The IXTEX3 Sources

The KTEX Project*
Released 2023-03-30

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for KTEX commands, which
allow the BTEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level I¥TEX3 programming
language.

The expl3 modules are designed to be loaded on top of KTEX 2s. With an up-to-
date IXTEX 2¢ kernel, this material is loaded as part of the format. The fundamental
programming code can also be loaded with other TEX formats, subject to restrictions
on the full range of functionality.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

Contents

I

1

Introduction

Introduction to expl3 and this document

1.1 Naming functions and variables
1.1.1 Scratch variableso oo
1.1.2 Terminological inexactitude

1.2 Documentation conventions

1.3 Formal language conventions which apply generally

1.4 TgX concepts not supported by BTEX3

II Bootstrapping

2

The 13bootstrap package: Bootstrap code
2.1 Using the BTEX3 modules

The 13names package: Namespace for primitives
3.1 Setting up the KTEX3 programming language

IIT Programming Flow

4

The 13basics package: Basic definitions
4.1 No operation functions
4.2 Grouping materialo oL
4.3 Control sequences and functions, .
4.3.1 Defining functions oo oo
4.3.2 Defining new functions using parameter text
4.3.3 Defining new functions using the signature
4.3.4 Copying control sequences Lo
4.3.5 Deleting control sequences oL Lo
4.3.6 Showing control sequences
4.3.7 Converting to and from control sequences
4.4 Analysing control sequences oo
4.5 Using or removing tokens and arguments
4.5.1 Selecting tokens from delimited arguments
4.6 Predicates and conditionals.o
4.6.1 Tests on control sequences
4.6.2 Primitive conditionals oo 0oL
4.7 Starting a paragraph oL oL
4.8 Debugging support L e

ii

p—

N Ot ot ot N

The 13expan package: Argument expansion

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Defining new variants
Methods for defining variants L L.
Introducing the variants L oo o
Manipulating the first argumento
Manipulating two arguments Lo
Manipulating three arguments L.
Unbraced expansion oo
Preventing expansiono Lo Lo
Controlled expansion Lo
Internal functions oL L Lo

The I3sort package: Sorting functions

6.1

Controlling sorting L

The I3tl-analysis package: Analysing token lists

The 13regex package: Regular expressions in TEX

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8

Syntax of regular expressions Lo
8.1.1 Regular expression examples
8.1.2 Characters in regular expressions
8.1.3 Characters classes L L o
8.1.4 Structure: alternatives, groups, repetitions
8.1.5 Matching exact tokens o oL
8.1.6 Miscellaneous

Syntax of the replacement text L.

Pre-compiling regular expressionso

Matching e

Submatch extraction L oL L

Replacement Lo

Scratch regular expressionso

Bugs, misfeatures, future work, and other possibilities

The 13prg package: Control structures

9.1
9.2

9.3
9.4
9.5
9.6
9.7
9.8

9.9

Defining a set of conditional functions
The boolean data type e
9.2.1 Scratch booleans
Boolean expressionso L
Logical loops
Producing multiple copies oo
Detecting TEX's mode Lo
Primitive conditionals L Lo o
Nestable recursions and mappings
9.8.1 Simple mappingsot
Internal programming functions Lo

iii

30
30
31
32
34
36
36
37
38
39
42

43
43

45

46
47
47
48
48
49
50
52
52
54
99
96
57
59
99

10 The I3sys package: System/runtime functions

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

The name of the job
Date and time Lo Lo
Engine oo
Output format L.
Platform,
Random numbers Lo
Accesstotheshell,
Loading configuration data
10.8.1 Final settings

11 The I13msg package: Messages

11.1
11.2
11.3
11.4

11.5

Creating new messages
Customizable information for message modules . .
Contextual information for messages
Issuing messages L.
11.4.1 Messages for showing material
11.4.2 Expandable error messages
Redirecting messages

12 The I3file package: File and I/O operations

12.1

12.2

Input-output stream management
12.1.1 Reading from files
12.1.2 Writing to files
12.1.3 Wrapping lines in output
12.1.4 Constant input—output streams, and variables
12.1.5 Primitive conditionals

File operation functions

13 The I3luatex package: LuaTgX-specific functions

13.1
13.2

Breaking out to Lua
Lua interfaces

14 The I3legacy package: Interfaces to legacy concepts

IV Data types

15 The 13tl package: Token lists

15.1
15.2
15.3

15.4

15.5

Creating and initialising token list variables
Adding data to token list variables
Token list conditionals
15.3.1 Testing the first token
Working with token lists as a whole
15.4.1 Using token lists
15.4.2 Counting and reversing token lists
15.4.3 Viewing token lists
Manipulating items in token lists
15.5.1 Mapping over token lists
15.5.2 Head and tail of token lists

iv

72
72
72
73
73
74
74
74
(0]
76

77
(s
78
78
80
83
83
83

85
85
87
90
92
93
93
93

98
98
99

101

15.5.3 Items and ranges in token lists 115

15.5.4 Sorting token lists 117

15.6 Manipulating tokens in token lists 117
15.6.1 Replacing tokens Lo o 117
15.6.2 Reassigning category codes 118

15.7 Constant token lists L o 119
15.8 Scratch token lists oL 119
16 The I3str package: Strings 121
16.1 Creating and initialising string variables 122
16.2 Adding data to string variables 123
16.3 String conditionalso Lo 123
16.4 Mapping over strings Lo 125
16.5 Working with the content of strings 127
16.6 Modifying string variableso oo 130
16.7 String manipulation oL oL 131
16.8 Viewing strings L o 132
16.9 Constant strings oL e 133
16.10 Scratch strings Lo 133
16.11 Deprecated functions L Lo oo 133
17 The I3str-convert package: String encoding conversions 134
17.1 Encoding and escaping schemes L. 134
17.2 Conversion functions oo 136
17.3 Conversion by expansion (for PDF contexts) 136
17.4 Possibilities, and thingstodo 136
18 The I3quark package: Quarks 138
181 Quarkso 138
18.2 Defining quarks 139
18.3 Quark tests 139
184 Recursion L e 140
18.4.1 An example of recursion with quarks 141

185 Scan marks 142
19 The I3seq package: Sequences and stacks 143
19.1 Creating and initialising sequences 143
19.2 Appending data to sequences oo 145
19.3 Recovering items from sequences 145
19.4 Recovering values from sequences with branching 146
19.5 Modifying sequenceso 148
19.6 Sequence conditionals L L Lo o 148
19.7 Mapping over SEqUENCES . . . « « v« v v e e e e e e e e 149
19.8 Using the content of sequences directly 151
19.9 Sequences asstacks e e e 152
19.10 Sequences as SEtsS i e e e e e e e e e e e e 153
19.11 Constant and scratch sequences 154
19.12 Viewing sequUences« . v v vt e e e e e 155

20 The 13int package: Integers

20.1
20.2
20.3
204
20.5
20.6
20.7
20.8
20.9

Integer expressions
Creating and initialising integers
Setting and incrementing integerso L
Using integers L e
Integer expression conditionals L.
Integer expression loops. L Lo o
Integer step functionso Lo
Formatting integers Lo
Converting from other formats to integers

20.10 Random integers Lo o
20.11 Viewing integers oL o e
20.12 Constant integers
20.13 Scratch integers
20.14 Direct number expansiono
20.15 Primitive conditionals oL L oo

21 The I13flag package: Expandable flags

21.1
21.2

Setting up flagso
Expandable flag commands 0 L.

22 The I3clist package: Comma separated lists

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9

Creating and initialising comma lists
Adding data to comma lists,
Modifying comma lists
Comma list conditionals
Mapping over comma listso
Using the content of comma lists directly
Comma listsasstacks L L
Using a singleitem Lo oo
Viewing comma lists L

22.10 Constant and scratch comma lists

23 The I3token package: Token manipulation

23.1
23.2
23.3
23.4
23.5
23.6
23.7
23.8

Creating character tokens
Manipulating and interrogating character tokens
Generic tokens L oL
Converting tokens oL L
Token conditionals Lo
Peeking ahead at the next token
Description of all possible tokens
Deprecated functions L

vi

156
156
159
160
161
161
163
165
166
167
168
168
169
169
170
170

172
172
173

174
175
176
177
178
178
180
181
182
183
183

24 The 13prop package: Property lists

24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
24.9
24.10

Creating and initialising property lists
Adding and updating property list entries
Recovering values from property lists
Modifying property lists Lo o
Property list conditionals oo L.
Recovering values from property lists with branching
Mapping over property lists oo oL
Viewing property lists. o oo
Scratch property lists Lo o
Constants e

25 The I3skip package: Dimensions and skips

25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
25.9
25.10
25.11
25.12
25.13
25.14
25.15
25.16
25.17
25.18
25.19
25.20
25.21
25.22
25.23
25.24
25.25

Creating and initialising dim variables.
Setting dim variables L Lo L
Utilities for dimension calculations
Dimension expression conditionalso oL
Dimension expression loops 0oL
Dimension step functionso 0oL
Using dim expressions and variables
Viewing dim variables L
Constant dimensions L0
Scratch dimensions
Creating and initialising skip variables
Setting skip variables L oL o
Skip expression conditionals L. 0oL 0oL oL
Using skip expressions and variables
Viewing skip variables oo o000
Constant skips
Scratch skips oL
Inserting skips into the output
Creating and initialising muskip variables
Setting muskip variables L Lo
Using muskip expressions and variables
Viewing muskip variables L Lo
Constant muskipso oL
Scratch muskips o
Primitive conditional oo oo

26 The I3keys package: Key—value interfaces

26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
26.10

Creating keys o
Sub-dividing keys
Choice and multiple choice keys Lo Lo
Key usage scope oo
Setting keys oL e
Handling of unknown keys
Selective key setting
Digesting keys Lo
Utility functions for keys oo oo
Low-level interface for parsing key—val lists

vii

201
201
202
203
204
204
205
206
207
208
208

209
209
210
210
211
213
214
215
216
217
217
217
218
219
219
219
220
220
220
221
221
222
222
223
223
223

27 The I3intarray package: Fast global integer arrays

27.1

[3intarray documentation oo
27.1.1 Implementation notes oL

28 The 13fp package: Floating points

28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9

Creating and initialising floating point variables
Setting floating point variables oo
Using floating points L o
Floating point conditionals
Floating point expression loops
Some useful constants, and scratch variables
Scratch variables
Floating point exceptions L.
Viewing floating points oo oo oo

28.10 Floating point expressions oL oL

28.10.1Input of floating point numbers
28.10.2 Precedence of operators
28.10.3Operations

28.11 Disclaimer and roadmap Lo

29 The I3fparray package: Fast global floating point arrays

29.1

[3fparray documentationo oL

30 The I3cctab package: Category code tables

30.1
30.2
30.3
30.4

Creating and initialising category code tables
Using category code tables 0.
Category code table conditionals
Constant category code tables oo

V Text manipulation

31 The 13unicode package: Unicode support functions

32 The I3text package: Text processing

32.1
32.2
32.3
324
32.5

Expanding text Lo
Case changing L
Removing formatting from text o oL
Control variables
Mapping to graphemes L e

V1 Typesetting

viii

33 The I3box package: Boxes 274

33.1 Creating and initialising boxes 274
33.2 Using boxes 275
33.3 Measuring and setting box dimensions 0oL 276
33.4 Boxconditionals L L o 277
33.5 The last box inserted L oo 277
33.6 Constant boxes 277
33.7 Scratch boxes e 277
33.8 Viewing box contents 0oL 278
33.9 Boxesandcolor 278
33.10 Horizontal mode boxes Lo 278
33.11 Vertical mode boxes L L 279
33.12 Using boxes efficiently o 281
33.13 Affine transformations 282
33.14 Primitive box conditionals o oo 285
34 The I3coffins package: Coffin code layer 286
34.1 Creating and initialising coffins 0oL 286
34.2 Setting coffin content and poles 287
34.3 Coffin affine transformations oo 288
34.4 Joining and using coffins L. oL oo oo 288
34.5 Measuring coffins 289
34.6 Coffin diagnostics L 289
34.7 Constants and variables. L 0oL 290
35 The I3color package: Color support 292
35.1 Colorin boxes e e e e e 292
35.2 Colormodels. 292
35.3 Color expressionso e 294
354 Named colors 295
35.5 Selecting colors 295
35.6 Colors for fills and strokes oL 296
35.6.1 Coloring math mode material 296

35.7 Multiple color models L 296
35.8 Exporting color specifications o000 oL 297
35.9 Creating new color models L L oL 298
35.9.1 Color profiles 299

36 The 13pdf package: Core PDF support 300
36.1 Objects o e e 300
36.2 Version e e e e e 301
36.3 Page (media) size 302
36.4 Compression v i i e e e e e 302
36.5 Destinations Lo 302
36.6 Deprecated functions L L 304
VII Additions and removals 305

ix

37 The I3candidates package: Experimental additions to I3kernel

37.1
37.2
37.3
37.4
37.5
37.6
37.7
37.8
37.9
37.10
37.11
37.12
37.13
37.14

Important notice L L
Additions to I13box L L
Additions to I3expano
Additions to I3fp oL
Additions to I3file oL
Additions to 13flago
Additions to I3intarrayo o
Additions to I3msg
Additions to I3prg
Additions to I3prop
Additions to I13seqo
Additions to 13sys
Additions to I3t
Additions to 13tokeno

VIII Implementation

38 13bootstrap implementation

38.1
38.2
38.3
38.4
38.5
38.6

LuaTpX-specificcode
The \pdfstrcmp primitive in XgfTEX
Loading support Luacode
Engine requirementso oL oL
Extending allocators

The IMTEX3 code environment

39 13names implementation

40 I13kernel-functions: kernel-reserved functions

40.1
40.2

Internal kernel functions o
Kernel backend functions

41 13basics implementation

41.1
41.2
41.3
41.4
41.5
41.6
41.7
41.8
41.9
41.10
41.11
41.12
41.13
41.14
41.15
41.16

Renaming some TEX primitives (again)
Defining some constants
Defining functions
Selecting tokenso oL
Gobbling tokens from input oL oL oL
Debugging and patching later definitions
Conditional processing and definitions
Dissecting a control sequence L L.
Exist or free L
Preliminaries for new functions
Defining new functions oL 000 .
Copying definitions Lo
Undefining functions o
Generating parameter text from argument count
Defining functions from a given number of arguments
Using the signature to define functions

316

317
317
317
318
318
319
320

322

41.17 Checking control sequence equality

41.18 Diagnostic functions.
41.19 Decomposing a macro definition oL 0oL
41.20 Doing nothing functions oL o oL
41.21 Breaking out of mapping functions Lo
41.22 Starting a paragrapho
42 13expan implementation
42.1 General expansion Lo Lo Lo
42.2 Hand-tuned definitions oL oL oo
42.3 Last-unbraced versions L oo
42.4 Preventing expansion Lo
42.5 Controlled expansion
42.6 Emulating e-type expansiono 0o
42.7 Defining function variants oL oL Lo
42.8 Definitions with the automated technique
43 13sort implementation
43.1 Variables oL
43.2 Finding available \toks registers
43.3 Protected user commands oL oL o
434 Merge sort . ..o oL Lo
43.5 Expandable sorting L o
43.6 MeSsages e
44 13tl-analysis implementation
44.1 Imternal functions Lo
44.2 Internal format Lo
44.3 Variables and helper functions
44.4 Plan of attack
44.5 Disabling active characters L oL oL
44.6 First passo e e
44.7 Second PASS . .o . i e e e e e e e e e e e
44.8 Mapping through the analysis L.
44.9 Showing the results oL o
44.10 Peeking ahead
4411 MeSsageso
45 I13regex implementation
45.1 Planof attack
45.2 Helpers
45.2.1 Constants and variables 0L
45.2.2 Testing characters L oo
45.2.3 Internal auxiliaries L Lo oo
45.2.4 Character property tests
45.2.5 Simple character escape
45.3 Compiling e
45.3.1 Variables used when compiling
45.3.2 Generic helpers used when compiling
45.3.3 Mode e e e

Xi

387
387
391
394
396
397
398
405
415

417
417
418
420
422
425
430

433
433
433
434
436
437
438
443
446
447
449
456

45.3.4 Framework e 479

45.3.5 Quantifiers 482
45.3.6 Raw characters L 485
45.3.7 Character properties 487
45.3.8 Anchoring and simple assertions 488
45.3.9 Character classes L e 488
45.3.10 Groups and alternations 492
45.3.11 Catcodes and csnames oo 494
45.3.12Raw token lists with \u 498
45.3.130ther 502
45.3.14Showing regexeso .o e e 502

45.4 Buildingo 509
45.4.1 Variables used while building 509
45.4.2 Framework 510
45.4.3 Helpers for building an NFA oL L. 513
45.4.4 Building classeso L L 514
45.4.5 Building groupso Lo 516
45.4.6 Others oL 520

45.5 Matching Lo 522
45.5.1 Variables used when matching 522
45.5.2 Matching: framework o oL 525
45.5.3 Using states of the NFA o oo 528
45.5.4 Actions when matching, 529

45.6 Replacement L 531
45.6.1 Variables and helpers used in replacement 531
45.6.2 Query and brace balance L0000 533
45.6.3 Framework oL 534
45.6.4 Submatches L L 537
45.6.5 Csnames in replacement Lo 539
45.6.6 Characters in replacement 540
45.6.7 Anerror e 544

45.7 User functions oL L 544
45.7.1 Variables and helpers for user functions 547
45.7.2 Matching e 549
45.7.3 Extracting submatches o L 550
45.7.4 Replacement oo 555
45.7.5 Peeking ahead oL o oo 558

45.8 MeSsages o e 564
45.9 Code for tracingo 570
46 13prg implementation 572
46.1 Primitive conditionals L oo 572
46.2 Defining a set of conditional functions 572
46.3 The boolean data typeo Lo 572
46.4 Internal auxiliaries 574
46.5 Boolean expressionso o e 575
46.6 Logical loops 580
46.7 Producing multiple copieso L oL 581
46.8 Detecting TEX’smode Lo 583
46.9 Internal programming functions oL 0oL 583

xii

47 13sys implementation

47.1

47.2

47.3

Kernel code
47.1.1 Detecting the engineo
47.1.2 Randomness e
47.1.3 Platform e
47.1.4 Configurationso
47.1.5 Accesstotheshell

Dynamic (every job) code L o
47.2.1 The name of thejob
47.2.2 Time and date
47.2.3 Random numbers
47.2.4 Accesstotheshell o
47.2.5 Held over from I3file,

Last-minute code
47.3.1 Detecting the output L oo
47.3.2 Configurations L Lo o

48 13msg implementation

48.1
48.2
48.3
48.4
48.5
48.6
48.7
48.8
48.9

Internal auxiliaries Lo
Creating messages o v vt i e e
Messages: support functions and text
Showing messages: low level mechanism
Displaying messages« o .o o e e e e
Kernel-specific functions Lo 000
Internal messages e e
Expandable errors
Message formatting

49 13file implementation

49.1

49.2

49.3

49.4

49.5
49.6
49.7
49.8

Input operations L
49.1.1 Variables and constants 0L
49.1.2 Stream managemento e e
49.1.3 Reading input Lo

Output operations L L
49.2.1 Variables and constants L L oo
49.2.2 Internal auxiliaries L Lo Lo

Stream management oL Lo
49.3.1 Deferred writing L o o
49.3.2 Immediate writing Lo oo oo
49.3.3 Special characters for writingo 000
49.3.4 Hard-wrapping lines to a character count

File operations L
49.4.1 Internal auxiliaries

GetldInfo oL

Checking the version of kernel dependencies

MeESSAZES « v v v v e e e e e e e e e e e e e e e

Functions delayed from earlier modules

xiii

50 13luatex implementation 665
50.1 BreakingouttoLua. L 665
50.2 Messages 666
50.3 Lua functions for internal use 667
50.4 Preserving iniTeX Lua data for runs 672

51 I3legacy implementation 674

52 13tl implementation 676
52.1 Functions. e 676
52.2 Constant token lists oL 678
52.3 Adding to token list variables o000 678
52.4 Internal quarks and quark-query functions 681
52.5 Reassigning token list category codes 681
52.6 Modifying token list variables o000 684
52.7 Token list conditionals L. 688
52.8 Mapping over token lists 0oL 693
52.9 Using token lists L 695
52.10 Working with the contents of token lists 696
52.11 The first token from a token list 699
52.12 Token by token changes. oo oL 704
52.13 Using a single item L L 706
52.14 Viewing token lists L o oo 709
52.15 Internal scan markso L Lo 711
52.16 Scratch token lists o 711

53 13str implementation 712
53.1 Internal auxiliaries L Lo 712
53.2 Creating and setting string variables 713
53.3 Modifying string variables L. 714
53.4 String comparisons o 715
53.5 Mapping over strings Lo L Lo 718
53.6 Accessing specific characters in a stringo L. 720
53.7 Counting characters L 725
53.8 The first character in a string 726
53.9 String manipulation oL Lo 727
53.10 Viewing strings Lo 731

54 I3str-convert implementation 732
54.1 Helpers 732

54.1.1 Variables and constants 732
54.2 String conditionals Lo 734
54.3 Conversions o 735
54.3.1 Producing one byte or character 735
54.3.2 Mapping functions for conversions 736
54.3.3 Error-reporting during conversion. 737
54.3.4 Framework for conversions oL 738
54.3.5 Byte unescape and escapeo 742
54.3.6 Native strings 743
54.3.7 clist e e 744

Xiv

54.3.8 8-bit encodings Lo

544 MESSAZES « v v v e e e e e e e e e e e e e
54.5 Escaping definitions L oL Lo
54.5.1 Unescape methods
54.5.2 Escape methods Lo L.
54.6 Encoding definitions L 0oL
54.6.1 UTF-8 support o o e e
54.6.2 UTF-16 support o . o v v i
54.6.3 UTF-32 support« . o v i i e
54.7 PDF names and strings by expansion
54.7.1 18O 8859 support
55 13quark implementation
55.1 Quarks
55.2 Scanmarkso
56 13seq implementation
56.1 Allocation and initialisation L.
56.2 Appending data to eitherend oL oL 0oL
56.3 Modifying sequences
56.4 Sequence conditionals
56.5 Recovering data from sequences
56.6 Mapping over SeqUENCES . . .« . .« v e e e e e e e e e e
56.7 Using sequences o .ttt e e
56.8 Sequence stacks oL oL
56.9 Viewing sequenceso e e e e e e e
56.10 Scratch sequences e e e e
57 13int implementation
57.1 Integer expressionso e
57.2 Creating and initialising integers L oL
57.3 Setting and incrementing integers oL
57.4 Using integers oL
57.5 Integer expression conditionals L Lo L.
57.6 Integer expression loops. L Lo e
57.7 Integer step functions
57.8 Formatting integerso L Lo
57.9 Converting from other formats to integers
57.10 Viewing integer o e
57.11 Random integers e e
57.12 Constant integers L
57.13 Scratch integers L L
57.14 Integers for earlier modules Lo
58 13flag implementation
58.1 Nomn-expandable flag commands
58.2 Expandable flag commandso 0oL oL

XV

786
786
794

796
797
800
801
803
805
809
813
814
815
816

817
818
820
822
823
823
827
828
830
835
838
839
839
839
840

59 13clist implementation
59.1 Removing spaces around items oL
59.2 Allocation and initialisation
59.3 Adding data to comma lists oo
59.4 Comma listsasstacks oL oo
59.5 Modifying comma listso Lo
59.6 Comma list conditionals
59.7 Mapping over comma lists L o L oo
59.8 Using comma lists L oL
59.9 Using asingleitem Lo
59.10 Viewing comma lists L L oo
59.11 Scratch comma lists L

60 13token implementation
60.1 Internal auxiliaries L Lo
60.2 Manipulating and interrogating character tokens
60.3 Creating character tokens
60.4 Generic tokens L e e e
60.5 Token conditionals o
60.6 Peeking ahead at the next token oL

61 13prop implementation
61.1 Internal auxiliaries L o
61.2 Allocation and initialisation Lo
61.3 Accessing data in property lists L oL
61.4 Property list conditionals L oo
61.5 Recovering values from property lists with branching
61.6 Mapping over property lists Lo
61.7 Viewing property lists. Lo oo

62 13skip implementation
62.1 Length primitives renamed oL
62.2 Internal auxiliaries L L o
62.3 Creating and initialising dim variables.
62.4 Setting dim variables L L oL
62.5 Utilities for dimension calculations
62.6 Dimension expression conditionals 0oL
62.7 Dimension expression loops. L oL
62.8 Dimension step functions oL oL oo
62.9 Using dim expressions and variableso 0L
62.10 Viewing dim variables Lo oo
62.11 Constant dimensions o
62.12 Scratch dimensions L L
62.13 Creating and initialising skip variables
62.14 Setting skip variables L L o
62.15 Skip expression conditionals
62.16 Using skip expressions and variables
62.17 Inserting skips into the output oL 0oL
62.18 Viewing skip variables oL oL oL
62.19 Constant skips oL

XVi

844
845
846
848
849
851
854
855
859
861
863
864

865
865
865
868
874
875
884

892
893
894
896
901
902
903
904

62.20 Scratch skips oL 920
62.21 Creating and initialising muskip variables 920
62.22 Setting muskip variableso oo 921
62.23 Using muskip expressions and variables 922
62.24 Viewing muskip variables oL oL oo 922
62.25 Constant muskips 923
62.26 Scratch muskips 923
63 13keys implementation 924
63.1 Low-level interface L 924
63.2 Constants and variables. L oL 931
63.2.1 Internal auxiliaries oo oo 933

63.3 The key defining mechanism 0oL 934
63.4 Turning properties into actions oL 936
63.5 Creating key properties Lo o 943
63.6 Setting keys 949
63.7 Utilities e e e e 958
63.8 Messageso 960
64 I3intarray implementation 962
64.1 Lua implementation L L Lo 962
64.1.1 Allocating arrays o e 962
64.1.2 Array items 965
64.1.3 Working with contents of integer arrays 967

64.2 Font dimension based implementationo 968
64.2.1 Allocating arrays 969
64.2.2 Array items e 970
64.2.3 Working with contents of integer arrays 972

64.3 Common partso e e 974
64.3.1 Random arrayso 974

65 13fp implementation 976
66 13fp-aux implementation 977
66.1 Access to primitives Lo 977
66.2 Internal representation L oL 977
66.3 Using arguments and semicolons oL 978
66.4 Constants, and structure of floating points 979
66.5 Overflow, underflow, and exact zero 982
66.6 Expanding after a floating point number 982
66.7 Other floating point types o oL 983
66.8 Packing digits 986
66.9 Decimate (dividing by a power of 10) 989
66.10 Functions for use within primitive conditional branches 991
66.11 Integer floating points L Lo 992
66.12 Small integer floating points L 0oL 993
66.13 Fast string comparison L oo 994
66.14 Name of a function from its I13fp-parse name 994
66.15 MeESSAZES « .« v v e e e e e e e e e e e e e e 994

xXvii

67 13fp-traps implementation 995

67.1 Flags o o e 995
67.2 Traps o o e e 995
67.3 Errors 999
67.4 MeSSages . .« v v v i e e e e e e e e 999
68 13fp-round implementation 1001
68.1 Rounding tools 1001
68.2 The round function 1005
69 13fp-parse implementation 1010
69.1 Work plan 1010
69.1.1 Storing results Lo 1011
69.1.2 Precedence and infix operators 1012
69.1.3 Prefix operators, parentheses, and functions 1015
69.1.4 Numbers and reading tokens one by one 1016
69.2 Main auxiliary functions oo Lo 1018
69.3 Helpers L 1019
69.4 Parsing one number Lo 1020
69.4.1 Numbers: trimming leading zeros 1026
69.4.2 Number: small significand 1027
69.4.3 Number: large significand 1029
69.4.4 Number: beyond 16 digits, rounding 1031
69.4.5 Number: finding the exponent 1034
69.5 Constants, functions and prefix operators 1037
69.5.1 Prefix operators 1037
69.5.2 Constants 1040
69.5.3 Functions L 1041
69.6 Main functions.o Lo 1042
69.7 Infix operatorso 1044
69.7.1 Closing parentheses and commas 1045
69.7.2 Usual infix operators L. 1047
69.7.3 Juxtapositiono 1048
69.7.4 Multi-character cases Lo oL 1048
69.7.5 Ternary operator Lo Lo o 1049
69.7.6 CompariSons i e e e 1049

69.8 Tools for functions 1051
69.9 Messages 1054
70 13fp-assign implementation 1055
70.1 Assigning values 1055
70.2 Updating values 1056
70.3 Showing values L 1056
70.4 Some useful constants and scratch variables L. 1057

xXviii

71 13fp-logic implementation
71.1 Syntax of internal functions
T1.2 Tests . . . o o o e e
71.3 Comparison e
71.4 Floating point expression loops
715 Extremao e
71.6 Boolean operations e
71.7 Ternary operator Lo e

72 13fp-basics implementation
72.1 Addition and subtraction oL oo oo
72.1.1 Sign, exponent, and special numbers
72.1.2 Absolute additiono
72.1.3 Absolute subtractiono Lo
72.2 Multiplication Lo
72.2.1 Signs, and special numbers
72.2.2 Absolute multiplication
72.3 Division e e e e e
72.3.1 Signs, and special numberso
7232 Workplan oL L
72.3.3 Implementing the significand division
T2.4 Square Tooto e e e e e e
72.5 About the sign and exponento
72.6 Operations on tuples L

73 13fp-extended implementation
73.1 Description of fixed point numbers
73.2 Helpers for numbers with extended precision
73.3 Multiplying a fixed point number by a short one
73.4 Dividing a fixed point number by a small integer
73.5 Adding and subtracting fixed points L.
73.6 Multiplying fixed points L o o
73.7 Combining product and sum of fixed points
73.8 Extended-precision floating point numberso
73.9 Dividing extended-precision numberso
73.10 Inverse square root of extended precision numbers
73.11 Converting from fixed point to floating point

74 13fp-expo implementation
74.1 Logarithm e
74.1.1 Workplan
74.1.2 Some constants e e
74.1.3 Sign, exponent, and special numberso
74.1.4 AbsoluteIn
74.2 Exponential
74.2.1 Sign, exponent, and special numbers
T4.3 Power. e e e e e
74.4 Factorial e e

Xix

75 13fp-trig implementation 1142

75.1 Direct trigonometric functions 1143
75.1.1 Filtering special caseso 1143
75.1.2 Distinguishing small and large arguments 1146
75.1.3 Small arguments oL Lo 1147
75.1.4 Argument reduction in degrees 1147
75.1.5 Argument reduction in radians 1148
75.1.6 Computing the power series 1156
75.2 Inverse trigonometric functions oL 1158
75.2.1 Arctangent and arccotangent 1159
75.2.2 Arcsine and arccosineo oo 1164
75.2.3 Arccosecant and arcsecanto 1166

76 13fp-convert implementation 1168
76.1 Dealing with tuples L oo oo 1168
76.2 Trimming trailing zeros Lo oo 1168
76.3 Scientific notation 1169
76.4 Decimal representationo 1170
76.5 Token list representation oo 1172
76.6 Formatting L e 1173
76.7 Convert to dimension or integer oL 1173
76.8 Convert from a dimension L L oL 1174
76.9 Useandeval 1175
76.10 Convert an array of floating points to a comma list 1176

77 13fp-random implementation 1178
77.1 Engine supporto 1178
77.2 Random floating pointo oL o 1182
77.3 Random integer 1182

78 I3fparray implementation 1188
78.1 Allocating arrays 1188
78.2 Array items 1189

79 13cctab implementation 1193
79.1 Variables 1193
79.2 Allocating category code tables 1194
79.3 Saving category code tables L o oL 1195
79.4 Using category code tables L. 1196
79.5 Category code table conditionals 1201
79.6 Constant category code tables oL 1202
T9.7 MeSSAZES « . v v v e e e e e e e e e 1204

80 13unicode implementation 1206
80.1 User functions L 1206
80.2 Dataloader 1210

81 13text implementation 1220

81.1 Internal auxiliaries L oL 1220
81.2 Utilities e e e e 1221
81.3 Codepoint utilities 1224
81.4 Configuration variables oL 0oL 1226
81.5 Expansion to formatted text L Lo 1228
82 I3text-case implementation 1238
82.1 Casechanging 1238
83 I3text-map implementation 1269
83.1 Mapping totext 1269
84 13text-purify implementation 1277
84.1 Purifying texto 1277
84.2 Accent and letter-like data for purifying text 1283
85 I13box implementation 1290
85.1 Support code e e e 1290
85.2 Creating and initialising boxes oo oL 1290
85.3 Measuring and setting box dimensionso oL 1291
85.4 Using boxes L 1292
85.5 Box conditionals 1293
85.6 The last box inserted e 1293
85.7 Constant boxes L L 1293
85.8 Scratch boxes L 1294
85.9 Viewing box contents L oo 1294
85.10 Horizontal mode boxes o 1295
85.11 Vertical mode boxes e 1297
85.12 Affine transformations L 1300
86 13coffins implementation 1310
86.1 Coffins: data structures and general variables 1310
86.2 Basic coffin functionso oL Lo 1311
86.3 Measuring coffins Lo 1317
86.4 Coffins: handle and pole management 1317
86.5 Coffins: calculation of pole intersections 1321
86.6 Affine transformations e 1323
86.7 Aligning and typesetting of coffins 0oL 1331
86.8 Coffin diagnostics Lo 1336
86.9 Messages oL 1342

XX1

87 13color implementation

87.1
87.2
87.3
87.4
87.5
87.6
87.7
87.8
87.9
87.10
87.11
87.12
87.13
87.14
87.15

Basics e
Predefined color nameso
Setup e
Utility functions oL
Model conversiono Lo
Color exXpressions v v v v e e e e e e e e e e
Selecting colors (and color models) L.
Math color e e
Fill and stroke color Lo
Defining named colors L o
Exporting colors
Additional color models
Applying profiles
Diagnostics
MESSAZES + v v v e e e e e e e e e e e e e e e e

88 Deprecated functions

89 I13pdf implementation

89.1
89.2
89.3
89.4
89.5
89.6
89.7

Compression e
Objects . . . o o o e e
Version o .o e
Pagesize e
Destinations L Lo
PDF Page size (media box) 0oL,
Deprecated functions

90 I3candidates implementation

90.1

90.2
90.3
90.4
90.5
90.6
90.7
90.8
90.9

90.10

Additions to I3box
90.1.1 Viewing part of abox
Additions to I3flago
Additions to I3msgo
Additions to 13prg oL
Additions to I3prop
Additions to 13seq
Additions to I13sys L
Additions to I3file
Additions to I3tlo
90.9.1 Building a token list o oL
90.9.2 Other additions to I13tl L.
Additions to I3tokeno

xxii

91 13deprecation implementation 1410

91.1
91.2
91.3
91.4
91.5
91.6
91.7
91.8

Index

Patching definitions to deprecate 1410
Removed functions 1412
Deprecated [3basics functions 1416
Deprecated 13str functions oo 1416
Deprecated 13seq functions oL o o 1417
Deprecated 13sys functions L oo 1417
Deprecated I3tl functions Lo 1418
Deprecated [3token functions 1418
1421

xxiii

Part 1
Introduction

Chapter 1

Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the ITEX3 programming language is found in expl3.pdf.

1.1 Naming functions and variables

XTEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne. All macros that appear in the argument are expanded. An internal
error will occur if the result of expansion inside a c-type argument is not a series
of character tokens.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example

\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for exhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are not
expandable.

e The e specifier is in many respects identical to x, but with a very different imple-
mentation. Functions which feature an e-type argument may be expandable. The
drawback is that e is extremely slow (often more than 200 times slower) in older
engines, more precisely in non-LuaTgX engines older than 2019.

f The £ specifier stands for full expansion, and in contrast to x stops at the first non-
expandable token (reading the argument from left to right) without trying to expand
it. If this token is a (space token), it is gobbled, and thus won’t be part of the
resulting argument. For example, when setting a token list variable (a macro used
for storage), the sequence

\tl_set:Nn \1_mya_tl { A }
\tl_set:Nn \1l_myb_tl { B }
\tl_set:Nf \1_mya_tl { \1l_mya_tl \1_myb_tl }

will leave \1_mya_t1 with the content A\1_myb_t1, as A cannot be expanded and
so terminates expansion before \1_myb_t1 is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some specified string).

D The D stands for Do not use. All of the TEX primitives are initially \let to a D name,
and some are then given a second name. These functions have no standardized
syntax, they are engine dependent and their name can change without warning,
thus their use is strongly discouraged in package code: programmers should instead
use the interfaces documented in interface3.pdf?.

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

LIf a primitive offers a functionality not yet in the kernel, programmers and users are encouraged
to write to the LaTeX-L mailing list (mailto:LATEX-L@listserv.uni-heidelberg.de) describing their
use-case and intended behaviour, so that a possible interface can be discussed. Temporarily, while an
interface is not provided, programmers may use the procedure described in the 13styleguide.pdf.

mailto:LATEX-L@listserv.uni-heidelberg.de

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

¢ Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module? name and then a descriptive part. Variables end with a short
identifier to show the variable type:

clist Comma separated list.

dim “Rigid” lengths.

fp Floating-point values;

int Integer-valued count register.

muskip “Rubber” lengths for use in mathematics.

seq “Sequence”: a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.
str String variables: contain character data.
t1l Token list variables: placeholder for a token list.

Applying V-type or v-type expansion to variables of one of the above types is supported,
while it is not supported for the following variable types:

bool Either true or false.
box Box register.

coffin A “box with handles” — a higher-level data type for carrying out box alignment
operations.

flag Integer that can be incremented expandably.

fparray Fixed-size array of floating point values.

intarray Fixed-size array of integers.

ior/iow An input or output stream, for reading from or writing to, respectively.
prop Property list: analogue of dictionary or associative arrays in other languages.

regex Regular expression.

2The module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

\ExplSyntaxOn
\ExplSyntax0ff

1.1.1 Scratch variables

Modules focussed on variable usage typically provide four scratch variables, two local
and two global, with names of the form \(scope)_tmpa_(type)/\(scope)_tmpb_(type).
These are never used by the core code. The nature of TEX grouping means that as
with any other scratch variable, these should only be set and used with no intervening
third-party code.

1.1.2 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and
a “token list variable” are almost the same.> On the other hand, some “variables” are
actually registers that must be initialised and their values set and retrieved with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

1.2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntax0ff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

For programming functions, which use _ and : in their name there are a few addi-
tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

3TgEXnically, functions with no arguments are \long while token list variables are not.

\seq_new:N
\seq_new:c

\cs_to_str:N %

\seq_map_function:NN v

\sys_if_engine_xetex:TF *

\1_tmpa_t1l

\seq_new:N (sequence)

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type or e-type argument (in plain TEX terms, inside an \edef or
\expanded), as well as within an f-type argument. These fully expandable functions are
indicated in the documentation by a star:

\cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a (control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN (seq) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\sys_if_engine_xetex:TF {(true code)} {(false code)}
The underlining and italic of TF indicates that three functions are available:

e \sys_if_engine_xetex:T

e \sys_if_engine_xetex:F

e \sys_if_engine_xetex:TF
Usually, the illustration will use the TF variant, and so both (true code) and (false code)
will be shown. The two variant forms T and F take only (true code) and (false code),
respectively. Here, the star also shows that this function is expandable. With some minor

exceptions, all conditional functions in the expl3 modules should be defined in this way.
Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.

In some cases, the function is similar to one in BTEX 2¢ or plain TEX. In these cases,
the text will include an extra “TEpXhackers note” section:

\token_to_str:N x \token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or ITEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way wunless they impact on the
expected behaviour.

1.3 Formal language conventions which apply gener-
ally

As this is a formal reference guide for TEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left
in the input stream: this will typically be part of a larger logical construct.

1.4 TgX concepts not supported by BETEX3

The TEX concept of an “\outer” macro is not supported at all by ITEX3. As such, the
functions provided here may break when used on top of IXTEX 2¢ if \outer tokens are
used in the arguments.

Part 11
Bootstrapping

\ExplSyntaxOn
\ExplSyntax0ff

Updated: 2011-08-13

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2017-03-19

Chapter 2

The I3bootstrap package
Bootstrap code

2.1 Using the KTEX3 modules

The modules documented in source3 are designed to be used on top of KTEX 2: and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions.

As the modules use a coding syntax different from standard I¥TEX 2¢ it provides a
few functions for setting it up.

\ExplSyntaxOn (code) \ExplSyntax0ff

The \ExplSyntaxOn function switches to a category code regime in which spaces and
new lines are ignored, and in which the colon (:) and underscore (_) are treated as
“letters”, thus allowing access to the names of code functions and variables. Within this
environment, ~ is used to input a space. The \ExplSyntax0ff reverts to the document
category code regime.

TEXhackers note: Spaces introduced by ~ behave much in the same way as normal space
characters in the standard category code regime: they are ignored after a control word or at
the start of a line, and multiple consecutive ~ are equivalent to a single one. However, ~ is not
ignored at the end of a line.

\RequirePackage{expl3}

\ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

These functions act broadly in the same way as the corresponding IATEX 2¢ kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntax0On for the remainder of the code with the file. At the end
of the file, \ExplSyntax0ff will be called to reverse this. (This is the same concept as
BTEX 2¢ provides in turning on \makeatletter within package and class code.) The
(date) should be given in the format (year)/(month)/{day) or in the ISO date format
(year)-(month)-(day). If the (version) is given then it will be prefixed with v in the
package identifier line.

\GetIdInfo

Updated: 2012-06-04

\RequirePackage{13bootstrap}
\GetIdInfo $Id: (SVN info field) $ {(description)}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion
for version and \ExplFileDescription for the description.

To summarize: Every single package using this syntax should identify itself using
one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual IXTEX 2¢ category codes and the
TEX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

10

Chapter 3

The I13names package
Namespace for primitives

3.1 Setting up the KTEX3 programming language

This module is at the core of the W TEX3 programming language. It performs the following
tasks:

 defines new names for all TEX primitives;
e emulate required primitives not provided by default in LuaTgX;
o switches to the category code régime for programming;

This module is entirely dedicated to primitives (and emulations of these), which
should not be used directly within X TEX3 code (outside of “kernel-level” code). As such,
the primitives are not documented here: The TgXbook, TEX by Topic and the manuals
for pdfTEX, XHIEX, LualgX, pPIEX and uplEX should be consulted for details of the
primitives. These are named \tex_(name):D, typically based on the primitive’s (name)
in pdfTEX and omitting a leading pdf when the primitive is not related to pdf output.

11

Part 111
Programming Flow

12

\prg_do_nothing: x

\scan_stop:

\group_begin:
\group_end:

Chapter 4

The I3basics package
Basic definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

4.1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

4.2 Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

13

\group_insert_after:N

\group_show_list:
\group_log_list:

New: 2021-05-11

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends. The
list of (tokens) to be inserted is empty at the beginning of a group: multiple applications
of \group_insert_after:N may be used to build the inserted list one (token) at a time.
The current group level may be closed by a \group_end: function or by a token with
category code 2 (close-group), namely a } if standard category codes apply.

\group_show_list:

\group_log_list:

Display (to the terminal or log file) a list of the groups that are currently opened. This
is intended for tracking down problems.

TEXhackers note: This is a wrapper around the \showgroups primitive.

4.3 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” are fully expanded inside an x expansion. In
contrast, “protected” functions are not expanded within x expansions.

4.3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen is checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new. ..
functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, ...).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and results in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and does not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset:Npn. The definition
is global and does not result in an error if the function is already defined.

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

14

\cs_new:
\cs_new:
\cs_new:
\cs_new:

Npn
cpn
Npx
cpx

\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:

Npn
cpn
Npx
cpx

\cs_new_protected:
\cs_new_protected:
\cs_new_protected:
\cs_new_protected:

Npn
cpn
Npx
cpx

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an x-type or e-type expansion.

Finally, the functions in Subsections 4.3.2 and 4.3.3 are primarily meant to define
base functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 9.1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 5.2.

4.3.2 Defining new functions using parameter text

\cs_new:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Npn (function) (parameters) {({code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type or or e-type argument. The definition is
global and an error results if the (function) is already defined.

\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npn (function) (parameters) {(code)}
\cs_new_protected_nopar:cpn
\cs_new_protected_nopar:Npx
\cs_new_protected_nopar:cpx

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

15

\cs_set:Npn
\cs_set:cpn
\cs_set:Npx
\cs_set:cpx

\cs_set_nopar:Npn
\cs_set_nopar:cpn
\cs_set_nopar:Npx
\cs_set_nopar:cpx

\cs_set_protected:Npn
\cs_set_protected:cpn
\cs_set_protected:Npx
\cs_set_protected:cpx

\cs_set:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The assignment
of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an x-type or e-type argument.

\cs_set_protected_nopar:Npn \cs_set_protected_nopar:Npn (function) (parameters) {{code)}
\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:Npx
\cs_set_protected_nopar:cpx

\cs_gset:Npn
\cs_gset:cpn
\cs_gset :Npx
\cs_gset:cpx

\cs_gset_nopar:Npn
\cs_gset_nopar:cpn
\cs_gset_nopar:Npx
\cs_gset_nopar:cpx

\cs_gset_protected:Npn
\cs_gset_protected:cpn
\cs_gset_protected:Npx
\cs_gset_protected:cpx

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The as-
signment of a meaning to the (function) is restricted to the current TEX group level. The
(function) will not expand within an x-type or e-type argument.

\cs_gset:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_protected:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global. The (function) will not expand within an x-type or
e-type argument.

16

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {(code)}
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpx

\cs_new:Nn
\cs_new: (cn|Nx|cx)

\cs_new_nopar:Nn
\cs_new_nopar: (cn|Nx|cx)

\cs_new_protected:Nn
\cs_new_protected: (cn|Nx|cx)

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global. The (function) will not expand within an x-type or
e-type argument.

4.3.3 Defining new functions using the signature

\cs_new:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Nn (function) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Nn (function) {({code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type or e-type argument. The definition is global
and an error results if the {function) is already defined.

\cs_new_protected_nopar:Nn \cs_new_protected_nopar:Nn (function) {(code)}
\cs_new_protected_nopar: (cn|Nx|cx)

\cs_set:Nn
\cs_set:(cn|Nx|cx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_set:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

17

\cs_set_nopar:Nn
\cs_set_nopar: (cn|Nx|cx)

\cs_set_protected:Nn
\cs_set_protected: (cn|Nx|cx)

\cs_set_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is restricted to the current TEX group level.

\cs_set_protected_nopar:Nn \cs_set_protected_nopar:Nn (function) {<code>}
\cs_set_protected_nopar:(cn|Nx|cx)

\cs_gset:Nn
\cs_gset:(cn|Nx|cx)

\cs_gset_nopar:Nn
\cs_gset_nopar: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is restricted to the current TEX group level.

\cs_gset:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is global.

\cs_gset_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is global.

\cs_gset_protected:Nn \cs_gset_protected:Nn (function) {(code)}
\cs_gset_protected: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is global.

18

\cs_gset_protected_nopar:Nn \cs_gset_protected_nopar:Nn (function) {{code)}
\cs_gset_protected_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is global.

\cs_generate_from_arg_count:NNnn \cs_generate_from_arg_count:NNnn (function) (creator) {(number)}
\cs_generate_from_arg_count:(cNnn|Ncnn) {(code)}

Updated: 2012-01-14

\cs_new_eq:NN
\cs_new_eq: (Nc|cN|cc)

\cs_set_eq:NN
\cs_set_eq:(Nc|cN|cc)

\cs_gset_eq:NN
\cs_gset_eq:(Nc|cN|ec)

Uses the (creator) function (which should have signature Npn, for example \c¢s_new:Npn)
to define a (function) which takes (number) arguments and has (code) as replacement
text. The (number) of arguments is an integer expression, evaluated as detailed for
\int_eval:n.

4.3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN (cs1) (cs2)

\cs_new_eq:NN (csi) (token)

Globally creates (control sequence;) and sets it to have the same meaning as (control
sequenceg) or (token). The second control sequence may subsequently be altered without
affecting the copy.

\cs_set_eq:NN (cs1) (cs2)

\cs_set_eq:NN (csi) (token)

Sets (control sequence;) to have the same meaning as (control sequences) (or (token)).
The second control sequence may subsequently be altered without affecting the copy.
The assignment of a meaning to the (control sequence;) is restricted to the current TEX
group level.

\cs_gset_eq:NN (csi) (cs2)

\cs_gset_eq:NN (csi) (token)

Globally sets (control sequence;) to have the same meaning as (control sequences) (or
(token)). The second control sequence may subsequently be altered without affecting the
copy. The assignment of a meaning to the (control sequence;) is not restricted to the
current TEX group level: the assignment is global.

19

\cs_undefine:N
\cs_undefine:c

Updated: 2011-09-15

\cs_meaning:N *
\cs_meaning:c *

Updated: 2011-12-22

\cs_show:N
\cs_show:c

Updated: 2017-02-14

\cs_log:N
\cs_log:c

New: 2014-08-22
Updated: 2017-02-14

\use:c *

4.3.5 Deleting control sequences

There are occasions where control sequences need to be deleted. This is handled in a
very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

4.3.6 Showing control sequences

\cs_meaning:N (control sequence)
This function expands to the meaning of the (control sequence) control sequence. For a

macro, this includes the (replacement text).

TEXhackers note: This is TEX’s \meaning primitive. For tokens that are not control
sequences, it is more logical to use \token_to_meaning:N. The c variant correctly reports
undefined arguments.

\cs_show:N (control sequence)
Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_log:N (control sequence)

Writes the definition of the (control sequence) in the log file. See also \cs_show:N which
displays the result in the terminal.

4.3.7 Converting to and from control sequences

\use:c {(control sequence name)}

Expands the (control sequence name) until only characters remain, and then converts
this into a control sequence. This process requires two expansions. As in other c-type
arguments the (control sequence name) must, when fully expanded, consist of character
tokens, typically a mixture of category code 10 (space), 11 (letter) and 12 (other).

As an example of the \use:c function, both

\use:c { abc}
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1._my_tl { abc }
\use:c { \tl_use:N \1_my_tl }

20

\cs_if_exist_use:N
\cs_if_exist_use:c
\cs_if_exist_use:NTF
\cs_if_exist_use:cTF

*
*
*
*

New: 2012-11-10

\cs:w
\cs_end:

\cs_to_str:N

*
*

*

would be equivalent to
\abc

after two expansions of \use:c.

\cs_if_exist_use:N (control sequence)
\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined according to the conditional
\cs_if_exist:NTF (whether as a function or another control sequence type), and if it is
inserts the (control sequence) into the input stream followed by the (true code). Otherwise
the (false code) is used.

\cs:w (control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for {control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically of category
code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TEXhackers note: These are the TEX primitives \csname and \endcsname.

As an example of the \cs:w and \cs_end: functions, both
\cs:w a b ¢ \cs_end:
and

\tl_new:N \l_my_tl
\tl_set:Nn \1_my_tl { abc }
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to
\abc

after one expansion of \cs:w.

\cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code 12
(other), except spaces, of category code 10. The result does not include the current
escape token, contrarily to \token_to_str:N. Full expansion of this function requires
exactly 2 expansion steps, and so an x-type or e-type expansion, or two o-type expansions
are required to convert the (control sequence) to a sequence of characters in the input
stream. In most cases, an f-expansion is correct as well, but this loses a space at the
start of the result.

21

\cs_split_function:N *

New: 2018-04-06

\cs_prefix_spec:N *

New: 2019-02-27

\cs_parameter_spec:N =%

New: 2022-06-24

4.4 Analysing control sequences

\cs_split_function:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). This information is then placed in the input stream in three
parts: the (name), the (signature) and a logic token indicating if a colon was found (to
differentiate variables from function names). The (name) does not include the escape
character, and both the (name) and (signature) are made up of tokens with category
code 12 (other).

The next three functions decompose TEX macros into their constituent parts: if the
(token) passed is not a macro then no decomposition can occur. In the latter case, all
three functions leave \scan_stop: in the input stream.

\cs_prefix_spec:N (token)

If the (token) is a macro, this function leaves the applicable TEX prefixes in input stream
as a string of tokens of category code 12 (with spaces having category code 10). Thus
for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_prefix_spec:N \next:nn

leaves \long in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: The prefix can be empty, \long, \protected or \protected\long with
backslash replaced by the current escape character.

\cs_parameter_spec:N (token)

If the (token) is a macro, this function leaves the primitive TEX parameter specification
in input stream as a string of character tokens of category code 12 (with spaces having
category code 10). Thus for example

\cs_set:Npn \next:nn #1#2 { x #1 y #2 }
\cs_parameter_spec:N \next:nn

leaves #1#2 in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

22

\cs_replacement_spec:N * \cs_replacement_spec:N (token)

New: 2019-02-27 If the (token) is a macro, this function leaves the replacement text in input stream as

\use:n
\use:nn
\use:nnn
\use :nnnn

*
*
*
*

a string of character tokens of category code 12 (with spaces having category code 10).
Thus for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_replacement_spec:N \next:nn

leaves x#1,y#2 in the input stream. If the (token) is not a macro then \scan_stop: is
left in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

4.5 Using or removing tokens and arguments

Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then when absorbing them the outer set is removed. At the same
time, the category code of each token is set when the token is read by a function (if it
is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

\use:n {{group1)}

\use:nn {(group:)} {(group:)}

\use:nnn {(group:)} {(group:)} {(groups)}

\use:nnnn {(group:)} {(group:)} {(groups)} {{groups)}

As illustrated, these functions absorb between one and four arguments, as indicated by
the argument specifier. The braces surrounding each argument are removed and the
remaining tokens are left in the input stream. The category code of these tokens is also
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } %}
results in the input stream containing
abc { def }
i.e. only the outer braces are removed.

hackers note: The \use:n function is equivalent to I& 2¢’s \@firstofone.
TEX q

23

\use_i:nn *
\use_ii:nn *

\use_i:nnn *
\use_ii:nnn *
\use_iii:nnn *

\use_i:nnnn *
\use_ii:nnnn *
\use_iii:nnnn *
\use_iv:nnnn *

\use_i_ii:nnn x

\use_ii_i:nn *

New: 2019-06-02

\use_i:nn {(argi)} {(argz)}

These functions absorb two arguments from the input stream. The function \use_i:nn
discards the second argument, and leaves the content of the first argument in the input
stream. \use_ii:nn discards the first argument and leaves the content of the second
argument in the input stream. The category code of these tokens is also fixed (if it
has not already been by some other absorption). A single expansion is needed for the
functions to take effect.

TEXhackers note: These are equivalent to EXTEX 2¢’s \@firstoftwo and \@secondoftwo.

\use_i:nnn {(argi)} {(arg:)} {(args)}

These functions absorb three arguments from the input stream. The function \use_i:nnn
discards the second and third arguments, and leaves the content of the first argument in
the input stream. \use_ii:nnn and \use_iii:nnn work similarly, leaving the content
of second or third arguments in the input stream, respectively. The category code of
these tokens is also fixed (if it has not already been by some other absorption). A single
expansion is needed for the functions to take effect.

\use_i:nnnn {(arg:)} {(arg:)} {(args)} {(args)}

These functions absorb four arguments from the input stream. The function \use_-
i:nnnn discards the second, third and fourth arguments, and leaves the content of the
first argument in the input stream. \use_ii:nnnn, \use_iii:nnnn and \use_iv:nnnn
work similarly, leaving the content of second, third or fourth arguments in the input
stream, respectively. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the functions to take
effect.

\use_i_ii:nnn {(argi)} {(arg:)} {(args)}

This function absorbs three arguments and leaves the content of the first and second in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
results in the input stream containing
abc { def }
i.e. the outer braces are removed and the third group is removed.

\use_ii_i:nn {(argi)} {(arg:)}

This function absorbs two arguments and leaves the content of the second and first in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect.

24

\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:

n *
nn

nnn

nnnn
nnnnn
nnnnnn
nnnnnnn
nnnnnnnn

*
*
*
*
*
nnnnnnnnn %

\use:e *

New: 2018-06-18

\use:x

Updated: 2011-12-31

\use_none:n {(group:)}

* These functions absorb between one and nine groups from the input stream, leaving

nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

hackers note: These are equivalent to & 2¢’s \@gobble, \@gobbbletwo, etc.
g g

\use:e {(expandable tokens)}
Fully expands the (token list) in an x-type manner, but the function remains fully ex-

pandable, and parameter character (usually #) need not be doubled.

TEXhackers note: \use:e is a wrapper around the primitive \expanded where it is avail-
able: it requires two expansions to complete its action. When \expanded is not available this
function is very slow.

\use:x {(expandable tokens)}

Fully expands the (ezpandable tokens) and inserts the result into the input stream at the
current location. Any hash characters (#) in the argument must be doubled.

4.5.1 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q nil:w * \use_none_delimit_by_q_nil:w <balanced text) \q_nil
\use_none_delimit_by_q_stop:w * \use_none_delimit_by_q_stop:w <balanced text) \q_stop
\use_none_delimit_by_q_recursion_stop:w * \use_none_delimit_by_q_recursion_stop:w (balanced text)

\q_recursion_stop

Absorb the (balanced text) from the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.

\use_i_delimit_by_q_nil:nw * \use_i_delimit_by_q_nil:nw {(inserted tokens)} (balanced text)
\use_i_delimit_by_q_stop:nw * \g_nil
\use_i_delimit_by_q_recursion_stop:nw x \use_i_delimit_by_q_stop:nw {(inserted tokens)} (balanced

text) \g_stop
\use_i_delimit_by_q_recursion_stop:nw {(inserted tokens)}
(balanced text) \g_recursion_stop

Absorb the (balanced text) from the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

4.6 Predicates and conditionals

IXTEX3 has three concepts for conditional flow processing:

25

Branching conditionals Functions that carry out a test and then execute, depending

on its result, either the code supplied as the (true code) or the (false code). These
arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abc} {(true code)} {(false code)}

a function that turns the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carries out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it is usually accompanied by T and F functions as well. These are provided
for convenience when the branch only needs to go a single way. Package writers
are free to choose which types to define but the kernel definitions always provide
all three versions.

Important to note is that these branching conditionals with (¢rue code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they are accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which

can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {(false code)}

For each predicate defined, a “branching conditional” also exists that behaves like
a conditional described above.

Primitive conditionals There is a third variety of conditional, which is the original

concept used in plain TEX and BTEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

\c_true_bool (Constants that represent true and false, respectively. Used to implement predicates.

\c_false_bool

26

\cs_if_eq_p:NN «*
\cs_if_eq:NNTF *

\cs_if_exist_p:N «*
\cs_if_exist_p:c *
\cs_if_exist:NTF x
\cs_if_exist:cTF %

\cs_if_free_p:N «x
\cs_if_free_p:c =
\cs_if_free:NTF x
\cs_if free:cTF %

\if_true: *
\if_false: *
\else: *
\fi: *
\reverse_if:N *

\if_meaning:w x

4.6.1 Tests on control sequences

\cs_if_eq_p:NN (csi1) (cs2)

\cs_if_eq:NNTF (csi) (cs2) {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true if they are the
same, i.e. if they have exactly the same definition when examined with \cs_show:N.

\cs_if_exist_p:N (control sequence)
\cs_if_exist:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type). Any definition of (control sequence) other than \relax evaluates
as true.

\cs_if_free_p:N (control sequence)
\cs_if_free:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently free to be defined. This test is false if
the (control sequence) currently exists (as defined by \cs_if_exist:NTF).

4.6.2 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions
often contains a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if _int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We prefix primitive conditionals with \if_.

\if_true: (true code) \else: (false code) \fi:
\if_false: (true code) \else: (false code) \fi:
\reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false code).
\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. The function \or: is documented in 13int and used in
case switches.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is e-TEX’s \unless

\if_meaning:w (argi) (argz) (true code) \else: (false code) \fi:

\if_meaning:w executes (true code) when (arg,) and (arge) are the same, otherwise it
executes (false code). (arg;) and {args) could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TEXhackers note: This is TEX’s \ifx.

27

\if:w *
\if _charcode:w *
\if_catcode:w *

\if_cs_exist:N x
\if _cs_exist:w *

\if_mode_horizontal:
\if_mode_vertical:
\if_mode_math:
\if_mode_inner:

\mode_leave_vertical:

New: 2017-07-04

\if:w (token:) (tokenz) (true code) \else: (false code) \fi:
\if _catcode:w (token;) (tokens) (true code) \else: (false code) \fi:

These conditionals expand any following tokens until two unexpandable tokens are left.
If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if _catcode:w tests if the category codes of the two tokens are the same whereas \if :w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if :w.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:
\if_cs_exist:w (tokens) \cs_end: (true code) \else: (false code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

TEXhackers note: These are TEX’s \ifdefined and \ifcsname, respectively.

\if_mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Sim-
ilar for the other functions.

4.7 Starting a paragraph

\mode_leave_vertical:

Ensures that TEX is not in vertical (inter-paragraph) mode. In horizontal or math mode
this command has no effect, in vertical mode it switches to horizontal mode, and inserts
a box of width \parindent, followed by the \everypar token list.

TEXhackers note: This results in the contents of the \everypar token register being
inserted, after \mode_leave_vertical: is complete. Notice that in contrast to the ETEX 2¢
\leavevmode approach, no box is used by the method implemented here.

28

\debug_on:n
\debug_off:n

New: 2017-07-16
Updated: 2017-08-02

\debug_suspend:
\debug_resume:

New: 2017-11-28

4.8 Debugging support

\debug_on:n { (comma-separated list) }

\debug_off:n { (comma-separated list) }

Turn on and off within a group various debugging code, some of which is also available
as expl3 load-time options. The items that can be used in the (list) are

o check-declarations that checks all expl3 variables used were previously declared
and that local/global variables (based on their name or on their first assignment)
are only locally/globally assigned;

e check-expressions that checks integer, dimension, skip, and muskip expressions
are not terminated prematurely;

e deprecation that makes soon-to-be-deprecated commands produce errors;
o log-functions that logs function definitions;
e all that does all of the above.

Providing these as switches rather than options allows testing code even if it relies on
other packages: load all other packages, call \debug_on:n, and load the code that one is
interested in testing. These functions can only be used in BTEX 2¢ package mode loaded
with enable-debug or another option implying it.

\debug_suspend: ... \debug_resume:

Suppress (locally) errors and logging from debug commands, except for the deprecation
errors or warnings. These pairs of commands can be nested. This can be used around
pieces of code that are known to fail checks, if such failures should be ignored. See for
instance 13coffins.

29

Chapter 5

The 13expan package
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the IATEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

5.1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions of the form \exp_-
. ... They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo expands the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
{ \1_tmpa_t1 }

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_generate_variant:Nn \seq_gpush:Nn { No }

results in the definition of \seq_gpush:No

30

\cs_new:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is safe as the \cs_generate_variant:Nn
function will only create new definitions if there is not already one available. Therefore
adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

5.2 Methods for defining variants

We recall the set of available argument specifiers.

e N is used for single-token arguments while ¢ constructs a control sequence from its
name and passes it to a parent function as an N-type argument.

e Many argument types extract or expand some tokens and provide it as an n-type
argument, namely a braced multiple-token argument: V extracts the value of a
variable, v extracts the value from the name of a variable, n uses the argument as
it is, o expands once, £ expands fully the front of the token list, e and x expand
fully all tokens (differences are explained later).

e A few odd argument types remain: T and F for conditional processing, otherwise
identical to n-type arguments, p for the parameter text in definitions, w for argu-
ments with a specific syntax, and D to denote primitives that should not be used
directly.

31

\cs_generate_variant:Nn
\cs_generate_variant :cn

Updated: 2017-11-28

\cs_generate_variant:Nn (parent control sequence) {(variant argument specifiers)}

This function is used to define argument-specifier variants of the (parent control sequence)
for IXTEX3 code-level macros. The (parent control sequence) is first separated into the
(base name) and (original argument specifier). The comma-separated list of (variant
argument specifiers) is then used to define variants of the (original argument specifier)
if these are not already defined. For each (variant) given, a function is created that
expands its arguments as detailed and passes them to the (parent control sequence). So
for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { ¢ }

creates a new function \foo:cn which expands its first argument into a control sequence
name and passes the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

generates the functions \foo:NV and \foo:cV in the same way. The \cs_generate_-
variant:Nn function can only be applied if the (parent control sequence) is already de-
fined. If the (parent control sequence) is protected or if the (variant) involves any x ar-
gument, then the (variant control sequence) is also protected. The (variant) is created
globally, as is any \exp_args:N(variant) function needed to carry out the expansion.

Only n and N arguments can be changed to other types. The only allowed changes
are

e c variant of an N parent;
e 0,V, v, f, e, or x variant of an n parent;
e N,n, T, F, or p argument unchanged.

This means the (parent) of a (variant) form is always unambiguous, even in cases where
both an n-type parent and an N-type parent exist, such as for \t1l_count:n and \tl_-
count:N.

For backward compatibility it is currently possible to make n, o, V, v, £, e, or x-type
variants of an N-type argument or N or c-type variants of an n-type argument. Both
are deprecated. The first because passing more than one token to an N-type argument
will typically break the parent function’s code. The second because programmers who
use that most often want to access the value of a variable given its name, hence should
use a V-type or v-type variant instead of c-type. In those cases, using the lower-level
\exp_args:No or \exp_args:Nc functions explicitly is preferred to defining confusing
variants.

5.3 Introducing the variants

The V type returns the value of a register, which can be one of t1, clist, int, skip,
dim, muskip, or built-in TEX registers. The v type is the same except it first creates a
control sequence out of its argument before returning the value.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only

32

when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The e type expands all tokens fully, starting from the first. More precisely the
expansion is identical to that of TEX’s \message (in particular # needs not be doubled).
It was added in May 2018. In recent enough engines (starting around 2019) it relies
on the primitive \expanded hence is fast. In older engines it is very much slower. As
a result it should only be used in performance critical code if typical users will have a
recent installation of the TEX ecosystem.

The x type expands all tokens fully, starting from the first. In contrast to e, all macro
parameter characters # must be doubled, and omitting this leads to low-level errors. In
addition this type of expansion is not expandable, namely functions that have x in their
signature do not themselves expand when appearing inside x or e expansion.

The £ type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and £-
expansion provides an alternative that expands the front of the token list as much as can
be done in such contexts. For instance, say that we want to evaluate the integer expression
3 + 4 and pass the result 7 as an argument to an expandable function \example:n. For
this, one should define a variant using \cs_generate_variant:Nn \example:n { f },
then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }
results in the call

\example:n { 3 , \int_eval:n { 3 + 4 } }
while using \example:x or \example:e instead results in

\example:n { 3 , 7 }

at the cost of being protected (for x type) or very much slower in old engines (for e type).
If you use f type expansion in conditional processing then you should stick to using TF
type functions only as the expansion does not finish any \if... \fi: itself!

It is important to note that both f- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the first non-expandable token. This means
for example that both

\tl_set:No \1_tmpa_tl { { \g_tmpb_tl } }

33

and
\tl_set:Nf \1_tmpa_tl { { \g_tmpb_tl } }

leave \g_tmpb_t1 unchanged: { is the first token in the argument and is non-expandable.
It is usually best to keep the following in mind when using variant forms.

o Variants with x-type arguments (that are fully expanded before being passed to
the n-type base function) are never expandable even when the base function is.
Such variants cannot work correctly in arguments that are themselves subject to
expansion. Consider using f or e expansion.

o In contrast, e expansion (full expansion, almost like x except for the treatment of #)
does not prevent variants from being expandable (if the base function is). The draw-
back is that e expansion is very much slower in old engines (before 2019). Consider
using f expansion if that type of expansion is sufficient to perform the required
expansion, or x expansion if the variant will not itself need to be expandable.

e Finally £ expansion only expands the front of the token list, stopping at the first
non-expandable token. This may fail to fully expand the argument.

When speed is essential (for functions that do very little work and whose variants are
used numerous times in a document) the following considerations apply because internal
functions for argument expansion come in two flavours, some faster than others.

e Arguments that might need expansion should come first in the list of arguments.

o Arguments that should consist of single tokens N, c, V, or v should come first among
these.

o Arguments that appear after the first multi-token argument n, f, e, or o require
slightly slower special processing to be expanded. Therefore it is best to use the
optimized functions, namely those that contain only N, c, V, and v, and, in the last
position, o, f, e, with possible trailing N or n or T or F, which are not expanded.
Any x-type argument causes slightly slower processing.

5.4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

\exp_args:Nc * \exp_args:Nc (function) {(tokens)}

\eXP_aTgsicc * Tyis function absorbs two arguments (the (function) name and the (tokens)). The

(tokens) are expanded until only characters remain, and are then turned into a control
sequence. The result is inserted into the input stream after reinsertion of the (function).
Thus the {function) may take more than one argument: all others are left unchanged.

The :cc variant constructs the (function) name in the same manner as described for
the (tokens).

34

\exp_args:No *

\exp_args:NV x

\exp_args:Nv *

\exp_args:Ne *

New: 2018-05-15

\exp_args:Nf *

\exp_args:Nx

\exp_args:No (function) {(tokens)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded once, and the result is inserted in braces into the input stream af-
ter reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:NV (function) (variable)

This function absorbs two arguments (the names of the (function) and the (variable)).
The content of the (variable) are recovered and placed inside braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:Nv (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. This control sequence should be the name of a (variable). The content of
the (variable) are recovered and placed inside braces into the input stream after reinser-
tion of the (function). Thus the (function) may take more than one argument: all others
are left unchanged.

\exp_args:Ne (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and exhaus-
tively expands the (tokens). The result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

TEXhackers note: This relies on the \expanded primitive when available (in LuaTEX and
starting around 2019 in other engines). Otherwise it uses some fall-back code that is very much
slower. As a result it should only be used in performance-critical code if typical users have a
recent installation of the TEX ecosystem.

\exp_args:Nf (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are fully expanded until the first non-expandable token is found (if that is a
space it is removed), and the result is inserted in braces into the input stream after rein-
sertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

\exp_args:Nx (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and exhaus-
tively expands the (tokens). The result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

35

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNc
NNo
NNV
NNv
NNe
NNf
Ncc
Nco
NcV
Ncv
Ncf
NVV

b S S . TR iR R b S S o

Updated: 20

18-05-15

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

Nnc
Nno
NnV
Nnv
Nne
Nnf
Noc
Noo
Nof
NVo
Nfo
Nff
Nee

b R D D S S S D S . P P o

Updated: 20

18-05-15

\exp_args:NNx
\exp_args:Ncx
\exp_args:Nnx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNo
NNNV
NNNv
Nccc
NcNc
NcNo
Ncco

* % ot o X o X

5.5 Manipulating two arguments

\exp_args:NNc (tokeni) (tokens) {(tokens)}

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Noo (token) {(tokensi)} {(tokens:)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions need slower processing.

\exp_args:NNx (tokeni) (tokens) {(tokens)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable due to their x-type argument.

5.6 Manipulating three arguments

\exp_args:NNNo (tokeni) (tokenz) (tokens) {(tokens)}

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

36

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNcf
NNno
NNnV
NNoo
NNVV
Ncno
NcnV
Ncoo
NcVVv
Nnnc
Nnno
Nnnf
Nnff
Nooo
Noof
Nffo
Neee

X X X > b ot ot X X X X o ok o Xt X

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNx
NNnx
NNox
Nccx
Ncnx
Nnnx
Nnox
Noox

New: 2015-08-12

\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:

No
NV
Nv
Ne
Nf
NNo
NNV
NNf
Nco
NcV
Nno
Noo
Nfo

NNNo
NNNV
NNNfE
NnNo

b . P D T S S D D . D S i i

*

NNNNo *
NNNNf *

Updated: 2018-05-15

\exp_args:NNoo (tokeni) (tokenz) {(tokens)} {(tokens)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc. These
functions need slower processing.

\exp_args:NNnx (tokeni) (tokens) {(tokensi)} {(tokensi)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

5.7 Unbraced expansion

\exp_last_unbraced:Nno (token) {(tokensi)} {(tokens:)}

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, :Nfo and :NnNo variants
need slower processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \foo_bar:w { } \g_stop leads to an infinite loop, as the quark is f-
expanded.

37

\exp_last_unbraced:Nx

\exp_last_unbraced:Nx (function) {(tokens)}

This function fully expands the (tokens) and leaves the result in the input stream after
reinsertion of the (function). This function is not expandable.

\exp_last_two_unbraced:Noo * \exp_last_two_unbraced:Noo (token) {(tokensi)} {(tokensz)}

\exp_after:wN x

\exp_not:N *

\exp_not:c *

This function absorbs three arguments and expands the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

\exp_after:wN (tokem) (tokens)

Carries out a single expansion of (tokeny) (which may consume arguments) prior to the
expansion of (tokeny). If (tokeny) has no expansion (for example, if it is a character) then
it is left unchanged. It is important to notice that (token;) may be any single token, in-
cluding group-opening and -closing tokens ({ or } assuming normal TEX category codes).
Unless specifically required this should be avoided: expansion should be carried out us-
ing an appropriate argument specifier variant or the appropriate \exp_args:N(variant)
function.

TEXhackers note: This is the TEX primitive \expandafter renamed.

5.8 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves disappear after the expansion has completed.

\exp_not:N (token)
Prevents expansion of the (token) in a context where it would otherwise be expanded,

for example an x-type argument or the first token in an o or e or £ argument.

TgXhackers note: This is the TEX \noexpand primitive. It only prevents expansion. At
the beginning of an £-type argument, a space (token) is removed even if it appears as \exp_not:N
\c_space_token. In an x-expanding definition (\cs_new:Npx), a macro parameter introduces
an argument even if it appears as \exp_not:N # 1. This differs from \exp_not:n.

\exp_not:c {(tokens)}

Expands the (tokens) until only characters remain, and then converts this into a control
sequence. Further expansion of this control sequence is then inhibited using \exp_not:N.

38

\exp_not:n *

\exp_not:o *

\exp_not:V *

\exp_not:v *

\exp_not:e *

\exp_not:f *

\exp_stop_f: «*

Updated: 2011-06-03

\exp_not:n {(tokens)}

Prevents expansion of the (tokens) in an e or x-type argument. In all other cases the
(tokens) continue to be expanded, for example in the input stream or in other types of
arguments such as c, £, v. The argument of \exp_not:n must be surrounded by braces.

TEXhackers note: This is the e-TEX \unexpanded primitive. In an x-expanding definition
(\cs_new:Npx), \exp_not:n {#1} is equivalent to ##1 rather than to #1, namely it inserts the
two characters # and 1. In an e-type argument \exp_not:n {#} is equivalent to #, namely it
inserts the character #.

\exp_not:o {(tokens)}

Expands the (tokens) once, then prevents any further expansion in x-type or e-type
arguments using \exp_not:n.

\exp_not:V (variable)

Recovers the content of the (variable), then prevents expansion of this material in x-type
or e-type arguments using \exp_not:n.

\exp_not:v {(tokens)}

Expands the (tokens) until only characters remains, and then converts this into a control
sequence which should be a (variable) name. The content of the (variable) is recovered,
and further expansion in x-type or e-type arguments is prevented using \exp_not:n.

\exp_not:e {(tokens)}

Expands (tokens) exhaustively, then protects the result of the expansion (including any
tokens which were not expanded) from further expansion in e or x-type arguments using
\exp_not:n. This is very rarely useful but is provided for consistency.

\exp_not:f {(tokens)}

Expands (tokens) fully until the first unexpandable token is found (if it is a space it
is removed). Expansion then stops, and the result of the expansion (including any to-
kens which were not expanded) is protected from further expansion in x-type or e-type
arguments using \exp_not:n.

\foo_bar:f { (tokens) \exp_stop_f: (more tokens) }

This function terminates an f-type expansion. Thus if a function \foo_bar:f starts
an f-type expansion and all of (tokens) are expandable \exp_stop_f: terminates the
expansion of tokens even if (more tokens) are also expandable. The function itself is an
implicit space token. Inside an x-type or e-type expansion, it retains its form, but when
typeset it produces the underlying space ().

5.9 Controlled expansion

The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to

39

\exp:w *
\exp_end: *

New: 2015-08-23

calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. These commands
are used throughout the kernel code, but we hope that outside the kernel there will be
little need to resort to them. Instead the argument manipulation methods document
above should usually be sufficient.

While \exp_after: