n {(token list)}

*
*
*
*

New: 2015-09-18

\str_count_spaces:N *
\str_count_spaces:c *
\str_count_spaces:n *

New: 2015-09-18

Leaves in the input stream the number of characters in the string representation of (token
list), as an integer denotation. The functions differ in their treatment of spaces. In the
case of \str_count:N and \str_count:n, all characters including spaces are counted.
The \str_count_ignore_spaces:n function leaves the number of non-space characters
in the input stream.

\str_count_spaces:n {(token list)}

Leaves in the input stream the number of space characters in the string representation of
(token list), as an integer denotation. Of course, this function has no _ignore_spaces
variant.

61

\str_head:N
\str_head:c
\str_head:n
\str_head_ignore_spaces:n

\str_head:n {(token list)}

*
*
*
*

New: 2015-09-18

Converts the (token list) into a (string). The first character in the (string) is then left in
the input stream, with category code “other”. The functions differ if the first character is a
space: \str_head:N and \str_head:n return a space token with category code 10 (blank
space), while the \str_head_ignore_spaces:n function ignores this space character and
leaves the first non-space character in the input stream. If the (string) is empty (or only
contains spaces in the case of the _ignore_spaces function), then nothing is left on the
input stream.

\str_tail:N * \str_tail:n {(token list)}
\str_tail:c *
\str_tail:n *

*

\str_tail_ignore_spaces:n

New: 2015-09-18

Converts the (token list) to a (string), removes the first character, and leaves the remain-
ing characters (if any) in the input stream, with category codes 12 and 10 (for spaces).
The functions differ in the case where the first character is a space: \str_tail:N and
\str_tail:n only trim that space, while \str_tail_ignore_spaces:n removes the first
non-space character and any space before it. If the (token list) is empty (or blank in the
case of the _ignore_spaces variant), then nothing is left on the input stream.

\str_item:Nn * \str_item:nn {(token list)} {(integer expression)}
\str_item:nn *
\str_item_ignore_spaces:nn *

New: 2015-09-18

Converts the (token list) to a (string), and leaves in the input stream the character
in position (integer expression) of the (string), starting at 1 for the first (left-most)
character. In the case of \str_item:Nn and \str_item:nn, all characters including
spaces are taken into account. The \str_item_ignore_spaces:nn function skips spaces
when counting characters. If the (integer expression) is negative, characters are counted
from the end of the (string). Hence, —1 is the right-most character, etc.

62

\str_range:
\str_range:
\str_range:
_ignore_spaces:nnn

\str_range

Nnn
cnn
nnn

\str_range:nnn {(token list)} {(start index)} {(end index)}

*
*
*
*

New: 2015-09-18

Converts the (token list) to a (string), and leaves in the input stream the characters
from the (start indez) to the (end indez) inclusive. Spaces are preserved and counted as
items (contrast this with \t1_range:nnn where spaces are not counted as items and are
possibly discarded from the output).

Here (start indezr) and (end index) should be integer denotations. For describing in
detail the functions’ behavior, let m and n be the start and end index respectively. If
either is 0, the result is empty. A positive index means ‘start counting from the left end’,
a negative index means ‘start counting from the right end’. Let [be the count of the
token list.

The actual start point is determined as M = mif m > 0andas M =1+ m +1
if m < 0. Similarly the actual end point is N =nifn >0and N =1+n+1ifn <O0.
If M > N, the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s < 0 or s > [. For
instance,

\iow_term:x { \str_range:nnn { abcdef } { 2} {5 } }

\iow_term:x { \str_range:nnn { abcdef } { -4 } { -1 } }
\iow_term:x { \str_range:nnn { abcdef } { -2} { -1 1} }
\iow_term:x { \str_range:nnn { abcdef } { 0 } { -1 } }

prints bcde, cdef, ef, and an empty line to the terminal. The (start index) must always
be smaller than or equal to the (end index): if this is not the case then no output is
generated. Thus

\iow_term:x { \str_range:nnn { abcdef } { 5} {2} }
\iow_term:x { \str_range:nnn { abcdef } { -1 } { -4 } }

both yield empty strings.
The behavior of \str_range_ignore_spaces:nnn is similar, but spaces are removed
before starting the job. The input

\iow_term:x { \str_range:nnn { abcdefg } { 2} {5} }

\iow_term:x { \str_range:nnn { abcdefg } { 2} { -3 } }

\iow_term:x { \str_range:nnn { abcdefg } { -6 > { 56 } }

\iow_term:x { \str_range:nnn { abcdefg } { -6 > { -3 } }

\iow_term:x { \str_range:nnn { abc~efg } {2} {51} }

\iow_term:x { \str_range:nnn { abc~efg } {2} { -3} }

\iow_term:x { \str_range:nnn { abc~efg } { -6 >} { 5 } }

\iow_term:x { \str_range:nnn { abc~efg } { -6 > { -3 } 1}

\iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { 2 } {5 } }
\iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { -3 } }
\iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { 5 } }
\iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { -3 } }

63

\iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { 2 } { 5 } }

\iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { 2} { -3 } }
\iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { 5 } }
\iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { -3 } }

will print four instances of bcde, four instances of bc e and eight instances of bcde.

7 String manipulation

\str_lower_case:
\str_lower_case:
\str_upper_case:
\str_upper_case:

n
f
n
f

\str_lower_case:n {(tokens)}
\str_upper_case:n {(tokens)}

Converts the input (tokens) to their string representation, as described for \tl_to_-
str:n, and then to the lower or upper case representation using a one-to-one mapping

L I

New: 2015-03-01 a8 described by the Unicode Consortium file UnicodeData.txt.

These functions are intended for case changing programmatic data in places where
upper/lower case distinctions are meaningful. One example would be automatically gen-
erating a function name from user input where some case changing is needed. In this
situation the input is programmatic, not textual, case does have meaning and a language-
independent one-to-one mapping is appropriate. For example

\cs_new_protected:Npn \myfunc:nn #1#2

{
\cs_set_protected:cpn
{
user
\str_upper_case:f { \tl_head:n {#1} }
\str_lower_case:f { \tl_tail:n {#1} }
}
{#2}
}

would be used to generate a function with an auto-generated name consisting of the
upper case equivalent of the supplied name followed by the lower case equivalent of the
rest of the input.

These functions should not be used for

o Caseless comparisons: use \str_fold_case:n for this situation (case folding is
distinct from lower casing).

e Case changing text for typesetting: see the \tl_lower_case:n(n), \tl_upper_-
case:n(n) and \tl_mixed_case:n(n) functions which correctly deal with context-
dependence and other factors appropriate to text case changing.

TEXhackers note: As with all expl3 functions, the input supported by \str_fold_case:n
is engine-native characters which are or interoperate with UTF-8. As such, when used with
pdfTEX only the Latin alphabet characters A-Z are case-folded (i.e. the AsCIl range which
coincides with UTF-8). Full UTF-8 support is available with both XfTEX and LuaTgX.

64

\str_fold_case:n x
\str_fold_case:V x

New: 2014-06-19
Updated: 2016-03-07

\str_show:N
\str_show:c
\str_show:n

New: 2015-09-18

\str_log:N
\str_log:c
\str_log:n

New: 2019-02-15

\str_fold_case:n {(tokens)}

Converts the input (tokens) to their string representation, as described for \t1_to_str:n,
and then folds the case of the resulting (string) to remove case information. The result
of this process is left in the input stream.

String folding is a process used for material such as identifiers rather than for “text”.
The folding provided by \str_fold_case:n follows the mappings provided by the Uni-
code Consortium, who state:

Case folding is primarily used for caseless comparison of text, such as iden-
tifiers in a computer program, rather than actual text transformation. Case
folding in Unicode is based on the lowercase mapping, but includes additional
changes to the source text to help make it language-insensitive and consistent.
As a result, case-folded text should be used solely for internal processing and
generally should not be stored or displayed to the end user.

The folding approach implemented by \str_fold_case:n follows the “full” scheme de-
fined by the Unicode Consortium (e.g. SSfolds to SS). As case-folding is a language-
insensitive process, there is no special treatment of Turkic input (i.e. I always folds to i
and not to 1).

TEXhackers note: As with all expl3 functions, the input supported by \str_fold_case:n
is engine-native characters which are or interoperate with UTF-8. As such, when used with
pdfTEX only the Latin alphabet characters A-Z are case-folded (i.e. the AscCIl range which
coincides with UTF-8). Full UTF-8 support is available with both X#TEX and LuaTgX, subject
only to the fact that XfTEX in particular has issues with characters of code above hexadecimal
0xFFFF when interacting with \t1l_to_str:n.

8 Viewing strings

\str_show:N (str var)

Displays the content of the (str var) on the terminal.

\str_log:N (str var)
Writes the content of the (str var) in the log file.

65

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org/faq/casemap_charprop.html#2

9 Constant token lists

\c_ampersand_str Constant strings, containing a single character token, with category code 12.
\c_atsign_str
\c_backslash_str
\c_left_brace_str
\c_right_brace_str
\c_circumflex_str
\c_colon_str
\c_dollar_str
\c_hash_str
\c_percent_str
\c_tilde_str
\c_underscore_str

New: 2015-09-19

10 Scratch strings

\1_tmpa_str Scratch strings for local assignment. These are never used by the kernel code, and so
\l_tmpb_str are safe for use with any BTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_str Scratch strings for global assighment. These are never used by the kernel code, and so
\g_tmpb_str are safe for use with any BTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

66

\str_set_convert:Nnnn
\str_gset_convert:Nnnn

Part VIII
The I3str-convert package: string
encoding conversions

1 Encoding and escaping schemes

Traditionally, string encodings only specify how strings of characters should be stored as
bytes. However, the resulting lists of bytes are often to be used in contexts where only a
restricted subset of bytes are permitted (e.g., PDF string objects, URLs). Hence, storing
a string of characters is done in two steps.

e The code points (“character codes”) are expressed as bytes following a given “en-
coding”. This can be UTF-16, 1SO 8859-1, etc. See Table 1 for a list of supported
encodings.’

e Bytes are translated to TEX tokens through a given “escaping”. Those are defined
for the most part by the pdf file format. See Table 2 for a list of escaping methods
supported.®

2 Conversion functions

\str_set_convert:Nnnn (str var) {(string)} {(name 1)} {(name 2)}

This function converts the (string) from the encoding given by (name 1) to the encoding
given by (name 2), and stores the result in the (str var). Each (name) can have the
form (encoding) or (encoding)/{escaping), where the possible values of (encoding) and
(escaping) are given in Tables 1 and 2, respectively. The default escaping is to input and
output bytes directly. The special case of an empty (name) indicates the use of “native”
strings, 8-bit for pdfTEX, and Unicode strings for the other two engines.

For example,

\str_set_convert:Nnnn \1_foo_str { Hello! } { } { utfi6/hex }

results in the variable \1_foo_str holding the string FEFF00480065006C006C006F0021.
This is obtained by converting each character in the (native) string Hello! to the UTF-16
encoding, and expressing each byte as a pair of hexadecimal digits. Note the presence of
a (big-endian) byte order mark "FEFF, which can be avoided by specifying the encoding
utf16be/hex.

An error is raised if the (string) is not valid according to the (escaping 1) and
(encoding 1), or if it cannot be reencoded in the (encoding 2) and (escaping 2) (for
instance, if a character does not exist in the (encoding 2)). Erroneous input is replaced
by the Unicode replacement character "FFFD, and characters which cannot be reencoded
are replaced by either the replacement character "FFFD if it exists in the (encoding 2),
or an encoding-specific replacement character, or the question mark character.

5Encodings and escapings will be added as they are requested.

67

Table 1: Supported encodings. Non-alphanumeric characters are ignored, and capital

letters are lower-cased before searching for the encoding in this list.

(Encoding) description

utf8 UTF-8

utf16 UTF-16, with byte-order mark
utf16be UTF-16, big-endian
utfl6le UTF-16, little-endian

utf32 UTF-32, with byte-order mark
utf32be UTF-32, big-endian
utf32le UTF-32, little-endian

is088591, latinl
15088592, latin?2
15088593, latin3
is088594, latind
15088595
15088596
15088597
15088598
15088599, latinb
150885910, latin6
is0885911
150885913, latin7
is0885914, latin8
150885915, 1atin9
150885916, 1atinl0

ISO 8859-1
ISO 8859-2
1SO 8859-3
1SO 8859-4
1SO 8859-5
1SO 8859-6
ISO 8859-7
IS0 8859-8
1SO 8859-9
1SO 8859-10
ISO 8859-11
I1SO 8859-13
ISO 8859-14
ISO 8859-15
ISO 8859-16

clist
(empty)

comma-list of integers
native (Unicode) string

Table 2: Supported escapings. Non-alphanumeric characters are ignored, and capital

letters are lower-cased before searching for the escaping in this list.

(Escaping)

description

bytes, or empty
hex, hexadecimal
name
string
url

arbitrary bytes

byte = two hexadecimal digits

see \pdfescapename
see \pdfescapestring
encoding used in URLS

68

\str_set_convert:NnnnTF \str_set_convert:NnnnTF (str var) {(string)} {(name 1)} {(name 2)} {(true code)}
\str_gset_convert:NnnnTF {(false code)}

As \str_set_convert:Nnnn, converts the (string) from the encoding given by (name 1)
to the encoding given by (name 2), and assigns the result to (str var). Contrarily to
\str_set_convert:Nnnn, the conditional variant does not raise errors in case the (string)
is not valid according to the (name 1) encoding, or cannot be expressed in the (name 2)
encoding. Instead, the (false code) is performed.

3

Creating 8-bit mappings

\str_declare_eight_bit_encoding:nnn \str_declare_eight_bit_encoding:nnn {(name)} {(mapping)}

{(missing)}

Declares the encoding (name) to map bytes to Unicode characters according to the
(mapping), and map those bytes which are not mentioned in the (mapping) either to
the replacement character (if they appear in (missing)), or to themselves.

4 Possibilities, and things to do

Encoding/escaping-related tasks.

In XHTEX/LuaTEX, would it be better to use the ~~~~.... approach to build
a string from a given list of character codes? Namely, within a group, assign
0-9a-f and all characters we want to category “other”, then assign ~ the category
superscript, and use \scantokens.

Change \str_set_convert:Nnnn to expand its last two arguments.

Describe the internal format in the code comments. Refuse code points in
["D800, "DFFF] in the internal representation?

Add documentation about each encoding and escaping method, and add examples.
The hex unescaping should raise an error for odd-token count strings.

Decide what bytes should be escaped in the url escaping. Perhaps the characters
1> ()*-./0123456789_ are safe, and all other characters should be escaped?

Automate generation of 8-bit mapping files.

Change the framework for 8-bit encodings: for decoding from 8-bit to Unicode, use
256 integer registers; for encoding, use a tree-box.

More encodings (see Heiko’s stringenc). CESU?

More escapings: ASCII85, shell escapes, lua escapes, etc.?

69

\quark_new:N

\q_stop

Part IX
The 13quark package
Quarks

Two special types of constants in I¥TEX3 are “quarks” and “scan marks”. By convention
all constants of type quark start out with \q_, and scan marks start with \s_.

1 Quarks

Quarks are control sequences that expand to themselves and should therefore never be
executed directly in the code. This would result in an endless loop!

They are meant to be used as delimiter in weird functions, the most common use
case being the ‘stop token’ (i.e. \q_stop). For example, when writing a macro to parse
a user-defined date

\date_parse:n {19/June/1981%}
one might write a command such as

\cs_new:Npn \date_parse:n #1 { \date_parse_aux:w #1 \g_stop }
\cs_new:Npn \date_parse_aux:w #1 / #2 / #3 \g_stop
{ <do something with the date> }

Quarks are sometimes also used as error return values for functions that receive
erroneous input. For example, in the function \prop_get :NnN to retrieve a value stored
in some key of a property list, if the key does not exist then the return value is the quark
\q_no_value. As mentioned above, such quarks are extremely fragile and it is imperative
when using such functions that code is carefully written to check for pathological cases
to avoid leakage of a quark into an uncontrolled environment.

Quarks also permit the following ingenious trick when parsing tokens: when you
pick up a token in a temporary variable and you want to know whether you have picked
up a particular quark, all you have to do is compare the temporary variable to the quark
using \t1l_if_eq:NNTF. A set of special quark testing functions is set up below. All the
quark testing functions are expandable although the ones testing only single tokens are
much faster. An example of the quark testing functions and their use in recursion can
be seen in the implementation of \clist_map_function:NN.

2 Defining quarks

\quark_new:N (quark)

Creates a new (quark) which expands only to (quark). The (quark) is defined globally,
and an error message is raised if the name was already taken.

Used as a marker for delimited arguments, such as

\cs_set:Npn \tmp:w #1#2 \q_stop {#1}

70

\q_mark

\q_nil

\g_no_value

\quark_if_nil_p:N *
\quark_if_nil:NTF *

\quark_if_nil_p:n
\quark_if_nil_p:(o|V)
\quark_if_nil:nTF
\quark_if nil:(o|V)TF

L I o

\quark_if_no_value_p:N
\quark_if_no_value_p:c
\quark_if_no_value:NTF
\quark_if_no_value:cTF

L S

\quark_if_no_value_p:n *
\quark_if_no_value:nTF *

\g_recursion_tail

Used as a marker for delimited arguments when \g_stop is already in use.

Quark to mark a null value in structured variables or functions. Used as an end delimiter
when this may itself need to be tested (in contrast to \q_stop, which is only ever used
as a delimiter).

A canonical value for a missing value, when one is requested from a data structure. This
is therefore used as a “return” value by functions such as \prop_get :NnN if there is no
data to return.

3 Quark tests

The method used to define quarks means that the single token (N) tests are faster than
the multi-token (n) tests. The latter should therefore only be used when the argument
can definitely take more than a single token.

\quark_if_nil_p:N (token)
\quark_if_nil:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_nil.

\quark_if_nil_p:n {(token list)}
\quark_if_nil:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_nil (distinct from (token list) being empty or
containing \q_nil plus one or more other tokens).

\quark_if_no_value_p:N (token)
\quark_if_no_value:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_no_value.

\quark_if_no_value_p:n {(token list)}
\quark_if_no_value:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_no_value (distinct from (token list) being empty
or containing \q_no_value plus one or more other tokens).

4 Recursion
This module provides a uniform interface to intercepting and terminating loops as when

one is doing tail recursion. The building blocks follow below and an example is shown in
Section 5.

This quark is appended to the data structure in question and appears as a real element
there. This means it gets any list separators around it.

71

\q_recursion_stop This quark is added after the data structure. Its purpose is to make it possible to
terminate the recursion at any point easily.

\quark_if_recursion_tail_stop:N \quark_if_recursion_tail_stop:N <token>

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop:n \quark_if_recursion_tail_stop:n {(token list)}
\quark_if_recursion_tail_stop:o

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop_do:Nn \quark_if_recursion_tail_stop_do:Nn (token) {(insertion)}

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to.
The recursion input must include the marker tokens \gq_recursion_tail and \g_-
recursion_stop as the last two items. The (insertion) code is then added to the input
stream after the recursion has ended.

\quark_if_recursion_tail_stop_do:nn \quark_if_recursion_tail_stop_do:nn {(token 1list)} {(insertion)}
\quark_if_recursion_tail_stop_do:on

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so uses \use_-
i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to.
The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The (insertion) code is then added to the input
stream after the recursion has ended.

\quark_if_recursion_tail_break:NN \quark_if_recursion_tail_break:nN {(token list)} \(type)_map_break:
\quark_if_recursion_tail_break:nN

New: 2018-04-10

Tests if (token list) contains only \q_recursion_tail, and if so terminates the recur-
sion using \(type)_map_break:. The recursion end should be marked by \prg_break_-
point:Nn \(type)_map_break:.

5 An example of recursion with quarks

Quarks are mainly used internally in the expl3 code to define recursion functions such
as \tl_map_inline:nn and so on. Here is a small example to demonstrate how to

72

\scan_new:N

New: 2018-04-01

use quarks in this fashion. We shall define a command called \my_map_dbl:nn which
takes a token list and applies an operation to every pair of tokens. For example,
\my_map_db