The IXTEX3 Sources

The BTEX3 Project™
Released 2019-09-19

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for KTEX commands, which
allow the BTEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level I¥TEX3 programming
language.

At present, the expl3 modules are designed to be loaded on top of I¥TEX 2¢. In time,
a IMTEX3 format will be produced based on this code. This allows the code to be
used in B TEX 2¢ packages now while a stand-alone I¥TEX3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly
stable. The syntax conventions and functions provided are now ready
for wider use. There may still be changes to some functions, but these
will be minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they
reach maturity.

*E-mail: latex-team@latex-project.org


mailto:latex-team@latex-project.org

Contents

I Introduction to expl3 and this document

1

I1

II1

IV

Naming functions and variables

1.1 Terminological inexactitude . . . . . . . ... ... ... ... ...

Documentation conventions
Formal language conventions which apply generally

TEX concepts not supported by BTEX3

The I13bootstrap package: Bootstrap code

Using the BTEX3 modules

The 13names package: Namespace for primitives

Setting up the BTEX3 programming language

The 13basics package: Basic definitions
No operation functions
Grouping material

Control sequences and functions

3.1 Defining functions . . . . .. ... oo oL o
3.2 Defining new functions using parameter text . . ... .. ... ..
3.3 Defining new functions using the signature . . .. ... ... ...
3.4 Copying control sequences. . . . . . . . . . ...
3.5 Deleting control sequences . . . . .. ... Lo
3.6 Showing control sequences . . . . . .. ... ... ...
3.7 Converting to and from control sequences . . . . . ... ... ...

Analysing control sequences

Using or removing tokens and arguments

5.1 Selecting tokens from delimited arguments . . . . ... ... ...

Predicates and conditionals

6.1 Tests on control sequences . . . . . . . .. ... . L
6.2 Primitive conditionals . . . . . . ... ... ... . L.

The I3expan package: Argument expansion

ii

17

18
20

21
22
22

24



10

VI

10
11
12

13

Defining new variants

Methods for defining variants
Introducing the variants
Manipulating the first argument
Manipulating two arguments
Manipulating three arguments
Unbraced expansion

Preventing expansion
Controlled expansion

Internal functions

The 13tl package: Token lists

Creating and initialising token list variables

Adding data to token list variables
Modifying token list variables
Reassigning token list category codes
Token list conditionals

Mapping to token lists

Using token lists

Working with the content of token lists
The first token from a token list
Using a single item

Viewing token lists

Constant token lists

Scratch token lists

VII The I3str package: Strings

1

Building strings

iii

24
25
26
28
30
31
32
32
34

36

37
37
38
39
39
40
42
45
45
47
50
52
52

53

54

54



10

Adding data to string variables
Modifying string variables

String conditionals

Mapping to strings

Working with the content of strings
String manipulation

Viewing strings

Constant token lists

Scratch strings

VIII The I3str-convert package: string encoding conversions

1

2

Encoding and escaping schemes
Conversion functions
Creating 8-bit mappings

Possibilities, and things to do

The 13quark package: Quarks
Quarks

Defining quarks

Quark tests

Recursion

An example of recursion with quarks

Scan marks

The 13seq package: Sequences and stacks
Creating and initialising sequences

Appending data to sequences

Recovering items from sequences

Recovering values from sequences with branching

iv

55
56
57
58
60
63
64
65

65

66
66
66
68

68

69
69
69
70
70
71

72

74
74
75
75

77



5 Modifying sequences 78

6 Sequence conditionals 78
7 Mapping to sequences 79
8 Using the content of sequences directly 81
9 Sequences as stacks 81
10 Sequences as sets 82
11 Constant and scratch sequences 84
12 Viewing sequences 84
XI The 13int package: Integers 85
1 Integer expressions 86
2 Creating and initialising integers 87
3 Setting and incrementing integers 88
4 Using integers 89
5 Integer expression conditionals 89
6 Integer expression loops 91
7 Integer step functions 93
8 Formatting integers 94
9 Converting from other formats to integers 95
10 Random integers 96
11 Viewing integers 97
12 Constant integers 97
13 Scratch integers 97

13.1 Direct number expansion . . . . . . . ... 98
14 Primitive conditionals 98
XII The I3flag package: Expandable flags 100
1 Setting up flags 100
2 Expandable flag commands 101



XIIT The I3prg package: Control structures 102

1 Defining a set of conditional functions 102
2 The boolean data type 104
3 Boolean expressions 106
4 Logical loops 108
5 Producing multiple copies 109
6 Detecting TEX’s mode 109
7 Primitive conditionals 110
8 Nestable recursions and mappings 110

8.1 Simple mappings . . . . . . . ... 110
9 Internal programming functions 111
XIV The I3sys package: System/runtime functions 112
1 The name of the job 112
2 Date and time 112
3 Engine 112
4 Output format 113
XV The I3clist package: Comma separated lists 114
1 Creating and initialising comma lists 114
2 Adding data to comma lists 116
3 Modifying comma lists 116
4 Comma list conditionals 118
5 Mapping to comma lists 118
6 Using the content of comma lists directly 120
7 Comma lists as stacks 121
8 Using a single item 122
9 Viewing comma lists 122

10 Constant and scratch comma lists 123

vi



XVI The I3token package: Token manipulation

1

2

Creating character tokens

Manipulating and interrogating character tokens
Generic tokens

Converting tokens

Token conditionals

Peeking ahead at the next token

Description of all possible tokens

XVII The 13prop package: Property lists

1

2

10

Creating and initialising property lists

Adding entries to property lists

Recovering values from property lists

Modifying property lists

Property list conditionals

Recovering values from property lists with branching
Mapping to property lists

Viewing property lists

Scratch property lists

Constants

XVIII The I3msg package: Messages

1

2

3

4

Creating new messages
Contextual information for messages
Issuing messages

Redirecting messages

XIX The I13file package: File and I/O operations

vii

124
124
126
129
129
130
133

136

139
139
140
140
141
141
142
142
144
144

145

146
146
147
148

150

152



1 Input—output stream management 152

1.1 Reading from files . . . . . . . . .. ... ... 153

1.2 Writing tofiles . . . . . . . . L 156

1.3 Wrapping lines in output . . . . . . . ... 158

1.4 Constant input—output streams, and variables . . . . .. ... .. ... 159

1.5 Primitive conditionals . . . . . . ... 0oL 159
2 File operation functions 159
XX The I3skip package: Dimensions and skips 163
1 Creating and initialising dim variables 163
2 Setting dim variables 164
3 Utilities for dimension calculations 164
4 Dimension expression conditionals 165
5 Dimension expression loops 167
6 Dimension step functions 168
7 Using dim expressions and variables 169
8 Viewing dim variables 170
9 Constant dimensions 171
10 Scratch dimensions 171
11 Creating and initialising skip variables 171
12 Setting skip variables 172
13 Skip expression conditionals 173
14 Using skip expressions and variables 173
15 Viewing skip variables 173
16 Constant skips 174
17 Scratch skips 174
18 Imserting skips into the output 174
19 Creating and initialising muskip variables 175
20 Setting muskip variables 175
21 Using muskip expressions and variables 176

viii



22

23

24

25

Viewing muskip variables
Constant muskips
Scratch muskips

Primitive conditional

XXI The I13keys package: Key—value interfaces

1

2

Creating keys

Sub-dividing keys

Choice and multiple choice keys
Setting keys

Handling of unknown keys
Selective key setting

Utility functions for keys

Low-level interface for parsing key—val lists

XXII The I3intarray package: fast global integer arrays

1

13intarray documentation

1.1 TImplementation notes . . . . .. ... ... ... ... ... ...,

XXIIT The 13fp package: Floating points

1

2

Creating and initialising floating point variables
Setting floating point variables

Using floating points

Floating point conditionals

Floating point expression loops

Some useful constants, and scratch variables
Floating point exceptions

Viewing floating points

ix

176
177
177

177

178
179
183
183
186
186
187
188

189

194
195
195
197
198
200
201

202



9 Floating point expressions 203

9.1 Input of floating point numbers . . . . . . . . ... ... L. 203
9.2 Precedence of operators . . . . . . . ... e 204
9.3 Operations . . . . . . . . .. e 204
10 Disclaimer and roadmap 211

XXIV The I3fparray package: fast global floating point arrays214

1 13fparray documentation 214
XXV The I3sort package: Sorting functions 215
1 Controlling sorting 215
XXVI The I3tl-analysis package: Analysing token lists 216
1 13tl-analysis documentation 216

XXVII The I3regex package: Regular expressions in TEX 217

1 Syntax of regular expressions 217
2 Syntax of the replacement text 222
3 Pre-compiling regular expressions 224
4 Matching 224
5 Submatch extraction 225
6 Replacement 226
7 Constants and variables 226
8 Bugs, misfeatures, future work, and other possibilities 227
XXVIII The I3box package: Boxes 230
1 Creating and initialising boxes 230
2 Using boxes 230
3 Measuring and setting box dimensions 231
4 Box conditionals 232
5 The last box inserted 232



6 Constant boxes 232

7 Scratch boxes 233
8 Viewing box contents 233
9 Boxes and color 233
10 Horizontal mode boxes 233
11 Vertical mode boxes 235
12 Using boxes efficiently 236
13 Affine transformations 237
14 Primitive box conditionals 240
XXIX The I3coffins package: Coffin code layer 241
1 Creating and initialising coffins 241
2 Setting coffin content and poles 241
3 Coffin affine transformations 243
4 Joining and using coffins 243
5 Measuring coffins 244
6 Coffin diagnostics 244
7 Constants and variables 245
XXX The I3color-base package: Color support 246
1 Color in boxes 246
XXXI The I3luatex package: LuaTgX-specific functions 247
1 Breaking out to Lua 247
2 Lua interfaces 248

XXXII The I3unicode package: Unicode support functions 249

XXXIII The I3legacy package: Interfaces to legacy concepts 250

Xi



XXXIV The I3candidates package

13kernel
1 Important notice
2 Additions to I3basics
3 Additions to 13box
3.1 Viewing part ofabox . . . . .. ... L L
4 Additions to 13expan
5 Additions to 13fp
6 Additions to I13fparray
7 Additions to I3file
8 Additions to 13flag
9 Additions to 13int
10 Additions to I3intarray
10.1 Working with contents of integer arrays . . . . . .. ... ... .. ...
11 Additions to I13msg
12 Additions to 13prg
13 Additions to 13prop
14 Additions to I3seq
15 Additions to I13skip
16 Additions to I3sys
17 Additions to 13tl
18 Additions to I3token

XXXV Implementation

1

I3bootstrap implementation

1.1 Format-specificcode . . . . . . . .. ...
1.2 The \pdfstrcmp primitive in XgqIEX . . . . . ... ... L.
1.3 Loading support Lua code . . . ... .. .. ... .. L.
1.4 Engine requirements . . . . . . . ...
1.5 Extending allocators . . . . . . . .. .. ... o
1.6 Character data . . . . . . . . . . ...
1.7 The BTEX3 code environment . . . . . . .. ... ... L.

xii

: Experimental additions to

251
251
252

253
253

253
254
254
255
256
256

256
256

257
258
258
259
261
261
263

268



13names implementation

2.1

Deprecated functions . . . . . . . . .. ...

Internal kernel functions

Kernel backend functions

I13basics implementation

5.1
5.2
5.3
0.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

Renaming some TEX primitives (again) . . . . .. ... ... ... ...
Defining some constants . . . . . .. ... L oL oL
Defining functions . . . . . . .. ... . L o
Selecting tokens . . . . ... oL
Gobbling tokens from input . . . . . ... ...
Debugging and patching later definitions . . . . . ... ... ... ...
Conditional processing and definitions . . . . . . . . ... ... ... ..
Dissecting a control sequence . . . . . . .. ... Lo
Exist or free . . . . . ...
Preliminaries for new functions . . . . . . . ... .. oo
Defining new functions . . . . . .. ... L L oL
Copying definitions . . . . . . ... L oo o
Undefining functions . . . . . . .. ... oL o oo
Generating parameter text from argument count . . . . . ... ... ..
Defining functions from a given number of arguments . . . . .. .. ..
Using the signature to define functions. . . . . . . ... ... ... ...
Checking control sequence equality . . . . . . . .. .. ... ... ....
Diagnostic functions . . . . . ... L oL oo
Decomposing a macro definition . . . . ... ... ... .. .. ...
Doing nothing functions . . . . . . . .. .. ... .. ... ...
Breaking out of mapping functions . . . . . .. ... ... ... L.

13expan implementation

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

General expansion . . . . . . ... L o
Hand-tuned definitions . . . . ... ... ... L 0oL
Definitions with the automated technique . . . . . . ... ... ... ..
Last-unbraced versions . . . . . . . .. ... o
Preventing expansion . . . . .. ... Lo Lo oo
Controlled expansion . . . . . .. .. .. e
Emulating e-type expansion. . . . . . .. ... Lo
Defining function variants . . . . . . ... L. oo 0oL

xiii

277
300

312

318

319
319
321
321
322
324
324
331
337
339
341
342
344
344
344
345
346
349
349
350
351
351



13tl implementation 379

7.1 Functions . . . . . .. e 379
7.2 Constant token lists . . . . . . ... ... Lo 381
7.3 Adding to token list variables . . . . . ... ... oL L. 382
7.4 Reassigning token list category codes . . . . .. ... ... ... 384
7.5 Modifying token list variables . . . . . . . .. ... Lo 387
7.6 Token list conditionals . . . . . . .. .. .. L Lo oL 390
7.7 Mapping to token lists . . . . . .. ..o oo 395
7.8 Using token lists . . . . . . . . . L L 397
7.9 Working with the contents of token lists . . . . ... ... ... ..... 398
7.10 Token by token changes . . . . . .. .. ... .. Lo L. 400
7.11 The first token from a token list . . . . . ... ... .. ... ... .. 402
7.12 Using a single item . . . . . . . . .. . L oo 407
7.13 Viewing token lists . . . . . . . . ... L o 410
7.14 Scratch token lists . . . . . . . ... 411
I13str implementation 411
8.1 Creating and setting string variables . . . . . . .. ... ... ... ... 411
8.2 Modifying string variables . . . . . . ... o o o 412
8.3 String comparisons . . . . . . ..o .o o 414
8.4 Mapping to strings . . . . . . .. L L 417
8.5 Accessing specific characters in a string . . . . ... ... L. 419
8.6 Counting characters . . . . . . . .. ... ... 423
8.7 The first character inastring . . . . . .. ... ... . L. 425
8.8 String manipulation . . .. ... .. oo 426
8.9 Viewing strings . . . . . . . . .. L L 427
I13str-convert implementation 428
9.1 Helpers . . . . . . . e 428
9.1.1 Variables and constants . . . . ... .. ... 428
9.2 String conditionals . . . . . . . ... 429
9.3 Conversions . . . . . . . ..o e e e 430
9.3.1 Producing one byte or character . . . ... ... ... ... .... 430
9.3.2 Mapping functions for conversions . . . . . ... .. ... L. 432
9.3.3 Error-reporting during conversion . . . . . . ... ... 432
9.3.4 Framework for conversions . . . . . . ... ... L. 433
9.3.5 Byte unescape and escape . . . . . .. ..o e 437
9.3.6 Nativestrings . . . . . . . ... L Lo 438
9.3.7 CliSt . . . o . 439
9.3.8 8Dbitencodings . . . . . . ... Lo 440
9.4 MeSSages . . . . .. i e e e e e 442
9.5 Escaping definitions . . . . . . ... oL oL 443
9.5.1 Unescape methods . . . .. ... .. ... .. ... .. ....... 444
9.5.2 Escape methods . . . .. ... ... ... . 448
9.6 Encoding definitions . . . . . . ... L Lo oo 450
9.6.1 UTF-8support . . . . . . . . . .. e 450
9.6.2 UTF-16 support . . . . . . .« o o vt e e 455
9.6.3 UTF-32support . . . . . . . . .. e 460
9.6.4 1SO 8859 SUPPOrt . . . . ..o 463

Xiv



10

11

12

13

14

13quark implementation

10.1
10.2

Quarks . . . ..

Scan marks . . . ... e e e e e

13seq implementation

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

Allocation and initialisation . . . . . . . . . . ... ... ... ... ...
Appending data to eitherend . . . . . . . ... ..o
Modifying sequences . . . . . . . ... Lo
Sequence conditionals . . . . .. ... L oo
Recovering data from sequences . . . . . ... ... oL
Mapping to Sequences . . . . . . . .. it e e e e
Using sequences . . . . . . . . ..o e
Sequence stacks . . . . . L. L e e
Viewing sequences . . . . . . . . ... Lo oo

11.10Scratch sequences . . . . . . .. Lo

13int implementation

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

Integer expressions . . . . . . .. Lo
Creating and initialising integers . . . . . . . .. .. ... ... ... ..
Setting and incrementing integers . . . . . ... ... ...
Using integers . . . . . . . . . L
Integer expression conditionals . . . . . ... ... 0oL
Integer expression loops . . . . . . .. L oL oo
Integer step functions . . . . . . . . ... L oo
Formatting integers . . . . . . . . . .. .
Converting from other formats to integers . . . . . . .. ... ... ...

12.10Viewing integer . . . . . . . . . . Lo
12.11Random integers . . . . . . . ..ol L
12.12Constant integers . . . . . . .. Lo
12.13Scratch integers . . . . ..o Lo

13flag implementation

13.1
13.2

Non-expandable flag commands . . . . ... ... ... ... ......
Expandable flag commands . . . . . . ... ... ... ...

13prg implementation

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

Primitive conditionals . . . . . ... .. L Lo
Defining a set of conditional functions . . . . . ... ... ... .....
The boolean data type. . . . . . . . . .. o
Boolean expressions . . . . .. ... Lo
Logical loops . . . . . . . . o
Producing multiple copies . . . . . . . ... oo
Detecting TEX's mode . . . . . . . . .. .. o
Internal programming functions . . . . . ... ... L 0L

XV

479
479
482

483
484
487
488
490
491
495
497
498
499
500

500
500
503
505
506
506
510
011
013
519
522
522
923
923

523
923
525



15

16

17

18

19

13sys implementation

15.1 The name of thejob . . . . . . . . . ... ... ... ... . .......
15.2 Detecting theengine . . . . . . . . .. ..o Lo Lo
15.3 Timeand date . . . . . . . . . . ...
15.4 Detecting the output . . . . ... ... L o oo
15.5 Randomness . . . . . . . .. L Lo

13clist implementation

16.1 Removing spaces around items . . . . . . .. . ... Lo
16.2 Allocation and initialisation . . . . . . . . ... ... L.
16.3 Adding data to comma lists . . . . . ... .. ... ... ... ... ...
16.4 Comma lists as stacks . . . . . . .. .. ... .
16.5 Modifying comma lists. . . . . . ... ... oo oo
16.6 Comma list conditionals . . . . . . . . .. .. .. L Lo
16.7 Mapping to comma lists . . . . . .. . ..o Lo
16.8 Using comma lists . . . . . . . . ... e
16.9 Using a singleitem . . . . . . . . .. ... oo oo
16.10Viewing comma lists . . . . . . . . ... oL oo
16.11Scratch comma lists . . . . . .. ... oL L o

13token implementation

17.1 Manipulating and interrogating character tokens . . . . . ... ... ..
17.2 Creating character tokens . . . . . . . ... ... .. Lo
17.3 Generic tokens . . . . ..o
17.4 Token conditionals . . . . . . . .. .. Lo o
17.5 Peeking ahead at the next token . . . . . . ... ... ... ... ...,

13prop implementation

18.1 Allocation and initialisation . . . . . . .. .. ... ... L.
18.2 Accessing data in property lists . . . . . . ... ... L.
18.3 Property list conditionals . . . . . . .. ... oL
18.4 Recovering values from property lists with branching . . . . . . . . . ..
18.5 Mapping to property lists . . . . . . . ... Lo oL
18.6 Viewing property lists . . . . . . . .. .. L oo

1I3msg implementation

19.1 Creating messages . . . . . v v v v v v i v i e
19.2 Messages: support functions and text . . . . ... ... ... ... ...
19.3 Showing messages: low level mechanism . . . . . ... ... ... ....
19.4 Displaying messages . . . . . . . . . ot e e e e
19.5 Kernel-specific functions . . . . . . . . ... Lo 0oL
19.6 Expandable errors . . . . .. .. Lo o

XVi

537
537
538
539
540
540

540
041
542
544
545
047
550
951
554
555
557
957

558
558
560
564
565
572

578
579
582
586
o87
o87
589



20

21

13file implementation 613

20.1 Input operations . . . . . . . . . . .o 613
20.1.1 Variables and constants . . . . . . ... ... ... ... ... 613
20.1.2 Stream management . . . . . . ... ..o 614
20.1.3 Reading input . . . ... ... .. o o 616

20.2 Output operations . . . . . . . . ... Lo 619
20.2.1 Variables and constants . . . . ... .. ... Lo 619

20.3 Stream management . . . . ... oo . e e e e e 621
20.3.1 Deferred writing . . . . . . . .. L Lo 622
20.3.2 Immediate writing . . . . . .. ... oL oo 623
20.3.3 Special characters for writing . . . . .. .. ..o 624
20.3.4 Hard-wrapping lines to a character count . . .. .. .. ... ... 624

20.4 File operations . . . . . . . ... L Lo 633

20.5 GetlfInfo . . . . . . . L 647

20.6 MesSsages . . . . ... 648

I13skip implementation 648

21.1 Length primitives renamed . . . . . . . .. ... oL 649

21.2 Creating and initialising dim variables . . . . . .. ... ... ... ... 649

21.3 Setting dim variables . . . . . . . .. Lo L L 650

21.4 Utilities for dimension calculations . . . . . . . ... .. ... .. ... 651

21.5 Dimension expression conditionals . . . . . . . ... ... . 0L 652

21.6 Dimension expression loops . . . . . . . . ... 654

21.7 Dimension step functions . . . . .. .. ... 655

21.8 Using dim expressions and variables . . . . . .. ... .. ... ... 657

21.9 Viewing dim variables . . . . . . .. ... L Lo 659

21.10Constant dimensions . . . . . . . ... oo 659

21.11Scratch dimensions . . . . . . . . . . ... 659

21.12Creating and initialising skip variables . . . . .. ... ... ... ... 659

21.13Setting skip variables . . . . . . ... oL oL oo 660

21.14Skip expression conditionals . . . . . . . . ..o oL 661

21.15Using skip expressions and variables . . .. .. ... ... .. 00, 662

21.16Inserting skips into the output . . . . . .. .. ... L. 662

21.17Viewing skip variables . . . . . . ... L oL oo 663

21.18Constant skips . . . . . ... Lo 663

21.19Scratch skips . . . . . L Lo 664

21.20Creating and initialising muskip variables . . . . . . .. ... ... ... 664

21.21Setting muskip variables. . . . . . .. .o oL o 665

21.22Using muskip expressions and variables . . . . ... ... ... ... .. 666

21.23Viewing muskip variables . . . . . . .. ... oL oL 666

21.24Constant muskips . . . . . ... L Lo 667

21.25Scratch muskips . . . . . ... oL 667

xXvii



13keys Implementation 667

22.1 Low-level interface . . . . . . . . ... L 667
22.2 Constants and variables . . . . . . . ... . ... L. 671
22.3 The key defining mechanism . . . . . . ... ... .. L L. 673
22.4 Turning properties into actions . . . . . .. ... o L oL 675
22.5 Creating key properties . . . . . . . . . .. oo 680
22.6 Setting keys . . . . . ... e 685
22.7 Utilities . . . . . . . o e e 693
22.8 MeSsages . . . . ..o 695
I13intarray implementation 696
23.1 Allocating arrays . . . . . . . . oo e e e 696
23.2 Array 1tems . . . ... oo 697
23.3 Working with contents of integer arrays . . . . . . ... ... ... ... 700
23.4 Random arrays . . . . . . . ..t c i e e e e e e 701
13fp implementation 702
13fp-aux implementation 702
25.1 Access to primitives . . . . . ... 703
25.2 Internal representation . . . . . .. ... oL 703
25.3 Using arguments and semicolons . . . . . .. ... ... oL 704
25.4 Constants, and structure of floating points . . . . . . . ... ... ... 705
25.5 Overflow, underflow, and exact zero . . . . . . . ... ... ... .... 707
25.6 Expanding after a floating point number . . . . . ... 707
25.7 Other floating point types . . . . . . . . ... L o 709
25.8 Packing digits . . . . . ..o 712
25.9 Decimate (dividing by a power of 10) . . . . . .. ... ... ... 714
25.10Functions for use within primitive conditional branches . . . . . . . .. 716
25.11Integer floating points . . . . . . . ... oL o 718
25.12Small integer floating points . . . . . . . .. ... 718
25.13Fast string comparison . . . . . .. ... L oo 719
25.14Name of a function from its 13fp-parse name . . . . . . . ... ... ... 719
25.15MeSSageS . . . . e e e e e e e 720
13fp-traps Implementation 720
26.1 Flags . . . . . o o e 720
26.2 Traps . . . o e e e e e e e 720
26.3 EITors . ... Lo e e e e 724
26.4 MeSsages . . . . ... 724
13fp-round implementation 725
27.1 Rounding tools . . . . . . . . . 725
27.2 The round function . . . . . . . .. . ... 729

xXviii



28

29

30

13fp-parse implementation

28.1

Work plan . . . . . oL

28.1.1 Storing results . . . . . . L. Lo
28.1.2 Precedence and infix operators . . . . . . ... ... ... L.
28.1.3 Prefix operators, parentheses, and functions . . . . . . .. ... ..
28.1.4 Numbers and reading tokens one by one . . . . . .. .. ... ...

28.2
28.3
28.4

Main auxiliary functions . . . . . . . . . .. ...
Helpers . . . . . o o o e
Parsing one number . . . . ... L oL Lo

28.4.1 Numbers: trimming leading zeros . . . . . . .. .. ... ... ...
28.4.2 Number: small significand . . . . . . .. ... ... ... ..
28.4.3 Number: large significand . . . . . . .. .. ... ... ...
28.4.4 Number: beyond 16 digits, rounding . . . . . . . .. .. ... ...
28.4.5 Number: finding the exponent . . . ... ... ... ... .....

28.5

Constants, functions and prefix operators . . . . . . .. ... ... ...

28.5.1 Prefix operators . . . . .. ... o o
28.5.2 Constants . . . . . . ... e
28.5.3 Functions . . . . . . . . . .. e

28.6
28.7

Main functions . . . . . . . .. e
Infix operators . . . . . . ...

28.7.1 Closing parentheses and commas . . . . . ... ... ... .....
28.7.2 Usual infix operators . . . . . . . .. .. oo
28.7.3 Juxtaposition . . . . .. ..o
28.7.4 Multi-character cases . . . . . . . . . ... oo
28.7.5 Ternary operator . . . . . .. . ... Lo oL
28.7.6 CompariSons . . . . . . . . v ot e

28.8
28.9

Tools for functions . . . . . . . . . ...
MeESSAZES + v v e e e e e e e e e e e e e e e e

13fp-assign implementation

29.1
29.2
29.3
294

Assigning values . . . . .. .. L. e
Updating values . . . . . . .. ... L
Showing values . . . . . . . . . . ...
Some useful constants and scratch variables . . . . . .. ... ... ...

13fp-logic Implementation

30.1
30.2
30.3
30.4
30.5
30.6
30.7

Syntax of internal functions . . . . . . ... .. oL oL
Tests . . . o e
Comparison . . . . . . . .. oL
Floating point expression loops . . . . . . . . . . .. ... ... ... ..
Extrema . . . .. e
Boolean operations . . . . . . .. ..o L L oo
Ternary operator . . . . . . . . ...

Xix

733
733
734
735
738
739
741
741
742
749
750
752
754
756
760
760
763
764
764
767
768
770
771
771
772
772
e
776

77T
T
78
779
e



31

32

33

13fp-basics Implementation
31.1 Addition and subtraction . . . . ... ... oL oL
31.1.1 Sign, exponent, and special numbers . . . . . . ... ...
31.1.2 Absolute addition . . . . . . . ...
31.1.3 Absolute subtraction . . . . . . ... ..o
31.2 Multiplication . . . . . .. ...
31.2.1 Signs, and special numbers . . . . . . ... ... L.
31.2.2 Absolute multiplication . . . . . . .. ... ... ... ... ...
31.3 Division . . . . . . .. e
31.3.1 Signs, and special numbers . . . . . ...
31.32 Workplan . . . . . . .. oL o
31.3.3 Implementing the significand division . . . . ... ... ... ...
31.4 Square To0t . . . . ... e
31.5 About the sign and exponent . . . . . . . .. ...
31.6 Operationson tuples . . . . . . . .. ... Lo

13fp-extended implementation

32.1 Description of fixed point numbers . . . . . . ... ..o
32.2 Helpers for numbers with extended precision . . ... .. ... .....
32.3 Multiplying a fixed point number by a short one . . . .. .. ... ...
32.4 Dividing a fixed point number by a small integer . . . . . . .. ... ..
32.5 Adding and subtracting fixed points . . . . . .. ... ...
32.6 Multiplying fixed points . . . . . . . ... oL o
32.7 Combining product and sum of fixed points . . . . . . .. ... .. ...
32.8 Extended-precision floating point numbers . . . . .. .. ..o
32.9 Dividing extended-precision numbers. . . . . .. ... Lo
32.10Inverse square root of extended precision numbers . . . . .. ... ...
32.11Converting from fixed point to floating point . . . . . . . ... ... ..

13fp-expo implementation

33.1 Logarithm . . . . . . . . . . . e
33.1.1 Workplan . . . . . . ...
33.1.2 Some constants . . . . . .. ..o
33.1.3 Sign, exponent, and special numbers . . . ... ..o
33.1.4 AbsoluteIn . . . . . . ...

33.2 Exponential . . . . . ... Lo
33.2.1 Sign, exponent, and special numbers . . . . .. ... ...

33.3 Power . . . . . .. e

33.4 Factorial . . . . . . . . e

791
791
792
794
796
800
800
801
804
804
805
807
812
819
820

821
822
822
823
824
825
826
827
829
832
835
837



34

35

36

37

38

13fp-trig Implementation

34.1 Direct trigonometric functions . . . . . . . ... ... ...
34.1.1 Filtering special cases . . . . . . .. .. ..o oL
34.1.2 Distinguishing small and large arguments . . . . . .. ... .. ..
34.1.3 Small arguments . . . . . ... L L
34.1.4 Argument reduction in degrees . . . . . .. ...
34.1.5 Argument reduction in radians . . . . . .. ... ... ... ...
34.1.6 Computing the power series . . . . . . . . . .. ... ... .....

34.2 Inverse trigonometric functions . . . . . . . . ... oL
34.2.1 Arctangent and arccotangent . . . . . ... ... ...
34.2.2 Arcsine and arccosine . . . ... ..o
34.2.3 Arccosecant and arcsecant . . . . ... ... oL oL

13fp-convert implementation

35.1 Dealing with tuples . . . . . . . .. ..o
35.2 Trimming trailing zeros . . . . . . . . . .. .
35.3 Scientific notation . . . . . . ...
35.4 Decimal representation . . . . . . . .. ... e
35.5 Token list representation . . . . .. ... .. ..o
35.6 Formatting . . . . . . .. Lo
35.7 Convert to dimension or integer . . . . . .. .. ... L.
35.8 Convert from a dimension . . . . . . . . . . ... ...
35.9 Useand eval . . . . . . . . . . L
35.10Convert an array of floating points to a comma list . . . . . . . . .. ..

13fp-random Implementation

36.1 Engine support . . . . ... Lo Lo e
36.2 Random floating point . . . . . . .. ... oL oo
36.3 Random integer . . . . . . . . . . ...

13fparray implementation
37.1 Allocating arrays . . . . . .« ..o i i e
37.2 Array items . . . . ...

I13sort implementation

38.1 Variables . . . . . . . .
38.2 Finding available \toks registers . . . . . .. .. ... ... ... ...
38.3 Protected user commands . . . . .. ... Lo Lo
38.4 Merge sort . . . . ...
38.5 Expandable sorting . . . ... ... oL o
38.6 Messages . . . . ...

XX1

860
861
861
864
865
865
867
874
877
878
883
885

886
886
887
887
888
890
891
892
892
893
894

895
895
898
899

904
904
905



39

40

13tl-analysis implementation 923

39.1 Internal functions . . . . .. .. L oL 923
39.2 Internal format . . . . . .. ... 923
39.3 Variables and helper functions . . . .. .. ... ... ... ....... 924
39.4 Planof attack . . . . . . . .. L 925
39.5 Disabling active characters . . . .. ... .. ... ... L. 926
39.6 First pass . . . . . . o e e e e 927
39.7 Second Pass . . . . . i e e e e e 932
39.8 Mapping through the analysis . . . . . ... ... ... ... ..... 935
39.9 Showing the results . . . . . . . ... . Lo 936
39.10MeSSAgES . . . . e e e e e e e e e e e 938
13regex implementation 938
40.1 Plan of attack . . . . . . . oL o 938
40.2 Helpers . . . . . . o e e 940
40.2.1 Constants and variables . . . . . ... ... .. ... ... 941
40.2.2 Testing characters . . . . .. . . ... . L oo 942
40.2.3 Character property tests . . . . . . . . . ... L. 946
40.2.4 Simple character escape . . . . . . . . ... 948
40.3 Compiling . . . . . . . Lo 953
40.3.1 Variables used when compiling . . . . .. ... ... ... .. ... 954
40.3.2 Generic helpers used when compiling . . . . . .. ... ... .... 955
40.3.3 Mode . . . . . .. 956
40.3.4 Framework . . . . . . ... 959
40.3.5 Quantifiers . . . . .. oL 961
40.3.6 Raw characters . . . . . . . . . .. . L 964
40.3.7 Character properties . . . . . . . . . . . . ... 966
40.3.8 Anchoring and simple assertions . . . . .. .. ... 967
40.3.9 Character classes . . . . . . . . . . .. 968
40.3.10 Groups and alternations . . . . . . . . .. ... oL 971
40.3.11 Catcodes and csnames . . . . . . . . ... oo 974
40.3.12Raw token lists with \u . . . . . . .. ... . L oL 977
40.3.130ther . . . . ... 979
40.3.14 Showing regexes . . . . . . vttt e e e e e 980
404 Building . . . . . . L 984
40.4.1 Variables used while building . . . . . ... .. ... ... 984
40.4.2 Framework . . . . . . .. L L L e 984
40.4.3 Helpers for building an NFA . . . . . . ... . ... L. 986
40.4.4 Building classes . . . . . ... L L 988
40.4.5 Building groups . . . . . . ... e 989
40.4.6 Others . . . . . . . oL e 994
40.5 Matching . . . . . .. Lo 995
40.5.1 Variables used when matching . . . ... .. ... ... .. .... 996
40.5.2 Matching: framework . . . ... ... ... 0oL 998
40.5.3 Using states of the NFA . . . . . . . ..o 1002
40.5.4 Actions when matching . . . ... ... ... o oL, 1003
40.6 Replacement . . . . . . . . .. L e 1005
40.6.1 Variables and helpers used in replacement . . . . . . . ... .. .. 1005
40.6.2 Query and brace balance . . . . ... .. 0oL, 1006
40.6.3 Framework . . . . . . .. ... 1008



41

42

43

44

45

46

40.6.4 Submatches . . . . . .. L
40.6.5 Csnames in replacement . . . . . . . . . . . . ... ...
40.6.6 Characters in replacement . . . . . . . . . . .. .. ... ... ...
40.6.7 Anerror . . . . ... e
40.7 User functions . . . . . . . .. oL e
40.7.1 Variables and helpers for user functions . . . . .. ... ... ...
40.7.2 Matching . . . . . . .. e
40.7.3 Extracting submatches . . . . .. ... Lo oo
40.7.4 Replacement . . . . . . . ...
40.7.5 Storing and showing compiled patterns. . . . . . . ... ... ...
40.8 MESSAZES .« . v v v e e e e e e e e e e e
40.9 Code for tracing . . . . . . . ...

13box implementation

41.1 Support code . . . . ..
41.2 Creating and initialising boxes . . . . . . . . . . ... ... ... .. ..
41.3 Measuring and setting box dimensions . . . . . . . ... ... ...
41.4 Using boxes . . . . . . o o e e
41.5 Box conditionals . . . . . . .. ... e
41.6 The last box inserted . . . . . . . . .. .. ... o
41.7 Constant boxes . . . . . . . . e e e
41.8 Scratch boxes . . . . . . . . . ..
41.9 Viewing box contents . . . . . . . ... . L Lo Lo
41.10Horizontal mode boxes . . . . . . . . ... Lo
41.11Vertical mode boxes . . . . . . . . .o
41.12Affine transformations . . . . . . . . .. ...

13coffins Implementation

42.1 Coffins: data structures and general variables . . . . . . . ... ... ..
42.2 Basic coffin functions . . . . ... o oL Lo
42.3 Measuring coffins . . . . . . . . ...
42.4 Coffins: handle and pole management . . . . ... ... ... ... ...
42.5 Coffins: calculation of pole intersections . . . . . . .. .. .. ... ...
42.6 Affine transformations . . . . . .. ..o Lo
42.7 Aligning and typesetting of coffins . . . . .. ... oL
42.8 Coffin diagnostics . . . . . . . . . . . . e
429 MeSSageS . . . . .o e e e e

13color-base Implementation

13luatex implementation

44.1 BreakingouttoLua . . . . . . . . . ... .
44.2 MESSAZES .« v v v v e e e e e e e e e e e e e
44.3 Lua functions for internal use . . . . . . . . .. ... ... ...
44.4 Generic Lua and font support . . . . . . . . ...

13unicode implementation

13legacy Implementation

xxiii



47  13candidates Implementation 1093
47.1 Additions to I3basics . . . . .. oL oL 1093
47.2 Additions to I3box . . . ... Lo 1094

47.2.1 Viewing part ofabox . . . ... ... o oo 1094
47.3 Additions to I3fp-convert. . . . .. ..o 1096
47.4 Additions to I3flag . . . . ..o 1096
47.5 Additions to I3int. . . . ... 1097
47.6 Additions to I3msg . . . ... oo 1097
47.7 Additions to I3prg . . . . ..o 1099
47.8 Additions to I3prop . . . . ... oL 1099
47.9 Additions to 13seq . . . . ... 1100
47.10Additions to I3skip . . . . ..o 1103
47.11Additions to I3sys . . . . ..o 1104
47.12Additions to 13file . . . . . .. L 1109
47.13Additions to I3tl . . .. ..o 1111

47.13.1 Unicode case changing . . . . . . . .. ... ... ... ... 1111

47.13.2Building a token list . . . . . . .. . Lo oo 1135

47.13.3 Other additions to I3tl . . . . . . ... . ... oo, 1139
47.14Additions to I3token . . . . .. Lo 1139

48 I13deprecation implementation 1141
48.1 Helpers and variables . . . . . . . . .. ... o0 1141
48.2 Patching definitions to deprecate . . . . . . . . .. ... 1142
48.3 Removed functions . . . . . . . ... 1145
48.4 Deprecated primitives . . . . . . . ... L Lo o 1147
48.5 Deprecated 13box functions . . . . . .. .. ..o oL 1148
48.6 Deprecated 13int functions . . . . . . . . . . ... 1149
48.7 Deprecated 13luatex functions . . . . . . . .. .. .. L. 1150
48.8 Deprecated 13msg functions . . . . . . . .. ..o 1150
48.9 Deprecated 13prg functions . . . . . .. ..o 1152
48.10Deprecated 13str functions . . . . . . .. ..o L oo 1152

48.10.1 Deprecated 13tl functions . . . . . . . ... ... ... ... 1153
48.11Deprecated 13tl-analysis functions . . . . . . . ... ... L. 1153
48.12Deprecated 13token functions . . . . . .. .. ... L. 1154
48.13Deprecated I3file functions . . . . . ... Lo 1154

Index 1155

XXiv



Part 1
Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the IMTEX3 programming language is found in expl3.pdf.

1 Naming functions and variables

TEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example
\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means ezxpansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are not
expandable.

e The e specifier is in many respects identical to x, but with a very different imple-
mentation. Functions which feature an e-type argument may be expandable. The
drawback is that e is extremely slow (often more than 200 times slower) in older
engines, more precisely in non-LuaTgEX engines older than 2019.



f The f specifier stands for full expansion, and in contrast to x stops at the first non-
expandable token (reading the argument from left to right) without trying to expand
it. If this token is a (space token), it is gobbled, and thus won’t be part of the
resulting argument. For example, when setting a token list variable (a macro used
for storage), the sequence

\tl_set:Nn \1l_mya_tl { A }
\tl_set:Nn \1_myb_tl { B }
\tl_set:Nf \1_mya_tl { \1_mya_tl \1_myb_tl }

will leave \1_mya_t1 with the content A\1_myb_t1, as A cannot be expanded and
so terminates expansion before \1_myb_t1 is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some specified string).

D The D specifier means do not use. All of the TEX primitives are initially \let to a D
name, and some are then given a second name. Only the kernel team should use
anything with a D specifier!

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

¢ Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module! name and then a descriptive part. Variables end with a short
identifier to show the variable type:

clist Comma separated list.
dim “Rigid” lengths.
fp Floating-point values;

int Integer-valued count register.

1The module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.



muskip “Rubber” lengths for use in mathematics.

seq “Sequence”: a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.
str String variables: contain character data.
t1 Token list variables: placeholder for a token list.

Applying V-type or v-type expansion to variables of one of the above types is supported,
while it is not supported for the following variable types:

bool Either true or false.
box Box register.

coffin A “box with handles” — a higher-level data type for carrying out box alignment
operations.

flag Integer that can be incremented expandably.

fparray Fixed-size array of floating point values.

intarray Fixed-size array of integers.

ior/iow An input or output stream, for reading from or writing to, respectively.
prop Property list: analogue of dictionary or associative arrays in other languages.

regex Regular expression.

1.1 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and
a “token list variable” are almost the same.? On the other hand, some “variables” are
actually registers that must be initialised and their values set and retrieved with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

2TgEXnically, functions with no arguments are \long while token list variables are not.



\ExplSyntaxOn
\ExplSyntaxOff

\seq_new:N
\seq_new:c

\cs_to_str:N *

\seq_map_function:NN 7

2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntax0ff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

For programming functions, which use _ and : in their name there are a few addi-
tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

\seq_new:N (sequence)

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type or e-type argument (in plain TEX terms, inside an \edef or
\expanded), as well as within an f-type argument. These fully expandable functions are
indicated in the documentation by a star:

\cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a {control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN (seq) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:



\sys_if_engine_xetex:TF x

\1_tmpa_tl

\token_to_str:N *

\sys_if_engine_xetex:TF {(true code)} {(false code)}

The underlining and italic of TF indicates that three functions are available:
e \sys_if_engine_xetex:T
e \sys_if_engine_xetex:F
e \sys_if_engine_xetex:TF

Usually, the illustration will use the TF variant, and so both (true code) and (false code)

will be shown. The two variant forms T and F take only (true code) and (false code),

respectively. Here, the star also shows that this function is expandable. With some minor

exceptions, all conditional functions in the expl3 modules should be defined in this way.
Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.

In some cases, the function is similar to one in IATEX 2¢ or plain TEX. In these cases,
the text will include an extra “TgpXhackers note” section:

\token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or I TEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way wnless they impact on the
expected behaviour.

3 Formal language conventions which apply generally

As this is a formal reference guide for ¥TEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left

in the input stream: this will typically be part of a larger logical construct.



4 TgX concepts not supported by BXTEX3

The TEX concept of an “\outer” macro is not supported at all by IWTEX3. As such, the
functions provided here may break when used on top of IATEX 2¢ if \outer tokens are
used in the arguments.



\ExplSyntax0On

\ExplSyntax0ff

Updated: 2011-08-13

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2017-03-19

\GetIdInfo

Updated: 2012-06-04

Part 11
The I13bootstrap package
Bootstrap code

1 Using the KTEX3 modules

The modules documented in source3 are designed to be used on top of KTEX 2¢ and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions. These modules will also form the basis of the IXTEX3 format, but work in
this area is incomplete and not included in this documentation at present.

As the modules use a coding syntax different from standard I¥TEX 2¢ it provides a
few functions for setting it up.

\ExplSyntaxOn (code) \ExplSyntax0ff

The \ExplSyntaxOn function switches to a category code régime in which spaces are
ignored and in which the colon (:) and underscore (_) are treated as “letters”, thus
allowing access to the names of code functions and variables. Within this environment,
~ is used to input a space. The \ExplSyntax0ff reverts to the document category code
régime.

\RequirePackage{expl3}

\ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

These functions act broadly in the same way as the corresponding IATEX 2¢ kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntaxOn for the remainder of the code with the file. At the end
of the file, \ExplSyntax0ff will be called to reverse this. (This is the same concept as
KTEX 2 provides in turning on \makeatletter within package and class code.) The
(date) should be given in the format (year)/{month)/(day). If the (version) is given then
it will be prefixed with v in the package identifier line.

\RequirePackage{13bootstrap}

\GetIdInfo $Id: (SVN info field) $ {(description)}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion
for version and \ExplFileDescription for the description.

To summarize: Every single package using this syntax should identify itself using
one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual IXTEX 2¢ category codes and the
TREX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}



Part 111
The I13names package
Namespace for primitives

1 Setting up the KTEX3 programming language

This module is at the core of the M TEX3 programming language. It performs the following
tasks:

o defines new names for all TEX primitives;
o switches to the category code régime for programming;
e provides support settings for building the code as a TEX format.

This module is entirely dedicated to primitives, which should not be used directly
within ITEX3 code (outside of “kernel-level” code). As such, the primitives are not
documented here: The TgXbook, TEX by Topic and the manuals for pdfTEX, XHTEX,
LuaTgX, pIEX and uplEX should be consulted for details of the primitives. These are
named \tex_(name):D, typically based on the primitive’s (name) in pdf TEX and omitting
a leading pdf when the primitive is not related to pdf output.



\prg_do_nothing: x

\scan_stop:

\group_begin:
\group_end:

\group_insert_after:N

Part IV
The I3basics package
Basic definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

2  Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends. The
list of (tokens) to be inserted is empty at the beginning of a group: multiple applications
of \group_insert_after:N may be used to build the inserted list one (token) at a time.
The current group level may be closed by a \group_end: function or by a token with
category code 2 (close-group), namely a } if standard category codes apply.



3 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” are fully expanded inside an x expansion. In
contrast, “protected” functions are not expanded within x expansions.

3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen is checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new. ..
functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, ...).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and results in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and does not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset:Npn. The definition
is global and does not result in an error if the function is already defined.

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an x-type or e-type expansion.

Finally, the functions in Subsections 3.2 and 3.3 are primarily meant to define base
functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 2.

10



\cs_new:Npn
\cs_new:cpn
\cs_new:Npx
\cs_new:cpx

\cs_new_nopar:Npn
\cs_new_nopar:cpn
\cs_new_nopar : Npx
\cs_new_nopar:cpx

\cs_new_protected:Npn
\cs_new_protected:cpn
\cs_new_protected:Npx
\cs_new_protected:cpx

3.2 Defining new functions using parameter text

\cs_new:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Npn (function) (parameters) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npn (function) (parameters) {({code)}
\cs_new_protected_nopar:cpn

\cs_new_protected_nopar:Npx

\cs_new_protected_nopar:cpx

\cs_set:Npn
\cs_set:cpn
\cs_set:Npx
\cs_set:cpx

\cs_set_nopar:Npn
\cs_set_nopar:cpn
\cs_set_nopar:Npx
\cs_set_nopar:cpx

\cs_set_protected:Npn
\cs_set_protected:cpn
\cs_set_protected:Npx
\cs_set_protected:cpx

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_set:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Npn (function) (parameters) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The assignment
of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an x-type or e-type argument.

11



\cs_set_protected_nopar:Npn \cs_set_protected_nopar:Npn (function) (parameters) {{code)}
\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:Npx
\cs_set_protected_nopar:cpx

\cs_gset:Npn
\cs_gset:cpn
\cs_gset :Npx
\cs_gset:cpx

\cs_gset_nopar:Npn
\cs_gset_nopar:cpn
\cs_gset_nopar:Npx
\cs_gset_nopar:cpx

\cs_gset_protected:Npn
\cs_gset_protected:cpn
\cs_gset_protected:Npx
\cs_gset_protected:cpx

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The as-
signment of a meaning to the (function) is restricted to the current TEX group level. The
(function) will not expand within an x-type or e-type argument.

\cs_gset:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_protected:Npn (function) (parameters) {{code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global. The (function) will not expand within an x-type or
e-type argument.

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {{code)}
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpx

\cs_new:Nn
\cs_new: (cn|Nx|cx)

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group level:
the assignment is global. The (function) will not expand within an x-type argument.

3.3 Defining new functions using the signature

\cs_new:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

12



\cs_new_nopar:Nn
\cs_new_nopar: (cn|Nx|cx)

\cs_new_protected:Nn
\cs_new_protected: (cn|Nx|cx)

\cs_new_nopar:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Nn (function) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_new_protected_nopar:Nn \cs_new_protected_nopar:Nn (function) {<code>}
\cs_new_protected_nopar:(cn|Nx|cx)

\cs_set:Nn
\cs_set:(cn|Nx|cx)

\cs_set_nopar:Nn
\cs_set_nopar:(cn|Nx|cx)

\cs_set_protected:Nn
\cs_set_protected:(cn|Nx|cx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_set:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {({code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is restricted to the current TEX group level.

13



\cs_set_protected_nopar:Nn \cs_set_protected_nopar:Nn (function) {(code)}
\cs_set_protected_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is restricted to the current TEX group level.

\cs_gset:Nn \cs_gset:Nn (function) {(code)}
\cs_gset:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is global.

\cs_gset_nopar:Nn \cs_gset_nopar:Nn (function) {(code)}
\cs_gset_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2. etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is global.

\cs_gset_protected:Nn \cs_gset_protected:Nn (function) {(code)}
\cs_gset_protected: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is global.

\cs_gset_protected_nopar:Nn \cs_gset_protected_nopar:Nn (function) {(code)}
\cs_gset_protected_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is global.

\cs_generate_from_arg_count:NNnn \cs_generate_from_arg_count:NNnn (function) (creator) {(number)}
\cs_generate_from_arg_count:(cNnn|Ncnn) {(code)}

Updated: 2012-01-14

Uses the (creator) function (which should have signature Npn, for example \cs_new:Npn)
to define a (function) which takes (number) arguments and has (code) as replacement
text. The (number) of arguments is an integer expression, evaluated as detailed for
\int_eval:n.

14



\cs_new_eq:NN
\cs_new_eq:(Nc|cN|cc)

\cs_set_eq:NN
\cs_set_eq:(Nc|cN|cc)

\cs_gset_eq:NN
\cs_gset_eq:(Nc|cN|cc)

\cs_undefine:N
\cs_undefine:c

Updated: 2011-09-15

\cs_meaning:N x
\cs_meaning:c *

Updated: 2011-12-22

3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN (cs1) (cs2)
\cs_new_eq:NN (csi) (token)

Globally creates (control sequence;) and sets it to have the same meaning as (control
sequenceg) or (token). The second control sequence may subsequently be altered without
affecting the copy.

\cs_set_eq:NN (cs1) (cs2)
\cs_set_eq:NN (csi) (token)

Sets (control sequence;) to have the same meaning as (control sequences) (or (token)).
The second control sequence may subsequently be altered without affecting the copy.
The assignment of a meaning to the (control sequence;) is restricted to the current TEX
group level.

\cs_gset_eq:NN (cs1) (cs2)
\cs_gset_eq:NN (csi) (token)

Globally sets (control sequence;) to have the same meaning as (control sequences) (or
(token)). The second control sequence may subsequently be altered without affecting the
copy. The assignment of a meaning to the (control sequence;) is not restricted to the
current TEX group level: the assignment is global.

3.5 Deleting control sequences
There are occasions where control sequences need to be deleted. This is handled in a

very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

3.6 Showing control sequences

\cs_meaning:N (control sequence)
This function expands to the meaning of the (control sequence) control sequence. For a

macro, this includes the (replacement text).

TEXhackers note: This is TEX’s \meaning primitive. For tokens that are not control
sequences, it is more logical to use \token_to_meaning:N. The ¢ variant correctly reports
undefined arguments.

15



\cs_show:N
\cs_show:c

Updated: 2017-02-14

\cs_log:N
\cs_log:c

New: 2014-08-22
Updated: 2017-02-14

\use:c *

\cs_if_exist_use:N
\cs_if_exist_use:c
\cs_if_exist_use:NTF

*
*
*
\cs_if_exist_use:cTF *

New: 2012-11-10

\cs_show:N (control sequence)
Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_log:N (control sequence)

Writes the definition of the {control sequence) in the log file. See also \cs_show:N which
displays the result in the terminal.

3.7 Converting to and from control sequences

\use:c {(control sequence name)}

Expands the (control sequence name) until only characters remain, and then converts
this into a control sequence. This process requires two expansions. As in other c-type
arguments the (control sequence name) must, when fully expanded, consist of character
tokens, typically a mixture of category code 10 (space), 11 (letter) and 12 (other).

TEXhackers note: Protected macros that appear in a c-type argument are expanded
despite being protected; \exp_not :n also has no effect. An internal error occurs if non-characters
or active characters remain after full expansion, as the conversion to a control sequence is not
possible.

As an example of the \use:c function, both
\use:c { a bc
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc}
\use:c { \tl_use:N \l_my_tl }

would be equivalent to
\abc
after two expansions of \use:c.

\cs_if_exist_use:N (control sequence)
\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined according to the conditional
\cs_if_exist:NTF (whether as a function or another control sequence type), and if it is
inserts the (control sequence) into the input stream followed by the (true code). Otherwise
the (false code) is used.

16



\cs:w *
\cs_end: x

\cs_to_str:N =

\cs_split_function:N =

New: 2018-04-06

\cs:w (control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for (control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically of category
code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TgXhackers note: These are the TEX primitives \csname and \endcsname

As an example of the \cs:w and \cs_end: functions, both
\cs:w a b ¢ \cs_end:
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc}
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to
\abc

after one expansion of \cs:w.

\cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code 12
(other), except spaces, of category code 10. The result does not include the current
escape token, contrarily to \token_to_str:N. Full expansion of this function requires
exactly 2 expansion steps, and so an x-type or e-type expansion, or two o-type expansions
are required to convert the (control sequence) to a sequence of characters in the input
stream. In most cases, an f-expansion is correct as well, but this loses a space at the
start of the result.

4 Analysing control sequences

\cs_split_function:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). This information is then placed in the input stream in three
parts: the (name), the (signature) and a logic token indicating if a colon was found (to
differentiate variables from function names). The (name) does not include the escape
character, and both the (name) and (signature) are made up of tokens with category
code 12 (other).

The next three functions decompose TEX macros into their constituent parts: if the
(token) passed is not a macro then no decomposition can occur. In the latter case, all
three functions leave \scan_stop: in the input stream.

17



\cs_prefix_spec:N *

New: 2019-02-27

\cs_argument_spec:N *

New: 2019-02-27

\cs_replacement_spec:N *

New: 2019-02-27

\cs_prefix_spec:N (token)

If the (token) is a macro, this function leaves the applicable TEX prefixes in input stream
as a string of tokens of category code 12 (with spaces having category code 10). Thus
for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_prefix_spec:N \next:nn

leaves \long in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: The prefix can be empty, \long, \protected or \protected\long with
backslash replaced by the current escape character.

\cs_argument_spec:N (token)

If the (token) is a macro, this function leaves the primitive TEX argument specification
in input stream as a string of character tokens of category code 12 (with spaces having
category code 10). Thus for example

\cs_set:Npn \next:nn #1#2 { x #1 y #2 }
\cs_argument_spec:N \next:nn

leaves #1#2 in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: If the argument specification contains the string ->, then the function
produces incorrect results.

\cs_replacement_spec:N (token)

If the (token) is a macro, this function leaves the replacement text in input stream as
a string of character tokens of category code 12 (with spaces having category code 10).
Thus for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_replacement_spec:N \next:nn

leaves x#1,y#2 in the input stream. If the (foken) is not a macro then \scan_stop: is
left in the input stream.

TEXhackers note: If the argument specification contains the string ->, then the function
produces incorrect results.

5 Using or removing tokens and arguments
Tokens in the input can be read and used or read and discarded. If one or more tokens

are wrapped in braces then when absorbing them the outer set is removed. At the same
time, the category code of each token is set when the token is read by a function (if it

18



\use:n
\use:nn
\use:nnn
\use:nnnn

\use_i:nn
\use_ii:nn

\use_i:nnn
\use_ii:nnn
\use_iii:nnn

*
*
*
*

*
*

*

\use_i:nnnn
\use_ii:nnnn
\use_iii:nnnn
\use_iv:nnnn

L I

is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

\use:n {(group1)
\use:nn  {(group:)
\use:nnn {(group:)
\use:nnnn {(group:)

}
} {{group2)}

} {(groupz)} {(groups)}

} {(groups)} {(groups)} {(groups)}

As illustrated, these functions absorb between one and four arguments, as indicated by
the argument specifier. The braces surrounding each argument are removed and the
remaining tokens are left in the input stream. The category code of these tokens is also
fixed by this process (if it has not already been by some other absorption). All of these

functions require only a single expansion to operate, so that one expansion of
\use:nn { abc } { { def } }

results in the input stream containing
abc { def }

i.e. only the outer braces are removed.

hackers note: The \use:n function is equivalent to I& 2¢’s \@firstofone.
TEX q

\use_i:nn {(argi)} {(argz)}

These functions absorb two arguments from the input stream. The function \use_i:nn
discards the second argument, and leaves the content of the first argument in the input
stream. \use_ii:nn discards the first argument and leaves the content of the second
argument in the input stream. The category code of these tokens is also fixed (if it
has not already been by some other absorption). A single expansion is needed for the
functions to take effect.

TEXhackers note: These are equivalent to TEX 2¢’s \@firstoftwo and \@secondoftwo.

\use_i:nnn {(arg:i)} {(arge)} {(args)}

These functions absorb three arguments from the input stream. The function \use_i:nnn
discards the second and third arguments, and leaves the content of the first argument in
the input stream. \use_ii:nnn and \use_iii:nnn work similarly, leaving the content
of second or third arguments in the input stream, respectively. The category code of
these tokens is also fixed (if it has not already been by some other absorption). A single
expansion is needed for the functions to take effect.

\use_i:nnnn {(argi)} {(arg:)} {(args)} {(args)}

These functions absorb four arguments from the input stream. The function \use_-
i:nnnn discards the second, third and fourth arguments, and leaves the content of the
first argument in the input stream. \use_ii:nnnn, \use_iii:nnnn and \use_iv:nnnn
work similarly, leaving the content of second, third or fourth arguments in the input
stream, respectively. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the functions to take
effect.

19



\use_i_ii:nnn *

\use_ii_i:nn *

New: 2019-06-02

\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:

n *
nn *
nnn *
nnnn *
nnnnn *
nnnnnn *
nnnnnnn *
nnnnnnnn *
nnnnnnnnn *

\use:e *

New: 2018-06-18

\use:x

Updated: 2011-12-31

\use_i_ii:nnn {(argi)} {(arg:)} {(args)}

This function absorbs three arguments and leaves the content of the first and second in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
results in the input stream containing
abc { def }

i.e. the outer braces are removed and the third group is removed.

\use_ii_i:nn {(argi)} {(argz)}

This function absorbs two arguments and leaves the content of the second and first in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect.

\use_none:n {(group:)}

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

TEXhackers note: These are equivalent to E'TEX 2¢’s \@gobble, \@gobbbletwo, etc.

\use:e {(expandable tokens)}
Fully expands the (token list) in an x-type manner, but the function remains fully ex-
pandable, and parameter character (usually #) need not be doubled.

TgXhackers note: \use:e is a wrapper around the primitive \expanded where it is avail-
able: it requires two expansions to complete its action. When \expanded is not available this
function is very slow.

\use:x {(expandable tokens)}

Fully expands the (ezpandable tokens) and inserts the result into the input stream at the
current location. Any hash characters (#) in the argument must be doubled.

5.1 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

20



\use_none_delimit_by_q _nil:w * \use_none_delimit_by_q_nil:w (balanced text) \g_nil

\use_none_delimit_by_q_stop

W * \use_none_delimit_by_q_stop:w (balanced text) \g_stop

\use_none_delimit_by_q_recursion_stop:w * \use_none_delimit_by_q_recursion_stop:w <balanced text)

\gq_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.

\use_i_delimit_by_q_nil:nw
\use_i_delimit_by_q_stop:nw

* \use_i_delimit_by_q_nil:nw {(inserted tokens)} (balanced text)
* \g_nil

\use_i_delimit_by_q_recursion_stop:nw * \use_i_delimit_by_q_stop:nw {(inserted tokens)} (balanced

text) \g_stop
\use_i_delimit_by_q_recursion_stop:nw {(inserted tokens)}
(balanced text) \g_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

6

Predicates and conditionals

IXTEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending

on its result, either the code supplied as the (true code) or the (false code). These
arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abc} {(true code)} {(false code)}

a function that turns the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carries out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it is usually accompanied by T and F functions as well. These are provided
for convenience when the branch only needs to go a single way. Package writers
are free to choose which types to define but the kernel definitions always provide
all three versions.

Important to note is that these branching conditionals with (true code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they are accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which

can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

21



\c_true_bool

\c_false_boo

1

\cs_if_eq_p:NN
\cs_if_eq:NNTF

\cs_if_exist_p:N
\cs_if_exist_p:c
\cs_if_exist:NTF
\cs_if_exist:cTF

Ll S

\cs_if_free_p:N
\cs_if_free_p:c
\cs_if_free:NTF
\cs_if_free:cTF

L I

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {(false code)}

For each predicate defined, a “branching conditional” also exists that behaves like
a conditional described above.

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and BTEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

Constants that represent true and false, respectively. Used to implement predicates.

6.1 Tests on control sequences

\cs_if_eq_p:NN (cs1) (cs2)

\cs_if_eq:NNTF (cs1) (cs2) {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true if they are the
same, i.e. if they have exactly the same definition when examined with \cs_show:N.

\cs_if_exist_p:N (control sequence)
\cs_if_exist:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type). Any definition of {control sequence) other than \relax evaluates
as true.

\cs_if_free_p:N (control sequence)
\cs_if_free:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently free to be defined. This test is false if
the (control sequence) currently exists (as defined by \cs_if_exist:N).

6.2 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions
often contains a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper