The IXTEX3 Sources

The BTEX3 Project™
Released 2019-04-21

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for KTEX commands, which
allow the BTEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level I¥TEX3 programming
language.

At present, the expl3 modules are designed to be loaded on top of I¥TEX 2¢. In time,
a IMTEX3 format will be produced based on this code. This allows the code to be
used in B TEX 2¢ packages now while a stand-alone I¥TEX3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly
stable. The syntax conventions and functions provided are now ready
for wider use. There may still be changes to some functions, but these
will be minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they
reach maturity.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

Contents

I Introduction to expl3 and this document

1

I1

II1

IV

Naming functions and variables

1.1 Terminological inexactitude

Documentation conventions
Formal language conventions which apply generally

TEX concepts not supported by BTEX3

The I13bootstrap package: Bootstrap code

Using the BTEX3 modules

The 13names package: Namespace for primitives

Setting up the BTEX3 programming language

The 13basics package: Basic definitions
No operation functions
Grouping material

Control sequences and functions

3.1 Defining functions oo oL o
3.2 Defining new functions using parameter text
3.3 Defining new functions using the signature
3.4 Copying control sequences.
3.5 Deleting control sequences Lo
3.6 Showing control sequences
3.7 Converting to and from control sequences

Analysing control sequences

Using or removing tokens and arguments

5.1 Selecting tokens from delimited arguments

Predicates and conditionals

6.1 Tests on control sequences L
6.2 Primitive conditionals L.

The I3expan package: Argument expansion

ii

17

18
20

21
22
22

24

10

VI

10
11
12

13

Defining new variants

Methods for defining variants
Introducing the variants
Manipulating the first argument
Manipulating two arguments
Manipulating three arguments
Unbraced expansion

Preventing expansion
Controlled expansion

Internal functions

The 13tl package: Token lists

Creating and initialising token list variables

Adding data to token list variables
Modifying token list variables
Reassigning token list category codes
Token list conditionals

Mapping to token lists

Using token lists

Working with the content of token lists
The first token from a token list
Using a single item

Viewing token lists

Constant token lists

Scratch token lists

VII The I3str package: Strings

1

Building strings

iii

24
25
26
28
30
31
32
33
34

36

37
37
38
39
39
40
42
44
45
47
49
51
51

52

53

53

10

Adding data to string variables
Modifying string variables

String conditionals

Mapping to strings

Working with the content of strings
String manipulation

Viewing strings

Constant token lists

Scratch strings

VIII The I13quark package: Quarks

1

2

Quarks

Defining quarks

Quark tests

Recursion

An example of recursion with quarks

Scan marks

The I13seq package: Sequences and stacks

Creating and initialising sequences
Appending data to sequences

Recovering items from sequences

Recovering values from sequences with branching

Modifying sequences
Sequence conditionals

Mapping to sequences

Using the content of sequences directly

Sequences as stacks

iv

54
55
56
57
59
62
63
64

64

65
65
65
66
66
67

68

70
70
71
71
73
74
74
75
76

77

10 Sequences as sets 78

11 Constant and scratch sequences 79
12 Viewing sequences 80
X The I3int package: Integers 81
1 Integer expressions 82
2 Creating and initialising integers 83
3 Setting and incrementing integers 84
4 Using integers 85
5 Integer expression conditionals 85
6 Integer expression loops 87
7 Integer step functions 89
8 Formatting integers 920
9 Converting from other formats to integers 91
10 Random integers 92
11 Viewing integers 93
12 Constant integers 93
13 Scratch integers 93

13.1 Direct number expansion 0o 94
14 Primitive conditionals 94
XI The I13flag package: Expandable flags 96
1 Setting up flags 96
2 Expandable flag commands 97
XII The I3prg package: Control structures 98
1 Defining a set of conditional functions 98
2 The boolean data type 100
3 Boolean expressions 102

4 Logical loops 104

5 Producing multiple copies 105
6 Detecting TEX’s mode 105
7 Primitive conditionals 106
8 Nestable recursions and mappings 106

8.1 Simple mappingso 106
9 Internal programming functions 107
XIIT The I3sys package: System/runtime functions 108
1 The name of the job 108
2 Date and time 108
3 Engine 108
4 Output format 109
XIV The I3clist package: Comma separated lists 110
1 Creating and initialising comma lists 110
2 Adding data to comma lists 112
3 Modifying comma lists 112
4 Comma list conditionals 114
5 Mapping to comma lists 114
6 Using the content of comma lists directly 116
7 Comma lists as stacks 117
8 Using a single item 118
9 Viewing comma lists 118
10 Constant and scratch comma lists 119
XV The I3token package: Token manipulation 120
1 Creating character tokens 120

2 Manipulating and interrogating character tokens 122

vi

3 Generic tokens 125
4 Converting tokens 125
5 Token conditionals 126
6 Peeking ahead at the next token 129
7 Description of all possible tokens 131
XVI The I3prop package: Property lists 134
1 Creating and initialising property lists 134
2 Adding entries to property lists 135
3 Recovering values from property lists 135
4 Modifying property lists 136
5 Property list conditionals 136
6 Recovering values from property lists with branching 137
7 Mapping to property lists 137
8 Viewing property lists 138
9 Scratch property lists 139
10 Constants 139
XVII The I3msg package: Messages 140
1 Creating new messages 140
2 Contextual information for messages 141
3 Issuing messages 142
4 Redirecting messages 144
XVIII The I3file package: File and I/O operations 146
1 Input—output stream management 146

1.1 Reading from files L o 147

1.2 Writing tofiles L 150

1.3 Wrapping lines in output L oL oL 152

1.4 Constant input—-output streams, and variables 153

1.5 Primitive conditionalso L oo 153

vii

2

XIX The I3skip package: Dimensions and skips

1

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

File operation functions

Creating and initialising dim variables
Setting dim variables

Utilities for dimension calculations
Dimension expression conditionals
Dimension expression loops
Dimension step functions

Using dim expressions and variables
Viewing dim variables

Constant dimensions

Scratch dimensions

Creating and initialising skip variables
Setting skip variables

Skip expression conditionals

Using skip expressions and variables
Viewing skip variables

Constant skips

Scratch skips

Inserting skips into the output
Creating and initialising muskip variables
Setting muskip variables

Using muskip expressions and variables
Viewing muskip variables

Constant muskips

Scratch muskips

Primitive conditional

viii

154

156

156

157

157

158

160

161

162

163

164

164

164

165

166

166

166

167

167

167

168

168

169

169

170

170

170

XX The I3keys package: Key—value interfaces

1

2

Creating keys

Sub-dividing keys

Choice and multiple choice keys
Setting keys

Handling of unknown keys
Selective key setting

Utility functions for keys

Low-level interface for parsing key—val lists

XXI The I3intarray package: fast global integer arrays

1

13intarray documentation
1.1 TImplementation notes o

XXII The 13fp package: Floating points

1

2

10

Creating and initialising floating point variables
Setting floating point variables

Using floating points

Floating point conditionals

Floating point expression loops

Some useful constants, and scratch variables
Floating point exceptions

Viewing floating points

Floating point expressions

9.1 Input of floating point numbers
9.2 Precedence of operators e
9.3 Operations e

Disclaimer and roadmap

171
172
176
176
179
179
180
181

182

187
188
188
190
191
193
194

195

XXIIT The I3fparray package: fast global floating point arrays207

ix

1 13fparray documentation 207

XXIV The I3sort package: Sorting functions 208
1 Controlling sorting 208
XXV The I3tl-analysis package: Analysing token lists 209
1 13tl-analysis documentation 209

XXVI The I3regex package: Regular expressions in TEX 210

1 Syntax of regular expressions 210
2 Syntax of the replacement text 215
3 Pre-compiling regular expressions 217
4 Matching 217
5 Submatch extraction 218
6 Replacement 219
7 Constants and variables 219
8 Bugs, misfeatures, future work, and other possibilities 220
XXVII The I3box package: Boxes 223
1 Creating and initialising boxes 223
2 Using boxes 223
3 Measuring and setting box dimensions 224
4 Box conditionals 225
5 The last box inserted 225
6 Constant boxes 225
7 Scratch boxes 226
8 Viewing box contents 226
9 Boxes and color 226
10 Horizontal mode boxes 226

11 Vertical mode boxes 228

12 Using boxes efficiently 229
13 Affine transformations 230
14 Primitive box conditionals 233
XXVIII The I3coffins package: Coffin code layer 234
1 Creating and initialising coffins 234
2 Setting coffin content and poles 234
3 Coffin affine transformations 236
4 Joining and using coffins 236
5 Measuring coffins 237
6 Coffin diagnostics 237
7 Constants and variables 238
XXIX The I3color-base package: Color support 239
1 Color in boxes 239
XXX The 13luatex package: LuaTpX-specific functions 240
1 Breaking out to Lua 240
2 Lua interfaces 241

XXXI The I3unicode package: Unicode support functions 242

XXXII The 13candidates package: Experimental additions to

I13kernel 243
1 Important notice 243
2 Additions to I3basics 244
3 Additions to 13box 245

3.1 Viewing partofabox 245

4 Additions to 13expan 245

Xi

10

11

12

13

14

15

16

17

18

Additions to 13fp
Additions to 13fparray
Additions to I3file
Additions to I3flag
Additions to 13int

Additions to I3intarray

10.1 Working with contents of integer arrays

Additions to 13msg
Additions to I13prg
Additions to 13prop
Additions to 13seq
Additions to I3skip
Additions to I3sys
Additions to 13tl

Additions to 13token

XXXIII The I3drivers package: Drivers

1

2

Box clipping
Box rotation and scaling
Color support

Drawing

4.1 Path construction oL
4.2 Stroking and filling L oL
4.3 Strokeoptions oL oL
4.4 Color e
4.5 Inserting TEX material
4.6 Coordinate system transformations.

PDF Features

5.1 PDF Annotations,
5.2 PDF Objects
5.3 PDF structure

XXXIV Implementation

xii

246
246
247
248
248

249
249

249
250
251
252
253
254
256

260

262
262

263

13bootstrap implementation

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Format-specificcode
The \pdfstrcmp primitive in XqfITpX
Loading support Lua code
Engine requirements Lo
Extending allocators
Character data L e
The INTEX3 code environment

13names implementation

2.1

Deprecated functions

Internal kernel functions

I13basics implementation

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

Renaming some TEX primitives (again)
Defining some constantso oL
Defining functions
Selecting tokens
Gobbling tokens from input oL oo
Debugging and patching later definitions
Conditional processing and definitions
Dissecting a control sequence L
Exist or free oL
Preliminaries for new functions
Defining new functions o oL
Copying definitionso L
Undefining functions L L o
Generating parameter text from argument count
Defining functions from a given number of arguments
Using the signature to define functions
Checking control sequence equality
Diagnostic functions L oo
Decomposing a macro definition
Doing nothing functions L L oo
Breaking out of mapping functions oL

13expan implementation

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8

General expansion
Hand-tuned definitions L
Definitions with the automated technique
Last-unbraced versions L o oo
Preventing expansion Lo oo
Controlled expansion e
Emulating e-type expansion. L oo
Defining function variants o oL

xiii

269
269
270
270
271
273
273
275

276
300

312

317
317
319
320
320
322
322
329
335
337
339
341
342
343
343
344
345
347
347
349
350
350

13tl implementation

6.1 Functions L
6.2 Constant token lists
6.3 Adding to token list variables oL
6.4 Reassigning token list category codes
6.5 Modifying token list variables Lo
6.6 Token list conditionals L oL Lo
6.7 Mapping to token listso o o
6.8 Using token lists L L
6.9 Working with the contents of token lists
6.10 Token by token changes L.
6.11 The first token from a token list
6.12 Using a singleitem L Lo
6.13 Viewing token lists L o
6.14 Scratch token lists
I13str implementation

7.1 Creating and setting string variables
7.2 Modifying string variables oo oo o
7.3 String compariSons oL Lo e e
7.4 Mapping to strings e
7.5 Accessing specific characters in a string
7.6 Counting characters
7.7 The first character inastring L 0.
7.8 String manipulation oL Lo
7.9 Viewing strings
13quark implementation

8.1 Quarks
8.2 Scanmarks
13seq implementation

9.1 Allocation and initialisation L 0.
9.2 Appending data to eitherend oL oL
9.3 Modifying sequences Lo o
9.4 Sequence conditionals L oo
9.5 Recovering data from sequences L oL
9.6 Mapping t0 SEqUENCES« . it e e e e
9.7 Using SEqUENCES« v v vt et e e e e e
9.8 Sequence stacks
9.9 Viewing sequencesot e e e
9.10 Scratch sequences e e e e

Xiv

378
378
380
380
382
385
389
394
395
396
398
400
405
408
409

409
409
410
412
415
416
421
423
424
425

425
425
428

10

11

12

13

14

13int implementation

10.1 Integer expressions v v v ol i e e e
10.2 Creating and initialising integers
10.3 Setting and incrementing integers L oL
10.4 Using integers oL o
10.5 Integer expression conditionalso
10.6 Integer expression loops o oo
10.7 Integer step functions Lo
10.8 Formatting integers Lo L Lo
10.9 Converting from other formats to integers
10.10Viewing integer Lo e
10.11Random integers L Lo e
10.12Constant integers L. oL e
10.13Scratch integers L L

13flag implementation
11.1 Non-expandable flag commands
11.2 Expandable flag commands oo,

13prg implementation

12.1 Primitive conditionals Lo oo o
12.2 Defining a set of conditional functions
12.3 The boolean data type. Lo
12.4 Boolean expressionso e e e e
12.5 Logical loops L
12.6 Producing multiple copieso Lo o o
12.7 Detecting TEX’'s mode L o
12.8 Internal programming functions

13sys implementation

13.1 The name of the job o
13.2 Detecting the engine L L oo
13.3 Time and date L L
13.4 Detecting the outputo oo
13.5 Randommess e e e

13clist implementation

14.1 Removing spaces around items
14.2 Allocation and initialisation
14.3 Adding data to comma lists oL oL,
14.4 Comma lists as stacks Lo o
14.5 Modifying comma lists.o oo
14.6 Comma list conditionals L oL
14.7 Mapping to comma lists L oo
14.8 Using comma lists L o
149 Using asingleitem oo
14.10Viewing comma lists Lo Lo
14.11Scratch comma lists oL L

XV

445
446
448
450
452
452
456
457
459
464
467
468
468
468

469
469
470

471
471
471
472
474
478
479
481
482

482
482
483
484
485
485

15

16

17

18

13token implementation 503

15.1 Manipulating and interrogating character tokens 503
15.2 Creating character tokens L. 505
15.3 Generic tokens 509
15.4 Token conditionals L Lo 510
15.5 Peeking ahead at the next token 517
13prop implementation 522
16.1 Allocation and initialisation 523
16.2 Accessing data in property lists oL 525
16.3 Property list conditionals o oL, 529
16.4 Recovering values from property lists with branching 531
16.5 Mapping to property lists oo 531
16.6 Viewing property listso oo 532
13msg implementation 533
17.1 Creating messages« o v v v it e 533
17.2 Messages: support functions and text 534
17.3 Showing messages: low level mechanism 535
17.4 Displaying messages v v v v i it e e e e e e 537
17.5 Kernel-specific functions 0. 546
17.6 Expandable errors 554
13file implementation 556
18.1 Input operations Lo e 556

18.1.1 Variables and constants 556

18.1.2 Stream managemento 557

18.1.3 Reading input o oo 559
18.2 Output operations 562

18.2.1 Variables and constants Lo L. 562
18.3 Stream managemento oL 564

18.3.1 Deferred writing L oo 565

18.3.2 Immediate writing Lo oo 566

18.3.3 Special characters for writing 566

18.3.4 Hard-wrapping lines to a character count 567
18.4 File operations 576
18.5 Getlflnfo o 584
18.6 Messages o . Lo e 585

XVi

19

20

21

22

13skip implementation

19.1 Length primitives

renamed

19.2 Creating and initialising dim variables
19.3 Setting dim variables.
19.4 Utilities for dimension calculations
19.5 Dimension expression conditionals
19.6 Dimension expression loops
19.7 Dimension step functions

19.8 Using dim expressions and variables

19.9 Viewing dim variables
19.10Constant dimensions
19.11Scratch dimensions
19.12Creating and initialising skip variables
19.13Setting skip variables
19.14Skip expression conditionals oL L.
19.15Using skip expressions and variables
19.16Inserting skips into the output . .
19.17Viewing skip variables
19.18Constant skips
19.19Scratch skips Lo
19.20Creating and initialising muskip variables
19.21Setting muskip variables.
19.22Using muskip expressions and variables
19.23Viewing muskip variables

19.24Constant muskips
19.25Scratch muskips

13keys Implementation

20.1 Low-level interface
20.2 Constants and variables
20.3 The key defining mechanism . . .
20.4 Turning properties into actions . .
20.5 Creating key properties
20.6 Setting keys L
20.7 Utilities o
20.8 MeSSAZES .« v v v v e e e e e e e e e

13intarray implementation

21.1 Allocating arrays

21.2 Array items L
21.3 Working with contents of integer arrays
21.4 Random arrayst i

13fp implementation

xXvii

586
586
586
587
589
590
592
593
594
596
596
597
597
598
599
600
600
600
601
601
601
602
603
604
604
604

605
605
608
610
612
618
622
630
632

633
633
634
636
638

639

23

24

25

26

13fp-aux implementation 639

23.1 Access to primitives 639
23.2 Internal representation Lo Lo Lo 639
23.3 Using arguments and semicolons 640
23.4 Constants, and structure of floating points 641
23.5 Overflow, underflow, and exact zero 644
23.6 Expanding after a floating point number 644
23.7 Other floating point types L 645
23.8 Packing digits 648
23.9 Decimate (dividing by a power of 10) 651
23.10Functions for use within primitive conditional branches 653
23.11Integer floating points L oL o 654
23.12Small integer floating points Lo 655
23.13Fast string comparison oL o o 655
23.14Name of a function from its I13fp-parse name 656
23 15MESSALES . . b . e e e e e e e e e e e 656
13fp-traps Implementation 656
24.1 Flags o o o 657
24.2 Traps . ..o e e e e e e 657
24.3 ErTOrs . . Lo e e e e 661
24.4 MESSAZES .« v v i e e e e e e e e e e e e e e 661
13fp-round implementation 662
25.1 Rounding tools L L 662
25.2 The round function 666
13fp-parse implementation 669
26.1 Work plan L 669
26.1.1 Storing results 671
26.1.2 Precedence and infix operators 672
26.1.3 Prefix operators, parentheses, and functions 675
26.1.4 Numbers and reading tokens one by one 675
26.2 Main auxiliary functions oL oL o 677
26.3 Helpers o e 678
26.4 Parsing one number00 oL 679
26.4.1 Numbers: trimming leading zeros 685
26.4.2 Number: small significand 687
26.4.3 Number: large significand 689
26.4.4 Number: beyond 16 digits, rounding 691
26.4.5 Number: finding the exponent 693
26.5 Constants, functions and prefix operators 696
26.5.1 Prefix operators Lo 696
26.5.2 Constantso 699
26.5.3 Functions L L 701
26.6 Main functions 701
26.7 Infix operators 703
26.7.1 Closing parentheses and commas 704
26.7.2 Usual infix operators L oL 706
26.7.3 Juxtapositiono Lo 707

xviii

27

28

29

30

26.7.4 Multi-character cases Lo oL
26.7.5 Ternary operator oo
26.7.6 CompariSons it i e e
26.8 Tools for functions e
26.9 Messages

13fp-assign implementation

27.1 Assigning values
27.2 Updating values L L
27.3 Showing values
27.4 Some useful constants and scratch variables

13fp-logic Implementation

28.1 Syntax of internal functions oL oL
28.2 Existence test
28.3 Comparison e
28.4 Floating point expression loops
285 Extrema oL e
28.6 Boolean operations Lo L L
28.7 Ternary operatoro e e e e e

13fp-basics Implementation
29.1 Addition and subtraction oL oL
29.1.1 Sign, exponent, and special numbers
29.1.2 Absolute addition L e
29.1.3 Absolute subtraction
29.2 Multiplication L L
29.2.1 Signs, and special numberso
29.2.2 Absolute multiplication,
29.3 Division L e
29.3.1 Signs, and special numbers00
2932 Workplan Lo
29.3.3 Implementing the significand division
29.4 SQUAre TOOL e e
29.5 About the sign and exponent
29.6 Operationson tuples

13fp-extended implementation

30.1 Description of fixed point numbers
30.2 Helpers for numbers with extended precision
30.3 Multiplying a fixed point number by a short one
30.4 Dividing a fixed point number by a small integer
30.5 Adding and subtracting fixed points Lo
30.6 Multiplying fixed pointso
30.7 Combining product and sum of fixed points
30.8 Extended-precision floating point numbers
30.9 Dividing extended-precision numbers. Lo
30.10Inverse square root of extended precision numbers
30.11Converting from fixed point to floating point

Xix

713
713
714
715
715

716
716
716
716
719
723
724
725

13fp-expo implementation 774

31.1 Logarithm o e 775
31.1.1 Workplan 775
31.1.2 Some constants 775
31.1.3 Sign, exponent, and special numberso 776
31.1.4 AbsoluteIn 776

31.2 Exponential 783
31.2.1 Sign, exponent, and special numbers 783

31.3 Power e e 787

31.4 Factorial 794

13fp-trig Implementation 796

32.1 Direct trigonometric functions 796
32.1.1 Filtering special cases L. 797
32.1.2 Distinguishing small and large arguments 800
32.1.3 Small arguments 800
32.1.4 Argument reduction in degrees 801
32.1.5 Argument reduction in radians 0L 802
32.1.6 Computing the power series 809

32.2 Inverse trigonometric functions L. 812
32.2.1 Arctangent and arccotangent 813
32.2.2 Arcsine and arccosine 818
32.2.3 Arccosecant and arcsecant 820

13fp-convert implementation 821

33.1 Dealing with tuples L Lo 821

33.2 Trimming trailing zeros L Lo 822

33.3 Scientific notation 822

33.4 Decimal representation Lo oL 824

33.5 Token list representation L 0oL 825

33.6 Formatting e 827

33.7 Convert to dimension or integer L. 827

33.8 Convert from a dimension 828

33.9 Useandeval 828

33.10Convert an array of floating points to a comma list 829

13fp-random Implementation 830

34.1 Engine supporto e 830

34.2 Random floating point 833

34.3 Random integer e 834

13fparray implementation 839

35.1 Allocating arrays« . . oo e e 839

35.2 Array items L. 840

36

37

38

I13sort implementation 843

36.1 Variables 843
36.2 Finding available \toks registers 844
36.3 Protected user commands 846
36.4 Merge sort 848
36.5 Expandable sorting Lo 851
36.6 MeESSageS . . . o . e e e e e e e e e e 856
13tl-analysis implementation 858
37.1 Internal functions L oL o 858
37.2 Internal format oL 858
37.3 Variables and helper functions, 859
374 Plan of attack 860
37.5 Disabling active characters 861
37.6 First pass o L e 862
37.7 Second Pass . . . v v v e e e e e e e e e e e 867
37.8 Mapping through the analysis 870
37.9 Showing the results Lo 871
37.10Messages 873
13regex implementation 873
38.1 Planof attack 873
38.2 Helpers o e 875
38.2.1 Constants and variables 876
38.2.2 Testing characters Lo L. 877
38.2.3 Character property tests 881
38.2.4 Simple character escape L. 883
38.3 Compiling L 888
38.3.1 Variables used when compiling 889
38.3.2 Generic helpers used when compiling 890
38.3.3 Mode e 891
38.3.4 Framework 894
38.3.5 Quantifiers 896
38.3.6 Raw characters o 899
38.3.7 Character properties oo 901
38.3.8 Anchoring and simple assertions 902
38.3.9 Character classes 903
38.3.10 Groups and alternations 906
38.3.11 Catcodes and csnames oo 909
38.3.12Raw token lists with \u 912
38.3.130ther 914
38.3.14 Showing regexes v v v v v it e e e e e e 915
38.4 Building oL 919
38.4.1 Variables used while building 919
38.4.2 Framework 919
38.4.3 Helpers for building an NFA 921
38.4.4 Building classeso e 923
38.4.5 Building groups Lo Lo 924
38.4.6 Others e 929
38.5 Matching 930

XX1

39

40

41

38.5.1 Variables used when matching 931

38.5.2 Matching: framework, 933
38.5.3 Using states of the NFA oL oL 937
38.5.4 Actions when matching o o0, 938
38.6 Replacement L L 940
38.6.1 Variables and helpers used in replacement 940
38.6.2 Query and brace balance 941
38.6.3 Framework L 943
38.6.4 Submatches 945
38.6.5 Csnames in replacemento 946
38.6.6 Characters in replacemento 947
38.6.7 Anerror 951
38.7 User functions L e 951
38.7.1 Variables and helpers for user functions 953
38.7.2 Matching 954
38.7.3 Extracting submatches L oo 955
38.74 Replacement L o 958
38.7.5 Storing and showing compiled patterns. 960
38.8 Messages e e e 960
38.9 Code for tracing L 966
I3box implementation 967
39.1 Support code 967
39.2 Creating and initialising boxes L. 967
39.3 Measuring and setting box dimensions 968
39.4 Using boxes oo i e e 969
39.5 Box conditionals L Lo 969
39.6 The last box inserted oL 970
39.7 Constant boxes L 970
39.8 Scratch boxes L L 970
39.9 Viewing box contents Lo 971
39.10Horizontal mode boxes oL Lo 972
39.11Vertical mode boxes Lo 974
39.12Affine transformations L L L o 977
13coffins Implementation 986
40.1 Coffins: data structures and general variables 986
40.2 Basic coffin functions oL oo 987
40.3 Measuring coffins oL Lo 993
40.4 Coffins: handle and pole management 993
40.5 Coffins: calculation of pole intersections 996
40.6 Affine transformations 1000
40.7 Aligning and typesetting of coffins o Lo 1007
40.8 Coffin diagnostics L o 1012
40.9 MeSSAZES .« . . v v e e e e e e e e e e e 1018
13color-base Implementation 1018

xxii

42

43

44

45

46

47

48

49

13luatex implementation

42.1 BreakingouttoLua L o
42.2 MeSSageso e e
42.3 Lua functions for internal use
42.4 Generic Lua and font support oL L oL

13unicode implementation

13candidates Implementation
44.1 Additions to I3basics oL
44.2 Additions to I3box L
44.2.1 Viewing partof abox o oL
44.3 Additions to I3fp-convert.o Lo
44.4 Additions to I3fileo
44.5 Additions to I3flag
44.6 Additions to I3int. L
44.7 Additions to I3msg L
44.8 Additions to 13prg
44.9 Additions to I3propo
44.10Additions to I3seq
44.11Additions to I3skip
44.12Additions to 13syso
44.13Additions to I3tlo
44.13.1 Unicode case changing
44.13.2Building a token list Lo Lo
44.13.3 Other additions to I13tl L
44.14Additions to I3token Lo

I13drivers Implementation

13drivers-basics Implementation

46.1 dvipsdriver e
46.2 pdfmode driver oL oL
46.3 dvipdfmx driver Lo o
46.4 dvisvgmdriver

I13drivers-color Implementation
47.1 dvips-styleo
472 pdfmode L Lo

13drivers-box Implementation

48.1 dvips driver L
48.2 pdfmode driver oL
48.3 dvipdfmx driver oL
48.4 dvisvgmdriver e

13drivers-draw Implementation

49.1 dvipsdriver e

49.2 pdfmode and (x)dvipdfmx Lo
49.2.1 Drawing L e

49.3 dvisvgmdriver

1020
1020
1021
1021
1024

1025

1028
1028
1029
1029
1031
1031
1033
1034
1034
1036
1036
1037
1041
1041
1046
1046
1069
1072
1073

1075

50 I3drivers-image Implementation 1109
50.1 dvips driver L 1109
50.2 pdfmode driver L 1109
50.3 dvipdfmx driver L 1111
50.4 xdvipdfmx driver. 1113

50.4.1 Tmages« . o 1113
50.5 dvisvgmdriver L. Lo 1114

51 I3drivers-pdf Implementation 1115
51.1 Shared code. 1115
51.2 dvips driver 1115

51.2.1 Objects e 1115
51.2.2 Annotations 1117
51.2.3 Structure e e e 1130
51.3 pdfmode driver 1131
51.3.1 Annotations L 1131
51.3.2 Objects e 1132
51.3.3 Structure 1133
51.4 dvipdfmx driver L 1135
51.4.1 Objects o e 1135
51.4.2 Annotationso 1136
51.4.3 Structure oL 1138
51.5 dvisvgmdriver 1139
51.5.1 Objects« e 1139
51.5.2 Structure e e 1139

52 I3deprecation implementation 1140
52.1 Helpers and variables 1140
52.2 Patching definitions to deprecate 1141
52.3 Removed functions oL o 1144
52.4 Deprecated primitiveso o 1146
52.5 Deprecated I3box functions 1147
52.6 Deprecated I3file functions 1148
52.7 Deprecated I13int functionso 1149
52.8 Deprecated I3luatex functions oL Lo 1151
52.9 Deprecated 13msg functions L. 1151
52.10Deprecated 13prg functions 1152
52.11Deprecated I3sort functions 1153
52.12Deprecated I13str functions L oL 1153

52.12.1 Deprecated [3tl functions 1154
52.13Deprecated I13tl-analysis functions oL oL 1154
52.14Deprecated I13token functions 1155

Index 1156

XXiv

Part 1
Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the IMTEX3 programming language is found in expl3.pdf.

1 Naming functions and variables

TEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example
\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means ezxpansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are not
expandable.

e The e specifier is in many respects identical to x, but with a very different imple-
mentation. Functions which feature an e-type argument may be expandable. The
drawback is that e is extremely slow (often more than 200 times slower) in older
engines, more precisely in non-LuaTgEX engines older than 2019.

f The f specifier stands for full expansion, and in contrast to x stops at the first non-
expandable item (reading the argument from left to right) without trying to expand
it. For example, when setting a token list variable (a macro used for storage), the
sequence

\tl_set:Nn \1l_mya_tl { A }
\tl_set:Nn \1_myb_tl { B }
\tl_set:Nf \1_mya_tl { \1_mya_tl \1_myb_tl }

will leave \1_mya_t1 with the content A\1_myb_t1, as A cannot be expanded and
so terminates expansion before \1_myb_t1 is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some specified string).

D The D specifier means do not use. All of the TEX primitives are initially \let to a D
name, and some are then given a second name. Only the kernel team should use
anything with a D specifier!

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

c Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module! name and then a descriptive part. Variables end with a short
identifier to show the variable type:

clist Comma separated list.
dim “Rigid” lengths.

fp Floating-point values;

int Integer-valued count register.

muskip “Rubber” lengths for use in mathematics.

IThe module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

seq “Sequence”: a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.
str String variables: contain character data.
t1 Token list variables: placeholder for a token list.

Applying V-type or v-type expansion to variables of one of the above types is supported,
while it is not supported for the following variable types:

bool Either true or false.
box Box register.

coffin A “box with handles” — a higher-level data type for carrying out box alignment
operations.

flag Integer that can be incremented expandably.

fparray Fixed-size array of floating point values.

intarray Fixed-size array of integers.

ior/iow An input or output stream, for reading from or writing to, respectively.
prop Property list: analogue of dictionary or associative arrays in other languages.

regex Regular expression.

1.1 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and
a “token list variable” are almost the same.? On the other hand, some “variables” are
actually registers that must be initialised and their values set and retrieved with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

2TgEXnically, functions with no arguments are \long while token list variables are not.

\ExplSyntaxOn
\ExplSyntaxOff

\seq_new:N
\seq_new:c

\cs_to_str:N *

\seq_map_function:NN 7

2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntax0ff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

For programming functions, which use _ and : in their name there are a few addi-
tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

\seq_new:N (sequence)

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type or e-type argument (in plain TEX terms, inside an \edef or
\expanded), as well as within an f-type argument. These fully expandable functions are
indicated in the documentation by a star:

\cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a {control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN (seq) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\sys_if_engine_xetex:TF x

\1_tmpa_tl

\token_to_str:N *

\sys_if_engine_xetex:TF {(true code)} {(false code)}

The underlining and italic of TF indicates that three functions are available:
e \sys_if_engine_xetex:T
e \sys_if_engine_xetex:F
e \sys_if_engine_xetex:TF

Usually, the illustration will use the TF variant, and so both (true code) and (false code)

will be shown. The two variant forms T and F take only (true code) and (false code),

respectively. Here, the star also shows that this function is expandable. With some minor

exceptions, all conditional functions in the expl3 modules should be defined in this way.
Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.

In some cases, the function is similar to one in IATEX 2¢ or plain TEX. In these cases,
the text will include an extra “TgpXhackers note” section:

\token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or I TEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way wnless they impact on the
expected behaviour.

3 Formal language conventions which apply generally

As this is a formal reference guide for ¥TEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left

in the input stream: this will typically be part of a larger logical construct.

4 TgX concepts not supported by BXTEX3

The TEX concept of an “\outer” macro is not supported at all by IWTEX3. As such, the
functions provided here may break when used on top of IATEX 2¢ if \outer tokens are
used in the arguments.

\ExplSyntax0On

\ExplSyntax0ff

Updated: 2011-08-13

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2017-03-19

\GetIdInfo

Updated: 2012-06-04

Part 11
The I13bootstrap package
Bootstrap code

1 Using the KTEX3 modules

The modules documented in source3 are designed to be used on top of KTEX 2¢ and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions. These modules will also form the basis of the IXTEX3 format, but work in
this area is incomplete and not included in this documentation at present.

As the modules use a coding syntax different from standard I¥TEX 2¢ it provides a
few functions for setting it up.

\ExplSyntaxOn (code) \ExplSyntax0ff

The \ExplSyntaxOn function switches to a category code régime in which spaces are
ignored and in which the colon (:) and underscore (_) are treated as “letters”, thus
allowing access to the names of code functions and variables. Within this environment,
~ is used to input a space. The \ExplSyntax0ff reverts to the document category code
régime.

\RequirePackage{expl3}

\ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

These functions act broadly in the same way as the corresponding IATEX 2¢ kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntaxOn for the remainder of the code with the file. At the end
of the file, \ExplSyntax0ff will be called to reverse this. (This is the same concept as
KTEX 2 provides in turning on \makeatletter within package and class code.) The
(date) should be given in the format (year)/{month)/(day). If the (version) is given then
it will be prefixed with v in the package identifier line.

\RequirePackage{13bootstrap}

\GetIdInfo $Id: (SVN info field) $ {(description)}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion
for version and \ExplFileDescription for the description.

To summarize: Every single package using this syntax should identify itself using
one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual IXTEX 2¢ category codes and the
TREX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

Part 111
The I13names package
Namespace for primitives

1 Setting up the KTEX3 programming language

This module is at the core of the M TEX3 programming language. It performs the following
tasks:

o defines new names for all TEX primitives;
o switches to the category code régime for programming;
e provides support settings for building the code as a TEX format.

This module is entirely dedicated to primitives, which should not be used directly
within ITEX3 code (outside of “kernel-level” code). As such, the primitives are not
documented here: The TgXbook, TEX by Topic and the manuals for pdfTEX, XHTEX,
LuaTgX, pIEX and uplEX should be consulted for details of the primitives. These are
named \tex_(name):D, typically based on the primitive’s (name) in pdf TEX and omitting
a leading pdf when the primitive is not related to pdf output.

\prg_do_nothing: x

\scan_stop:

\group_begin:
\group_end:

\group_insert_after:N

Part IV
The I3basics package
Basic definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

2 Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends. The
list of (tokens) to be inserted is empty at the beginning of a group: multiple applications
of \group_insert_after:N may be used to build the inserted list one (token) at a time.
The current group level may be closed by a \group_end: function or by a token with
category code 2 (close-group), namely a } if standard category codes apply.

3 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” are fully expanded inside an x expansion. In
contrast, “protected” functions are not expanded within x expansions.

3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen is checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new. ..
functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, ...).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and results in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and does not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset:Npn. The definition
is global and does not result in an error if the function is already defined.

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an x-type or e-type expansion.

Finally, the functions in Subsections 3.2 and 3.3 are primarily meant to define base
functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 2.

10

\cs_new:Npn
\cs_new:cpn
\cs_new:Npx
\cs_new:cpx

\cs_new_nopar:Npn
\cs_new_nopar:cpn
\cs_new_nopar : Npx
\cs_new_nopar:cpx

\cs_new_protected:Npn
\cs_new_protected:cpn
\cs_new_protected:Npx
\cs_new_protected:cpx

3.2 Defining new functions using parameter text

\cs_new:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Npn (function) (parameters) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npn (function) (parameters) {({code)}
\cs_new_protected_nopar:cpn

\cs_new_protected_nopar:Npx

\cs_new_protected_nopar:cpx

\cs_set:Npn
\cs_set:cpn
\cs_set:Npx
\cs_set:cpx

\cs_set_nopar:Npn
\cs_set_nopar:cpn
\cs_set_nopar:Npx
\cs_set_nopar:cpx

\cs_set_protected:Npn
\cs_set_protected:cpn
\cs_set_protected:Npx
\cs_set_protected:cpx

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_set:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Npn (function) (parameters) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The assignment
of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an x-type or e-type argument.

11

\cs_set_protected_nopar:Npn \cs_set_protected_nopar:Npn (function) (parameters) {{code)}
\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:Npx
\cs_set_protected_nopar:cpx

\cs_gset:Npn
\cs_gset:cpn
\cs_gset :Npx
\cs_gset:cpx

\cs_gset_nopar:Npn
\cs_gset_nopar:cpn
\cs_gset_nopar:Npx
\cs_gset_nopar:cpx

\cs_gset_protected:Npn
\cs_gset_protected:cpn
\cs_gset_protected:Npx
\cs_gset_protected:cpx

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The as-
signment of a meaning to the (function) is restricted to the current TEX group level. The
(function) will not expand within an x-type or e-type argument.

\cs_gset:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_protected:Npn (function) (parameters) {{code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global. The (function) will not expand within an x-type or
e-type argument.

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {{code)}
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpx

\cs_new:Nn
\cs_new: (cn|Nx|cx)

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group level:
the assignment is global. The (function) will not expand within an x-type argument.

3.3 Defining new functions using the signature

\cs_new:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

12

\cs_new_nopar:Nn
\cs_new_nopar: (cn|Nx|cx)

\cs_new_protected:Nn
\cs_new_protected: (cn|Nx|cx)

\cs_new_nopar:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Nn (function) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_new_protected_nopar:Nn \cs_new_protected_nopar:Nn (function) {<code>}
\cs_new_protected_nopar:(cn|Nx|cx)

\cs_set:Nn
\cs_set:(cn|Nx|cx)

\cs_set_nopar:Nn
\cs_set_nopar:(cn|Nx|cx)

\cs_set_protected:Nn
\cs_set_protected:(cn|Nx|cx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_set:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {({code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is restricted to the current TEX group level.

13

\cs_set_protected_nopar:Nn \cs_set_protected_nopar:Nn (function) {(code)}
\cs_set_protected_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is restricted to the current TEX group level.

\cs_gset:Nn \cs_gset:Nn (function) {(code)}
\cs_gset:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is global.

\cs_gset_nopar:Nn \cs_gset_nopar:Nn (function) {(code)}
\cs_gset_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2. etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is global.

\cs_gset_protected:Nn \cs_gset_protected:Nn (function) {(code)}
\cs_gset_protected: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is global.

\cs_gset_protected_nopar:Nn \cs_gset_protected_nopar:Nn (function) {(code)}
\cs_gset_protected_nopar:(cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is global.

\cs_generate_from_arg_count:NNnn \cs_generate_from_arg_count:NNnn (function) (creator) {(number)}
\cs_generate_from_arg_count:(cNnn|Ncnn) {(code)}

Updated: 2012-01-14

Uses the (creator) function (which should have signature Npn, for example \cs_new:Npn)
to define a (function) which takes (number) arguments and has (code) as replacement
text. The (number) of arguments is an integer expression, evaluated as detailed for
\int_eval:n.

14

\cs_new_eq:NN
\cs_new_eq:(Nc|cN|cc)

\cs_set_eq:NN
\cs_set_eq:(Nc|cN|cc)

\cs_gset_eq:NN
\cs_gset_eq:(Nc|cN|cc)

\cs_undefine:N
\cs_undefine:c

Updated: 2011-09-15

\cs_meaning:N x
\cs_meaning:c *

Updated: 2011-12-22

3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN (cs1) (cs2)
\cs_new_eq:NN (csi) (token)

Globally creates (control sequence;) and sets it to have the same meaning as (control
sequenceg) or (token). The second control sequence may subsequently be altered without
affecting the copy.

\cs_set_eq:NN (cs1) (cs2)
\cs_set_eq:NN (csi) (token)

Sets (control sequence;) to have the same meaning as (control sequences) (or (token)).
The second control sequence may subsequently be altered without affecting the copy.
The assignment of a meaning to the (control sequence;) is restricted to the current TEX
group level.

\cs_gset_eq:NN (cs1) (cs2)
\cs_gset_eq:NN (csi) (token)

Globally sets (control sequence;) to have the same meaning as (control sequences) (or
(token)). The second control sequence may subsequently be altered without affecting the
copy. The assignment of a meaning to the (control sequence;) is not restricted to the
current TEX group level: the assignment is global.

3.5 Deleting control sequences
There are occasions where control sequences need to be deleted. This is handled in a

very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

3.6 Showing control sequences

\cs_meaning:N (control sequence)
This function expands to the meaning of the (control sequence) control sequence. For a

macro, this includes the (replacement text).

TEXhackers note: This is TEX’s \meaning primitive. For tokens that are not control
sequences, it is more logical to use \token_to_meaning:N. The ¢ variant correctly reports
undefined arguments.

15

\cs_show:N
\cs_show:c

Updated: 2017-02-14

\cs_log:N
\cs_log:c

New: 2014-08-22
Updated: 2017-02-14

\use:c *

\cs_if_exist_use:N
\cs_if_exist_use:c
\cs_if_exist_use:NTF

*
*
*
\cs_if_exist_use:cTF *

New: 2012-11-10

\cs_show:N (control sequence)
Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_log:N (control sequence)

Writes the definition of the {control sequence) in the log file. See also \cs_show:N which
displays the result in the terminal.

3.7 Converting to and from control sequences

\use:c {(control sequence name)}

Expands the (control sequence name) until only characters remain, and then converts
this into a control sequence. This process requires two expansions. As in other c-type
arguments the (control sequence name) must, when fully expanded, consist of character
tokens, typically a mixture of category code 10 (space), 11 (letter) and 12 (other).

TEXhackers note: Protected macros that appear in a c-type argument are expanded
despite being protected; \exp_not :n also has no effect. An internal error occurs if non-characters
or active characters remain after full expansion, as the conversion to a control sequence is not
possible.

As an example of the \use:c function, both
\use:c { a bc
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc}
\use:c { \tl_use:N \l_my_tl }

would be equivalent to
\abc
after two expansions of \use:c.

\cs_if_exist_use:N (control sequence)
\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined according to the conditional
\cs_if_exist:NTF (whether as a function or another control sequence type), and if it is
inserts the (control sequence) into the input stream followed by the (true code). Otherwise
the (false code) is used.

16

\cs:w *
\cs_end: x

\cs_to_str:N =

\cs_split_function:N =

New: 2018-04-06

\cs:w (control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for (control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically of category
code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TgXhackers note: These are the TEX primitives \csname and \endcsname

As an example of the \cs:w and \cs_end: functions, both
\cs:w a b ¢ \cs_end:
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc}
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to
\abc

after one expansion of \cs:w.

\cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code 12
(other), except spaces, of category code 10. The result does not include the current
escape token, contrarily to \token_to_str:N. Full expansion of this function requires
exactly 2 expansion steps, and so an x-type or e-type expansion, or two o-type expansions
are required to convert the (control sequence) to a sequence of characters in the input
stream. In most cases, an f-expansion is correct as well, but this loses a space at the
start of the result.

4 Analysing control sequences

\cs_split_function:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). This information is then placed in the input stream in three
parts: the (name), the (signature) and a logic token indicating if a colon was found (to
differentiate variables from function names). The (name) does not include the escape
character, and both the (name) and (signature) are made up of tokens with category
code 12 (other).

The next three functions decompose TEX macros into their constituent parts: if the
(token) passed is not a macro then no decomposition can occur. In the latter case, all
three functions leave \scan_stop: in the input stream.

17

\cs_prefix_spec:N *

New: 2019-02-27

\cs_argument_spec:N *

New: 2019-02-27

\cs_replacement_spec:N *

New: 2019-02-27

\cs_prefix_spec:N (token)

If the (token) is a macro, this function leaves the applicable TEX prefixes in input stream
as a string of tokens of category code 12 (with spaces having category code 10). Thus
for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_prefix_spec:N \next:nn

leaves \long in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: The prefix can be empty, \long, \protected or \protected\long with
backslash replaced by the current escape character.

\cs_argument_spec:N (token)

If the (token) is a macro, this function leaves the primitive TEX argument specification
in input stream as a string of character tokens of category code 12 (with spaces having
category code 10). Thus for example

\cs_set:Npn \next:nn #1#2 { x #1 y #2 }
\cs_argument_spec:N \next:nn

leaves #1#2 in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: If the argument specification contains the string ->, then the function
produces incorrect results.

\cs_replacement_spec:N (token)

If the (token) is a macro, this function leaves the replacement text in input stream as
a string of character tokens of category code 12 (with spaces having category code 10).
Thus for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_replacement_spec:N \next:nn

leaves x#1,y#2 in the input stream. If the (foken) is not a macro then \scan_stop: is
left in the input stream.

TEXhackers note: If the argument specification contains the string ->, then the function
produces incorrect results.

5 Using or removing tokens and arguments
Tokens in the input can be read and used or read and discarded. If one or more tokens

are wrapped in braces then when absorbing them the outer set is removed. At the same
time, the category code of each token is set when the token is read by a function (if it

18

\use:n
\use:nn
\use:nnn
\use:nnnn

\use_i:nn

\use_ii:nn

\use_i:nnn
\use_ii:nnn
\use_iii:nnn

* % X

* X

*

\use_i:nnnn
\use_ii:nnnn
\use_iii:nnnn
\use_iv:nnnn

X X ot

is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

\use:n {(group1)}

\use:nn {(group:)} {(group:)}

\use:nnn {(group:)} {(group:)} {(groups)}

\use:nnnn {(group:)} {{group:)} {(groups)} {({groups)}

As illustrated, these functions absorb between one and four arguments, as indicated by
the argument specifier. The braces surrounding each argument are removed and the
remaining tokens are left in the input stream. The category code of these tokens is also
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } }
results in the input stream containing
abc { def }

i.e. only the outer braces are removed.

\use_i:nn {(argi)} {(argz)}

These functions absorb two arguments from the input stream. The function \use_i:nn
discards the second argument, and leaves the content of the first argument in the input
stream. \use_ii:nn discards the first argument and leaves the content of the second
argument in the input stream. The category code of these tokens is also fixed (if it
has not already been by some other absorption). A single expansion is needed for the
functions to take effect.

\use_i:nnn {(arg:i)} {(arge)} {(args)}

These functions absorb three arguments from the input stream. The function \use_i:nnn
discards the second and third arguments, and leaves the content of the first argument in
the input stream. \use_ii:nnn and \use_iii:nnn work similarly, leaving the content
of second or third arguments in the input stream, respectively. The category code of
these tokens is also fixed (if it has not already been by some other absorption). A single
expansion is needed for the functions to take effect.

\use_i:nnnn {(arg;)} {(args)} {(args)} {(args)}

These functions absorb four arguments from the input stream. The function \use_-
i:nnnn discards the second, third and fourth arguments, and leaves the content of the
first argument in the input stream. \use_ii:nnnn, \use_iii:nnnn and \use_iv:nnnn
work similarly, leaving the content of second, third or fourth arguments in the input
stream, respectively. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the functions to take
effect.

19

\use_i_ii:nnn *

\use_none: *
\use_none: *
\use_none: *
\use_none: *
:nnnnn *
*
*
*
*

\use_none

\use_none:
\use_none:
\use_none:
\use_none:

n

nn
nnn
nnnn

nnnnnn
nnnnnnn
nnnnnnnn
nnnnnnnnn

\use:e *

New: 2018-06-18

\use:x

Updated: 2011-12-31

\use_i_ii:nnn {(argi)} {(arg:)} {(args)}

This function absorbs three arguments and leaves the content of the first and second in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
results in the input stream containing
abc { def }

i.e. the outer braces are removed and the third group is removed.

\use_none:n {(group:)}

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (7.e. an N argument).

\use:e {(expandable tokens)}
Fully expands the (token list) in an x-type manner, but the function remains fully ex-

pandable, and parameter character (usually #) need not be doubled.

TEXhackers note: \use:e is a wrapper around the primitive \expanded where it is avail-
able: it requires two expansions to complete its action. When \expanded is not available this
function is very slow.

\use:x {(expandable tokens)}

Fully expands the (ezpandable tokens) and inserts the result into the input stream at the
current location. Any hash characters (#) in the argument must be doubled.

5.1 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q_nil:w * \use_none_delimit_by_q_nil:w (balanced text) \g_nil
\use_none_delimit_by_q_stop:w * \use_none_delimit_by_q_stop:w (balanced text) \g_stop
\use_none_delimit_by_q_recursion_stop:w * \use_none_delimit_by_q_recursion_stop:w (balanced teXt)

\gq_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.

20

\use_i_delimit_by_q_nil:nw
\use_i_delimit_by_q_stop:nw

* \use_i_delimit_by_q_nil:nw {(inserted tokens)} (balanced text)
* \q_nil

\use_i_delimit_by_q_recursion_stop:nw * \use_i_delimit_by_q_stop:nw {(inserted tokens)} (balanced

text) \g_stop
\use_i_delimit_by_q_recursion_stop:nw {(inserted tokens)}
(balanced text) \g_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

6

Predicates and conditionals

I4TEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending

on its result, either the code supplied as the (true code) or the (false code). These
arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abc} {(true code)} {(false code)}

a function that turns the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carries out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it is usually accompanied by T and F functions as well. These are provided
for convenience when the branch only needs to go a single way. Package writers
are free to choose which types to define but the kernel definitions always provide
all three versions.

Important to note is that these branching conditionals with (¢rue code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they are accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which

can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {(false code)}

For each predicate defined, a “branching conditional” also exists that behaves like
a conditional described above.

21

\c_true_bool

\c_false_boo

1

\cs_if_eq_p:NN
\cs_if_eq:NNTF

\cs_if_exist_p:N
\cs_if_exist_p:c
\cs_if_exist:NTF
\cs_if_exist:cTF

L S

\cs_if_free_p:N
\cs_if_free_p:c
\cs_if_free:NTF
\cs_if_free:cTF

L S

\if_true:
\if_false:
\else:

\fi:
\reverse_if:N

Lol S S

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and ETEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

Constants that represent true and false, respectively. Used to implement predicates.

6.1 Tests on control sequences

\cs_if_eq_p:NN (csi1) (cs2)

\cs_if_eq:NNTF (csi) (cs2) {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true if they are the
same, ¢.e. if they have exactly the same definition when examined with \cs_show:N.

\cs_if_exist_p:N (control sequence)
\cs_if_exist:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type). Any definition of (control sequence) other than \relax evaluates
as true.

\cs_if_free_p:N (control sequence)
\cs_if_free:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently free to be defined. This test is false if
the (control sequence) currently exists (as defined by \cs_if_exist:N).

6.2 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions
often contains a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if _int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We prefix primitive conditionals with \if _.

\if_true: (true code) \else: (false code) \fi:
\if_false: (true code) \else: (false code) \fi:
\reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if _false: always executes (false code).
\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. The function \or: is documented in I3int and used in
case switches.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is e-TEX’s \unless

22

\if _meaning:w

*

\if:w
\if _charcode:w
\if_catcode:w

* X

\if_cs_exist:N
\if_cs_exist:w

*

\if_mode_horizontal:
\if_mode_vertical:
\if _mode_math:
\if_mode_inner:

X X ot

\if_meaning:w (argi) (arge) (true code) \else: (false code) \fi:

\if _meaning:w executes (true code) when (arg;) and (args) are the same, otherwise it
executes (false code). (argy) and (arge) could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TEXhackers note: This is TEX’s \ifx.

\if:w (token:) (token:) (true code) \else: (false code) \fi:
\if_catcode:w (token;) (tokens) (true code) \else: (false code) \fi:

These conditionals expand any following tokens until two unexpandable tokens are left.
If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if _catcode:w tests if the category codes of the two tokens are the same whereas \if :w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if :w.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:
\if_cs_exist:w (tokens) \cs_end: (true code) \else: (false code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

\if _mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Sim-
ilar for the other functions.

23

Part V
The 13expan package
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the I¥TEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions of the form \exp_-
.... They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo expands the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
{ \1_tmpa_t1 }

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_generate_variant:Nn \seq_gpush:Nn { No }
results in the definition of \seq_gpush:No
\cs_new:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is safe as the \cs_generate_variant:Nn
function will only create new definitions if there is not already one available. Therefore
adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

24

2 Methods for defining variants

We recall the set of available argument specifiers.

e N is used for single-token arguments while ¢ constructs a control sequence from its
name and passes it to a parent function as an N-type argument.

o Many argument types extract or expand some tokens and provide it as an n-type
argument, namely a braced multiple-token argument: V extracts the value of a
variable, v extracts the value from the name of a variable, n uses the argument as
it is, o expands once, f expands fully the front of the token list, e and x expand
fully all tokens (differences are explained later).

e A few odd argument types remain: T and F for conditional processing, otherwise
identical to n-type arguments, p for the parameter text in definitions, w for argu-
ments with a specific syntax, and D to denote primitives that should not be used
directly.

25

\cs_generate_variant:Nn
\cs_generate_variant :cn

Updated: 2017-11-28

\cs_generate_variant:Nn (parent control sequence) {(variant argument specifiers)}

This function is used to define argument-specifier variants of the (parent control sequence)
for IXTEX3 code-level macros. The (parent control sequence) is first separated into the
(base name) and (original argument specifier). The comma-separated list of (variant
argument specifiers) is then used to define variants of the (original argument specifier)
if these are not already defined. For each (variant) given, a function is created that
expands its arguments as detailed and passes them to the (parent control sequence). So
for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { ¢ }

creates a new function \foo:cn which expands its first argument into a control sequence
name and passes the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

generates the functions \foo:NV and \foo:cV in the same way. The \cs_generate_-
variant:Nn function can only be applied if the (parent control sequence) is already de-
fined. If the (parent control sequence) is protected or if the (variant) involves any x ar-
gument, then the (variant control sequence) is also protected. The (variant) is created
globally, as is any \exp_args:N(variant) function needed to carry out the expansion.

Only n and N arguments can be changed to other types. The only allowed changes
are

e c variant of an N parent;
e 0,V, v, f, e, or x variant of an n parent;
e N,n, T, F, or p argument unchanged.

This means the (parent) of a (variant) form is always unambiguous, even in cases where
both an n-type parent and an N-type parent exist, such as for \t1l_count:n and \tl_-
count:N.

For backward compatibility it is currently possible to make n, o, V, v, £, e, or x-type
variants of an N-type argument or N or c-type variants of an n-type argument. Both
are deprecated. The first because passing more than one token to an N-type argument
will typically break the parent function’s code. The second because programmers who
use that most often want to access the value of a variable given its name, hence should
use a V-type or v-type variant instead of c-type. In those cases, using the lower-level
\exp_args:No or \exp_args:Nc functions explicitly is preferred to defining confusing
variants.

3 Introducing the variants

The V type returns the value of a register, which can be one of t1, clist, int, skip,
dim, muskip, or built-in TEX registers. The v type is the same except it first creates a
control sequence out of its argument before returning the value.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only

26

when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The e type expands all tokens fully, starting from the first. More precisely the
expansion is identical to that of TEX’s \message (in particular # needs not be doubled).
It was added in May 2018. In recent enough engines (starting around 2019) it relies
on the primitive \expanded hence is fast. In older engines it is very much slower. As
a result it should only be used in performance critical code if typical users will have a
recent installation of the TEX ecosystem.

The x type expands all tokens fully, starting from the first. In contrast to e, all macro
parameter characters # must be doubled, and omitting this leads to low-level errors. In
addition this type of expansion is not expandable, namely functions that have x in their
signature do not themselves expand when appearing inside x or e expansion.

The £ type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and £-
expansion provides an alternative that expands the front of the token list as much as can
be done in such contexts. For instance, say that we want to evaluate the integer expression
3 + 4 and pass the result 7 as an argument to an expandable function \example:n. For
this, one should define a variant using \cs_generate_variant:Nn \example:n { f },
then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }
results in the call

\example:n { 3 , \int_eval:n { 3 + 4 } }
while using \example:x or \example:e instead results in

\example:n { 3 , 7 }

at the cost of being protected (for x type) or very much slower in old engines (for e type).
If you use f type expansion in conditional processing then you should stick to using TF
type functions only as the expansion does not finish any \if... \fi: itself!

It is important to note that both f- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the first non-expandable token. This means
for example that both

\tl_set:No \1_tmpa_tl { { \g_tmpb_tl } }

27

\exp_args:Nc *
\exp_args:cc *

and
\tl_set:Nf \1_tmpa_tl { { \g_tmpb_tl } }

leave \g_tmpb_t1 unchanged: { is the first token in the argument and is non-expandable.
It is usually best to keep the following in mind when using variant forms.

o Variants with x-type arguments (that are fully expanded before being passed to
the n-type base function) are never expandable even when the base function is.
Such variants cannot work correctly in arguments that are themselves subject to
expansion. Consider using f or e expansion.

o In contrast, e expansion (full expansion, almost like x except for the treatment of #)
does not prevent variants from being expandable (if the base function is). The draw-
back is that e expansion is very much slower in old engines (before 2019). Consider
using f expansion if that type of expansion is sufficient to perform the required
expansion, or x expansion if the variant will not itself need to be expandable.

e Finally £ expansion only expands the front of the token list, stopping at the first
non-expandable token. This may fail to fully expand the argument.

When speed is essential (for functions that do very little work and whose variants are
used numerous times in a document) the following considerations apply because internal
functions for argument expansion come in two flavours, some faster than others.

e Arguments that might need expansion should come first in the list of arguments.

e Arguments that should consist of single tokens N, c, V, or v should come first among
these.

e Arguments that appear after the first multi-token argument n, f, e, or o require
slightly slower special processing to be expanded. Therefore it is best to use the
optimized functions, namely those that contain only N, ¢, V, and v, and, in the last
position, o, £, e, with possible trailing N or n or T or F, which are not expanded.
Any x-type argument causes slightly slower processing.

4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

\exp_args:Nc (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a control
sequence. The result is inserted into the input stream after reinsertion of the (function).
Thus the (function) may take more than one argument: all others are left unchanged.

The :cc variant constructs the (function) name in the same manner as described for
the (tokens).

TEXhackers note: Protected macros that appear in a c-type argument are expanded
despite being protected; \exp_not :n also has no effect. An internal error occurs if non-characters
or active characters remain after full expansion, as the conversion to a control sequence is not
possible.

28

\exp_args:No *

\exp_args:NV x

\exp_args:Nv *

\exp_args:Ne *

New: 2018-05-15

\exp_args:Nf x

\exp_args:No (function) {(tokens)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded once, and the result is inserted in braces into the input stream af-
ter reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:NV (function) (variable)

This function absorbs two arguments (the names of the (function) and the (variable)).
The content of the (variable) are recovered and placed inside braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:Nv (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. This control sequence should be the name of a (variable). The content of
the (variable) are recovered and placed inside braces into the input stream after reinser-
tion of the (function). Thus the (function) may take more than one argument: all others
are left unchanged.

TEXhackers note: Protected macros that appear in a v-type argument are expanded
despite being protected; \exp_not :n also has no effect. An internal error occurs if non-characters
or active characters remain after full expansion, as the conversion to a control sequence is not
possible.

\exp_args:Ne (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and exhaus-
tively expands the (tokens). The result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

TEXhackers note: This relies on the \expanded primitive when available (in LuaTEX and
starting around 2019 in other engines). Otherwise it uses some fall-back code that is very much
slower. As a result it should only be used in performance-critical code if typical users have a
recent installation of the TEX ecosystem.

\exp_args:Nf (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are fully expanded until the first non-expandable token is found (if that is a
space it is removed), and the result is inserted in braces into the input stream after rein-
sertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

29

\exp_args:Nx

\exp_args:NNc =
\exp_args:NNo =
\exp_args:NNV *
\exp_args:NNv x
\exp_args:NNe *
\exp_args:NNf *
\exp_args:Ncc =
\exp_args:Nco *
\exp_args:NcV *
\exp_args:Ncv *
\exp_args:Ncf *
\exp_args:NVV *

Updated: 2018-05-15

\exp_args:Nnc *
\exp_args:Nno x
\exp_args:NnV x
\exp_args:Nnv *
\exp_args:Nne *
\exp_args:Nnf x
\exp_args:Noc *
\exp_args:Noo x
\exp_args:Nof x
\exp_args:NVo *
\exp_args:Nfo *
\exp_args:Nff x

Updated: 2018-05-15

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNx
Ncx
Nnx
Nox
Nxo
Nxx

\exp_args:Nx (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and exhaus-
tively expands the (tokens). The result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

5 Manipulating two arguments

\exp_args:NNc (tokem) (tokens) {(tokens)}

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Noo (token) {(tokensi)} {(tokenss)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions need slower processing.

\exp_args:NNx (token;) (tokenz) {(tokens)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable due to their x-type argument.

30

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNo
NNNV
NNNv
Nccce
NcNc
NcNo
Ncco

Lol S S . D I o

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNcf
NNno
NNnV
NNoo
NNVV
Ncno
NcnV
Ncoo
NcVV
Nnnc
Nnno
Nnnf
Nnff
Nooo
Noof
Nffo

Xk X b X X b X o X X ok X ot X X

\exp_args:NNNx
\exp_args:NNnx
\exp_args:NNox
\exp_args:Nccx
\exp_args:Ncnx
\exp_args:Nnnx
\exp_args:Nnox
\exp_args:Noox

New: 2015-08-12

6 Manipulating three arguments

\exp_args:NNNo (token:) (tokens) (tokens) {(tokens)}

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
ete.

\exp_args:NNoo (token:) (tokens) {(tokens)} {(tokens)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc. These
functions need slower processing.

\exp_args:NNnx (tokeni) (tokens) {(tokensi)} {(tokensy)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

31

7 Unbraced expansion

\exp_last_unbraced:No
\exp_last_unbraced: (NV
\exp_last_unbraced:Ne
\exp_last_unbraced:NNo

\exp_last_unbraced: (NNV|NN£|Nco|NcV)

\exp_last_unbraced:Nno

\exp_last_unbraced:(Noo|Nfo)
\exp_last_unbraced:NNNo
\exp_last_unbraced:(NNNV|NNNf)
\exp_last_unbraced:NnNo
\exp_last_unbraced:NNNNo
\exp_last_unbraced:NNNNf

\exp_last_unbraced:Nno (token) {(tokensi)} {(tokensz)}
|Nv|Nf)

b S I S S S S D S S

Updated: 2018-05-15

\exp_last_unbraced:Nx

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, :Nfo and :NnNo variants
need slower processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \foo_bar:w { } \g_stop leads to an infinite loop, as the quark is £f-
expanded.

\exp_last_unbraced:Nx (function) {(tokens)}

This function fully expands the (tokens) and leaves the result in the input stream after
reinsertion of the (function). This function is not expandable.

\exp_last_two_unbraced

:Noo * \exp_last_two_unbraced:Noo (token) {(tokensi)} {(tokensz)}

\exp_after:wN x

This function absorbs three arguments and expands the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

\exp_after:wN (token;) (tokens)

Carries out a single expansion of (tokeng) (which may consume arguments) prior to the
expansion of (tokeny). If (tokens) has no expansion (for example, if it is a character) then
it is left unchanged. It is important to notice that (token;) may be any single token, in-
cluding group-opening and -closing tokens ({ or } assuming normal TEX category codes).
Unless specifically required this should be avoided: expansion should be carried out using
an appropriate argument specifier variant or the appropriate \exp_arg:N function.

TEXhackers note: This is the TEX primitive \expandafter renamed.

32

\exp_not:N *

\exp_not:c *

\exp_not:n *

\exp_not:o *

\exp_not:V *

8 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves disappear after the expansion has completed.

\exp_not:N (token)

Prevents expansion of the (token) in a context where it would otherwise be expanded,
for example an x-type argument or the first token in an o or e or £ argument.

TEXhackers note: This is the TEX \noexpand primitive. It only prevents expansion. At
the beginning of an f-type argument, a space (token) is removed even if it appears as \exp_not:N
\c_space_token. In an x-expanding definition (\cs_new:Npx), a macro parameter introduces
an argument even if it appears as \exp_not:N # 1. This differs from \exp_not:n.

\exp_not:c {(tokens)}

Expands the (tokens) until only characters remain, and then converts this into a control
sequence. Further expansion of this control sequence is then inhibited using \exp_not:N.

TEXhackers note: Protected macros that appear in a c-type argument are expanded
despite being protected; \exp_not :n also has no effect. An internal error occurs if non-characters
or active characters remain after full expansion, as the conversion to a control sequence is not
possible.

\exp_not:n {(tokens)}

Prevents expansion of the (tokens) in an e or x-type argument. In all other cases the
(tokens) continue to be expanded, for example in the input stream or in other types of
arguments such as c, £, v. The argument of \exp_not:n must be surrounded by braces.

TEXhackers note: This is the e-TEX \unexpanded primitive. In an x-expanding definition
(\cs_new:Npx), \exp_not:n {#1} is equivalent to ##1 rather than to #1, namely it inserts the
two characters # and 1. In an e-type argument \exp_not:n {#} is equivalent to #, namely it
inserts the character #.

\exp_not:o {(tokens)}

Expands the (tokens) once, then prevents any further expansion in x-type or e-type
arguments using \exp_not:n.

\exp_not:V (variable)

Recovers the content of the (variable), then prevents expansion of this material in x-type
or e-type arguments using \exp_not:n.

33

\exp_not:v *

\exp_not:e *

\exp_not:f *

\exp_stop_£f: «*

Updated: 2011-06-03

\exp_not:v {(tokens)}

Expands the (tokens) until only characters remains, and then converts this into a control
sequence which should be a (variable) name. The content of the (variable) is recovered,
and further expansion in x-type or e-type arguments is prevented using \exp_not:n.

TEXhackers note: Protected macros that appear in a v-type argument are expanded
despite being protected; \exp_not :n also has no effect. An internal error occurs if non-characters
or active characters remain after full expansion, as the conversion to a control sequence is not
possible.

\exp_not:e {(tokens)}

Expands (tokens) exhaustively, then protects the result of the expansion (including any
tokens which were not expanded) from further expansion in e or x-type arguments using
\exp_not:n. This is very rarely useful but is provided for consistency.

\exp_not:f {(tokens)}

Expands (tokens) fully until the first unexpandable token is found (if it is a space it
is removed). Expansion then stops, and the result of the expansion (including any to-
kens which were not expanded) is protected from further expansion in x-type or e-type
arguments using \exp_not:n.

\foo_bar:f { (tokens) \exp_stop_f: (more tokens) }

This function terminates an f-type expansion. Thus if a function \foo_bar:f starts
an f-type expansion and all of (tokens) are expandable \exp_stop_f: terminates the
expansion of tokens even if (more tokens) are also expandable. The function itself is an
implicit space token. Inside an x-type expansion, it retains its form, but when typeset it
produces the underlying space ().

9 Controlled expansion

The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to
calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. These commands
are used throughout the kernel code, but we hope that outside the kernel there will be
little need to resort to them. Instead the argument manipulation methods document
above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to
expand several tokens in one go. The next set of commands provide this functionality.
Be aware that it is absolutely required that the programmer has full control over the
tokens to be expanded, i.e., it is not possible to use these functions to expand unknown
input as part of (expandable-tokens) as that will break badly if unexpandable tokens are
encountered in that place!

34

\exp:w *
\exp_end: *

New: 2015-08-23

\exp:w *
\exp_end_continue_f:w *

New: 2015-08-23

\exp:w (expandable tokens) \exp_end:

Expands (ezpandable-tokens) until reaching \exp_end: at which point expansion stops.
The full expansion of (expandable tokens) has to be empty. If any token in {expandable
tokens) or any token generated by expanding the tokens therein is not expandable the
expansion will end prematurely and as a result \exp_end: will be misinterpreted later
on.?

In typical use cases the \exp_end: is hidden somewhere in the replacement text of
(expandable-tokens) rather than being on the same expansion level than \exp:w, e.g., you

may see code such as
\exp:w \@Q_case:NnTF #1 {#2} { } { }
where somewhere during the expansion of \@@_case :NnTF the \exp_end: gets generated.

TEXhackers note: The current implementation uses \romannumeral hence ignores space
tokens and explicit signs + and - in the expansion of the (ezpandable tokens), but this should
not be relied upon.

\exp:w (expandable-tokens) \exp_end_continue_f:w (further-tokens)

Expands (expandable-tokens) until reaching \exp_end_continue_f:w at which point ex-
pansion continues as an f-type expansion expanding (further-tokens) until an unexpand-
able token is encountered (or the f-type expansion is explicitly terminated by \exp_-
stop_£f:). As with all f-type expansions a space ending the expansion gets removed.

The full expansion of (ezxpandable-tokens) has to be empty. If any token in
(expandable-tokens) or any token generated by expanding the tokens therein is not ex-
pandable the expansion will end prematurely and as a result \exp_end_continue_f:w
will be misinterpreted later on.*

In typical use cases (expandable-tokens) contains no tokens at all, e.g., you will see
code such as

\exp_after:wN { \exp:w \exp_end_continue_f:w #2 }

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical
reasons this has to happen using two tokens (if they would be hidden inside another
command \exp_after:wN would only expand the command but not trigger any additional
f-expansion).

You might wonder why there are two different approaches available, after all the
effect of

\exp:w (expandable-tokens) \exp_end:
can be alternatively achieved through an f-type expansion by using \exp_stop_f:, i.e.
\exp:w \exp_end_continue_f:w (expandable-tokens) \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and
less expansion internally) so in places where such performance really matters and where
we want to explicitly stop the expansion at a defined point the first form is preferable.

3Due to the implementation you might get the character in position 0 in the current font (typically
“¢”) in the output without any error message!
4In this particular case you may get a character into the output as well as an error message.

35

\exp:w * \exp:w (expandable-tokens) \exp_end_continue_f:nw (further-tokens)

\exp_end_continue f:nw * The difference to \exp_end_continue_f:w is that we first we pick up an argument which

New: 2015-08-23 i3 then returned to the input stream. If (further-tokens) starts with space tokens then
these space tokens are removed while searching for the argument. If it starts with a brace
group then the braces are removed. Thus such spaces or braces will not terminate the
f-type expansion.

10 Internal functions

\::n \cs_new:Npn \exp_args:Ncof { \::c \::o \::f \::: }
t N Internal forms for the base expansion types. These names do not conform to the general
\: IC) WTEX3 approach as this makes them more readily visible in the log and so forth. They
\ ;0 should not be used outside this module.
\::e
\::f
\::x
\::v
\::V
\ . .
::o_unbraced \cs_new:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }

::e_unbraced
::f_unbraced
::X_unbraced
::v_unbraced
::V_unbraced

Internal forms for the expansion types which leave the terminal argument unbraced.
These names do not conform to the general I2TEX3 approach as this makes them more
readily visible in the log and so forth. They should not be used outside this module.

P

36

\tl_new:N
\tl_new:c

\tl_const:Nn
\tl_const:(Nx|cn|cx)

\tl_clear:N

\tl_clear:c
\tl_gclear:N

\tl_gclear:c

Part VI
The 13tl package
Token lists

TEX works with tokens, and ITEX3 therefore provides a number of functions to deal with
lists of tokens. Token lists may be present directly in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored in a so-called “token list variable”, which have the suffix t1: a token
list variable can also be used as the argument to a function, for example

\foo:N \1_some_tl

In both cases, functions are available to test and manipulate the lists of tokens, and these
have the module prefix t1. In many cases, functions which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”,
or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single
non-space token or a brace group, with optional leading explicit space characters (each
item is thus itself a token list). A token is either a normal N argument, or , {, or }
(assuming normal TEX category codes). Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, 1 and d), but thirteen tokens ({, H, e, 1, 1, o, },), w,
o, r, 1 and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

1 Creating and initialising token list variables

\tl_new:N (tl var)

Creates a new (tl var) or raises an error if the name is already taken. The declaration is
global. The (¢l var) is initially empty.

\tl_const:Nn (t1 var) {(token list)}

Creates a new constant (¢l var) or raises an error if the name is already taken. The value
of the (tl var) is set globally to the (token list).

\tl_clear:N (tl var)

Clears all entries from the (t var).

37

\tl_clear_new:N
\tl_clear_new:c
\tl_gclear_new:N
\tl_gclear_new:c

\tl_set_eq:NN
\tl_set_eq:(cN|Nc|cc)
\tl_gset_eq:NN
\tl_gset_eq:(cN|Nc|cc)

\t1l_concat:NNN
\tl_concat:ccc
\tl_gconcat :NNN
\tl_gconcat:ccc

New: 2012-05-18

\tl_if_exist_p:N
\tl_if_exist_p:c *
\tl_if exist:NTF *
\tl_if exist:cTF %

New: 2012-03-03

\tl_clear_new:N (tl var)

Ensures that the (¢l var) exists globally by applying \t1_new:N if necessary, then applies
\tl_(g)clear:N to leave the (¢ var) empty.

\tl_set_eq:NN (tl1 var;) (tl vars)

Sets the content of (¢l var;) equal to that of (tl vars).

\tl_concat:NNN (tl1 vari) (tl vars) (tl vars)

Concatenates the content of (tl vary) and (¢l vars) together and saves the result in
(tl vary). The (#l vary) is placed at the left side of the new token list.

\tl_if_exist_p:N (tl var)
\tl_if_exist:NTF (tl var) {(true code)} {(false code)}

Tests whether the (tl var) is currently defined. This does not check that the (¢ var)
really is a token list variable.

2 Adding data to token list variables

\tl_set:Nn

\tl_set:Nn (t1 var) {(tokens)}

\tl_set:(NV|Nv|No|Nf|Nx|cn|cV|cv|co|cf|cx)

\tl_gset:Nn

\tl_gset:(NV|Nv|No|Nf|Nx|cn|cV|cv|co|cE|cx)

Sets (tl var) to contain (tokens), removing any previous content from the variable.

\tl_put_left:Nn

\tl_put_left:Nn (t1 var) {(tokemns)}

\tl_put_left:(NV|No|Nx|cn|cV|co|cx)

\tl_gput_left:Nn

\tl_gput_left:(NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the left side of the current content of (¢l var).

\tl_put_right:Nn

\tl_put_right:Nn (t1 var) {(tokens)}

\tl_put_right:(NV|No|Nx|cn|cV|co|cx)

\tl_gput_right:Nn

\tl_gput_right:(NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the right side of the current content of (¢l var).

38

\tl_replace_once:Nnn
\tl_replace_once:cnn
\tl_greplace_once:Nnn
\tl_greplace_once:cnn

Updated: 2011-08-11

\tl_replace_all:Nnn
\tl_replace_all:cnn
\tl_greplace_all:Nnn
\tl_greplace_all:cnn

Updated: 2011-08-11

\tl_remove_once:Nn
\tl_remove_once:cn
\tl_gremove_once:Nn
\tl_gremove_once:cn

Updated: 2011-08-11

\tl_remove_all:Nn
\tl_remove_all:cn
\tl_gremove_all:Nn
\tl_gremove_all:cn

Updated: 2011-08-11

3 Modifying token list variables

\tl_replace_once:Nnn (tl1 var) {(old tokens)} {(new tokens)}

Replaces the first (leftmost) occurrence of (old tokens) in the (tl var) with (new tokens).
(Old tokens) cannot contain {, } or # (more precisely, explicit character tokens with
category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_replace_all:Nnn (tl var) {(old tokens)} {(new tokens)}

Replaces all occurrences of (old tokens) in the (] var) with (new tokens). (Old tokens)
cannot contain {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function
operates from left to right, the pattern (old tokens) may remain after the replacement
(see \t1l_remove_all:Nn for an example).

\tl_remove_once:Nn (t1 var) {(tokens)}

Removes the first (leftmost) occurrence of (tokens) from the (¢ var). (Tokens) cannot
contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_remove_all:Nn (tl1 var) {(tokens)}

Removes all occurrences of (tokens) from the (¢ var). (Tokens) cannot contain {, } or #
(more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-
group), and tokens with category code 6). As this function operates from left to right,
the pattern (tokens) may remain after the removal, for instance,

\tl_set:Nn \1_tmpa_t1l {abbccd} \tl_remove_all:Nn \1_tmpa_t1l {bc}

results in \1_tmpa_t1 containing abcd.

4 Reassigning token list category codes

These functions allow the rescanning of tokens: re-apply TEX’s tokenization process to
apply category codes different from those in force when the tokens were absorbed. Whilst
this functionality is supported, it is often preferable to find alternative approaches to
achieving outcomes rather than rescanning tokens (for example construction of token lists
token-by-token with intervening category code changes or using \char_generate:nn).

39

\tl_set_rescan:Nnn

\tl_set_rescan:Nnn (t1 var) {(setup)} {(tokens)}

\tl_set_rescan:(Nno|Nnx|cnn|cno|cnx)

\tl_gset_rescan:Nnn

\tl_gset_rescan:(Nno|Nnx|cnn|cno|cnx)

Updated: 2015-08-11

\tl_rescan:nn

Updated: 2015-08-11

\tl_if_blank_p:n *
\tl_if_blank_p:(V]o) *
\tl_if_blank:nTF *
\tl_if_blank:(V|o)TF *

Sets (tl var) to contain (tokens), applying the category code régime specified in the (setup)
before carrying out the assignment. (Category codes applied to tokens not explicitly
covered by the (setup) are those in force at the point of use of \t1l_set_rescan:Nnn.)
This allows the (# var) to contain material with category codes other than those that
apply when (tokens) are absorbed. The (setup) is run within a group and may contain
any valid input, although only changes in category codes are relevant. See also \tl_-
rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \tl_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

\tl_rescan:nn {(setup)} {(tokens)}

Rescans (tokens) applying the category code régime specified in the (setup), and leaves
the resulting tokens in the input stream. (Category codes applied to tokens not explicitly
covered by the (setup) are those in force at the point of use of \tl_rescan:nn.) The
(setup) is run within a group and may contain any valid input, although only changes in
category codes are relevant. See also \t1l_set_rescan:Nnn, which is more robust than
using \t1l_set:Nn in the (tokens) argument of \t1_rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \t1l_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

5 Token list conditionals

\tl_if_blank_p:n {(token list)}
\tl_if_blank:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) consists only of blank spaces (i.e. contains no item). The test is
true if (token list) is zero or more explicit space characters (explicit tokens with character
code 32 and category code 10), and is false otherwise.

40

\tl_if_empty_p:N
\tl_if_empty_p:c
\tl_if_empty:NTF
\tl_if_empty:cTF

L I o

\tl_if_empty_p:n
\tl_if_empty_p:(V]o)
\tl_if_empty:nTF
\tl_if_empty:(V|o)TF

L D I o

New: 2012-05-24
Updated: 2012-06-05

\tl_if_eq_p:NN
\tl_if_eq_p:(Nc|cN|cc)
\tl_if_eq:NNTF
\tl_if_eq:(Nc|cN|cc)TF

L S

\tl_if_eq:nnTF

\tl_if_in:NnTF
\tl_if_in:cnTF

\tl_if_in:nnTF
\tl_if_in:(Vn|on|no)TF

\tl_if_novalue_p:n =%
\tl_if_novalue:nTF x

New: 2017-11-14

\tl_if_empty_p:N (t1 var)
\tl_if_empty:NTF (tl var) {(true code)} {(false code)}

Tests if the (token list variable) is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:n {(token list)}
\tl_if_empty:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) is entirely empty (i.e. contains no tokens at all).

\tl_if_eq_p:NN (tl1 var;) (tl varp)
\tl_if_eq:NNTF (t1 vari) (tl vars) {(true code)} {(false code)}

Compares the content of two (token list variables) and is logically true if the two contain
the same list of tokens (i.e. identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \1_tmpa_tl { abc }
\tl_set:Nx \1_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NNTF \1_tmpa_tl \1_tmpb_tl { true } { false }

yields false.

\tl_if_eq:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token list;) and (token lists) contain the same list of tokens, both in respect of
character codes and category codes.

\tl_if_in:NnTF (t1 var) {(token list)} {(true code)} {(false code)}

Tests if the (token list) is found in the content of the (¢l var). The (token list) cannot
contain the tokens {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:nnTF {(token listi)} {(token listqs)} {(true code)} {(false code)}

Tests if (token listz) is found inside (token list;). The (token listy) cannot contain the
tokens {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_if_novalue_p:n {(token list)}
\tl_if_novalue:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) is exactly equal to the special \c_novalue_t1l marker. This
function is intended to allow construction of flexible document interface structures in
which missing optional arguments are detected.

41

\tl_if_single_p:N x
\tl_if_single_p:c =
\tl_if_single:NTF *
\tl_if_single:cTF %

Updated: 2011-08-13

\tl_if_single_p:n *
\tl_if_single:nTF *

Updated: 2011-08-13

\tl_if_single_token_p:n *
\tl_if_single_token:nTF x

\tl_case:
\tl_case:

\tl_case
\tl_case

Nn *
cn *
:NnTF %
:cnTF %

New: 2013-07-24

\tl_map_function:NN
\tl_map_function:cN %

Updated: 2012-06-29

\tl_map_function:nN 3

Updated: 2012-06-29

\tl_if_single_p:N (tl1 var)

\tl_if_single:NTF (t1 var) {(true code)} {(false code)}

Tests if the content of the (¢l var) consists of a single item, i.e. is a single normal token
(neither an explicit space character nor a begin-group character) or a single brace group,
surrounded by optional spaces on both sides. In other words, such a token list has token
count 1 according to \tl_count:N.

\tl_if_single_p:n {(token list)}

\tl_if_single:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) has exactly one item, i.e. is a single normal token (neither an
explicit space character nor a begin-group character) or a single brace group, surrounded
by optional spaces on both sides. In other words, such a token list has token count 1
according to \t1l_count:n.

\tl_if_single_token_p:n {(token list)}

\tl_if_single_token:nTF {(token list)} {(true code)} {(false code)}

Tests if the token list consists of exactly one token, i.e. is either a single space character
or a single “normal” token. Token groups ({...}) are not single tokens.

\tl_case:NnTF (test token list variable)
{

(token list variable casei)

(token list variable cases)

(code case1)}
(code casez)}

{
{

(token list variable case,) {(code case,)}

}
{(true code)}
{(false code)}

This function compares the (test token list variable) in turn with each of the (token
list variable cases). If the two are equal (as described for \t1_if_eq:NNTF) then the
associated (code) is left in the input stream and other cases are discarded. If any of
the cases are matched, the (true code) is also inserted into the input stream (after the
code for the appropriate case), while if none match then the (false code) is inserted. The
function \t1l_case:Nn, which does nothing if there is no match, is also available.

6 Mapping to token lists

\tl_map_function:NN (tl1 var) (function)

Applies (function) to every (item) in the (¢l var). The (function) receives one argument
for each iteration. This may be a number of tokens if the (item) was stored within
braces. Hence the (function) should anticipate receiving n-type arguments. See also
\tl_map_function:nN.

\tl_map_function:nN {(token list)} (function)

Applies (function) to every (item) in the (token list), The (function) receives one ar-
gument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:NN.

42

\tl_map_inline:Nn
\tl_map_inline:cn

Updated: 2012-06-29

\tl_map_inline:nn

Updated: 2012-06-29

\tl_map_variable:NNn
\tl_map_variable:cNn

Updated: 2012-06-29

\tl_map_variable:nNn

Updated: 2012-06-29

\tl_map_break:

Updated: 2012-06-29

\tl_map_inline:Nn (t1 var) {(inline function)}

Applies the (inline function) to every (item) stored within the (¢ wvar). The (inline
function) should consist of code which receives the (item) as #1. See also \t1l_map_-
function:NN.

\tl_map_inline:nn {(token list)} {(inline function)}

Applies the (inline function) to every (item) stored within the (token list). The (inline
function) should consist of code which receives the (item) as #1. See also \t1l_map_-
function:nN.

\tl_map_variable:NNn (tl var) (variable) {{code)}

Stores each (item) of the (tl var) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. See also \t1_map_inline:Nn.

\tl_map_variable:nNn {(token list)} (variable) {({code)}

Stores each (item) of the (token list) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. See also \t1_map_inline:nn.

\tl_map_break:

Used to terminate a \t1_map_... function before all entries in the (token list variable)
have been processed. This normally takes place within a conditional statement, for
example

\tl_map_inline:Nn \1l_my_tl
{
\str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
% Do something useful

}

See also \tl_map_break:n. Use outside of a \tl_map_... scenario leads to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (tokens) are inserted into the input stream. This depends on the design of the mapping
function.

43

\tl_map_break:n w

Updated: 2012-06-29

\tl_to_str:n %
\tl_to_str:V =%

\tl_to_str:N =
\tl_to_str:c %

\tl_map_break:n {(code)}

Used to terminate a \t1_map_... function before all entries in the (token list variable)
have been processed, inserting the (code) after the mapping has ended. This normally
takes place within a conditional statement, for example

\tl_map_inline:Nn \1l_my_tl
{
\str_if_eq:nnT { #1 } { bingo }
{ \tl_map_break:n { <code> } }
% Do something useful

}

Use outside of a \t1_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

7 Using token lists

\tl_to_str:n {(token list)}

Converts the (token list) to a (string), leaving the resulting character tokens in the input
stream. A (string) is a series of tokens with category code 12 (other) with the exception
of spaces, which retain category code 10 (space). This function requires only a single
expansion. Its argument must be braced.

TgXhackers note: This is the e-TEX primitive \detokenize. Converting a (token list) to
a (string) yields a concatenation of the string representations of every token in the (token list).
The string representation of a control sequence is
« an escape character, whose character code is given by the internal parameter \escapechar,
absent if the \escapechar is negative or greater than the largest character code;

e the control sequence name, as defined by \cs_to_str:N;

e a space, unless the control sequence name is a single character whose category at the time
of expansion of \t1_to_str:n is not “letter”.

The string representation of an explicit character token is that character, doubled in the case
of (explicit) macro parameter characters (normally #). In particular, the string representation
of a token list may depend on the category codes in effect when it is evaluated, and the value
of the \escapechar: for instance \tl_to_str:n {\a} normally produces the three character
“backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the
escape character is negative and a is currently not a letter.

\tl_to_str:N (tl1 var)

Converts the content of the (¢l var) into a series of characters with category code 12
(other) with the exception of spaces, which retain category code 10 (space). This (string)
is then left in the input stream. For low-level details, see the notes given for \t1_to_-
str:n.

44

\tl_use:N *
\tl_use:c *

\tl_count:n *
\tl_count:(V|o) =

New: 2012-05-13

\tl_count:N %
\tl_count:c *

New: 2012-05-13

\tl_count_tokens:n x

New: 2019-02-25

\tl_reverse:n *
\tl_reverse:(V|o) %

Updated: 2012-01-08

\tl_reverse:N

\tl_reverse:c
\tl_greverse:N

\tl_greverse:c

Updated: 2012-01-08

\tl_use:N (tl1 var)

Recovers the content of a (tl var) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
(tl var) directly without an accessor function.

8 Working with the content of token lists

\tl_count:n {(tokens)}

Counts the number of (items) in (tokens) and leaves this information in the input stream.
Unbraced tokens count as one element as do each token group ({...}). This process
ignores any unprotected spaces within (tokens). See also \tl_count:N. This function
requires three expansions, giving an (integer denotation,).

\tl_count:N (tl1 var)

Counts the number of token groups in the (¢ wvar) and leaves this information in the
input stream. Unbraced tokens count as one element as do each token group ({...3}).
This process ignores any unprotected spaces within the (¢ var). See also \t1l_count:n.
This function requires three expansions, giving an (integer denotation).

\tl_count_tokens:n {(tokens)}

Counts the number of TEX tokens in the (tokens) and leaves this information in the input
stream. Every token, including spaces and braces, contributes one to the total; thus for
instance, the token count of a~{bc} is 6.

\tl_reverse:n {(token list)}

Reverses the order of the (items) in the (token list), so that (itemy)(items) (items)
... (itemy,) becomes (item,). .. (items)(items)(item;). This process preserves unprotected
space within the (token list). Tokens are not reversed within braced token groups, which
keep their outer set of braces. In situations where performance is important, consider
\tl_reverse_items:n. See also \tl_reverse:N.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type argument expansion.

\tl_reverse:N (tl1 var)

Reverses the order of the (items) stored in (tl wvar), so that (item)(itemz)(items)
... (item,) becomes (itemy,). .. (itemg)(items)(item;). This process preserves unprotected
spaces within the (token list variable). Braced token groups are copied without reversing
the order of tokens, but keep the outer set of braces. See also \tl_reverse:n, and, for
improved performance, \t1l_reverse_items:n.

45

\tl_reverse_items:n *

New: 2012-01-08

\tl_trim_spaces:n *
\tl_trim_spaces:o *

New: 2011-07-09
Updated: 2012-06-25

\tl_trim_spaces_apply:nN x
\tl_trim_spaces_apply:oN *

New: 2018-04-12

\tl_trim_spaces:N
\tl_trim_spaces:c
\tl_gtrim_spaces:N
\tl_gtrim_spaces:c

New: 2011-07-09

\tl_sort:Nn
\tl_sort:cn
\tl_gsort:Nn
\tl_gsort:cn

New: 2017-02-06

\tl_sort:nN %

New: 2017-02-06

\tl_reverse_items:n {(token list)}

Reverses the order of the (items) stored in (tl var), so that {(item) (items)H (items)}
... {(item,,)} becomes {(item,)} ... {{items)}{(items)}{(item;)}. This process removes
any unprotected space within the (token list). Braced token groups are copied without
reversing the order of tokens, and keep the outer set of braces. Items which are initially
not braced are copied with braces in the result. In cases where preserving spaces is
important, consider the slower function \t1_reverse:n.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type argument expansion.

\tl_trim_spaces:n {(token list)}

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and leaves the result in the input
stream.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type argument expansion.

\tl_trim_spaces_apply:nN {(token 1list)} (function)

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and passes the result to the (function)
as an n-type argument.

\tl_trim_spaces:N (tl1 var)

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the content of the (tl var). Note that this therefore
resets the content of the variable.

\tl_sort:Nn (tl var) {(comparison code)}

Sorts the items in the (¢ var) according to the (comparison code), and assigns the result
to (¢l var). The details of sorting comparison are described in Section 1.

\tl_sort:nN {(token 1ist)} (conditional)

Sorts the items in the (token list), using the (conditional) to compare items, and leaves
the result in the input stream. The (conditional) should have signature :nnTF, and return
true if the two items being compared should be left in the same order, and false if the
items should be swapped. The details of sorting comparison are described in Section 1.

TgXhackers note: The result is returned within \exp_not :n, which means that the token
list does not expand further when appearing in an x-type or e-type argument expansion.

46

\tl_head:N *
\tl_head:n *
\tl_head:(V|v|f) =

Updated: 2012-09-09

\tl_head:w *

9 The first token from a token list

Functions which deal with either only the very first item (balanced text or single normal
token) in a token list, or the remaining tokens.

\tl_head:n {(token list)}

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded; for example

\tl_head:n { abc }
and
\tl_head:n { ~ abc }

both leave a in the input stream. If the “head” is a brace group, rather than a single
token, the braces are removed, and so

\tl_head:n { ~ { ~ab } c }

yields _ab. A blank (token list) (see \t1_if_blank:nTF) results in \t1_head:n leaving
nothing in the input stream.

TEXhackers note: The result is returned within \exp_not :n, which means that the token
list does not expand further when appearing in an x-type argument expansion.

\tl_head:w (token list) { } \g_stop

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded. A blank (token list) (which consists only of space
characters) results in a low-level TEX error, which may be avoided by the inclusion of an
empty group in the input (as shown), without the need for an explicit test. Alternatively,
\tl_if_blank:nF may be used to avoid using the function with a “blank” argument. This
function requires only a single expansion, and thus is suitable for use within an o-type
expansion. In general, \t1_head:n should be preferred if the number of expansions is
not critical.

47

\tl_tail:N *
\tl_tail:n *
\tl_tail:(V|v|f) *

Updated: 2012-09-01

\tl_tail:n {(token list)}

Discards all leading explicit space characters (explicit tokens with character code 32 and
category code 10) and the first (item) in the (token list), and leaves the remaining tokens
in the input stream. Thus for example

\tl_tail:n { a ~ {bc} d }
and
\tl_tail:n { ~ a ~ {bc} d }

both leave _{bc}d in the input stream. A blank (token list) (see \t1l_if_blank:nTF)
results in \t1l_tail:n leaving nothing in the input stream.

TgXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an x-type argument expansion.

\tl_if_head_eq_catcode_p:nN x \tl_if_head_eq_catcode_p:nN {(token list)
\tl_if_head_eq_catcode:nNTF * \tl_if_head_eq_catcode:nNTF {(token list)

(test token)

}
} (test token)

Updated: 2012-07-09

{(true code)} {(false code)}

Tests if the first (token) in the (token list) has the same category code as the (test token).
In the case where the (token list) is empty, the test is always false.

\tl_if_head_eq_charcode_p:nN x \tl_if_head_eq_charcode_p:nN {(token list)
\tl_if_head_eq_charcode_p:fN x \tl_if_head_eq_charcode:nNTF {(token list)

(test token)

}
} (test token)

\tl_if_head_eq_charcode:nNTF x {(true code)} {(false code)}
\tl_if_head_eq_charcode:fNTF x

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same character code as the (test token).
In the case where the (token list) is empty, the test is always false.

\tl_if_head_eq_meaning_p:nN x \tl_if_head_eq_meaning_p:nN {(token list)
\tl_if_head_eq_meaning:nNTF x \tl_if_head_eq_meaning:nNTF {(token list)

(test token)

}
} (test token)

Updated: 2012-07-09

{(true code)} {(false code)}

\tl_if_head_is_group_p:n *
\tl_if_head_is_group:nTF x

New: 2012-07-08

Tests if the first (token) in the (token list) has the same meaning as the (test token). In
the case where (token list) is empty, the test is always false.

\tl_if_head_is_group_p:n {(token list)}

\tl_if_head_is_group:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit begin-group character (with
category code 1 and any character code), in other words, if the (token list) starts with a
brace group. In particular, the test is false if the (token list) starts with an implicit token
such as \c_group_begin_token, or if it is empty. This function is useful to implement
actions on token lists on a token by token basis.

48

\tl_if_head_is_N_type_p:n * \tl_if_head_is_N_type_p:n {(token list)}
\tl_if_head_is_N_type:nTF % \tl_if_head_is_N_type:nTF {(token 1list)} {(true code)} {(false code)}

New: 2012-07-08

\tl_if_head_is_space_p:n *
\tl_if_head_is_space:nTF x

Updated: 2012-07-08

\tl_item:nn *
\tl_item:Nn %
\tl_item:cn =%

New: 2014-07-17

\tl_rand_item:N *
\tl_rand_item:c *
\tl_rand_item:n *

New: 2016-12-06

Tests if the first (token) in the (token list) is a normal N-type argument. In other words, it
is neither an explicit space character (explicit token with character code 32 and category
code 10) nor an explicit begin-group character (with category code 1 and any character
code). An empty argument yields false, as it does not have a “normal” first token. This
function is useful to implement actions on token lists on a token by token basis.

\tl_if_head_is_space_p:n {(token list)}

\tl_if_head_is_space:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit space character (explicit token
with character code 12 and category code 10). In particular, the test is false if the
(token list) starts with an implicit token such as \c_space_token, or if it is empty. This
function is useful to implement actions on token lists on a token by token basis.

10 Using a single item

\tl_item:nn {(token list)} {(integer expression)}

Indexing items in the (token list) from 1 on the left, this function evaluates the (integer
expression) and leaves the appropriate item from the (token list) in the input stream.
If the (integer expression) is negative, indexing occurs from the right of the token list,
starting at —1 for the right-most item. If the index is out of bounds, then the function
expands to nothing.

TgEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion.

\tl_rand_item:N (tl1 var)
\tl_rand_item:n {(token list)}

Selects a pseudo-random item of the (token list). If the (token list) is blank, the result
is empty. This is not available in older versions of XHTEX.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion.

49

\tl_range:Nnn x
\tl_range:nnn *

New: 2017-02-17
Updated: 2017-07-15

\tl_range:Nnn (tl1 var) {(start index)} {(end index)}
\tl_range:nnn {(token list)} {(start index)} {(end index)}

Leaves in the input stream the items from the (start index) to the {(end index) inclusive.
Spaces and braces are preserved between the items returned (but never at either end of
the list).

Here (start indez) and (end index) should be integer denotations. For describing in
detail the functions’ behavior, let m and n be the start and end index respectively. If
either is 0, the result is empty. A positive index means ‘start counting from the left end’,
a negative index means ‘start counting from the right end’. Let [be the count of the
token list.

The actual start point is determined as M = m if m > 0and as M =1+ m + 1
if m < 0. Similarly the actual end point is N =nifn >0and N =1+n+1ifn <0.
If M > N, the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s < 0 or s > [.

Spaces in between items in the actual range are preserved. Spaces at either end
of the token list will be removed anyway (think to the token list being passed to
\tl_trim_spaces:n to begin with.

Thus, with [= 7 as in the examples below, all of the following are equivalent and
result in the whole token list

\tl_range:nnn { abcd~{e{}}fg >} {1} {7 2%

\tl_range:nnn { abcd~{e{}}fg } {1} { 12 }
\tl_range:nnn { abcd~{e{}}fg } { -7 } { 7 }
\tl_range:nnn { abcd~{e{}}fg } { -12 } { 7 }

Here are some more interesting examples. The calls

53} }
-3 1}
53} }

:nnn {
:nnn {
:nnn {
:nnn {

\iow_term:x { \tl_range
\iow_term:x { \tl_range
\iow_term:x { \tl_range
\iow_term:x { \tl_range

abcd{e{}}fg P A
abcd{e{}}fg o
abcd{e{}}fg 6 + {
abcd{e{}}fg } { -6 » { -3} }

r{2
{2
Y A{ -

are all equivalent and will print bcd{e{}} on the terminal; similarly

\iow_term:x { \tl_range:nnn { abcd~{e{}}fg } {2} {51} }

\iow_term:x { \tl_range:nnn { abcd~{e{}}fg >} {23+ { -3} 1}
\iow_term:x { \tl_range:nnn { abcd~{e{}}fg } { -6 } {56} }
\iow_term:x { \tl_range:nnn { abcd~{e{}}fg } { -6 } { -3 } }

are all equivalent and will print bed {e{}} on the terminal (note the space in the middle).
To the contrary,

\tl_range:nnn { abcd~{e{}}f } { 2} { 4}

will discard the space after ‘d‘.

If we want to get the items from the third to the last, the call is \t1_range:nnn { <t1> } { 3 } { -

Similarly, for discarding the last item, we can do \t1_range:nnn { <t1> } { 1 } { -2 }.
The behavior of \t1_range:Nnn is exactly the same, acting on the contents of the
tl variable.

For improved performance, see \t1_range_braced:nnn and \tl_range_unbraced:nnn.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion. 50

\t1l_show:N
\tl_show:c

Updated: 2015-08-01

\tl_show:n

Updated: 2015-08-07

\tl_log:N
\tl_log:c

New: 2014-08-22
Updated: 2015-08-01

\tl_log:n

New: 2014-08-22
Updated: 2015-08-07

\c_empty_t1

\c_novalue_t1l

New: 2017-11-14

\c_space_tl

11 Viewing token lists

\tl_show:N (t1 var)

Displays the content of the (¢l var) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\tl_show:n {(token list)}

Displays the (token list) on the terminal.

TgXhackers note: This is similar to the e-TEX primitive \showtokens, wrapped to a fixed
number of characters per line.

\tl_log:N (tl1 var)

Writes the content of the (¢ var) in the log file. See also \t1_show:N which displays the
result in the terminal.

\tl_log:n {(token list)}

Writes the (token list) in the log file. See also \t1l_show:n which displays the result in
the terminal.

12 Constant token lists

Constant that is always empty.

A marker for the absence of an argument. This constant t1 can safely be typeset (¢f. \q_-
nil), with the result being -NoValue-. It is important to note that \c_novalue_t1 is
constructed such that it will not match the simple text input -NoValue-, i.e. that

\tl_if_eq:VnTF \c_novalue_tl { -NoValue- }

is logically false. The \c_novalue_t1 marker is intended for use in creating document-
level interfaces, where it serves as an indicator that an (optional) argument was omitted.
In particular, it is distinct from a simple empty t1.

An explicit space character contained in a token list (compare this with \c_space_token).
For use where an explicit space is required.

o1

\1_tmpa_tl
\1_tmpb_tl

\g_tmpa_t1l
\g_tmpb_t1l

13 Scratch token lists

Scratch token lists for local assignment. These are never used by the kernel code, and so
are safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch token lists for global assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

52

\str_new:N

\str_new:c

New: 2015-09-18

\str_const:Nn
\str_const: (NV|Nx|cn|cV|cx)

New: 2015-09-18
Updated: 2018-07-28

Part VII
The 13str package: Strings

TEX associates each character with a category code: as such, there is no concept of
a “string” as commonly understood in many other programming languages. However,
there are places where we wish to manipulate token lists while in some sense “ignoring”
category codes: this is done by treating token lists as strings in a TEX sense.

A TEX string (and thus an expl3 string) is a series of characters which have category
code 12 (“other”) with the exception of space characters which have category code 10
(“space”). Thus at a technical level, a TEX string is a token list with the appropriate
category codes. In this documentation, these are simply referred to as strings.

String variables are simply specialised token lists, but by convention should be named
with the suffix ...str. Such variables should contain characters with category code 12
(other), except spaces, which have category code 10 (blank space). All the functions in
this module which accept a token list argument first convert it to a string using \t1_to_-
str:n for internal processing, and do not treat a token list or the corresponding string
representation differently.

As a string is a subset of the more general token list, it is sometimes unclear when
one should be used over the other. Use a string variable for data that isn’t primarily
intended for typesetting and for which a level of protection from unwanted expansion is
suitable. This data type simplifies comparison of variables since there are no concerns
about expansion of their contents.

The functions \cs_to_str:N, \t1l_to_str:n, \tl_to_str:N and \token_to_str:N
(and variants) generate strings from the appropriate input: these are documented in
I3basics, 13tl and 13token, respectively.

Most expandable functions in this module come in three flavours:

e \str_...:N, which expect a token list or string variable as their argument;
e \str_...:n, taking any token list (or string) as an argument;
e \str_..._ignore_spaces:n, which ignores any space encountered during the op-

eration: these functions are typically faster than those which take care of escaping
spaces appropriately.

1 Building strings

\str_new:N (str var)

Creates a new (str var) or raises an error if the name is already taken. The declaration
is global. The (str var) is initially empty.

\str_const:Nn (str var) {(token list)}

Creates a new constant (str var) or raises an error if the name is already taken. The
value of the (str var) is set globally to the (token list), converted to a string.

53

\str_clear:N

\str_clear:c
\str_gclear:N

\str_gclear:c

New: 2015-09-18

\str_clear_new:N
\str_clear_new:c

New: 2015-09-18

\str_set_eq:NN
\str_set_eq:(cN|Nc|cc)
\str_gset_eq:NN
\str_gset_eq:(cN|Nc|cc)

New: 2015-09-18

\str_concat : NNN
\str_concat:ccc
\str_gconcat :NNN
\str_gconcat:ccc

New: 2017-10-08

\str_set:Nn
\str_set:(NV|Nx|cn|cV|cx)
\str_gset:Nn
\str_gset:(NV|Nx|cn|cV|cx)

New: 2015-09-18
Updated: 2018-07-28

\str_clear:N (str var)

Clears the content of the (str var).

\str_clear_new:N (str var)

Ensures that the (str var) exists globally by applying \str_new:N if necessary, then
applies \str_(g)clear:N to leave the (str var) empty.

\str_set_eq:NN (str vari) (str vars)

Sets the content of (str var) equal to that of (str vars).

\str_concat:NNN (str vari) (str vars) (str vars)

Concatenates the content of (str vare) and (str vars) together and saves the result in
(str vary). The (str vary) is placed at the left side of the new string variable. The
(str vary) and (str vars) must indeed be strings, as this function does not convert their
contents to a string.

2 Adding data to string variables

\str_set:Nn (str var) {(token list)}

Converts the (token list) to a (string), and stores the result in (str var).

\str_put_left:Nn

\str_put_left:Nn (str var) {(token list)}

\str_put_left:(NV|Nx|cn|cV|cx)

\str_gput_left:Nn

\str_gput_left:(NV|Nx|cn|cV|cx)

New: 2015-09-18
Updated: 2018-07-28

Converts the (token list) to a (string), and prepends the result to (str var). The current
contents of the (str var) are not automatically converted to a string.

54

\str_put_right:Nn

\str_put_right:Nn (str var) {(token list)}

\str_put_right:(NV|Nx|cn|cV|cx)

\str_gput_right:Nn

\str_gput_right:(NV|Nx|cn|cV|cx)

New: 2015-09-18
Updated: 2018-07-28

\str_replace_once:Nnn
\str_replace_once:cnn
\str_greplace_once:Nnn
\str_greplace_once:cnn

New: 2017-10-08

\str_replace_all:Nnn
\str_replace_all:cnn
\str_greplace_all:Nnn
\str_greplace_all:cnn

New: 2017-10-08

\str_remove_once:Nn
\str_remove_once:cn
\str_gremove_once:Nn
\str_gremove_once:cn

New: 2017-10-08

\str_remove_all:Nn
\str_remove_all:cn
\str_gremove_all:Nn
\str_gremove_all:cn

New: 2017-10-08

Converts the (token list) to a (string), and appends the result to (str var). The current
contents of the (str var) are not automatically converted to a string.

3 Modifying string variables

\str_replace_once:Nnn (str var) {(old)} {(mew)}

Converts the (old) and (new) token lists to strings, then replaces the first (leftmost)
occurrence of (old string) in the (str var) with (new string).

\str_replace_all:Nnn (str var) {(old)} {(new)}

Converts the (old) and (new) token lists to strings, then replaces all occurrences of (old
string) in the (str var) with (new string). As this function operates from left to right,
the pattern (old string) may remain after the replacement (see \str_remove_all:Nn for
an example).

\str_remove_once:Nn (str var) {(token list)}

Converts the (token list) to a (string) then removes the first (leftmost) occurrence of
(string) from the (str var).

\str_remove_all:Nn (str var) {(token list)}

Converts the (token list) to a (string) then removes all occurrences of (string) from the
(str var). As this function operates from left to right, the pattern (string) may remain
after the removal, for instance,

\str_set:Nn \1_tmpa_str {abbccd} \str_remove_all:Nn \1_tmpa_str
{bc}

results in \1_tmpa_str containing abcd.

55

\str_if_exist_p:N x
\str_if_exist_p:c =
\str_if_exist:NTF x
\str_if exist:cTF %

New: 2015-09-18

\str_if_empty_p:N =
\str_if_empty_p:c *
\str_if_empty:NTF x
\str_if_empty:cTF *

New: 2015-09-18

\str_if_eq_p:NN *
\str_if_eq_p:(Nc|cN|cc) *
\str_if_eq:NNTF *
\str_if_eq:(Nc|cN|cc)TF *

New: 2015-09-18

4 String conditionals

\str_if_exist_p:N (str var)
\str_if_exist:NTF (str var) {(true code)} {(false code)}

Tests whether the (str var) is currently defined. This does not check that the (str var)
really is a string.

\str_if_empty_p:N (str var)
\str_if_empty:NTF (str var) {(true code)} {(false code)}

Tests if the (string variable) is entirely empty (i.e. contains no characters at all).

\str_if_eq_p:NN (str vari) (str vary)
\str_if_eq:NNTF (str vari) (str vars) {(true code)} {(false code)}

Compares the content of two (str variables) and is logically true if the two contain the
same characters in the same order.

\str_if_eq_p:nn

\str_if_eq_p:(Vn|on|no|nV|VV|vn|nv)

\str_if_eq:nnTF

\str_if_eq:(Vn|on|no[nV|VV|vn|nv)TF

\str_if_eq_p:ee
\str_if_eq:eeTF

\str_if_eq_p:nn {(tl:)
\str_if_eq:nnTF {(tl;)

(t12)}

A
} {(t12)} {(true code)} {(false code)}

I S . N s

Updated: 2018-06-18

\str_if_in:NnTF
\str_if_in:cnTF

New: 2017-10-08

\str_if_in:nnTF

New: 2017-10-08

Compares the two (token lists) on a character by character basis (namely after converting
them to strings), and is true if the two (strings) contain the same characters in the same
order. Thus for example

\str_if_eq_p:no { abc } { \tl_to_str:n { abc } }

is logically true.

\str_if_in:NnTF (str var) {(token list)} {(true code)} {(false code)}

Converts the (token list) to a (string) and tests if that (string) is found in the content of
the (str var).

\str_if_in:nnTF (tli) {(tl2)} {(true code)} {(false code)}

Converts both (token lists) to (strings) and tests whether (strings) is found inside
(string,).

56

\str_case:

\str_case
\str_case
\str_case

nn *
:(on[nVijnv) *
:nnTF *
:(on[nV|nv)TEF *

New: 2013-07-24

Updated: 2015-02-28

\str_case_e:nn *
\str_case_e:nnTF *

New: 2018-06-19

\str_map_function:NN v
\str_map_function:cN ¢

New: 2017-11-14

\str_map_function:nN w

e

New: 2017-11-14

\str_case:nnTF {(test string)}
{
{(string casei)} {{code case:i)}
{(string cases)} {{code cases)}

%(.s.tring case,)} {(code case,)}
}
{(true code)}
{(false code)}

Compares the (test string) in turn with each of the (string cases) (all token lists are
converted to strings). If the two are equal (as described for \str_if_eq:nnTF) then the
associated (code) is left in the input stream and other cases are discarded. If any of
the cases are matched, the (true code) is also inserted into the input stream (after the
code for the appropriate case), while if none match then the (false code) is inserted. The
function \str_case:nn, which does nothing if there is no match, is also available.

\str_case_e:nnTF {(test string)}
{

{(string case1)

{(string cases)

(code case1)}
(code casez)}

}{
L

-.{<.s.tring casen)} {(code case,)}
}
{{true code)}
{(false code)}

Compares the full expansion of the (test string) in turn with the full expansion of the
(string cases) (all token lists are converted to strings). If the two full expansions are
equal (as described for \str_if_eq:nnTF) then the associated (code) is left in the input
stream and other cases are discarded. If any of the cases are matched, the (true code)
is also inserted into the input stream (after the code for the appropriate case), while
if none match then the (false code) is inserted. The function \str_case_e:nn, which
does nothing if there is no match, is also available. The (test string) is expanded in each
comparison, and must always yield the same result: for example, random numbers must
not be used within this string.

5 Mapping to strings

\str_map_function:NN (str var) (function)

Applies (function) to every (character) in the (str var) including spaces. See also \str_-
map_function:nN.

\str_map_function:nN {(token 1list)} (function)

Converts the (token list) to a (string) then applies (function) to every (character) in the
(string) including spaces. See also \str_map_function:NN.

57

\str_map_inline:Nn
\str_map_inline:cn

New: 2017-11-14

\str_map_inline:nn

New: 2017-11-14

\str_map_variable:NNn
\str_map_variable:cNn

New: 2017-11-14

\str_map_variable:nNn

New: 2017-11-14

\str_map_break:

New: 2017-10-08

\str_map_inline:Nn (str var) {(inline function)}

Applies the (inline function) to every (character) in the (str var) including spaces. The
(inline function) should consist of code which receives the (character) as #1. See also
\str_map_function:NN.

\str_map_inline:nn {(token list)} {(inline functiom)}

Converts the (token list) to a (string) then applies the (inline function) to every
(character) in the (string) including spaces. The (inline function) should consist of
code which receives the (character) as #1. See also \str_map_function:NN.

\str_map_variable:NNn (str var) (variable) {(code)}

Stores each (character) of the (string) (including spaces) in turn in the (string or token
list) (variable) and applies the (code). The (code) will usually make use of the (variable),
but this is not enforced. The assignments to the (variable) are local. See also \str_-
map_inline:Nn.

\str_map_variable:nNn {(token list)} (variable) {(code)}

Converts the (token list) to a (string) then stores each (character) in the (string) (in-
cluding spaces) in turn in the (string or token list) (variable) and applies the (code). The
(code) will usually make use of the (variable), but this is not enforced. The assignments
to the (variable) are local. See also \str_map_inline:Nn.

\str_map_break:

Used to terminate a \str_map_... function before all characters in the (string) have
been processed. This normally takes place within a conditional statement, for example

\str_map_inline:Nn \1l_my_str
{
\str_if_eq:nnT { #1 } { bingo } { \str_map_break: }
% Do something useful

3

See also \str_map_break:n. Use outside of a \str_map_. .. scenario leads to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
continuing with the code that follows the loop. This depends on the design of the mapping
function.

58

\str_map_break:n 5

New: 2017-10-08

\str_use:N *
\str_use:c x

New: 2015-09-18

\str_map_break:n {({code)}

Used to terminate a \str_map_... function before all characters in the (string) have
been processed, inserting the (code) after the mapping has ended. This normally takes
place within a conditional statement, for example

\str_map_inline:Nn \1l_my_str
{
\str_if_eq:nnT { #1 } { bingo }
{ \str_map_break:n { <code> } }
% Do something useful

}
Use outside of a \str_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

6 Working with the content of strings

\str_use:N (str var)

Recovers the content of a (str var) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
(stry directly without an accessor function.

\str_count:N
\str_count:c
\str_count:n

\str_count_ignore_spaces:n

\str_count:n {(token list)}

*
*
*
*

New: 2015-09-18

\str_count_spaces:N *
\str_count_spaces:c *
\str_count_spaces:n *

New: 2015-09-18

Leaves in the input stream the number of characters in the string representation of (token
list), as an integer denotation. The functions differ in their treatment of spaces. In the
case of \str_count:N and \str_count:n, all characters including spaces are counted.
The \str_count_ignore_spaces:n function leaves the number of non-space characters
in the input stream.

\str_count_spaces:n {(token list)}

Leaves in the input stream the number of space characters in the string representation of
(token list), as an integer denotation. Of course, this function has no _ignore_spaces
variant.

59

\str_head:N
\str_head:c
\str_head:n
\str_head_ignore_spaces:n

\str_head:n {(token list)}

*
*
*
*

New: 2015-09-18

Converts the (token list) into a (string). The first character in the (string) is then left in
the input stream, with category code “other”. The functions differ if the first character is a
space: \str_head:N and \str_head:n return a space token with category code 10 (blank
space), while the \str_head_ignore_spaces:n function ignores this space character and
leaves the first non-space character in the input stream. If the (string) is empty (or only
contains spaces in the case of the _ignore_spaces function), then nothing is left on the
input stream.

\str_tail:N * \str_tail:n {(token list)}
\str_tail:c *
\str_tail:n *

*

\str_tail_ignore_spaces:n

New: 2015-09-18

Converts the (token list) to a (string), removes the first character, and leaves the remain-
ing characters (if any) in the input stream, with category codes 12 and 10 (for spaces).
The functions differ in the case where the first character is a space: \str_tail:N and
\str_tail:n only trim that space, while \str_tail_ignore_spaces:n removes the first
non-space character and any space before it. If the (token list) is empty (or blank in the
case of the _ignore_spaces variant), then nothing is left on the input stream.

\str_item:Nn * \str_item:nn {(token list)} {(integer expression)}
\str_item:nn *
\str_item_ignore_spaces:nn *

New: 2015-09-18

Converts the (token list) to a (string), and leaves in the input stream the character
in position (integer expression) of the (string), starting at 1 for the first (left-most)
character. In the case of \str_item:Nn and \str_item:nn, all characters including
spaces are taken into account. The \str_item_ignore_spaces:nn function skips spaces
when counting characters. If the (integer expression) is negative, characters are counted
from the end of the (string). Hence, —1 is the right-most character, etc.

60

\str_range:
\str_range:
\str_range:

\str_range

Nnn *
cnn *
nnn *
_ignore_spaces:nnn *x

New: 2015-09-18

\str_range:nnn {(token list)} {(start index)} {(end index)}

Converts the (token list) to a (string), and leaves in the input stream the characters
from the (start indez) to the (end indez) inclusive. Spaces are preserved and counted as
items (contrast this with \t1_range:nnn where spaces are not counted as items and are
possibly discarded from the output).

Here (start indezr) and (end index) should be integer denotations. For describing in
detail the functions’ behavior, let m and n be the start and end index respectively. If
either is 0, the result is empty. A positive index means ‘start counting from the left end’,
a negative index means ‘start counting from the right end’. Let [be the count of the
token list.

The actual start point is determined as M = mif m > 0andas M =1+ m +1
if m < 0. Similarly the actual end point is N =nifn >0and N =1+n+1ifn <O0.
If M > N, the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s < 0 or s > [. For
instance,

\iow_term:x { \str_range:nnn { abcdef } { 2} {5 } }

\iow_term:x { \str_range:nnn { abcdef } { -4 } { -1 } }
\iow_term:x { \str_range:nnn { abcdef } { -2} { -1 1} }
\iow_term:x { \str_range:nnn { abcdef } { 0 } { -1 } }

prints bcde, cdef, ef, and an empty line to the terminal. The (start index) must always
be smaller than or equal to the (end index): if this is not the case then no output is
generated. Thus

\iow_term:x { \str_range:nnn { abcdef } { 5} {2} }
\iow_term:x { \str_range:nnn { abcdef } { -1 } { -4 } }

both yield empty strings.
The behavior of \str_range_ignore_spaces:nnn is similar, but spaces are removed
before starting the job. The input

\iow_term:x { \str_range:nnn { abcdefg } { 2} { 5} }

\iow_term:x { \str_range:nnn { abcdefg } { 2} { -3 } }

\iow_term:x { \str_range:nnn { abcdefg } { -6 > { 56 } }

\iow_term:x { \str_range:nnn { abcdefg } { -6 } { -3} }

\iow_term:x { \str_range:nnn { abc~efg } { 2} {5} }

\iow_term:x { \str_range:nnn { abc~efg } {2} { -3 } }

\iow_term:x { \str_range:nnn { abc~efg } { -6 >} { 56 } }

\iow_term:x { \str_range:nnn { abc~efg } { -6 } { -3 } }

\iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { 5} }

\iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { -3 } }

\iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { 5 } }

\iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { -3 } }

\iow_term:x { \str_range_ignore gpaces:nnn { abcd~efg } { 2 } {5} }

\iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { 2 } { -3 } }

\iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { 5 } }

\iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { -3 } }
will print four instances of bcde, four instances of bc e and eight instances of bcde.

\str_lower_case:n
\str_lower_case:f
\str_upper_case:n
\str_upper_case:f

L S

New: 2015-03-01

7 String manipulation

\str_lower_case:n {(tokens)}

\str_upper_case:n {(tokens)}

Converts the input (tokens) to their string representation, as described for \tl_to_-
str:n, and then to the lower or upper case representation using a one-to-one mapping
as described by the Unicode Consortium file UnicodeData.txt.

These functions are intended for case changing programmatic data in places where
upper/lower case distinctions are meaningful. One example would be automatically gen-
erating a function name from user input where some case changing is needed. In this
situation the input is programmatic, not textual, case does have meaning and a language-
independent one-to-one mapping is appropriate. For example

\cs_new_protected:Npn \myfunc:nn #1#2

{
\cs_set_protected:cpn
{
user
\str_upper_case:f { \tl_head:n {#1} }
\str_lower_case:f { \tl_tail:n {#1} }
¥
{#2 7
}

would be used to generate a function with an auto-generated name consisting of the
upper case equivalent of the supplied name followed by the lower case equivalent of the
rest of the input.

These functions should not be used for

o Caseless comparisons: use \str_fold_case:n for this situation (case folding is
distinct from lower casing).

e Case changing text for typesetting: see the \tl_lower_case:n(n), \tl_upper_-
case:n(n) and \tl_mixed_case:n(n) functions which correctly deal with context-
dependence and other factors appropriate to text case changing.

TEXhackers note: As with all expl3 functions, the input supported by \str_fold_case:n
is engine-native characters which are or interoperate with UTF-8. As such, when used with
pdfTEX only the Latin alphabet characters A-Z are case-folded (i.e. the ASCII range which
coincides with UTF-8). Full UTF-8 support is available with both X#TEX and LuaTgX.

62

\str_fold_case:n x
\str_fold_case:V x

New: 2014-06-19
Updated: 2016-03-07

\str_show:N
\str_show:c
\str_show:n

New: 2015-09-18

\str_log:N
\str_log:c
\str_log:n

New: 2019-02-15

\str_fold_case:n {(tokens)}

Converts the input (tokens) to their string representation, as described for \t1_to_str:n,
and then folds the case of the resulting (string) to remove case information. The result
of this process is left in the input stream.

String folding is a process used for material such as identifiers rather than for “text”.
The folding provided by \str_fold_case:n follows the mappings provided by the Uni-
code Consortium, who state:

Case folding is primarily used for caseless comparison of text, such as iden-
tifiers in a computer program, rather than actual text transformation. Case
folding in Unicode is based on the lowercase mapping, but includes additional
changes to the source text to help make it language-insensitive and consistent.
As a result, case-folded text should be used solely for internal processing and
generally should not be stored or displayed to the end user.

The folding approach implemented by \str_fold_case:n follows the “full” scheme de-
fined by the Unicode Consortium (e.g. SSfolds to SS). As case-folding is a language-
insensitive process, there is no special treatment of Turkic input (i.e. I always folds to i
and not to 1).

TEXhackers note: As with all expl3 functions, the input supported by \str_fold_case:n
is engine-native characters which are or interoperate with UTF-8. As such, when used with
pdfTEX only the Latin alphabet characters A-Z are case-folded (i.e. the AscCIl range which
coincides with UTF-8). Full UTF-8 support is available with both X#TEX and LuaTgX, subject
only to the fact that XfTEX in particular has issues with characters of code above hexadecimal
0xFFFF when interacting with \t1l_to_str:n.

8 Viewing strings

\str_show:N (str var)

Displays the content of the (str var) on the terminal.

\str_log:N (str var)
Writes the content of the (str var) in the log file.

63

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org/faq/casemap_charprop.html#2

9 Constant token lists

\c_ampersand_str Constant strings, containing a single character token, with category code 12.
\c_atsign_str
\c_backslash_str
\c_left_brace_str
\c_right_brace_str
\c_circumflex_str
\c_colon_str
\c_dollar_str
\c_hash_str
\c_percent_str
\c_tilde_str
\c_underscore_str

New: 2015-09-19

10 Scratch strings

\1_tmpa_str Scratch strings for local assignment. These are never used by the kernel code, and so
\l_tmpb_str are safe for use with any BTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_str Scratch strings for global assighment. These are never used by the kernel code, and so
\g_tmpb_str are safe for use with any BTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

64

\quark_new:N

\q_stop

Part VIII
The 13quark package
Quarks

Two special types of constants in I¥TEX3 are “quarks” and “scan marks”. By convention
all constants of type quark start out with \q_, and scan marks start with \s_.

1 Quarks

Quarks are control sequences that expand to themselves and should therefore never be
executed directly in the code. This would result in an endless loop!

They are meant to be used as delimiter in weird functions, the most common use
case being the ‘stop token’ (i.e. \q_stop). For example, when writing a macro to parse
a user-defined date

\date_parse:n {19/June/1981%}
one might write a command such as

\cs_new:Npn \date_parse:n #1 { \date_parse_aux:w #1 \g_stop }
\cs_new:Npn \date_parse_aux:w #1 / #2 / #3 \g_stop
{ <do something with the date> }

Quarks are sometimes also used as error return values for functions that receive
erroneous input. For example, in the function \prop_get :NnN to retrieve a value stored
in some key of a property list, if the key does not exist then the return value is the quark
\q_no_value. As mentioned above, such quarks are extremely fragile and it is imperative
when using such functions that code is carefully written to check for pathological cases
to avoid leakage of a quark into an uncontrolled environment.

Quarks also permit the following ingenious trick when parsing tokens: when you
pick up a token in a temporary variable and you want to know whether you have picked
up a particular quark, all you have to do is compare the temporary variable to the quark
using \t1l_if_eq:NNTF. A set of special quark testing functions is set up below. All the
quark testing functions are expandable although the ones testing only single tokens are
much faster. An example of the quark testing functions and their use in recursion can
be seen in the implementation of \clist_map_function:NN.

2 Defining quarks

\quark_new:N (quark)

Creates a new (quark) which expands only to (quark). The (quark) is defined globally,
and an error message is raised if the name was already taken.

Used as a marker for delimited arguments, such as

\cs_set:Npn \tmp:w #1#2 \q_stop {#1}

65

\q_mark

\q_nil

\g_no_value

\quark_if_nil_p:N *
\quark_if_nil:NTF *

\quark_if_nil_p:n
\quark_if_nil_p:(o|V)
\quark_if_nil:nTF
\quark_if nil:(o|V)TF

L I o

\quark_if_no_value_p:N
\quark_if_no_value_p:c
\quark_if_no_value:NTF
\quark_if_no_value:cTF

L S

\quark_if_no_value_p:n *
\quark_if_no_value:nTF *

\g_recursion_tail

Used as a marker for delimited arguments when \g_stop is already in use.

Quark to mark a null value in structured variables or functions. Used as an end delimiter
when this may itself need to be tested (in contrast to \q_stop, which is only ever used
as a delimiter).

A canonical value for a missing value, when one is requested from a data structure. This
is therefore used as a “return” value by functions such as \prop_get :NnN if there is no
data to return.

3 Quark tests

The method used to define quarks means that the single token (N) tests are faster than
the multi-token (n) tests. The latter should therefore only be used when the argument
can definitely take more than a single token.

\quark_if_nil_p:N (token)
\quark_if_nil:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_nil.

\quark_if_nil_p:n {(token list)}
\quark_if_nil:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_nil (distinct from (token list) being empty or
containing \q_nil plus one or more other tokens).

\quark_if_no_value_p:N (token)
\quark_if_no_value:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_no_value.

\quark_if_no_value_p:n {(token list)}
\quark_if_no_value:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_no_value (distinct from (token list) being empty
or containing \q_no_value plus one or more other tokens).

4 Recursion
This module provides a uniform interface to intercepting and terminating loops as when

one is doing tail recursion. The building blocks follow below and an example is shown in
Section 5.

This quark is appended to the data structure in question and appears as a real element
there. This means it gets any list separators around it.

66

\q_recursion_stop This quark is added after the data structure. Its purpose is to make it possible to
terminate the recursion at any point easily.

\quark_if_recursion_tail_stop:N \quark_if_recursion_tail_stop:N <token>

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop:n \quark_if_recursion_tail_stop:n {(token list)}
\quark_if_recursion_tail_stop:o

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop_do:Nn \quark_if_recursion_tail_stop_do:Nn (token) {(insertion)}

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The (insertion) code is then added to the input
stream after the recursion has ended.

\quark_if_recursion_tail_stop_do:nn \quark_if_recursion_tail_stop_do:nn {(token 1list)} {(insertion)}
\quark_if_recursion_tail_stop_do:on

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The (insertion) code is then added to the input
stream after the recursion has ended.

\quark_if_recursion_tail_break:NN \quark_if_recursion_tail_break:nN {(token list)} \(type)_map_break:
\quark_if_recursion_tail_break:nN

New: 2018-04-10

Tests if (token list) contains only \q_recursion_tail, and if so terminates the recur-
sion using \(type)_map_break:. The recursion end should be marked by \prg_break_-
point:Nn \(type)_map_break:.

5 An example of recursion with quarks

Quarks are mainly used internally in the expl3 code to define recursion functions such
as \tl_map_inline:nn and so on. Here is a small example to demonstrate how to

67

\scan_new:N

New: 2018-04-01

use quarks in this fashion. We shall define a command called \my_map_dbl:nn which
takes a token list and applies an operation to every pair of tokens. For example,
\my_map_dbl:nn {abcd} {[--#1--#2--]1~} would produce “[-a-b-] [-c-d-] ". Us-
ing quarks to define such functions simplifies their logic and ensures robustness in many
cases.

Here’s the definition of \my_map_dbl:nn. First of all, define the function that does
the processing based on the inline function argument #2. Then initiate the recursion
using an internal function. The token list #1 is terminated using \q_recursion_tail,
with delimiters according to the type of recursion (here a pair of \q_recursion_tail),
concluding with \q_recursion_stop. These quarks are used to mark the end of the
token list being operated upon.

\cs_new:Npn \my_map_dbl:nn #1#2

{
\cs_set:Npn __my_map_dbl_fn:nn ##1 ##2 {#2}
__my_map_dbl:nn #1 \q_recursion_tail \g_recursion_tail
\g_recursion_stop

}

The definition of the internal recursion function follows. First check if either of the
input tokens are the termination quarks. Then, if not, apply the inline function to the
two arguments.

\cs_new:Nn __my_map_dbl:nn

{
\quark_if_recursion_tail_stop:n {#1}
\quark_if_recursion_tail_stop:n {#2}
__my_map_dbl_fn:nn {#1} {#2}

Finally, recurse:

__my_map_dbl:nn
}

Note that contrarily to IXTEX3 built-in mapping functions, this mapping function cannot
be nested, since the second map would overwrite the definition of __my_map_dbl_fn:nn.

6 Scan marks

Scan marks are control sequences set equal to \scan_stop:, hence never expand in an
expansion context and are (largely) invisible if they are encountered in a typesetting
context.

Like quarks, they can be used as delimiters in weird functions and are often safer to
use for this purpose. Since they are harmless when executed by TEX in non-expandable
contexts, they can be used to mark the end of a set of instructions. This allows to skip
to that point if the end of the instructions should not be performed (see I3regex).

\scan_new:N (scan mark)

Creates a new (scan mark) which is set equal to \scan_stop:. The (scan mark) is defined
globally, and an error message is raised if the name was already taken by another scan
mark.

68

\s_stop Used at the end of a set of instructions, as a marker that can be jumped to using \use_-
New: 2018-04-01 none_delimit_by_s_stop:w.

\use_none_delimit_by_s_stop:w \use_none_delimit_by_s_stop:w (tokens) \s_stop

New: 2018-04-01

Removes the (tokens) and \s_stop from the input stream. This leads to a low-level TEX
error if \s_stop is absent.

69

\seq_new:N
\seq_new:c

\seq_clear:N

\seq_clear:c
\seq_gclear:N

\seq_gclear:c

\seq_clear_new:N
\seq_clear_new:c
\seq_gclear_new:N
\seq_gclear_new:c

\seq_set_eq:NN
\seq_set_eq:(cN|Nc|cc)
\seq_gset_eq:NN
\seq_gset_eq:(cN|Nc|cc)

Part IX
The 13seq package
Sequences and stacks

ETREX3 implements a “sequence” data type, which contain an ordered list of entries which
may contain any (balanced text). It is possible to map functions to sequences such that
the function is applied to every item in the sequence.

Sequences are also used to implement stack functions in IXTEX3. This is achieved
using a number of dedicated stack functions.

1 Creating and initialising sequences

\seq_new:N (sequence)

Creates a new (sequence) or raises an error if the name is already taken. The declaration
is global. The (sequence) initially contains no items.

\seq_clear:N (sequence)

Clears all items from the (sequence).

\seq_clear_new:N (sequence)

Ensures that the (sequence) exists globally by applying \seq_new:N if necessary, then
applies \seq_(g) clear:N to leave the (sequence) empty.

\seq_set_eq:NN (sequence;) (sequences)

Sets the content of (sequence;) equal to that of (sequences).

\seq_set_from_clist:NN

\seq_set_from_clist:NN (sequence) (comma-list)

\seq_set_from_clist:(cN|Nc|ec)

\seq_set_from_clist:Nn
\seq_set_from_clist:cn

\seq_gset_from_clist:NN
\seq_gset_from_clist:(cN|Nc|cc)
\seq_gset_from_clist:Nn
\seq_gset_from_clist:cn

New: 2014-07-17

Converts the data in the (comma list) into a (sequence): the original (comma list) is
unchanged.

70

\seq_set_split:Nnn
\seq_set_split:NnV
\seq_gset_split:Nnn
\seq_gset_split:NnV

New: 2011-08-15
Updated: 2012-07-02

\seq_concat :NNN
\seq_concat:ccc
\seq_gconcat :NNN
\seq_gconcat:ccc

\seq_if_exist_p:N %
\seq_if_exist_p:c *
\seq_if_exist:NTF *
\seq_if_exist:cTF x

New: 2012-03-03

\seq_set_split:Nnn (sequence) {(delimiter)} {(token list)}

Splits the (token list) into (items) separated by (delimiter), and assigns the result to the
(sequence). Spaces on both sides of each (item) are ignored, then one set of outer braces
is removed (if any); this space trimming behaviour is identical to that of 13clist functions.
Empty (items) are preserved by \seq_set_split:Nnn, and can be removed afterwards
using \seq_remove_all:Nn (sequence) {()}. The (delimiter) may not contain {, } or #
(assuming TEX’s normal category code régime). If the (delimiter) is empty, the (token
list) is split into (items) as a (token list).

\seq_concat:NNN (sequence:) (sequencez) (sequences)

Concatenates the content of (sequences) and (sequences) together and saves the result in
(sequencer). The items in (sequencey) are placed at the left side of the new sequence.

\seq_if_exist_p:N (sequence)
\seq_if_exist:NTF (sequence) {(true code)} {(false code)}

Tests whether the (sequence) is currently defined. This does not check that the (sequence)
really is a sequence variable.

2 Appending data to sequences

\seq_put_left:Nn

\seq_put_left:Nn (sequence) {(item)}

\seq_put_left:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gput_left:Nn

\seq_gput_left:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

Appends the (item) to the left of the (sequence).

\seq_put_right:Nn

\seq_put_right:Nn (sequence) {(item)}

\seq_put_right:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gput_right:Nn

\seq_gput_right : (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_get_left:NN
\seq_get_left:cN

Updated: 2012-05-14

Appends the (item) to the right of the (sequence).

3 Recovering items from sequences

Items can be recovered from either the left or the right of sequences. For implementa-
tion reasons, the actions at the left of the sequence are faster than those acting on the
right. These functions all assign the recovered material locally, i.e. setting the (token list
variable) used with \t1_set:Nn and never \tl_gset:Nn.

\seq_get_left:NN (sequence) (token list variable)

Stores the left-most item from a (sequence) in the (token list variable) without removing
it from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) is set to the special marker \q_no_value.

71

\seq_get_right:NN
\seq_get_right:cN

Updated: 2012-05-19

\seq_pop_left:NN
\seq_pop_left:cN

Updated: 2012-05-14

\seq_gpop_left:NN
\seq_gpop_left:cN

Updated: 2012-05-14

\seq_pop_right:NN
\seq_pop_right:cN

Updated: 2012-05-19

\seq_gpop_right:NN
\seq_gpop_right:cN

Updated: 2012-05-19

\seq_item:Nn =
\seq_item:cn *

New: 2014-07-17

\seq_rand_item:N =%
\seq_rand_item:c *

New: 2016-12-06

\seq_get_right:NN (sequence) (token list variable)

Stores the right-most item from a (sequence) in the (token list variable) without removing
it from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) is set to the special marker \q_no_value.

\seq_pop_left:NN (sequence) (token list variable)

Pops the left-most item from a (sequence) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). Both of the variables
are assigned locally. If (sequence) is empty the (token list variable) is set to the special
marker \gq_no_value.

\seq_gpop_left:NN (sequence) (token list variable)

Pops the left-most item from a (sequence) into the (token list variable), i.e. removes
the item from the sequence and stores it in the (token list variable). The (sequence) is
modified globally, while the assignment of the (token list variable) is local. If (sequence)
is empty the (token list variable) is set to the special marker \q_no_value.

\seq_pop_right:NN (sequence) (token list variable)

Pops the right-most item from a (sequence) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). Both of the variables
are assigned locally. If (sequence) is empty the (token list variable) is set to the special
marker \q_no_value.

\seq_gpop_right:NN (sequence) (token list variable)

Pops the right-most item from a (sequence) into the (token list variable), i.e. removes
the item from the sequence and stores it in the (token list variable). The (sequence) is
modified globally, while the assignment of the (token list variable) is local. If (sequence)
is empty the (token list variable) is set to the special marker \q_no_value.

\seq_item:Nn (sequence) {(integer expression)}

Indexing items in the (sequence) from 1 at the top (left), this function evaluates the
(integer expression) and leaves the appropriate item from the sequence in the input
stream. If the (integer expression) is negative, indexing occurs from the bottom (right)
of the sequence. If the (integer expression) is larger than the number of items in the
(sequence) (as calculated by \seq_count:N) then the function expands to nothing.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion.

\seq_rand_item:N (seq var)
Selects a pseudo-random item of the (sequence). If the (sequence) is empty the result is
empty. This is not available in older versions of XqIEX.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion.

72

\seq_get_left:NNTF
\seq_get_left:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_get_right:NNTF
\seq_get_right:cNTF

New: 2012-05-19

\seq_pop_left:NNTF
\seq_pop_left:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_gpop_left:NNTF
\seq_gpop_left:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_pop_right :NNTF
\seq_pop_right:cNTF

New: 2012-05-19

4 Recovering values from sequences with branching

The functions in this section combine tests for non-empty sequences with recovery of an
item from the sequence. They offer increased readability and performance over separate
testing and recovery phases.

\seq_get_left:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, stores the left-most item from the (sequence) in the (token list
variable) without removing it from the (sequence), then leaves the (true code) in the
input stream. The (token list variable) is assigned locally.

\seq_get_right :NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, stores the right-most item from the (sequence) in the (token
list variable) without removing it from the (sequence), then leaves the (true code) in the
input stream. The (token list variable) is assigned locally.

\seq_pop_left:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, pops the left-most item from the (sequence) in the (token list
variable), i.e. removes the item from the (sequence), then leaves the (true code) in the
input stream. Both the (sequence) and the (token list variable) are assigned locally.

\seq_gpop_left:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (sequence) is non-empty, pops the left-most item from the (sequence) in the (token
list variable), i.e. removes the item from the (sequence), then leaves the (true code) in
the input stream. The (sequence) is modified globally, while the (token list variable) is
assigned locally.

\seq_pop_right:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, pops the right-most item from the (sequence) in the (token list
variable), i.e. removes the item from the (sequence), then leaves the (true code) in the
input stream. Both the (sequence) and the (token list variable) are assigned locally.

73

\seq_gpop_right :NNTF
\seq_gpop_right:cNTF

New: 2012-05-19

\seq_remove_duplicates:N
\seq_remove_duplicates:c
\seq_gremove_duplicates:N
\seq_gremove_duplicates:c

\seq_remove_all:Nn
\seq_remove_all:cn
\seq_gremove_all:Nn
\seq_gremove_all:cn

\seq_reverse:N
\seq_reverse:c
\seq_greverse:N
\seq_greverse:c

New: 2014-07-18

\seq_sort:Nn
\seq_sort:cn
\seq_gsort:Nn
\seq_gsort:cn

New: 2017-02-06

\seq_if_empty_p:N
\seq_if_empty_p:c
\seq_if_empty:NTF
\seq_if_empty:cTF

L D I o

\seq_gpop_right:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (sequence) is non-empty, pops the right-most item from the (sequence) in the (token
list variable), i.e. removes the item from the (sequence), then leaves the (true code) in
the input stream. The (sequence) is modified globally, while the (token list variable) is
assigned locally.

5 Modifying sequences

While sequences are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update sequences, while retaining the order
of the unaffected entries.

\seq_remove_duplicates:N (sequence)

Removes duplicate items from the (sequence), leaving the left most copy of each item
in the (sequence). The (item) comparison takes place on a token basis, as for \t1_if_-
eq:nnTF.

TEXhackers note: This function iterates through every item in the (sequence) and does a
comparison with the (items) already checked. It is therefore relatively slow with large sequences.

\seq_remove_all:Nn (sequence) {(item)}

Removes every occurrence of (item) from the (sequence). The (item) comparison takes
place on a token basis, as for \t1_if_eq:nnTF.

\seq_reverse:N (sequence)

Reverses the order of the items stored in the (sequence).

\seq_sort:Nn (sequence) {(comparison code)}

Sorts the items in the (sequence) according to the (comparison code), and assigns the
result to (sequence). The details of sorting comparison are described in Section 1.

6 Sequence conditionals

\seq_if_empty_p:N (sequence)
\seq_if_empty:NTF (sequence) {(true code)} {(false code)}

Tests if the (sequence) is empty (containing no items).

74

\seq_if_in:NnTF \seq_if_in:NnTF (sequence) {(item)} {(true code)} {(false code)}
\seq_if_in:(NV|Nv|No|Nx|cn|cV|cv|co|cx)TF

Tests if the (item) is present in the (sequence).

7 Mapping to sequences

\seq_map_function:NN ¥ \seq_map_function:NN (sequence) (function)

\seq_map_function:c ¥ Applies (function) to every (item) stored in the (sequence). The (function) will receive

Updated: 2012-06-29 one argument for each iteration. The (items) are returned from left to right. The function
\seq_map_inline:Nn is faster than \seq_map_function:NN for sequences with more
than about 10 items.

\seq_map_inline:Nn \seq_map_inline:Nn (sequence) {(inline function)}

\seq_map_inline:cn Applies (inline function) to every (item) stored within the (sequence). The (inline

Updated: 2012-06-29 fynction) should consist of code which will receive the (item) as #1. The (items) are
returned from left to right.

\seq_map_variable:NNn \seq_map_variable:NNn (sequence) (variable) {(code)}
\seq_map_variable:(Ncn|cNn|ccn)

Updated: 2012-06-29

Stores each (item) of the (sequence) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. The (items) are returned from left to right.

\seq_map_break: % \seq_map_break:

Updated: 2012-06-29 Used to terminate a \seq_map_. .. function before all entries in the (sequence) have been
processed. This normally takes place within a conditional statement, for example

\seq_map_inline:Nn \1l_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break: }

{
% Do something useful
}
}
Use outside of a \seq_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

0]

\seq_map_break:n 5

Updated: 2012-06-29

\seq_count:N *
\seq_count:c *

New: 2012-07-13

\seq_use:Nnnn *
\seq_use:cnnn *

New: 2013-05-26

\seq_map_break:n {({code)}

Used to terminate a \seq_map_. .. function before all entries in the (sequence) have been
processed, inserting the (code) after the mapping has ended. This normally takes place
within a conditional statement, for example

\seq_map_inline:Nn \1_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \seq_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

\seq_count:N (sequence)

Leaves the number of items in the (sequence) in the input stream as an (integer
denotation). The total number of items in a (sequence) includes those which are empty
and duplicates, i.e. every item in a (sequence) is unique.

8 Using the content of sequences directly

\seq_use:Nnnn (seq var) {(separator between two)}
{(separator between more than two)} {(separator between final two)}

Places the contents of the (seq var) in the input stream, with the appropriate (separator)
between the items. Namely, if the sequence has more than two items, the (separator
between more than two) is placed between each pair of items except the last, for which
the (separator between final two) is used. If the sequence has exactly two items, then they
are placed in the input stream separated by the (separator between two). If the sequence
has a single item, it is placed in the input stream, and an empty sequence produces no
output. An error is raised if the variable does not exist or if it is invalid.
For example,

\seq_set_split:Nnn \1_tmpa_seq { | } {a | b | c | {de} | £}
\seq_use:Nnnn \1_tmpa_seq { ~and~ } { ,~ } { ,~and~ }

inserts “a, b, c, de, and f£” in the input stream. The first separator argument is not
used in this case because the sequence has more than 2 items.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type argument
expansion.

76

\seq_use:Nn *
\seq_use:cn

New: 2013-05-26

\seq_get:NN
\seq_get:cN

Updated: 2012-05-14

\seq_pop:NN
\seq_pop:cN

Updated: 2012-05-14

\seq_gpop: NN
\seq_gpop:cN

Updated: 2012-05-14

\seq_get:NNTF
\seq_get:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_use:Nn (seq var) {(separator)}

Places the contents of the (seq var) in the input stream, with the (separator) between
the items. If the sequence has a single item, it is placed in the input stream with no
(separator), and an empty sequence produces no output. An error is raised if the variable
does not exist or if it is invalid.

For example,

\seq_set_split:Nnn \1l_tmpa_seq { | } {a | b | c | {de} | £}
\seq_use:Nn \1_tmpa_seq { ~and~ }

inserts “a and b and ¢ and de and f” in the input stream.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type argument
expansion.

9 Sequences as stacks

Sequences can be used as stacks, where data is pushed to and popped from the top of
the sequence. (The left of a sequence is the top, for performance reasons.) The stack
functions for sequences are not intended to be mixed with the general ordered data
functions detailed in the previous section: a sequence should either be used as an ordered
data type or as a stack, but not in both ways.

\seq_get:NN (sequence) (token list variable)

Reads the top item from a (sequence) into the (token list variable) without removing it
from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) is set to the special marker \q_no_value.

\seq_pop:NN (sequence) (token list variable)

Pops the top item from a (sequence) into the (token list variable). Both of the variables
are assigned locally. If (sequence) is empty the (token list variable) is set to the special
marker \q_no_value.

\seq_gpop:NN (sequence) (token list variable)

Pops the top item from a (sequence) into the (token list variable). The (sequence) is
modified globally, while the (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) is set to the special marker \q_no_value.

\seq_get :NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, stores the top item from a (sequence) in the (token list variable)
without removing it from the (sequence). The (token list variable) is assigned locally.

7

\seq_pop:NNTF

\seq_pop:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_gpop:NNTF
\seq_gpop:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_pop:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (sequence) is non-empty, pops the top item from the (sequence) in the (token list
variable), i.e. removes the item from the (sequence). Both the (sequence) and the (token
list variable) are assigned locally.

\seq_gpop:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (sequence) is non-empty, pops the top item from the (sequence) in the (token list
variable), i.e. removes the item from the (sequence). The (sequence) is modified globally,
while the (token list variable) is assigned locally.

\seq_push:Nn

\seq_push:Nn (sequence) {(item)}

\seq_push: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gpush:Nn

\seq_gpush: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

Adds the {(item)} to the top of the (sequence).

10 Sequences as sets

Sequences can also be used as sets, such that all of their items are distinct. Usage of
sequences as sets is not currently widespread, hence no specific set function is provided.
Instead, it is explained here how common set operations can be performed by combining
several functions described in earlier sections. When using sequences to implement sets,
one should be careful not to rely on the order of items in the sequence representing the
set.

Sets should not contain several occurrences of a given item. To make sure that a
(sequence variable) only has distinct items, use \seq_remove_duplicates:N (sequence
variable). This function is relatively slow, and to avoid performance issues one should
only use it when necessary.

Some operations on a set (seq var) are straightforward. For instance, \seq_count:N
(seq var) expands to the number of items, while \seq_if_in:NnTF (seq var) {(item)}
tests if the (item) is in the set.

Adding an (item) to a set (seq var) can be done by appending it to the (seq var) if
it is not already in the (seq var):

\seq_if_in:NnF (seq var) {(item)}
{ \seq_put_right:Nn (seq var) {(item)} }

Removing an (item) from a set (seq var) can be done using \seq_remove_all:Nn,
\seq_remove_all:Nn (seq var) {(item)}

The intersection of two sets (seq var) and (seq vary) can be stored into (seq vars)
by collecting items of (seq var;) which are in (seq vars).

78

\seq_clear:N (seq vars)
\seq_map_inline:Nn (seq vari)

{

\seq_if_in:NnT (seq vary) {#1}

{ \seq_put_right:Nn (seq vars) {#1} }
}

The code as written here only works if (seq vars) is different from the other two se-
quence variables. To cover all cases, items should first be collected in a sequence
\1__(pkg)_internal_seq, then (seq vars) should be set equal to this internal sequence.
The same remark applies to other set functions.

The union of two sets (seq vary) and (seq vary) can be stored into (seq vars) through

\seq_concat:NNN (seq vars) (seq var;) (seq vars)
\seq_remove_duplicates:N (seq vars)

or by adding items to (a copy of) (seq var;) one by one

\seq_set_eq:NN (seq vars) (seq varp)
\seq_map_inline:Nn (seq vars)

{

\seq_if_in:NnF (seq vars) {#1}

{ \seq_put_right:Nn (seq vars) {#1} }
}

The second approach is faster than the first when the (seq vary) is short compared to
(seq vary).

The difference of two sets (seq vary) and (seq vars) can be stored into (seq vars) by
removing items of the (seq vary) from (a copy of) the (seq var,) one by one.

\seq_set_eq:NN (seq vars) (seq vari)
\seq_map_inline:Nn (seq vars)
{ \seq_remove_all:Nn (seq vars) {#1} }

The symmetric difference of two sets (seq var;) and (seq vars) can be stored into
(seq vars) by computing the difference between (seq var;) and (seq vary) and storing the
result as \1__(pkg)_internal_seq, then the difference between (seq vary) and (seq var,),
and finally concatenating the two differences to get the symmetric differences.

\seq_set_eq:NN \1__(pkg)_internal_seq (seq varj)
\seq_map_inline:Nn (seq vars)

{ \seq_remove_all:Nn \1__(pkg)_internal_seq {#1} }
\seq_set_eq:NN (seq vars) (seq vars)

\seq_map_inline:Nn (seq vari)

{ \seq_remove_all:Nn (seq vars) {#1} }

\seq_concat:NNN (seq vars) (seq vars) \1__(pkg)_internal_seq

11 Constant and scratch sequences

\c_empty_seq Constant that is always empty.

New: 2012-07-02

79

\1_tmpa_seq
\1_tmpb_seq

New: 2012-04-26

\g_tmpa_seq
\g_tmpb_seq

New: 2012-04-26

\seq_show:N
\seq_show:c

Updated: 2015-08-01

\seq_log:N
\seq_log:c

New: 2014-08-12

Updated: 2015-08-01

Scratch sequences for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch sequences for global assignment. These are never used by the kernel code, and
so are safe for use with any I4TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

12 Viewing sequences

\seq_show:N (sequence)

Displays the entries in the (sequence) in the terminal.

\seq_log:N (sequence)

Writes the entries in the (sequence) in the log file.

80

Part X
The 13int package
Integers

Calculation and comparison of integer values can be carried out using literal numbers, int
registers, constants and integers stored in token list variables. The standard operators
+, -, / and * and parentheses can be used within such expressions to carry arithmetic
operations. This module carries out these functions on integer expressions (“intexpr”).

81

\int_eval:n *

1 Integer expressions

\int_eval:n {(integer expression)}

Evaluates the (integer expression) and leaves the result in the input stream as an in-
teger denotation: for positive results an explicit sequence of decimal digits not starting
with 0, for negative results - followed by such a sequence, and 0 for zero. The (integer
expression) should consist, after expansion, of +, -, *, /, (,) and of course integer
operands. The result is calculated by applying standard mathematical rules with the
following peculiarities:

e / denotes division rounded to the closest integer with ties rounded away from zero;

e there is an error and the overall expression evaluates to zero whenever the abso-
lute value of any intermediate result exceeds 23! — 1, except in the case of scaling
operations axb/c, for which a*b may be arbitrarily large;

e parentheses may not appear after unary + or -, namely placing +(or -(at the
start of an expression or after +, -, *, / or (leads to an error.

Each integer operand can be either an integer variable (with no need for \int_use:N) or
an integer denotation. For example both

\int_eval:n { 5+ 4 *3 - (3 +4%*5)1}%}
and

\tl_new:N \1l_my_tl

\tl_set:Nn \1_my_tl { 5 }

\int_new:N \l_my_int

\int_set:Nn \1_my_int { 4 }

\int_eval:n { \1_my_tl + \l_my_int * 3 - (3 +4 x5) }

evaluate to —6 because \1_my_t1 expands to the integer denotation 5. As the (integer
expression) is fully expanded from left to right during evaluation, fully expandable and
restricted-expandable functions can both be used, and \exp_not:n and its variants have
no effect while \exp_not:N may incorrectly interrupt the expression.

TEXhackers note: Exactly two expansions are needed to evaluate \int_eval:n. The
result is not an (internal integer), and therefore requires suitable termination if used in a TEX-
style integer assignment.

As all TEX integers, integer operands can also be dimension or skip variables, converted to
integers in sp, or octal numbers given as ’> followed by digits other than 8 and 9, or hexadecimal
numbers given as " followed by digits or upper case letters from A to F, or the character code of
some character or one-character control sequence, given as ‘(char).

82

\int_eval:w *

New: 2018-03-30

\int_abs:n *

Updated: 2012-09-26

\int_div_round:nn *

Updated: 2012-09-26

\int_div_truncate:nn *

Updated: 2012-02-09

\int_max:nn x
\int_min:nn %

Updated: 2012-09-26

\int_mod:nn x

Updated: 2012-09-26

\int_new:N
\int_new:c

\int_eval:w (integer expression)

Evaluates the (integer expression) as described for \int_eval:n. The end of the expres-
sion is the first token encountered that cannot form part of such an expression. If that
token is \scan_stop: it is removed, otherwise not. Spaces do not terminate the expres-
sion. However, spaces terminate explict integers, and this may terminate the expression:
for instance, \int_eval:w 1, +,1,9 expands to 29 since the digit 9 is not part of the
expression.

\int_abs:n {(integer expression)}

Evaluates the (integer expression) as described for \int_eval:n and leaves the absolute
value of the result in the input stream as an (integer denotation) after two expansions.

\int_div_round:nn {(intexpri)} {(intexprs)}

Evaluates the two (integer expressions) as described earlier, then divides the first value
by the second, and rounds the result to the closest integer. Ties are rounded away from
zero. Note that this is identical to using / directly in an (integer expression). The result
is left in the input stream as an (integer denotation) after two expansions.

\int_div_truncate:nn {(intexpr:)} {(intexprs)}

Evaluates the two (integer expressions) as described earlier, then divides the first value by
the second, and rounds the result towards zero. Note that division using / rounds to the
closest integer instead. The result is left in the input stream as an (integer denotation)
after two expansions.

\int_max:nn {(intexpr:)} {(intexprs)}
\int_min:nn {(intexpr:)} {(intexprs)}

Evaluates the (integer expressions) as described for \int_eval:n and leaves either the
larger or smaller value in the input stream as an (integer denotation) after two expansions.

\int_mod:nn {(intexpr:)} {(intexprs)}

Evaluates the two (integer expressions) as described earlier, then calculates the integer
remainder of dividing the first expression by the second. This is obtained by subtract-
ing \int_div_truncate:nn {(intexpry)} {(intexprs)} times (intexprs) from (intexpr:).
Thus, the result has the same sign as (intezpr;) and its absolute value is strictly less than
that of (intexprs). The result is left in the input stream as an (integer denotation) after
two expansions.

2 Creating and initialising integers

\int_new:N (integer)

Creates a new (integer) or raises an error if the name is already taken. The declaration
is global. The (integer) is initially equal to 0.

83

\int_const:Nn
\int_const:cn

Updated: 2011-10-22

\int_zero:N
\int_zero:c
\int_gzero:N
\int_gzero:c

\int_zero_new:N
\int_zero_new:c
\int_gzero_new:N
\int_gzero_new:c

New: 2011-12-13

\int_set_eq:NN
\int_set_eq:(cN|Nc|cc)
\int_gset_eq:NN
\int_gset_eq:(cN|Nc|cc)

\int_if_exist_p:N
\int_if_exist_p:c
\int_if_exist:NTF
\int_if_exist:cTF

L I

New: 2012-03-03

\int_add:Nn
\int_add:cn
\int_gadd:Nn
\int_gadd:cn

Updated: 2011-10-22

\int_decr:N
\int_decr:c
\int_gdecr:N
\int_gdecr:c

\int_incr:N
\int_incr:c
\int_gincr:N
\int_gincr:c

\int_const:Nn (integer) {(integer expression)}

Creates a new constant (integer) or raises an error if the name is already taken. The
value of the (integer) is set globally to the (integer expression).

\int_zero:N (integer)

Sets (integer) to 0.

\int_zero_new:N (integer)

Ensures that the (integer) exists globally by applying \int_new:N if necessary, then
applies \int_(g)zero:N to leave the (integer) set to zero.

\int_set_eq:NN (integeri) (integers)

Sets the content of (integer;) equal to that of (integers).

\int_if_exist_p:N (int)
\int_if_exist:NTF (int) {(true code)} {(false code)}

Tests whether the (int) is currently defined. This does not check that the (int) really is
an integer variable.

3 Setting and incrementing integers

\int_add:Nn (integer) {(integer expression)}

Adds the result of the (integer expression) to the current content of the (integer).

\int_decr:N (integer)

Decreases the value stored in (integer) by 1.

\int_incr:N (integer)

Increases the value stored in (integer) by 1.

84

\int_set:Nn
\int_set:cn
\int_gset:Nn
\int_gset:cn

Updated: 2011-10-22

\int_sub:Nn
\int_sub:cn
\int_gsub:Nn
\int_gsub:cn

Updated: 2011-10-22

\int_use:N *
\int_use:c *

Updated: 2011-10-22

\int_compare_p:nNn *
\int_compare:nNnTF *

\int_set:Nn (integer) {(integer expression)}

Sets (integer) to the value of (integer expression), which must evaluate to an integer (as
described for \int_eval:n).

\int_sub:Nn (integer) {(integer expression)}

Subtracts the result of the (integer expression) from the current content of the (integer).

4 Using integers

\int_use:N (integer)

Recovers the content of an (integer) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Can be omitted in places where an
(integer) is required (such as in the first and third arguments of \int_compare :nNnTF).

TEXhackers note: \int_use:N is the TEX primitive \the: this is one of several I¥TEX3
names for this primitive.

5 Integer expression conditionals

\int_compare_p:nNn {(intexpri)} (relation) {(intexpra)}
\int_compare :nNnTF
{(intexpr1)} (relation) {(intexpr:)}
{(true code)} {(false code)}
This function first evaluates each of the (integer expressions) as described for \int_-
eval:n. The two results are then compared using the (relation):

Equal =
Greater than

>
Less than <

This function is less flexible than \int_compare:nTF but around 5 times faster.

85

\int_compare_p:n *
\int_compare:nTF *

Updated: 2013-01-13

\int_compare_p:n
{

(intexpri) (relation:)

(intexpry) (relationn)

(intexpry41)
}
\int_compare:nTF
{

intexpri relation;
P

(intexpry) (relationy)
(intexpry41)

}

{(true code)} {(false code)}

This function evaluates the (integer expressions) as described for \int_eval:n and com-
pares consecutive result using the corresponding (relation), namely it compares (intezpr;)
and (intexprs) using the (relation,), then (intexprs) and (intexprs) using the (relations),
until finally comparing (intezxpry) and (intezpry i) using the (relationy). The test yields
true if all comparisons are true. Each (integer expression) is evaluated only once, and
the evaluation is lazy, in the sense that if one comparison is false, then no other (integer
expression) is evaluated and no other comparison is performed. The (relations) can be
any of the following:

Equal =or ==
Greater than or equal to >=
Greater than >

Less than or equal to <=
Less than <

Not equal 1=

This function is more flexible than \int_compare :nNnTF but around 5 times slower.

86

\int_case:nn *
\int_case:nnTF x

New: 2013-07-24

\int_if_even_p:n *
\int_if_even:nTF x
\int_if_odd_p:n «*
\int_if_odd:nTF =«

\int_do_until:nNnn 3

\int_do_while:nNnn ¢

\int_case:nnTF {(test integer expression)}
{
{(intexpr casei)} {(code casei)}
{(intexpr case2)} {(code cases)}

%&intexpr case,)} {(code casen)}
}
{(true code)}
{(false code)}

This function evaluates the (test integer expression) and compares this in turn to each
of the (integer expression cases). If the two are equal then the associated (code) is left
in the input stream and other cases are discarded. If any of the cases are matched, the
(true code) is also inserted into the input stream (after the code for the appropriate case),
while if none match then the (false code) is inserted. The function \int_case:nn, which
does nothing if there is no match, is also available. For example

\int_case:nnF

{25}
{
{5} { Small }
{4+63} { Medium }
{ -2 * 10 } { Negative }
}
{ No idea! }

leaves “Medium” in the input stream.

\int_if_odd_p:n {(integer expression)}
\int_if_odd:nTF {(integer expressiomn)}
{(true code)} {(false code)}
This function first evaluates the (integer expression) as described for \int_eval:n. It
then evaluates if this is odd or even, as appropriate.

6 Integer expression loops

\int_do_until:nNnn {(intexpri)} (relation) {(intexpra)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (integer expressions) as described for \int_compare :nNnTF. If the
test is false then the (code) is inserted into the input stream again and a loop occurs
until the (relation) is true.

\int_do_while:nNnn {(intexpri)} (relation) {(intexprs)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (integer expressions) as described for \int_compare :nNnTF. If
the test is true then the (code) is inserted into the input stream again and a loop occurs
until the (relation) is false.

87

\int_until_do:nNnn 3

\int_while_do:nNnn

\int_do_until:nn %

Updated: 2013-01-13

\int_do_while:nn 3

Updated: 2013-01-13

\int_until_do:nn v

Updated: 2013-01-13

\int_while_do:nn

Updated: 2013-01-13

\int_until_do:nNnn {(intexpri)} (relation) {(intexpr:)} {(code)}

Evaluates the relationship between the two (integer expressions) as described for \int_-
compare :nNnTF, and then places the (code) in the input stream if the (relation) is false.
After the (code) has been processed by TEX the test is repeated, and a loop occurs until
the test is true.

\int_while_do:nNnn {(intexpri)} (relatiomn) {(intexpr:)} {(code)}

Evaluates the relationship between the two (integer expressions) as described for \int_-
compare:nNnTF, and then places the (code) in the input stream if the (relation) is true.
After the (code) has been processed by TEX the test is repeated, and a loop occurs until
the test is false.

\int_do_until:nn {({integer relation)} {(code)}

Places the {code) in the input stream for TEX to process, and then evaluates the (integer
relation) as described for \int_compare:nTF. If the test is false then the (code) is
inserted into the input stream again and a loop occurs until the (relation) is true.

\int_do_while:nn {({integer relation)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the (integer
relation) as described for \int_compare:nTF. If the test is true then the (code) is
inserted into the input stream again and a loop occurs until the (relation) is false.

\int_until_do:nn {(integer relation)} {{code)}

Evaluates the (integer relation) as described for \int_compare:nTF, and then places the
(code) in the input stream if the (relation) is false. After the (code) has been processed
by TEX the test is repeated, and a loop occurs until the test is true.

\int_while_do:nn {(integer relation)} {(code)}

Evaluates the (integer relation) as described for \int_compare:nTF, and then places the
(code) in the input stream if the (relation) is true. After the (code) has been processed
by TEX the test is repeated, and a loop occurs until the test is false.

88

\int_step_function:nN W
\int_step_function:nnN
\int_step_function:nnnN 5

New: 2012-06-04
Updated: 2018-04-22

\int_step_inline:nn
\int_step_inline:nnn
\int_step_inline:nnnn

New: 2012-06-04
Updated: 2018-04-22

\int_step_variable:nNn
\int_step_variable:nnNn
\int_step_variable:nnnNn

New: 2012-06-04
Updated: 2018-04-22

7 Integer step functions

\int_step_function:nN {(final value)} (function)
\int_step_function:nnN {(initial value)} {(final value)} (function)
\int_step_function:nnnN {(initial value)} {(step)} {(final value)} (function)

This function first evaluates the (initial value), (step) and (final value), all of which should
be integer expressions. The (function) is then placed in front of each (value) from the
(initial value) to the (final value) in turn (using (step) between each (value)). The (step)
must be non-zero. If the (step) is positive, the loop stops when the (value) becomes larger
than the (final value). If the (step) is negative, the loop stops when the (value) becomes
smaller than the (final value). The (function) should absorb one numerical argument.
For example

\cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
\int_step_function:nnnN { 1 } { 1 } { 5 } \my_func:n

would print
[saw 1] [Isaw 2] [Isaw 3] [Isaw 4] [Isaw 5]

The functions \int_step_function:nN and \int_step_function:nnN both use a
fixed (step) of 1, and in the case of \int_step_function:nN the (initial value) is also
fixed as 1. These functions are provided as simple short-cuts for code clarity.

\int_step_inline:nn {(final value)} {(code)}
\int_step_inline:nnn {(initial value)} {(final value)} {({code)}
\int_step_inline:nnnn {(initial value)} {(step)} {(final value)} {(code)}
This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. Then for each (value) from the (initial value) to the (final
value) in turn (using (step) between each (wvalue)), the (code) is inserted into the input
stream with #1 replaced by the current (value). Thus the (code) should define a function
of one argument (#1).

The functions \int_step_inline:nn and \int_step_inline:nnn both use a fixed
(step) of 1, and in the case of \int_step_inline:nn the (initial value) is also fixed as 1.
These functions are provided as simple short-cuts for code clarity.

\int_step_variable:nNn {(final value)} (tl var) {(code)}
\int_step_variable:nnNn {(initial value)} {(final value)} (tl1 var) {({code)}
\int_step_variable:nnnNn {(initial value)} {(step)} {(final value)} (tl var)
{(code)}
This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. Then for each (value) from the (initial value) to the (final
value) in turn (using (step) between each (wvalue)), the (code) is inserted into the input
stream, with the (¢l var) defined as the current (value). Thus the (code) should make
use of the (¢ var).

The functions \int_step_variable:nNn and \int_step_variable:nnNn both use
a fixed (step) of 1, and in the case of \int_step_variable:nNn the (initial value) is also
fixed as 1. These functions are provided as simple short-cuts for code clarity.

89

\int_to_arabic:n *

Updated: 2011-10-22

\int_to_alph:n *
\int_to_Alph:n *

Updated: 2011-09-17

\int_to_symbols:nnn *

Updated: 2011-09-17

8 Formatting integers

Integers can be placed into the output stream with formatting. These conversions apply
to any integer expressions.

\int_to_arabic:n {(integer expression)}

Places the value of the (integer expression) in the input stream as digits, with category
code 12 (other).

\int_to_alph:n {(integer expression)}

Evaluates the (integer expression) and converts the result into a series of letters, which
are then left in the input stream. The conversion rule uses the 26 letters of the English
alphabet, in order, adding letters when necessary to increase the total possible range of
representable numbers. Thus

\int_to_alph:n { 1 }
places a in the input stream,

\int_to_alph:n { 26 }
is represented as z and

\int_to_alph:n { 27 }

is converted to aa. For conversions using other alphabets, use \int_to_symbols:nnn to
define an alphabet-specific function. The basic \int_to_alph:n and \int_to_Alph:n
functions should not be modified. The resulting tokens are digits with category code 12
(other) and letters with category code 11 (letter).

\int_to_symbols:nnn
{(integer expression)} {(total symbols)}
{{value to symbol mapping)}

This is the low-level function for conversion of an (integer expression) into a symbolic form
(often letters). The (total symbols) available should be given as an integer expression.
Values are actually converted to symbols according to the (value to symbol mapping).
This should be given as (total symbols) pairs of entries, a number and the appropriate
symbol. Thus the \int_to_alph:n function is defined as

\cs_new:Npn \int_to_alph:n #1

{
\int_to_symbols:nnn {#1} { 26 }
{
{ 1}¥{a?
{ 23{v?}
{26 {z1?}
}
}

90

\int_to_bin:n *

New: 2014-02-11

\int_to_hex:n *
\int_to_Hex:n *

New: 2014-02-11

\int_to_oct:n *

New: 2014-02-11

\int_to_base:nn x
\int_to_Base:nn x

Updated: 2014-02-11

\int_to_roman:n 7%
\int_to_Roman:n

Updated: 2011-10-22

\int_from_alph:n *

Updated: 2014-08-25

\int_to_bin:n {(integer expression)}

Calculates the value of the (integer expression) and places the binary representation of
the result in the input stream.

\int_to_hex:n {(integer expression)}

Calculates the value of the (integer expression) and places the hexadecimal (base 16)
representation of the result in the input stream. Letters are used for digits beyond 9:
lower case letters for \int_to_hex:n and upper case ones for \int_to_Hex:n. The
resulting tokens are digits with category code 12 (other) and letters with category code
11 (letter).

\int_to_oct:n {(integer expression)}

Calculates the value of the (integer expression) and places the octal (base 8) representa-
tion of the result in the input stream. The resulting tokens are digits with category code
12 (other) and letters with category code 11 (letter).

\int_to_base:nn {(integer expression)} {(base)}

Calculates the value of the (integer expression) and converts it into the appropriate
representation in the (base); the later may be given as an integer expression. For bases
greater than 10 the higher “digits” are represented by letters from the English alphabet:
lower case letters for \int_to_base:n and upper case ones for \int_to_Base:n. The
maximum (base) value is 36. The resulting tokens are digits with category code 12 (other)
and letters with category code 11 (letter).

TEXhackers note: This is a generic version of \int_to_bin:n, etc.

\int_to_roman:n {(integer expression)}

Places the value of the (integer expression) in the input stream as Roman numerals,
either lower case (\int_to_roman:n) or upper case (\int_to_Roman:n). If the value is
negative or zero, the output is empty. The Roman numerals are letters with category
code 11 (letter). The letters used are mdclxvi, repeated as needed: the notation with
bars (such as v for 5000) is not used. For instance \int_to_roman:n { 8249 } expands
to mmmmmmmmccxlix.

9 Converting from other formats to integers

\int_from_alph:n {(letters)}

Converts the (letters) into the integer (base 10) representation and leaves this in the
input stream. The (letters) are first converted to a string, with no expansion. Lower and
upper case letters from the English alphabet may be used, with “a” equal to 1 through

to “z” equal to 26. The function also accepts a leading sign, made of + and -. This is
the inverse function of \int_to_alph:n and \int_to_Alph:n.

91

\int_from_bin:n x

New: 2014-02-11
Updated: 2014-08-25

\int_from_hex:n x

New: 2014-02-11
Updated: 2014-08-25

\int_from_oct:n x

New: 2014-02-11
Updated: 2014-08-25

\int_from_roman:n *

Updated: 2014-08-25

\int_from_base:nn *

Updated: 2014-08-25

\int_rand:nn *

New: 2016-12-06
Updated: 2018-04-27

\int_rand:n *

New: 2018-05-05

\int_from_bin:n {(binary number)}

Converts the (binary number) into the integer (base 10) representation and leaves this in
the input stream. The (binary number) is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by binary digits. This is
the inverse function of \int_to_bin:n.

\int_from_hex:n {(hexadecimal number)}

Converts the (hezadecimal number) into the integer (base 10) representation and leaves
this in the input stream. Digits greater than 9 may be represented in the (hezadecimal
number) by upper or lower case letters. The (hezadecimal number) is first converted to
a string, with no expansion. The function also accepts a leading sign, made of + and -.
This is the inverse function of \int_to_hex:n and \int_to_Hex:n.

\int_from_oct:n {({octal number)}

Converts the (octal number) into the integer (base 10) representation and leaves this in
the input stream. The (octal number) is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by octal digits. This is
the inverse function of \int_to_oct:n.

\int_from_roman:n {(roman numeral)}

Converts the (roman numeral) into the integer (base 10) representation and leaves this in
the input stream. The (roman numeral) is first converted to a string, with no expansion.
The (roman numeral) may be in upper or lower case; if the numeral contains characters
besides mdclxvi or MDCLXVI then the resulting value is —1. This is the inverse function
of \int_to_roman:n and \int_to_Roman:n.

\int_from_base:nn {(number)} {(base)}

Converts the (number) expressed in (base) into the appropriate value in base 10. The
(number) is first converted to a string, with no expansion. The (number) should consist
of digits and letters (either lower or upper case), plus optionally a leading sign. The
maximum (base) value is 36. This is the inverse function of \int_to_base:nn and \int_-
to_Base:nn.

10 Random integers

\int_rand:nn {(intexpri)} {(intexprs)}

Evaluates the two (integer expressions) and produces a pseudo-random number between
the two (with bounds included). This is not available in older versions of XH{TEX.

\int_rand:n {(intexpr)}

Evaluates the (integer expression) then produces a pseudo-random number between 1
and the (intexpr) (included). This is not available in older versions of XH{TEX.

92

\int_show:N
\int_show:c

\int_show:n

New: 2011-11-22
Updated: 2015-08-07

\int_log:N
\int_log:c

New: 2014-08-22
Updated: 2015-08-03

\int_log:n

New: 2014-08-22
Updated: 2015-08-07

\c_zero_int
\c_one_int

New: 2018-05-07

\c_max_int

\c_max_register_int

\c_max_char_int

\1_tmpa_int
\1_tmpb_int

\g_tmpa_int
\g_tmpb_int

11 Viewing integers

\int_show:N (integer)

Displays the value of the (integer) on the terminal.

\int_show:n {(integer expression)}

Displays the result of evaluating the (integer expression) on the terminal.

\int_log:N (integer)

Writes the value of the (integer) in the log file.

\int_log:n {(integer expression)}

Writes the result of evaluating the (integer expression) in the log file.

12 Constant integers

Integer values used with primitive tests and assignments: their self-terminating nature
makes these more convenient and faster than literal numbers.

The maximum value that can be stored as an integer.
Maximum number of registers.

Maximum character code completely supported by the engine.

13 Scratch integers

Scratch integer for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch integer for global assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

93

\int_value:w *

New: 2018-03-27

\if_int_compare:w *

\if_case:w *

\or:

*

13.1 Direct number expansion

\int_value:w (integer)

\int_value:w (integer denotation) (optional space)

Expands the following tokens until an (integer) is formed, and leaves a normalized form
(no leading sign except for negative numbers, no leading digit 0 except for zero) in the
input stream as category code 12 (other) characters. The (integer) can consist of any
number of signs (with intervening spaces) followed by

 an integer variable (in fact, any TEX register except \toks) or
o explicit digits (or by ’(octal digits) or "(hezadecimal digits) or ‘{character)).

In this last case expansion stops once a non-digit is found; if that is a space it is removed
as in f-expansion, and so \exp_stop_f: may be employed as an end marker. Note that
protected functions are expanded by this process.

This function requires exactly one expansion to produce a value, and so is suitable
for use in cases where a number is required “directly”. In general, \int_eval:n is the
preferred approach to generating numbers.

TEXhackers note: This is the TEX primitive \number.

14 Primitive conditionals

\if_int_compare:w (integer:) (relation) (integers)
(true code)
\else:
(false code)
\fi:
Compare two integers using (relation), which must be one of =, < or > with category code
12. The \else: branch is optional.

TEXhackers note: These are both names for the TEX primitive \ifnum.

\if_case:w (integer) (caseg)

\or: (casei)

\or:

\else: (default)
\fi:
Selects a case to execute based on the value of the (integer). The first case ({caseg)) is
executed if (integer) is 0, the second ({case;)) if the (integer) is 1, etc. The (integer)
may be a literal, a constant or an integer expression (e.g. using \int_eval:n).

TEXhackers note: These are the TEX primitives \ifcase and \or.

94

\if_int_odd:w * \if_int_odd:w (tokens) (optional space)
(true code)
\else:
(true code)
\fi:
Expands (tokens) until a non-numeric token or a space is found, and tests whether the
resulting (integer) is odd. If so, (true code) is executed. The \else: branch is optional.

TEXhackers note: This is the TEX primitive \ifodd.

95

\flag_new:

\flag_clear:

\flag_clear_new:

\flag_show:

\flag_log:

Part XI
The 13flag package: Expandable flags

Flags are the only data-type that can be modified in expansion-only contexts. This
module is meant mostly for kernel use: in almost all cases, booleans or integers should
be preferred to flags because they are very significantly faster.

A flag can hold any non-negative value, which we call its (height). In expansion-
only contexts, a flag can only be “raised”: this increases the (height) by 1. The (height)
can also be queried expandably. However, decreasing it, or setting it to zero requires
non-expandable assignments.

Flag variables are always local. They are referenced by a (flag name) such as str_-
missing. The (flag name) is used as part of \use:c constructions hence is expanded at
point of use. It must expand to character tokens only, with no spaces.

A typical use case of flags would be to keep track of whether an exceptional condition
has occurred during expandable processing, and produce a meaningful (non-expandable)
message after the end of the expandable processing. This is exemplified by I3str-convert,
which for performance reasons performs conversions of individual characters expandably
and for readability reasons produces a single error message describing incorrect inputs
that were encountered.

Flags should not be used without carefully considering the fact that raising a flag
takes a time and memory proportional to its height. Flags should not be used unless
unavoidable.

1 Setting up flags

\flag_new:n {(flag name)}

Creates a new flag with a name given by (flag name), or raises an error if the name is
already taken. The (flag name) may not contain spaces. The declaration is global, but
flags are always local variables. The (flag) initially has zero height.

\flag_clear:n {(flag name)}
The (flag)’s height is set to zero. The assignment is local.

\flag_clear_new:n {(flag name)}

Ensures that the (flag) exists globally by applying \flag_new:n if necessary, then applies
\flag_clear:n, setting the height to zero locally.

\flag_show:n {(flag name)}
Displays the (flag)’s height in the terminal.

\flag_log:n {(flag name)}
Writes the (flag)’s height to the log file.

96

2 Expandable flag commands

*

\flag_if_exist_p:n \flag_if_exist:n {(flag name)}

\flag if exist:nlF * This function returns true if the (flag name) references a flag that has been defined

previously, and false otherwise.

*

\flag_if_raised_p:n \flag_if_raised:n {(flag name)}

\flag if _raised:nIF This function returns true if the (flag) has non-zero height, and false if the (flag) has

zero height.

\flag_height:n x \flag_height:n {(flag name)}

Expands to the height of the (flag) as an integer denotation.

\flag_raise:n * \flag raise:n {(flag name)}
The (flag)’s height is increased by 1 locally.

97

\prg_new_conditional:Npnn
\prg_set_conditional:Npnn
\prg_new_conditional:Nnn
\prg_set_conditional:Nnn

Updated: 2012-02-06

Part XII
The 13prg package
Control structures

Conditional processing in IXTEX3 is defined as something that performs a series of tests,
possibly involving assignments and calling other functions that do not read further ahead
in the input stream. After processing the input, a state is returned. The states returned
are (true) and (false).

TEX3 has two forms of conditional flow processing based on these states. The first
form is predicate functions that turn the returned state into a boolean (true) or (false).
For example, the function \cs_if_free_p:N checks whether the control sequence given
as its argument is free and then returns the boolean (true) or (false) values to be used in
testing with \if_predicate:w or in functions to be described below. The second form
is the kind of functions choosing a particular argument from the input stream based on
the result of the testing as in \cs_if_free:NTF which also takes one argument (the N)
and then executes either true or false depending on the result.

TEXhackers note: The arguments are executed after exiting the underlying \if...\fi:
structure.

1 Defining a set of conditional functions

\prg_new_conditional:Npnn \(name):(arg spec) (parameters) {(conditions)} {(code)}
\prg_new_conditional:Nnn \(name):({arg spec) {(conditions)} {(code)}

These functions create a family of conditionals using the same {(code)} to perform the
test created. Those conditionals are expandable if (code) is. The new versions check for
existing definitions and perform assignments globally (cf. \cs_new:Npn) whereas the set
versions do no check and perform assignments locally (cf. \cs_set:Npn). The condition-
als created are dependent on the comma-separated list of (conditions), which should be
one or more of p, T, F and TF.

\prg_new_protected_conditional:Npnn \prg_new_protected_conditional:Npnn \(name):(arg spec) (parameters)
\prg_set_protected_conditional:Npnn {(conditions)} {(code)}

\prg_new_protected_conditional:Nnn \prg_new_protected_conditional:Nnn \(name):{(arg spec)
\prg_set_protected_conditional:Nnn {(conditions)} {(code)}

Updated: 2012-02-06

These functions create a family of protected conditionals using the same {(code)} to
perform the test created. The (code) does not need to be expandable. The new version
check for existing definitions and perform assignments globally (¢f. \cs_new:Npn) whereas
the set version do not (¢f. \cs_set:Npn). The conditionals created are depended on the
comma-separated list of {conditions), which should be one or more of T, F and TF (not

p)-
The conditionals are defined by \prg_new_conditional:Npnn and friends as:

98

o \(name)_p:(arg spec) — a predicate function which will supply either a logical
true or logical false. This function is intended for use in cases where one or more
logical tests are combined to lead to a final outcome. This function cannot be
defined for protected conditionals.

o \(name):(arg spec)T — a function with one more argument than the original (arg
spec) demands. The (true branch) code in this additional argument will be left on
the input stream only if the test is true.

o \(name):(arg spec)F — a function with one more argument than the original {(arg
spec) demands. The (false branch) code in this additional argument will be left on
the input stream only if the test is false.

e \(name):(arg spec)TF — a function with two more argument than the original
(arg spec) demands. The (true branch) code in the first additional argument will
be left on the input stream if the test is true, while the (false branch) code in the
second argument will be left on the input stream if the test is false.

The (code) of the test may use (parameters) as specified by the second argument to \prg_-
set_conditional:Npnn: this should match the (argument specification) but this is not
enforced. The Nnn versions infer the number of arguments from the argument specification
given (cf. \cs_new:Nn, etc.). Within the (code), the functions \prg_return_true: and
\prg_return_false: are used to indicate the logical outcomes of the test.

An example can easily clarify matters here:

\prg_set_conditional:Npnn \foo_if_bar:NN #1#2 { p , T , TF }
{
\if _meaning:w \1_tmpa_tl #1
\prg_return_true:
\else:
\if_meaning:w \1_tmpa_tl #2
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:
}

This defines the function \foo_if_bar_p:NN, \foo_if_bar:NNTF and \foo_if_bar:NNT
but not \foo_if_bar:NNF (because F is missing from the (conditions) list). The return
statements take care of resolving the remaining \else: and \fi: before returning the
state. There must be a return statement for each branch; failing to do so will result in
erroneous output if that branch is executed.

\prg_new_eq_conditional:NNn \prg_new_eq_conditional:NNn \(name:):(arg speci) \(name:):(arg specs)
\prg_set_eq_conditional:NNn {(conditions)}

These functions copy a family of conditionals. The new version checks for existing defini-
tions (¢f. \cs_new_eq:NN) whereas the set version does not (cf. \cs_set_eq:NN). The
conditionals copied are depended on the comma-separated list of (conditions), which
should be one or more of p, T, F and TF.

99

\prg_return_true: *
\prg_return_false: x

\prg_return_true:

\prg_return_false:

These “return” functions define the logical state of a conditional statement. They appear
within the code for a conditional function generated by \prg_set_conditional:Npnn,
etc, to indicate when a true or false branch should be taken. While they may appear
multiple times each within the code of such conditionals, the execution of the conditional
must result in the expansion of one of these two functions ezactly once.

The return functions trigger what is internally an f-expansion process to com-
plete the evaluation of the conditional. Therefore, after \prg_return_true: or \prg_-
return_false: there must be no non-expandable material in the input stream for the
remainder of the expansion of the conditional code. This includes other instances of
either of these functions.

\prg_generate_conditional_variant:Nnn \prg_generate_conditional_variant:Nnn \(name):{arg spec)

riant ar n ifier ndition ifier
Now: 2017-12-12 {(variant argument specifiers)} {(condition specifiers)}

\bool_new:N
\bool _new:c

Defines argument-specifier variants of conditionals. This is equivalent to running \cs_-
generate_variant:Nn (conditional) {{variant argument specifiers)} on each (conditional)
described by the (condition specifiers). These base-form (conditionals) are obtained
from the (name) and (arg spec) as described for \prg_new_conditional :Npnn, and they
should be defined.

2 The boolean data type

This section describes a boolean data type which is closely connected to conditional
processing as sometimes you want to execute some code depending on the value of a
switch (e.g., draft/final) and other times you perhaps want to use it as a predicate
function in an \if_predicate:w test. The problem of the primitive \if_false: and
\if_true: tokens is that it is not always safe to pass them around as they may interfere
with scanning for termination of primitive conditional processing. Therefore, we employ
two canonical booleans: \c_true_bool or \c_false_bool. Besides preventing problems
as described above, it also allows us to implement a simple boolean parser supporting
the logical operations And, Or, Not, etc. which can then be used on both the boolean
type and predicate functions.

All conditional \bool_ functions except assignments are expandable and expect the
input to also be fully expandable (which generally means being constructed from predicate
functions and booleans, possibly nested).

TEXhackers note: The bool data type is not implemented using the \iffalse/\iftrue
primitives, in contrast to \newif, etc., in plain TEX, I¥TEX 2¢ and so on. Programmers should
not base use of bool switches on any particular expectation of the implementation.

\bool_new:N (boolean)

Creates a new (boolean) or raises an error if the name is already taken. The declaration
is global. The (boolean) is initially false.

100

\bool_set_false:N
\bool_set_false:c
\bool_gset_false:N
\bool_gset_false:c

\bool_set_true:N
\bool_set_true:c
\bool_gset_true:N
\bool_gset_true:c

\bool_set_eq:NN
\bool_set_eq:(cN|Nc|cc)
\bool_gset_eq:NN
\bool_gset_eq:(cN|Nc|cc)

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn

Updated: 2017-07-15

\bool_if_p:N

\bool_if_p:c
\bool_if:NTF
\bool_if:cTF

X o X ot

Updated: 2017-07-15

\bool_show:N
\bool_show:c

New: 2012-02-09
Updated: 2015-08-01

\bool_show:n

New: 2012-02-09
Updated: 2017-07-15

\bool_log:N
\bool_log:c

New: 2014-08-22
Updated: 2015-08-03

\bool_log:n

New: 2014-08-22
Updated: 2017-07-15

\bool_set_false:N (boolean)

Sets (boolean) logically false.

\bool_set_true:N (boolean)

Sets (boolean) logically true.

\bool_set_eq:NN (boolean;) (booleany)

Sets (boolean) to the current value of (booleansy).

\bool_set:Nn (boolean) {(boolexpr)}

Evaluates the (boolean expression) as described for \bool_if :nTF, and sets the (boolean)
variable to the logical truth of this evaluation.

\bool_if_p:N (boolean)
\bool_if:NTF (boolean) {(true code)} {(false code)}

Tests the current truth of (boolean), and continues expansion based on this result.

\bool_show:N (boolean)

Displays the logical truth of the (boolean) on the terminal.

\bool_show:n {(boolean expression)}

Displays the logical truth of the (boolean expression) on the terminal.

\bool_log:N (boolean)
Writes the logical truth of the (boolean) in the log file.

\bool_log:n {(boolean expression)}

Writes the logical truth of the (boolean expression) in the log file.

101

\bool_if_exist_p:N
\bool_if_exist_p:c
\bool_if_exist:NTF
\bool_if_exist:cTF

L I o

New: 2012-03-03

\1_tmpa_bool
\1_tmpb_bool

\g_tmpa_bool
\g_tmpb_bool

\bool_if_exist_p:N (boolean)
\bool_if_exist:NTF (boolean) {(true code)} {(false code)}

Tests whether the (boolean) is currently defined. This does not check that the (boolean)
really is a boolean variable.

A scratch boolean for local assignment. It is never used by the kernel code, and so is
safe for use with any I#TEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

A scratch boolean for global assignment. It is never used by the kernel code, and so is
safe for use with any I¥TEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

3 Boolean expressions

As we have a boolean datatype and predicate functions returning boolean (true) or (false)
values, it seems only fitting that we also provide a parser for (boolean expressions).

A boolean expression is an expression which given input in the form of predicate
functions and boolean variables, return boolean (¢rue) or (false). It supports the logical
operations And, Or and Not as the well-known infix operators && and || and prefix !
with their usual precedences (namely, && binds more tightly than []). In addition to
this, parentheses can be used to isolate sub-expressions. For example,

\int_compare_p:n { 1 = 1 } &&
(
\int_compare_p:n { 2 = 3 } ||
\int_compare_p:n { 4 <= 4 } ||
\str_if_eq_p:nn { abc } { def }
) &&
! \int_compare_p:n { 2 = 4 }

is a valid boolean expression.

Contrarily to some other programming languages, the operators && and | | evaluate
both operands in all cases, even when the first operand is enough to determine the result.
This “eager” evaluation should be contrasted with the “lazy” evaluation of \bool_lazy_-
... functions.

TEXhackers note: The eager evaluation of boolean expressions is unfortunately necessary
in TEX. Indeed, a lazy parser can get confused if && or || or parentheses appear as (unbraced)
arguments of some predicates. For instance, the innocuous-looking expression below would break
(in a lazy parser) if #1 were a closing parenthesis and \1_tmpa_bool were true.

(\1_tmpa_bool || \token_if_eq_meaning_p:NN X #1)

Minimal (lazy) evaluation can be obtained using the conditionals \bool_lazy_ -
all:nTF, \bool_lazy_and:nnTF, \bool_lazy_any:nTF, or \bool_lazy_or:nnTF, which
only evaluate their boolean expression arguments when they are needed to determine the
resulting truth value. For example, when evaluating the boolean expression

102

\bool_if_p:n «*
\bool_if:nTF *

Updated: 2017-07-15

\bool_lazy_all_p:n *
\bool_lazy_all:nTF x

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_and_p:nn *
\bool_lazy_and:nnTF *

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_any_p:n *
\bool_lazy_any:nTF %

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_and_p:nn

{
\bool_lazy_any_p:n
{
{ \int_compare_p:n { 2 =3 } }
{ \int_compare_p:n { 4 <=4 } }
{ \int_compare_p:n { 1 = \error } } ’ skipped
}
}

{ ! \int_compare_p:n { 2 =4 } }

the line marked with skipped is not expanded because the result of \bool_lazy_any_-
p:n is known once the second boolean expression is found to be logically true. On the
other hand, the last line is expanded because its logical value is needed to determine the
result of \bool_lazy_and_p:nn.

\bool_if_p:n {(boolean expression)}

\bool_if:nTF {(boolean expression)} {(true code)} {(false code)}

Tests the current truth of (boolean expression), and continues expansion based on this
result. The (boolean expression) should consist of a series of predicates or boolean vari-
ables with the logical relationship between these defined using && (“And”), || (“Or”), !
(“Not”) and parentheses. The logical Not applies to the next predicate or group.

\bool_lazy_all_p:n { {(boolexpr;)
\bool_lazy_all:nTF { {(boolexpri)
{(false code)?}

} {(boolexprs)} --- {(boolexpry)} }
} {(boolexprs)} --- {(boolexprn)} } {(true code)}

Implements the “And” operation on the (boolean expressions), hence is true if all of
them are true and false if any of them is false. Contrarily to the infix operator &&,
only the (boolean expressions) which are needed to determine the result of \bool_lazy_-
all:nTF are evaluated. See also \bool_lazy_and:nnTF when there are only two (boolean

expressions).

\bool_lazy_and_p:nn {(boolexpri)} {(boolexprs)}

\bool_lazy_and:nnTF {(boolexpr:i)} {(boolexpr2)} {(true code)} {(false code)}
Implements the “And” operation between two boolean expressions, hence is true if both
are true. Contrarily to the infix operator &&, the (boolexprs) is only evaluated if it is
needed to determine the result of \bool_lazy_and:nnTF. See also \bool_lazy_all:nTF
when there are more than two (boolean expressions).

\bool_lazy_any_p:n { {(boolexpri)
\bool_lazy_any:nTF { {(boolexpr)
{(false code)?}

(boolexprz)} --- {(boolexprn)

e T}
} {(boolexprs)} --- {(boolexpry)} }

{(true code)}

Implements the “Or” operation on the (boolean expressions), hence is true if any of
them is true and false if all of them are false. Contrarily to the infix operator ||,
only the (boolean expressions) which are needed to determine the result of \bool_lazy_-
any:nTF are evaluated. See also \bool_lazy_or:nnTF when there are only two (boolean
expressions).

103

\bool_lazy_or_p:nn =%
\bool_lazy_or:nnTF *

New: 2015-11-15
Updated: 2017-07-15

\bool_not_p:n *

Updated: 2017-07-15

\bool_xor_p:nn *
\bool_xor:nnTF x

New: 2018-05-09

\bool_do_until:Nn
\bool_do_until:cn 3%

Updated: 2017-07-15

\bool_do_while:Nn 3
\bool_do_while:cn 7

Updated: 2017-07-15

\bool_until_do:Nn v
\bool _until_do:cn %%

Updated: 2017-07-15

\bool_while_do:Nn
\bool_while_do:cn 3¢

Updated: 2017-07-15

\bool_do_until:nn v

Updated: 2017-07-15

\bool_lazy_or_p:nn {(boolexpri)} {(boolexprs)}
\bool_lazy_or:nnTF {(boolexpri)} {(boolexprs)} {(true code)} {(false code)}

Implements the “Or” operation between two boolean expressions, hence is true if either
one is true. Contrarily to the infix operator ||, the (boolexprs) is only evaluated if it is
needed to determine the result of \bool_lazy_or:nnTF. See also \bool_lazy_any:nTF
when there are more than two (boolean expressions).

\bool_not_p:n {(boolean expression)}

Function version of ! ({boolean expression)) within a boolean expression.

\bool_xor_p:nn {(boolexpri)} {(boolexprs)}
\bool_xor:nnTF {(boolexpri)} {(boolexprs)} {(true code)} {(false code)}

Implements an “exclusive or” operation between two boolean expressions. There is no
infix operation for this logical operation.

4 Logical loops

Loops using either boolean expressions or stored boolean values.

\bool_do_until:Nn (boolean) {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is false then the (code) is inserted into the input stream
again and the process loops until the (boolean) is true.

\bool_do_while:Nn (boolean) {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is true then the (code) is inserted into the input stream again
and the process loops until the (boolean) is false.

\bool_until_do:Nn (boolean) {{code)}

This function firsts checks the logical value of the (boolean). If it is false the (code) is
placed in the input stream and expanded. After the completion of the {(code) the truth
of the (boolean) is re-evaluated. The process then loops until the (boolean) is true.

\bool_while_do:Nn (boolean) {(code)}

This function firsts checks the logical value of the (boolean). If it is true the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process then loops until the (boolean) is false.

\bool_do_until:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if:nTF. If it is false then the
(code) is inserted into the input stream again and the process loops until the (boolean
expression) evaluates to true.

104

\bool_do_while:nn v

Updated: 2017-07-15

\bool_until_do:nn 3

Updated: 2017-07-15

\bool_while_do:nn 3

Updated: 2017-07-15

\prg_replicate:nn x

Updated: 2011-07-04

\mode_if_horizontal_p:
\mode_if_horizontal:TF *

*

\mode_if_inner_p: *
\mode_if_inner:TF x

\mode_if_math_p: *
\mode_if_math:TF x

Updated: 2011-09-05

\mode_if_vertical_p: =
\mode_if_vertical:TF x

\bool_do_while:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if :nTF. If it is true then the
(code) is inserted into the input stream again and the process loops until the (boolean
expression) evaluates to false.

\bool_until_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is false the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process then loops until the (boolean expression) is true.

\bool_while_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is true the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process then loops until the {(boolean expression) is false.

5 Producing multiple copies

\prg_replicate:nn {(integer expression)} {(tokens)}

Evaluates the (integer expression) (which should be zero or positive) and creates the
resulting number of copies of the (tokens). The function is both expandable and safe for
nesting. It yields its result after two expansion steps.

6 Detecting TEX’s mode

\mode_if_horizontal_p:
\mode_if_horizontal:TF {(true code)} {(false code)}

Detects if TEX is currently in horizontal mode.

\mode_if_inner_p:
\mode_if_inner:TF {(true code)} {(false code)}

Detects if TEX is currently in inner mode.

\mode_if_math:TF {(true code)} {(false code)}

Detects if TEX is currently in maths mode.

\mode_if_vertical_p:
\mode_if_vertical:TF {(true code)} {(false code)}

Detects if TEX is currently in vertical mode.

105

\if_predicate:w =

\if_bool:N *

\prg_break_point:Nn *

New: 2018-03-26

\prg_map_break:Nn x

New: 2018-03-26

\prg_break_point: *

New: 2018-03-27

7 Primitive conditionals

\if_predicate:w (predicate) (true code) \else: (false code) \fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the (predicate) but
to make the coding clearer this should be done through \if_bool:N.)

\if_bool:N (boolean) (true code) \else: (false code) \fi:

This function takes a boolean variable and branches according to the result.

8 Nestable recursions and mappings

There are a number of places where recursion or mapping constructs are used in expl3.
At a low-level, these typically require insertion of tokens at the end of the content to
allow “clean up”. To support such mappings in a nestable form, the following functions
are provided.

\prg_break_point:Nn \(type)_map_break: {(code)}

Used to mark the end of a recursion or mapping: the functions \(type)_map_break:
and \(type)_map_break:n use this to break out of the loop (see \prg_map_break:Nn
for how to set these up). After the loop ends, the (code) is inserted into the input
stream. This occurs even if the break functions are not applied: \prg_break_point:Nn
is functionally-equivalent in these cases to \use_ii:nn.

\prg_map_break:Nn \(type)_map_break: {(user code)}

\prg_break_point:Nn \(type)_map_break: {(ending code)}

Breaks a recursion in mapping contexts, inserting in the input stream the (user code)
after the (ending code) for the loop. The function breaks loops, inserting their (ending
code), until reaching a loop with the same (type) as its first argument. This \(type)_-
map_break: argument must be defined; it is simply used as a recognizable marker for the
(type).

For types with mappings defined in the kernel, \(type)_map_break: and \(type)_-
map_break:n are defined as \prg_map_break:Nn \(type)_map_break: {} and the same
with {} omitted.

8.1 Simple mappings

In addition to the more complex mappings above, non-nestable mappings are used in a
number of locations and support is provided for these.

This copy of \prg_do_nothing: is used to mark the end of a fast short-term recursion:
the function \prg_break:n uses this to break out of the loop.

106

\prg_break: *
\prg_break:n *

New: 2018-03-27

\group_align_safe_begin: «*
\group_align_safe_end: *

Updated: 2011-08-11

\prg_break:n {(code)} ... \prg_break_point:

Breaks a recursion which has no (ending code) and which is not a user-breakable mapping
(see for instance \prop_get:Nn), and inserts the (code) in the input stream.

9 Internal programming functions

\group_align_safe_begin:

\group_align_safe_end:

These functions are used to enclose material in a TEX alignment environment within a
specially-constructed group. This group is designed in such a way that it does not add
brace groups to the output but does act as a group for the & token inside \halign. This
is necessary to allow grabbing of tokens for testing purposes, as TEX uses group level
to determine the effect of alignment tokens. Without the special grouping, the use of a
function such as \peek_after:Nw would result in a forbidden comparison of the internal
\endtemplate token, yielding a fatal error. Each \group_align_safe_begin: must be
matched by a \group_align_safe_end:, although this does not have to occur within
the same function.

107

\c_sys_jobname_str

New: 2015-09-19

\c_sys_minute_int
\c_sys_hour_int
\c_sys_day_int
\c_sys_month_int
\c_sys_year_int

New: 2015-09-22

\sys_if_engine_luatex_p:
\sys_if_engine_luatex:TF
\sys_if_engine_pdftex_p:
\sys_if_engine_pdftex:TF
\sys_if_engine_ptex_p:
\sys_if_engine_ptex:TF
\sys_if_engine_uptex_p:
\sys_if_engine_uptex:TF
\sys_if_engine_xetex_p:
\sys_if_engine_xetex:TF

Lol S S . S R S e o

New: 2015-09-07

\c_sys_engine_str

New: 2015-09-19

Part XIII
The 13sys package: System/runtime
functions

1 The name of the job

Constant that gets the “job name” assigned when TEX starts.

TEXhackers note: This copies the contents of the primitive \jobname. It is a constant
that is set by TEX and should not be overwritten by the package.

2 Date and time

The date and time at which the current job was started: these are all reported as integers.

TEXhackers note: Whilst the underlying primitives can be altered by the user, this
interface to the time and date is intended to be the “real” values.

3 Engine

\sys_if_engine_pdftex:TF {(true code)} {(false code)}

Conditionals which allow engine-specific code to be used. The names follow naturally
from those of the engine binaries: note that the (u) ptex tests are for e-pIEX and e-uplpX
as expl3 requires the e-TEX extensions. Each conditional is true for ezactly one supported
engine. In particular, \sys_if_engine_ptex_p: is true for e-pI'rX but false for e-upIeX.

The current engine given as a lower case string: one of luatex, pdftex, ptex, uptex or
xetex.

108

\sys_if_output_dvi_p:
\sys_if_output_dvi:TF
\sys_if_output_pdf_p:
\sys_if_output_pdf:TF

L S

New: 2015-09-19

\c_sys_output_str

New: 2015-09-19

4 Output format

\sys_if_output_dvi:TF {(true code)} {(false code)}

Conditionals which give the current output mode the TEX run is operating in. This is
always one of two outcomes, DVI mode or PDF mode. The two sets of conditionals are
thus complementary and are both provided to allow the programmer to emphasise the
most appropriate case.

The current output mode given as a lower case string: one of dvi or pdf.

109

\clist_new:N
\clist_new:c

Part XIV
The 13clist package
Comma separated lists

Comma lists contain ordered data where items can be added to the left or right end of
the list. This data type allows basic list manipulations such as adding/removing items,
applying a function to every item, removing duplicate items, extracting a given item,
using the comma list with specified separators, and so on. Sequences (defined in 13seq)
are safer, faster, and provide more features, so they should often be preferred to comma
lists. Comma lists are mostly useful when interfacing with KTEX 22 or other code that
expects or provides comma list data.

Several items can be added at once. To ease input of comma lists from data provided
by a user outside an \ExplSyntaxOn ... \ExplSyntaxO0ff block, spaces are removed
from both sides of each comma-delimited argument upon input. Blank arguments are
ignored, to allow for trailing commas or repeated commas (which may otherwise arise
when concatenating comma lists “by hand”). In addition, a set of braces is removed if
the result of space-trimming is braced: this allows the storage of any item in a comma
list. For instance,

\clist_new:N \1_my_clist
\clist_put_left:Nn \1_my_clist { ~a~ , ~{b}~ , c~\d }
\clist_put_right:Nn \1_my_clist { ~{e~} , , {{f}} , }

results in \1_my_clist containing a,b,c~\d,{e~},{{f}} namely the five items a, b,
c~\d, e~ and {f}. Comma lists normally do not contain empty items so the following
gives an empty comma list:

\clist_clear_new:N \1l_my_clist
\clist_put_right:Nn \1_my_clist { , ~ , , }
\clist_if_empty:NTF \1_my_clist { true } { false }

and it leaves true in the input stream. To include an “unsafe” item (empty, or one that
contains a comma, or starts or ends with a space, or is a single brace group), surround
it with braces.

Almost all operations on comma lists are noticeably slower than those on sequences
so converting the data to sequences using \seq_set_from_clist:Nn (see I3seq) may be
advisable if speed is important. The exception is that \clist_if_in:NnTF and \clist_-
remove_duplicates:N may be faster than their sequence analogues for large lists. How-
ever, these functions work slowly for “unsafe” items that must be braced, and may pro-
duce errors when their argument contains {, } or # (assuming the usual TEX category
codes apply). In addition, comma lists cannot store quarks \q_mark or \q_stop. The
sequence data type should thus certainly be preferred to comma lists to store such items.

1 Creating and initialising comma lists

\clist_new:N (comma list)

Creates a new (comma list) or raises an error if the name is already taken. The declaration
is global. The {comma list) initially contains no items.

110

\clist_const:Nn \clist_const:Nn (clist var) {(comma list)}

\clist_const:(Nx|cn|cx
- (Nx|cn|cx) Creates a new constant (clist var) or raises an error if the name is already taken. The

New: 2014-07-05 value of the (clist var) is set globally to the (comma list).

\clist_clear:N \clist_clear:N (comma list)
\clist_clear:c

\clist_gclear:N
\clist_gclear:c

Clears all items from the (comma list).

\clist_clear_new:N \clist_clear_new:N (comma list)
\clist_clear_new:c
\clist_gclear_new:N
\clist_gclear_new:c

Ensures that the (comma list) exists globally by applying \clist_new:N if necessary,
then applies \clist_(g)clear:N to leave the list empty.

\clist_set_eq:NN \clist_set_eq:NN (comma listi) (comma lista)
\clist_set_eq: (cN|Nc|cc)
\clist_gset_eq:NN
\clist_gset_eq:(cN|Nc|cc)

Sets the content of (comma list;) equal to that of (comma lists).

\clist_set_from_seq:NN \clist_set_from_seq:NN (comma list) (sequence)
\clist_set_from_seq:(cN|Nc|cc)

\clist_gset_from_seq:NN

\clist_gset_from_seq:(cN|Nc|cc)

New: 2014-07-17

Converts the data in the (sequence) into a (comma list): the original (sequence) is un-
changed. Items which contain either spaces or commas are surrounded by braces.

\clist_concat:NNN \clist_concat:NNN (comma listi) (comma listz) (comma lists)
\clist_concat:ccc

\clist_gconcat :NNN
\clist_gconcat:ccc

Concatenates the content of (comma listz) and (comma lists) together and saves the
result in (comma list;). The items in (comma listy) are placed at the left side of the new
comma list.

\clist_if_exist_p:N x \clist_if_exist_p:N (comma list)
\clist_if exist_p:c % \clist_if_exist:NTF (comma list) {(true code)} {(false code)}
\clist_if_exist:NTF *

*

o , Tests whether the (comma list) is currently defined. This does not check that the {comma
\clist_if_exist:cTF

list) really is a comma list.

New: 2012-03-03

111

2 Adding data to comma lists

\clist_set:Nn

\clist_set:Nn (comma list) {(itemi),...,(itemn)}

\clist_set:(NV|No|Nx|cn|cV|co|cx)

\clist_gset:Nn

\clist_gset:(NV[No|Nx|cn|cV|co|cx)

New: 2011-09-06

Sets (comma list) to contain the (items), removing any previous content from the variable.
Blank items are omitted, spaces are removed from both sides of each item, then a set of
braces is removed if the resulting space-trimmed item is braced. To store some (tokens)
as a single (item) even if the (tokens) contain commas or spaces, add a set of braces:
\clist_set:Nn (comma list) { {(tokens)} }.

\clist_put_left:Nn

\clist_put_left:Nn (comma list) {(itemi),...,(item,)}

\clist_put_left:(NV|No|Nx|cn|cV|co|cx)

\clist_gput_left:Nn

\clist_gput_left:(NV|No|Nx|cn|cV|co|cx)

Updated: 2011-09-05

Appends the (items) to the left of the (comma list). Blank items are omitted, spaces are
removed from both sides of each item, then a set of braces is removed if the resulting
space-trimmed item is braced. To append some (tokens) as a single (item) even if the
(tokens) contain commas or spaces, add a set of braces: \clist_put_left:Nn {comma

listy { {({tokens)} }.

\clist_put_right:Nn

\clist_put_right:Nn (comma list) {(itemi),...,{itemn)}

\clist_put_right:(NV|No|Nx|cn|cV|co|cx)

\clist_gput_right:Nn

\clist_gput_right:(NV|No|Nx|cn|cV|co|cx)

Updated: 2011-09-05

Appends the (items) to the right of the (comma list). Blank items are omitted, spaces
are removed from both sides of each item, then a set of braces is removed if the resulting
space-trimmed item is braced. To append some (tokens) as a single (itemn) even if the
(tokens) contain commas or spaces, add a set of braces: \clist_put_right:Nn (comma

list) { {(tokens)} }.

3 Modifying comma lists
While comma lists are normally used as ordered lists, it may be necessary to modify the

content. The functions here may be used to update comma lists, while retaining the
order of the unaffected entries.

112

\clist_remove_duplicates:N \clist_remove_duplicates:N (comma list)
\clist_remove_duplicates:c

\clist_gremove_duplicates:N

\clist_gremove_duplicates:c

\clist_remove_all:Nn
\clist_remove_all:cn
\clist_gremove_all:Nn
\clist_gremove_all:cn

Updated: 2011-09-06

\clist_reverse:N
\clist_reverse:c
\clist_greverse:N
\clist_greverse:c

New: 2014-07-18

\clist_reverse:n

New: 2014-07-18

\clist_sort:Nn
\clist_sort:cn
\clist_gsort:Nn
\clist_gsort:cn

New: 2017-02-06

Removes duplicate items from the (comma list), leaving the left most copy of each item
in the (comma list). The (item) comparison takes place on a token basis, as for \t1l_-
if_eq:nn(TF).

TgXhackers note: This function iterates through every item in the (comma list) and
does a comparison with the (items) already checked. It is therefore relatively slow with large
comma lists. Furthermore, it may fail if any of the items in the (comma list) contains {, }, or #
(assuming the usual TEX category codes apply).

\clist_remove_all:Nn (comma list) {(item)}
Removes every occurrence of (item) from the (comma list). The (item) comparison takes

place on a token basis, as for \t1_if_eq:nn(TF).

TgXhackers note: The function may fail if the (item) contains {, }, or # (assuming the
usual TEX category codes apply).

\clist_reverse:N (comma list)

Reverses the order of items stored in the (comma list).

\clist_reverse:n {{comma list)}

Leaves the items in the (comma list) in the input stream in reverse order. Contrarily
to other what is done for other n-type (comma list) arguments, braces and spaces are
preserved by this process.

TEXhackers note: The result is returned within \unexpanded, which means that the
comma list does not expand further when appearing in an x-type or e-type argument expansion.

\clist_sort:Nn (clist var) {({comparison code)}

Sorts the items in the (clist var) according to the (comparison code), and assigns the
result to (clist var). The details of sorting comparison are described in Section 1.

113

\clist_if_empty_p:N
\clist_if_empty_p:c
\clist_if_empty:NTF
\clist_if_empty:cTF

L D I o

\clist_if_empty_p:n *
\clist_if_empty:nTF *

New: 2014-07-05

4 Comma list conditionals

\clist_if_empty_p:N (comma list)
\clist_if_empty:NTF (comma list) {(true code)} {(false code)}

Tests if the (comma list) is empty (containing no items).

\clist_if_empty_p:n {(comma list)}

\clist_if_empty:nTF {(comma list)} {(true code)} {(false code)}

Tests if the (comma list) is empty (containing no items). The rules for space trimming
are as for other n-type comma-list functions, hence the comma list {~,~,,~} (without
outer braces) is empty, while {~,{},} (without outer braces) contains one element, which
happens to be empty: the comma-list is not empty.

\clist_if_in:NnTF

\clist_if_in:NnTF (comma list) {(item)} {(true code)} {(false code)}

\clist_if_in:(NV|No|cn|cV|co)TF

\clist_if_in:nnTF

\clist_if_in:(nV|no)TF

Updated: 2011-09-06

\clist_map_function:NN *
\clist_map_function:cN 3w
\clist_map_function:nN %

Updated: 2012-06-29

Tests if the (item) is present in the (comma list). In the case of an n-type (comma list),
the usual rules of space trimming and brace stripping apply. Hence,

\clist_if_in:nnTF { a , {b}~ , {b} , ¢ } { b } {true} {false}
yields true.

TEXhackers note: The function may fail if the (item) contains {, }, or # (assuming the
usual TEX category codes apply).

5 Mapping to comma lists

The functions described in this section apply a specified function to each item of a comma
list.

When the comma list is given explicitly, as an n-type argument, spaces are trimmed
around each item. If the result of trimming spaces is empty, the item is ignored.
Otherwise, if the item is surrounded by braces, one set is removed, and the result
is passed to the mapped function. Thus, if the comma list that is being mapped is
{au, o {{b}_},u,{},u{c},} then the arguments passed to the mapped function are ‘a’,
‘{b}.’, an empty argument, and ‘c’.

When the comma list is given as an N-type argument, spaces have already been
trimmed on input, and items are simply stripped of one set of braces if any. This case is
more efficient than using n-type comma lists.

\clist_map_function:NN (comma list) (function)

Applies (function) to every (item) stored in the (comma list). The (function) receives one
argument for each iteration. The (items) are returned from left to right. The function
\clist_map_inline:Nn is in general more efficient than \clist_map_function:NN.

114

\clist_map_inline:Nn \clist_map_inline:Nn (comma list) {(inline functiomn)}

\clist_map_inline:cn Applies (inline function) to every (item) stored within the (comma list). The (inline

function) should consist of code which receives the (item) as #1. The (items) are returned
Updated: 2012-06-29 fyom left to right.

\clist_map_inline:nn

\clist_map_variable:NNn \clist_map_variable:NNn (comma list) (variable) {(code)}

\clist_map_variable:chn qu o0 00 (item) of the (comma list) in turn in the (token list) (variable) and applies

the (code). The (code) will usually make use of the (variable), but this is not enforced.
Updated: 2012-06-29 The assignments to the (variable) are local. The (items) are returned from left to right.

\clist_map_variable:nNn

\clist_map_break: % \clist_map_break:

Updated: 2012-06-29 Used to terminate a \clist_map_. .. function before all entries in the (comma list) have
been processed. This normally takes place within a conditional statement, for example

\clist_map_inline:Nn \1l_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break: }

{
% Do something useful
}
}
Use outside of a \clist_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\clist_map_break:n % \clist_map_break:n {(code)}

Updated: 2012-06-29 Used to terminate a \clist_map_. .. function before all entries in the (comma list) have
been processed, inserting the (code) after the mapping has ended. This normally takes
place within a conditional statement, for example

\clist_map_inline:Nn \1_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \clist_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

115

\clist_count:N x
\clist_count:c *
\clist_count:n x

New: 2012-07-13

\clist_use:Nnnn x
\clist use:cnnn %

New: 2013-05-26

\clist_use:Nn *
\clist use:cn *

New: 2013-05-26

\clist_count:N (comma list)

Leaves the number of items in the (comma list) in the input stream as an (integer
denotation). The total number of items in a (comma list) includes those which are
duplicates, i.e. every item in a (comma list) is counted.

6 Using the content of comma lists directly

\clist_use:Nnnn (clist var) {(separator between two)}
{(separator between more than two)} {(separator between final two)}

Places the contents of the {clist var) in the input stream, with the appropriate (separator)
between the items. Namely, if the comma list has more than two items, the (separator
between more than two) is placed between each pair of items except the last, for which the
(separator between final two) is used. If the comma list has exactly two items, then they
are placed in the input stream separated by the (separator between two). If the comma
list has a single item, it is placed in the input stream, and a comma list with no items
produces no output. An error is raised if the variable does not exist or if it is invalid.
For example,

\clist_set:Nn \1_tmpa_clist {a , b, , ¢, {de} , £ }
\clist_use:Nnnn \1_tmpa_clist { ~and~ } { ,~ } { ,~and~ }

inserts “a, b, c, de, and £” in the input stream. The first separator argument is not
used in this case because the comma list has more than 2 items.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type argument
expansion.

\clist_use:Nn (clist var) {(separator)}

Places the contents of the (clist var) in the input stream, with the (separator) between
the items. If the comma list has a single item, it is placed in the input stream, and a
comma list with no items produces no output. An error is raised if the variable does not
exist or if it is invalid.

For example,

\clist_set:Nn \1_tmpa_clist {a , b, , ¢, {de} , £}
\clist_use:Nn \1_tmpa_clist { ~and~ }

inserts “a and b and ¢ and de and f” in the input stream.

TgEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type argument
expansion.

116

\clist_get:NN
\clist_get:cN
\clist_get:NNTF
\clist_get:cNTF

New: 2012-05-14
Updated: 2019-02-16

\clist_pop:NN
\clist_pop:cN

Updated: 2011-09-06

\clist_gpop:NN
\clist_gpop:cN

\clist_pop:NNTF
\clist_pop:cNTF

New: 2012-05-14

\clist_gpop:NNTF
\clist_gpop:cNTF

New: 2012-05-14

7 Comma lists as stacks

Comma lists can be used as stacks, where data is pushed to and popped from the top
of the comma list. (The left of a comma list is the top, for performance reasons.) The
stack functions for comma lists are not intended to be mixed with the general ordered
data functions detailed in the previous section: a comma list should either be used as an
ordered data type or as a stack, but not in both ways.

\clist_get:NN (comma list) (token list variable)

Stores the left-most item from a (comma list) in the (token list variable) without removing
it from the (comma list). The (token list variable) is assigned locally. In the non-
branching version, if the (comma list) is empty the (token list variable) is set to the
marker value \q_no_value.

\clist_pop:NN (comma list) (token list variable)

Pops the left-most item from a (comma list) into the (token list variable), i.e. removes the
item from the comma list and stores it in the (token list variable). Both of the variables
are assigned locally.

\clist_gpop:NN (comma list) (token list variable)

Pops the left-most item from a (comma list) into the (token list variable), i.e. removes
the item from the comma list and stores it in the (token list variable). The (comma list)
is modified globally, while the assignment of the (token list variable) is local.

\clist_pop:NNTF (comma list) (token list variable) {(true code)} {(false code)}

If the (comma list) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If the
(comma list) is non-empty, pops the top item from the (comma list) in the (token list
variable), i.e. removes the item from the (comma list). Both the (comma list) and the
(token list variable) are assigned locally.

\clist_gpop:NNTF (comma list) (token list variable) {(true code)} {(false code)}

If the (comma list) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If the
{(comma list) is non-empty, pops the top item from the (comma list) in the (token list
variable), i.e. removes the item from the (comma list). The (comma list) is modified
globally, while the (token list variable) is assigned locally.

\clist_push:Nn

\clist_push:Nn (comma list) {(items)}

\clist_push:(NV|No|Nx|cn|cV|co|cx)

\clist_gpush:Nn

\clist_gpush:(NV|No|Nx|cn|cV|co|cx)

Adds the {(items)} to the top of the (comma list). Spaces are removed from both sides
of each item as for any n-type comma list.

117

\clist_item:Nn =*
\clist_item:cn *
\clist_item:nn %

New: 2014-07-17

\clist_rand_item:N %
\clist_rand_item:c *
\clist_rand_item:n *

New: 2016-12-06

\clist_show:N
\clist_show:c

Updated: 2015-08-03

\clist_show:n

Updated: 2013-08-03

\clist_log:N
\clist_log:c

New: 2014-08-22
Updated: 2015-08-03

\clist_log:n

New: 2014-08-22

8 Using a single item

\clist_item:Nn (comma list) {(integer expression)}

Indexing items in the (comma list) from 1 at the top (left), this function evaluates the
(integer expression) and leaves the appropriate item from the comma list in the input
stream. If the (integer expression) is negative, indexing occurs from the bottom (right) of
the comma list. When the (integer expression) is larger than the number of items in the
(comma list) (as calculated by \clist_count:N) then the function expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion.

\clist_rand_item:N (clist var)
\clist_rand_item:n {(comma list)}

Selects a pseudo-random item of the (comma list). If the (comma list) has no item, the
result is empty.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion.

9 Viewing comma lists

\clist_show:N (comma list)

Displays the entries in the (comma list) in the terminal.

\clist_show:n {(tokens)}

Displays the entries in the comma list in the terminal.

\clist_log:N (comma list)

Writes the entries in the (comma list) in the log file. See also \clist_show:N which
displays the result in the terminal.

\clist_log:n {(tokens)}

Writes the entries in the comma list in the log file. See also \clist_show:n which displays
the result in the terminal.

118

\c_empty_clist

New: 2012-07-02

\1_tmpa_clist
\1_tmpb_clist

New: 2011-09-06

\g_tmpa_clist
\g_tmpb_clist

New: 2011-09-06

10 Constant and scratch comma lists

Constant that is always empty.

Scratch comma lists for local assignment. These are never used by the kernel code, and
so are safe for use with any IXTEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

Scratch comma lists for global assignment. These are never used by the kernel code, and
so are safe for use with any I4TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

119

\char_set_active_eq:NN
\char_set_active_eq:Nc
\char_gset_active_eq:NN
\char_gset_active_eq:Nc

Updated: 2015-11-12

\char_set_active_eq:nN
\char_set_active_eq:nc
\char_gset_active_eq:nN
\char_gset_active_eq:nc

New: 2015-11-12

Part XV
The 13token package
Token manipulation

This module deals with tokens. Now this is perhaps not the most precise description so
let’s try with a better description: When programming in TgX, it is often desirable to
know just what a certain token is: is it a control sequence or something else. Similarly
one often needs to know if a control sequence is expandable or not, a macro or a primitive,
how many arguments it takes etc. Another thing of great importance (especially when it
comes to document commands) is looking ahead in the token stream to see if a certain
character is present and maybe even remove it or disregard other tokens while scanning.
This module provides functions for both and as such has two primary function categories:
\token_ for anything that deals with tokens and \peek_ for looking ahead in the token
stream.

Most functions we describe here can be used on control sequences, as those are tokens
as well.

It is important to distinguish two aspects of a token: its “shape” (for lack of a better
word), which affects the matching of delimited arguments and the comparison of token
lists containing this token, and its “meaning”, which affects whether the token expands
or what operation it performs. One can have tokens of different shapes with the same
meaning, but not the converse.

For instance, \if :w, \if_charcode:w, and \tex_if:D are three names for the same
internal operation of TEX, namely the primitive testing the next two characters for equal-
ity of their character code. They have the same meaning hence behave identically in many
situations. However, TEX distinguishes them when searching for a delimited argument.
Namely, the example function \show_until_if:w defined below takes everything until
\if:w as an argument, despite the presence of other copies of \if:w under different
names.

\cs_new:Npn \show_until_if:w #1 \if:w { \tl_show:n {#1} }
\show_until_if:w \tex_if:D \if_charcode:w \if:w

A list of all possible shapes and a list of all possible meanings are given in section 7.

1 Creating character tokens

\char_set_active_eq:NN (char) (function)

Sets the behaviour of the (char) in situations where it is active (category code 13) to be
equivalent to that of the {function). The category code of the (char) is unchanged by
this process. The (function) may itself be an active character.

\char_set_active_eq:nN {(integer expression)} (function)

Sets the behaviour of the (char) which has character code as given by the (integer
expression) in situations where it is active (category code 13) to be equivalent to that
of the (function). The category code of the (char) is unchanged by this process. The
(function) may itself be an active character.

120

\char_generate:nn * \char_generate:nn {(charcode)} {(catcode)}

New: 2015-09-09 Generates a character token of the given (charcode) and (catcode) (both of which may be
Updated: 2019-01-16 integer expressions). The (catcode) may be one of

o 1 (begin group)
e 2 (end group)

math toggle)

parameter)

(
(
(alignment)
(
(math superscript)
(

3
4
e 6
7
8 (math subscript)
o 11 (letter)
o 12 (other)

o 13 (active)

and other values raise an error. The (charcode) may be any one valid for the engine in
use. Active characters cannot be generated in older versions of X#TEX.

TEXhackers note: Exactly two expansions are needed to produce the character.

\c_catcode_other_space_tl Token list containing one character with category code 12, (“other”), and character code
New: 2011-09-05 32 (Space).

121

2 Manipulating and interrogating character tokens

\char_set_catcode_escape:N \char_set_catcode_letter:N <character)
\char_set_catcode_group_begin:N
\char_set_catcode_group_end:N
\char_set_catcode_math_toggle:N
\char_set_catcode_alignment:N
\char_set_catcode_end_line:N
\char_set_catcode_parameter:N
\char_set_catcode_math_superscript:N
\char_set_catcode_math_subscript:N
\char_set_catcode_ignore:N
\char_set_catcode_space:N
\char_set_catcode_letter:N
\char_set_catcode_other:N
\char_set_catcode_active:N
\char_set_catcode_comment:N
\char_set_catcode_invalid:N

Updated: 2015-11-11

Sets the category code of the (character) to that indicated in the function name. De-
pending on the current category code of the (token) the escape token may also be needed:

\char_set_catcode_other:N \%

The assignment is local.

\char_set_catcode_escape:n \char_set_catcode_letter:n {(integer expression)}
\char_set_catcode_group_begin:n
\char_set_catcode_group_end:n
\char_set_catcode_math_toggle:n
\char_set_catcode_alignment:n
\char_set_catcode_end_line:n
\char_set_catcode_parameter:n
\char_set_catcode_math_superscript:n
\char_set_catcode_math_subscript:n
\char_set_catcode_ignore:n
\char_set_catcode_space:n
\char_set_catcode_letter:n
\char_set_catcode_other:n
\char_set_catcode_active:n
\char_set_catcode_comment:n
\char_set_catcode_invalid:n

Updated: 2015-11-11

Sets the category code of the (character) which has character code as given by the (integer
expression). This version can be used to set up characters which cannot otherwise be
given (cf. the N-type variants). The assignment is local.

122

\char_set_catcode:nn

Updated: 2015-11-11

\char_value_catcode:n *

\char_show_value_catcode:n

\char_set_lccode:nn

Updated: 2015-08-06

\char_value_lccode:n *

\char_show_value_lccode:n

\char_set_uccode:nn

Updated: 2015-08-06

\char_set_catcode:nn {(intexpr:)} {(intexpr:)}

These functions set the category code of the (character) which has character code as
given by the (integer expression). The first (integer expression) is the character code
and the second is the category code to apply. The setting applies within the current
TEX group. In general, the symbolic functions \char_set_catcode_{type) should be
preferred, but there are cases where these lower-level functions may be useful.

\char_value_catcode:n {(integer expression)}

Expands to the current category code of the (character) with character code given by
the (integer expression).

\char_show_value_catcode:n {(integer expression)}

Displays the current category code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_lccode:nn {(intexpri)} {(intexprs)}

Sets up the behaviour of the (character) when found inside \t1_lower_case:n, such that
(character;) will be converted into {characters). The two (characters) may be specified
using an (integer expression) for the character code concerned. This may include the
TEX ‘(character) method for converting a single character into its character code:

\char_set_lccode:nn { ‘\A } { ‘\a } % Standard behaviour
\char_set_lccode:nn { ‘\A } { ‘\A + 32 }
\char_set_lccode:nn { 50 } { 60 }

The setting applies within the current TEX group.

\char_value_lccode:n {(integer expression)}

Expands to the current lower case code of the {character) with character code given by
the (integer expression).

\char_show_value_lccode:n {(integer expression)}

Displays the current lower case code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_uccode:nn {(intexpri)} {(intexpr:)}

Sets up the behaviour of the (character) when found inside \t1_upper_case:n, such that
(character;) will be converted into (characters). The two {characters) may be specified
using an (integer expression) for the character code concerned. This may include the
TEX ‘(character) method for converting a single character into its character code:

\char_set_uccode:nn { ‘\a } { ‘\A } % Standard behaviour
\char_set_uccode:nn { ‘\A } { ‘\A - 32 }
\char_set_uccode:nn { 60 } { 50 }

The setting applies within the current TEX group.

123

\char_value_uccode:n x \char_value_uccode:n {(integer expression)}

Expands to the current upper case code of the (character) with character code given by
the (integer expression).

\char_show_value_uccode:n \char_show_value_uccode:n {(integer expression)}

Displays the current upper case code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_mathcode:nn \char_set_mathcode:nn {(intexpr:)} {(intexprs)}

Updated: 2015-08-06 ~ This function sets up the math code of (character). The (character) is specified as an
(integer expression) which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

\char_value_mathcode:n * \char_value_mathcode:n {(integer expression)}

Expands to the current math code of the (character) with character code given by the
(integer expression).

\char_show_value_mathcode:n \char_show_value_mathcode:n {(integer expression)}

Displays the current math code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_sfcode:nn \char_set_sfcode:nn {(intexpri)} {(intexprs)}

Updated: 2015-08-06 ~ This function sets up the space factor for the (character). The (character) is specified as
an (integer expression) which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

\char_value_sfcode:n x \char_value_sfcode:n {(integer expression)}

Expands to the current space factor for the {character) with character code given by the
(integer expression).

\char_show_value_sfcode:n \char_show_value_sfcode:n {(integer expression)}

Displays the current space factor for the (character) with character code given by the
(integer expression) on the terminal.

\1_char_active_seq Used to track which tokens may require special handling at the document level as they

New: 2012-01-23 are (or have been at some point) of category (active) (catcode 13). Each entry in the

Updated: 2015-11-11 sequence consists of a single escaped token, for example \~. Active tokens should be
added to the sequence when they are defined for general document use.

\1_char_special_seq Used to track which tokens will require special handling when working with verbatim-

New: 2012-01-23 like material at the document level as they are not of categories (letter) (catcode 11) or

Updated: 2015-11-11 (other) (catcode 12). Each entry in the sequence consists of a single escaped token, for

example \\ for the backslash or \{ for an opening brace.Escaped tokens should be added
to the sequence when they are defined for general document use.

124

\c_group_begin_token
\c_group_end_token
\c_math_toggle_token
\c_alignment_token
\c_parameter_token
\c_math_superscript_token
\c_math_subscript_token
\c_space_token

\c_catcode_letter_token
\c_catcode_other_token

\c_catcode_active_t1l

\token_to_meaning:N *
\token_to_meaning:c *

\token_to_str:N x
\token_to_str:c x

3 Generic tokens

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes but are also available to the programmer for other
uses.

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes and should not be used other than for category code
tests.

A token list containing an active token. This is used internally for test purposes and
should not be used other than in appropriately-constructed category code tests.

4 Converting tokens

\token_to_meaning:N (token)

Inserts the current meaning of the (token) into the input stream as a series of characters
of category code 12 (other). This is the primitive TEX description of the (token), thus for
example both functions defined by \cs_set_nopar:Npn and token list variables defined
using \t1l_new:N are described as macros.

TgXhackers note: This is the TEX primitive \meaning. The (token) can thus be an
explicit space tokens or an explicit begin-group or end-group character token ({ or } when
normal TEX category codes apply) even though these are not valid N-type arguments.

\token_to_str:N (token)

Converts the given (token) into a series of characters with category code 12 (other). If
the (token) is a control sequence, this will start with the current escape character with
category code 12 (the escape character is part of the (token)). This function requires
only a single expansion.

TEXhackers note: \token_to_str:N is the TEX primitive \string renamed. The (token)
can thus be an explicit space tokens or an explicit begin-group or end-group character token
({ or } when normal TEX category codes apply) even though these are not valid N-type arguments.

125

5 Token conditionals

\token_if_group_begin_p:N % \token_if_group_begin_p:N (token)
\token_if_group_begin:NTF * \token_if_group_begin:NTF (token) {(true code)} {(false code)}

\token_if_group_end_p:N *
\token_if_group_end:NTF *

Tests if (token) has the category code of a begin group token ({ when normal TEX
category codes are in force). Note that an explicit begin group token cannot be tested in
this way, as it is not a valid N-type argument.

\token_if_group_end_p:N (token)
\token_if_group_end:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an end group token (} when normal TEX category
codes are in force). Note that an explicit end group token cannot be tested in this way,
as it is not a valid N-type argument.

\token_if_math_toggle_p:N % \token_if_math_toggle_p:N (token)
\token_if_math_toggle:NTF % \token_if_math_toggle:NTF (token) {(true code)} {(false code)}

\token_if_alignment_p:N *
\token_if_alignment:NTF x

\token_if_parameter_p:N x
\token_if_parameter:NTF x

Tests if (token) has the category code of a math shift token ($ when normal TEX category
codes are in force).

\token_if_alignment_p:N (token)
\token_if_alignment:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an alignment token (& when normal TEX category
codes are in force).

\token_if_parameter_p:N (token)
\token_if_alignment:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a macro parameter token (# when normal TEX
category codes are in force).

\token_if_math_superscript_p:N % \token_if_math_superscript_p:N (token)
\token_if_math_superscript:NTF x \token_if_math_superscript:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a superscript token (= when normal TEX category
codes are in force).

\token_if_math_subscript_p:N x \token_if_math_subscript_p:N (token)
\token_if_math_subscript:NTF * \token_if_math_subscript:NTF (token) {(true code)} {(false code)}

\token_if_space_p:N «*
\token_if_space:NTF *

Tests if (token) has the category code of a subscript token (_ when normal TEX category
codes are in force).

\token_if_space_p:N (token)
\token_if_space:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a space token. Note that an explicit space token
with character code 32 cannot be tested in this way, as it is not a valid N-type argument.

126

\token_if_letter_p:N x \token_if_letter_p:N (token)
\token_if_letter:NTF x \token_if_letter:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a letter token.

\token_if_other_p:N x \token_if_other_p:N (token)

\token_if_other:NTF x \token_if_other:NTF (token) {(true code)} {(false code)}
Tests if (token) has the category code of an “other” token.
\token_if_active_p:N x \token_if_active_p:N (token)

\token_if_active:NTF x \token_if_active:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an active character.

\token_if_eq_catcode_p:NN * \token_if_eq_catcode_p:NN (tokeni) (tokens)
\token_if_eq_catcode:NNTF % \token_if_eq_catcode:NNTF (token:i) (tokens) {(true code)} {(false code)}

Tests if the two (tokens) have the same category code.

\token_if_eq_charcode_p:NN x \token_if_eq_charcode_p:NN (token;) (tokens)
\token_if_eq_charcode:NNTF * \token_if_eq_charcode:NNTF (tokeni) (tokens) {(true code)} {(false code)}

Tests if the two (tokens) have the same character code.

\token_if_eq_meaning p:NN * \token_if_eq_meaning p:NN (tokeni) (tokens)
\token_if_eq_meaning:NNTF % \token_if_eq_meaning:NNTF (token:) (tokenz) {(true code)} {(false code)}

Tests if the two (tokens) have the same meaning when expanded.

\token_if_macro_p:N * \token_if_macro_p:N (token)
\token_if_macro:NTF x \token_if_macro:NTF (token) {(true code)} {(false code)}

Updated: 2011-05-23 Tests if the (token) is a TEX macro.

\token_if_cs_p:N \token_if_cs_p:N (token)
\token_if_cs:NTF x \token_if_cs:NTF (token) {(true code)} {(false code)}

*

Tests if the (token) is a control sequence.

*

\token_if_expandable_p:N (token)
\token_if_expandable:NTF (token) {(true code)} {(false code)}

\token_if_expandable_p:N
\token_if_expandable:NTF

*

Tests if the (token) is expandable. This test returns (false) for an undefined token.

\token_if_long_macro_p:N % \token_if_long_macro_p:N <token>
\token_if_long_macro:NTF x \token_if_long_macro:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20 Tests if the (token) is a long macro.

\token_if_protected_macro_p:N x \token_if_protected_macro_p:N (token)
\token_if_protected_macro:NTF % \token_if_protected_macro:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is a protected macro: for a macro which is both protected and long
this returns false.

127

\token_if_protected_long_macro_p:N % \token_if_protected_long_macro_p:N <token>

\token_if_protected_long_macro:NTF * \token_if_protected_long_macro:NTF (token) {(true code)} {(false

code)}
Updated: 2012-01-20

Tests if the (token) is a protected long macro.

\token_if_chardef _p:N % \token_if_chardef_p:N (token)
\token_if_chardef:NTF % \token_if_chardef:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20 Tests if the (token) is defined to be a chardef.

TEXhackers note: Booleans, boxes and small integer constants are implemented as

\chardefs.

\token_if_mathchardef_p:N % \token_if_mathchardef_p:N (token)
\token_if_mathchardef:NTF % \token_if_mathchardef:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a mathchardef.

\token_if_dim_register_p:N * \token_if_dim_register_p:N (token)
\token_if_dim_register:NTF * \token_if_dim_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a dimension register.

\token_if_int_register_p:N * \token_if_int_register_p:N (token)
\token_if_int_register:NTF * \token_if_int_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a integer register.

TEXhackers note: Constant integers may be implemented as integer registers, \chardefs,

or \mathchardefs depending on their value.

\token_if_muskip_register_p:N x \token_if_muskip_register_p:N <token>

\token_if_muskip_register:NTF % \token_if_muskip_register:NTF (token) {(true code)} {(false code)}

New: 2012-02-15

Tests if the (token) is defined to be a muskip register.

\token_if_skip_register_p:N x \token_if_skip_register_p:N <token>

\token_if_skip_register:NTF x \token_if_skip_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a skip register.

128

\token_if_toks_register_p:N x \token_if_toks_register_p:N <token>
\token_if_toks_register:NTF x \token_if_toks_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

\token_if_primitive_p:N *
\token_if_primitive:NTF x

Updated: 2011-05-23

\peek_after:Nw

\peek_gafter:Nw

\1_peek_token

\g_peek_token

\peek_catcode:NTF

Updated: 2012-12-20

Tests if the (token) is defined to be a toks register (not used by KTEX3).

\token_if_primitive_p:N (token)
\token_if_primitive:NTF (token) {(true code)} {(false code)}

Tests if the (token) is an engine primitive.

6 Peeking ahead at the next token

There is often a need to look ahead at the next token in the input stream while leaving
it in place. This is handled using the “peek” functions. The generic \peek_after:Nw is
provided along with a family of predefined tests for common cases. As peeking ahead does
not skip spaces the predefined tests include both a space-respecting and space-skipping
version.

\peek_after:Nw (function) (token)

Locally sets the test variable \1_peek_token equal to (token) (as an implicit token, not as
a token list), and then expands the (function). The (token) remains in the input stream
as the next item after the (function). The (token) here may be ., { or } (assuming
normal TEX category codes), i.e. it is not necessarily the next argument which would be
grabbed by a normal function.

\peek_gafter:Nw (function) (token)

Globally sets the test variable \g_peek_token equal to (token) (as an implicit token,
not as a token list), and then expands the (function). The (token) remains in the input
stream as the next item after the (function). The (token) here may be ., { or } (assuming
normal TEX category codes), i.e. it is not necessarily the next argument which would be
grabbed by a normal function.

Token set by \peek_after:Nw and available for testing as described above.

Token set by \peek_gafter:Nw and available for testing as described above.

\peek_catcode:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the (token) is left in the input stream after the (true code) or (false code)
(as appropriate to the result of the test).

129

\peek_catcode_ignore_spaces:NTF \peek_catcode_ignore_spaces:NTF (test token) {(true code)} {(false

Updated: 2012-12-20

code)}

\peek_catcode_remove:NTF

Updated: 2012-12-20

Tests if the next non-space (token) in the input stream has the same category code as the
(test token) (as defined by the test \token_if_eq_catcode:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the (token) is left in the input stream after the (true code) or (false code)
(as appropriate to the result of the test).

\peek_catcode_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the (token) is removed from the input stream if the test is true. The function
then places either the (true code) or (false code) in the input stream (as appropriate to
the result of the test).

\peek_catcode_remove_ignore_spaces:NTF \peek_catcode_remove_ignore_spaces:NTF (test token) {(true

Updated: 2012-12-20 code)} {{false code)}

\peek_charcode:NTF

Updated: 2012-12-20

Tests if the next non-space (token) in the input stream has the same category code as the
(test token) (as defined by the test \token_if_eq_catcode:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the (token) is removed from the input stream if the test is true. The function
then places either the (true code) or (false code) in the input stream (as appropriate to
the result of the test).

\peek_charcode:NTF (test token) {(true code)} {(false code)}

Tests if the next (foken) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the (token) is left in the input stream after the (true code) or (false code)
(as appropriate to the result of the test).

\peek_charcode_ignore_spaces:NTF \peek_charcode_ignore_spaces:NTF (test token) {(true code)} {(false

Updated: 2012-12-20

code)}

\peek_charcode_remove:NTF

Updated: 2012-12-20

Tests if the next non-space (token) in the input stream has the same character code as
the (test token) (as defined by the test \token_if_eq_charcode:NNTF). Explicit and
implicit space tokens (with character code 32 and category code 10) are ignored and
removed by the test and the (token) is left in the input stream after the (true code) or
(false code) (as appropriate to the result of the test).

\peek_charcode_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the (foken) is removed from the input stream if the test is true. The function
then places either the (true code) or (false code) in the input stream (as appropriate to
the result of the test).

130

\peek_charcode_remove_ignore_spaces:NTF \peek_charcode_remove_ignore_spaces:NTF (test token)

Updated: 2012-12-20 {(true code)} {(false code)}

\peek_meaning:NTF

Updated: 2011-07-02

Tests if the next non-space (token) in the input stream has the same character code as
the (test token) (as defined by the test \token_if_eq_charcode:NNTF). Explicit and
implicit space tokens (with character code 32 and category code 10) are ignored and
removed by the test and the (token) is removed from the input stream if the test is true.
The function then places either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

\peek_meaning:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same meaning as the (test token) (as
defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test and
the (token) is left in the input stream after the (true code) or (false code) (as appropriate
to the result of the test).

\peek_meaning_ignore_spaces:NTF \peek_meaning_ignore_spaces:NTF (test token) {(true code)} {(false

Updated: 2012-12-05

code)}

\peek_meaning_remove:NTF

Updated: 2011-07-02

Tests if the next non-space (token) in the input stream has the same meaning as the
(test token) (as defined by the test \token_if_eq_meaning:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the (token) is left in the input stream after the (true code) or (false code)
(as appropriate to the result of the test).

\peek_meaning_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same meaning as the (test token)
(as defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test
and the (token) is removed from the input stream if the test is true. The function then
places either the (true code) or (false code) in the input stream (as appropriate to the
result of the test).

\peek_meaning_remove_ignore_spaces:NTF \peek_meaning_remove_ignore_spaces:NTF (test token)

Updated: 2012-12-05 {{true code)} {(false code)}

Tests if the next non-space (token) in the input stream has the same meaning as the
(test token) (as defined by the test \token_if_eq_meaning:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the (token) is removed from the input stream if the test is true. The function
then places either the (true code) or (false code) in the input stream (as appropriate to
the result of the test).

7 Description of all possible tokens

Let us end by reviewing every case that a given token can fall into. This section is quite
technical and some details are only meant for completeness. We distinguish the meaning
of the token, which controls the expansion of the token and its effect on TEX’s state,
and its shape, which is used when comparing token lists such as for delimited arguments.

131

Two
hold

tokens of the same shape must have the same meaning, but the converse does not

A token has one of the following shapes.

A control sequence, characterized by the sequence of characters that constitute its
name: for instance, \use:n is a five-letter control sequence.

An active character token, characterized by its character code (between 0 and
1114111 for LuaTEX and XHTEX and less for other engines) and category code 13.

A character token, characterized by its character code and category code (one of 1,
2,3,4,6,7, 8,10, 11 or 12 whose meaning is described below).”

There are also a few internal tokens. The following list may be incomplete in some
engines.

Expanding \the\font results in a token that looks identical to the command that
was used to select the current font (such as \tenrm) but it differs from it in shape.

A “frozen” \relax, which differs from the primitive in shape (but has the same
meaning), is inserted when the closing \fi of a conditional is encountered before
the conditional is evaluated.

Expanding \noexpand (token) (when the (token) is expandable) results in an in-
ternal token, displayed (temporarily) as \notexpanded: (token), whose shape co-
incides with the (token) and whose meaning differs from \relax.

An \outer endtemplate: can be encountered when peeking ahead at the next
token; this expands to another internal token, end of alignment template.

Tricky programming might access a frozen \endwrite.

Some frozen tokens can only be accessed in interactive sessions: \cr, \right,
\endgroup, \fi, \inaccessible.

The meaning of a (non-active) character token is fixed by its category code (and

character code) and cannot be changed. We call these tokens explicit character tokens.
Category codes that a character token can have are listed below by giving a sample

outp

ut of the TEX primitive \meaning, together with their I#TEX3 names and most

common example:

1
2
3
4
6
7

begin-group character (group_begin, often {),
end-group character (group_end, often }),

math shift character (math_toggle, often $),
alignment tab character (alignment, often &),
macro parameter character (parameter, often #),

superscript character (math_superscript, often 7),

5In LuaTEX, there is also the case of “bytes”, which behave as character tokens of category code
12 (other) and character code between 1114112 and 1114366. They are used to output individual bytes
to files, rather than UTF-8.

132

8 subscript character (math_subscript, often _),
10 blank space (space, often character code 32),
11 the letter (letter, such as A),

12 the character (other, such as 0).

Category code 13 (active) is discussed below. Input characters can also have sev-
eral other category codes which do not lead to character tokens for later processing:
0 (escape), 5 (end_line), 9 (ignore), 14 (comment), and 15 (invalid).

The meaning of a control sequence or active character can be identical to that of any
character token listed above (with any character code), and we call such tokens implicit
character tokens. The meaning is otherwise in the following list:

o a macro, used in BTEX3 for most functions and some variables (t1, fp, seq, ...),
 a primitive such as \def or \topmark, used in ETEX3 for some functions,

e a register such as \count123, used in TEX3 for the implementation of some vari-
ables (int, dim, ...),

e a constant integer such as \char"56 or \mathchar"121,
o a font selection command,
e undefined.

Macros be \protected or not, \long or not (the opposite of what I¥TEX3 calls nopar),
and \outer or not (unused in KTEX3). Their \meaning takes the form

(properties) macro: (parameters)->(replacement)

where (properties) is among \protected\long\outer, (parameters) describes parameters
that the macro expects, such as #1#2#3, and (replacement) describes how the parameters
are manipulated, such as #2/#1/#3.

Now is perhaps a good time to mention some subtleties relating to tokens with
category code 10 (space). Any input character with this category code (normally, space
and tab characters) becomes a normal space, with character code 32 and category code 10.

When a macro takes an undelimited argument, explicit space characters (with char-
acter code 32 and category code 10) are ignored. If the following token is an explicit
character token with category code 1 (begin-group) and an arbitrary character code,
then TEX scans ahead to obtain an equal number of explicit character tokens with cate-
gory code 1 (begin-group) and 2 (end-group), and the resulting list of tokens (with outer
braces removed) becomes the argument. Otherwise, a single token is taken as the argu-
ment for the macro: we call such single tokens “N-type”; as they are suitable to be used
as an argument for a function with the signature :N.

133

\prop_new:N
\prop_new:c

\prop_clear:N
\prop_clear:c
\prop_gclear:N

\prop_gclear:c

\prop_clear_new:N
\prop_clear_new:c
\prop_gclear_new:N
\prop_gclear_new:c

\prop_set_eq:NN
\prop_set_eq: (cN|Nc|cc)
\prop_gset_eq:NN
\prop_gset_eq:(cN|Nc|cc)

Part XVI
The 13prop package
Property lists

ETREX3 implements a “property list” data type, which contain an unordered list of entries
each of which consists of a (key) and an associated (value). The (key) and (value) may
both be any (balanced text). It is possible to map functions to property lists such that
the function is applied to every key—value pair within the list.

Each entry in a property list must have a unique (key): if an entry is added to a
property list which already contains the (key) then the new entry overwrites the existing
one. The (keys) are compared on a string basis, using the same method as \str_if_-
eq:nn.

Property lists are intended for storing key-based information for use within code.
This is in contrast to key—value lists, which are a form of input parsed by the keys
module.

1 Creating and initialising property lists

\prop_new:N (property list)

Creates a new (property list) or raises an error if the name is already taken. The decla-
ration is global. The (property list) initially contains no entries.

\prop_clear:N (property list)

Clears all entries from the (property list).

\prop_clear_new:N (property list)

Ensures that the (property list) exists globally by applying \prop_new:N if necessary,
then applies \prop_(g) clear:N to leave the list empty.

\prop_set_eq:NN (property list:) (property lists)
Sets the content of (property list;) equal to that of (property lists).

134

2 Adding entries to property lists

\prop_put:Nnn

\prop_put:Nnn (property list)

\prop_put: (NnV|Nno|Nnx|NVn|NVV|Non|Noo|cnn|cnV|cno|cnx|cVn|cVV|con|coo) {(key)} {(value)}

\prop_gput :Nnn

\prop_gput : (NnV|Nno|Nnx|NVn|NVV|Non|Noo|cnn|cnV|cno|cnx|cVn|cVV|con|coo)

Updated: 2012-07-09

\prop_put_if_new:Nnn
\prop_put_if_new:cnn
\prop_gput_if_new:Nnn
\prop_gput_if_new:cnn

Adds an entry to the (property list) which may be accessed using the (key) and which
has (value). Both the (key) and (value) may contain any (balanced text). The (key) is
stored after processing with \t1_to_str:n, meaning that category codes are ignored. If
the (key) is already present in the (property list), the existing entry is overwritten by the
new (value).

\prop_put_if_new:Nnn (property list) {(key)} {(value)}

If the (key) is present in the (property list) then no action is taken. If the (key) is not
present in the (property list) then a new entry is added. Both the (key) and (value) may
contain any (balanced text). The (key) is stored after processing with \tl_to_str:n,
meaning that category codes are ignored.

3 Recovering values from property lists

\prop_get :NnN

\prop_get:NnN (property list) {(key)} (tl1 var)

\prop_get : (NVN|NoN|cnN|cVN|coN)

Updated: 2011-08-28

\prop_pop:NnN
\prop_pop: (NoN|cnN|coN)

Updated: 2011-08-18

\prop_gpop :NnN
\prop_gpop: (NoN|cnN|coN)

Updated: 2011-08-18

Recovers the (value) stored with (key) from the (property list), and places this in the
(token list variable). If the (key) is not found in the (property list) then the (token list
variable) is set to the special marker \q_no_value. The (token list variable) is set within
the current TEX group. See also \prop_get :NnNTF.

\prop_pop:NnN (property list) {(key)} (tl var)

Recovers the (value) stored with (key) from the (property list), and places this in the
(token list variable). If the (key) is not found in the (property list) then the (token
list variable) is set to the special marker \q_no_value. The (key) and (value) are then
deleted from the property list. Both assignments are local. See also \prop_pop:NnNTF.

\prop_gpop:NnN (property list) {(key)} (tl1 var)

Recovers the (value) stored with (key) from the (property list), and places this in the
(token list variable). If the (key) is not found in the (property list) then the (token list
variable) is set to the special marker \q_no_value. The (key) and (value) are then deleted
from the property list. The (property list) is modified globally, while the assignment of
the (token list variable) is local. See also \prop_gpop: NnNTF.

135

\prop_item:Nn *
\prop_item:cn *

New: 2014-07-17

\prop_count:N x
\prop_count:c *

\prop_remove:Nn
\prop_remove: (NV|cn|cV)
\prop_gremove:Nn
\prop_gremove: (NV|cn|cV)

New: 2012-05-12

\prop_if_exist_p:N
\prop_if_exist_p:c
\prop_if_exist:NTF
\prop_if_exist:cTF

L I o

New: 2012-03-03

\prop_if_empty_p:N
\prop_if_empty_p:c
\prop_if_empty:NTF
\prop_if_empty:cTF

L I

\prop_item:Nn (property list) {(key)}
Expands to the (value) corresponding to the (key) in the (property list). If the (key) is
missing, this has an empty expansion.

TEXhackers note: This function is slower than the non-expandable analogue \prop_-
get:NnN. The result is returned within the \unexpanded primitive (\exp_not:n), which means
that the (value) does not expand further when appearing in an x-type argument expansion.

\prop_count:N (property list)

Leaves the number of key—value pairs in the (property list) in the input stream as an
(integer denotation).

4 Modifying property lists

\prop_remove:Nn (property list) {(key)}

Removes the entry listed under (key) from the (property list). If the (key) is not found
in the (property list) no change occurs, i.e there is no need to test for the existence of a
key before deleting it.

5 Property list conditionals

\prop_if_exist_p:N (property list)
\prop_if_exist:NTF (property list) {(true code)} {(false code)}

Tests whether the (property list) is currently defined. This does not check that the
(property list) really is a property list variable.

\prop_if_empty_p:N (property list)
\prop_if_empty:NTF (property list) {(true code)} {(false code)}

Tests if the (property list) is empty (containing no entries).

\prop_if_in_p:Nn

\prop_if_in_p:(NV|No|cn|cV|co)

\prop_if_in:NnTF

\prop_if_in:(NV|No|cn|cV|co)TF

\prop_if_in:NnTF (property list) {(key)} {(true code)} {(false code)}

*
*
*
*

Updated: 2011-09-15

Tests if the (key) is present in the (property list), making the comparison using the
method described by \str_if_eq:nnTF.

TgXhackers note: This function iterates through every key—value pair in the (property
listy and is therefore slower than using the non-expandable \prop_get : NnNTF.

136

6 Recovering values from property lists with branch-
ing

The functions in this section combine tests for the presence of a key in a property list
with recovery of the associated valued. This makes them useful for cases where different
cases follow dependent on the presence or absence of a key in a property list. They offer
increased readability and performance over separate testing and recovery phases.

\prop_get :NnNTF

\prop_get : (NVN|NoN|cnN|cVN|coN) TF

\prop_get :NnNTF (property list) {(key)} (token list variable)
{(true code)} {(false code)}

Updated: 2012-05-19

\prop_pop :NnNTF
\prop_pop:cuNTF

New: 2011-08-18
Updated: 2012-05-19

\prop_gpop:NnNTF
\prop_gpop:cnNTF

New: 2011-08-18
Updated: 2012-05-19

\prop_map_function:NN ¢
\prop_map_function:cN 5%

Updated: 2013-01-08

\prop_map_inline:Nn
\prop_map_inline:cn

Updated: 2013-01-08

If the (key) is not present in the (property list), leaves the (false code) in the input stream.
The value of the (token list variable) is not defined in this case and should not be relied
upon. If the (key) is present in the (property list), stores the corresponding (value) in the
(token list variable) without removing it from the (property list), then leaves the (true
code) in the input stream. The (token list variable) is assigned locally.

\prop_pop:NnNTF (property list) {(key)} (token list variable) {(true code)}
{(false code)}

If the (key) is not present in the (property list), leaves the (false code) in the input stream.
The value of the (token list variable) is not defined in this case and should not be relied
upon. If the (key) is present in the (property list), pops the corresponding (value) in the
(token list variable), i.e. removes the item from the (property list). Both the (property
list) and the (token list variable) are assigned locally.

\prop_gpop:NnNTF (property list) {(key)} (token list variable) {(true code)}
{(false code)?}

If the (key) is not present in the (property list), leaves the (false code) in the input stream.
The value of the (token list variable) is not defined in this case and should not be relied
upon. If the (key) is present in the (property list), pops the corresponding (value) in the
(token list variable), i.e. removes the item from the (property list). The (property list) is
modified globally, while the (token list variable) is assigned locally.

7 Mapping to property lists

\prop_map_function:NN (property list) (function)

Applies (function) to every (entry) stored in the (property list). The {function) receives
two arguments for each iteration: the (key) and associated (value). The order in which
(entries) are returned is not defined and should not be relied upon.

\prop_map_inline:Nn (property list) {(inline function)}

Applies (inline function) to every (entry) stored within the (property list). The (inline
function) should consist of code which receives the (key) as #1 and the (value) as #2.
The order in which (entries) are returned is not defined and should not be relied upon.

137

\prop_map_break: 5

Updated: 2012-06-29

\prop_map_break:n

Updated: 2012-06-29

\prop_show:N

\prop_show:c

Updated: 2015-08-01

\prop_map_break:

Used to terminate a \prop_map_. .. function before all entries in the (property list) have
been processed. This normally takes place within a conditional statement, for example

\prop_map_inline:Nn \1_my_prop
{
\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break: }

{
% Do something useful
}
}
Use outside of a \prop_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\prop_map_break:n {({code)}

Used to terminate a \prop_map_. .. function before all entries in the (property list) have
been processed, inserting the (code) after the mapping has ended. This normally takes
place within a conditional statement, for example

\prop_map_inline:Nn \1_my_prop
{
\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \prop_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

8 Viewing property lists

\prop_show:N (property list)
Displays the entries in the (property list) in the terminal.

138

\prop_log:N

\prop_log:c

New: 2014-08-12

Updated: 2015-08-01

\1_tmpa_prop
\1_tmpb_prop

New: 2012-06-23

\g_tmpa_prop
\g_tmpb_prop

New: 2012-06-23

\c_empty_prop

\prop_log:N (property list)
Writes the entries in the (property list) in the log file.

9 Scratch property lists

Scratch property lists for local assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

Scratch property lists for global assignment. These are never used by the kernel code, and
so are safe for use with any I4TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

10 Constants

A permanently-empty property list used for internal comparisons.

139

\msg_new:nnnn
\msg_new:nnn

Updated: 2011-08-16

\msg_set :nnnn
\msg_set:nnn

\msg_gset :nnnn
\msg_gset :nnn

Part XVII
The 13msg package
Messages

Messages need to be passed to the user by modules, either when errors occur or to indicate
how the code is proceeding. The I13msg module provides a consistent method for doing
this (as opposed to writing directly to the terminal or log).

The system used by I3msg to create messages divides the process into two distinct
parts. Named messages are created in the first part of the process; at this stage, no
decision is made about the type of output that the message will produce. The second
part of the process is actually producing a message. At this stage a choice of message
class has to be made, for example error, warning or info.

By separating out the creation and use of messages, several benefits are available.
First, the messages can be altered later without needing details of where they are used
in the code. This makes it possible to alter the language used, the detail level and so
on. Secondly, the output which results from a given message can be altered. This can be
done on a message class, module or message name basis. In this way, message behaviour
can be altered and messages can be entirely suppressed.

1 Creating new messages

All messages have to be created before they can be used. The text of messages is auto-
matically wrapped to the length available in the console. As a result, formatting is only
needed where it helps to show meaning. In particular, \\ may be used to force a new
line and \ forces an explicit space. Additionally, \{, \#, \}, \% and \~ can be used to
produce the corresponding character.

Messages may be subdivided by one level using the / character. This is used within
the message filtering system to allow for example the N TEX kernel messages to belong to
the module LaTeX while still being filterable at a more granular level. Thus for example

\msg_new:nnnn { mymodule } { submodule / message } ...

will allow to filter out specifically messages from the submodule.

\msg_new:nnnn {(module)} {(message)} {(text)} {(more text)}

Creates a (message) for a given (module). The message is defined to first give (text) and
then (more text) if the user requests it. If no (more text) is available then a standard
text is given instead. Within (text) and (more text) four parameters (#1 to #4) can be
used: these will be supplied at the time the message is used. An error is raised if the
(message) already exists.

\msg_set:nnnn {(module)} {(message)} {(text)} {(more text)}

Sets up the text for a (message) for a given (module). The message is defined to first
give (text) and then (more text) if the user requests it. If no (more text) is available then
a standard text is given instead. Within (text) and (more test) four parameters (#1 to
#4) can be used: these will be supplied at the time the message is used.

140

\msg_if_exist_p:nn %
\msg_if_exist:nnTF *

New: 2012-03-03

\msg_line_context:

\msg_line_number: x*

\msg_fatal_text:n *

\msg_critical_text:n =%

\msg_error_text:n x*

\msg_warning_text:n *

\msg_if_exist_p:nn {(module)} {(message)}
\msg_if_exist:nnTF {(module)} {(message)} {(true code)} {(false code)}

Tests whether the (message) for the (module) is currently defined.
2 Contextual information for messages

\msg_line_context:

Prints the current line number when a message is given, and thus suitable for giving
context to messages. The number itself is proceeded by the text on line.

\msg_line_number:

Prints the current line number when a message is given.

\msg_fatal_text:n {(module)}
Produces the standard text
Fatal Package (module) Error
This function can be redefined to alter the language in which the message is given, using

#1 as the name of the (module) to be included.

\msg_critical_text:n {(module)}
Produces the standard text
Critical Package (module) Error
This function can be redefined to alter the language in which the message is given, using

#1 as the name of the {(module) to be included.

\msg_error_text:n {(module)}
Produces the standard text
Package (module) Error
This function can be redefined to alter the language in which the message is given, using

#1 as the name of the (module) to be included.

\msg_warning_text:n {(module)}

Produces the standard text
Package (module) Warning

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. The (type) of (module) may be adjusted:
Package is the standard outcome: see \msg_module_type:n.

141

\msg_info_text:n *

\msg_module_name:n *

New: 2018-10-10

\msg_module_type:n *

New: 2018-10-10

\msg_info_text:n {(module)}

Produces the standard text:
Package (module) Info

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. The (type) of (module) may be adjusted:
Package is the standard outcome: see \msg_module_type:n.

\msg_module_name:n {(module)}

Expands to the public name of the (module) as defined by \g_msg_module_name_prop
(or otherwise leaves the (module) unchanged).

\msg_module_type:n {(module)}

Expands to the description which applies to the (module), for example a Package or
Class. The information here is defined in \g_msg_module_type_prop, and will default
to Package if an entry is not present.

\msg_see_documentation_text:n * \msg_see_documentation_text:n {(module)}

Updated: 2018-09-30

\g_msg_module_name_prop

New: 2018-10-10

\g_msg_module_type_prop

New: 2018-10-10

Produces the standard text
See the (module) documentation for further information.

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. The name of the (module) may be altered
by use of \g_msg_module_documentation_prop

Provides a mapping between the module name used for messages, and that for documen-
tation. For example, N TEX3 core messages are stored in the reserved LaTeX tree, but are
printed as LaTeX3.

Provides a mapping between the module name used for messages, and that type of
module. For example, for I/ TEX3 core messages, an empty entry is set here meaning that
they are not described using the standard Package text.

3 Issuing messages

Messages behave differently depending on the message class. In all cases, the message
may be issued supplying 0 to 4 arguments. If the number of arguments supplied here does
not match the number in the definition of the message, extra arguments are ignored, or
empty arguments added (of course the sense of the message may be impaired). The four
arguments are converted to strings before being added to the message text: the x-type
variants should be used to expand material.

142

\msg_fatal:nnnnnn
\msg_fatal :nnxxxx
\msg_fatal:nnnnn
\msg_fatal :nnxxx
\msg_fatal:nnnn
\msg_fatal:nnxx
\msg_fatal:nnn
\msg_fatal :nnx
\msg_fatal:nn

Updated: 2012-08-11

\msg_critical:nnnnnn
\msg_critical :nnxxxx
\msg_critical:nnnnn
\msg_critical :nnxxx
\msg_critical:nnnn
\msg_critical :nnxx
\msg_critical:nnn
\msg_critical :nnx
\msg_critical:nn

Updated: 2012-08-11

\msg_error:nnnnnn
\Imsg_error :nNXXXX
\msg_error :nnnnn
\msg_error :nnxxx
\msg_error :nnnn
\msg_error :nnxx
\msg_error:nnn
\msg_error:nnx
\msg_error:nn

Updated: 2012-08-11

\msg_warning:nnnnnn
\msg_warning:nnxxxx
\msg_warning:nnnnn
\msg_warning:nnxxx
\msg_warning:nnnn
\msg_warning:nnxx
\msg_warning:nnn
\msg_warning:nnx
\msg_warning:nn

Updated: 2012-08-11

\msg_fatal:nnnnnn {(module)} {(message)} {(arg omne)} {(arg two)} {(arg three)}
{(arg four)}

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a fatal error the TEX run halts.

\msg_critical:nnnnnn {(module)} {(message)} {(arg ome)} {(arg two)} {(arg three)}
{(arg four)}

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a critical error, TEX stops reading the current input file. This
may halt the TEX run (if the current file is the main file) or may abort reading a sub-file.

TEXhackers note: The TEX \endinput primitive is used to exit the file. In particular,
the rest of the current line remains in the input stream.

\msg_error:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)}
{(arg four)}

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. The error interrupts processing and issues the text at the terminal. After user
input, the run continues.

\msg_warning:nnxxxx {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)}
{(arg four)}

Issues (module) warning (message), passing (arg one) to {arg four) to the text-creating
functions. The warning text is added to the log file and the terminal, but the TEX run
is not interrupted.

143

\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:

nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn

Updated: 2012-08-11

\msg_log:
\msg_log:
\msg_log:
\msg_log:
\msg_log:
\msg_log:
\msg_log:
\msg_log:
\msg_log:

nnnnnn
j1115:9.9.9.9
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn

Updated: 2012-08-11

\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:

nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn

Updated: 2012-08-11

\msg_info:nnnnnn {{module)} {(message)} {(arg ome)} {(arg two)} {(arg three)} {(arg
four)}

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. The information text is added to the log file.

\msg_log:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)} {(arg
four)}

Issues (module) information (message), passing (arg one) to {arg four) to the text-creating
functions. The information text is added to the log file: the output is briefer than \msg_-
info:nnnnnn.

\msg_none:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)} {(arg
four)}

Does nothing: used as a message class to prevent any output at all (see the discussion of
message redirection).

4 Redirecting messages

Each message has a “name”, which can be used to alter the behaviour of the message
when it is given. Thus we might have

\msg_new:nnnn { module } { my-message } { Some~text } { Some~more~text }
to define a message, with
\msg_error:nn { module } { my-message }

when it is used. With no filtering, this raises an error. However, we could alter the
behaviour with

\msg_redirect_class:nn { error } { warning }
to turn all errors into warnings, or with

\msg_redirect_module:nnn { module } { error } { warning }

144

\msg_redirect_class:nn

Updated: 2012-04-27

\msg_redirect_module:nnn

Updated: 2012-04-27

\msg_redirect_name:nnn

Updated: 2012-04-27

to alter only messages from that module, or even
\msg_redirect_name:nnn { module } { my-message } { warning }

to target just one message. Redirection applies first to individual messages, then to
messages from one module and finally to messages of one class. Thus it is possible to
select out an individual message for special treatment even if the entire class is already
redirected.

Multiple redirections are possible. Redirections can be cancelled by providing an
empty argument for the target class. Redirection to a missing class raises an error
immediately. Infinite loops are prevented by eliminating the redirection starting from
the target of the redirection that caused the loop to appear. Namely, if redirections are
requested as A — B, B — C and C — A in this order, then the A — B redirection is
cancelled.

\msg_redirect_class:nn {(class one)} {(class two)}

Changes the behaviour of messages of (class one) so that they are processed using the
code for those of (class two).

\msg_redirect_module:nnn {(module)} {(class one)} {(class two)}

Redirects message of (class one) for (module) to act as though they were from (class
two). Messages of (class one) from sources other than (module) are not affected by this
redirection. This function can be used to make some messages “silent” by default. For
example, all of the warning messages of (module) could be turned off with:

\msg_redirect_module:nnn { module } { warning } { none }

\msg_redirect_name:nnn {(module)} {(message)} {(class)}

Redirects a specific (message) from a specific (module) to act as a member of (class) of
messages. No further redirection is performed. This function can be used to make a
selected message “silent” without changing global parameters:

\msg_redirect_name:nnn { module } { annoying-message } { none }

145

\ior_new:
\ior_new:
\iow_new:
\iow_new:

o =0 =

New: 2011-09-26

Updated: 2011-12-27

\ior_open:Nn
\ior_open:cn

Updated: 2012-02-10

Part XVIII
The 13file package
File and I/O operations

This module provides functions for working with external files. Some of these functions
apply to an entire file, and have prefix \file_. .., while others are used to work with
files on a line by line basis and have prefix \ior_... (reading) or \iow_. .. (writing).

It is important to remember that when reading external files TEX attempts to locate
them using both the operating system path and entries in the TgX file database (most
TEX systems use such a database). Thus the “current path” for TEX is somewhat broader
than that for other programs.

For functions which expect a (file name) argument, this argument may contain both
literal items and expandable content, which should on full expansion be the desired
file name. Active characters (as declared in \1_char_active_seq) are not expanded,
allowing the direct use of these in file names. File names are quoted using " tokens if
they contain spaces: as a result, " tokens are not permitted in file names.

1 Input—output stream management

As TEX engines have a limited number of input and output streams, direct use of the
streams by the programmer is not supported in I#TEX3. Instead, an internal pool of
streams is maintained, and these are allocated and deallocated as needed by other mod-
ules. As a result, the programmer should close streams when they are no longer needed,
to release them for other processes.

Note that I/O operations are global: streams should all be declared with global
names and treated accordingly.

\ior_new:N (stream)

\iow_new:N (stream)

Globally reserves the name of the (stream), either for reading or for writing as appropri-
ate. The (stream) is not opened until the appropriate \..._open:Nn function is used.
Attempting to use a (streamn) which has not been opened is an error, and the (stream)
will behave as the corresponding \c_term_. ...

\ior_open:Nn (stream) {(file name)}

Opeuns (file name) for reading using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \ior_-
close:N instruction is given or the TEX run ends. If the file is not found, an error is
raised.

146

\ior_open:NnTF
\ior_open:cnTF

New: 2013-01-12

\iow_open:Nn
\iow_open:cn

Updated: 2012-02-09

\ior_close:
\ior_close:
\iow_close:
\iow_close:

o =0 =

Updated: 2012-07-31

\ior_show_list:

\ior_log_list:
\iow_show_list:

\iow_log_list:

New: 2017-06-27

\ior_open:NnTF (stream) {(file name)} {(true code)} {(false code)}

Opens (file name) for reading using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \ior_-
close:N instruction is given or the TEX run ends. The (true code) is then inserted into
the input stream. If the file is not found, no error is raised and the (false code) is inserted
into the input stream.

\iow_open:Nn (stream) {(file name)}

Opens (file name) for writing using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \iow_-
close:N instruction is given or the TEX run ends. Opening a file for writing clears any
existing content in the file (i.e. writing is not additive).

\ior_close:N (stream)

\iow_close:N (stream)

Closes the (stream). Streams should always be closed when they are finished with as this
ensures that they remain available to other programmers.

\ior_show_list:

\ior_log_list:

\iow_show_list:

\iow_log_list:

Display (to the terminal or log file) a list of the file names associated with each open
(read or write) stream. This is intended for tracking down problems.

1.1 Reading from files

Reading from files and reading from the terminal are separate processes in expl3. The
functions \ior_get:NN and \ior_str_get:NN, and their branching equivalents, are de-
signed to work with files.

147

\ior_get:NN
\ior_get :NNTF

New: 2012-06-24
Updated: 2019-03-23

\ior_str_get:NN
\ior_str_get:NNTF

New: 2016-12-04
Updated: 2019-03-23

\ior_get:NN (stream) (token list variable)
\ior_get:NNTF (stream) (token list variable) (true code) (false code)

Function that reads one or more lines (until an equal number of left and right braces are
found) from the input (streamn) and stores the result locally in the (token list) variable.
The material read from the (stream) is tokenized by TEX according to the category codes
and \endlinechar in force when the function is used. Assuming normal settings, any
lines which do not end in a comment character % have the line ending converted to a
space, so for example input

ab c

results in a token list a_b_,c,. Any blank line is converted to the token \par. Therefore,
blank lines can be skipped by using a test such as

\ior_get:NN \1_my_stream \1_tmpa_tl
\tl_set:Nn \1_tmpb_tl1 { \par }
\tl_if_eq:NNF \1_tmpa_tl \1_tmpb_tl

Also notice that if multiple lines are read to match braces then the resulting token list
can contain \par tokens. In the non-branching version, where the (stream) is not open
the (I var) is set to \q_no_value.

TEXhackers note: This protected macro is a wrapper around the TEX primitive \read.
Regardless of settings, TEX replaces trailing space and tab characters (character codes 32 and 9)
in each line by an end-of-line character (character code \endlinechar, omitted if \endlinechar
is negative or too large) before turning characters into tokens according to current category
codes. With default settings, spaces appearing at the beginning of lines are also ignored.

\ior_str_get:NN (stream) (token list variable)
\ior_str_get:NNTF (stream) (token list variable) (true code) (false code)

Function that reads one line from the input (stream) and stores the result locally in the
(token list) variable. The material is read from the (stream) as a series of tokens with
category code 12 (other), with the exception of space characters which are given category
code 10 (space). Multiple whitespace characters are retained by this process. It always
only reads one line and any blank lines in the input result in the (token list variable)
being empty. Unlike \ior_get:NN, line ends do not receive any special treatment. Thus
input

ab c

results in a token list a b ¢ with the letters a, b, and ¢ having category code 12. In the
non-branching version, where the(stream) is not open the (tl var) is set to \q_no_value.

TEXhackers note: This protected macro is a wrapper around the e-TEX primitive
\readline. Regardless of settings, TEX removes trailing space and tab characters (character
codes 32 and 9). However, the end-line character normally added by this primitive is not in-
cluded in the result of \ior_str_get:NN.

148

\ior_map_inline:Nn

New: 2012-02-11

\ior_str_map_inline:Nn

New: 2012-02-11

\ior_map_break:

New: 2012-06-29

\ior_map_inline:Nn (stream) {(inline function)}

Applies the (inline function) to each set of (lines) obtained by calling \ior_get : NN until
reaching the end of the file. TEX ignores any trailing new-line marker from the file it
reads. The (inline function) should consist of code which receives the (line) as #1.

\ior_str_map_inline:Nn (stream) {(inline function)}

Applies the (inline function) to every (line) in the (stream). The material is read from
the (stream) as a series of tokens with category code 12 (other), with the exception of
space characters which are given category code 10 (space). The (inline function) should
consist of code which receives the (line) as #1. Note that TEX removes trailing space and
tab characters (character codes 32 and 9) from every line upon input. TEX also ignores
any trailing new-line marker from the file it reads.

\ior_map_break:

Used to terminate a \ior_map_. .. function before all lines from the (stream) have been
processed. This normally takes place within a conditional statement, for example

\ior_map_inline:Nn \1_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break: }

{
% Do something useful
}
}
Use outside of a \ior_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

149

\ior_map_break:n

New: 2012-06-29

\ior_if_eof_p:N x
\ior_if_eof:NTF x

Updated: 2012-02-10

\iow_now:Nn
\iow_now:(Nx|cn|cx)

Updated: 2012-06-05

B

\iow_log:
\iow_log:

kel

\iow_term:n
\iow_term:x

\ior_map_break:n {({code)}

Used to terminate a \ior_map_... function before all lines in the (stream) have been
processed, inserting the (code) after the mapping has ended. This normally takes place
within a conditional statement, for example

\ior_map_inline:Nn \1l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \ior_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

\ior_if_eof_p:N (stream)
\ior_if_eof:NTF (stream) {(true code)} {(false code)}

Tests if the end of a (stream) has been reached during a reading operation. The test also
returns a true value if the (stream) is not open.

1.2 Writing to files

\iow_now:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) immediately (i.e. the write oper-
ation is called on expansion of \iow_now:Nn).

\iow_log:n {(tokens)}

This function writes the given (tokens) to the log (transcript) file immediately: it is a
dedicated version of \iow_now:Nn.

\iow_term:n {(tokens)}

This function writes the given (fokens) to the terminal file immediately: it is a dedicated
version of \iow_now:Nn.

150

\iow_shipout:Nn

\iow_shipout:(Nx|cn|cx)

\iow_shipout_x:Nn

\iow_shipout_x:(Nx|cn|cx)

Updated: 2012-09-08

\iow_char:N *

\iow_newline:

*

\iow_shipout:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) when the current page is finalised
(i.e. at shipout). The x-type variants expand the (tokens) at the point where the function
is used but not when the resulting tokens are written to the (stream) (¢f. \iow_shipout_-
x:Nn).

TEXhackers note: When using expl3 with a format other than IKTEX, new line char-
acters inserted using \iow_newline: or using the line-wrapping code \iow_wrap:nnnN are not
recognized in the argument of \iow_shipout:Nn. This may lead to the insertion of additional
unwanted line-breaks.

\iow_shipout_x:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) when the current page is finalised
(i.e. at shipout). The (tokens) are expanded at the time of writing in addition to any
expansion when the function is used. This makes these functions suitable for including
material finalised during the page building process (such as the page number integer).

TEXhackers note: This is a wrapper around the TEX primitive \write. When using expl3
with a format other than ITEX, new line characters inserted using \iow_newline: or using the
line-wrapping code \iow_wrap:nnnN are not recognized in the argument of \iow_shipout:Nn.
This may lead to the insertion of additional unwanted line-breaks.

\iow_char:N \(char)
Inserts (char) into the output stream. Useful when trying to write difficult characters
such as %, {, }, etc. in messages, for example:

\iow_now:Nx \g_my_iow { \iow_char:N \{ text \iow_char:N \} }

The function has no effect if writing is taking place without expansion (e.g. in the second
argument of \iow_now:Nn).

\iow_newline:

Function to add a new line within the (tokens) written to a file. The function has no
effect if writing is taking place without expansion (e.g. in the second argument of \iow_-
now:Nn).

TEXhackers note: When using expl3 with a format other than BTEX, the character in-
serted by \iow_newline: is not recognized by TEX, which may lead to the insertion of additional
unwanted line-breaks. This issue only affects \iow_shipout:Nn, \iow_shipout_x:Nn and direct
uses of primitive operations.

151

1.3 Wrapping lines in output

\iow_wrap:nnnN \iow_wrap:nxnN \iow_wrap:nnnN {(text)} {(run-on text)} {(set up)} (function)

New: 2012-06-28
Updated: 2017-12-04

\iow_indent:n

New: 2011-09-21

This function wraps the (text) to a fixed number of characters per line. At the start
of each line which is wrapped, the (run-on text) is inserted. The line character count
targeted is the value of \1_iow_line_count_int minus the number of characters in the
(run-on text) for all lines except the first, for which the target number of characters is
simply \1_iow_line_count_int since there is no run-on text. The (text) and (run-on
text) are exhaustively expanded by the function, with the following substitutions:

e \\ or \iow_newline: may be used to force a new line,
« \u may be used to represent a forced space (for example after a control sequence),
o« \#, \%, \{, \}, \~ may be used to represent the corresponding character,

e \iow_allow_break: may be used to allow a line-break without inserting a space
(this is experimental),

o \iow_indent:n may be used to indent a part of the (text) (not the (run-on text)).

Additional functions may be added to the wrapping by using the (set up), which is
executed before the wrapping takes place: this may include overriding the substitutions
listed.

Any expandable material in the (text) which is not to be expanded on wrapping
should be converted to a string using \token_to_str:N, \tl_to_str:n, \tl_to_str:N,
etc.

The result of the wrapping operation is passed as a braced argument to the
(function), which is typically a wrapper around a write operation. The output of \iow_-
wrap:nnnN (7.e. the argument passed to the (function)) consists of characters of category
“other” (category code 12), with the exception of spaces which have category “space”
(category code 10). This means that the output does not expand further when written
to a file.

TEXhackers note: Internally, \iow_wrap:nnnN carries out an x-type expansion on the
(text) to expand it. This is done in such a way that \exp_not:N or \exp_not:n could be used
to prevent expansion of material. However, this is less conceptually clear than conversion to a
string, which is therefore the supported method for handling expandable material in the (text).

\iow_indent:n {(text)}

In the first argument of \iow_wrap:nnnN (for instance in messages), indents (text) by
four spaces. This function does not cause a line break, and only affects lines which start
within the scope of the (text). In case the indented (text) should appear on separate lines
from the surrounding text, use \\ to force line breaks.

152

\1l_iow_line_count_int

New: 2012-06-24

\c_term_ior

\g_tmpa_ior
\g_tmpb_ior

New: 2017-12-11

\c_log_iow
\c_term_iow

\g_tmpa_iow
\g_tmpb_iow

New: 2017-12-11

\if_eof:w *

The maximum number of characters in a line to be written by the \iow_wrap:nnnN
function. This value depends on the TEX system in use: the standard value is 78, which
is typically correct for unmodified TEXlive and MiKTEX systems.

1.4 Constant input—output streams, and variables

Constant input stream for reading from the terminal. Reading from this stream using
\ior_get:NN or similar results in a prompt from TEX of the form

<tl>=

Scratch input stream for global use. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Constant output streams for writing to the log and to the terminal (plus the log), respec-
tively.

Scratch output stream for global use. These are never used by the kernel code, and so
are safe for use with any I TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

1.5 Primitive conditionals

\if_eof:w (stream)
(true code)
\else:
(false code)
\fi:
Tests if the (stream) returns “end of file”, which is true for non-existent files. The \else:
branch is optional.

TEXhackers note: This is the TEX primitive \ifeof.

153

\g_file_curr_dir_str
\g_file_curr_name_str
\g_file_curr_ext_str

New: 2017-06-21

\1_file_search_path_seq

New: 2017-06-18

\file_if_exist:nTF

Updated: 2012-02-10

\file_get :nnN
\file_get:nnNTF

New: 2019-01-16
Updated: 2019-02-16

\file_get_full_name:nN
\file_get_full_name:VN
\file_get_full_name:nNTF
\file_get_full_name:VNTF

Updated: 2019-02-16

2 File operation functions

Contain the directory, name and extension of the current file. The directory is empty if
the file was loaded without an explicit path (7.e. if it is in the TEX search path), and does
not end in / other than the case that it is exactly equal to the root directory. The (name)
and (ext) parts together make up the file name, thus the (name) part may be thought of
as the “job name” for the current file. Note that TEX does not provide information on
the (ext) part for the main (top level) file and that this file always has an empty (dir)
component. Also, the (name) here will be equal to \c_sys_jobname_str, which may be
different from the real file name (if set using --jobname, for example).

Each entry is the path to a directory which should be searched when seeking a file. Each
path can be relative or absolute, and should not include the trailing slash. The entries
are not expanded when used so may contain active characters but should not feature any
variable content. Spaces need not be quoted.

TEXhackers note: When working as a package in IWTEX 2¢, expl3 will automatically
append the current \input@path to the set of values from \1_file_search_path_seq

\file_if_exist:nTF {(file name)} {(true code)} {(false code)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq.

\file_get:nnN {(filename)} {(setup)} (t1)

\file_get:nnNTF {(filename)} {(setup)} (t1) {(true code)} {{false code)}

Defines (tl) to the contents of (filename). Category codes may need to be set appropri-
ately via the (setup) argument. The non-branching version sets the (¢l) to \q_no_value
if the file is not found. The branching version runs the (true code) after the assignment
to (tl) if the file is found, and (false code) otherwise.

\file_get_full_name:nN {(file name)} (tl1)

\file_get_full_name:nNTF {(file name)} (tl) {(true code)} {(false code)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
sets the (¢l var) the fully-qualified name of the file, i.e. the path and file name. This
includes an extension .tex when the given (file name) has no extension but the file found
has that extension. In the non-branching version, the (¢l var) will be set to \q_no_value
in the case that the file does not exist.

154

\file_parse_full_name:nNNN

New: 2017-06-23
Updated: 2017-06-26

\file_input:n

Updated: 2017-06-26

\file_show_list:
\file_log_list:

\file_parse_full_name:nNNN {(full name)} (dir) (name) (ext)

Parses the (full name) and splits it into three parts, each of which is returned by setting
the appropriate local string variable:

o The (dir): everything up to the last / (path separator) in the (file path). As with
system PATH variables and related functions, the (dir) does not include the trailing
/ unless it points to the root directory. If there is no path (only a file name), (dir)
is empty.

e The (name): everything after the last / up to the last ., where both of those
characters are optional. The (name) may contain multiple . characters. It is
empty if (full name) consists only of a directory name.

o The (ext): everything after the last . (including the dot). The (ext) is empty if
there is no . after the last /.

This function does not expand the (full name) before turning it to a string. It assume
that the (full name) either contains no quote (") characters or is surrounded by a pair
of quotes.

\file_input:n {(file name)}
Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional I¥TEX source. All files read are recorded for information

and the file name stack is updated by this function. An error is raised if the file is not
found.

\file_show_list:
\file_log_list:

These functions list all files loaded by ITEX 2¢ commands that populate \@filelist or
by \file_input:n. While \file_show_list: displays the list in the terminal, \file_-
log_list: outputs it to the log file only.

155

\dim_new:N
\dim_new:c

\dim_const:Nn
\dim_const:cn

New: 2012-03-05

\dim_zero:N
\dim_zero:c
\dim_gzero:N
\dim_gzero:c

\dim_zero_new:N
\dim_zero_new:c
\dim_gzero_new:N
\dim_gzero_new:c

New: 2012-01-07

\dim_if_exist_p:N *
\dim_if_exist_p:c =
\dim_if_exist:NTF x
\dim_if_exist:cTF %

New: 2012-03-03

Part XIX
The 13skip package
Dimensions and skips

ETREX3 provides two general length variables: dim and skip. Lengths stored as dim
variables have a fixed length, whereas skip lengths have a rubber (stretch/shrink) com-
ponent. In addition, the muskip type is available for use in math mode: this is a special
form of skip where the lengths involved are determined by the current math font (in
mu). There are common features in the creation and setting of length variables, but for
clarity the functions are grouped by variable type.

1 Creating and initialising dim variables

\dim_new:N (dimension)

Creates a new (dimension) or raises an error if the name is already taken. The declaration
is global. The (dimension) is initially equal to 0pt.

\dim_const:Nn (dimension) {(dimension expression)}

Creates a new constant (dimension) or raises an error if the name is already taken. The
value of the (dimension) is set globally to the (dimension expression).

\dim_zero:N (dimension)

Sets (dimension) to 0pt.

\dim_zero_new:N (dimension)

Ensures that the (dimension) exists globally by applying \dim_new:N if necessary, then
applies \dim_(g)zero:N to leave the (dimension) set to zero.

\dim_if_exist_p:N (dimension)
\dim_if_exist:NTF (dimension) {(true code)} {(false code)}

Tests whether the (dimension) is currently defined. This does not check that the
(dimension) really is a dimension variable.

156

\dim_add:Nn
\dim_add:cn
\dim_gadd:Nn
\dim_gadd:cn

Updated: 2011-10-22

\dim_set:Nn
\dim_set:cn
\dim_gset:Nn
\dim_gset:cn

Updated: 2011-10-22

\dim_set_eq:NN
\dim_set_eq:(cN|Nc|cc)
\dim_gset_eq:NN
\dim_gset_eq:(cN|Nc|cc)

\dim_sub:Nn
\dim_sub:cn
\dim_gsub:Nn
\dim_gsub:cn

Updated: 2011-10-22

\dim_abs:n *

Updated: 2012-09-26

\dim_max:nn %
\dim_min:nn *

New: 2012-09-09
Updated: 2012-09-26

2 Setting dim variables

\dim_add:Nn (dimension) {(dimension expression)}

Adds the result of the (dimension expression) to the current content of the (dimension).

\dim_set:Nn (dimension) {(dimension expression)}

Sets (dimension) to the value of (dimension expression), which must evaluate to a length
with units.

\dim_set_eq:NN (dimension:) (dimensions)

Sets the content of (dimension;) equal to that of (dimensions).

\dim_sub:Nn (dimension) {(dimension expression)}

Subtracts the result of the (dimension expression) from the current content of the
(dimension).

3 Utilities for dimension calculations

\dim_abs:n {(dimexpr)}

Converts the (dimezpr) to its absolute value, leaving the result in the input stream as a
(dimension denotation).

\dim_max:nn {(dimexpr;)} {(dimexprs)}
\dim_min:nn {(dimexpr:)} {(dimexprs)}

Evaluates the two (dimension expressions) and leaves either the maximum or minimum
value in the input stream as appropriate, as a (dimension denotation).

157

\dim_ratio:nn W

Updated: 2011-10-22

\dim_compare_p:nNn *
\dim_compare:nNnTF %

\dim_ratio:nn {(dimexpri)} {(dimexpr:)}

Parses the two (dimension expressions) and converts the ratio of the two to a form
suitable for use inside a (dimension expression). This ratio is then left in the input
stream, allowing syntax such as

\dim_set:Nn \1_my_dim
{ 10 pt * \dim_ratio:nn { 5 pt } { 10 pt } }

The output of \dim_ratio:nn on full expansion is a ratio expression between two integers,
with all distances converted to scaled points. Thus

\tl_set:Nx \l_my_tl { \dim_ratio:nn { 5 pt } { 10 pt } }
\tl_show:N \1_my_tl

displays 327680/655360 on the terminal.

4 Dimension expression conditionals

\dim_compare_p:nNn {(dimexpri)} (relation) {(dimexpr:)}
\dim_compare:nNnTF

{(dimexpr1)} (relation) {(dimexpr:)}

{(true code)} {(false code)}

This function first evaluates each of the (dimension expressions) as described for \dim_-
eval:n. The two results are then compared using the (relation):

Equal
Greater than

>
Less than <

This function is less flexible than \dim_compare :nTF but around 5 times faster.

158

\dim_compare_p:n x \dim_compare_p:n
\dim_compare:nTF * {

Updated: 2013-01-13 (dimexpri) (relatiom)

(dimexpry) (relationn)

(dimexpry41)
}
\dim_compare:nTF
{

dimexpri relation;
P

(dimexpry) (relationy)
(dimexpry+1)

}

{(true code)} {(false code)}

This function evaluates the (dimension expressions) as described for \dim_eval:n and
compares consecutive result using the corresponding (relation), namely it compares
(dimexpry) and (dimexprs) using the (relation;), then (dimexprs) and (dimexprs) us-
ing the (relationy), until finally comparing (dimezpry) and (dimexpryi1) using the
(relationy). The test yields true if all comparisons are true. FEach (dimension
expression) is evaluated only once, and the evaluation is lazy, in the sense that if one
comparison is false, then no other (dimension exrpression) is evaluated and no other
comparison is performed. The (relations) can be any of the following:

Equal =or ==
Greater than or equal to >=
Greater than >

Less than or equal to <=
Less than <

Not equal 1=

This function is more flexible than \dim_compare :nNnTF but around 5 times slower.

159

\dim_case:nn *
\dim_case:nnTF x

New: 2013-07-24

\dim_do_until:nNnn 3

\dim_do_while:nNnn 3%

\dim_until_do:nNnn 3%

\dim_case:nnTF {(test dimension expression)}
{
{(dimexpr casei)} {(code casei)}
{(dimexpr case2)} {(code cases)}

%(.c;imexpr case,)} {(code casen)}
}
{(true code)}
{(false code)}

This function evaluates the (test dimension expression) and compares this in turn to each
of the (dimension expression cases). If the two are equal then the associated (code) is
left in the input stream and other cases are discarded. If any of the cases are matched,
the (true code) is also inserted into the input stream (after the code for the appropriate
case), while if none match then the (false code) is inserted. The function \dim_case:nn,
which does nothing if there is no match, is also available. For example

\dim_set:Nn \1_tmpa_dim { 5 pt }
\dim_case:nnF
{ 2 \1_tmpa_dim }

{
{5pt} { Small }
{4 pt+6pt} {Medium }
{ - 10 pt } { Negative }
}
{ No idea! }

leaves “Medium” in the input stream.

5 Dimension expression loops

\dim_do_until:nNnn {(dimexpri)} (relation) {(dimexprs)} {({code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (dimension expressions) as described for \dim_compare :nNnTF. If
the test is false then the (code) is inserted into the input stream again and a loop occurs
until the (relation) is true.

\dim_do_while:nNnn {(dimexpri)} (relation) {(dimexprs)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (dimension expressions) as described for \dim_compare :nNnTF. If
the test is true then the (code) is inserted into the input stream again and a loop occurs
until the (relation) is false.

\dim_until_do:nNnn {(dimexpri)} (relatiomn) {(dimexprs)} {(code)}

Evaluates the relationship between the two (dimension expressions) as described for
\dim_compare:nNnTF, and then places the (code) in the input stream if the (relation)
is false. After the (code) has been processed by TEX the test is repeated, and a loop
occurs until the test is true.

160

\dim_while_do:nNnn 3

\dim_do_until:nn

Updated: 2013-01-13

\dim_do_while:nn %

Updated: 2013-01-13

\dim_until_do:nn

Updated: 2013-01-13

\dim_while_do:nn

Updated: 2013-01-13

\dim_step_function:nnnN 5

New: 2018-02-18

\dim_step_inline:nnnn

New: 2018-02-18

\dim_while_do:nNnn {(dimexpri)} (relation) {(dimexpr:)} {(code)}

Evaluates the relationship between the two (dimension expressions) as described for
\dim_compare :nNnTF, and then places the (code) in the input stream if the (relation) is
true. After the (code) has been processed by TEX the test is repeated, and a loop occurs
until the test is false.

\dim_do_until:nn {({dimension relation)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the
(dimension relation) as described for \dim_compare:nTF. If the test is false then the
(code) is inserted into the input stream again and a loop occurs until the (relation) is
true.

\dim_do_while:nn {({dimension relation)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the
(dimension relation) as described for \dim_compare:nTF. If the test is true then the
(code) is inserted into the input stream again and a loop occurs until the (relation) is
false.

\dim_until_do:nn {({dimension relation)} {(code)}

Evaluates the (dimension relation) as described for \dim_compare:nTF, and then places
the (code) in the input stream if the (relation) is false. After the (code) has been
processed by TEX the test is repeated, and a loop occurs until the test is true.

\dim_while_do:nn {(dimension relation)} {(code)}

Evaluates the (dimension relation) as described for \dim_compare:nTF, and then places
the (code) in the input stream if the (relation) is true. After the (code) has been processed
by TEX the test is repeated, and a loop occurs until the test is false.

6 Dimension step functions

\dim_step_function:nnnN {(initial value)} {(step)} {(final value)} (function)

This function first evaluates the (initial value), (step) and (final value), all of which should
be dimension expressions. The (function) is then placed in front of each (value) from the
(initial value) to the (final value) in turn (using (step) between each (value)). The (step)
must be non-zero. If the (step) is positive, the loop stops when the (value) becomes larger
than the (final value). If the (step) is negative, the loop stops when the (value) becomes
smaller than the (final value). The (function) should absorb one argument.

\dim_step_inline:nnnn {(initial value)} {(step)} {(final value)} {(code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be dimension expressions. Then for each (value) from the (initial value) to the
(final value) in turn (using (step) between each (value)), the (code) is inserted into the
input stream with #1 replaced by the current (value). Thus the (code) should define a
function of one argument (#1).

161

\dim_step_variable:nnnNn

New: 2018-02-18

\dim_eval:n *

Updated: 2011-10-22

\dim_use:N *
\dim_use:c *x

\dim_to_decimal:n *

New: 2014-07-15

\dim_step_variable:nnnNn
{(initial value)} {(step)} {(final value)} (t1 var) {(code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be dimension expressions. Then for each (value) from the (initial value) to the
(final value) in turn (using (step) between each (value)), the (code) is inserted into the
input stream, with the (¢l var) defined as the current (value). Thus the (code) should
make use of the (¢ var).

7 Using dim expressions and variables

\dim_eval:n {(dimension expression)}

Evaluates the (dimension expression), expanding any dimensions and token list variables
within the (expression) to their content (without requiring \dim_use:N/\t1l_use:N) and
applying the standard mathematical rules. The result of the calculation is left in the
input stream as a (dimension denotation) after two expansions. This is expressed in
points (pt), and requires suitable termination if used in a TEX-style assignment as it is
not an (internal dimension).

\dim_use:N (dimension)

Recovers the content of a (dimension) and places it directly in the input stream. An
error is raised if the variable does not exist or if it is invalid. Can be omitted in places
where a (dimension) is required (such as in the argument of \dim_eval:n).

TEXhackers note: \dim_use:N is the TEX primitive \the: this is one of several I¥TEX3
names for this primitive.

\dim_to_decimal:n {(dimexpr)}

Evaluates the (dimension expression), and leaves the result, expressed in points (pt) in
the input stream, with no units. The result is rounded by TEX to four or five decimal
places. If the decimal part of the result is zero, it is omitted, together with the decimal
marker.

For example

\dim_to_decimal:n { 1bp }

leaves 1.00374 in the input stream, ¢.e. the magnitude of one “big point” when converted

to (TEX) points.

162

\dim_to_decimal_in_bp:n *

New: 2014-07-15

\dim_to_decimal_in_sp:n *

New: 2015-05-18

\dim_to_decimal_in_bp:n {(dimexpr)}

Evaluates the (dimension expression), and leaves the result, expressed in big points (bp)
in the input stream, with no units. The result is rounded by TEX to four or five decimal
places. If the decimal part of the result is zero, it is omitted, together with the decimal
marker.

For example

\dim_to_decimal_in_bp:n { 1pt }

leaves 0.99628 in the input stream, i.e. the magnitude of one (TEX) point when converted
to big points.

\dim_to_decimal_in_sp:n {(dimexpr)}

Evaluates the (dimension expression), and leaves the result, expressed in scaled points
(sp) in the input stream, with no units. The result is necessarily an integer.

\dim_to_decimal_in_unit:nn * \dim_to_decimal_in_unit:nn {(dimexpr:)} {(dimexpr:)}

New: 2014-07-15

\dim_to_fp:n *

New: 2012-05-08

\dim_show:N
\dim_show:c

Evaluates the (dimension expressions), and leaves the value of (dimezpr;), expressed in a
unit given by (dimezprs), in the input stream. The result is a decimal number, rounded
by TEX to four or five decimal places. If the decimal part of the result is zero, it is
omitted, together with the decimal marker.

For example

\dim_to_decimal_in_unit:nn { 1bp } { imm }

leaves 0.35277 in the input stream, i.e. the magnitude of one big point when converted
to millimetres.

Note that this function is not optimised for any particular output and as such may
give different results to \dim_to_decimal_in_bp:n or \dim_to_decimal_in_sp:n. In
particular, the latter is able to take a wider range of input values as it is not limited
by the ability to calculate a ratio using e-TEX primitives, which is required internally by
\dim_to_decimal_in_unit:nn.

\dim_to_fp:n {(dimexpr)}

Expands to an internal floating point number equal to the value of the (dimezpr) in
pt. Since dimension expressions are evaluated much faster than their floating point
equivalent, \dim_to_fp:n can be used to speed up parts of a computation where a low
precision and a smaller range are acceptable.

8 Viewing dim variables

\dim_show:N (dimension)

Displays the value of the (dimension) on the terminal.

163

\dim_show:n

New: 2011-11-22
Updated: 2015-08-07

\dim_log:N
\dim_log:c

New: 2014-08-22
Updated: 2015-08-03

\dim_log:n

New: 2014-08-22
Updated: 2015-08-07

\c_max_dim

\c_zero_dim

\1_tmpa_dim
\1_tmpb_dim

\g_tmpa_dim
\g_tmpb_dim

\skip_new:N
\skip_new:c

\dim_show:n {(dimension expression)}

Displays the result of evaluating the (dimension expression) on the terminal.

\dim_log:N (dimension)
Writes the value of the (dimension) in the log file.

\dim_log:n {(dimension expression)}

Writes the result of evaluating the (dimension expression) in the log file.

9 Constant dimensions

The maximum value that can be stored as a dimension. This can also be used as a
component of a skip.

A zero length as a dimension. This can also be used as a component of a skip.

10 Scratch dimensions

Scratch dimension for local assignment. These are never used by the kernel code, and so
are safe for use with any IATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch dimension for global assignment. These are never used by the kernel code, and
so are safe for use with any ¥ TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

11 Creating and initialising skip variables

\skip_new:N (skip)

Creates a new (skip) or raises an error if the name is already taken. The declaration is
global. The (skip) is initially equal to 0pt.

164

\skip_const:Nn
\skip_const:cn

New: 2012-03-05

\skip_zero:N
\skip_zero:c
\skip_gzero:N
\skip_gzero:c

\skip_zero_new:N
\skip_zero_new:c
\skip_gzero_new:N
\skip_gzero_new:c

New: 2012-01-07

\skip_if_exist_p:N
\skip_if_exist_p:c
\skip_if_exist:NTF

*
*
*
\skip_if_exist:cTF *

New: 2012-03-03

\skip_add:Nn
\skip_add:cn
\skip_gadd:Nn
\skip_gadd:cn

Updated: 2011-10-22

\skip_set:Nn
\skip_set:cn
\skip_gset:Nn
\skip_gset:cn

Updated: 2011-10-22

\skip_set_eq:NN
\skip_set_eq: (cN|Nc|cc)
\skip_gset_eq:NN
\skip_gset_eq:(cN|Nc|cc)

\skip_sub:Nn
\skip_sub:cn
\skip_gsub:Nn

\skip_gsub:cn

Updated: 2011-10-22

\skip_const:Nn (skip) {(skip expression)}

Creates a new constant (skip) or raises an error if the name is already taken. The value
of the (skip) is set globally to the (skip expression).

\skip_zero:N (skip)
Sets (skip) to 0pt.

\skip_zero_new:N (skip)

Ensures that the (skip) exists globally by applying \skip_new:N if necessary, then applies
\skip_(g)zero:N to leave the (skip) set to zero.

\skip_if_exist_p:N (skip)
\skip_if_exist:NTF (skip) {(true code)} {(false code)}

Tests whether the (skip) is currently defined. This does not check that the (skip) really
is a skip variable.

12 Setting skip variables

\skip_add:Nn (skip) {(skip expression)}
Adds the result of the (skip expression) to the current content of the (skip).

\skip_set:Nn (skip) {(skip expression)}

Sets (skip) to the value of (skip expression), which must evaluate to a length with units
and may include a rubber component (for example 1 cm plus 0.5 cm.

\skip_set_eq:NN (skipi) (skipz)
Sets the content of (skip;) equal to that of (skips).

\skip_sub:Nn (skip) {(skip expression)}

Subtracts the result of the (skip expression) from the current content of the (skip).

165

\skip_if_eq_p:nn =
\skip_if_eq:nnTF *

\skip_if_finite_p:n *
\skip_if_finite:nTF *

New: 2012-03-05

\skip_eval:n =%

Updated: 2011-10-22

\skip_use:N *
\skip_use:c *

\skip_show:N
\skip_show:c

Updated: 2015-08-03

\skip_show:n

New: 2011-11-22

Updated: 2015-08-07

13 Skip expression conditionals

\skip_if_eq_p:nn {(skipexpri)} {(skipexprs)}
\skip_if_eq:nnTF

{(skipexpri)} {(skipexpr2)}

{(true code)} {(false code)}

This function first evaluates each of the (skip expressions) as described for \skip_-
eval:n. The two results are then compared for exact equality, i.e. both the fixed and
rubber components must be the same for the test to be true.

\skip_if_finite_p:n {(skipexpr)}
\skip_if_finite:nTF {(skipexpr)} {(true code)} {(false code)}

Evaluates the (skip expression) as described for \skip_eval:n, and then tests if all of
its components are finite.

14 Using skip expressions and variables

\skip_eval:n {(skip expression)}

Evaluates the (skip expression), expanding any skips and token list variables within the
(expression) to their content (without requiring \skip_use:N/\t1l_use:N) and applying
the standard mathematical rules. The result of the calculation is left in the input stream
as a (glue denotation) after two expansions. This is expressed in points (pt), and requires
suitable termination if used in a TEX-style assignment as it is not an (internal glue).

\skip_use:N (skip)

Recovers the content of a (skip) and places it directly in the input stream. An error is
raised if the variable does not exist or if it is invalid. Can be omitted in places where a
(dimension) or (skip) is required (such as in the argument of \skip_eval:n).

TEXhackers note: \skip_use:N is the TEX primitive \the: this is one of several I¥TEX3
names for this primitive.

15 Viewing skip variables

\skip_show:N (skip)
Displays the value of the (skip) on the terminal.

\skip_show:n {(skip expression)}

Displays the result of evaluating the (skip expression) on the terminal.

166

\skip_log:N
\skip_log:c

New: 2014-08-22
Updated: 2015-08-03

\skip_log:n

New: 2014-08-22
Updated: 2015-08-07

\c_max_skip

Updated: 2012-11-02

\c_zero_skip

Updated: 2012-11-01

\1_tmpa_skip
\1_tmpb_skip

\g_tmpa_skip
\g_tmpb_skip

\skip_horizontal:N
\skip_horizontal:c
\skip_horizontal:n

Updated: 2011-10-22

\skip_log:N (skip)
Writes the value of the (skip) in the log file.

\skip_log:n {(skip expression)}
Writes the result of evaluating the (skip expression) in the log file.

16 Constant skips

The maximum value that can be stored as a skip (equal to \c_max_dim in length), with
no stretch nor shrink component.

A zero length as a skip, with no stretch nor shrink component.

17 Scratch skips

Scratch skip for local assignment. These are never used by the kernel code, and so are
safe for use with any IA#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch skip for global assignment. These are never used by the kernel code, and so are
safe for use with any IATpX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

18 Inserting skips into the output

\skip_horizontal:N (skip)
\skip_horizontal:n {(skipexpr)}

Inserts a horizontal (skip) into the current list. The argument can also be a (dim).

TEXhackers note: \skip_horizontal:N is the TEX primitive \hskip renamed.

167

\skip_vertical:N
\skip_vertical:c
\skip_vertical:n

Updated: 2011-10-22

\muskip_new:N
\muskip_new:c

\muskip_const:Nn
\muskip_const:cn

New: 2012-03-05

\muskip_zero:N
\muskip_zero:c
\muskip_gzero:N
\muskip_gzero:c

\muskip_zero_new:N
\muskip_zero_new:c
\muskip_gzero_new:N
\muskip_gzero_new:c

New: 2012-01-07

\muskip_if_exist_p:N
\muskip_if_exist_p:c
\muskip_if_exist:NTF

*
*
*
\muskip_if_exist:cIF *

New: 2012-03-03

\muskip_add:Nn
\muskip_add:cn
\muskip_gadd:Nn
\muskip_gadd:cn

Updated: 2011-10-22

\skip_vertical:N (skip)
\skip_vertical:n {(skipexpr)}

Inserts a vertical (skip) into the current list. The argument can also be a (dim).

TEXhackers note: \skip_vertical:N is the TEX primitive \vskip renamed.

19 Creating and initialising muskip variables

\muskip_new:N (muskip)

Creates a new (muskip) or raises an error if the name is already taken. The declaration
is global. The (muskip) is initially equal to 0 mu.

\muskip_const:Nn (muskip) {(muskip expression)}

Creates a new constant (muskip) or raises an error if the name is already taken. The
value of the (muskip) is set globally to the (muskip expression).

\skip_zero:N (muskip)
Sets (muskip) to 0 mu.

\muskip_zero_new:N (muskip)

Ensures that the (muskip) exists globally by applying \muskip_new:N if necessary, then
applies \muskip_(g)zero:N to leave the (muskip) set to zero.

\muskip_if_exist_p:N (muskip)
\muskip_if_exist:NTF (muskip) {(true code)} {(false code)}

Tests whether the (muskip) is currently defined. This does not check that the (muskip)
really is a muskip variable.

20 Setting muskip variables

\muskip_add:Nn (muskip) {(muskip expression)}

Adds the result of the (muskip expression) to the current content of the (muskip).

168

\muskip_set:Nn
\muskip_set:cn
\muskip_gset:Nn
\muskip_gset:cn

Updated: 2011-10-22

\muskip_set_eq:NN
\muskip_set_eq:(cN|Nc|cc)
\muskip_gset_eq:NN
\muskip_gset_eq:(cN|N¢|cc)

\muskip_sub:Nn
\muskip_sub:cn
\muskip_gsub:Nn
\muskip_gsub:cn

Updated: 2011-10-22

\muskip_eval:n *

Updated: 2011-10-22

\muskip_use:N x
\muskip_use:c *

\muskip_show:N
\muskip_show:c

Updated: 2015-08-03

\muskip_set:Nn (muskip) {(muskip expression)}

Sets (muskip) to the value of (muskip expression), which must evaluate to a math length
with units and may include a rubber component (for example 1 mu plus 0.5 mu.

\muskip_set_eq:NN (muskip:) (muskips)
Sets the content of (muskip;) equal to that of (muskips).

\muskip_sub:Nn (muskip) {(muskip expression)}

Subtracts the result of the (muskip expression) from the current content of the (skip).

21 Using muskip expressions and variables

\muskip_eval:n {(muskip expression)}

Evaluates the (muskip expression), expanding any skips and token list variables within
the (expression) to their content (without requiring \muskip_use:N/\tl_use:N) and
applying the standard mathematical rules. The result of the calculation is left in the
input stream as a (muglue denotation) after two expansions. This is expressed in mu, and
requires suitable termination if used in a TEX-style assignment as it is not an (internal
muglue).

\muskip_use:N (muskip)

Recovers the content of a (skip) and places it directly in the input stream. An error is
raised if the variable does not exist or if it is invalid. Can be omitted in places where a
(dimension) is required (such as in the argument of \muskip_eval:n).

TEXhackers note: \muskip_use:N is the TEX primitive \the: this is one of several I¥TEX3
names for this primitive.

22 Viewing muskip variables

\muskip_show:N (muskip)

Displays the value of the (muskip) on the terminal.

169

\muskip_show:n

New: 2011-11-22
Updated: 2015-08-07

\muskip_log:N
\muskip_log:c
New: 2014-08-22
Updated: 2015-08-03
\muskip_log:n

New: 2014-08-22
Updated: 2015-08-07

\c_max_muskip

\c_zero_muskip

\1_tmpa_muskip
\1_tmpb_muskip

\g_tmpa_muskip
\g_tmpb_muskip

\if_dim:w

\muskip_show:n {(muskip expression)}

Displays the result of evaluating the (muskip ezpression) on the terminal.

\muskip_log:N (muskip)
Writes the value of the (muskip) in the log file.

\muskip_log:n {(muskip expression)}

Writes the result of evaluating the (muskip expression) in the log file.

23 Constant muskips

The maximum value that can be stored as a muskip, with no stretch nor shrink compo-
nent.

A zero length as a muskip, with no stretch nor shrink component.

24 Scratch muskips

Scratch muskip for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch muskip for global assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

25 Primitive conditional

\if_dim:w (dimen;) (relation) (dimens)
(true code)
\else:
(false)
\fi:
Compare two dimensions. The (relation) is one of <, = or > with category code 12.

TEXhackers note: This is the TEX primitive \ifdim.

170

Part XX
The 13keys package
Key—value interfaces

The key—value method is a popular system for creating large numbers of settings for
controlling function or package behaviour. The system normally results in input of the
form

\MyModuleSetup{
key-one = value one,
key-two = value two

}

or

\MyModuleMacro [
key-one = value one,
key-two = value two

J{argument}

for the user.

The high level functions here are intended as a method to create key—value controls.
Keys are themselves created using a key—value interface, minimising the number of func-
tions and arguments required. Each key is created by setting one or more properties of
the key:

\keys_define:nn { mymodule }
{
key-one .code:n
key-two .tl_set:N
by

code including parameter #1,
\1_mymodule_store_tl

These values can then be set as with other key—value approaches:

\keys_set:nn { mymodule }
{
key-one
key-two
}

value one,
value two

At a document level, \keys_set :nn is used within a document function, for example

\DeclareDocumentCommand \MyModuleSetup { m }
{ \keys_set:nn { mymodule } { #1 } 1}
\DeclareDocumentCommand \MyModuleMacro { o m }
{
\group_begin:
\keys_set:nn { mymodule } { #1 }
% Main code for \MyModuleMacro
\group_end:
}

171

\keys_define:nn

Updated: 2017-11-14

Key names may contain any tokens, as they are handled internally using \t1_to_-
str:n. As discussed in section 2, it is suggested that the character / is reserved for
sub-division of keys into logical groups. Functions and variables are not expanded when
creating key names, and so

\tl_set:Nn \1_mymodule_tmp_tl { key }
\keys_define:nn { mymodule }
{
\1_mymodule_tmp_tl .code:n = code
}

creates a key called \1_mymodule_tmp_t1, and not one called key.

1 Creating keys

\keys_define:nn {(module)} {(keyval list)}

Parses the (keyval list) and defines the keys listed there for (module). The (module)
name should be a text value, but there are no restrictions on the nature of the text. In
practice the (module) should be chosen to be unique to the module in question (unless
deliberately adding keys to an existing module).

The (keyval list) should consist of one or more key names along with an associated
key property. The properties of a key determine how it acts. The individual properties
are described in the following text; a typical use of \keys_define:nn might read

\keys_define:nn { mymodule }
{
keyname .code:n = Some~code~using-~#1,
keyname .value_required:n = true

3

where the properties of the key begin from the . after the key name.

The various properties available take either no arguments at all, or require one
or more arguments. This is indicated in the name of the property using an argument
specification. In the following discussion, each property is illustrated attached to an
arbitrary (key), which when used may be supplied with a (value). All key definitions are
local.

Key properties are applied in the reading order and so the ordering is significant.
Key properties which define “actions”, such as .code:n, .tl_set:N, etc., override one
another. Some other properties are mutually exclusive, notably .value_required:n and
.value_forbidden:n, and so they replace one another. However, properties covering
non-exclusive behaviours may be given in any order. Thus for example the following
definitions are equivalent.

\keys_define:nn { mymodule }
{
keyname .code:n = Some~code~using~#1,
keyname .value_required:n = true
X
\keys_define:nn { mymodule }

172

.bool_set:N
.bool_set:c
.bool_gset:N
.bool_gset:c

Updated: 2013-07-08

.bool_set_inverse:N
.bool_set_inverse:c
.bool_gset_inverse:N
.bool_gset_inverse:c

New: 2011-08-28
Updated: 2013-07-08

.choice:

.choices:nn
.choices:(Vn|on|xn)

New: 2011-08-21
Updated: 2013-07-10

.clist_set:N

.clist_set:c
.clist_gset:N

.clist_gset:c

New: 2011-09-11

.code:n

Updated: 2013-07-10

{
keyname .value_required:n = true,
keyname .code:n Some~code~using~#1

3

Note that with the exception of the special .undefine: property, all key properties define
the key within the current TEX scope.

(key) .bool_set:N = (boolean)

Defines (key) to set (boolean) to (value) (which must be either true or false). If the
variable does not exist, it will be created globally at the point that the key is set up.

(key) .bool_set_inverse:N = (boolean)

Defines (key) to set (boolean) to the logical inverse of (value) (which must be either true
or false). If the (boolean) does not exist, it will be created globally at the point that
the key is set up.

(key) .choice:

Sets (key) to act as a choice key. Each valid choice for (key) must then be created, as
discussed in section 3.

(key) .choices:nn = {(choices)} {(code)}

Sets (key) to act as a choice key, and defines a series (choices) which are implemented
using the (code). Inside (code), \1_keys_choice_tl will be the name of the choice
made, and \1_keys_choice_int will be the position of the choice in the list of {choices)
(indexed from 1). Choices are discussed in detail in section 3.

(key) .clist_set:N = (comma list variable)

Defines (key) to set (comma list variable) to (value). Spaces around commas and empty
items will be stripped. If the variable does not exist, it is created globally at the point
that the key is set up.

(key) .code:n = {(code)}

Stores the (code) for execution when (key) is used. The (code) can include one parameter
(#1), which will be the (value) given for the (key).

173

.default:n
.default: (V|0\X)

Updated: 2013-07-09

.dim_set:N
.dim_set:c
.dim_gset:N
.dim_gset:c

.fp_set:N
.fp_set:c
.fp_gset:N
.fp_gset:c

.groups:n

New: 2013-07-14

.inherit:n

New: 2016-11-22

(key) .default:n = {(default)}

Creates a (default) value for (key), which is used if no value is given. This will be used
if only the key name is given, but not if a blank (value) is given:

\keys_define:nn { mymodule }
{

key .code:n = Hello~#1,
key .default:n = World

}

\keys_set:nn { mymodule }

{
key = Fred, % Prints ’Hello Fred’
key, % Prints ’Hello World’
key = , % Prints ’Hello °

}

The default does not affect keys where values are required or forbidden. Thus a required
value cannot be supplied by a default value, and giving a default value for a key which
cannot take a value does not trigger an error.

(key) .dim_set:N = (dimension)

Defines (key) to set (dimension) to (value) (which must a dimension expression). If the
variable does not exist, it is created globally at the point that the key is set up.

(key) .fp_set:N = (floating point)

Defines (key) to set (floating point) to (value) (which must a floating point expression).
If the variable does not exist, it is created globally at the point that the key is set up.

(key) .groups:n = {(groups)}

Defines (key) as belonging to the (groups) declared. Groups provide a “secondary axis”
for selectively setting keys, and are described in Section 6.

(key) .inherit:n = {(parents)}
Specifies that the (key) path should inherit the keys listed as (parents). For example,
after setting

\keys_define:nn { foo } { test .code:n = \tl_show:n {#1} }
\keys_define:nn { } { bar .inherit:n = foo }

setting

\keys_set:nn { bar } { test = a }
will be equivalent to

\keys_set:nn { foo } { test = a }

174

.injitial:n
.initial:(V]o|x)

Updated: 2013-07-09

.int_set:N
.int_set:c
.int_gset:N
.int_gset:c

.meta:n

Updated: 2013-07-10

.meta:nn

New: 2013-07-10

.multichoice:

New: 2011-08-21

.multichoices:nn
.multichoices:(Vn|on|xn)

New: 2011-08-21
Updated: 2013-07-10

.prop_put:N

.prop_put:c
.prop_gput:N

.prop_gput:c

New: 2019-01-31

.skip_set:N

.skip_set:c
.skip_gset:N

.skip_gset:c

.tl_set:N

.tl_set:c
.tl_gset:N

.tl_gset:c

(key) .initial:n = {(value)}

Initialises the (key) with the (value), equivalent to

\keys_set:nn {(module)} { (key) = (value) }

(key) .int_set:N = (integer)

Defines (key) to set (integer) to (value) (which must be an integer expression). If the
variable does not exist, it is created globally at the point that the key is set up.

(key) .meta:n = {(keyval list)}

Makes (key) a meta-key, which will set (keyval list) in one go. The (keyval list) can refer
as #1 to the value given at the time the (key) is used (or, if no value is given, the (key)’s
default value).

(key) .meta:nn = {(path)} {(keyval list)}

Makes (key) a meta-key, which will set (keyval list) in one go using the (path) in place of
the current one. The (keyval list) can refer as #1 to the value given at the time the (key)
is used (or, if no value is given, the (key)’s default value).

(key) .multichoice:

Sets (key) to act as a multiple choice key. Each valid choice for (key) must then be
created, as discussed in section 3.

(key) .multichoices:nn {(choices)} {(code)}

Sets (key) to act as a multiple choice key, and defines a series (choices) which are im-
plemented using the (code). Inside (code), \1_keys_choice_t1 will be the name of the
choice made, and \1_keys_choice_int will be the position of the choice in the list of
(choices) (indexed from 1). Choices are discussed in detail in section 3.

(key) .prop_put:N = (property list)

Defines (key) to put the (value) onto the (property list) stored under the (key). If the
variable does not exist, it is created globally at the point that the key is set up.

(key) .skip_set:N = (skip)

Defines (key) to set (skip) to (value) (which must be a skip expression). If the variable
does not exist, it is created globally at the point that the key is set up.

(key) .tl_set:N = (token list variable)

Defines (key) to set (token list variable) to (value). If the variable does not exist, it is
created globally at the point that the key is set up.

175

.tl_set_x:N
.tl_set_x:c
.tl_gset_x:N
.tl_gset_x:c

.undefine:

New: 2015-07-14

.value_forbidden:n

New: 2015-07-14

.value_required:n

New: 2015-07-14

(key) .tl_set_x:N = (token list variable)

Defines (key) to set (token list variable) to (value), which will be subjected to an x-type
expansion (i.e. using \t1l_set:Nx). If the variable does not exist, it is created globally
at the point that the key is set up.

(key) .undefine:

Removes the definition of the (key) within the current scope.

(key) .value_forbidden:n = truel|false

Specifies that (key) cannot receive a (value) when used. If a (value) is given then an error
will be issued. Setting the property false cancels the restriction.

(key) .value_required:n = true|false

Specifies that (key) must receive a (value) when used. If a (value) is not given then an
error will be issued. Setting the property false cancels the restriction.

2 Sub-dividing keys

When creating large numbers of keys, it may be desirable to divide them into several
sub-groups for a given module. This can be achieved either by adding a sub-division to
the module name:

\keys_define:nn { mymodule / subgroup }
{ key .code:n = code }

or to the key name:

\keys_define:nn { mymodule }
{ subgroup / key .code:n = code }

As illustrated, the best choice of token for sub-dividing keys in this way is /. This is
because of the method that is used to represent keys internally. Both of the above code
fragments set the same key, which has full name mymodule/subgroup/key.

As illustrated in the next section, this subdivision is particularly relevant to making
multiple choices.

3 Choice and multiple choice keys

The 13keys system supports two types of choice key, in which a series of pre-defined input
values are linked to varying implementations. Choice keys are usually created so that the
various values are mutually-exclusive: only one can apply at any one time. “Multiple”
choice keys are also supported: these allow a selection of values to be chosen at the same
time.

Mutually-exclusive choices are created by setting the .choice: property:

\keys_define:nn { mymodule }
{ key .choice: }

176

\1_keys_choice_int
\1_keys_choice_tl

For keys which are set up as choices, the valid choices are generated by creating sub-keys
of the choice key. This can be carried out in two ways.

In many cases, choices execute similar code which is dependant only on the name of
the choice or the position of the choice in the list of all possibilities. Here, the keys can
share the same code, and can be rapidly created using the .choices:nn property.

\keys_define:nn { mymodule }
{
key .choices:nn =
{ choice-a, choice-b, choice-c }

{
You~gave~choice~’\tl_use:N \1_keys_choice_tl’,~
which~is~in~position~\int_use:N \1_keys_choice_int \c_space_tl
in~the~list.

}

}

The index \1_keys_choice_int in the list of choices starts at 1.

Inside the code block for a choice generated using .choices:nn, the variables \1_keys_-
choice_t1 and \1_keys_choice_int are available to indicate the name of the current
choice, and its position in the comma list. The position is indexed from 1. Note that,
as with standard key code generated using .code:n, the value passed to the key (i.e. the
choice name) is also available as #1.

On the other hand, it is sometimes useful to create choices which use entirely different
code from one another. This can be achieved by setting the .choice: property of a key,
then manually defining sub-keys.

\keys_define:nn { mymodule }
{
key .choice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n code-b,
key / choice-c .code:n = code-c,

}

It is possible to mix the two methods, but manually-created choices should not
use \1_keys_choice_t1 or \1_keys_choice_int. These variables do not have defined
behaviour when used outside of code created using .choices:nn (i.e. anything might
happen).

It is possible to allow choice keys to take values which have not previously been
defined by adding code for the special unknown choice. The general behavior of the
unknown key is described in Section 5. A typical example in the case of a choice would
be to issue a custom error message:

\keys_define:nn { mymodule }
{
key .choice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,

177

key / unknown .code:n =
\msg_error:nnxxx { mymodule } { unknown-choice }

{ key } % Name of choice key
{ choice-a , choice-b , choice-c } % Valid choices
{ \exp_not:n {#1} } % Invalid choice given

3

Multiple choices are created in a very similar manner to mutually-exclusive choices,
using the properties .multichoice: and .multichoices:nn. As with mutually exclusive
choices, multiple choices are define as sub-keys. Thus both

\keys_define:nn { mymodule }

{
key .multichoices:nn =
{ choice-a, choice-b, choice-c }
{
You~gave~choice~’\tl_use:N \1_keys_choice_tl1’,~
which~is~in~position~
\int_use:N \1_keys_choice_int \c_space_tl
in~the~1list.
}
}
and

\keys_define:nn { mymodule }

{
key .multichoice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,
by
are valid.

When a multiple choice key is set

\keys_set:nn { mymodule }
{
key ={a, b, cl} % ’key’ defined as a multiple choice
}

each choice is applied in turn, equivalent to a clist mapping or to applying each value
individually:

\keys_set:nn { mymodule }

{
key = a ,
key = b ,
key = c ,

3

Thus each separate choice will have passed to it the \1_keys_choice_t1 and \1_keys_-
choice_int in exactly the same way as described for .choices:nn.

178

\keys_set:nn
\keys_set:(nV|nv|no)

Updated: 2017-11-14

\1_keys_key_tl
\1_keys_path_tl
\1_keys_value_tl

Updated: 2015-07-14

4 Setting keys

\keys_set:nn {(module)} {(keyval list)}

Parses the (keyval list), and sets those keys which are defined for (module). The behaviour
on finding an unknown key can be set by defining a special unknown key: this is illustrated
later.

For each key processed, information of the full path of the key, the name of the key and
the wvalue of the key is available within three token list variables. These may be used
within the code of the key.

The value is everything after the =, which may be empty if no value was given. This
is stored in \1_keys_value_t1, and is not processed in any way by \keys_set:nn.

The path of the key is a “full” description of the key, and is unique for each key. It
consists of the module and full key name, thus for example

\keys_set:nn { mymodule } { key-a = some-value }
has path mymodule/key-a while
\keys_set:nn { mymodule } { subset / key-a = some-value }

has path mymodule/subset/key-a. This information is stored in \1_keys_path_t1, and
will have been processed by \tl_to_str:n.

The name of the key is the part of the path after the last /, and thus is not unique.
In the preceding examples, both keys have name key-a despite having different paths.
This information is stored in \1_keys_key_t1, and will have been processed by \tl_-
to_str:n.

5 Handling of unknown keys

If a key has not previously been defined (is unknown), \keys_set :nn looks for a special
unknown key for the same module, and if this is not defined raises an error indicating that
the key name was unknown. This mechanism can be used for example to issue custom
error texts.

\keys_define:nn { mymodule }
{

unknown .code:n =
You~tried~to~set~key~’\1_keys_key_tl’~to~’#1’.

179

\keys_set_known:nn \keys_set_known:nn {(module)} {(keyval list)}
\keys_set_known:(nV|nv|no) \keys_set_known:nnN {(module)} {(keyval list)} (t1)
\keys_set_known:nnN \keys_set_known:nnnN {(module)} {(keyval list)} {(root)} (t1)
\keys_set_known: (nVN|nvN|noN)

\keys_set_known:nnnN

\keys_set_known: (nVnN|nvnN|nonN)

New: 2011-08-23
Updated: 2019-01-29

These functions set keys which are known for the (module), and simply ignore other
keys. The \keys_set_known:nn function parses the (keyval list), and sets those keys
which are defined for (module). Any keys which are unknown are not processed further
by the parser. In addition, \keys_set_known:nnN stores the key—value pairs in the ()
in comma-separated form (i.e. an edited version of the (keyval list)). When a (root) is
given (\keys_set_known:nnnN), the key—value entries are returned relative to this point
in the key tree. When it is absent, only the key name and value are provided. The correct
list is returned by nested calls.

6 Selective key setting

In some cases it may be useful to be able to select only some keys for setting, even though
these keys have the same path. For example, with a set of keys defined using

\keys define:nn { mymodule }

{
key-one .code:n = { \my_func:n {#1} } ,
key-two .tl_set:N = \1l_my_a_tl ,
key-three .tl_set:N = \1_my_b_tl ,
key-four .fp_set:N = \1_my_a_fp ,

3

the use of \keys_set :nn attempts to set all four keys. However, in some contexts it may
only be sensible to set some keys, or to control the order of setting. To do this, keys
may be assigned to groups: arbitrary sets which are independent of the key tree. Thus
modifying the example to read

\keys define:nn { mymodule }

{
key-one .code:n = { \my_func:n {#1} } ,
key-one .groups:n = { first } ,
key-two .tl_set:N = \1l_my_a_tl ,
key-two .groups:n = { first } ,
key-three .tl_set:N = \1_my_b_tl ,
key-three .groups:n = { second } ,
key-four .fp_set:N = \1_my_a_fp ,

3

assigns key-one and key-two to group first, key-three to group second, while
key-four is not assigned to a group.

Selective key setting may be achieved either by selecting one or more groups to be
made “active”, or by marking one or more groups to be ignored in key setting.

180

\keys_set_filter:nnn \keys_set_filter:nnn {(module)} {(groups)} {(keyval list)}

\keys_set_filter:(nnV|nnv|nno) \keys_set_filter:nnnN {(module)} {(groups)} {(keyval list)} (tl1)
\keys_set_filter:nnnN \keys_set_filter:nnnnN {(module)} {(groups)} {(keyval list)} (root)
\keys_set_filter:(nnVN|nnvN|nnoN) (t1)

\keys_set_filter:nnnnN
\keys_set_filter:(nnVnN|nnvnN|nnonN)

New: 2013-07-14
Updated: 2019-01-29

Activates key filtering in an “opt-out” sense: keys assigned to any of the (groups) specified
are ignored. The (groups) are given as a comma-separated list. Unknown keys are not
assigned to any group and are thus always set. The key—value pairs for each key which
is filtered out are stored in the (tl) in a comma-separated form (i.e. an edited version of
the (keyval list)). The \keys_set_filter:nnn version skips this stage.

Use of \keys_set_filter:nnnN can be nested, with the correct residual (keyval
list) returned at each stage. In the version which takes a (root) argument, the key list is
returned relative to that point in the key tree. In the cases without a (root) argument,
only the key names and values are returned.

\keys_set_groups:nnn \keys_set_groups:nnn {(module)} {(groups)} {(keyval list)}
\keys_set_groups: (nnV|nnv|nno)

New: 2013-07-14
Updated: 2017-05-27

Activates key filtering in an “opt-in” sense: only keys assigned to one or more of the
(groups) specified are set. The (groups) are given as a comma-separated list. Unknown
keys are not assigned to any group and are thus never set.

7 Utility functions for keys

\keys_if_exist_p:nn x \keys_if_exist_p:nn {(module)} {(key)}
\keys_if_exist:nnTF x \keys_if_exist:nnTF {(module)} {(key)} {(true code)} {(false code)}

Updated: 2017-11-14 Tests if the (key) exists for (module), i.e. if any code has been defined for (key).

\keys_if_choice_exist_p:nnn * \keys_if_choice_exist_p:nnn {(module)} {(key)} {(choice)}
\keys_if_choice_exist:nnnTF + \keys_if_choice_exist:nnnTF {(module)} {(key)} {(choice)} {(true code)}
{(false code)}

New: 2011-08-21
Updated: 2017-11-14

Tests if the (choice) is defined for the (key) within the (module), i.e. if any code has been
defined for (key)/(choice). The test is false if the (key) itself is not defined.

\keys_show:nn \keys_show:nn {(module)} {(key)}

Updated: 2015-08-09 Displays in the terminal the information associated to the (key) for a (module), including
the function which is used to actually implement it.

181

\keys_log:nn

New: 2014-08-22

Updated: 2015-08-09

\keys_log:nn {(module)} {(key)}

Writes in the log file the information associated to the (key) for a (module). See also
\keys_show:nn which displays the result in the terminal.

8 Low-level interface for parsing key—val lists

To re-cap from earlier, a key—value list is input of the form

KeyOne = ValueOne ,
KeyTwo = ValueTwo ,
KeyThree

where each key—value pair is separated by a comma from the rest of the list, and each
key—value pair does not necessarily contain an equals sign or a value! Processing this
type of input correctly requires a number of careful steps, to correctly account for braces,
spaces and the category codes of separators.

While the functions described earlier are used as a high-level interface for processing
such input, in special circumstances you may wish to use a lower-level approach. The
low-level parsing system converts a (key—value list) into (keys) and associated (values).
After the parsing phase is completed, the resulting keys and values (or keys alone) are
available for further processing. This processing is not carried out by the low-level parser
itself, and so the parser requires the names of two functions along with the key—value
list. One function is needed to process key—value pairs (it receives two arguments), and
a second function is required for keys given without any value (it is called with a single
argument).

The parser does not double # tokens or expand any input. Active tokens = and ,
appearing at the outer level of braces are converted to category “other” (12) so that the
parser does not “miss” any due to category code changes. Spaces are removed from the
ends of the keys and values. Keys and values which are given in braces have exactly one
set removed (after space trimming), thus

key = {value here},
and
key = value here,

are treated identically.

182

\keyval_parse:NNn

Updated: 2011-09-08

\keyval_parse:NNn (functioni) (functions) {(key-value list)}

Parses the (key—value list) into a series of (keys) and associated (values), or keys alone
(if no (value) was given). (function;) should take one argument, while (functions)
should absorb two arguments. After \keyval_parse:NNn has parsed the (key—value list),
(functiony) is used to process keys given with no value and (functions) is used to process
keys given with a value. The order of the (keys) in the (key—value list) is preserved. Thus

\keyval_parse:NNn \function:n \function:nn
{ keyl = valuel , key2 = value2, key3 = , key4 }

is converted into an input stream

\function:nn { keyl } { valuel }
\function:nn { key2 } { value2 }
\function:nn { key3 } { }
\function:n { key4 }

Note that there is a difference between an empty value (an equals sign followed by noth-
ing) and a missing value (no equals sign at all). Spaces are trimmed from the ends of the
(key) and (value), then one outer set of braces is removed from the (key) and (value) as
part of the processing.

183

\intarray_new:Nn

New: 2018-03-29

\intarray_count:N *

New: 2018-03-29

\intarray_gset:Nnn

New: 2018-03-29

\intarray_gzero:N

New: 2018-05-04

\intarray_item:Nn *

New: 2018-03-29

\intarray_rand_item:N *

New: 2018-05-05

Part XXI
The I3intarray package: fast global
integer arrays

1 I3intarray documentation

For applications requiring heavy use of integers, this module provides arrays which can
be accessed in constant time (contrast 13seq, where access time is linear). These arrays
have several important features

o The size of the array is fixed and must be given at point of initialisation

o The absolute value of each entry has maximum 23 — 1 (i.e. one power lower than
the usual \c_max_int ceiling of 23! — 1)

The use of intarray data is therefore recommended for cases where the need for fast
access is of paramount importance.

\intarray_new:Nn (intarray var) {(size)}

Evaluates the integer expression (size) and allocates an (integer array variable) with that
number of (zero) entries. The variable name should start with \g_ because assignments
are always global.

\intarray_count:N (intarray var)

Expands to the number of entries in the (integer array variable). Contrarily to \seq_-
count :N this is performed in constant time.

\intarray_gset:Nnn (intarray var) {(position)} {(value)}

Stores the result of evaluating the integer expression (value) into the (integer array
variable) at the (integer expression) (position). If the (position) is not between 1 and
the \intarray_count:N, or the (value)’s absolute value is bigger than 230 — 1, an error
occurs. Assignments are always global.

\intarray_gzero:N (intarray var)

Sets all entries of the (integer array variable) to zero. Assignments are always global.

\intarray_item:Nn (intarray var) {(position)}

Expands to the integer entry stored at the (integer expression) (position) in the (integer
array variable). If the (position) is not between 1 and the \intarray_count:N, an error
occurs.

\intarray_rand_item:N (intarray var)

Selects a pseudo-random item of the (integer array). If the (integer array) is empty,
produce an error.

184

1.1 Implementation notes

It is a wrapper around the \fontdimen primitive, used to store arrays of integers (with
a restricted range: absolute value at most 230 — 1). In contrast to I3seq sequences the
access to individual entries is done in constant time rather than linear time, but only
integers can be stored. More precisely, the primitive \fontdimen stores dimensions but
the I3intarray package transparently converts these from/to integers. Assignments are
always global.

While LuaTgX’s memory is extensible, other engines can “only” deal with a bit less
than 4 x 10% entries in all \fontdimen arrays combined (with default TEXLive settings).

185

Part XXII
The 13fp package: Floating points

A decimal floating point number is one which is stored as a significand and a separate
exponent. The module implements expandably a wide set of arithmetic, trigonometric,
and other operations on decimal floating point numbers, to be used within floating point
expressions. Floating point expressions support the following operations with their usual
precedence.

(not yet)

Basic arithmetic: addition x 4 y, subtraction x — y, multiplication x * y, division
x/y, square root /x, and parentheses.

Comparison operators: z <y, x <=y, t>7y, z! =y etc.

Boolean logic: sign signz, negation !z, conjunction z&&y, disjunction z ||y,
ternary operator x 7y : z.

Exponentials: expx, Inx, x¥.
Integer factorial: fact z.

Trigonometry: sinz, cosz, tanz, cotx, secx, cscx expecting their arguments in
radians, and sind x, cosd z, tand z, cotd x, secd x, cscd x expecting their arguments
in degrees.

Inverse trigonometric functions: asinx, acosx, atan x, acot x, asec x, acscx giving
a result in radians, and asind x, acosd x, atand x, acotd x, asecd x, acscd x giving a
result in degrees.

Hyperbolic functions and their inverse functions: sinhxz, coshz, tanhz, cothz,
sech z, csch, and asinh z, acosh z, atanh x, acoth =, asech z, acsch x.

Extrema: max(zy, o, ...), min(zy,za,...), abs(x).

Rouning functions, controlled by two optional values, n (number of places, 0 by
default) and ¢ (behavior on a tie, NaN by default):

— trunc(z, n) rounds towards zero,
— floor(z, n) rounds towards —oo,
— ceil(z, n) rounds towards +o0,

— round(z, n,t) rounds to the closest value, with ties rounded to an even value
by default, towards zero if t = 0, towards +oo if ¢ > 0 and towards —oo if
t<0.

And (not yet) modulo, and “quantize”.
Random numbers: rand(), randint(m,n).
Constants: pi, deg (one degree in radians).

Dimensions, automatically expressed in points, e.g., pc is 12.

186

\fp_new:N
\fp_new:c

Updated: 2012-05-08

\fp_const:Nn

\fp_const:cn

Updated: 2012-05-08

\fp_zero:N
\fp_zero:c
\fp_gzero:N
\fp_gzero:c

Updated: 2012-05-08

o Automatic conversion (no need for \(type)_use:N) of integer, dimension, and skip
variables to floating point numbers, expressing dimensions in points and ignoring
the stretch and shrink components of skips.

o Tuples: (z1,...,2,) that can be stored in variables, added together, multiplied or
divided by a floating point number, and nested.

Floating point numbers can be given either explicitly (in a form such as 1.234e-34, or
-.0001), or as a stored floating point variable, which is automatically replaced by its
current value. A “floating point” is a floating point number or a tuple thereof. See
section 9.1 for a description of what a floating point is, section 9.2 for details about how
an expression is parsed, and section 9.3 to know what the various operations do. Some
operations may raise exceptions (error messages), described in section 7.

An example of use could be the following,.

\LaTeX{} can now compute: $ \frac{\sin (3.5)}{2} + 2\cdot 10°{-3}
= \ExplSyntaxOn \fp_to_decimal:n {sin(3.5)/2 + 2e-3} $.

The operation round can be used to limit the result’s precision. Adding 40 avoids the
possibly undesirable output -0, replacing it by +0. However, the [3fp module is mostly
meant as an underlying tool for higher-level commands. For example, one could provide
a function to typeset nicely the result of floating point computations.

\documentclass{article}

\usepackage{xparse, siunitx}

\ExplSyntaxOn

\NewDocumentCommand { \calcnum } { m }
{ \num { \fp_to_scientific:n {#1} } }

\ExplSyntax0ff

\begin{document}

\calcnum { 2 pi * sin (2.3 = 5) }

\end{document}

See the documentation of siunitx for various options of \num.

1 Creating and initialising floating point variables

\fp_new:N (fp var)

Creates a new (fp var) or raises an error if the name is already taken. The declaration is
global. The (fp var) is initially 0.

\fp_const:Nn (fp var) {(floating point expression)}

Creates a new constant (fp var) or raises an error if the name is already taken. The
(fp var) is set globally equal to the result of evaluating the (floating point expression).

\fp_zero:N (fp var)
Sets the (fp var) to +0.

187

\fp_zero_new:N

\fp_zero_new:c
\fp_gzero_new:N

\fp_gzero_new:c

Updated: 2012-05-08

\fp_set:Nn
\fp_set:cn
\fp_gset:Nn
\fp_gset:cn

Updated: 2012-05-08

\fp_set_eq:NN
\fp_set_eq:(cN|Nc|cc)
\fp_gset_eq:NN
\fp_gset_eq:(cN|Nc|cc)

Updated: 2012-05-08

\fp_add:Nn
\fp_add:cn
\fp_gadd:Nn
\fp_gadd:cn

Updated: 2012-05-08

\fp_sub:Nn
\fp_sub:cn
\fp_gsub:Nn
\fp_gsub:cn

Updated: 2012-05-08

\fp_eval:n *

New: 2012-05-08
Updated: 2012-07-08

\fp_zero_new:N (fp var)

Ensures that the (fp var) exists globally by applying \fp_new:N if necessary, then applies
\fp_(g)zero:N to leave the (fp var) set to +0.

2 Setting floating point variables

\fp_set:Nn (fp var) {(floating point expression)}

Sets (fp var) equal to the result of computing the (floating point expression).

\fp_set_eq:NN (fp vari) (fp vars)

Sets the floating point variable (fp var) equal to the current value of (fp vary).

\fp_add:Nn (fp var) {(floating point expression)}

Adds the result of computing the (floating point expression) to the (fp var). This also
applies if (fp var) and (floating point expression) evaluate to tuples of the same size.

\fp_sub:Nn (fp var) {(floating point expression)}

Subtracts the result of computing the (floating point expression) from the (fp var). This
also applies if (fp var) and (floating point expression) evaluate to tuples of the same size.

3 Using floating points

\fp_eval:n {(floating point expression)}

Evaluates the (floating point expression) and expresses the result as a decimal number
with no exponent. Leading or trailing zeros may be inserted to compensate for the ex-
ponent. Non-significant trailing zeros are trimmed, and integers are expressed without
a decimal separator. The values oo and NaN trigger an “invalid operation” excep-
tion. For a tuple, each item is converted using \fp_eval:n and they are combined as
(fp1)>ulfp2)su- - (fpn)) if n > 1 and ({fp1),) or () for fewer items. This function is
identical to \fp_to_decimal:n.

188

\fp_to_decimal:N x
\fp_to_decimal:c =*
\fp_to_decimal:n *

\fp_to_decimal:N (fp var)
\fp_to_decimal:n {(floating point expression)}

New: 2012-05-08
Updated: 2012-07-08

\fp_to_dim:N «x
\fp_to_dim:c =
\fp_to_dim:n «*

Updated: 2016-03-22

\fp_to_int:N «*
\fp_to_int:c *
\fp_to_int:n «*

Updated: 2012-07-08

Evaluates the (floating point expression) and expresses the result as a decimal number
with no exponent. Leading or trailing zeros may be inserted to compensate for the
exponent. Non-significant trailing zeros are trimmed, and integers are expressed without
a decimal separator. The values +0co and NaN trigger an “invalid operation” exception.
For a tuple, each item is converted using \fp_to_decimal:n and they are combined as
(o) su(fp2) su- - - (fon)) if n > 1 and ((fp1),) or O for fewer items.

\fp_to_dim:N (fp var)

\fp_to_dim:n {(floating point expression)}

Evaluates the (floating point expression) and expresses the result as a dimension (in pt)
suitable for use in dimension expressions. The output is identical to \fp_to_decimal:n,
with an additional trailing pt (both letter tokens). In particular, the result may be
outside the range [—21* + 2717, 214 — 2717] of valid TEX dimensions, leading to overflow
errors if used as a dimension. Tuples, as well as the values oo and NaN, trigger an
“invalid operation” exception.

\fp_to_int:N (fp var)

\fp_to_int:n {(floating point expression)}

Evaluates the (floating point expression), and rounds the result to the closest integer,
rounding exact ties to an even integer. The result may be outside the range [—23! +
1,231 —1] of valid TEX integers, leading to overflow errors if used in an integer expression.
Tuples, as well as the values 0o and NaN, trigger an “invalid operation” exception.

\fp_to_scientific:N «*
\fp_to_scientific:c %
\fp_to_scientific:n *

\fp_to_scientific:N (fp var)
\fp_to_scientific:n {(floating point expression)}

New: 2012-05-08
Updated: 2016-03-22

\fp_to_tl:N «x
\fp_to_tl:c =
\fp_to_tl:n *

Updated: 2016-03-22

Evaluates the (floating point expression) and expresses the result in scientific notation:
(optional -)(digit) . (15 digits)e({optional sign){exponent)

The leading (digit) is non-zero except in the case of 0. The values +00 and NaN trigger
an “invalid operation” exception. Normal category codes apply: thus the e is category
code 11 (a letter). For a tuple, each item is converted using \fp_to_scientific:n and
they are combined as ({fp1),u{fp2),u-..{(fon)) if n > 1 and ({fp1),) or) for fewer
items.

\fp_to_t1l:N (fp var)

\fp_to_tl:n {(floating point expression)}

Evaluates the (floating point expression) and expresses the result in (almost) the shortest
possible form. Numbers in the ranges (0,1073) and [10'6,00) are expressed in scien-
tific notation with trailing zeros trimmed and no decimal separator when there is a
single significant digit (this differs from \fp_to_scientific:n). Numbers in the range
[1073,10%%) are expressed in a decimal notation without exponent, with trailing zeros
trimmed, and no decimal separator for integer values (see \fp_to_decimal:n. Negative
numbers start with -. The special values £0, 00 and NaN are rendered as 0, -0, inf,
-inf, and nan respectively. Normal category codes apply and thus inf or nan, if pro-
duced, are made up of letters. For a tuple, each item is converted using \fp_to_tl:n
and they are combined as ({fp1),u{fp2),u--. (fpn)) if n > 1 and ({fp1),) or () for fewer
items.

189

\fp_use:N *
\fp_use:c

Updated: 2012-07-08

\fp_if_exist_p:N
\fp_if_exist_p:c *
\fp_if_exist:NTF *
\fp_if_exist:cTF *

Updated: 2012-05-08

\fp_compare_p:nNn *
\fp_compare:nNnTF *

Updated: 2012-05-08

\fp_use:N (fp var)

Inserts the value of the {fp var) into the input stream as a decimal number with no
exponent. Leading or trailing zeros may be inserted to compensate for the exponent. Non-
significant trailing zeros are trimmed. Integers are expressed without a decimal separator.
The values 00 and NaN trigger an “invalid operation” exception. For a tuple, each item is
converted using \fp_to_decimal:n and they are combined as ({(fp1),u{fp2),u- .- (fon)) if
n > land ((fp1),) or O for fewer items. This function is identical to \fp_to_decimal:N.

4 Floating point conditionals

\fp_if_exist_p:N (fp var)

\fp_if_exist:NTF (fp var) {(true code)} {(false code)}

Tests whether the (fp var) is currently defined. This does not check that the (fp var)
really is a floating point variable.

\fp_compare_p:nNn {(fpexpr:i)} (relation) {(fpexprs:)}

\fp_compare:nNnTF {(fpexpri)} (relation) {(fpexpr:)} {(true code)} {(false code)}
Compares the (fpezpr;) and the (fpexprs), and returns true if the (relation) is obeyed.
Two floating points and y may obey four mutually exclusive relations: = < y, z = v,
x >y, or 7y (“not ordered”). The last case occurs exactly if one or both operands is NaN
or is a tuple, unless they are equal tuples. Note that a NaN is distinct from any value,
even another NaN, hence x = z is not true for a NaN. To test if a value is NaN, compare it
to an arbitrary number with the “not ordered” relation.

\fp_compare:nNnTF { <value> } ? { 0 }
{ } % <value> is nan
{ } % <value> is not nan

Tuples are equal if they have the same number of items and items compare equal (in
particular there must be no NaN). At present any other comparison with tuples yields ?
(not ordered). This is experimental.

This function is less flexible than \fp_compare:nTF but slightly faster. It is provided
for consistency with \int_compare:nNnTF and \dim_compare :nNnTF.

190

\fp_compare_p:n *
\fp_compare:nTF *

Updated: 2013-12-14

\fp_do_until:nNnn 7

New: 2012-08-16

e

\fp_do_while:nNnn 3

New: 2012-08-16

\fp_compare_p:n
{
(fpexpr1) (relatiom;)

(fpexprn) (relationy)
(fpexprn1)
}
\fp_compare :nTF
{
(fpexpri) (relatiom)

(fpexprn) (relationn)
(fpexpry 1)

}

{(true code)} {(false code)}

Evaluates the (floating point expressions) as described for \fp_eval:n and compares
consecutive result using the corresponding (relation), namely it compares (intezpr;) and
(intexprse) using the (relation;), then (intexprs) and (intexprs) using the (relations), until
finally comparing (intexpry) and (intexpryy1) using the (relationy). The test yields
true if all comparisons are true. Each (floating point expression) is evaluated only once.
Contrarily to \int_compare:nTF, all (floating point expressions) are computed, even if
one comparison is false. Two floating points z and y may obey four mutually exclusive
relations: x <y, x =y, x >y, or 27y (“not ordered”). The last case occurs exactly if one
or both operands is NaN or is a tuple, unless they are equal tuples. Each (relation) can be
any (non-empty) combination of <, =, >, and ?, plus an optional leading ! (which negates
the (relation)), with the restriction that the (relation) may not start with 7, as this symbol
has a different meaning (in combination with :) within floating point expressions. The
comparison z (relation) y is then true if the (relation) does not start with ! and the
actual relation (<, =, >, or ?7) between x and y appears within the (relation), or on the
contrary if the (relation) starts with ! and the relation between x and y does not appear
within the (relation). Common choices of (relation) include >= (greater or equal), != (not
equal), !'? or <=> (comparable).
This function is more flexible than \fp_compare:nNnTF and only slightly slower.

5 Floating point expression loops

\fp_do_until:nNnn {(fpexpri)} (relation) {(fpexpr:)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (floating point expressions) as described for \fp_compare:nNnTF.
If the test is false then the (code) is inserted into the input stream again and a loop
occurs until the (relation) is true.

\fp_do_while:nNnn {(fpexpri)} (relation) {(fpexprz)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (floating point expressions) as described for \fp_compare:nNnTF.
If the test is true then the (code) is inserted into the input stream again and a loop
occurs until the (relation) is false.

191

\fp_until_do:nNnn 3

New: 2012-08-16

\fp_while_do:nNnn 3%

New: 2012-08-16

\fp_do_until:nn 5%

New: 2012-08-16
Updated: 2013-12-14

\fp_do_while:nn 7

New: 2012-08-16
Updated: 2013-12-14

\fp_until_do:nn w

New: 2012-08-16
Updated: 2013-12-14

\fp_while_do:nn 5

New: 2012-08-16
Updated: 2013-12-14

\fp_until_do:nNnn {(fpexpri)} (relation) {(fpexprz)} {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nNnTF, and then places the (code) in the input stream if the (relation) is
false. After the (code) has been processed by TEX the test is repeated, and a loop
occurs until the test is true.

\fp_while_do:nNnn {(fpexpri)} (relation) {(fpexprz)} {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nNnTF, and then places the (code) in the input stream if the (relation) is
true. After the (code) has been processed by TEX the test is repeated, and a loop occurs
until the test is false.

\fp_do_until:nn { (fpexpr:) (relation) (fpexprz) } {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (floating point expressions) as described for \fp_compare:nTF.
If the test is false then the (code) is inserted into the input stream again and a loop
occurs until the (relation) is true.

\fp_do_while:nn { (fpexpri) (relation) (fpexprs) } {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (floating point expressions) as described for \fp_compare:nTF. If
the test is true then the (code) is inserted into the input stream again and a loop occurs
until the (relation) is false.

\fp_until_do:nn { (fpexpr:) (relation) (fpexprz) } {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nTF, and then places the (code) in the input stream if the (relation) is
false. After the (code) has been processed by TEX the test is repeated, and a loop
occurs until the test is true.

\fp_while_do:nn { (fpexpri) (relation) (fpexprz) } {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nTF, and then places the (code) in the input stream if the (relation) is
true. After the (code) has been processed by TEX the test is repeated, and a loop occurs
until the test is false.

192

\fp_step_function:nnnN 3%
\fp_step_function:nnnc

New: 2016-11-21
Updated: 2016-12-06

\fp_step_inline:nnnn

New: 2016-11-21
Updated: 2016-12-06

\fp_step_variable:nnnNn

New: 2017-04-12

\c_zero_fp
\c_minus_zero_fp

New: 2012-05-08

\c_one_fp

New: 2012-05-08

\fp_step_function:nnnN {(initial value)} {(step)} {(final value)} (function)

This function first evaluates the (initial value), (step) and (final value), each of which
should be a floating point expression evaluating to a floating point number, not a tuple.
The (function) is then placed in front of each (value) from the (initial value) to the (final
value) in turn (using (step) between each (value)). The (step) must be non-zero. If the
(step) is positive, the loop stops when the (value) becomes larger than the (final value).
If the (step) is negative, the loop stops when the (value) becomes smaller than the (final
value). The (function) should absorb one numerical argument. For example

\cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
\fp_step_function:nnnN { 1.0 } { 0.1 } { 1.5 } \my_func:n

would print

Isaw 1.0] [Isaw 1.1] [Isaw 1.2] [Isaw 1.3] [Isaw 1.4] [Isaw 1.5]

TEXhackers note: Due to rounding, it may happen that adding the (step) to the (value) does
not change the (value); such cases give an error, as they would otherwise lead to an infinite loop.

\fp_step_inline:nnnn {(initial value)} {(step)} {(final value)} {(code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be floating point expressions evaluating to a floating point number, not a tuple.
Then for each (value) from the (initial value) to the (final value) in turn (using (step)
between each (value)), the (code) is inserted into the input stream with #1 replaced by
the current (value). Thus the (code) should define a function of one argument (#1).

\fp_step_variable:nnnNn
{(initial value)} {(step)} {(final value)} (tl1 var) {(code)}

This function first evaluates the (initial value), (step) and (final value), all of which should
be floating point expressions evaluating to a floating point number, not a tuple. Then
for each (value) from the (initial value) to the (final value) in turn (using (step) between
each (value)), the (code) is inserted into the input stream, with the (¢ var) defined as
the current (value). Thus the (code) should make use of the (tl var).

6 Some useful constants, and scratch variables

Zero, with either sign.

One as an fp: useful for comparisons in some places.

193

\c_inf_f£fp
\c_minus_inf_fp

New: 2012-05-08

\c_e_fp

Updated: 2012-05-08

\c_pi_fp

Updated: 2013-11-17

\c_one_degree_fp

New: 2012-05-08
Updated: 2013-11-17

\1_tmpa_£p
\1_tmpb_fp

\g_tmpa_£p
\g_tmpb_fp

Infinity, with either sign. These can be input directly in a floating point expression as
inf and -inf.

The value of the base of the natural logarithm, e = exp(1).

The value of w. This can be input directly in a floating point expression as pi.

The value of 1° in radians. Multiply an angle given in degrees by this value to obtain a
result in radians. Note that trigonometric functions expecting an argument in radians or
in degrees are both available. Within floating point expressions, this can be accessed as
deg.

Scratch floating points for local assignment. These are never used by the kernel code, and
so are safe for use with any I#TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

Scratch floating points for global assignment. These are never used by the kernel code,
and so are safe for use with any I¥TEX3-defined function. However, they may be over-
written by other non-kernel code and so should only be used for short-term storage.

7 Floating point exceptions

The functions defined in this section are experimental, and their functionality may be
altered or removed altogether.

“Exceptions” may occur when performing some floating point operations, such as
0 / 0,o0r 10 **x 1e9999. The relevant IEEE standard defines 5 types of exceptions, of
which we implement 4.

e Querflow occurs whenever the result of an operation is too large to be represented
as a normal floating point number. This results in +oo.

e Underflow occurs whenever the result of an operation is too close to 0 to be repre-
sented as a normal floating point number. This results in £0.

o Invalid operation occurs for operations with no defined outcome, for instance 0/0
or sin(00), and results in a NaN. It also occurs for conversion functions whose target
type does not have the appropriate infinite or NaN value (e.g., \fp_to_dim:n).

o Division by zero occurs when dividing a non-zero number by 0, or when evaluating
functions at poles, e.g., In(0) or cot(0). This results in +oo.

194

(not yet) Inexact occurs whenever the result of a computation is not exact, in other words,

\fp_trap:nn

New: 2012-07-19
Updated: 2017-02-13

flag fp_overflow

flag fp_underflow

flag ,fp_invalid_operation
flag fp_division_by_zero

\fp_show:N
\fp_show:c
\fp_show:n

New: 2012-05-08
Updated: 2015-08-07

\fp_log:N
\fp_log:c
\fp_log:n

New: 2014-08-22

Updated: 2015-08-07

almost always. At the moment, this exception is entirely ignored in ETREX3.

To each exception we associate a “flag”: fp_overflow, fp_underflow, fp_invalid_-
operation and fp_division_by_zero. The state of these flags can be tested and mod-
ified with commands from [3flag

By default, the “invalid operation” exception triggers an (expandable) error, and
raises the corresponding flag. Other exceptions raise the corresponding flag but do not
trigger an error. The behaviour when an exception occurs can be modified (using \fp_-
trap:nn) to either produce an error and raise the flag, or only raise the flag, or do nothing
at all.

\fp_trap:nn {(exception)} {(trap type)}

All occurrences of the (exception) (overflow, underflow, invalid_operation or
division_by_zero) within the current group are treated as (trap type), which can be

o mnone: the {exception) will be entirely ignored, and leave no trace;
o flag: the {exception) will turn the corresponding flag on when it occurs;

o error: additionally, the (exception) will halt the TEX run and display some infor-
mation about the current operation in the terminal.

This function is experimental, and may be altered or removed.

Flags denoting the occurrence of various floating-point exceptions.

8 Viewing floating points

\fp_show:N (fp var)
\fp_show:n {(floating point expression)}

Evaluates the (floating point expression) and displays the result in the terminal.

\fp_log:N (fp var)
\fp_log:n {(floating point expression)}

Evaluates the (floating point expression) and writes the result in the log file.

195

9 Floating point expressions

9.1 Input of floating point numbers

We support four types of floating point numbers:

e +m - 10", a floating point number, with integer 1 < m < 106, and —10000 < n <
10000;

e +0, zero, with a given sign;
e 00, infinity, with a given sign;

e Nal, is “not a number”, and can be either quiet or signalling (not yet: this distinc-
tion is currently unsupported);

Normal floating point numbers are stored in base 10, with up to 16 significant figures.
On input, a normal floating point number consists of:

o (sign): a possibly empty string of + and - characters;
o (significand): a non-empty string of digits together with zero or one dot;

o (exponent) optionally: the character e, followed by a possibly empty string of
+ and - tokens, and a non-empty string of digits.

The sign of the resulting number is + if {sign) contains an even number of -, and -
otherwise, hence, an empty (sign) denotes a non-negative input. The stored significand
is obtained from (significand) by omitting the decimal separator and leading zeros, and
rounding to 16 significant digits, filling with trailing zeros if necessary. In particular, the
value stored is exact if the input (significand) has at most 16 digits. The stored (ezponent)
is obtained by combining the input (exzponent) (0 if absent) with a shift depending on
the position of the significand and the number of leading zeros.

A special case arises if the resulting (ezponent) is either too large or too small for the
floating point number to be represented. This results either in an overflow (the number
is then replaced by £00), or an underflow (resulting in £0).

The result is thus +0 if and only if (significand) contains no non-zero digit (i.e.,
consists only in characters 0, and an optional period), or if there is an underflow. Note
that a single dot is currently a valid floating point number, equal to +0, but that is not
guaranteed to remain true.

The (significand) must be non-empty, so el and e-1 are not valid floating point
numbers. Note that the latter could be mistaken with the difference of “e” and 1. To
avoid confusions, the base of natural logarithms cannot be input as e and should be input
as exp(1) or \c_e_f£p.

Special numbers are input as follows:

« inf represents +0o, and can be preceded by any (sign), yielding +oco as appropriate.

 nan represents a (quiet) non-number. It can be preceded by any sign, but that sign
is ignored.

e Any unrecognizable string triggers an error, and produces a NaN.

e Note that commands such as \infty, \pi, or \sin do not work in floating point
expressions. They may silently be interpreted as completely unexpected numbers,

because integer constants (allowed in expressions) are commonly stored as mathe-
matical characters.

196

9.2 Precedence of operators

We list here all the operations supported in floating point expressions, in order of de-
creasing precedence: operations listed earlier bind more tightly than operations listed
below them.

o Function calls (sin, 1n, etc).

o Binary ** and ~ (right associative).

e Unary +, -, !.

e Binary *, /, and implicit multiplication by juxtaposition (2pi, 3(4+5), etc).
e Binary + and -.

o Comparisons >=, =, <7, etc.

e Logical and, denoted by &&.

o Logical or, denoted by ||.

o Ternary operator ?: (right associative).

o Comma (to build tuples).

The precedence of operations can be overridden using parentheses. In particular, those
precedences imply that

sin2pi = sin(2)w! =0,
2"2max(3,5) = 22 max(3,5) = 20.

Functions are called on the value of their argument, contrarily to TEX macros.

9.3 Operations

We now present the various operations allowed in floating point expressions, from the
lowest precedence to the highest. When used as a truth value, a floating point expression
is false if it is +0, and true otherwise, including when it is NaN or a tuple such as (0, 0).
Tuples are only supported to some extent by operations that work with truth values
(?:, |1, &&, '), by comparisons (!<=>7), and by +, -, *, /. Unless otherwise specified,
providing a tuple as an argument of any other operation yields the “invalid operation”
exception and a NaN result.

197

|]

&&

~N VvV I A

Updated: 2013-12-14

1o+

\fp_eval:n { (operand:) ? (operand:) : (operands) }

The ternary operator ?: results in (operands) if (operand;) is true (not +0), and
(operands) if (operand,) is false (£0). All three (operands) are evaluated in all cases;
they may be tuples. The operator is right associative, hence

\fp_eval:n
{
1+3>471
2+4>572
3+5>67
}

first tests whether 1 4+ 3 > 4; since this isn’t true, the branch following : is taken, and
244 > 5 is compared; since this is true, the branch before : is taken, and everything else
is (evaluated then) ignored. That allows testing for various cases in a concise manner,
with the drawback that all computations are made in all cases.

\fp_eval:n { (operand:) || (operands) }

If (operand;) is true (not +0), use that value, otherwise the value of (operandy). Both
(operands) are evaluated in all cases; they may be tuples. In (operand;) || {operands)
[l ... |l {operands,), the first true (nonzero) (operand) is used and if all are zero the
last one (£0) is used.

\fp_eval:n { (operand;) && (operand,) }

If (operandy) is false (equal to £0), use that value, otherwise the value of (operands). Both
(operands) are evaluated in all cases; they may be tuples. In (operand;) && (operands)
&% ... && {operands,), the first false (£0) (operand) is used and if none is zero the last
one is used.

\fp_eval:n
{

(operand;) (relation;)

(operandy) (relationn)
(operandn 1)
}
Each (relation) consists of a non-empty string of <, =, >, and 7, optionally preceded by !,
and may not start with ?. This evaluates to +1 if all comparisons (operand;) (relation;)
(operand; 1) are true, and 40 otherwise. All (operands) are evaluated (once) in all cases.
See \fp_compare:nTF for details.

\fp_eval:n { (operand;) + (operands) }
\fp_eval:n { (operand:) - (operand.) }
Computes the sum or the difference of its two (operands). The “invalid operation” ex-
ception occurs for co — co. “Underflow” and “overflow” occur when appropriate. These
operations supports the itemwise addition or subtraction of two tuples, but if they have a
different number of items the “invalid operation” exception occurs and the result is NaN.

198

I~ * |

1o+

%%

abs

fact

1n

\fp_eval:n { (operand;) * (operand.) }

\fp_eval:n { (operand:) / (operands) }

Computes the product or the ratio of its two (operands). The “invalid operation” ex-
ception occurs for oco/oco, 0/0, or 0 % co. “Division by zero” occurs when dividing a
finite non-zero number by +0. “Underflow” and “overflow” occur when appropriate.
When (operand;) is a tuple and (operands) is a floating point number, each item of
(operandy) is multiplied or divided by (operands). Multiplication also supports the case
where (operand,) is a floating point number and (operands) a tuple. Other combinations
yield an “invalid operation” exception and a NaN result.

\fp_eval:n { + (operand) }
\fp_eval:n { - (operand) }
\fp_eval:n { ! (operand) }

The unary + does nothing, the unary - changes the sign of the (operand) (for a tuple,
of all its components), and ! (operand) evaluates to 1 if (operand) is false (is +0) and 0
otherwise (this is the not boolean function). Those operations never raise exceptions.

\fp_eval:n { (operand;) ** (operands) }

\fp_eval:n { (operand;) ~ (operand.) }

Raises (operand;) to the power (operandy). This operation is right associative, hence 2
x 2 *x 3 equals 22" = 256. If (operandy) is negative or —0 then: the result’s sign is
+ if the (operands) is infinite and (—1)? if the (operands) is p/5% with p, ¢ integers; the
result is 40 if abs ((operand;)) ~(operands) evaluates to zero; in other cases the “invalid
operation” exception occurs because the sign cannot be determined. “Division by zero”
occurs when raising +0 to a finite strictly negative power. “Underflow” and “overflow”
occur when appropriate. If either operand is a tuple, “invalid operation” occurs.

\fp_eval:n { abs((fpexpr)) %}

Computes the absolute value of the (fpexpr). If the operand is a tuple, “invalid operation”
occurs. This operation does not raise exceptions in other cases. See also \fp_abs:n.

\fp_eval:n { exp((fpexpr)) %}

Computes the exponential of the (fpexpr). “Underflow” and “overflow” occur when ap-
propriate. If the operand is a tuple, “invalid operation” occurs.

\fp_eval:n { fact((fpexpr)) }

Computes the factorial of the (fpexpr). If the (fpexpr) is an integer between —0 and 3248
included, the result is finite and correctly rounded. Larger positive integers give +oco
with “overflow”, while fact (+00) = 400 and fact(nan) = nan with no exception. All
other inputs give NaN with the “invalid operation” exception.

\fp_eval:n { 1n((fpexpr)) }

Computes the natural logarithm of the (fpexpr). Negative numbers have no (real) loga-
rithm, hence the “invalid operation” is raised in that case, including for In(—0). “Division
by zero” occurs when evaluating In(+0) = —oco. “Underflow” and “overflow” occur when
appropriate. If the operand is a tuple, “invalid operation” occurs.

199

round
trunc
ceil

floor

max
min

New: 2013-12-14
Updated: 2015-08-08

sign

\fp_eval:n { max((fpexpri) , (fpexprz) ,)}
\fp_eval:n { min((fpexpri) , (fpexpra) ,)}
Evaluates each (fpexpr) and computes the largest (smallest) of those. If any of the
(fpexpr) is a NaN or tuple, the result is NaN. If any operand is a tuple, “invalid operation”

occurs; these operations do not raise exceptions in other cases.

\fp_eval:n { round ((fpexpr)) }

\fp_eval:n { round ((fpexpri) , (fpexprs)) }

\fp_eval:n { round ((fpexpri) , (fpexpr:) , (fpexprs)) }

Only round accepts a third argument. Evaluates (fpexpr;) = z and (fpexprs) = n and
(fpexprs) = t then rounds x to n places. If n is an integer, this rounds x to a multiple
of 107"; if n = 400, this always yields z; if n = —oo, this yields one of £0, 400,
or NaN; if n is neither 00 nor an integer, then an “invalid operation” exception is raised.
When (fpexprs) is omitted, n = 0, i.e., (fpexpr;) is rounded to an integer. The rounding
direction depends on the function.

e round yields the multiple of 10~™ closest to x, with ties (z half-way between two
such multiples) rounded as follows. If ¢ is nan or not given the even multiple is
chosen (“ties to even”), if ¢ = £0 the multiple closest to 0 is chosen (“ties to zero”),
if ¢ is positive/negative the multiple closest to co/—oco is chosen (“ties towards
positive/negative infinity”).

o floor yields the largest multiple of 107" smaller or equal to z (“round towards
negative infinity”);

o ceil yields the smallest multiple of 10" greater or equal to z (“round towards
positive infinity”);

e trunc yields a multiple of 107" with the same sign as x and with the largest
absolute value less that that of z (“round towards zero”).

“Overflow” occurs if « is finite and the result is infinite (this can only happen if (fpezprs) <
—9984). If any operand is a tuple, “invalid operation” occurs.

\fp_eval:n { sign((fpexpr)) }

Evaluates the (fpexpr) and determines its sign: +1 for positive numbers and for +oo, —1
for negative numbers and for —oo, £0 for +0, and NaN for NaN. If the operand is a tuple,
“invalid operation” occurs. This operation does not raise exceptions in other cases.

200

sin
cos
tan
cot
csc
sec

Updated: 2013-11-17

sind
cosd
tand
cotd
cscd
secd

New: 2013-11-02

asin
acos
acsc
asec

New: 2013-11-02

asind
acosd
acscd
asecd

New: 2013-11-02

\fp_eval:n { sin((fpexpr)) %}
\fp_eval:n { cos((fpexpr)) %}
\fp_eval:n { tan((fpexpr)) }
\fp_eval:n { cot((fpexpr)) %}
\fp_eval:n { csc((fpexpr)) %}
\fp_eval:n { sec((fpexpr)) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the (fpezpr) given
in radians. For arguments given in degrees, see sind, cosd, etc. Note that since 7 is
irrational, sin(8pi) is not quite zero, while its analogue sind(8 x 180) is exactly zero. The
trigonometric functions are undefined for an argument of +oo, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

\fp_eval:n { sind((fpexpr)) }
\fp_eval:n { cosd((fpexpr)) }
\fp_eval:n { tand((fpexpr)) }
\fp_eval:n { cotd((fpexpr)) }
\fp_eval:n { cscd((fpexpr)) }
\fp_eval:n { secd((fpexpr)) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the (fpexpr) given
in degrees. For arguments given in radians, see sin, cos, etc. Note that since 7 is
irrational, sin(8pi) is not quite zero, while its analogue sind(8 x 180) is exactly zero. The
trigonometric functions are undefined for an argument of +oo, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

\fp_eval:n { asin((fpexpr)) }
\fp_eval:n { acos((fpexpr)) }
\fp_eval:n { acsc((fpexpr)) }
\fp_eval:n { asec((fpexpr)) }

Computes the arcsine, arccosine, arccosecant, or arcsecant of the (fpe:npﬂ and returns
the result in radians, in the range [—7/2,7/2] for asin and acsc and [0, 7] for acos and
asec. For a result in degrees, use asind, etc. If the argument of asin or acos lies outside
the range [—1,1], or the argument of acsc or asec inside the range (—1,1), an “invalid
operation” exception is raised. “Underflow” and “overflow” occur when appropriate. If
the operand is a tuple, “invalid operation” occurs.

asind(
acosd(
acscd(
asecd(

\fp_eval:n {
\fp_eval:n {
\fp_eval:n {
\fp_eval:n {

fpexpr)
fpexpr)
fpexpr)
fpexpr)
Computes the arcsine, arccosine, arccosecant, or arcsecant of the (fpexpr) and returns
the result in degrees, in the range [—90,90] for asin and acsc and [0, 180] for acos and
asec. For a result in radians, use asin, etc. If the argument of asin or acos lies outside
the range [—1,1], or the argument of acsc or asec inside the range (—1,1), an “invalid
operation” exception is raised. “Underflow” and “overflow” occur when appropriate. If
the operand is a tuple, “invalid operation” occurs.

)
)}
)
)}

o~ o~~~

201

atan
acot

New: 2013-11-02

atand
acotd

New: 2013-11-02

sqrt

New: 2013-12-14

\fp_eval:n { atan((fpexpr)) }
\fp_eval:n { atan((fpexpri) , (fpexpras)) }
\fp_eval:n { acot((fpexpr)) }
\fp_eval:n { acot((fpexpri) , (fpexprs)) }

Those functions yield an angle in radians: atand and acotd are their analogs in degrees.
The one-argument versions compute the arctangent or arccotangent of the (fpexpr): arc-
tangent takes values in the range [—m/2,7/2], and arccotangent in the range [0, 7]. The
two-argument arctangent computes the angle in polar coordinates of the point with Carte-
sian coordinates ((fpexpra), (fpexpr:)): this is the arctangent of (fpexpri)/(fpexprs), pos-
sibly shifted by m depending on the signs of (fpexpr;) and (fpexprs). The two-argument
arccotangent computes the angle in polar coordinates of the point ({fpexpri), (fpexprs)),
equal to the arccotangent of (fpexpri)/(fpexprs), possibly shifted by m. Both two-
argument functions take values in the wider range [—m,]. The ratio (fpexpri)/(fpexprs)
need not be defined for the two-argument arctangent: when both expressions yield £0,
or when both yield +o0, the resulting angle is one of {£7/4,+37/4} depending on signs.
The “underflow” exception can occur. If any operand is a tuple, “invalid operation”
occurs.

\fp_eval:n { atand((fpexpr)) }
\fp_eval:n { atand((fpexpri) , (fpexprz)) }
\fp_eval:n { acotd((fpexpr)) }

(

\fp_eval:n { acotd((fpexpri) , (fpexprz)) }

Those functions yield an angle in degrees: atand and acotd are their analogs in ra-
dians. The one-argument versions compute the arctangent or arccotangent of the
(fpexpr): arctangent takes values in the range [—90,90], and arccotangent in the range
[0,180]. The two-argument arctangent computes the angle in polar coordinates of
the point with Cartesian coordinates ((fpexprs), (fpezpry)): this is the arctangent of
(fpexpr:)/{fpexprs), possibly shifted by 180 depending on the signs of (fpexpr;) and
(fpexprs). The two-argument arccotangent computes the angle in polar coordinates of
the point ((fpexpri), {fpexpr2)), equal to the arccotangent of (fpexpr;)/{fpexprs), possibly
shifted by 180. Both two-argument functions take values in the wider range [—180, 180].
The ratio (fpexpri)/(fpexpra) need not be defined for the two-argument arctangent:
when both expressions yield +0, or when both yield +o0o, the resulting angle is one of
{£45,+135} depending on signs. The “underflow” exception can occur. If any operand
is a tuple, “invalid operation” occurs.

\fp_eval:n { sqrt((fpexpr)) }

Computes the square root of the (fpexpr). The “invalid operation” is raised when the
(fpexpr) is negative or is a tuple; no other exception can occur. Special values yield

V=0 = -0, V/+0 = +0, v/+00 = +00 and /NaN = NaN.

202

rand

New: 2016-12-05

randint

New: 2016-12-05

inf

\fp_eval:n { rand() }

Produces a pseudo-random floating-point number (multiple of 10716) between 0 included
and 1 excluded. This is not available in older versions of XgTEX. The random seed can
be queried using \sys_rand_seed: and set using \sys_gset_rand_seed:n.

TEXhackers note: This is based on pseudo-random numbers provided by the engine’s
primitive \pdfuniformdeviate in pdfTEX, pIEX, uplEX and \uniformdeviate in LuaTEX and
XATEX. The underlying code is based on Metapost, which follows an additive scheme recom-
mended in Section 3.6 of “The Art of Computer Programming, Volume 2.

While we are more careful than \uniformdeviate to preserve uniformity of the underlying
stream of 28-bit pseudo-random integers, these pseudo-random numbers should of course not be
relied upon for serious numerical computations nor cryptography.

\fp_eval:n { randint((fpexpr)) }
\fp_eval:n { randint((fpexpri) , (fpexpra)) }

Produces a pseudo-random integer between 1 and (fpexpr) or between (fpexpr;) and
(fpexprs) inclusive. The bounds must be integers in the range (—10'6,101%) and the first
must be smaller or equal to the second. See rand for important comments on how these
pseudo-random numbers are generated.

The special values +00, —oo, and NaN are represented as inf, -inf and nan (see \c_-
inf_fp, \c_minus_inf_fp and \c_nan_£fp).

The value of 7 (see \c_pi_fp).

The value of 1° in radians (see \c_one_degree_£p).

203

em
ex
in
pt
pc
cm

dd
cc
nd
nc
bp
sp

true
false

\fp_abs:n *

New: 2012-05-14
Updated: 2012-07-08

\fp_max:nn *
\fp_min:nn *

New: 2012-09-26

Those units of measurement are equal to their values in pt, namely

1lin = 72.27pt

1pt = 1pt

1lpc = 12pt
L

lem = Spin= 28.45275590551181pt
1

Imm = ﬂin = 2.845275590551181pt

1dd = 0.376065mm = 1.07000856496063pt
lcc = 12dd = 12.84010277952756pt

Ind = 0.375mm = 1.066978346456693pt
Inc = 12nd = 12.80374015748031pt

L.
1bp = Eln = 1.00375pt

Isp = 27 10pt = 1.52587890625¢ — 5pt.

The values of the (font-dependent) units em and ex are gathered from TEX when the
surrounding floating point expression is evaluated.

Other names for 1 and +0.

\fp_abs:n {(floating point expression)}

Evaluates the (floating point expression) as described for \fp_eval:n and leaves the
absolute value of the result in the input stream. If the argument is a tuple, “invalid
operation” occurs, but no other case raises exceptions. Within floating point expressions,
abs () can be used.

\fp_max:nn {(fp expression 1)} {(fp expression 2)}

Evaluates the (floating point expressions) as described for \fp_eval:n and leaves the
resulting larger (max) or smaller (min) value in the input stream. If the argument is a
tuple, “invalid operation” occurs, but no other case raises exceptions. Within floating
point expressions, max() and min() can be used.

10 Disclaimer and roadmap

The package may break down if the escape character is among 0123456789_+, or if it
receives a TEX primitive conditional affected by \exp_not:N.
The following need to be done. I'll try to time-order the items.

o Function to count items in a tuple (and to determine if something is a tuple).

e Decide what exponent range to consider.

204

Support signalling nan.

Modulo and remainder, and rounding function quantize (and its friends analogous
to trunc, ceil, floor).

\fp_format:nn {(fpexpr)} {(format)}, but what should (format) be? More general
pretty printing?

Add and, or, xor? Perhaps under the names all, any, and xor?

Add log(z,b) for logarithm of x in base b.

hypot (Euclidean length). Cartesian-to-polar transform.

Hyperbolic functions cosh, sinh, tanh.

Inverse hyperbolics.

Base conversion, input such as 0xAB.CDEF.

Factorial (not with !), gamma function.

Improve coefficients of the sin and tan series.

Treat upper and lower case letters identically in identifiers, and ignore underscores.
Add an array(1,2,3) and i=complex(0,1).

Provide an experimental map function? Perhaps easier to implement if it is a single
character, @sin(1,2)7?

Provide \fp_if_nan:nTF, and an isnan function?

Support keyword arguments?

Pgfmath also provides box-measurements (depth, height, width), but boxes are not pos-
sible expandably.

Bugs, and tests to add.
Check that functions are monotonic when they should.
Add exceptions to 7:, '<=>7, &&, ||, and !.
Logarithms of numbers very close to 1 are inaccurate.
When rounding towards —oo, \dim_to_fp:n {Opt} should return —0, not +0.

The result of (+0) + (+0), of z 4+ (—z), and of (—z) 4+ z should depend on the

rounding mode.
0€9999999999 gives a TEX “number too large” error.
Subnormals are not implemented.
Possible optimizations/improvements.
Document that 13trial /I3fp-types introduces tools for adding new types.

In subsection 9.1, write a grammar.

205

It would be nice if the parse auxiliaries for each operation were set up in the
corresponding module, rather than centralizing in I3fp-parse.

Some functions should get an _o ending to indicate that they expand after their
result.

More care should be given to distinguish expandable/restricted expandable (auxil-
iary and internal) functions.

The code for the ternary set of functions is ugly.
There are many ~ missing in the doc to avoid bad line-breaks.

The algorithm for computing the logarithm of the significand could be made to use
a b terms Taylor series instead of 10 terms by taking ¢ = 2000/(|200x |+1) € [10,95]
instead of ¢ € [1,10]. Also, it would then be possible to simplify the computation
of t. However, we would then have to hard-code the logarithms of 44 small integers
instead of 9.

Improve notations in the explanations of the division algorithm (13fp-basics).

Understand and document __fp_basics_pack_weird_low:NNNNw and __fp_-
basics_pack_weird_high:NNNNNNNNw better. Move the other basics_pack auxil-
iaries to I3fp-aux under a better name.

Find out if underflow can really occur for trigonometric functions, and redoc as
appropriate.

Add bibliography. Some of Kahan’s articles, some previous TEX fp packages, the
international standards,. ..

Also take into account the “inexact” exception?

Support multi-character prefix operators (e.g., @/ or whatever)?

206

Part XXIII
The 13fparray package: fast global
floating point arrays

1 I3fparray documentation

For applications requiring heavy use of floating points, this module provides arrays which
can be accessed in constant time (contrast 13seq, where access time is linear). The
interface is very close to that of I3intarray. The size of the array is fixed and must be
given at point of initialisation

Currently all functions in this module are candidates. Their documentation can be
found in I3candidates.

207

\sort_return_same:
\sort_return_swapped:

New: 2017-02-06

Part XXIV
The I13sort package
Sorting functions

1 Controlling sorting

KTEX3 comes with a facility to sort list variables (sequences, token lists, or comma-lists)
according to some user-defined comparison. For instance,

\clist_set:Nn \1_foo_clist { 3, 01 , -2 , 5, +1 }
\clist_sort:Nn \1_foo_clist

{
\int_compare:nNnTF { #1 } > { #2 }
{ \sort_return_swapped: }
{ \sort_return_same: }
}

results in \1_foo_clist holding the values { -2 , 01 , +1 , 3 , 5 } sorted in non-
decreasing order.

The code defining the comparison should call \sort_return_swapped: if the two
items given as #1 and #2 are not in the correct order, and otherwise it should call \sort_-
return_same: to indicate that the order of this pair of items should not be changed.

For instance, a (comparison code) consisting only of \sort_return_same: with no
test yields a trivial sort: the final order is identical to the original order. Conversely,
using a (comparison code) consisting only of \sort_return_swapped: reverses the list
(in a fairly inefficient way).

TEXhackers note: The current implementation is limited to sorting approximately 20000
items (40000 in LuaTEX), depending on what other packages are loaded.

Internally, the code from I3sort stores items in \toks registers allocated locally. Thus,
the (comparison code) should not call \newtoks or other commands that allocate new \toks
registers. On the other hand, altering the value of a previously allocated \toks register is not a
problem.

\seq_sort:Nn (seq var)

{ ... \sort_return_same: or \sort_return_swapped: ... }
Indicates whether to keep the order or swap the order of two items that are compared
in the sorting code. Only one of the \sort_return_. .. functions should be used by the
code, according to the results of some tests on the items #1 and #2 to be compared.

208

\tl_analysis_show:N
\tl_analysis_show:n

New: 2018-04-09

\tl_analysis_map_inline:nn
\tl_analysis_map_inline:Nn

New: 2018-04-09

Part XXV
The I3tl-analysis package: Analysing
token lists

1 I13tl-analysis documentation

This module mostly provides internal functions for use in the 13regex module. However,
it provides as a side-effect a user debugging function, very similar to the \ShowTokens
macro from the ted package.

\tl_analysis_show:n {(token list)}

Displays to the terminal the detailed decomposition of the (token list) into tokens, show-
ing the category code of each character token, the meaning of control sequences and
active characters, and the value of registers.

\tl_analysis_map_inline:nn {(token list)} {(inline function)}
Applies the (inline function) to each individual (token) in the (token list). The (inline

function) receives three arguments:

o (tokens), which both o-expand and x-expand to the (token). The detailed form of
(token) may change in later releases.

o (char code), a decimal representation of the character code of the token, —1 if it is
a control sequence (with (catcode) 0).

« (catcode), a capital hexadecimal digit which denotes the category code of the (token)
(0: control sequence, 1: begin-group, 2: end-group, 3: math shift, 4: alignment tab,
6: parameter, 7: superscript, 8: subscript, A: space, B: letter, C:other, D:active).

209

Part XXVI
The 13regex package: Regular
expressions in TEX

The [3regex package provides regular expression testing, extraction of submatches, split-
ting, and replacement, all acting on token lists. The syntax of regular expressions is
mostly a subset of the PCRE syntax (and very close to POSIX), with some additions due
to the fact that TEX manipulates tokens rather than characters. For performance rea-
sons, only a limited set of features are implemented. Notably, back-references are not
supported.

Let us give a few examples. After

\tl_set:Nn \1_my_t1l { That~cat. }
\regex_replace_once:nnN { at } { is } \1l_my_tl

the token list variable \1_my_t1 holds the text “This cat.”, where the first occurrence
of “at” was replaced by “is”. A more complicated example is a pattern to emphasize
each word and add a comma after it:

\regex_replace_all:nnN { \w+ } { \c{emph}\cB\{ \0 \cE\} , } \1l_my_tl

The \w sequence represents any “word” character, and + indicates that the \w sequence
should be repeated as many times as possible (at least once), hence matching a word in
the input token list. In the replacement text, \O denotes the full match (here, a word).
The command \emph is inserted using \c{emphl}, and its argument \0 is put between
braces \cB\{ and \cE\}.

If a regular expression is to be used several times, it can be compiled once, and
stored in a regex variable using \regex_const:Nn. For example,

\regex_const:Nn \c_foo_regex { \c{begin} \cB. (\c["BE].*) \cE. }

stores in \c_foo_regex a regular expression which matches the starting marker for an
environment: \begin, followed by a begin-group token (\cB.), then any number of tokens
which are neither begin-group nor end-group character tokens (\c["BE] .*), ending with
an end-group token (\cE.). As explained in the next section, the parentheses “capture”
the result of \c["BE].*, giving us access to the name of the environment when doing
replacements.

1 Syntax of regular expressions

We start with a few examples, and encourage the reader to apply \regex_show:n to
these regular expressions.

o Cat matches the word “Cat” capitalized in this way, but also matches the beginning
of the word “Cattle”: use \bCat\b to match a complete word only.

e [abc] matches one letter among “a”, “b”, “c”; the pattern (alblc) matches the
same three possible letters (but see the discussion of submatches below).

o [A-Za-z]* matches any number (due to the quantifier *) of Latin letters (not
accented).

210

\c{[A-Za-z]*} matches a control sequence made of Latin letters.

_["_1#_ matches an underscore, any number of characters other than under-
score, and another underscore; it is equivalent to _.*?7_ where . matches arbitrary
characters and the lazy quantifier #? means to match as few characters as possible,
thus avoiding matching underscores.

[\+\-]17\d+ matches an explicit integer with at most one sign.

INF\-\uI*\d+* matches an explicit integer with any number of + and — signs,
with spaces allowed except within the mantissa, and surrounded by spaces.

DNA\-\UT * (\d+ [\d*\ . \d+) _* matches an explicit integer or decimal number; us-
ing [.,] instead of \. would allow the comma as a decimal marker.

D\H\-\LT* (\d+ [\d*\ . \dH \L* ((?)ptlin| [cemIm|ex| [bs]p| [dnld| [pcnl c)*
matches an explicit dimension with any unit that TEX knows, where (7i) means
to treat lowercase and uppercase letters identically.

\+\-_J*((?1)nan|inf | (\d+|\d*\.\d+) (\L*ke [\+\-_]*\d+) ?) * matches an
explicit floating point number or the special values nan and inf (with signs and
spaces allowed).

I\+\-_J* (\d+1\cC.) _* matches an explicit integer or control sequence (without
checking whether it is an integer variable).

\G.*7\K at the beginning of a regular expression matches and discards (due to \K)
everything between the end of the previous match (\G) and what is matched by
the rest of the regular expression; this is useful in \regex_replace_all:nnN when
the goal is to extract matches or submatches in a finer way than with \regex_-
extract_all:nnN.

While it is impossible for a regular expression to match only integer expressions,
DN\ T #\A+H\) * (I\+\=*/] [\+\-\ (I*\d+\) *) * matches among other things all valid
integer expressions (made only with explicit integers). One should follow it with further
testing.

Most characters match exactly themselves, with an arbitrary category code. Some

characters are special and must be escaped with a backslash (e.g., * matches a star char-
acter). Some escape sequences of the form backslash-letter also have a special meaning
(for instance \d matches any digit). As a rule,

every alphanumeric character (A-Z, a—z, 0-9) matches exactly itself, and should
not be escaped, because \A, \B, ... have special meanings;

non-alphanumeric printable ascii characters can (and should) always be escaped:
many of them have special meanings (e.g., use \(; \), \?, \.);

spaces should always be escaped (even in character classes);

any other character may be escaped or not, without any effect: both versions match
exactly that character.

211

Note

that these rules play nicely with the fact that many non-alphanumeric characters are

difficult to input into TEX under normal category codes. For instance, \\abc\% matches
the characters \abc% (with arbitrary category codes), but does not match the control
sequence \abc followed by a percent character. Matching control sequences can be done
using the \c{(regez)} syntax (see below).

Any special character which appears at a place where its special behaviour cannot

apply matches itself instead (for instance, a quantifier appearing at the beginning of a

strin,

\x{hh...}
\xhh

\a

\e

\f

\n

\r

\t

g), after raising a warning.
Characters.

Character with hex code hh. ..
Character with hex code hh.
Alarm (hex 07).

Escape (hex 1B).

Form-feed (hex 0C).

New line (hex 0A).

Carriage return (hex 0D).
Horizontal tab (hex 09).

Character types.

. A single period matches any token.

\d
\h
\s
\v

\w

\D
\H
\N
\S
\V
\W

Any decimal digit.
Any horizontal space character, equivalent to [\ \~"I]: space and tab.
Any space character, equivalent to [\ \""I\""J\""L\""M].

Any vertical space character, equivalent to [\"~J\""K\""L\""M]. Note that \""K
is a vertical space, but not a space, for compatibility with Perl.

Any word character, i.e., alphanumerics and underscore, equivalent to the explicit
class [A-Za-z0-9_].

Any token not matched by \d.
Any token not matched by \h.
Any token other than the \n character (hex 0A).
Any token not matched by \s.
Any token not matched by \v.

Any token not matched by \w.

Of those, ., \D, \H, \N, \S, \V, and \W match arbitrary control sequences.

[...]

Character classes match exactly one token in the subject.

Positive character class. Matches any of the specified tokens.

212

[...] Negative character class. Matches any token other than the specified characters.
x-y Within a character class, this denotes a range (can be used with escaped characters).

[:(name):] Within a character class (one more set of brackets), this denotes the POSIX character
class (name), which can be alnum, alpha, ascii, blank, cntrl, digit, graph,
lower, print, punct, space, upper, word, or xdigit.

[:~(name):] Negative POSIX character class.

For instance, [a-ogq-z\cC.] matches any lowercase latin letter except p, as well as control
sequences (see below for a description of \c).
Quantifiers (repetition).

? 0 or 1, greedy.
7?7 0 or 1, lazy.
* 0 or more, greedy.
*7 0 or more, lazy.
+ 1 or more, greedy.
+?7 1 or more, lazy.
{n} Exactly n.
{n,} n or more, greedy.
{n,}? n or more, lazy.
{n,m} At least n, no more than m, greedy.
{n,m}? At least n, no more than m, lazy.
Anchors and simple assertions.

\b Word boundary: either the previous token is matched by \w and the next by \W,
or the opposite. For this purpose, the ends of the token list are considered as \W.

\B Not a word boundary: between two \w tokens or two \W tokens (including the
boundary).

“or \A Start of the subject token list.
$, \Z or \z End of the subject token list.

\G Start of the current match. This is only different from ~ in the case of multi-
ple matches: for instance \regex_count:nnN { \G a } { aaba } \1_tmpa_int
yields 2, but replacing \G by ~ would result in \1_tmpa_int holding the value 1.

Alternation and capturing groups.
A|BIC Either one of A, B, or C.
(...) Capturing group.

(7:...) Non-capturing group.

213

...

Non-capturing group which resets the group number for capturing groups in each
alternative. The following group is numbered with the first unused group number.

The \c escape sequence allows to test the category code of tokens, and match control

sequences. Each character category is represented by a single uppercase letter:

The
\c{(regex)}

\cX

\c [XYZ]

\c["XYZ]

The

C for control sequences;

B for begin-group tokens;

E for end-group tokens;

M for math shift;

T for alignment tab tokens;

P for macro parameter tokens;
U for superscript tokens (up);
D for subscript tokens (down);
S for spaces;

L for letters;

0 for others; and

A for active characters.
\c escape sequence is used as follows.

A control sequence whose csname matches the (regez), anchored at the beginning
and end, so that \c{begin} matches exactly \begin, and nothing else.

Applies to the next object, which can be a character, character property, class,
or group, and forces this object to only match tokens with category X (any of
CBEMTPUDSLOA. For instance, \cL[A-Z\d] matches uppercase letters and digits of
category code letter, \cC. matches any control sequence, and \c0(abc) matches
abc where each character has category other.

Applies to the next object, and forces it to only match tokens with category X, Y,
or Z (each being any of CBEMTPUDSLOA). For instance, \c[LSO0] (..) matches two
tokens of category letter, space, or other.

Applies to the next object and prevents it from matching any token with category
X, Y, or Z (each being any of CBEMTPUDSLOA). For instance, \c [70]\d matches digits
which have any category different from other.

category code tests can be used inside classes; for instance, [\c0\d \c[LO] [A-F]]

matches what TEX considers as hexadecimal digits, namely digits with category other,
or uppercase letters from A to F with category either letter or other. Within a group

affec

ted by a category code test, the outer test can be overridden by a nested test: for

instance, \cL(ab\cO*cd) matches ab*cd where all characters are of category letter,
except * which has category other.

The \u escape sequence allows to insert the contents of a token list directly into

a regular expression or a replacement, avoiding the need to escape special characters.

214

Namely, \u{ (¢l var name)} matches the exact contents of the token list (¢/ var). Within
a \c{...} control sequence matching, the \u escape sequence only expands its argument
once, in effect performing \tl_to_str:v. Quantifiers are not supported directly: use a
group.

The option (7i) makes the match case insensitive (identifying A-Z with a—z; no
Unicode support yet). This applies until the end of the group in which it appears,
and can be reverted using (?-i). For instance, in (7i) (a(?-1)blc)d, the letters a
and d are affected by the i option. Characters within ranges and classes are affected
individually: (71) [Y-\\] is equivalent to [YZ\[\\yz], and (?i) [Taeiou] matches any
character which is not a vowel. Neither character properties, nor \c{...} nor \u{...}
are affected by the i option.

In character classes, only [, =, -, 1, \ and spaces are special, and should be escaped.
Other non-alphanumeric characters can still be escaped without harm. Any escape se-
quence which matches a single character (\d, \D, etc.) is supported in character classes.
If the first character is ~, then the meaning of the character class is inverted; ~ appear-
ing anywhere else in the range is not special. If the first character (possibly following a
leading ~) is] then it does not need to be escaped since ending the range there would
make it empty. Ranges of characters can be expressed using -, for instance, [\D 0-5]
and ["6-9] are equivalent.

Capturing groups are a means of extracting information about the match. Paren-
thesized groups are labelled in the order of their opening parenthesis, starting at 1. The
contents of those groups corresponding to the “best” match (leftmost longest) can be
extracted and stored in a sequence of token lists using for instance \regex_extract_-
once :nnNTF.

The \K escape sequence resets the beginning of the match to the current position in
the token list. This only affects what is reported as the full match. For instance,

\regex_extract_all:nnN { a \K . } { al23aaxyz } \1_foo_seq

results in \1_foo_seq containing the items {1} and {a}: the true matches are {a1} and
{aa}, but they are trimmed by the use of \K. The \K command does not affect capturing
groups: for instance,

\regex_extract_once:nnN { (. \K c)+ \d } { acbc3 } \1_foo_seq

results in \1_foo_seq containing the items {c3} and {bc}: the true match is {acbc3},
with first submatch {bc}, but \K resets the beginning of the match to the last position
where it appears.

2 Syntax of the replacement text

Most of the features described in regular expressions do not make sense within the re-
placement text. Backslash introduces various special constructions, described further
below:

¢ \0 is the whole match;

e \1is the submatch that was matched by the first (capturing) group (.. .); similarly
for \2, ..., \9 and \g{(number)};

o _ inserts a space (spaces are ignored when not escaped);

215

e \a, \e, \f, \n, \r, \t, \xhh, \x{hhh} correspond to single characters as in regular
expressions;

o \c{(cs name)} inserts a control sequence;
o \c{category){character) (see below);
o \u{(#l var name)} inserts the contents of the (tl var) (see below).

Characters other than backslash and space are simply inserted in the result (but since
the replacement text is first converted to a string, one should also escape characters that
are special for TgX, for instance use \#). Non-alphanumeric characters can always be
safely escaped with a backslash.

For instance,

\tl_set:Nn \1l_my_tl { Hello,~world! }
\regex_replace_all:nnN { ([er]?llo) . } { (\0O--\1) } \1l_my_tl

results in \1_my_t1 holding H(ell--el) (0,--0) w(or--o) (1d--1)!

The submatches are numbered according to the order in which the opening paren-
thesis of capturing groups appear in the regular expression to match. The n-th submatch
is empty if there are fewer than n capturing groups or for capturing groups that appear in
alternatives that were not used for the match. In case a capturing group matches several
times during a match (due to quantifiers) only the last match is used in the replacement
text. Submatches always keep the same category codes as in the original token list.

The characters inserted by the replacement have category code 12 (other) by default,
with the exception of space characters. Spaces inserted through \., have category code
10, while spaces inserted through \x20 or \x{20} have category code 12. The escape
sequence \c allows to insert characters with arbitrary category codes, as well as control
sequences.

\cX(...) Produces the characters “...” with category X, which must be one of CBEMTPUDSLOA
as in regular expressions. Parentheses are optional for a single character (which
can be an escape sequence). When nested, the innermost category code applies, for
instance \cL(Hello\cS\ world)! gives this text with standard category codes.

\c{(text)} Produces the control sequence with csname (text). The (text) may contain refer-
ences to the submatches \0, \1, and so on, as in the example for \u below.

The escape sequence \u{(tl var name)} allows to insert the contents of the token
list with name (¢l var name) directly into the replacement, giving an easier control of
category codes. When nested in \c{...} and \u{...} constructions, the \u and \c escape
sequences perform \tl_to_str:v, namely extract the value of the control sequence and
turn it into a string. Matches can also be used within the arguments of \c and \u. For
instance,

\tl_set:Nn \1_my_one_tl { first }

\tl_set:Nn \1_my_two_tl { \emph{second} }

\tl_set:Nn \1_my_tl { one , two , one , one }
\regex_replace_all:nnN { [7,]+ } { \u{l_my_\O_t1} } \1_my_tl

results in \1_my_t1 holding first,\emph{second},first,first.

216

\regex_new:N

New: 2017-05-26

\regex_set:Nn
\regex_gset:Nn
\regex_const:Nn

New: 2017-05-26

\regex_show:n
\regex_show:N

New: 2017-05-26

\regex_match:nnTF
\regex_match:NnTF

New: 2017-05-26

3 Pre-compiling regular expressions

If a regular expression is to be used several times, it is better to compile it once rather
than doing it each time the regular expression is used. The compiled regular expression
is stored in a variable. All of the I3regex module’s functions can be given their regular
expression argument either as an explicit string or as a compiled regular expression.

\regex_new:N (regex var)

Creates a new (regex var) or raises an error if the name is already taken. The declaration
is global. The (regex var) is initially such that it never matches.

\regex_set:Nn (regex var) {(regex)}

Stores a compiled version of the (regular expression) in the (regex var). For instance,
this function can be used as

\regex_new:N \1_my_regex
\regex_set:Nn \1_my_regex { my\ (simple\)7 reg(ex|ular\ expression) }

The assignment is local for \regex_set:Nn and global for \regex_gset:Nn. Use
\regex_const:Nn for compiled expressions which never change.

\regex_show:n {(regex)}

Shows how [3regex interprets the (regez). For instance, \regex_show:n {\A X|Y} shows

+-branch
anchor at start (\A)
char code 88
+-branch
char code 89

indicating that the anchor \A only applies to the first branch: the second branch is not
anchored to the beginning of the match.

4 Matching

All regular expression functions are available in both :n and :N variants. The former
require a “standard” regular expression, while the later require a compiled expression as
generated by \regex_(g)set:Nn.

\regex_match:nnTF {(regex)} {(token 1ist)} {(true code)} {(false code)}

Tests whether the (reqular expression) matches any part of the (token list). For instance,

\regex_match:nnTF { b [cde]l* } { abecdcx } { TRUE } { FALSE }
\regex_match:nnTF { [b-dg-w] } { example } { TRUE } { FALSE }

leaves TRUE then FALSE in the input stream.

217

\regex_count :nnN
\regex_count :NnN

New: 2017-05-26

\regex_extract_once:nnN
\regex_extract_once:nnNTF
\regex_extract_once:NnN
\regex_extract_once:NnNTF

New: 2017-05-26

\regex_extract_all:nnN
\regex_extract_all:nnNTF
\regex_extract_all:NnN
\regex_extract_all:NnNTF

New: 2017-05-26

\regex_count:nnN {(regex)} {(token 1list)} (int var)

Sets (int var) within the current TEX group level equal to the number of times (regular
expression) appears in (token list). The search starts by finding the left-most longest
match, respecting greedy and lazy (non-greedy) operators. Then the search starts again
from the character following the last character of the previous match, until reaching the
end of the token list. Infinite loops are prevented in the case where the regular expression
can match an empty token list: then we count one match between each pair of characters.
For instance,

\int_new:N \1_foo_int
\regex_count:nnN { (b+|c) } { abbababcbb } \1_foo_int

results in \1_foo_int taking the value 5.

5 Submatch extraction

\regex_extract_once:nnN {(regex)} {(token list)} (seq var)
\regex_extract_once:nnNTF {(regex)} {(token list)} (seq var) {(true code)} {(false
code)}

Finds the first match of the (reqular expression) in the (token list). If it exists, the match
is stored as the first item of the (seq var), and further items are the contents of capturing
groups, in the order of their opening parenthesis. The (seq var) is assigned locally. If
there is no match, the (seq var) is cleared. The testing versions insert the (true code)
into the input stream if a match was found, and the (false code) otherwise.

For instance, assume that you type

\regex_extract_once:nnNTF { \A(La)?TeX(!*)\Z } { LaTeX!!! } \1_foo_seq
{ true } { false }

Then the regular expression (anchored at the start with \A and at the end with \Z) must
match the whole token list. The first capturing group, (La)?, matches La, and the second
capturing group, (!*), matches !!!. Thus, \1_foo_seq contains as a result the items
{LaTeX!!!} {La}, and {!!!}, and the true branch is left in the input stream. Note
that the n-th item of \1_foo_seq, as obtained using \seq_item:Nn, correspond to the
submatch numbered (n — 1) in functions such as \regex_replace_once:nnN.

\regex_extract_all:nnN {(regex)} {(token list)} (seq var)
\regex_extract_all:nnNTF {(regex)} {(token list)} (seq var) {(true code)} {(false
code)}

Finds all matches of the (regular expression) in the (token list), and stores all the sub-
match information in a single sequence (concatenating the results of multiple \regex_-
extract_once:nnN calls). The (seq var) is assigned locally. If there is no match, the
(seq var) is cleared. The testing versions insert the (true code) into the input stream if
a match was found, and the (false code) otherwise. For instance, assume that you type

\regex_extract_all:nnNTF { \w+ } { Hello,~world! } \1_foo_seq
{ true } { false }

Then the regular expression matches twice, the resulting sequence contains the two items
{Hello} and {world}, and the true branch is left in the input stream.

218

\regex_split:nnN
\regex_split:nnNTF
\regex_split:NnN
\regex_split:NnNTF

New: 2017-05-26

\regex_replace_once:nnN
\regex_replace_once:nnNTF
\regex_replace_once:NnN
\regex_replace_once:NnNTF

New: 2017-05-26

\regex_replace_all:nnN
\regex_replace_all:nnNTF
\regex_replace_all:NnN
\regex_replace_all:NnNTF

New: 2017-05-26

\1_tmpa_regex
\1_tmpb_regex

New: 2017-12-11

\g_tmpa_regex
\g_tmpb_regex

New: 2017-12-11

\regex_split:nnN {(regular expression)} {(token list)} (seq var)
\regex_split:nnNTF {(regular expression)} {(token list)} (seq var) {(true code)}
{(false code)}

Splits the (token list) into a sequence of parts, delimited by matches of the (regular
expression). If the (regular expression) has capturing groups, then the token lists that
they match are stored as items of the sequence as well. The assignment to (seq var) is
local. If no match is found the resulting (seq var) has the (token list) as its sole item. If
the (regular expression) matches the empty token list, then the (token list) is split into
single tokens. The testing versions insert the (¢true code) into the input stream if a match
was found, and the (false code) otherwise. For example, after

\seq_new:N \1_path_seq
\regex_split:nnNTF { / } { the/path/for/this/file.tex } \1l_path_seq
{ true } { false }

the sequence \1_path_seq contains the items {the}, {path}, {for}, {this}, and
{file.tex}, and the true branch is left in the input stream.

6 Replacement

\regex_replace_once:nnN {(regular expression)} {(replacement)} (tl var)
\regex_replace_once:nnNTF {(regular expression)} {(replacement)} (tl var) {(true
code)} {(false code)?}

Searches for the (regular expression) in the (token list) and replaces the first match with
the (replacement). The result is assigned locally to (tl var). In the (replacement), \0
represents the full match, \1 represent the contents of the first capturing group, \2 of
the second, etec.

\regex_replace_all:nnN {(regular expression)} {(replacement)} (tl var)
\regex_replace_all:nnNTF {(regular expression)} {(replacement)} (tl1 var) {(true
code)} {(false code)?}

Replaces all occurrences of the \regular expression in the (token list) by the
(replacement), where \O represents the full match, \1 represent the contents of the
first capturing group, \2 of the second, etc. Every match is treated independently, and
matches cannot overlap. The result is assigned locally to (¢l var).

7 Constants and variables

Scratch regex for local assignment. These are never used by the kernel code, and so are
safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch regex for global assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

219

8 Bugs, misfeatures, future work, and other possibil-
ities
The following need to be done now.
e Rewrite the documentation in a more ordered way, perhaps add a BNF?
Additional error-checking to come.
e Clean up the use of messages.
e Cleaner error reporting in the replacement phase.
e Add tracing information.
e Detect attempts to use back-references and other non-implemented syntax.
e Test for the maximum register \c_max_register_int.

e Find out whether the fact that \W and friends match the end-marker leads to bugs.
Possibly update __regex_item_reverse:n.

e The empty cs should be matched by \c{}, not by \c{csname.?endcsname\s?}.
Code improvements to come.

o Shift arrays so that the useful information starts at position 1.

e Only build .,. once.

e Use arrays for the left and right state stacks when compiling a regex.

e Should __regex_action_free_group:n only be used for greedy {n,} quantifier?
(I think not.)

e Quantifiers for \u and assertions.

e When matching, keep track of an explicit stack of current_state and current_-
submatches.

e If possible, when a state is reused by the same thread, kill other subthreads.

e Use an array rather than \1__regex_balance_t1 to build the function __regex_-
replacement_balance_one_match:n.

¢ Reduce the number of epsilon-transitions in alternatives.

o Optimize simple strings: use less states (abcade should give two states, for abc and
ade). [Does that really make sense?|

e Optimize groups with no alternative.
e Optimize states with a single __regex_action_free:n.

e Optimize the use of __regex_action_success: by inserting it in state 2 directly
instead of having an extra transition.

e Optimize the use of \int_step_. .. functions.

220

Groups don’t capture within regexes for csnames; optimize and document.
Better “show” for anchors, properties, and catcode tests.

Does \K really need a new state for itself?

When compiling, use a boolean in_cs and less magic numbers.

Instead of checking whether the character is special or alphanumeric using its char-
acter code, check if it is special in regexes with \cs_if_exist tests.

The following features are likely to be implemented at some point in the future.
General look-ahead/behind assertions.
Regex matching on external files.

Conditional subpatterns with look ahead/behind: “if what follows is [...], then

[..]~
(x..) and (7..) sequences to set some options.
UTF-8 mode for pdfTEX.

Newline conventions are not done. In particular, we should have an option for . not
to match newlines. Also, \A should differ from ~, and \Z, \z and $ should differ.

Unicode properties: \p{..} and \P{..}; \X which should match any “extended”
Unicode sequence. This requires to manipulate a lot of data, probably using tree-
boxes.

Provide a syntax such as \ur{l_my_regex} to use an already-compiled regex in a
more complicated regex. This makes regexes more easily composable.

Allowing \u{1_my_t1} in more places, for instance as the number of repetitions in
a quantifier.

The following features of PCRE or Perl may or may not be implemented.

e Callout with (?C...) or other syntax: some internal code changes make that pos-
sible, and it can be useful for instance in the replacement code to stop a regex
replacement when some marker has been found; this raises the question of a po-
tential \regex_break: and then of playing well with \t1_map_break: called from
within the code in a regex. It also raises the question of nested calls to the regex
machinery, which is a problem since \fontdimen are global.

Conditional subpatterns (other than with a look-ahead or look-behind condition):
this is non-regular, isn’t it?

Named subpatterns: TEX programmers have lived so far without any need for
named macro parameters.

The following features of PCRE or Perl will definitely not be implemented.

o Back-references: non-regular feature, this requires backtracking, which is pro-
hibitively slow.

221

Recursion: this is a non-regular feature.

Atomic grouping, possessive quantifiers: those tools, mostly meant to fix catas-
trophic backtracking, are unnecessary in a non-backtracking algorithm, and difficult
to implement.

Subroutine calls: this syntactic sugar is difficult to include in a non-backtracking al-
gorithm, in particular because the corresponding group should be treated as atomic.

Backtracking control verbs: intrinsically tied to backtracking.

\ddd, matching the character with octal code ddd: we already have \x{...} and
the syntax is confusingly close to what we could have used for backreferences (\1,
\2, ...), making it harder to produce useful error message.

\cx, similar to TEX’s own \""x.
Comments: TEX already has its own system for comments.

\Q. . .\E escaping: this would require to read the argument verbatim, which is not
in the scope of this module.

\C single byte in UTF-8 mode: XHIEX and LualgX serve us characters directly,
and splitting those into bytes is tricky, encoding dependent, and most likely not
useful anyways.

222

\box_new:N
\box_new:c

\box_clear:N

\box_clear:c
\box_gclear:N

\box_gclear:c

\box_clear_new:N
\box_clear_new:c
\box_gclear_new:N
\box_gclear_new:c

\box_set_eq:NN
\box_set_eq:(cN|Nc|cc)
\box_gset_eq:NN
\box_gset_eq:(cN|Nc|cc)

\box_if_exist_p:N =
\box_if_exist_p:c *
\box_if_exist:NTF x
\box_if_exist:cTF %

New: 2012-03-03

\box_use:N
\box_use:c

Part XXVII
The I13box package
Boxes

There are three kinds of box operations: horizontal mode denoted with prefix \hbox_,
vertical mode with prefix \vbox_, and the generic operations working in both modes with
prefix \box_.

1 Creating and initialising boxes

\box_new:N (box)

Creates a new (box) or raises an error if the name is already taken. The declaration is
global. The (boz) is initially void.

\box_clear:N (box)

Clears the content of the (boz) by setting the box equal to \c_empty_box.

\box_clear_new:N (box)

Ensures that the (boz) exists globally by applying \box_new:N if necessary, then applies
\box_(g)clear:N to leave the (box) empty.

\box_set_eq:NN (boxi) (boxz)

Sets the content of (box;) equal to that of (boxz).

\box_if_exist_p:N (box)
\box_if_exist:NTF (box) {(true code)} {(false code)}

Tests whether the (boz) is currently defined. This does not check that the (bozx) really is
a box.

2 Using boxes

\box_use:N (box)

Inserts the current content of the (boz) onto the current list for typesetting. An error is
raised if the variable does not exist or if it is invalid.

TEXhackers note: This is the TEX primitive \copy.

223

\box_move_right:nn
\box_move_left:nn

\box_move_up:nn
\box_move_down:nn

\box_dp:N
\box_dp:c

\box_ht:N
\box_ht:c

\box_wd:N
\box_wd:c

\box_set_dp:Nn
\box_set_dp:cn
\box_gset_dp:Nn
\box_gset_dp:cn

Updated: 2019-01-22

\box_set_ht:Nn
\box_set_ht:cn
\box_gset_ht:Nn
\box_gset_ht:cn

Updated: 2019-01-22

\box_move_right:nn {(dimexpr)} {(box function)}

This function operates in vertical mode, and inserts the material specified by the (box
function) such that its reference point is displaced horizontally by the given (dimezpr)
from the reference point for typesetting, to the right or left as appropriate. The (box
function) should be a box operation such as \box_use:N \<box> or a “raw” box specifi-
cation such as \vbox:n { xyz }.

\box_move_up:nn {(dimexpr)} {(box functiomn)}

This function operates in horizontal mode, and inserts the material specified by the (box
function) such that its reference point is displaced vertically by the given (dimexpr)
from the reference point for typesetting, up or down as appropriate. The (boz function)
should be a box operation such as \box_use:N \<box> or a “raw” box specification such
as \vbox:n { xyz }.

3 Measuring and setting box dimensions

\box_dp:N (box)

Calculates the depth (below the baseline) of the (boz) in a form suitable for use in a
(dimension expression).

TgXhackers note: This is the TEX primitive \dp.

\box_ht:N (box)

Calculates the height (above the baseline) of the (boz) in a form suitable for use in a
(dimension expression).

TEXhackers note: This is the TEX primitive \ht.

\box_wd:N (box)

Calculates the width of the (boz) in a form suitable for use in a (dimension expression).

TEXhackers note: This is the TEX primitive \wd.

\box_set_dp:Nn (box) {(dimension expression)}

Set the depth (below the baseline) of the (boz) to the value of the {(dimension
expression)}.

\box_set_ht:Nn (box) {(dimension expression)}

Set the height (above the baseline) of the (box) to the value of the {(dimension
expression)}.

224

\box_set_wd:Nn
\box_set_wd:cn
\box_gset_wd:Nn
\box_gset_wd:cn

Updated: 2019-01-22

\box_if_empty_p:N
\box_if_empty_p:c
\box_if_empty:NTF
\box_if_empty:cTF

L S

\box_if_horizontal_p:N
\box_if_horizontal_p:c
\box_if_horizontal:NTF
\box_if_horizontal:cTF

L S

\box_if_vertical_p:N
\box_if_vertical_p:c
\box_if_vertical:NTF
\box_if_vertical:cTF

X X ot

\box_set_to_last:N
\box_set_to_last:c
\box_gset_to_last:N
\box_gset_to_last:c

\c_empty_box

Updated: 2012-11-04

\box_set_wd:Nn (box) {(dimension expression)}

Set the width of the (bozx) to the value of the {(dimension expression)}.

4 Box conditionals

\box_if_empty_p:N (box)
\box_if_empty:NTF (box) {(true code)} {(false code)}

Tests if (bozx) is a empty (equal to \c_empty_box).

\box_if_horizontal_p:N (box)
\box_if_horizontal:NTF (box) {(true code)} {(false code)}

Tests if (bozx) is a horizontal box.

\box_if_vertical_p:N (box)
\box_if_vertical:NTF (box) {(true code)} {(false code)}

Tests if (bozx) is a vertical box.

5 The last box inserted

\box_set_to_last:N (box)

Sets the (boz) equal to the last item (box) added to the current partial list, removing the
item from the list at the same time. When applied to the main vertical list, the (boz) is
always void as it is not possible to recover the last added item.

6 Constant boxes

This is a permanently empty box, which is neither set as horizontal nor vertical.

TEXhackers note: At the TEX level this is a void box.

225

\1_tmpa_box
\1_tmpb_box

Updated: 2012-11-04

\g_tmpa_box
\g_tmpb_box

\box_show:N
\box_show:c

Updated: 2012-05-11

\box_show:Nnn
\box_show:cnn

New: 2012-05-11

\box_log:N
\box_log:c

New: 2012-05-11

\box_log:Nnn
\box_log:cnn

New: 2012-05-11

\hbox:n

Updated: 2017-04-05

7 Scratch boxes

Scratch boxes for local assignment. These are never used by the kernel code, and so are
safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch boxes for global assignment. These are never used by the kernel code, and so
are safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

8 Viewing box contents

\box_show:N (box)
Shows full details of the content of the (boz) in the terminal.

\box_show:Nnn (box) {(intexpri)} {(intexpr:)}

Display the contents of (boz) in the terminal, showing the first (intezpr;) items of the
box, and descending into (intexpry) group levels.

\box_log:N (box)
Writes full details of the content of the (boz) to the log.

\box_log:Nnn (box) {(intexpri)} {(intexprs)}

Writes the contents of (boz) to the log, showing the first (intezpr;) items of the box, and
descending into (intexprsy) group levels.

9 Boxes and color

All I4TEX3 boxes are “color safe”: a color set inside the box stops applying after the end
of the box has occurred.

10 Horizontal mode boxes

\hbox:n {({contents)}

Typesets the (contents) into a horizontal box of natural width and then includes this box
in the current list for typesetting.

226

\hbox_to_wd:nn \hbox_to_wd:nn {(dimexpr)} {(contents)}

Updated: 2017-04-05 Typesets the (contents) into a horizontal box of width (dimezpr) and then includes this
box in the current list for typesetting.

\hbox_to_zero:n \hbox_to_zero:n {(contents)}

Updated: 2017-04-05 Typesets the (contents) into a horizontal box of zero width and then includes this box in
the current list for typesetting.

\hbox_set :Nn \hbox_set:Nn (box) {(contents)}
\hbox_set:cn
\hbox_gset:Nn
\hbox_gset:cn

Typesets the (contents) at natural width and then stores the result inside the (boz).

Updated: 2017-04-05

\hbox_set_to_wd:Nnn \hbox_set_to_wd:Nnn (box) {(dimexpr)} {(contents)}
\hbox_set_to_wd:cnn
\hbox_gset_to_wd:Nnn
\hbox_gset_to_wd:cnn

Typesets the (contents) to the width given by the (dimezpr) and then stores the result
inside the (boz).

Updated: 2017-04-05

\hbox_overlap_right:n \hbox_overlap_right:n {(contents)}

Updated: 2017-04-05 Typesets the (contents) into a horizontal box of zero width such that material protrudes
to the right of the insertion point.

\hbox_overlap_left:n \hbox_overlap_left:n {(contents)}

Updated: 2017-04-05 Typesets the (contents) into a horizontal box of zero width such that material protrudes
to the left of the insertion point.

\hbox_set:Nw \hbox_set:Nw (box) (contents) \hbox_set_end:
\hbox_set:cw

\hbox_set_end:
\hbox_gset:Nw
\hbox_gset:cw
\hbox_gset_end: argument.

Typesets the (contents) at natural width and then stores the result inside the (boz). In
contrast to \hbox_set :Nn this function does not absorb the argument when finding the
(content), and so can be used in circumstances where the (content) may not be a simple

Updated: 2017-04-05

\hbox_set_to_wd:Nnw \hbox_set_to_wd:Nnw (box) {(dimexpr)} (contents) \hbox_set_end:
\hbox_set_to_wd:cnw
\hbox_gset_to_wd:Nnw
\hbox_gset_to_wd:cnw

Typesets the (contents) to the width given by the (dimezpr) and then stores the result
inside the (boz). In contrast to \hbox_set_to_wd:Nnn this function does not absorb the
argument when finding the (content), and so can be used in circumstances where the
(content) may not be a simple argument

New: 2017-06-08

\hbox_unpack:N \hbox_unpack:N (box)

M Unpacks the content of the horizontal (boz), retaining any stretching or shrinking applied

when the (boz) was set.

TEXhackers note: This is the TEX primitive \unhcopy.

227

\vbox:n

Updated: 2017-04-05

\vbox_top:n

Updated: 2017-04-05

\vbox_to_ht:nn

Updated: 2017-04-05

\vbox_to_zero:n

Updated: 2017-04-05

\vbox_set:Nn
\vbox_set:cn
\vbox_gset:Nn
\vbox_gset:cn

Updated: 2017-04-05

\vbox_set_top:Nn
\vbox_set_top:cn
\vbox_gset_top:Nn
\vbox_gset_top:cn

Updated: 2017-04-05

\vbox_set_to_ht:Nnn
\vbox_set_to_ht:cnn
\vbox_gset_to_ht:Nnn
\vbox_gset_to_ht:cnn

Updated: 2017-04-05

11 Vertical mode boxes

Vertical boxes inherit their baseline from their contents. The standard case is that the
baseline of the box is at the same position as that of the last item added to the box. This
means that the box has no depth unless the last item added to it had depth. As a result
most vertical boxes have a large height value and small or zero depth. The exception are
_top boxes, where the reference point is that of the first item added. These tend to have
a large depth and small height, although the latter is typically non-zero.

\vbox:n {(contents)}

Typesets the (contents) into a vertical box of natural height and includes this box in the
current list for typesetting.

\vbox_top:n {(contents)}

Typesets the (contents) into a vertical box of natural height and includes this box in the
current list for typesetting. The baseline of the box is equal to that of the first item
added to the box.

\vbox_to_ht:nn {(dimexpr)} {(contents)}

Typesets the (contents) into a vertical box of height (dimezpr) and then includes this
box in the current list for typesetting.

\vbox_to_zero:n {(contents)}

Typesets the (contents) into a vertical box of zero height and then includes this box in
the current list for typesetting.

\vbox_set:Nn (box) {(contents)}

Typesets the (contents) at natural height and then stores the result inside the (box).

\vbox_set_top:Nn (box) {(contents)}

Typesets the (contents) at natural height and then stores the result inside the (boz). The
baseline of the box is equal to that of the first item added to the box.

\vbox_set_to_ht:Nnn (box) {(dimexpr)} {(contents)}

Typesets the (contents) to the height given by the (dimezpr) and then stores the result
inside the (boz).

228

\vbox_set:Nw \vbox_set:Nw (box) (contents) \vbox_set_end:
\vbox_set:cw
\vbox_set_end:

Typesets the (contents) at natural height and then stores the result inside the (boz). In
\vbox_gset : Nu contrast to \vbox_set :Nn this function does not absorb the argument when finding the
\vbox_gset:cw (content), and so can be used in circumstances where the (content) may not be a simple

\vbox_gset_end: argument.

Updated: 2017-04-05

\vbox_set_to_ht:Nnw \vbox_set_to_ht:Nnw (box) {(dimexpr)} (contents) \vbox_set_end:
\vbox_set_to_ht:cnw
\vbox_gset_to_ht:Nnw
\vbox_gset_to_ht:cnw

Typesets the (contents) to the height given by the (dimezpr) and then stores the result
inside the (boz). In contrast to \vbox_set_to_ht:Nnn this function does not absorb the
argument when finding the (content), and so can be used in circumstances where the
(content) may not be a simple argument

New: 2017-06-08

\vbox_set_split_to_ht:NNn \vbox_set_split_to_ht:NNn (boxi) (boxs) {(dimexpr)}
\vbox_set_split_to_ht:(cNn|Ncn|ccn)

\vbox_gset_split_to_ht:NNn

\vbox_gset_split_to_ht:(cNn|Ncn|ccn)

Updated: 2018-12-29

Sets (boz;) to contain material to the height given by the (dimezpr) by removing content
from the top of (boxz) (which must be a vertical box).

\vbox_unpack:N \vbox_unpack:N (box)

M Unpacks the content of the vertical (bozx), retaining any stretching or shrinking applied

when the (boz) was set.

TEXhackers note: This is the TEX primitive \unvcopy.

12 Using boxes efficiently

The functions above for using box contents work in exactly the same way as for any other
expl3 variable. However, for efficiency reasons, it is also useful to have functions which
drop box contents on use. When a box is dropped, the box becomes empty at the group
level where the box was originally set rather than necessarily at the current group level.
For example, with

\hbox_set:Nn \1_tmpa_box { A }
\group_begin:
\hbox_set:Nn \1_tmpa_box { B }
\group_begin:
\box_use_drop:N \1_tmpa_box
\group_end:
\box_show:N \1_tmpa_box
\group_end:
\box_show:N \1_tmpa_box

229

\box_use_drop:N
\box_use_drop:c

\box_set_eq_drop:NN
\box_set_eq_drop:(cN|N¢c|cc)

New: 2019-01-17

\box_gset_eq_drop:NN
\box_gset_eq_drop: (cN|Nc|cc)

New: 2019-01-17

\hbox_unpack_drop:N
\hbox_unpack_drop:c

New: 2019-01-17

\vbox_unpack_drop:N
\vbox_unpack_drop:c

New: 2019-01-17

the first use of \box_show:N will show an entirely cleared (void) box, and the second will
show the letter A in the box.

These functions should be preferred when the content of the box is no longer required
after use. Note that due to the unusual scoping behaviour of drop functions they may be
applied to both local and global boxes: the latter will naturally be set and thus cleared
at a global level.

\box_use_drop:N (box)

Inserts the current content of the (box) onto the current list for typesetting then drops
the box content. An error is raised if the variable does not exist or if it is invalid. This
function may be applied to local or global boxes.

TEXhackers note: This is the \box primitive.

\box_set_eq_drop:NN (boxi) (boxz2)
Sets the content of (box;) equal to that of (boxa), then drops (boxs).

\box_gset_eq_drop:NN (box;) (boxs)
Sets the content of (box;) globally equal to that of (boxz), then drops (boxz).

\hbox_unpack_drop:N (box)
Unpacks the content of the horizontal (box), retaining any stretching or shrinking applied
when the (boz) was set. The original (boz) is then dropped.

TEXhackers note: This is the TEX primitive \unhbox.

\vbox_unpack_drop:N (box)
Unpacks the content of the vertical (boz), retaining any stretching or shrinking applied
when the (boz) was set. The original (bozx) is then dropped.

TEXhackers note: This is the TEX primitive \unvbox.

13 Affine transformations

Affine transformations are changes which (informally) preserve straight lines. Simple
translations are affine transformations, but are better handled in TEX by doing the trans-
lation first, then inserting an unmodified box. On the other hand, rotation and resizing
of boxed material can best be handled by modifying boxes. These transformations are
described here.

230

\box_autosize_to_wd_and_ht:Nnn \box_autosize_to_wd_and_ht:Nnn (box) {(x-size)} {(y-size)}
\box_autosize_to_wd_and_ht:cnn
\box_gautosize_to_wd_and_ht:Nnn
\box_gautosize_to_wd_and_ht:cnn

New: 2017-04-04
Updated: 2019-01-22

Resizes the (boz) to fit within the given (z-size) (horizontally) and (y-size) (vertically);
both of the sizes are dimension expressions. The (y-size) is the height only: it does not
include any depth. The updated (boz) is an hbox, irrespective of the nature of the (box)
before the resizing is applied. The final size of the (bozx) is the smaller of {(z-size)} and
{(y-size)}, i.e. the result fits within the dimensions specified. Negative sizes cause the
material in the (boz) to be reversed in direction, but the reference point of the (box) is
unchanged. Thus a negative (y-size) results in the (box) having a depth dependent on
the height of the original and wvice versa.

\box_autosize_to_wd_and_ht_plus_dp:Nnn \box_autosize_to_wd_and_ht_plus_dp:Nnn (box) {(x-size)}
\box_autosize_to_wd_and_ht_plus_dp:cnn {(y-size)}

\box_gautosize_to_wd_and_ht_plus_dp:Nnn

\box_gautosize_to_wd_and_ht_plus_dp:cnn

New: 2017-04-04
Updated: 2019-01-22

\box_resize_to_ht:Nn
\box_resize_to_ht:cn
\box_gresize_to_ht:Nn
\box_gresize_to_ht:cn

Updated: 2019-01-22

Resizes the (boz) to fit within the given (z-size) (horizontally) and (y-size) (vertically);
both of the sizes are dimension expressions. The (y-size) is the total vertical size (height
plus depth). The updated (boz) is an hbox, irrespective of the nature of the (box)
before the resizing is applied. The final size of the (bozx) is the smaller of {(z-size)} and
{(y-size)}, i.e. the result fits within the dimensions specified. Negative sizes cause the
material in the (boz) to be reversed in direction, but the reference point of the (bozx) is
unchanged. Thus a negative (y-size) results in the (box) having a depth dependent on
the height of the original and wvice versa.

\box_resize_to_ht:Nn (box) {(y-size)}

Resizes the (box) to (y-size) (vertically), scaling the horizontal size by the same amount;
(y-size) is a dimension expression. The (y-size) is the height only: it does not include
any depth. The updated (boz) is an hbox, irrespective of the nature of the (box) before
the resizing is applied. A negative (y-size) causes the material in the (boz) to be reversed
in direction, but the reference point of the (boz) is unchanged. Thus a negative (y-size)
results in the (box) having a depth dependent on the height of the original and vice versa.

231

\box_resize_to_ht_plus_dp:Nn \box_resize_to_ht_plus_dp:Nn (box) {(y-size)}

\box_resize_to_ht_plus_dp:cn
\box_gresize_to_ht_plus_dp:Nn
\box_gresize_to_ht_plus_dp:cn

Updated: 2019-01-22

\box_resize_to_wd:Nn
\box_resize_to_wd:cn
\box_gresize_to_wd:Nn
\box_gresize_to_wd:cn

Updated: 2019-01-22

Resizes the (box) to (y-size) (vertically), scaling the horizontal size by the same amount;
(y-size) is a dimension expression. The (y-size) is the total vertical size (height plus
depth). The updated (boz) is an hbox, irrespective of the nature of the (boz) before the
resizing is applied. A negative (y-size) causes the material in the (boz) to be reversed
in direction, but the reference point of the (boz) is unchanged. Thus a negative (y-size)
results in the (box) having a depth dependent on the height of the original and vice versa.

\box_resize_to_wd:Nn (box) {(x-size)}

Resizes the (box) to (z-size) (horizontally), scaling the vertical size by the same amount;
(2-size) is a dimension expression. The updated (boz) is an hbox, irrespective of the
nature of the (boz) before the resizing is applied. A negative (z-size) causes the material
in the (bozx) to be reversed in direction, but the reference point of the (boz) is unchanged.
Thus a negative (z-size) results in the (box) having a depth dependent on the height of
the original and vice versa.

\box_resize_to_wd_and_ht:Nnn \box_resize_to_wd_and_ht:Nnn (box) {(x-size)} {(y-size)}
\box_resize_to_wd_and_ht:cnn
\box_gresize_to_wd_and_ht:Nnn
\box_gresize_to_wd_and_ht:cnn

New: 2014-07-03
Updated: 2019-01-22

Resizes the (boz) to (x-size) (horizontally) and (y-size) (vertically): both of the sizes are
dimension expressions. The (y-size) is the height only and does not include any depth.
The updated (boz) is an hbox, irrespective of the nature of the (bozx) before the resizing
is applied. Negative sizes cause the material in the (boz) to be reversed in direction, but
the reference point of the (boz) is unchanged. Thus a negative (y-size) results in the
(boz) having a depth dependent on the height of the original and wvice versa.

\box_resize_to_wd_and_ht_plus_dp:Nnn \box_resize_to_wd_and_ht_plus_dp:Nnn (box) {(x-size)} {(y-size)}
\box_resize_to_wd_and_ht_plus_dp:cnn
\box_gresize_to_wd_and_ht_plus_dp:Nnn
\box_gresize_to_wd_and_ht_plus_dp:cnn

New: 2017-04-06
Updated: 2019-01-22

Resizes the (boz) to (z-size) (horizontally) and (y-size) (vertically): both of the sizes are
dimension expressions. The (y-size) is the total vertical size (height plus depth). The
updated (bozx) is an hbox, irrespective of the nature of the (boz) before the resizing is
applied. Negative sizes cause the material in the (boz) to be reversed in direction, but
the reference point of the (boz) is unchanged. Thus a negative (y-size) results in the
(boz) having a depth dependent on the height of the original and wvice versa.

232

\box_rotate:Nn
\box_rotate:cn
\box_grotate:Nn
\box_grotate:cn

Updated: 2019-01-22

\box_scale:Nnn
\box_scale:cnn
\box_gscale:Nnn
\box_gscale:cnn

Updated: 2019-01-22

\if_hbox:N *

\if_vbox:N *

\if _box_empty:N =

\box_rotate:Nn (box) {(angle)}

Rotates the (boz) by (angle) (in degrees) anti-clockwise about its reference point. The
reference point of the updated box is moved horizontally such that it is at the left side
of the smallest rectangle enclosing the rotated material. The updated (boz) is an hbox,
irrespective of the nature of the (box) before the rotation is applied.

\box_scale:Nnn (box) {(x-scale)} {(y-scale)}

Scales the (boz) by factors (a-scale) and (y-scale) in the horizontal and vertical directions,
respectively (both scales are integer expressions). The updated (box) is an hbox, irre-
spective of the nature of the (boz) before the scaling is applied. Negative scalings cause
the material in the (bozx) to be reversed in direction, but the reference point of the (boz)
is unchanged. Thus a negative (y-scale) results in the (boz) having a depth dependent
on the height of the original and wice versa.

14 Primitive box conditionals

\if_hbox:N (box)
(true code)
\else:
(false code)
\fi:
Tests is (boz) is a horizontal box.

TgXhackers note: This is the TEX primitive \ifhbox.

\if_vbox:N (box)
(true code)
\else:
(false code)
\fi:
Tests is (boz) is a vertical box.

TEXhackers note: This is the TEX primitive \ifvbox.

\if_box_empty:N (box)
(true code)

\else:
(false code)

\fi:

Tests is (boz) is an empty (void) box.

TEXhackers note: This is the TEX primitive \ifvoid.

233

\coffin_new:N

\coffin_new:c

New: 2011-08-17

\coffin_clear:N
\coffin_clear:c
\coffin_gclear:N
\coffin_gclear:c

New: 2011-08-17
Updated: 2019-01-21

Part XXVIII
The 13coffins package
Coffin code layer

The material in this module provides the low-level support system for coffins. For details
about the design concept of a coffin, see the xcoffins module (in the 13experimental bundle).

1 Creating and initialising coffins

\coffin_new:N (coffin)

Creates a new (coffin) or raises an error if the name is already taken. The declaration is
global. The (coffin) is initially empty.

\coffin_clear:N (coffin)

Clears the content of the (coffin).

\coffin_set_eq:NN

\coffin_set_eq:(Nc|cN)

\coffin_set_eq:cc
\coffin_gset_eq:Nc

\coffin_gset_eq:(cN|cc)

\coffin_set_eq:NN (coffin;) {coffiny)

\coffin_gset_eq:NN

New: 2011-08-17
Updated: 2019-01-21

\coffin_if_exist_p:N
\coffin_if_exist_p:c
\coffin_if_exist:NTF

*
*
*
\coffin_if exist:cTF %

New: 2012-06-20

\hcoffin_set:Nn
\hcoffin_set:cn
\hcoffin_gset:Nn
\hcoffin_gset:cn

New: 2011-08-17
Updated: 2019-01-21

Sets both the content and poles of (coffin;) equal to those of (coffing).
\coffin_if_exist_p:N (box)

\coffin_if_exist:NTF (box) {(true code)} {(false code)}

Tests whether the (coffin) is currently defined.

2 Setting coffin content and poles

\hcoffin_set:Nn (coffin) {(material)}

Typesets the (material) in horizontal mode, storing the result in the (coffin). The stan-
dard poles for the (coffin) are then set up based on the size of the typeset material.

234

\hcoffin_set:Nw
\hcoffin_set:cw
\hcoffin_set_end:
\hcoffin_gset:Nw
\hcoffin_gset:cw
\hcoffin_gset_end:

New: 2011-09-10
Updated: 2019-01-21

\vcoffin_set:Nnn
\vcoffin_set:cnn
\vcoffin_gset:Nnn
\vcoffin_gset:cnn

New: 2011-08-17
Updated: 2019-01-21

\vcoffin_set:Nnw
\vcoffin_set:cnw
\vcoffin_set_end:
\vcoffin_gset:Nnw
\vcoffin_gset:cnw
\vcoffin_gset_end:

New: 2011-09-10
Updated: 2019-01-21

\hcoffin_set:Nw (coffin) (material) \hcoffin_set_end:

Typesets the (material) in horizontal mode, storing the result in the (coffin). The stan-
dard poles for the (coffin) are then set up based on the size of the typeset material. These
functions are useful for setting the entire contents of an environment in a coffin.

\vcoffin_set:Nnn (coffin) {(width)} {(material)}

Typesets the (material) in vertical mode constrained to the given (width) and stores the
result in the (coffin). The standard poles for the (coffin) are then set up based on the
size of the typeset material.

\vcoffin_set:Nnw (coffin) {(width)} (material) \vcoffin_set_end:

Typesets the (material) in vertical mode constrained to the given (width) and stores the
result in the {coffin). The standard poles for the (coffin) are then set up based on the
size of the typeset material. These functions are useful for setting the entire contents of
an environment in a coffin.

\coffin_set_horizontal_pole:Nnn \coffin_set_horizontal_pole:Nnn (coffin)
\coffin_set_horizontal_pole:cnn {(pole)} {(offset)}

\coffin_gset_horizontal_pole:Nnn
\coffin_gset_horizontal_pole:cnn

New: 2012-07-20

Updated: 2019-01-21

Sets the (pole) to run horizontally through the (coffin). The (pole) is placed at the {offset)
from the bottom edge of the bounding box of the (coffin). The (offset) should be given
as a dimension expression.

\coffin_set_vertical_pole:Nnn \coffin_set_vertical_pole:Nnn (coffin) {(pole)} {(offset)}

\coffin_set_vertical_pole:cnn
\coffin_gset_vertical_pole:Nnn
\coffin_gset_vertical_pole:cnn

New: 2012-07-20
Updated: 2019-01-21

Sets the (pole) to run vertically through the (coffin). The (pole) is placed at the {offset)
from the left-hand edge of the bounding box of the (coffin). The (offset) should be given

as a dimension expression.

235

\coffin_resize:Nnn
\coffin_resize:cnn
\coffin_gresize:Nnn
\coffin_gresize:cnn

Updated: 2019-01-23

\coffin_rotate:Nn
\coffin_rotate:cn
\coffin_grotate:Nn
\coffin_grotate:cn

\coffin_scale:Nnn
\coffin_scale:cnn
\coffin_gscale:Nnn
\coffin_gscale:cnn

Updated: 2019-01-23

3 Coffin affine transformations

\coffin_resize:Nnn (coffin) {(width)} {(total-height)}

Resized the (coffin) to (width) and (total-height), both of which should be given as di-
mension expressions.

\coffin_rotate:Nn (coffin) {(angle)}

Rotates the (coffin) by the given (angle) (given in degrees counter-clockwise). This
process rotates both the coffin content and poles. Multiple rotations do not result in the
bounding box of the coffin growing unnecessarily.

\coffin_scale:Nnn (coffin) {(x-scale)} {(y-scale)}

Scales the (coffin) by a factors (z-scale) and (y-scale) in the horizontal and vertical
directions, respectively. The two scale factors should be given as real numbers.

4 Joining and using coffins

\coffin_attach:NnnNnnnn \coffin_attach:NnnNnnnn
\coffin_attach:(cnnNnnnn|Nnncnnnn|cnncnnnn) (coffini) {(coffin;-pole;1)} {(coffin;-polez)}
\coffin_gattach:NnnNnnnn (coffiny) {(coffina-pole1)} {(coffinp-poles)}
\coffin_gattach:(cnnNnnnn|Nnncnnnn|cnncnnnn) {(x-offset)} {(y-offset)}

Updated: 2019-01-22

This function attaches (coffina) to (coffiny) such that the bounding box of (coffini)
is not altered, i.e. {coffing) can protrude outside of the bounding box of the cof-
fin. The alignment is carried out by first calculating (handle;), the point of intersec-
tion of (coffing-poler) and (coffini-poles), and (handles), the point of intersection of
(coffing-poler) and (coffina-poles). (coffing) is then attached to {coffiny) such that the
relationship between (handle;) and (handles) is described by the (z-offset) and (y-offset).
The two offsets should be given as dimension expressions.

\coffin_join:NnnNnnnn

\coffin_join:NnnNnnnn

\coffin_join:(cnnNnnnn|Nnncnnnn|cnncnnnn) (coffini) {({coffini-polei)} {{coffini-poles)}
\coffin_gjoin:NnnNnnnn (coffing) {(coffiny-polei)} {({coffinp-poles)}
\coffin_gjoin:(cnnNnnnn|Nnncnnnn|cnnennnn) {(x-offset)} {(y-offset)}

Updated: 2019-01-22

This function joins (coffing) to {coffiny) such that the bounding box of (coffin;) may
expand. The new bounding box covers the area containing the bounding boxes of the
two original coffins. The alignment is carried out by first calculating (handle;), the
point of intersection of (coffini-pole;) and (coffins-poles), and (handles), the point of
intersection of (coffing-poler) and (coffing-poles). {coffing) is then attached to (coffing)
such that the relationship between (handle;) and (handles) is described by the (z-offset)
and (y-offset). The two offsets should be given as dimension expressions.

236

\coffin_typeset:Nnnnn
\coffin_typeset:cnnnn

Updated: 2012-07-20

\coffin_dp:N
\coffin_dp:c

\coffin_ht:N
\coffin_ht:c

\coffin_wd:N
\coffin_wd:c

\coffin_display_handles:Nn
\coffin_display_handles:cn

Updated: 2011-09-02

\coffin_mark_handle:Nnnn
\coffin _mark _handle:cnnn

Updated: 2011-09-02

\coffin_show_structure:N
\coffin_show_structure:c

Updated: 2015-08-01

\coffin_typeset:Nnnnn (coffin) {(polei)} {(pole:)}
{(x-offset)} {(y-offset)}

Typesetting is carried out by first calculating (handle), the point of intersection of (pole;)
and (poles). The coffin is then typeset in horizontal mode such that the relationship be-
tween the current reference point in the document and the (handle) is described by the
(2-offset) and (y-offset). The two offsets should be given as dimension expressions. Type-
setting a coffin is therefore analogous to carrying out an alignment where the “parent”
coffin is the current insertion point.

5 Measuring coffins

\coffin_dp:N (coffin)

Calculates the depth (below the baseline) of the {coffin) in a form suitable for use in a
(dimension expression).

\coffin_ht:N (coffin)

Calculates the height (above the baseline) of the (coffin) in a form suitable for use in a
(dimension expression).

\coffin_wd:N (coffin)

Calculates the width of the (coffin) in a form suitable for use in a (dimension expression).
6 Coffin diagnostics

\coffin_display_handles:Nn (coffin) {({color)}

This function first calculates the intersections between all of the (poles) of the (coffin) to
give a set of (handles). It then prints the (coffin) at the current location in the source,
with the position of the (handles) marked on the coffin. The (handles) are labelled as
part of this process: the locations of the (handles) and the labels are both printed in the
(color) specified.

\coffin_mark_handle:Nnnn (coffin) {(polei)} {(pole:z)} {{color)}

This function first calculates the (handle) for the (coffin) as defined by the intersection
of (poler) and (poley). It then marks the position of the (handle) on the (coffin). The
(handle) are labelled as part of this process: the location of the (handle) and the label
are both printed in the (color) specified.

\coffin_show_structure:N (coffin)

This function shows the structural information about the (coffin) in the terminal. The
width, height and depth of the typeset material are given, along with the location of all
of the poles of the coffin.

Notice that the poles of a coffin are defined by four values: the x and y co-ordinates
of a point that the pole passes through and the z- and y-components of a vector denoting
the direction of the pole. It is the ratio between the later, rather than the absolute values,
which determines the direction of the pole.

237

\coffin_log_structure:N
\coffin_log_structure:c

New: 2014-08-22
Updated: 2015-08-01

\c_empty_coffin

\1_tmpa_coffin
\1_tmpb_coffin

New: 2012-06-19

\g_tmpa_coffin
\g_tmpb_coffin

New: 2019-01-24

\coffin_log_structure:N (coffin)

This function writes the structural information about the (coffin) in the log file. See also
\coffin_show_structure:N which displays the result in the terminal.

7 Constants and variables

A permanently empty coffin.

Scratch coffins for local assignment. These are never used by the kernel code, and so
are safe for use with any BTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch coffins for global assignment. These are never used by the kernel code, and so
are safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

238

\color_group_begin:
\color_group_end:

New: 2011-09-03

\color_ensure_current:

New: 2011-09-03

Part XXIX
The 13color-base package
Color support

This module provides support for color in XTEX3. At present, the material here is mainly
intended to support a small number of low-level requirements in other I3kernel modules.

1 Color in boxes

Controlling the color of text in boxes requires a small number of control functions, so
that the boxed material uses the color at the point where it is set, rather than where it
is used.

\color_group_begin:

\color_group_end:

Creates a color group: one used to “trap” color settings.

\color_ensure_current:

Ensures that material inside a box uses the foreground color at the point where the box
is set, rather than that in force when the box is used. This function should usually be
used within a \color_group_begin: ...\color_group_end: group.

239

\lua_now:n *
\lua_now:e *

New: 2018-06-18

\lua_shipout_e:n
\lua_shipout:n

New: 2018-06-18

\lua_escape:n *
\lua_escape:e *

New: 2015-06-29

Part XXX
The I13luatex package:
LuaTgX-specific functions

The LuaTgX engine provides access to the Lua programming language, and with it access
to the “internals” of TEX. In order to use this within the framework provided here, a
family of functions is available. When used with pdfTEX, pIEX, uplEX or X{IEX these
raise an error: use \sys_if_engine_luatex:T to avoid this. Details on using Lua with
the LuaTgX engine are given in the LuaTgX manual.

1 Breaking out to Lua

\lua_now:n {(token list)}

The (token list) is first tokenized by TEX, which includes converting line ends to spaces in
the usual TEX manner and which respects currently-applicable TEX category codes. The
resulting (Lua input) is passed to the Lua interpreter for processing. Each \lua_now:n
block is treated by Lua as a separate chunk. The Lua interpreter executes the (Lua
input) immediately, and in an expandable manner.

TEXhackers note: \lua_now:e is a macro wrapper around \directlua: when LuaTgX is
in use two expansions are required to yield the result of the Lua code.

\lua_shipout:n {(token list)}

The (token list) is first tokenized by TEX, which includes converting line ends to spaces in
the usual TEX manner and which respects currently-applicable TEX category codes. The
resulting (Lua input) is passed to the Lua interpreter when the current page is finalised
(i.e. at shipout). Each \lua_shipout:n block is treated by Lua as a separate chunk.
The Lua interpreter will execute the (Lua input) during the page-building routine: no
TEX expansion of the (Lua input) will occur at this stage.

In the case of the \1lua_shipout_e:n version the input is fully expanded by TEX in
an e-type manner during the shipout operation.

TgXhackers note: At a TEX level, the (Lua input) is stored as a “whatsit”.

\lua_escape:n {(token list)}

Converts the (token list) such that it can safely be passed to Lua: embedded backslashes,
double and single quotes, and newlines and carriage returns are escaped. This is done by
prepending an extra token consisting of a backslash with category code 12, and for the
line endings, converting them to \n and \r, respectively.

TgXhackers note: \lua_escape:e is a macro wrapper around \luaescapestring: when
LuaTgX is in use two expansions are required to yield the result of the Lua code.

240

13kernel

13kernel.charcat

13kernel.elapsedtime

13kernel.filemdfivesum

13kernel.filemoddate

13kernel.filesize

13kernel.resettimer

13kernel.strcmp

2 Lua interfaces

As well as interfaces for TEX, there are a small number of Lua functions provided here.

All public interfaces provided by the module are stored within the 13kernel table.

13kernel.charcat ({charcode), (catcode))

Constructs a character of (charcode) and (catcode) and returns the result to TEX.

13kernel.elapsedtime ()

Returns the time in (scaled seconds) since the start of the TEX run or since 13kernel .resettimer
was issued.

13kernel.filemdfivesum({file))

Returns the of the MD5 sum of the file contents read as bytes; note that the result will
depend on the nature of the line endings used in the file, in contrast to normal TEX
behaviour. If the (file) is not found, nothing is returned with no error raised.

13kernel.filemoddate ((file))
Returns the of the date/time of last modification of the (file) in the format

D: (year)(month){day) (hour){minute)(second) offset)

where the latter may be Z (UTC) or (plus-minus)(hours)’ (minutes)’. If the (file) is not
found, nothing is returned with no error raised.

13kernel.filesize({file))

Returns the size of the (file) in bytes. If the (file) is not found, nothing is returned with
no error raised.

13kernel.resettimer ()

Resets the timer used by 13kernel.elapsetime.

13kernel.strcmp((str one), (str two))

Compares the two strings and returns 0 to TEX if the two are identical.

241

Part XXXI
The 13unicode package: Unicode
support functions

This module provides Unicode-specific functions along with loading data from a range of
Unicode Consortium files. At present, it provides no public functions.

242

Part XXXII
The I3candidates package
Experimental additions to 13kernel

1 Important notice

This module provides a space in which functions can be added to I3kernel (expl3) while
still being experimental.

As such, the functions here may not remain in their current form,
or indeed at all, in I3kernel in the future.

In contrast to the material in |3experimental, the functions here are all small additions to
the kernel. We encourage programmers to test them out and report back on the LaTeX-L
mailing list.

Thus, if you intend to use any of these functions from the candidate module in a
public package offered to others for productive use (e.g., being placed on CTAN) please
consider the following points carefully:

e Be prepared that your public packages might require updating when such functions
are being finalized.

e Consider informing us that you use a particular function in your public package,
e.g., by discussing this on the LaTeX-L mailing list. This way it becomes easier to
coordinate any updates necessary without issues for the users of your package.

e Discussing and understanding use cases for a particular addition or concept also
helps to ensure that we provide the right interfaces in the final version so please
give us feedback if you consider a certain candidate function useful (or not).

We only add functions in this space if we consider them being serious candidates for
a final inclusion into the kernel. However, real use sometimes leads to better ideas, so
functions from this module are not necessarily stable and we may have to adjust them!

243

\debug_on:n

\debug_off:n

New: 2017-07-16

Updated: 2017-08-02

\debug_suspend:
\debug_resume:

New: 2017-11-28

\mode_leave_vertical:

New: 2017-07-04

2 Additions to I3basics

\debug_on:n { (comma-separated list) }
\debug_off:n { (comma-separated list) }

Turn on and off within a group various debugging code, some of which is also available
as expl3 load-time options. The items that can be used in the (list) are

e check-declarations that checks all expl3 variables used were previously declared
and that local/global variables (based on their name or on their first assignment)
are only locally/globally assigned;

e check-expressions that checks integer, dimension, skip, and muskip expressions
are not terminated prematurely;

o deprecation that makes soon-to-be-deprecated commands produce errors;
e log-functions that logs function definitions;
e all that does all of the above.

Providing these as switches rather than options allows testing code even if it relies on
other packages: load all other packages, call \debug_on:n, and load the code that one is
interested in testing. These functions can only be used in I“TEX 2¢ package mode loaded
with enable-debug or another option implying it.

\debug_suspend: ... \debug_resume:

Suppress (locally) errors and logging from debug commands, except for the deprecation
errors or warnings. These pairs of commands can be nested. This can be used around
pieces of code that are known to fail checks, if such failures should be ignored. See for
instance [3coffins.

\mode_leave_vertical:

Ensures that TEX is not in vertical (inter-paragraph) mode. In horizontal or math mode
this command has no effect, in vertical mode it switches to horizontal mode, and inserts
a box of width \parindent, followed by the \everypar token list.

TEXhackers note: This results in the contents of the \everypar token register being
inserted, after \mode_leave_vertical: is complete. Notice that in contrast to the ETEX 2¢
\leavevmode approach, no box is used by the method implemented here.

244

\box_clip:N
\box_clip:c
\box_gclip:N
\box_gclip:c

Updated: 2019-01-23

\box_set_trim:Nnnnn
\box_set_trim:cnnnn
\box_gset_trim:Nnnnn
\box_gset_trim:cnnnn

New: 2019-01-23

\box_set_viewport:Nnnnn
\box_set_viewport:cnnnn
\box_gset_viewport:Nnnnn
\box_gset_viewport:cnnnn

New: 2019-01-23

\exp_args_generate:n

New: 2018-04-04
Updated: 2019-02-08

3 Additions to I13box

3.1 Viewing part of a box

\box_clip:N (box)

Clips the (boz) in the output so that only material inside the bounding box is displayed
in the output. The updated (boz) is an hbox, irrespective of the nature of the (box)
before the clipping is applied.

These functions require the B'TEX3 native drivers: they do not work with
the BTEX 2¢ graphics drivers!

TrXhackers note: Clipping is implemented by the driver, and as such the full content of
the box is placed in the output file. Thus clipping does not remove any information from the
raw output, and hidden material can therefore be viewed by direct examination of the file.

\box_set_trim:Nnnnn (box) {(left)} {(bottom)} {(right)} {(top)}

Adjusts the bounding box of the (box) (left) is removed from the left-hand edge of the
bounding box, (right) from the right-hand edge and so fourth. All adjustments are
(dimension expressions). Material outside of the bounding box is still displayed in the
output unless \box_clip:N is subsequently applied. The updated (bozx) is an hbox,
irrespective of the nature of the (box) before the trim operation is applied. The behavior
of the operation where the trims requested is greater than the size of the box is undefined.

\box_set_viewport:Nnnnn (box) {(11x)} {(11y)} {({urx)} {(ury)}

Adjusts the bounding box of the (boz) such that it has lower-left co-ordinates ({llz), (Ily))
and upper-right co-ordinates ((urz), (ury)). All four co-ordinate positions are (dimension
expressions). Material outside of the bounding box is still displayed in the output unless
\box_clip:N is subsequently applied. The updated (boz) is an hbox, irrespective of the
nature of the (boz) before the viewport operation is applied.

4 Additions to I13expan

\exp_args_generate:n {(variant argument specifiers)}

Defines \exp_args:N(variant) functions for each (variant) given in the comma list
{(variant argument specifiers)}. Each (variant) should consist of the letters N, ¢, n, V, v,
o, £, e, x, p and the resulting function is protected if the letter x appears in the (variant).
This is only useful for cases where \cs_generate_variant:Nn is not applicable.

245

logb *

New: 2018-11-03
\fp_sign:n *

New: 2018-11-03

\fparray_new:Nn

New: 2018-05-05

\fparray_count:N *

New: 2018-05-05

\fparray_gset:Nnn

New: 2018-05-05

\fparray_gzero:N

New: 2018-05-05

\fparray_item:Nn *
\fparray_item_to_tl:Nn *

New: 2018-05-05

5 Additions to 13fp

\fp_eval:n { logb((fpexpr)) }

Determines the exponent of the (fpexpr), namely the floor of the base-10 logarithm of
its absolute value. “Division by zero” occurs when evaluating logb(£0) = —oco. Other
special values are logh(400) = +00 and logh(NaN) = NaN. If the operand is a tuple or is
NaN, then “invalid operation” occurs and the result is NaN.

\fp_sign:n {(fpexpr)}

Evaluates the (fpexpr) and leaves its sign in the input stream using \fp_eval:n
{sign((result))}: +1 for positive numbers and for +o00, —1 for negative numbers and
for —oo, +0 for +0. If the operand is a tuple or is NaN, then “invalid operation” occurs
and the result is 0.

6 Additions to I3fparray

\fparray_new:Nn (fparray var) {(size)}

Evaluates the integer expression (size) and allocates an {floating point array variable)
with that number of (zero) entries. The variable name should start with \g_ because
assignments are always global.

\fparray_count:N (fparray var)

Expands to the number of entries in the (floating point array variable). This is performed
in constant time.

\fparray_gset:Nnn (fparray var) {(position)} {(value)}

Stores the result of evaluating the floating point expression (value) into the (floating point
array variable) at the (integer expression) (position). If the (position) is not between 1
and the \fparray_count:N, an error occurs. Assignments are always global.

\fparray_gzero:N (fparray var)

Sets all entries of the (floating point array variable) to +0. Assignments are always global.

\fparray_item:Nn (fparray var) {(position)}

Applies \fp_use:N or \fp_to_t1:N (respectively) to the floating point entry stored at
the (integer expression) (position) in the {floating point array variable). If the (position)
is not between 1 and the \fparray_count:N, an error occurs.

246

\file_get_mdfive_hash:nN
\file_get_mdfive_hash:nNTF

New: 2017-07-11
Updated: 2019-02-16

\file_get_size:nN
\file_get_size:nNTF

New: 2017-07-09
Updated: 2019-02-16

\file_get_timestamp:nN
\file_get_timestamp:nNTF

New: 2017-07-09
Updated: 2019-02-16

\file_if_exist_input:n
\file_if_exist_input:nF

New: 2014-07-02

\file_input_stop:

New: 2017-07-07

7 Additions to 13file

\file_get_mdfive_hash:nN {(file name)} (tl1 var)

Searches for (file name) using the current TEX search path and the additional paths
controlled by \file_path_include:n. If found, sets the (str var) to the MD5 sum
generated from the content of the file. The file is read as bytes, which means that in
contrast to most TEX behaviour there will be a difference in result depending on the line
endings used in text files. The same file will produce the same result between different
engines: the algorithm used is the same in all cases. Where the file is not found, the (str
var) will be empty.

\file_get_size:nN {(file name)} (tl var)

Searches for (file name) using the current TEX search path and the additional paths
controlled by \file_path_include:n. If found, sets the (str var) to the size of the file
in bytes. Where the file is not found, the (str var) will be empty. This is not available
in older versions of X{TEX.

\file_get_timestamp:nN {(file name)} (tl1 var)

Searches for (file name) using the current TEX search path and the additional paths
controlled by \file_path_include:n. If found, sets the (str var) to the modification
timestamp of the file in the form D:(year)(month)(day){(hour){minute){second)(offset),
where the latter may be Z (UTC) or (plus-minus){hours)’ (minutes)’. Where the file is
not found, the (str var) will be empty. This is not available in older versions of XH{TEX.

\file_if_exist_input:n {(file name)}

\file_if_exist_input:nF {(file name)} {(false code)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \file_path_include:n. If found then reads in the file as additional XTEX
source as described for \file_input:n, otherwise inserts the (false code). Note that these
functions do not raise an error if the file is not found, in contrast to \file_input:n.

\file_input_stop:

Ends the reading of a file started by \file_input:n or similar before the end of the
file is reached. Where the file reading is being terminated due to an error, \msg_-
critical:nn(nn) should be preferred.

TgXhackers note: This function must be used on a line on its own: TgEX reads files
line-by-line and so any additional tokens in the “current” line will still be read.

This is also true if the function is hidden inside another function (which will be the normal
case), i.e., all tokens on the same line in the source file are still processed. Putting it on a line
by itself in the definition doesn’t help as it is the line where it is used that counts!

247

\ior_map_variable:NNn

New: 2019-01-13

\ior_str_map_variable:NNn

New: 2019-01-13

\iow_allow_break:

New: 2018-12-29

\ior_get_term:nN
\ior_str_get_term:nN

New: 2019-03-23

\flag_raise_if_clear:n =

New: 2018-04-02

\int_sign:n *

New: 2018-11-03

\ior_map_variable:NNn (stream) (tl var) {(code)}

For each set of (lines) obtained by calling \ior_get :NN until reaching the end of the file,
stores the (lines) in the (¢ var) then applies the (code). The (code) will usually make use
of the (variable), but this is not enforced. The assignments to the (variable) are local.
TEX ignores any trailing new-line marker from the file it reads. This function is typically
faster than \ior_map_inline:Nn.

\ior_str_map_variable:NNn (stream) (tl var) {(code)}

For each (line) in the (stream), stores the (line) in the (¢ var) then applies the (code).
The material is read from the (stream) as a series of tokens with category code 12 (other),
with the exception of space characters which are given category code 10 (space). The
(code) will usually make use of the (variable), but this is not enforced. The assignments
to the (variable) are local. Note that TEX removes trailing space and tab characters
(character codes 32 and 9) from every line upon input. TEX also ignores any trailing
new-line marker from the file it reads. This function is typically faster than \ior_str_-
map_inline:Nn.

\iow_allow_break:

In the first argument of \iow_wrap:nnnN (for instance in messages), inserts a break-point
that allows a line break. In other words this is a zero-width breaking space.

\ior_get_term:nN (prompt) (token list variable)

Function that reads one or more lines (until an equal number of left and right braces
are found) from the terminal and stores the result locally in the (token list) variable.
Tokenization occurs as described for \ior_get:NN or \ior_str_get:NN, respectively.
When the (prompt) is empty, TEX will wait for input without any other indication:
typically the programmer will have provided a suitable text using e.g. \iow_term:n.
Where the (prompt) is given, it will appear in the terminal followed by an =, e.g.

prompt=

8 Additions to I13flag

\flag_raise_if_clear:n {(flag name)}
Ensures the (flag) is raised by making its height at least 1, locally.

9 Additions to 13int

\int_sign:n {(intexpr)}

Evaluates the (integer expression) then leaves 1 or 0 or —1 in the input stream according
to the sign of the result.

248

10 Additions to I3intarray

\intarray_gset_rand:Nnn \intarray_gset_rand:Nnn (intarray var) {(minimum)} {(maximum)}
\intarray_gset_rand:Nn \intarray_gset_rand:Nn (intarray var) {(maximum)}

New: 2018-05-05 Evaluates the integer expressions (minimum) and (mazimum) then sets each entry (inde-
pendently) of the (integer array variable) to a pseudo-random number between the two
(with bounds included). If the absolute value of either bound is bigger than 23° — 1, an
error occurs. Entries are generated in the same way as repeated calls to \int_rand:nn
or \int_rand:n respectively, in particular for the second function the (minimum) is 1.
Assignments are always global. This is not available in older versions of XHTEX.

10.1 Working with contents of integer arrays

\intarray_const_from_clist:Nn % \intarray_const_from_clist:Nn (intarray var) (intexpr clist)

New: 2018-05-04

Creates a new constant (integer array variable) or raises an error if the name is already
taken. The (integer array variable) is set (globally) to contain as its items the results of
evaluating each (integer expression) in the (comma list).

\intarray_to_clist:N ¢ \intarray_to_clist:N (intarray var)

New: 2018-05-04 Converts the (intarray) to integer denotations separated by commas. All tokens have
category code other. If the (intarray) has no entry the result is empty; otherwise the
result has one fewer comma than the number of items.

\intarray_show:N \intarray_show:N (intarray var)
\intarray_log:N \intarray_log:N (intarray var)

New: 2018-05-04 Displays the items in the (integer array variable) in the terminal or writes them in the
log file.

11 Additions to I3msg

In very rare cases it may be necessary to produce errors in an expansion-only context.
The functions in this section should only be used if there is no alternative approach
using \msg_error :nnnnnn or other non-expandable commands from the previous section.
Despite having a similar interface as non-expandable messages, expandable errors must
be handled internally very differently from normal error messages, as none of the tools
to print to the terminal or the log file are expandable. As a result, short-hands such as
\{ or \\ do not work, and messages must be very short (with default settings, they are
truncated after approximately 50 characters). It is advisable to ensure that the message
is understandable even when truncated, by putting the most important information up
front. Another particularity of expandable messages is that they cannot be redirected or
turned off by the user.

249

\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:

nnnnnn * \msg_expandable_error:nnnnnn {(module)} {(message)} {(arg one)} {(arg
nnffff *x two)} {(arg three)} {(arg four)}

nnnnn %

nnfff
nnnn
nnff
nnn
nnf
nn

Xk X ok X ot

New:

Updated:

2015-08-06
2019-02-28

\msg_show_eval:Nn
\msg_log_eval:Nn

New: 2017-12-04

\msg_show:
\msg_show:
\msg_show:
\msg_show:
\msg_show:
\msg_show:
\msg_show:
\msg_show:
\msg_show:

nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn

New: 2017-12-04

Issues an “Undefined error” message from TEX itself using the undefined control sequence
\: :error then prints “! (module): ”(error message), which should be short. With default
settings, anything beyond approximately 60 characters long (or bytes in some engines) is
cropped. A leading space might be removed as well.

\msg_show_eval:Nn (function) {(expression)}

Shows or logs the (expression) (turned into a string), an equal sign, and the result of
applying the (function) to the {({expression)} (with f-expansion). For instance, if the
(function) is \int_eval:n and the (ezpression) is 1+2 then this logs > 1+2=3.

\msg_show:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)} {(arg
four)}

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. The information text is shown on the terminal and the TEX run is interrupted
in a manner similar to \t1_show:n. This is used in conjunction with \msg_show_item:n
and similar functions to print complex variable contents completely. If the formatted
text does not contain >~ at the start of a line, an additional line >~. will be put at the
end. In addition, a final period is added if not present.

\msg_show_item:n

\msg_show_item_unbraced:n

\msg_show_item:nn

\msg_show_item_unbraced:nn

\seq_map_function:NN (seq) \msg_show_item:n

*
* \prop_map_function:NN (prop) \msg_show_item:nn
*
*

New: 20

17-12-04

\bool_const:Nn
\bool_const:cn

New: 2017-11-28

Used in the text of messages for \msg_show:nnxxxx to show or log a list of items or
key—value pairs. The one-argument functions are used for sequences, clist or token lists
and the others for property lists. These functions turn their arguments to strings.

12 Additions to 13prg

\bool_const:Nn (boolean) {(boolexpr)}

Creates a new constant (boolean) or raises an error if the name is already taken. The
value of the (boolean) is set globally to the result of evaluating the (boolexpr).

250

\bool_set_inverse:N
\bool_set_inverse:c
\bool_gset_inverse:N
\bool_gset_inverse:c

New: 2018-05-10

\prop_map_tokens:Nn
\prop_map_tokens:cn w

\prop_rand_key_value:N =%
\prop_rand_key_value:c *

New: 2016-12-06

\prop_set_from_keyval:Nn
\prop_set_from_keyval:cn
\prop_gset_from_keyval:Nn
\prop_gset_from_keyval:cn

New: 2017-11-28

\prop_const_from_keyval:Nn
\prop_const_from_keyval:cn

New: 2017-11-28

\bool_set_inverse:N (boolean)

Toggles the (boolean) from true to false and conversely: sets it to the inverse of its
current value.

13 Additions to 13prop

\prop_map_tokens:Nn (property list) {({code)}

Analogue of \prop_map_function:NN which maps several tokens instead of a single func-
tion. The (code) receives each key—value pair in the (property list) as two trailing brace
groups. For instance,

\prop_map_tokens:Nn \1_my_prop { \str_if_eq:nnT { mykey } }

expands to the value corresponding to mykey: for each pair in \1_my_prop the function
\str_if_eq:nnT receives mykey, the (key) and the (value) as its three arguments. For
that specific task, \prop_item:Nn is faster.

\prop_rand_key_value:N (prop var)

Selects a pseudo-random key—value pair from the (property list) and returns {(key)} and
{(value)}. If the (property list) is empty the result is empty. This is not available in
older versions of XHTEX.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (value) does not expand further when appearing in an x-type argument
expansion.

\prop_set_from_keyval:Nn (prop var)
{

(key1) = (valuel) ,

(key2) = (value2) ,

}

Sets (prop var) to contain key—value pairs given in the second argument.

\prop_const_from_keyval:Nn (prop var)

{
(key1) = (valuel) ,
(key2) = (value2) ,
}

Creates a new constant (prop var) or raises an error if the name is already taken. The
(prop var) is set globally to contain key—value pairs given in the second argument.

251

14 Additions to 13seq

\seq_mapthread_function:NNN ¥ \seq_mapthread_function:NNN (seq:) (seq:) (function)
\seq_mapthread_function:(NcN|cNN|ccN) ¢

\seq_set_filter:NNn
\seq_gset_filter:NNn

\seq_set_map:NNn
\seq_gset_map:NNn

New: 2011-12-22

\seq_const_from_clist:Nn
\seq_const_from_clist:cn

New: 2017-11-28

Applies (function) to every pair of items (seq; -item)—(segz-item) from the two sequences,
returning items from both sequences from left to right. The (function) receives two n-type
arguments for each iteration. The mapping terminates when the end of either sequence is
reached (i.e. whichever sequence has fewer items determines how many iterations occur).

\seq_set_filter:NNn (sequence:) (sequences) {(inline boolexpr)}

Evaluates the (inline boolexpr) for every (item) stored within the (sequences). The (inline
boolexpr) receives the (item) as #1. The sequence of all (items) for which the (inline
boolexpr) evaluated to true is assigned to (sequence).

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and would lead to low-level TEX errors.

\seq_set_map:NNn (sequencei) (sequencez) {(inline function)}

Applies (inline function) to every (item) stored within the (sequences). The (inline
function) should consist of code which will receive the (item) as #1. The sequence result-
ing from x-expanding (inline function) applied to each (item) is assigned to (sequence;).
As such, the code in (inline function) should be expandable.

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and would lead to low-level TEX errors.

\seq_const_from_clist:Nn (seq var) {(comma-list)}

Creates a new constant (seq var) or raises an error if the name is already taken. The
(seq var) is set globally to contain the items in the (comma list).

\seq_set_from_function:NnN \seq_set_from_function:NnN (seq var) {(loop code)} (function)
\seq_gset_from_function:NnN

New: 2018-04-06

Sets the (seq var) equal to a sequence whose items are obtained by x-expanding (loop code)
(function). This expansion must result in successive calls to the (function) with no
nonexpandable tokens in between. More precisely the (function) is replaced by a wrapper
function that inserts the appropriate separators between items in the sequence. The
(loop code) must be expandable; it can be for example \t1l_map_function:NN (¢ var)
or \clist_map_function:nN {(clist)} or \int_step_function:nnnN {(initial value)}

{(step)} {{final value)}.

252

\seq_set_from_inline_x:Nnn \seq_set_from_inline_x:Nnn (seq var) {(loop code)} {(inline code)}
\seq_gset_from_inline_x:Nnn

New: 2018-04-06

\seq_shuffle:N
\seq_gshuffle:N

New: 2018-04-29

Sets the (seq var) equal to a sequence whose items are obtained by x-expanding (loop code)
applied to a (function) derived from the (inline code). A (function) is defined, that takes
one argument, x-expands the (inline code) with that argument as #1, then adds appro-
priate separators to turn the result into an item of the sequence. The x-expansion of
(loop code) (function) must result in successive calls to the (function) with no nonex-
pandable tokens in between. The (loop code) must be expandable; it can be for example
\tl_map_function:NN (t/ var) or \clist_map_function:nN {(clist)} or \int_step_-
function:nnnN {(initial value)} {(step)} {(final value)}, but not the analogous “inline”
mappings.

\seq_shuffle:N (seq var)

Sets the (seq var) to the result of placing the items of the (seq var) in a random order.
Each item is (roughly) as likely to end up in any given position.

TEXhackers note: For sequences with more than 13 items or so, only a small proportion
of all possible permutations can be reached, because the random seed \sys_rand_seed: only
has 28-bits. The use of \toks internally means that sequences with more than 32767 or 65535
items (depending on the engine) cannot be shuffled.

\seq_indexed_map_function:NN \seq_indexed_map_function:NN (seq var) (function)

New: 2018-05-03

\seq_indexed_map_inline:Nn

New: 2018-05-03

\dim_sign:n *

New: 2018-11-03

Applies (function) to every entry in the (sequence variable). The (function) should have
signature :nn. It receives two arguments for each iteration: the (indezr) (namely 1 for
the first entry, then 2 and so on) and the (item).

\seq_indexed_map_inline:Nn (seq var) {(inline function)}

Applies (inline function) to every entry in the (sequence variable). The (inline function)
should counsist of code which receives the (index) (namely 1 for the first entry, then 2 and
so on) as #1 and the (item) as #2.

15 Additions to I3skip

\dim_sign:n {(dimexpr)}

Evaluates the (dimezpr) then leaves 1 or 0 or —1 in the input stream according to the
sign of the result.

253

\sys_shell_get :nnN
\sys_shell_get :nnNTF

New: 2019-01-16
Updated: 2019-02-16

\c_sys_engine_version_str

New: 2018-05-02

\sys_if_rand_exist_p: «*
\sys_if_rand_exist:TF

New: 2017-05-27

\sys_rand_seed: *

New: 2017-05-27

\sys_gset_rand_seed:n

New: 2017-05-27

16 Additions to I13sys

\sys_shell_get:nnN {(shell command)} {(setup)} (tl var)

\sys_shell_get:nnNTF {(shell command)} {(setup)} (tl var) {(true code)} {(false
code)}

Defines (tl) to the text returned by the (shell command). The (shell command) is con-
verted to a string using \t1_to_str:n. Category codes may need to be set appropriately
via the (setup) argument, which is run just before running the (shell command) (in
a group). If shell escape is disabled, the (I var) will be set to \q_no_value in the
non-branching version. Note that quote characters (") cannot be used inside the (shell
command). The \sys_shell_get :nnNTF conditional returns true if the shell is available
and no quote is detected, and false otherwise.

The version string of the current engine, in the same form as given in the banner issued

when running a job. For pdfTEX and LuaTgX this is of the form
(major).(minor).(revision)

For XHTEX, the form is
(magor).(minor)

For PIEX and uplgX, only releases since TEX Live 2018 make the data available, and
the form is more complex, as it comprises the pIEX version, the uplEX version and the

e-pIEX version.
p{major).(minor).(revision)-u{major).{minor)-(ep TeX)

where the u part is only present for uplgX.

\sys_if_rand_exist_p:
\sys_if_rand_exist:TF {(true code)} {(false code)}

Tests if the engine has a pseudo-random number generator. Currently this is the case in

pdfTEX, LuaTlpX, pIEX and uplgEX.

\sys_rand_seed:

Expands to the current value of the engine’s random seed, a non-negative integer. In
engines without random number support this expands to 0.

\sys_gset_rand_seed:n {(intexpr)}

Globally sets the seed for the engine’s pseudo-random number generator to the (integer
expression). This random seed affects all \..._rand functions (such as \int_rand:nn or
\clist_rand_item:n) as well as other packages relying on the engine’s random number
generator. In engines without random number support this produces an error.

TEXhackers note: While a 32-bit (signed) integer can be given as a seed, only the absolute

228

value is used and any number beyond is divided by an appropriate power of 2. We recommend

using an integer in [0,2%® — 1].

254

\sys_if_platform_unix_p:
\sys_if_platform_unix:TF

*

\sys_if_platform_unix:TF {(true code)} {(false code)}

*

\sys_if_platform_windows_p: x*
\sys_if_platform_windows:ITF *

New: 2018-07-27

\c_sys_platform_str

New: 2018-07-27

\c_sys_shell_escape_int

New: 2017-05-27

\sys_if_shell_p: «*
\sys_if_shell:TF «*

New: 2017-05-27

Conditionals which allow platform-specific code to be used. The names follow the Lua
os.type() function, i.e. all Unix-like systems are unix (including Linux and MacOS).

The current platform given as a lower case string: one of unix, windows or unknown.

This variable exposes the internal triple of the shell escape status. The possible values
are

0 Shell escape is disabled
1 Unrestricted shell escape is enabled
2 Restricted shell escape is enabled

\sys_if_shell _p:
\sys_if_shell:TF {({true code)} {(false code)}

Performs a check for whether shell escape is enabled. This returns true if either of
restricted or unrestricted shell escape is enabled.

\sys_if_shell_unrestricted_p: x \sys_if_shell_unrestricted_p:
\sys_if_shell_unrestricted:TF x \sys_if_shell_unrestricted:TF {(true code)} {(false code)}

New: 2017-05-27

Performs a check for whether unrestricted shell escape is enabled.

\sys_if_shell_restricted_p: * \sys_if_shell_restricted_p:
\sys_if_shell restricted:TF x \sys_if_shell_restricted:TF {(true code)} {(false code)}

New: 2017-05-27

\sys_shell_now:n
\sys_shell_now:x

New: 2017-05-27

\sys_shell_shipout:n
\sys_shell_shipout:x

New: 2017-05-27

Performs a check for whether restricted shell escape is enabled. This returns false if
unrestricted shell escape is enabled. Unrestricted shell escape is not considered a superset
of restricted shell escape in this case. To find whether any shell escape is enabled use
\sys_if_shell:.

\sys_shell_now:n {(tokens)}

Execute (tokens) through shell escape immediately.

\sys_shell_shipout:n {(tokens)}

Execute (tokens) through shell escape at shipout.

255

\tl_lower_case:n
\tl_upper_case:n
\tl_mixed_case:n
\tl_lower_case:nn
\tl_upper_case:nn
\tl_mixed_case:nn

L S I R

New: 2014-06-30
Updated: 2016-01-12

\1_t1l_case_change_math_tl

17 Additions to 13tl

\tl_upper_case:n {(tokens)}

\tl_upper_case:nn {(language)} {(tokens)}

These functions are intended to be applied to input which may be regarded broadly
as “text”. They traverse the (fokens) and change the case of characters as discussed
below. The character code of the characters replaced may be arbitrary: the replacement
characters have standard document-level category codes (11 for letters, 12 for letter-like
characters which can also be case-changed). Begin-group and end-group characters in
the (tokens) are normalized and become { and }, respectively.

Importantly, notice that these functions are intended for working with user text for
typesetting. For case changing programmatic data see the |13str module and discussion
there of \str_lower_case:n, \str_upper_case:n and \str_fold_case:n.

The functions perform expansion on the input in most cases. In particular, input
in the form of token lists or expandable functions is expanded unless it falls within one
of the special handling classes described below. This expansion approach means that
in general the result of case changing matches the “natural” outcome expected from a
“functional” approach to case modification. For example

\tl_set:Nn \1_tmpa_tl { hello }
\tl_upper_case:n { \1_tmpa_tl \c_space_tl world }

produces
HELLO WORLD

The expansion approach taken means that in package mode any IATEX 2¢ “robust” com-
mands which may appear in the input should be converted to engine-protected versions
using for example the \robustify command from the etoolbox package.

Case changing does not take place within math mode material so for example
\tl_upper_case:n { Some~text~$y = mx + c$~with~{Braces} }
becomes
SOME TEXT $y = mx + c$ WITH {BRACES}

Material inside math mode is left entirely unchanged: in particular, no expansion is
undertaken.

Detection of math mode is controlled by the list of tokens in \1_t1_case_change_-
math_tl, which should be in open—close pairs. In package mode the standard settings
is

$$\NC\V)

Note that while expansion occurs when searching the text it does not apply to math
mode material (which should be unaffected by case changing). As such, whilst the opening
token for math mode may be “hidden” inside a command/macro, the closing one cannot
be as this is being searched for in math mode. Typically, in the types of “text” the case
changing functions are intended to apply to this should not be an issue.

256

\1_t1_case_change_exclude_tl

Case changing can be prevented by using any command on the list \1_t1_case_change_-
exclude_tl. Each entry should be a function to be followed by one argument: the latter
will be preserved as-is with no expansion. Thus for example following

\tl_put_right:Nn \1_t1l_case_change_exclude_tl { \NoChangeCase }
the input

\tl_upper_case:n
{ Some~text~$y = mx + c$~with~\NoChangeCase {Protection} }

will result in
SOME TEXT $y = mx + c$ WITH \NoChangeCase {Protection}

Notice that the case changing mapping preserves the inclusion of the escape functions:
it is left to other code to provide suitable definitions (typically equivalent to \use:n). In
particular, the result of case changing is returned protected by \exp_not:n.

When used with ITEX 2¢ the commands \cite, \ensuremath, \label and \ref are
automatically included in the list for exclusion from case changing.

\1_t1l_case_change_accents_tl

This list specifies accent commands which should be left unexpanded in the output. This
allows for example

\tl_upper_case:n { \" { a } }
to yield
\" { A}

irrespective of the expandability of \".

The standard contents of this variable is \", \”, \., \7, \‘, \~, \¢c, \H, \k, \r, \t,
\u and \v.

“Mixed” case conversion may be regarded informally as converting the first character
of the (tokens) to upper case and the rest to lower case. However, the process is more
complex than this as there are some situations where a single lower case character maps
to a special form, for example ij in Dutch which becomes IJ. As such, \t1l_mixed_-
case:n(n) implement a more sophisticated mapping which accounts for this and for
modifying accents on the first letter. Spaces at the start of the (tokens) are ignored when
finding the first “letter” for conversion.

\tl_mixed_case:n { hello~WORLD } % => "Hello world"
\tl_mixed_case:n { ~hello~WORLD } % => " Hello world"
\tl_mixed_case:n { {hello}~WORLD } % => "{Hello} world"

When finding the first “letter” for this process, any content in math mode or covered by
\1_t1l_case_change_exclude_tl is ignored.

(Note that the Unicode Consortium describe this as “title case”, but that in English
title case applies on a word-by-word basis. The “mixed” case implemented here is a lower
level concept needed for both “title” and “sentence” casing of text.)

257

\1_tl_mixed_case_ignore_tl

The list of characters to ignore when searching for the first “letter” in mixed-casing is
determined by \1_t1l_mixed_change_ignore_t1l. This has the standard setting

L=

where comparisons are made on a character basis.

As is generally true for expl3, these functions are designed to work with Unicode
input only. As such, UTF-8 input is assumed for all engines. When used with X{qTEX or
LuaTgX a full range of Unicode transformations are enabled. Specifically, the standard
mappings here follow those defined by the Unicode Consortium in UnicodeData.txt and
SpecialCasing.txt. In the case of 8-bit engines, mappings are provided for characters
which can be represented in output typeset using the T1 font encoding. Thus for example
& can be case-changed using pdfTEX. For pIEX only the ASCII range is covered as the
engine treats input outside of this range as east Asian.

Context-sensitive mappings are enabled: language-dependent cases are discussed
below. Context detection expands input but treats any unexpandable control sequences
as “failures” to match a context.

Language-sensitive conversions are enabled using the (language) argument, and fol-
low Unicode Consortium guidelines. Currently, the languages recognised for special han-
dling are as follows.

o Azeri and Turkish (az and tr). The case pairs I/i-dotless and I-dot /i are activated
for these languages. The combining dot mark is removed when lower casing I-dot
and introduced when upper casing i-dotless.

o German (de-alt). An alternative mapping for German in which the lower case
FEszett maps to a grofies Eszett.

o Lithuanian (1t). The lower case letters i and j should retain a dot above when the
accents grave, acute or tilde are present. This is implemented for lower casing of
the relevant upper case letters both when input as single Unicode codepoints and
when using combining accents. The combining dot is removed when upper casing
in these cases. Note that only the accents used in Lithuanian are covered: the
behaviour of other accents are not modified.

o Dutch (nl). Capitalisation of ij at the beginning of mixed cased input produces IJ
rather than Ij. The output retains two separate letters, thus this transformation
is available using pdfTEX.

Creating additional context-sensitive mappings requires knowledge of the underlying
mapping implementation used here. The team are happy to add these to the kernel
where they are well-documented (e.g. in Unicode Consortium or relevant government
publications).

258

http://www.unicode.org

\tl_range_braced:Nnn
\tl_range_braced:cnn
\tl_range_braced:nnn
\tl_range_unbraced:Nnn
\tl_range_unbraced:cnn
\tl_range_unbraced:nnn

X X ok X ot

New: 2017-07-15

\tl_build_begin:N
\tl_build_gbegin:N

New: 2018-04-01

\tl_build_clear:N
\tl_build_gclear:N

New: 2018-04-01

\tl_range_braced:Nmn (tl var) {(start index)} {(end index)}
\tl_range_braced:nnn {(token 1ist)} {(start index)} {(end index)}
\tl_range_unbraced:Nnn (tl1 var) {(start index)} {(end index)}
\tl_range_unbraced:nnn {(token list)} {(start index)} {(end index)}

Leaves in the input stream the items from the (start indezx) to the (end index) inclusive,
using the same indexing as \tl_range:nnn. Spaces are ignored. Regardless of whether
items appear with or without braces in the (token list), the \t1l_range_braced:nnn
function wraps each item in braces, while \t1_range_unbraced:nnn does not (overall it
removes an outer set of braces). For instance,

\iow_term:x { \tl_range_braced:nnn { abcd~{e{}}f } {2} {5} }

\iow_term:x { \tl_range_braced:nnn { abcd~{e{}}f } { -4 } { -1 } }
\iow_term:x { \tl_range_braced:nnn { abcd~{e{}}f } { -2} { -13} 1%}
\iow_term:x { \tl_range_braced:nnn { abcd~{e{}}f >} { 0} { -113} }

prints {b}{cH{dHe{}}, {cHdIH{e{}}{f}, {e{}}{f}, and an empty line to the terminal,
while

\iow_term:x { \tl_range_unbraced:nnn { abcd~{e{}}f } { 2 } {5} }

\iow_term:x { \tl_range_unbraced:nnn { abcd~{e{}}f } { -4} {-113} 1}
\iow_term:x { \tl_range_unbraced:nnn { abcd~{e{}}f } { -2 } { -1 } }
\iow_term:x { \tl_range_unbraced:nnn { abcd~{e{}}f } {0} {-113} 1}

prints bede{}, cde{}f, e{}f, and an empty line to the terminal. Because braces are
removed, the result of \t1_range_unbraced:nnn may have a different number of items
as for \tl_range:nnn or \tl_range_braced:nnn. In cases where preserving spaces is
important, consider the slower function \t1_range:nnn.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type argument
expansion.

\tl_build_begin:N (tl1 var)

Clears the (tl var) and sets it up to support other \t1_build_. .. functions, which allow
accumulating large numbers of tokens piece by piece much more efficiently than standard
13t functions. Until \t1_build_end:N (¢ var) is called, applying any function from I3tl
other than \t1_build_. .. will lead to incorrect results. The begin and gbegin functions
must be used for local and global (¢ var) respectively.

\tl_build_clear:N (tl1 var)

Clears the (tl var) and sets it up to support other \t1_build_... functions. The clear
and gclear functions must be used for local and global (¢ var) respectively.

259

\tl_build_put_left:Nn
\tl_build_put_left:Nx
\tl_build_gput_left:Nn
\tl_build_gput_left:Nx
\tl_build_put_right:Nn
\tl_build_put_right:Nx
\tl_build_gput_right:Nn
\tl_build_gput_right:Nx

New: 2018-04-01

\tl_build_get:NN

New: 2018-04-01

\tl_build_end:N
\tl_build_gend:N

New: 2018-04-01

\c_catcode_active_space_tl

New: 2017-08-07

\char_lower_case:N
\char_upper_case:N
\char_mixed_case:N
\char_fold_case:N

L I o

New: 2018-04-06

\tl_build_put_left:Nn (t1 var) {(tokens)}

\tl_build_put_right:Nn (t1 var) {(tokens)}

Adds (tokens) to the left or right side of the current contents of (¢ var). The (¢ var) must
have been set up with \t1_build_begin:N or \t1l_build_gbegin:N. The put and gput
functions must be used for local and global (¢l var) respectively. The right functions
are about twice faster than the left functions.

\tl_build_get:N (tl1 var;) (tl vars)

Stores the contents of the (tl vary) in the (¢l vary). The (¢ var;) must have been set up
with \t1_build_begin:N or \tl_build_gbegin:N. The (¢ vary) is a “normal” token
list variable, assigned locally using \t1_set:Nn.

\tl_build_end:N (tl var)

Gets the contents of (tl var) and stores that into the (¢l var) using \t1l_set:Nn. The
(tl var) must have been set up with \t1_build_begin:N or \t1_build_gbegin:N. The
end and gend functions must be used for local and global (¢l var) respectively. These
functions completely remove the setup code that enabled (¢l var) to be used for other
\tl_build_... functions.

18 Additions to 13token

Token list containing one character with category code 13, (“active”), and character code
32 (space).

\char_lower_case:N (char)

Converts the (char) to the equivalent case-changed character as detailed by the function
name (see \str_fold_case:n and \tl_mixed_case:n for details of these terms). The
case mapping is carried out with no context-dependence (cf. \t1_upper_case:n, etc.)

\char_codepoint_to_bytes:n * \char_codepoint_to_bytes:n {(codepoint)}

New: 2018-06-01

Converts the (Unicode) (codepoint) to UTF-8 bytes. The expansion of this function com-
prises four brace groups, each of which will contain a hexadecimal value: the appropriate
byte. As UTF-8 is a variable-length, one or more of the grouos may be empty: the bytes
read in the logical order, such that a two-byte codepoint will have groups #1 and #2 filled
and #3 and #4 empty.

260

\peek_N_type:IF

Updated: 2012-12-20

\peek_N_type:TF {(true code)} {(false code)}

Tests if the next (token) in the input stream can be safely grabbed as an N-type argument.
The test is (false) if the next (token) is either an explicit or implicit begin-group or end-
group token (with any character code), or an explicit or implicit space character (with
character code 32 and category code 10), or an outer token (never used in I¥TEX3) and
(true) in all other cases. Note that a (true) result ensures that the next (token) is a valid
N-type argument. However, if the next (token) is for instance \c_space_token, the test
takes the (false) branch, even though the next (token) is in fact a valid N-type argument.
The (token) is left in the input stream after the (true code) or (false code) (as appropriate
to the result of the test).

\peek_catcode_collect_inline:Nn \peek_catcode_collect_inline:Nn (test token) {(inline code)}
\peek_charcode_collect_inline:Nn \peek_charcode_collect_inline:Nn (test token) {(inline code)}
\peek_meaning_collect_inline:Nn \peek_meaning_collect_inline:Nn (test token) {(inline code)}

New: 2018-09-23

\peek_remove_spaces:n

New: 2018-10-01

Collects and removes tokens from the input stream until finding a token that does
not match the (test token) (as defined by the test \token_if_eq_catcode:NNTF or
\token_if_eq_charcode:NNTF or \token_if_eq_meaning:NNTF). The collected tokens
are passed to the (inline code) as #1. When begin-group or end-group tokens (usually {
or }) are collected they are replaced by implicit \c_group_begin_token and \c_group_-
end_token, and when spaces (including \c_space_token) are collected they are replaced
by explicit spaces.

For example the following code prints “Hello” to the terminal and leave
in the input stream.

“ ' b2

, world

\peek_catcode_collect_inline:Nn A { \iow_term:n {#1} } Hello,~world!

Another example is that the following code tests if the next token is *, ignoring intervening
spaces, but putting them back using #1 if there is no *.

\peek_meaning_collect_inline:Nn \c_space_token
{ \peek_charcode:NTF * { star } { no~star #1 } }

\peek_remove_spaces:n {(code)}

Removes explicit and implicit space tokens (category code 10 and character code 32)
from the input stream, then inserts (code).

261

\driver_box_use_clip:N

New: 2017-12-13

Part XXXIII
The |13drivers package
Drivers

TEX relies on drivers in order to carry out a number of tasks, such as using color, including
graphics and setting up hyper-links. The nature of the code required depends on the exact
driver in use. Currently, IXTEX3 is aware of the following drivers:

o pdfmode: The “driver” for direct PDF output by both pdfTEX and LuaTgX (no
separate driver is used in this case: the engine deals with PDF creation itself).

e dvips: The dvips program, which works in conjugation with pdfTEX or LuaTgX
in DVI mode.

e dvipdfmx: The dvipdfmx program, which works in conjugation with pdfTEX or
LuaTgX in DVI mode.

e dvisvgm: The dvisvgm program, which works in conjugation with pdfTEX or
LuaTgX when run in DVI mode as well as with (u)pIEX and X#TEX.

e xdvipdfmx: The driver used by XHIEX.

This module provides code closely tied to the exact driver in use: broadly, the
functions here are implemented entirely independently for each case. As such, they often
rely on higher-level code to provide necessary but shared operations. For example, in
box rotation and scaling the functions here do no correct the final size of the box: this
will always be required and thus is handled in the box module.

Several of the operations here are low-level, and so may be used only in restricted
contexts. Some also require understanding of PostScript/PDF concepts to be used cor-
rected as they take “raw” arguments, similar in format to those used by the underlying
driver.

Given the close coupling of these functions to higher-level interfaces, at present the
functions given here may change if this is useful for higher-level changes. However, equiv-
alent functionality will be provided for any higher-level function which is itself stable. For
example, \driver_box_use_rotate:Nn is needed to implement the stable box rotation
functions. As such, even if \driver_box_use_rotate:Nn were to be removed, a replace-
ment would be provided.

1 Box clipping

\driver_box_use_clip:N (box)

Inserts the content of the (boz) at the current insertion point such that any material
outside of the bounding box is not displayed by the driver. The material in the (boz) is
still placed in the output stream: the clipping takes place at a driver level.

262

\driver_box_use_rotate:Nn

New: 2017-12-13
Updated: 2018-04-26

\driver_box_use_scale:Nnn

New: 2017-12-13
Updated: 2018-04-26

\driver_color_cmyk:nnnn

New: 2018-02-20

\driver_color_gray:n

New: 2018-02-20

\driver_color_rgb:nnn

New: 2018-02-20

\driver_color_pickup:N

New: 2018-02-20

2 Box rotation and scaling

\driver_box_use_rotate:Nn (box) {(angle)}

Inserts the content of the (boz) at the current insertion point rotated by the (angle) (an
(fp expression) expressed in degrees). The material is rotated such the the TEX reference
point of the box is the center of rotation and remains the reference point after rotation.
It is the responsibility of the code using this function to adjust the apparent size of the
inserted material.

\driver_box_use_scale:Nnn (box) {(x-scale)} {(y-scale)}

Inserts the content of the (boz) at the current insertion point scale by the (z-scale) and
(y-scale) (both (fp expressions)). The reference point of the material will be unchanged.
It is the responsibility of the code using this function to adjust the apparent size of the
inserted material.

3 Color support

\driver_color_cmyk:nnnn {(cyan)} {(magenta)} {(yellow)}
{(black)}

Sets the color to the CMYK values specified, all of which are fp denotations in the range
0 and 1. For drawing colors, see \driver_draw_stroke_cmyk:nnnn, etc.

\driver_color_gray:n {(gray)}

Sets the color to the grayscale value specified, which is fp denotations in the range 0 and
1. For drawing colors, see \driver_draw_stroke_gray:n, etc.

\driver_color_rgb:nnn {(red)} {(green)} {(blue)}

Sets the color to the RGB values specified, all of which are fp denotations in the range 0
and 1. For drawing colors, see \driver_draw_stroke_rgb:nnn, etc.

\driver_color_pickup:N (t1)

In I TEX 2¢ package mode, collects data on the current color from \current@color and
stores it in the low-level format used by expl3 in the (tI).

4 Drawing

These functions are inspired heavily by the system layer of pgf (most have the same in-
terface as the same functions in the latter’s \pgfsys@. . . namespace). They are intended
to form the basis for higher level drawing interfaces, which themselves are likely to be
further abstracted for user access. Again, this model is heavily inspired by pgf and Tikz.
These low level drawing interfaces abstract from the driver raw requirements but
still require an appreciation of the concepts of PostScript/PDF/SVG graphic creation.

263

\driver_draw_begin:
\driver_draw_end:

\driver_draw_scope_begin:
\driver_draw_scope_end:

\driver_draw_moveto:nn

\driver_draw_lineto:nn

\driver_draw_begin:

(content)

\driver_draw_end:

Defines a drawing environment. This is a scope for the purposes of the graphics state.
Depending on the driver, other set up may or may not take place here. The natural size
of the (content) should be zero from the TEX perspective: allowance for the size of the
content must be made at a higher level (or indeed this can be skipped if the content is
to overlap other material).

\driver_draw_scope_begin:

(content)

\driver_draw_scope_end:

Defines a scope for drawing settings and so on. Changes to the graphic state and concepts
such as color or linewidth are localised to a scope. This function pair must never be used
if an partial path is under construction: such paths must be entirely contained at one
unbroken scope level. Note that scopes do not form TEX groups and may not be aligned
with them.

4.1 Path construction

\driver_draw_move:nn {(x)} {(y)}

Moves the current drawing reference point to ({(z), (y)); any active transformation matrix
applies.

\driver_draw_lineto:nn {(x)} {(y)}

Adds a path from the current drawing reference point to ((z), (y)); any active trans-
formation matrix applies. Note that nothing is drawn until a fill or stroke operation is
applied, and that the path may be discarded or used as a clip without appearing itself.

\driver_draw_curveto:nnnnnn \driver_draw_curveto:nnnnnn {(x1)} {(y1)}

{x2)} {(y2)} {(x3)} {(y3)}

Adds a Bezier curve path from the current drawing reference point to ({x3), (y3)), using
({z1), (1)) and ({a2), (y2)) as control points; any active transformation matrix applies.
Note that nothing is drawn until a fill or stroke operation is applied, and that the path
may be discarded or used as a clip without appearing itself.

\driver_draw_rectangle:nnnn \driver_draw_rectangle:nnnn {(x)} {(y)} {(width)} {(height)}

\driver_draw_closepath:

Adds rectangular path from ((z1), (y1)) of (height) and (width); any active transformation
matrix applies. Note that nothing is drawn until a fill or stroke operation is applied, and
that the path may be discarded or used as a clip without appearing itself.

\driver_draw_closepath:

Closes an existing path, adding a line from the current point to the start of path. Note
that nothing is drawn until a fill or stroke operation is applied, and that the path may
be discarded or used as a clip without appearing itself.

264

\driver_draw_stroke:

\driver_draw_closestroke:

\driver_draw_fill:

\driver_draw_fillstroke:

\driver_draw_nonzero_rule:
\driver_draw_evenodd_rule:

\driver_draw_clip:

\driver_draw_discardpath:

4.2 Stroking and filling

(path construction)

\driver_draw_stroke:

Draws a line along the current path, which is also closed in the case of \driver_draw_-
closestroke:. The nature of the line drawn is influenced by settings for

o Line thickness

o Stroke color (or the current color if no specific stroke color is set)
o Line capping (how non-closed line ends should look)

o Join style (how a bend in the path should be rendered)

e Dash pattern

The path may also be used for clipping.

(path construction)

\driver_draw_fill:

Fills the area surrounded by the current path: this will be closed prior to filling if it is
not already. The fillstroke version also strokes the path as described for \driver_-
draw_stroke:. The fill is influenced by the setting for fill color (or the current color if
no specific stroke color is set). The path may also be used for clipping. For paths which
are self-intersecting or comprising multiple parts, the determination of which areas are
inside the path is made using the non-zero winding number rule unless the even-odd rule
is active.

\driver_draw_nonzero_rule:

Active either the non-zero winding number or the even-odd rule, respectively, for deter-
mining what is inside a fill or clip area. For technical reasons, these command are not
influenced by scoping and apply on an ongoing basis.

(path construction)

\driver_draw_clip:

Indicates that the current path should be used for clipping, such that any subsequent
material outside of the path (but within the current scope) will not be shown. This
command should be given once a path is complete but before it is stroked or filled (if
appropriate). This command is not affected by scoping: it applies to exactly one path as
shown.

(path construction)
\driver_draw_discardpath:

Discards the current path without stroking or filling. This is primarily useful for paths
constructed purely for clipping, as this alone does not end the paths existence.

265

4.3 Stroke options

\driver_draw_linewidth:n \driver_draw_linewidth:n {(dimexpr)}

Sets the width to be used for stroking to (dimezpr).

\driver_draw_dash_pattern:nn \driver_draw_dash:nn {(dash pattern)} {(phase)}

Sets the pattern of dashing to be used when stroking a line. The (dash pattern) should
be a comma-separated list of dimension expressions. This is then interpreted as a series
of pairs of line-on and line-off lengths. For example 3pt, 4pt means that 3pt on, 4 pt
off, 3pt on, and so on. A more complex pattern will also repeat: 3pt, 4pt, 1pt, 2pt
results in 3 pt on, 4 pt off, 1 pt on, 2 pt off, 3pt on, and so on. An odd number of entries
means that the last is repeated, for example 3pt is equal to 3pt, 3pt. An empty pattern
yields a solid line.

The (phase) specifies an offset at the start of the cycle. For example, with a pattern
3pt a phase of 1pt means that the output is 2 pt on, 3 pt off, 3pt on, 3pt on, etc.

\driver_draw_cap_butt: \driver_draw_cap_butt:
\driver_draw_cap_rectangle:
\driver_draw_cap_round:

Sets the style of terminal stroke position to one of butt, rectangle or round.

\driver_draw_join_bevel: \driver_draw_cap_butt:
\driver_draw_join_miter:

. a0 Sets the style of stroke joins to one of bevel, miter or round.
\driver_draw_join_round:

\driver_draw_miterlimit:n \driver_draw_miterlimit:n {(factor)}

Sets the miter limit of lines joined as a miter, as described in the PDF and PostScript
manuals. The (factor) here is an (fp expression).

4.4 Color

\driver_draw_color_fill_cmyk:nnnn \driver_draw_color_fill_cmyk:nnnn {(cyan)} {(magenta)} {(yellow)}
\driver_draw_color_stroke_cmyk:nnnn {(black)}

Sets the color for drawing to the CMYK values specified, all of which are fp denotations
in the range 0 and 1.

\driver_draw_color_fill_gray:n \driver_draw_color_fill_gray:n {(gray)}
\driver_draw_color_stroke_gray:n

Sets the color for drawing to the grayscale value specified, which is fp denotations in the
range 0 and 1.

\driver_draw_color_fill_rgb:nnn \driver_draw_color_fill_rgb:nnn {(red)} {(green)} {(blue)}
\driver_draw_color_stroke_rgb:nnn

Sets the color for drawing to the RGB values specified, all of which are fp denotations in
the range 0 and 1.

266

\driver_draw_box_use:Nnnnn

\driver_draw_cm:nnnn

4.5 Inserting TEX material

\driver_draw_box:Nnnnnnn (box)

{(a)} {(p)} {(c)} {(a)} {(x)} {(y)}

Inserts the (boz) as an hbox with the box reference point placed at (x, y). The transfor-
mation matrix [abed] is applied to the box, allowing it to be in synchronisation with any
scaling, rotation or skewing applying more generally. Note that TEX material should not
be inserted directly into a drawing as it would not be in the correct location. Also note
that as for other drawing elements the box here has no size from a TEX perspective.

4.6 Coordinate system transformations

\driver_draw_cm:nnnn {(a)} {(b)} {(c)} {(d)}

Applies the transformation matrix [abed] to the current graphic state. This affects any
subsequent items in the same scope but not those already given.

5 PDF Features

A range of PDF features are exposed by pdfTEX and LualgX in direct PDF output
mode, and the vast majority of these are also controllable using the (x)dvipdfmx driver
(as DVI instructions are converted directly to PDF). Some of these functions are also
available for cases where PDFs are generated by dvips: this depends on being able to
pass information through correctly.

5.1 PDF Annotations

\driver_pdf_annotation:nnnn \driver_pdf_annotation:nnnn {(width)} {(height)} {(depth)} {(dictionary)}

New: 2019-04-10

Creates a generic PDF annotation of the given (height), (width) and (depth) and featuring
the (dictionary).

\driver_pdf_link_begin_goto:nnw \driver_pdf_link_begin_user:nnw {(attributes)} {(action)}
\driver_pdf_link_begin_user:nnw {(content)}

\driver_pdf_link_end:

\driver_pdf_link_end:

New: 2019-04-17

\driver_pdf_link_last: =

New: 2019-04-09

Creates a link of the (type) goto or user with the given (attributes), points toward the
(action) and surround the TEX (content). The begin and end functions must be given
at the same box level. Depending upon the back-end in use, the (content) may be placed
in a hbox as part of processing.

\driver_pdf_link_last:

Expands to the object reference

267

\driver_pdf_link_margin:n * \driver_pdf_link_margin: {(dimen)}

New: 2019-04-11

Sets the length of the margin between content and the border of a link. Different back-
ends treat the scoping of this value in different ways: pdfTEX and LualgX treat it as
scoped by TEX, whilst with dvips the scope is managed at the PostScript level.

5.2 PDF Objects

Objects are used to provide a range of data structures in a PDF. At the driver level,
different PDF object types are declared separately. Objects are only written to the PDF
when referenced.

\driver_pdf_object_new:nn \driver_pdf_object_new:n {(name)} {(type)}

Declares (name) as a PDF object. The type should be one of array or dict, fstream
or stream.

\driver_pdf_object_ref:n x \driver_pdf_object_ref:n {(object)}

Inserts the appropriate information to reference the {object) in for example page resource
allocation.

\driver_pdf_object_write:nn \driver_pdf_object_write:nn {(name)} {(data)}

Writes the (data) as content of the (object). Depending on the (type) declared for the
object, the format required for the (data) will vary

array A space-separated list of values
dict Key-value pairs in the form /{key) (value)
fstream Two brace groups: (content) and (file name)

stream Two brace groups: (content) and (additional attributes)

5.3 PDF structure

\driver_pdf_compresslevel:n \driver_pdf_compresslevel:n {(level)}

Sets the degree of compression used for PDF files: the (level) should be in the range 0 to 9
(higher is more compression). Typically, either compression is disables (0) or maximised
(9). When used with (x)dvipdfmx, this setting may only be applied globally: it should
be set only once.

\driver_pdf_objects_enable: \driver_pdf_objects_disable:
\driver_pdf_objects_disable:

Enables or disables the creation of PDF objects. These objects are used to reduce the
size of PDFs, and typically are enabled as standard. When used with (x)dvipdfmx,
object creation can be disabled but not re-enabled, and this setting may only be applied
globally: it should be set only once.

268

\driver_pdf_version_major: % \driver_pdf_version_major:
\driver_pdf_version_minor: x \driver_pdf_version_minor:

New: 2019-04-11

Expands to the current value of the major or minor version of PDF being created, a
non-negative integer. Where a value is not available at the TEX run level, the result is
—1. (This is necessary as the minor version may be 0.)

\driver_pdf_version_major_gset:n x \driver_pdf_version_major_gset:n {(integer)}
\driver_pdf_version_minor_gset:n % \driver_pdf_version_minor_gset:n {(integer>}

New: 2019-04-11

Sets the PDF version as specified: the allowable range is not checked at this level.

Part XXXIV
Implementation

1 I3bootstrap implementation

1 (*initex | package)
> (@@=kernel)

1.1 Format-specific code

The very first thing to do is to bootstrap the iniTEX system so that everything else will
actually work. TEX does not start with some pretty basic character codes set up.

5 (¥initex)

+ \catcode ‘\{ =1}

5 \catcode ‘\} = 2 J

s \catcode ‘\# =6 }

7 \catcode ‘\~ =74

¢ (/initex)

Tab characters should not show up in the code, but to be on the safe side.

o (¥initex)

10 \catcode ‘\""I = 10

1 {/initex)

For LuaTgX, the extra primitives need to be enabled. This is not needed in package
mode: common formats have the primitives enabled.
12 (*initex)
13 \begingroup\expandafter\expandafter\expandafter\endgroup
12 \expandafter\ifx\csname directlua\endcsname\relax

5 \else

16 \directlua{tex.enableprimitives("", tex.extraprimitives())}]
7 \fi

15 (/initex)

Depending on the versions available, the ITEX format may not have the raw \Umath
primitive names available. We fix that globally: it should cause no issues. Older LuaTgX
versions do not have a pre-built table of the primitive names here so sort one out ourselves.

269

These end up globally-defined but at that is true with a newer format anyway and as
they all start \U this should be reasonably safe.

s (*package)

20 \begingroup

21 \expandafter\ifx\csname directlua\endcsname\relax
2 \else

23 \directlua{},

2 local i

25 local t = { }

2 for _,i in pairs(tex.extraprimitives("luatex")) do
27 if string.match(i,"~U") then

28 if not string.match(i, " Uchar$") then 7$
29 table.insert (t,i)

30 end

31 end

32 end

33 tex.enableprimitives("", t)

34 }

35 \fi

36 \endgroup

57 {/package)

1.2 The \pdfstrcmp primitive in XyqTEX

Only pdfTEX has a primitive called \pdfstrcmp. The XHTEX version is just \strcmp, so
there is some shuffling to do. As this is still a real primitive, using the pdfTEX name is
“safe”.

33 \begingroup\expandafter\expandafter\expandafter\endgroup

s \expandafter\ifx\csname pdfstrcmp\endcsname\relax

20 \let\pdfstrcmp\strcmp
s \fi

1.3 Loading support Lua code

When LuaTgX is used there are various pieces of Lua code which need to be loaded. The
code itself is defined in I3luatex and is extracted into a separate file. Thus here the task
is to load the Lua code both now and (if required) at the start of each job.

2 \begingroup\expandafter\expandafter\expandafter\endgroup
43 \expandafter\ifx\csname directlua\endcsname\relax

1 \else
25 \ifnum\luatexversion<70 %
% \else

In package mode a category code table is needed: either use a pre-loaded allocator or
provide one using the IXTEX 2¢-based generic code. In format mode the table used here
can be hard-coded into the Lua.

.7 (*package)

% \begingroup\expandafter\expandafter\expandafter\endgroup

49 \expandafter\ifx\csname newcatcodetable\endcsname\relax
50 \input{ltluatex}),

51 \fi

52 \newcatcodetable\ucharcat@table

53 \directlua{

270

54 13kernel = 13kernel or { }

55 local charcat_table = \number\ucharcat@table\space
56 13kernel.charcat_table = charcat_table

57 A

ss (/package)

59 \directlua{require("expl3")}/,

As the user might be making a custom format, no assumption is made about matching
package mode with only loading the Lua code once. Instead, a query to Lua reveals what
mode is in operation.

60 \ifnum 0%

61 \directlua{

62 if status.ini_version then
63 tex.write("1")

64 end

65 0 %

66 \everyjob\expandafter{’

67 \the\expandafter\everyjob

68 \csname\detokenize{lua_now:n}\endcsname{require("expl3")1}/
69 YA

70 \fi

71 \fi

2 \fi

1.4 Engine requirements

The code currently requires e-TEX and functionality equivalent to \pdfstrcmp, and also
driver and Unicode character support. This is available in a reasonably-wide range of
engines.

~

; \begingroup
72 \def\next{\endgroup}’%
s \def\ShortText{Required primitives not found}/,

76 \def\LongText

77 {4

78 LaTeX3 requires the e-TeX primitives and additional functionality as
79 described in the README file.

80 \LineBreak

81 These are available in the engines\LineBreak

82 - pdfTeX v1.40\LineBreak

83 - XeTeX v0.99992\LineBreak

84 - LuaTeX vO0.76\LineBreak

85 - e-(u)pTeX mid-2012\LineBreak

86 or later.\LineBreak

87 \LineBreak

88 Y

89 \ifnum0Y

9 \expandafter\ifx\csname pdfstrcmp\endcsname\relax

91 \else

9 \expandafter\ifx\csname pdftexversion\endcsname\relax
03 \expandafter\ifx\csname Ucharcat\endcsname\relax

o \expandafter\ifx\csname kanjiskip\endcsname\relax
05 \else

9% 1%

97 \fi

271

08 \else

99 1%

100 \fi

101 \else

102 \ifnum\pdftexversion<140 \else 1\fi

103 \fi

104 \fi

105 \expandafter\ifx\csname directlua\endcsname\relax
106 \else

107 \ifnum\luatexversion<76 \else 1\fi

108 \fi

109 =0 %

110 \newlinechar‘\~"J %

111 (*initex>

112 \def\LineBreak{~"J}),

113 \edef\next

114 {%

115 \errhelp

116 {7

117 \LongText

118 For pdfTeX and XeTeX the ’-etex’ command-line switch is also
119 needed. \LineBreak

120 \LineBreak

121 Format building will abort!\LineBreak
122 }%

123 \errmessage{\ShortText}),

124 \endgroup

125 \noexpand\end

126 }%

127 (/initex)

s (*package)

120 \def\LineBreak{\noexpand\MessageBreak}J,

130 \expandafter\ifx\csname PackageError\endcsname\relax
131 \def\LineBreak{~"J}}

132 \def\PackageError#1#2#3J,

133 {7

134 \errhelp{#3}}

135 \errmessage{#1 Error: #2}J)

136 M

137 \fi

138 \edef\next

139 %

140 \noexpand\PackageError{expl3}{\ShortText}
141 {\LongText Loading of expl3 will abort!}}
142 \endgroup

143 \noexpand\endinput

144 §A

15 (/package)

146 \fi

147 \next

272

1.5 Extending allocators

In format mode, allocating registers is handled by [3alloc. However, in package mode
it’s much safer to rely on more general code. For example, the ability to extend TEX’s
allocation routine to allow for e-TEX has been around since 1997 in the etex package.

Loading this support is delayed until here as we are now sure that the e-TEX ex-
tensions and \pdfstrcmp or equivalent are available. Thus there is no danger of an
“uncontrolled” error if the engine requirements are not met.

For B TEX2: we need to make sure that the extended pool is being used: expl3
uses a lot of registers. For formats from 2015 onward there is nothing to do as this is
automatic. For older formats, the etex package needs to be loaded to do the job. In that
case, some inserts are reserved also as these have to be from the standard pool. Note
that \reserveinserts is \outer and so is accessed here by csname. In earlier versions,
loading etex was done directly and so \reserveinserts appeared in the code: this then
required a \relax after \RequirePackage to prevent an error with “unsafe” definitions
as seen for example with capoptions. The optional loading here is done using a group
and \ifx test as we are not quite in the position to have a single name for \pdfstrcmp
just yet.

us (*package)

120 \begingroup

150 \def\@tempa{LaTeX2el}},
151 \def\next{}}

152 \ifx\fmtname\@tempa

153 \expandafter\ifx\csname extrafloats\endcsname\relax
154 \def\next

155 {%

156 \RequirePackage{etex}],

157 \csname reserveinserts\endcsname{32}),
158 }%

159 \fi

160 \fi

161 \expandafter\endgroup

162 \next

163 (/package)

1.6 Character data

TEX needs various pieces of data to be set about characters, in particular which ones to
treat as letters and which \lccode values apply as these affect hyphenation. It makes
most sense to set this and related information up in one place. Whilst for LualgX
hyphenation patterns can be read anywhere, other engines have to build them into the
format and so we must do this set up before reading the patterns. For the Unicode
engines, there are shared loaders available to obtain the relevant information directly
from the Unicode Consortium data files. These need standard (Ini)TEX category codes
and primitive availability and must therefore loaded wvery early. This has a knock-on
effect on the 8-bit set up: it makes sense to do the definitions for those here as well so it
is all in one place.
For XHTEX and LuaTgX, which are natively Unicode engines, simply load the Uni-

code data.

164 (*initex>

165 \ifdefined\Umathcode

273

16 \input load-unicode-data 7,

167 \input load-unicode-math-classes J,

165 \else
For the 8-bit engines a font encoding scheme must be chosen. At present, this is the EC
(T1) scheme, with the assumption that languages for which this is not appropriate will
be used with one of the Unicode engines.

1o \begingroup
Lower case chars: map to themselves when lower casing and down by "20 when upper
casing. (The characters a—z are set up correctly by iniTEX.)

170 \def\temp{7,

171 \ifnum\count0>\count2 J

172 \else

173 \global\lccode\countO = \countO
174 \global\uccode\countO = \numexpr\countO - "20\relax
175 \advance\count0 by 1 7

176 \expandafter\temp

177 \fi

178 }

179 \count0 = "A0 7

180 \count2 = "BC J,

181 \temp

182 \count0 = "EO J

183 \count2 = "FF },

184 \temp

Upper case chars: map up by "20 when lower casing, to themselves when upper casing
and require an \sfcode of 999. (The characters A-Z are set up correctly by iniTgX.)

185 \def\temp{/,

186 \ifnum\count0>\count2 7

187 \else

188 \global\lccode\countO = \numexpr\countO + "20\relax
189 \global\uccode\countO = \countO 7
190 \global\sfcode\count0 = 999 7

101 \advance\count0 by 1 7

192 \expandafter\temp

193 \fi

194 }

195 \count0 = "80 J

196 \count2 = "9C J

197 \temp

198 \count0 = "CO },

199 \count2 = "DF }

200 \temp

A few special cases where things are not as one might expect using the above pattern:
dotless-1, dotless-J, dotted-I and d-bar.

201 \global\lccode‘\""Y = ‘\"7Y J
202 \globalluccode‘\""Y = ‘\I
203 \global\lccode‘\""Z = ‘\""Z }
204 \global\uccode‘\""Y = ‘\J J
205 \global\lccode"9D = ‘\i 7

206 \global\uccode"9D = "9D J

207 \global\lccode"9E = "9E J,

208 \global\uccode"9E = "DO },

274

Allow hyphenation at a zero-width glyph (used to break up ligatures or to place accents
between characters).

209 \global\lccode23 = 23 }

20 \endgroup

o \fi
2 (/initex)

N

1.7 The BTEX3 code environment

The code environment is now set up.

\ExplSyntax0ff Before changing any category codes, in package mode we need to save the situation before
loading. Note the set up here means that once applied \ExplSyntax0ff becomes a “do
nothing” command until \ExplSyntax0On is used. For format mode, there is no need to
save category codes so that step is skipped.

215 \protected\def\ExplSyntax0ff{}%

214 (*package)

215 \protected\edef\ExplSyntaxOff

o6 A4

217 \protected\def\ExplSyntaxO0ff{}}

218 \catcode 9 = \the\catcode 9\relax
219 \catcode 32 = \the\catcode 32\relax
220 \catcode 34 = \the\catcode 34\relax
221 \catcode 38 = \the\catcode 38\relax
222 \catcode 58 = \the\catcode 58\relax

223 \catcode 94 = \the\catcode 94\relax

224 \catcode 95 = \the\catcode 95\relax

225 \catcode 124 = \the\catcode 124\relax

226 \catcode 126 = \the\catcode 126\relax

227 \endlinechar = \the\endlinechar\relax

228 \chardef\csname\detokenize{l__kernel_expl_bool}\endcsname = O\relax
229 }%

250 (/package)

(End definition for \ExplSyntax0ff. This function is documented on page 7.)
The code environment is now set up.

\catcode 9 = 9\relax
232 \catcode 32 = 9\relax
>33 \catcode 34 = 12\relax
221 \catcode 38 = 4\relax
235 \catcode 58 = 11\relax
236 \catcode 94 = 7\relax
237 \catcode 95 = 11\relax
233 \catcode 124 = 12\relax
239 \catcode 126 = 10\relax
210 \endlinechar = 32\relax

N}
@

\1__kernel_expl_bool The status for experimental code syntax: this is on at present.
221 \chardef\1__kernel_expl_bool = 1\relax

(End definition for \1__kernel_expl_bool.)

275

\ExplSyntaxOn The idea here is that multiple \ExplSyntax0On calls are not going to mess up category
codes, and that multiple calls to \ExplSyntax0ff are also not wasting time. Applying
\ExplSyntaxOn alters the definition of \ExplSyntax0ff and so in package mode this
function should not be used until after the end of the loading process!

2> \protected \def \ExplSyntaxOn

243 {

244 \bool_if:NF \1__kernel_expl_bool

245 {

246 \cs_set_protected:Npx \ExplSyntax0ff

247 {

248 \char_set_catcode:nn { 9 } { \char_value_catcode:n { 9 } }
249 \char_set_catcode:nn { 32 } { \char_value_catcode:n { 32 } }
250 \char_set_catcode:nn { 34 } { \char_value_catcode:n { 34 } }
251 \char_set_catcode:nn { 38 } { \char_value_catcode:n { 38 } }
252 \char_set_catcode:nn { 58 } { \char_value_catcode:n { 58 } }
253 \char_set_catcode:nn { 94 } { \char_value_catcode:n { 94 } }
254 \char_set_catcode:nn { 95 } { \char_value_catcode:n { 95 } }
255 \char_set_catcode:nn { 124 } { \char_value_catcode:n { 124 } }
256 \char_set_catcode:nn { 126 } { \char_value_catcode:n { 126 } }
257 \tex_endlinechar:D =

258 \tex_the:D \tex_endlinechar:D \scan_stop:

250 \bool_set_false:N \1__kernel_expl_bool

260 \cs_set_protected:Npn \ExplSyntax0ff { }

261 }

262 }

263 \char_set_catcode_ignore:n {93} % tab

264 \char_set_catcode_ignore:n {32} 7 space

265 \char_set_catcode_other:n { 34 } 7 double quote

266 \char_set_catcode_alignment:n {38 } 7 ampersand

267 \char_set_catcode_letter:n {58} ¥% colon

268 \char_set_catcode_math_superscript:n { 94 } ¥ circumflex

269 \char_set_catcode_letter:n { 95 } Y% underscore

270 \char_set_catcode_other:n { 124 } ¥ pipe

271 \char_set_catcode_space:n { 126 } % tilde

272 \tex_endlinechar:D = 32 \scan_stop:

273 \bool_set_true:N \1__kernel_expl_bool

274 }

(End definition for \ExplSyntaxOn. This function is documented on page 7.)
275 (/initex | package)

2 I3names implementation

276 (¥initex | package)

The prefix here is kernel. A few places need @@ to be left as is; this is obtained as

0QQQ.
277 (@@=kernel)

The code here simply renames all of the primitives to new, internal, names. In format
mode, it also deletes all of the existing names (although some do come back later).

The \let primitive is renamed by hand first as it is essential for the entire process
to follow. This also uses \global, as that way we avoid leaving an unneeded csname in
the hash table.

276

__kernel_primitive:NN

27 \let \tex_global:D \global
279 \let \tex_let:D \let

Everything is inside a (rather long) group, which keeps __kernel_primitive:NN

trapped.

250 \begingroup
A temporary function to actually do the renaming. This also allows the original names
to be removed in format mode.

261 \long \def __kernel_primitive:NN #1#2

282 {

283 \tex_global:D \tex_let:D #2 #1

284 (*initex>

285 \tex_global:D \tex_let:D #1 \tex_undefined:D

286 (/initex)

287 }

(End definition for __kernel_primitive:NN.)
To allow extracting “just the names”, a bit of DocStrip fiddling.
265 {/initex | package)
250 (*initex | names | package)

In the current incarnation of this package, all TEX primitives are given a new name
of the form \tex_oldname:D. But first three special cases which have symbolic original
names. These are given modified new names, so that they may be entered without
catcode tricks.

20 __kernel_primitive:NN \ \tex_space:D
201 __kernel_primitive:NN \/ \tex_italiccorrection:D
2 __kernel_primitive:NN \- \tex_hyphen:D
Now all the other primitives.
203 __kernel_primitive:NN \above \tex_above:D
204 __kernel_primitive:NN \abovedisplayshortskip \tex_abovedisplayshortskip:D
205 __kernel_primitive:NN \abovedisplayskip \tex_abovedisplayskip:D
206 __kernel_primitive:NN \abovewithdelims \tex_abovewithdelims:D
207 __kernel_primitive:NN \accent \tex_accent:D
208 __kernel_primitive:NN \adjdemerits \tex_adjdemerits:D
200 __kernel_primitive:NN \advance \tex_advance:D
;00 __kernel_primitive:NN \afterassignment \tex_afterassignment:D
s00 __kernel_primitive:NN \aftergroup \tex_aftergroup:D
30 __kernel_primitive:NN \atop \tex_atop:D
200 __kernel_primitive:NN \atopwithdelims \tex_atopwithdelims:D
304 __kernel_primitive:NN \badness \tex_badness:D
305 __kernel_primitive:NN \baselineskip \tex_baselineskip:D
300 __kernel_primitive:NN \batchmode \tex_batchmode:D
507 __kernel_primitive:NN \begingroup \tex_begingroup:D
ss __kernel_primitive:NN \belowdisplayshortskip \tex_belowdisplayshortskip:D
300 __kernel_primitive:NN \belowdisplayskip \tex_belowdisplayskip:D
si0 __kernel_primitive:NN \binoppenalty \tex_binoppenalty:D
sii __kernel_primitive:NN \botmark \tex_botmark:D
52 __kernel_primitive:NN \box \tex_box:D
si3 __kernel_primitive:NN \boxmaxdepth \tex_boxmaxdepth:D
ss __kernel_primitive:NN \brokenpenalty \tex_brokenpenalty:D
315 __kernel_primitive:NN \catcode \tex_catcode:D
si6 __kernel_primitive:NN \char \tex_char:D

277

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\chardef

\cleaders

\closein

\closeout
\clubpenalty

\copy

\count

\countdef

\cr

\crcr

\csname

\day

\deadcycles

\def
\defaulthyphenchar
\defaultskewchar
\delcode
\delimiter
\delimiterfactor
\delimitershortfall
\dimen

\dimendef
\discretionary
\displayindent
\displaylimits
\displaystyle
\displaywidowpenalty
\displaywidth
\divide

\doublehyphendemerits

\dp

\dump

\edef

\else
\emergencystretch
\end

\endcsname
\endgroup
\endinput
\endlinechar
\egno

\errhelp
\errmessage
\errorcontextlines
\errorstopmode
\escapechar
\everycr
\everydisplay
\everyhbox
\everyjob
\everymath
\everypar
\everyvbox
\exhyphenpenalty

278

\tex_chardef:D
\tex_cleaders:D
\tex_closein:D
\tex_closeout:D
\tex_clubpenalty:D
\tex_copy:D
\tex_count:D
\tex_countdef :D
\tex_cr:D
\tex_crcr:D
\tex_csname:D
\tex_day:D
\tex_deadcycles:D
\tex_def:D

\tex_defaulthyphenchar:D
\tex_defaultskewchar:D

\tex_delcode:D
\tex_delimiter:D

\tex_delimiterfactor:D
\tex_delimitershortfall:D

\tex_dimen:D
\tex_dimendef:D
\tex_discretionary:D
\tex_displayindent:D
\tex_displaylimits:D
\tex_displaystyle:D

\tex_displaywidowpenalty:D

\tex_displaywidth:D
\tex_divide:D

\tex_doublehyphendemerits:D

\tex_dp:D

\tex_dump:D
\tex_edef:D
\tex_else:D

\tex_emergencystretch:D

\tex_end:D
\tex_endcsname:D
\tex_endgroup:D
\tex_endinput:D
\tex_endlinechar:D
\tex_eqno:D
\tex_errhelp:D
\tex_errmessage:D

\tex_errorcontextlines:D

\tex_errorstopmode:D
\tex_escapechar:D
\tex_everycr:D
\tex_everydisplay:D
\tex_everyhbox:D
\tex_everyjob:D
\tex_everymath:D
\tex_everypar:D
\tex_everyvbox:D

\tex_exhyphenpenalty:D

390

301

392

393

394

395

396

397

398

399

400

401

409

410

411

412

413

414

415

416

417

418

419

420

422

423

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\expandafter
\fam

\fi
\finalhyphendemerits
\firstmark
\floatingpenalty
\font
\fontdimen
\fontname
\futurelet
\gdef
\global
\globaldefs
\halign
\hangafter
\hangindent
\hbadness
\hbox

\hfil

\hfill
\hfilneg
\hfuzz
\hoffset
\holdinginserts
\hrule
\hsize
\hskip

\hss

\ht
\hyphenation
\hyphenchar
\hyphenpenalty
\if

\ifcase
\ifcat
\ifdim
\ifeof
\iffalse
\ifhbox
\ifhmode
\ifinner
\ifmmode
\ifnum
\ifodd
\iftrue
\ifvbox
\ifvmode
\ifvoid

\ifx
\ignorespaces
\immediate
\indent
\input
\inputlineno

279

\tex_expandafter:D
\tex_fam:D
\tex_fi:D

\tex_finalhyphendemerits:D

\tex_firstmark:D

\tex_floatingpenalty:D

\tex_font:D
\tex_fontdimen:D
\tex_fontname:D
\tex_futurelet:D
\tex_gdef:D
\tex_global:D
\tex_globaldefs:D
\tex_halign:D
\tex_hangafter:D
\tex_hangindent:D
\tex_hbadness:D
\tex_hbox:D
\tex_hfil:D
\tex_hfill:D
\tex_hfilneg:D
\tex_hfuzz:D
\tex_hoffset:D
\tex_holdinginserts:D
\tex_hrule:D
\tex_hsize:D
\tex_hskip:D
\tex_hss:D
\tex_ht:D
\tex_hyphenation:D
\tex_hyphenchar:D
\tex_hyphenpenalty:D
\tex_if:D
\tex_ifcase:D
\tex_ifcat:D
\tex_ifdim:D
\tex_ifeof:D
\tex_iffalse:D
\tex_ifhbox:D
\tex_ifhmode:D
\tex_ifinner:D
\tex_ifmmode:D
\tex_ifnum:D
\tex_ifodd:D
\tex_iftrue:D
\tex_ifvbox:D
\tex_ifvmode:D
\tex_ifvoid:D
\tex_ifx:D
\tex_ignorespaces:D
\tex_immediate:D
\tex_indent:D
\tex_input:D
\tex_inputlineno:D

\tex_insert:D
\tex_insertpenalties:D

25 __kernel_primitive:NN \insert
26 __kernel_primitive:NN \insertpenalties

227 __kernel_primitive:NN \interlinepenalty \tex_interlinepenalty:D
28 __kernel_primitive:NN \jobname \tex_jobname:D

20 __kernel_primitive:NN \kern \tex_kern:D

20 __kernel_primitive:NN \language \tex_language:D

431 __kernel_primitive:NN \lastbox \tex_lastbox:D

222 __kernel_primitive:NN \lastkern \tex_lastkern:D

433 __kernel_primitive:NN \lastpenalty \tex_lastpenalty:D
432 __kernel_primitive:NN \lastskip \tex_lastskip:D

i35 __kernel_primitive:NN \lccode \tex_lccode:D

236 __kernel_primitive:NN \leaders \tex_leaders:D

437 __kernel_primitive:NN \left \tex_left:D

25 __kernel_primitive:NN \lefthyphenmin \tex_lefthyphenmin:D
230 __kernel _primitive:NN \leftskip \tex_leftskip:D

a0 __kernel_primitive:NN \legno \tex_leqno:D

1 __kernel_primitive:NN \let \tex_let:D

22 __kernel_primitive:NN \limits \tex_limits:D

43 __kernel_primitive:NN \linepenalty \tex_linepenalty:D
24 __kernel_primitive:NN \lineskip \tex_lineskip:D

45 __kernel _primitive:NN \lineskiplimit \tex_lineskiplimit:D
a6 __kernel_primitive:NN \long \tex_long:D

w7 __kernel_primitive:NN \looseness \tex_looseness:D
25 __kernel_primitive:NN \lower \tex_lower:D

a9 __kernel_primitive:NN \lowercase \tex_lowercase:D
20 __kernel_primitive:NN \mag \tex_mag:D

451 __kernel_primitive:NN \mark \tex_mark:D

42 __kernel_primitive:NN \mathaccent \tex_mathaccent:D
253 __kernel_primitive:NN \mathbin \tex_mathbin:D

22 __kernel_primitive:NN \mathchar \tex_mathchar:D

455 __kernel_primitive:NN \mathchardef \tex_mathchardef :D
26 __kernel_primitive:NN \mathchoice \tex_mathchoice:D
257 __kernel_primitive:NN \mathclose \tex_mathclose:D
45 __kernel_primitive:NN \mathcode \tex_mathcode:D

20 __kernel_primitive:NN \mathinner \tex_mathinner:D
260 __kernel_primitive:NN \mathop \tex_mathop:D

461 __kernel_primitive:NN \mathopen \tex_mathopen:D

22 __kernel_primitive:NN \mathord \tex_mathord:D

263 __kernel_primitive:NN \mathpunct \tex_mathpunct:D
24 __kernel_primitive:NN \mathrel \tex_mathrel:D

25 __kernel_primitive:NN \mathsurround \tex_mathsurround:D
w66 __kernel_primitive:NN \maxdeadcycles \tex_maxdeadcycles:D
27 __kernel_primitive:NN \maxdepth \tex_maxdepth:D

25 __kernel_primitive:NN \meaning \tex_meaning:D

260 __kernel_primitive:NN \medmuskip \tex_medmuskip:D
a0 __kernel_primitive:NN \message \tex_message:D

4 __kernel_primitive:NN \mkern \tex_mkern:D

472 __kernel_primitive:NN \month \tex_month:D

473 __kernel_primitive:NN \moveleft \tex_moveleft:D

s7a __kernel_primitive:NN \moveright \tex_moveright:D
475 __kernel_primitive:NN \mskip \tex_mskip:D

476 __kernel_primitive:NN \multiply \tex_multiply:D

477 __kernel_primitive:NN \muskip \tex_muskip:D

a7z __kernel_primitive:NN \muskipdef \tex_muskipdef :D

280

490

491

492

493

494

495

496

497

498

499

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\newlinechar
\noalign
\noboundary
\noexpand
\noindent
\nolimits
\nonscript
\nonstopmode
\nulldelimiterspace
\nullfont
\number

\omit

\openin
\openout

\or

\outer

\output
\outputpenalty
\over
\overfullrule
\overline
\overwithdelims
\pagedepth
\pagefilllstretch
\pagefillstretch
\pagefilstretch
\pagegoal
\pageshrink
\pagestretch
\pagetotal

\par
\parfillskip
\parindent
\parshape
\parskip
\patterns
\pausing
\penalty
\postdisplaypenalty
\predisplaypenalty
\predisplaysize
\pretolerance
\prevdepth
\prevgraf
\radical

\raise

\read

\relax
\relpenalty
\right
\righthyphenmin
\rightskip
\romannumeral
\scriptfont

281

\tex_newlinechar:D
\tex_noalign:D
\tex_noboundary:D
\tex_noexpand:D
\tex_noindent:D
\tex_nolimits:D
\tex_nonscript:D
\tex_nonstopmode:D

\tex_nulldelimiterspace:D

\tex_nullfont:D
\tex_number:D
\tex_omit:D
\tex_openin:D
\tex_openout :D
\tex_or:D
\tex_outer:D
\tex_output:D
\tex_outputpenalty:D
\tex_over:D
\tex_overfullrule:D
\tex_overline:D
\tex_overwithdelims:D
\tex_pagedepth:D

\tex_pagefilllstretch:D
\tex_pagefillstretch:D

\tex_pagefilstretch:D
\tex_pagegoal:D
\tex_pageshrink:D
\tex_pagestretch:D
\tex_pagetotal:D
\tex_par:D
\tex_parfillskip:D
\tex_parindent:D
\tex_parshape:D
\tex_parskip:D
\tex_patterns:D
\tex_pausing:D
\tex_penalty:D

\tex_postdisplaypenalty:D
\tex_predisplaypenalty:D

\tex_predisplaysize:D
\tex_pretolerance:D
\tex_prevdepth:D
\tex_prevgraf:D
\tex_radical:D
\tex_raise:D
\tex_read:D
\tex_relax:D
\tex_relpenalty:D
\tex_right:D
\tex_righthyphenmin:D
\tex_rightskip:D
\tex_romannumeral:D
\tex_scriptfont:D

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\scriptscriptfont
\scriptscriptstyle
\scriptspace
\scriptstyle
\scrollmode
\setbox
\setlanguage
\sfcode

\shipout

\show

\showbox
\showboxbreadth
\showboxdepth
\showlists
\showthe
\skewchar

\skip

\skipdef
\spacefactor
\spaceskip

\span

\special
\splitbotmark
\splitfirstmark
\splitmaxdepth
\splittopskip
\string

\tabskip
\textfont
\textstyle

\the
\thickmuskip
\thinmuskip
\time

\toks

\toksdef
\tolerance
\topmark
\topskip
\tracingcommands
\tracinglostchars
\tracingmacros
\tracingonline
\tracingoutput
\tracingpages
\tracingparagraphs
\tracingrestores
\tracingstats
\uccode

\uchyph
\underline
\unhbox

\unhcopy

\unkern

282

\tex_scriptscriptfont:D
\tex_scriptscriptstyle:D
\tex_scriptspace:D
\tex_scriptstyle:D
\tex_scrollmode:D
\tex_setbox:D
\tex_setlanguage:D
\tex_sfcode:D
\tex_shipout:D
\tex_show:D
\tex_showbox:D
\tex_showboxbreadth:D
\tex_showboxdepth:D
\tex_showlists:D
\tex_showthe:D
\tex_skewchar:D
\tex_skip:D
\tex_skipdef:D
\tex_spacefactor:D
\tex_spaceskip:D
\tex_span:D
\tex_special:D
\tex_splitbotmark:D
\tex_splitfirstmark:D
\tex_splitmaxdepth:D
\tex_splittopskip:D
\tex_string:D
\tex_tabskip:D
\tex_textfont:D
\tex_textstyle:D
\tex_the:D
\tex_thickmuskip:D
\tex_thinmuskip:D
\tex_time:D
\tex_toks:D
\tex_toksdef:D
\tex_tolerance:D
\tex_topmark:D
\tex_topskip:D
\tex_tracingcommands:D
\tex_tracinglostchars:D
\tex_tracingmacros:D
\tex_tracingonline:D
\tex_tracingoutput:D
\tex_tracingpages:D
\tex_tracingparagraphs:D
\tex_tracingrestores:D
\tex_tracingstats:D
\tex_uccode:D
\tex_uchyph:D
\tex_underline:D
\tex_unhbox:D
\tex_unhcopy:D
\tex_unkern:D

ss7 __kernel_primitive:NN \unpenalty \tex_unpenalty:D

ses __kernel_primitive:NN \unskip \tex_unskip:D

s.9 __kernel_primitive:NN \unvbox \tex_unvbox:D

s00 __kernel_primitive:NN \unvcopy \tex_unvcopy:D

so0. __kernel_primitive:NN \uppercase \tex_uppercase:D

so __kernel_primitive:NN \vadjust \tex_vadjust:D

503 __kernel_primitive:NN \valign \tex_valign:D

soo __kernel_primitive:NN \vbadness \tex_vbadness:D

s05 __kernel_primitive:NN \vbox \tex_vbox:D

506 __kernel_primitive:NN \vcenter \tex_vcenter:D

so7 __kernel_primitive:NN \vfil \tex_vfil:D

s0s __kernel primitive:NN \vfill \tex_vfill:D

509 __kernel_primitive:NN \vfilneg \tex_vfilneg:D

60 __kernel_primitive:NN \vfuzz \tex_vfuzz:D

601 __kernel primitive:NN \voffset \tex_voffset:D

62 __kernel_primitive:NN \vrule \tex_vrule:D

603 __kernel_primitive:NN \vsize \tex_vsize:D

604 __kernel_primitive:NN \vskip \tex_vskip:D

605 __kernel_primitive:NN \vsplit \tex_vsplit:D

66 __kernel_primitive:NN \vss \tex_vss:D

607 __kernel _primitive:NN \vtop \tex_vtop:D

60z __kernel_primitive:NN \wd \tex_wd:D

60 __kernel_primitive:NN \widowpenalty \tex_widowpenalty:D

610 __kernel_primitive:NN \write \tex_write:D

611 __kernel_primitive:NN \xdef \tex_xdef:D

62 __kernel_primitive:NN \xleaders \tex_xleaders:D

613 __kernel_primitive:NN \xspaceskip \tex_xspaceskip:D

o4 __kernel_primitive:NN \year \tex_year:D
Primitives introduced by e-TEX.

615 __kernel_primitive:NN \beginL \tex_beginL:D

616 __kernel_primitive:NN \beginR \tex_beginR:D

617 __kernel_primitive:NN \botmarks \tex_botmarks:D

615 __kernel_primitive:NN \clubpenalties \tex_clubpenalties:D

610 __kernel_primitive:NN \currentgrouplevel
620 __kernel_primitive:NN \currentgrouptype
621 __kernel_primitive:NN \currentifbranch
¢ __kernel_primitive:NN \currentiflevel

03 __kernel _primitive:NN \currentiftype

62 __kernel_primitive:NN \detokenize \tex_detokenize:D

e __kernel_primitive:NN \dimexpr \tex_dimexpr:D

06 __kernel_primitive:NN \displaywidowpenalties \tex_displaywidowpenalties:D
o7 __kernel_primitive:NN \endL \tex_endL:D

e __kernel_primitive:NN \endR \tex_endR:D

620 __kernel_primitive:NN \eTeXrevision \tex_eTeXrevision:D

630 __kernel_primitive:NN \eTeXversion \tex_eTeXversion:D

¢t __kernel_primitive:NN \everyeof \tex_everyeof :D
622 __kernel_primitive:NN \firstmarks \tex_firstmarks:
633 __kernel_primitive:NN \fontchardp \tex_fontchardp:
¢+ __kernel_primitive:NN \fontcharht \tex_fontcharht:
635 __kernel_primitive:NN \fontcharic \tex_fontcharic:
636 __kernel_primitive:NN \fontcharwd \tex_fontcharwd:
637 __kernel_primitive:NN \glueexpr \tex_glueexpr:D
633 __kernel_primitive:NN \glueshrink \tex_glueshrink:D

639 __kernel_primitive:NN \glueshrinkorder \tex_glueshrinkorder:D

\tex_currentgrouplevel:D
\tex_currentgrouptype:D
\tex_currentifbranch:D
\tex_currentiflevel:D
\tex_currentiftype:D

O ououoo

283

620 __kernel_primitive:NN \gluestretch \tex_gluestretch:D

¢t __kernel_primitive:NN \gluestretchorder \tex_gluestretchorder:D
¢ __kernel_primitive:NN \gluetomu \tex_gluetomu:D

03 __kernel_primitive:NN \ifcsname \tex_ifcsname:D

¢ __kernel_primitive:NN \ifdefined \tex_ifdefined:D

65 __kernel_primitive:NN \iffontchar \tex_iffontchar:D

66 __kernel_primitive:NN \interactionmode \tex_interactionmode:D
¢7 __kernel_primitive:NN \interlinepenalties \tex_interlinepenalties:D
ess __kernel primitive:NN \lastlinefit \tex_lastlinefit:D

60 __kernel_primitive:NN \lastnodetype \tex_lastnodetype:D

650 __kernel_primitive:NN \marks \tex_marks:D

o1 __kernel_primitive:NN \middle \tex_middle:D

62 __kernel_primitive:NN \muexpr \tex_muexpr:D

¢35 __kernel_primitive:NN \mutoglue \tex_mutoglue:D

o5« __kernel_primitive:NN \numexpr \tex_numexpr:D

655 __kernel_primitive:NN \pagediscards \tex_pagediscards:D

es6 __kernel _primitive:NN \parshapedimen \tex_parshapedimen:D
657 __kernel_primitive:NN \parshapeindent \tex_parshapeindent:D
o5 __kernel_primitive:NN \parshapelength \tex_parshapelength:D
60 __kernel_primitive:NN \predisplaydirection \tex_predisplaydirection:D
60 __kernel_primitive:NN \protected \tex_protected:D

661 __kernel_primitive:NN \readline \tex_readline:D

6> __kernel_primitive:NN \savinghyphcodes \tex_savinghyphcodes:D
663 __kernel_primitive:NN \savingvdiscards \tex_savingvdiscards:D
664+ __kernel_primitive:NN \scantokens \tex_scantokens:D

65 __kernel_primitive:NN \showgroups \tex_showgroups:D

666 __kernel primitive:NN \showifs \tex_showifs:D

667 __kernel_primitive:NN \showtokens \tex_showtokens:D

6 __kernel_primitive:NN \splitbotmarks \tex_splitbotmarks:D
60 __kernel primitive:NN \splitdiscards \tex_splitdiscards:D
670 __kernel_primitive:NN \splitfirstmarks \tex_splitfirstmarks:D
¢71 __kernel_primitive:NN \TeXXeTstate \tex_TeXXeTstate:D

62 __kernel_primitive:NN \topmarks \tex_topmarks:D

o3 __kernel_primitive:NN \tracingassigns \tex_tracingassigns:D
¢ __kernel_primitive:NN \tracinggroups \tex_tracinggroups:D
65 __kernel_primitive:NN \tracingifs \tex_tracingifs:D

676 __kernel_primitive:NN \tracingnesting \tex_tracingnesting:D
677 __kernel_primitive:NN \tracingscantokens \tex_tracingscantokens:D
o5 __kernel_primitive:NN \unexpanded \tex_unexpanded:D

679 __kernel_primitive:NN \unless \tex_unless:D

60 __kernel_primitive:NN \widowpenalties \tex_widowpenalties:D

Post-e-TEX primitives do not always end up with the same name in all engines, if indeed
they are available cross-engine anyway. We therefore take the approach of preferring the
shortest name that makes sense. First, we deal with the primitives introduced by pdfTEX
which directly relate to PDF output: these are copied with the names unchanged.

631 __kernel_primitive:NN \pdfannot \tex_pdfannot:D

622 __kernel_primitive:NN \pdfcatalog \tex_pdfcatalog:D

e __kernel_primitive:NN \pdfcompresslevel \tex_pdfcompresslevel:D
632 __kernel_primitive:NN \pdfcolorstack \tex_pdfcolorstack:D

65 __kernel_primitive:NN \pdfcolorstackinit \tex_pdfcolorstackinit:D
66 __kernel_primitive:NN \pdfcreationdate \tex_pdfcreationdate:D
67 __kernel_primitive:NN \pdfdecimaldigits \tex_pdfdecimaldigits:D
65 __kernel _primitive:NN \pdfdest \tex_pdfdest:D

284

69 __kernel_primitive:NN \pdfdestmargin \tex_pdfdestmargin:D

60 __kernel_primitive:NN \pdfendlink \tex_pdfendlink:D

o1 __kernel primitive:NN \pdfendthread \tex_pdfendthread:D

62 __kernel_primitive:NN \pdffontattr \tex_pdffontattr:D

e3 __kernel_primitive:NN \pdffontname \tex_pdffontname:D

e+ __kernel_primitive:NN \pdffontobjnum \tex_pdffontobjnum:D

05 __kernel_primitive:NN \pdfgamma \tex_pdfgamma:D

66 __kernel_primitive:NN \pdfimageapplygamma \tex_pdfimageapplygamma:D
e07 __kernel_primitive:NN \pdfimagegamma \tex_pdfimagegamma:D

ez __kernel_primitive:NN \pdfgentounicode \tex_pdfgentounicode:D

6o __kernel_primitive:NN \pdfglyphtounicode \tex_pdfglyphtounicode:D
70 __kernel_primitive:NN \pdfhorigin \tex_pdfhorigin:D

700 __kernel_primitive:NN \pdfimagehicolor \tex_pdfimagehicolor:D

702 __kernel_primitive:NN \pdfimageresolution \tex_pdfimageresolution:D
03 __kernel_primitive:NN \pdfincludechars \tex_pdfincludechars:D

704 __kernel_primitive:NN \pdfinclusioncopyfonts \tex_pdfinclusioncopyfonts:D
705 __kernel_primitive:NN \pdfinclusionerrorlevel
706 \tex_pdfinclusionerrorlevel:D

707 __kernel_primitive:NN \pdfinfo \tex_pdfinfo:D

708 __kernel_primitive:NN \pdflastannot \tex_pdflastannot:D
00 __kernel_primitive:NN \pdflastlink \tex_pdflastlink:D
70 __kernel_primitive:NN \pdflastobj \tex_pdflastobj:D
711 __kernel_primitive:NN \pdflastxform \tex_pdflastxform:D
72 __kernel _primitive:NN \pdflastximage \tex_pdflastximage:D

713 __kernel_primitive:NN \pdflastximagecolordepth
714 \tex_pdflastximagecolordepth:D

75 __kernel_primitive:NN \pdflastximagepages \tex_pdflastximagepages:D
76 __kernel_primitive:NN \pdflinkmargin \tex_pdflinkmargin:D

717 __kernel_primitive:NN \pdfliteral \tex_pdfliteral:D

7e __kernel_primitive:NN \pdfminorversion \tex_pdfminorversion:D

719 __kernel_primitive:NN \pdfnames \tex_pdfnames:D

720 __kernel_primitive:NN \pdfobj \tex_pdfobj:D

721 __kernel_primitive:NN \pdfobjcompresslevel \tex_pdfobjcompresslevel:D
722 __kernel_primitive:NN \pdfoutline \tex_pdfoutline:D

725 __kernel_primitive:NN \pdfoutput \tex_pdfoutput:D

724 __kernel_primitive:NN \pdfpageattr \tex_pdfpageattr:D

75 __kernel_primitive:NN \pdfpagebox \tex_pdfpagebox:D

726 __kernel_primitive:NN \pdfpageref \tex_pdfpageref :D

77 __kernel_primitive:NN \pdfpageresources \tex_pdfpageresources:D
728 __kernel_primitive:NN \pdfpagesattr \tex_pdfpagesattr:D

720 __kernel_primitive:NN \pdfrefobj \tex_pdfrefobj:D

70 __kernel_primitive:NN \pdfrefxform \tex_pdfrefxform:D

731 __kernel_primitive:NN \pdfrefximage \tex_pdfrefximage:D

722 __kernel_primitive:NN \pdfrestore \tex_pdfrestore:D

733 __kernel_primitive:NN \pdfretval \tex_pdfretval:D

732 __kernel_primitive:NN \pdfsave \tex_pdfsave:D

735 __kernel_primitive:NN \pdfsetmatrix \tex_pdfsetmatrix:D

726 __kernel _primitive:NN \pdfstartlink \tex_pdfstartlink:D

737 __kernel_primitive:NN \pdfstartthread \tex_pdfstartthread:D

738 __kernel_primitive:NN \pdfsuppressptexinfo \tex_pdfsuppressptexinfo:D
70 __kernel_primitive:NN \pdfthread \tex_pdfthread:D

720 __kernel_primitive:NN \pdfthreadmargin \tex_pdfthreadmargin:D

721 __kernel_primitive:NN \pdftrailer \tex_pdftrailer:D

722 __kernel_primitive:NN \pdfuniqueresname \tex_pdfuniqueresname:D

285

73 __kernel_primitive:NN \pdfvorigin

724 __kernel_primitive:NN \pdfxform

725 __kernel_primitive:NN \pdfxformattr

76 __kernel_primitive:NN \pdfxformname

727 __kernel_primitive:NN \pdfxformresources
726 __kernel_primitive:NN \pdfximage

79 __kernel_primitive:NN \pdfximagebbox

\tex_pdfvorigin:D
\tex_pdfxform:D
\tex_pdfxformattr:D
\tex_pdfxformname:D
\tex_pdfxformresources:D
\tex_pdfximage:D
\tex_pdfximagebbox:D

These are not related to PDF output and either already appear in other engines without

the \pdf prefix, or might reasonably do so at some future stage. We therefore drop the
leading pdf here.

750 __kernel_primitive:NN \ifpdfabsdim \tex_ifabsdim:D

71 __kernel_primitive:NN \ifpdfabsnum \tex_ifabsnum:D

2 __kernel _primitive:NN \ifpdfprimitive \tex_ifprimitive:D
753 __kernel_primitive:NN \pdfadjustspacing \tex_adjustspacing:D
75 __kernel_primitive:NN \pdfcopyfont \tex_copyfont:D

755 __kernel _primitive:NN \pdfdraftmode \tex_draftmode:D

756 __kernel_primitive:NN \pdfeachlinedepth \tex_eachlinedepth:D
757 __kernel_primitive:NN \pdfeachlineheight \tex_eachlineheight:D
s __kernel _primitive:NN \pdfelapsedtime \tex_elapsedtime:D
759 __kernel_primitive:NN \pdffiledump \tex_filedump:D

60 __kernel_primitive:NN \pdffilemoddate \tex_filemoddate:D
761 __kernel_primitive:NN \pdffilesize \tex_filesize:D

762 __kernel_primitive:NN \pdffirstlineheight \tex_firstlineheight:D
763 __kernel_primitive:NN \pdffontexpand \tex_fontexpand:D

764 __kernel_primitive:NN \pdffontsize \tex_fontsize:D

765 __kernel_primitive:NN \pdfignoreddimen \tex_ignoreddimen:D
766 __kernel_primitive:NN \pdfinsertht \tex_insertht:D

767 __kernel_primitive:NN \pdflastlinedepth \tex_lastlinedepth:D
765 __kernel_primitive:NN \pdflastxpos \tex_lastxpos:D

760 __kernel_primitive:NN \pdflastypos \tex_lastypos:D

770 __kernel_primitive:NN \pdfmapfile \tex_mapfile:D

71 __kernel_primitive:NN \pdfmapline \tex_mapline:D

772 __kernel_primitive:NN \pdfmdfivesum \tex_mdfivesum:D

773 __kernel_primitive:NN \pdfnoligatures \tex_noligatures:D
772 __kernel_primitive:NN \pdfnormaldeviate \tex_normaldeviate:D
775 __kernel_primitive:NN \pdfpageheight \tex_pageheight:D

776 __kernel_primitive:NN \pdfpagewidth \tex_pagewidth:D

777 __kernel_primitive:NN \pdfpkmode \tex_pkmode :D

77s __kernel _primitive:NN \pdfpkresolution \tex_pkresolution:D
779 __kernel _primitive:NN \pdfprimitive \tex_primitive:D

70 __kernel_primitive:NN \pdfprotrudechars \tex_protrudechars:D
51 __kernel_primitive:NN \pdfpxdimen \tex_pxdimen:D

722 __kernel_primitive:NN \pdfrandomseed \tex_randomseed:D

783 __kernel_primitive:NN \pdfresettimer \tex_resettimer:D

s __kernel_primitive:NN \pdfsavepos \tex_savepos:D

755 __kernel_primitive:NN \pdfstrcmp \tex_strcmp:D

726 __kernel_primitive:NN \pdfsetrandomseed \tex_setrandomseed:D
757 __kernel_primitive:NN \pdfshellescape \tex_shellescape:D
722 __kernel_primitive:NN \pdftracingfonts \tex_tracingfonts:D
720 __kernel_primitive:NN \pdfuniformdeviate \tex_uniformdeviate:D

The version primitives are not
are carried forward unchanged.

790

related to PDF mode but are pdfTEX-specific, so again

__kernel_primitive:NN \pdftexbanner

286

\tex_pdftexbanner:D

791 __kernel_primitive:NN \pdftexrevision \tex_pdftexrevision:D

79 __kernel_primitive:NN \pdftexversion \tex_pdftexversion:D
These ones appear in pdfTEX but don’t have pdf in the name at all: no decisions to
make.

793 __kernel_primitive:NN \efcode \tex_efcode:D

7o __kernel_primitive:NN \ifincsname \tex_ifincsname:D

795 __kernel_primitive:NN \leftmarginkern \tex_leftmarginkern:D
796 __kernel_primitive:NN \letterspacefont \tex_letterspacefont:D
707 __kernel_primitive:NN \lpcode \tex_lpcode:D

79¢ __kernel_primitive:NN \quitvmode \tex_quitvmode:D

799 __kernel_primitive:NN \rightmarginkern \tex_rightmarginkern:D
s0 __kernel_primitive:NN \rpcode \tex_rpcode:D

801 __kernel_primitive:NN \synctex \tex_synctex:D

g2 __kernel_primitive:NN \tagcode \tex_tagcode:D

Post pdfTEX primitive availability gets more complex. Both XfTEX and LuaTgX have
varying names for some primitives from pdfTEX. Particularly for LuaTgX tracking all of
that would be hard. Instead, we now check that we only save primitives if they actually
exist.

s03 (/initex | names | package)

sos (*initex | package)

s05 \tex_long:D \tex_def:D \use_ii:nn #1#2 {#2}

26 \tex_long:D \tex_def:D \use_none:n #1 { }

207 \tex_long:D \tex_def:D __kernel _primitive:NN #1#2

808 {

809 \tex_ifdefined:D #1

810 \tex_expandafter:D \use_ii:nn
811 \tex_fi:D

812 \use_none:n { \tex_global:D \tex_let:D #2 #1 }
s13 (¥initex)

814 \tex_global:D \tex_let:D #1 \tex_undefined:D
815 (/initex>
816 }

g7 (/initex | package)

g1 (¥initex | names | package)
XATEX-specific primitives. Note that XgTEX’s \strcmp is handled earlier and is “rolled
up” into \pdfstrcmp. A few cross-compatibility names which lack the pdf of the original
are handled later.

so __kernel_primitive:NN \suppressfontnotfounderror

820 \tex_suppressfontnotfounderror:D

821 __kernel_primitive:NN \XeTeXcharclass \tex_XeTeXcharclass:D

¢2 __kernel_primitive:NN \XeTeXcharglyph \tex_XeTeXcharglyph:D

&3 __kernel_primitive:NN \XeTeXcountfeatures \tex_XeTeXcountfeatures:D
24 __kernel_primitive:NN \XeTeXcountglyphs \tex_XeTeXcountglyphs:D

825 __kernel_primitive:NN \XeTeXcountselectors \tex_XeTeXcountselectors:D
e26 __kernel_primitive:NN \XeTeXcountvariations \tex_XeTeXcountvariations:D
&7 __kernel_primitive:NN \XeTeXdefaultencoding \tex_XeTeXdefaultencoding:D
228 __kernel_primitive:NN \XeTeXdashbreakstate \tex_XeTeXdashbreakstate:D

g0 __kernel_primitive:NN \XeTeXfeaturecode \tex_XeTeXfeaturecode:D
e30 __kernel_primitive:NN \XeTeXfeaturename \tex_XeTeXfeaturename:D
et __kernel_primitive:NN \XeTeXfindfeaturebyname

832 \tex_XeTeXfindfeaturebyname:D

¢33 __kernel_primitive:NN \XeTeXfindselectorbyname

287

834 \tex_XeTeXfindselectorbyname:D
¢35 __kernel_primitive:NN \XeTeXfindvariationbyname

836 \tex_XeTeXfindvariationbyname:D

g7 __kernel_primitive:NN \XeTeXfirstfontchar \tex_XeTeXfirstfontchar:D
s __kernel_primitive:NN \XeTeXfonttype \tex_XeTeXfonttype:D

g0 __kernel_primitive:NN \XeTeXgenerateactualtext

840 \tex_XeTeXgenerateactualtext:D

sa1 __kernel_primitive:NN \XeTeXglyph \tex_XeTeXglyph:D

22 __kernel_primitive:NN \XeTeXglyphbounds \tex_XeTeXglyphbounds:D
23 __kernel_primitive:NN \XeTeXglyphindex \tex_XeTeXglyphindex:D

sas __kernel_primitive:NN \XeTeXglyphname \tex_XeTeXglyphname:D

25 __kernel_primitive:NN \XeTeXinputencoding \tex_XeTeXinputencoding:D
ss6 __kernel_primitive:NN \XeTeXinputnormalization

847 \tex_XeTeXinputnormalization:D

g5 __kernel_primitive:NN \XeTeXinterchartokenstate

849 \tex_XeTeXinterchartokenstate:D

ss0 __kernel_primitive:NN \XeTeXinterchartoks \tex_XeTeXinterchartoks:D
851 __kernel_primitive:NN \XeTeXisdefaultselector

852 \tex_XeTeXisdefaultselector:D

&3 __kernel_primitive:NN \XeTeXisexclusivefeature

854 \tex_XeTeXisexclusivefeature:D

g5 __kernel_primitive:NN \XeTeXlastfontchar \tex_XeTeXlastfontchar:D

es6 __kernel_primitive:NN \XeTeXlinebreakskip \tex_XeTeXlinebreakskip:D
&7 __kernel_primitive:NN \XeTeXlinebreaklocale \tex_XeTeXlinebreaklocale:D
g5 __kernel_primitive:NN \XeTeXlinebreakpenalty \tex_XeTeXlinebreakpenalty:D
ss0 __kernel_primitive:NN \XeTeXOTcountfeatures \tex_XeTeXOTcountfeatures:D
s0 __kernel _primitive:NN \XeTeXOTcountlanguages \tex_XeTeX0Tcountlanguages:D
861 __kernel_primitive:NN \XeTeXOTcountscripts \tex_XeTeX0Tcountscripts:D

s> __kernel_primitive:NN \XeTeXOTfeaturetag \tex_XeTeXOTfeaturetag:D

s3 __kernel_primitive:NN \XeTeXOTlanguagetag \tex_XeTeX0Tlanguagetag:D

s4 __kernel_primitive:NN \XeTeXOTscripttag \tex_XeTeX0Tscripttag:D

s __kernel_primitive:NN \XeTeXpdffile \tex_XeTeXpdffile:D

s6 __kernel_primitive:NN \XeTeXpdfpagecount \tex_XeTeXpdfpagecount:D

e7 __kernel_primitive:NN \XeTeXpicfile \tex_XeTeXpicfile:D

s __kernel_primitive:NN \XeTeXrevision \tex_XeTeXrevision:D

g0 __kernel_primitive:NN \XeTeXselectorname \tex_XeTeXselectorname:D

g0 __kernel_primitive:NN \XeTeXtracingfonts \tex_XeTeXtracingfonts:D

e71 __kernel_primitive:NN \XeTeXupwardsmode \tex_XeTeXupwardsmode:D

sz __kernel_primitive:NN \XeTeXuseglyphmetrics \tex_XeTeXuseglyphmetrics:D

e73 __kernel_primitive:NN \XeTeXvariation \tex_XeTeXvariation:D

e72 __kernel_primitive:NN \XeTeXvariationdefault \tex_XeTeXvariationdefault:D

e75. __kernel_primitive:NN \XeTeXvariationmax \tex_XeTeXvariationmax:D

e76 __kernel_primitive:NN \XeTeXvariationmin \tex_XeTeXvariationmin:D

e77 __kernel_primitive:NN \XeTeXvariationname \tex_XeTeXvariationname:D

e7s. __kernel_primitive:NN \XeTeXversion \tex_XeTeXversion:D
Primitives from pdfTEX that XH4TEX renames: also helps with LuaTgX.

e79 __kernel_primitive:NN \creationdate \tex_creationdate:D

s0 __kernel_primitive:NN \elapsedtime \tex_elapsedtime:D

sst __kernel_primitive:NN \filedump \tex_filedump:D

g2 __kernel_primitive:NN \filemoddate \tex_filemoddate:D

es3 __kernel _primitive:NN \filesize \tex_filesize:D

s __kernel_primitive:NN \mdfivesum \tex_mdfivesum:D

ss5 __kernel _primitive:NN \ifprimitive \tex_ifprimitive:D

ss6 __kernel_primitive:NN \primitive \tex_primitive:D

288

887

888

896

898

899

900

901

902

910

911

912

913

914

916

921

922

923

924

925

926

930

931

932

933

934

935

936

937

938

939

__kernel_primitive:NN \resettimer
__kernel_primitive:NN \shellescape

Primitives from LuaTgX, some of which have been ported back to XHTEX.

__kernel_primitive
__kernel_primitive
__kernel_primitive
__kernel_primitive
__kernel_primitive

:NN
:NN
:NN
:NN

:NN \automaticdiscretionary

\alignmark
\aligntab
\attribute
\attributedef

\tex_automaticdiscretionary:D
__kernel_primitive:NN \automatichyphenmode

__kernel_primitive:NN \automatichyphenpenalty

\tex_automatichyphenpenalty:D

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\begincsname
\bodydir
\bodydirection
\boxdir
\boxdirection
\breakafterdirmode
\catcodetable
\clearmarks
\crampeddisplaystyle

\tex_resettimer:D
\tex_shellescape:D

\tex_alignmark:D
\tex_aligntab:D
\tex_attribute:D
\tex_attributedef:D

\tex_automatichyphenmode:D

\tex_begincsname:D
\tex_bodydir:D
\tex_bodydirection:D
\tex_boxdir:D
\tex_boxdirection:D
\tex_breakafterdirmode:D
\tex_catcodetable:D
\tex_clearmarks:D
\tex_crampeddisplaystyle:D

\crampedscriptscriptstyle
\tex_crampedscriptscriptstyle:D

\crampedscriptstyle
\crampedtextstyle
\csstring
\directlua
\dviextension
\dvifeedback
\dvivariable
\etoksapp

\etokspre
\exceptionpenalty

\explicithyphenpenalty

\expanded

\explicitdiscretionary

\firstvalidlanguage
\fontid

\formatname

\hjcode

\hpack
\hyphenationbounds
\hyphenationmin
\hyphenpenaltymode
\gleaders
\ifcondition
\immediateassigned
\immediateassignment
\initcatcodetable
\lastnamedcs
\latelua
\lateluafunction
\leftghost
\letcharcode

289

\tex_crampedscriptstyle:D
\tex_crampedtextstyle:D
\tex_csstring:D
\tex_directlua:D
\tex_dviextension:D
\tex_dvifeedback:D
\tex_dvivariable:D
\tex_etoksapp:D
\tex_etokspre:D
\tex_exceptionpenalty:D
\tex_explicithyphenpenalty:D
\tex_expanded:D
\tex_explicitdiscretionary:D
\tex_firstvalidlanguage:D
\tex_fontid:D
\tex_formatname:D
\tex_hjcode:D
\tex_hpack:D
\tex_hyphenationbounds:D
\tex_hyphenationmin:D
\tex_hyphenpenaltymode:D
\tex_gleaders:D
\tex_ifcondition:D
\tex_immediateassigned:D
\tex_immediateassignment:D
\tex_initcatcodetable:D
\tex_lastnamedcs:D
\tex_latelua:D
\tex_lateluafunction:D
\tex_leftghost:D
\tex_letcharcode:D

963

964

966

967

969

970

971

972

973

974

975

976

980

981

982

983

984

985

986

987

988

989

990

991

992

993

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\linedir
\linedirection
\localbrokenpenalty

\localinterlinepenalty

\luabytecode
\luabytecodecall
\luacopyinputnodes
\luadef
\localleftbox
\localrightbox
\luaescapestring
\luafunction
\luafunctioncall
\luatexbanner
\luatexrevision
\luatexversion
\mathdelimitersmode
\mathdir
\mathdirection
\mathdisplayskipmode
\mathegnogapstep
\mathnolimitsmode
\mathoption
\mathpenaltiesmode
\mathrulesfam
\mathscriptsmode
\mathscriptboxmode
\mathscriptcharmode
\mathstyle
\mathsurroundmode
\mathsurroundskip
\nohrule

\nokerns

\noligs

\nospaces

\novrule
\outputbox
\pagebottomoffset
\pagedir
\pagedirection
\pageleftoffset
\pagerightoffset
\pagetopoffset
\pardir
\pardirection
\pdfextension
\pdffeedback
\pdfvariable
\postexhyphenchar
\posthyphenchar
\prebinoppenalty
\predisplaygapfactor
\preexhyphenchar
\prehyphenchar

290

\tex_linedir:D
\tex_linedirection:D
\tex_localbrokenpenalty:D

\tex_localinterlinepenalty:D

\tex_luabytecode:D
\tex_luabytecodecall:D
\tex_luacopyinputnodes:D
\tex_luadef:D
\tex_localleftbox:D
\tex_localrightbox:D
\tex_luaescapestring:D
\tex_luafunction:D
\tex_luafunctioncall:D
\tex_luatexbanner:D
\tex_luatexrevision:D
\tex_luatexversion:D
\tex_mathdelimitersmode:D
\tex_mathdir:D
\tex_mathdirection:D
\tex_mathdisplayskipmode:D
\tex_matheqnogapstep:D
\tex_mathnolimitsmode:D
\tex_mathoption:D
\tex_mathpenaltiesmode:D
\tex_mathrulesfam:D
\tex_mathscriptsmode:D
\tex_mathscriptboxmode:D
\tex_mathscriptcharmode:D
\tex_mathstyle:D
\tex_mathsurroundmode:D
\tex_mathsurroundskip:D
\tex_nohrule:D
\tex_nokerns:D
\tex_noligs:D
\tex_nospaces:D
\tex_novrule:D
\tex_outputbox:D
\tex_pagebottomoffset:D
\tex_pagedir:D
\tex_pagedirection:D
\tex_pageleftoffset:D
\tex_pagerightoffset:D
\tex_pagetopoffset:D
\tex_pardir:D
\tex_pardirection:D
\tex_pdfextension:D
\tex_pdffeedback:D
\tex_pdfvariable:D
\tex_postexhyphenchar:D
\tex_posthyphenchar:D
\tex_prebinoppenalty:D
\tex_predisplaygapfactor:D
\tex_preexhyphenchar:D
\tex_prehyphenchar:D

904 __kernel_primitive:NN \prerelpenalty \tex_prerelpenalty:D

o5 __kernel_primitive:NN \rightghost \tex_rightghost:D
o6 __kernel_primitive:NN \savecatcodetable \tex_savecatcodetable:D
907 __kernel_primitive:NN \scantextokens \tex_scantextokens:D
oz __kernel_primitive:NN \setfontid \tex_setfontid:D
99 __kernel_primitive:NN \shapemode \tex_shapemode:D
w0 __kernel_primitive:NN \suppressifcsnameerror \tex_suppressifcsnameerror:D
wor __kernel_primitive:NN \suppresslongerror \tex_suppresslongerror:D
w02 __kernel_primitive:NN \suppressmathparerror \tex_suppressmathparerror:D
w03 __kernel_primitive:NN \suppressoutererror \tex_suppressoutererror:D
w04 __kernel_primitive:NN \suppressprimitiveerror
1005 \tex_suppressprimitiveerror:D
w6 __kernel_primitive:NN \textdir \tex_textdir:D
w7 __kernel_primitive:NN \textdirection \tex_textdirection:D
w0 __kernel_primitive:NN \toksapp \tex_toksapp:D
w00 __kernel_primitive:NN \tokspre \tex_tokspre:D
w010 __kernel_primitive:NN \tpack \tex_tpack:D
1011 __kernel_primitive:NN \vpack \tex_vpack:D
Primitives from pdfTEX that LuaTEX renames.
w2 __kernel_primitive:NN \adjustspacing \tex_adjustspacing:D
013 __kernel_primitive:NN \copyfont \tex_copyfont:D
w14 __kernel_primitive:NN \draftmode \tex_draftmode:D
w015 __kernel_primitive:NN \expandglyphsinfont \tex_fontexpand:D
w016 __kernel_primitive:NN \ifabsdim \tex_ifabsdim:D
w017 __kernel_primitive:NN \ifabsnum \tex_ifabsnum:D
e __kernel_primitive:NN \ignoreligaturesinfont \tex_ignoreligaturesinfont:D
w19 __kernel_primitive:NN \insertht \tex_insertht:D

1020 __kernel_primitive:NN \lastsavedboxresourceindex
1021 \tex_pdflastxform:D

1022 __kernel_primitive:NN \lastsavedimageresourceindex

1023 \tex_pdflastximage:D

w24 __kernel_primitive:NN \lastsavedimageresourcepages

1025 \tex_pdflastximagepages:D

126 __kernel_primitive:NN \lastxpos \tex_lastxpos:D

w27 __kernel_primitive:NN \lastypos \tex_lastypos:D

w25 __kernel_primitive:NN \normaldeviate \tex_normaldeviate:D

1020 __kernel_primitive:NN \outputmode \tex_pdfoutput:D

w0 __kernel_primitive:NN \pageheight \tex_pageheight:D

w31 __kernel_primitive:NN \pagewidth \tex_pagewith:D

1022 __kernel_primitive:NN \protrudechars \tex_protrudechars:D

w33 __kernel_primitive:NN \pxdimen \tex_pxdimen:D

1032 __kernel_primitive:NN \randomseed \tex_randomseed:D

1035 __kernel_primitive:NN \useboxresource \tex_pdfrefxform:D

w36 __kernel_primitive:NN \useimageresource \tex_pdfrefximage:D

1037 __kernel_primitive:NN \savepos \tex_savepos:D

03s __kernel_primitive:NN \saveboxresource \tex_pdfxform:D

w30 __kernel_primitive:NN \saveimageresource \tex_pdfximage:D

w0 __kernel_primitive:NN \setrandomseed \tex_setrandomseed:D

1041 __kernel_primitive:NN \tracingfonts \tex_tracingfonts:D

w02 __kernel_primitive:NN \uniformdeviate \tex_uniformdeviate:D
The set of Unicode math primitives were introduced by X#TEX and LuaTgX in a some-
what complex fashion: a few first as \XeTeX. .. which were then renamed with LuaTEX

having a lot more. These names now all start \U. .. and mainly \Unmath. . ..

291

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\Uchar

\Ucharcat

\Udelcode
\Udelcodenum
\Udelimiter
\Udelimiterover
\Udelimiterunder
\Uhextensible
\Umathaccent
\Umathaxis
\Umathbinbinspacing
\Umathbinclosespacing
\Umathbininnerspacing
\Umathbinopenspacing
\Umathbinopspacing
\Umathbinordspacing
\Unathbinpunctspacing
\Umathbinrelspacing
\Umathchar
\Umathcharclass
\Umathchardef
\Umathcharfam
\Umathcharnum
\Umathcharnumdef
\Umathcharslot
\Umathclosebinspacing

\Umathcloseclosespacing

\tex_Umathcloseclosespacing:D

__kernel_primitive:NN \Umathcloseinnerspacing

\tex_Umathcloseinnerspacing:D
__kernel_primitive:NN \Umathcloseopenspacing \tex_Umathcloseopenspacing:D
__kernel_primitive:NN \Umathcloseopspacing
__kernel_primitive:NN \Umathcloseordspacing \tex_Umathcloseordspacing:D

__kernel_primitive:NN \Umathclosepunctspacing

\tex_Umathclosepunctspacing:D
__kernel_primitive:NN \Umathcloserelspacing \tex_Umathcloserelspacing:D
__kernel_primitive:NN \Umathcode
__kernel_primitive:NN \Umathcodenum
__kernel_primitive:NN \Umathconnectoroverlapmin

\tex_Umathconnectoroverlapmin:D
__kernel_primitive:NN \Umathfractiondelsize

__kernel_primitive:NN \Umathfractiondenomdown

\tex_Umathfractiondenomdown:D

__kernel_primitive:NN \Umathfractiondenomvgap

\tex_Umathfractiondenomvgap:D

__kernel_primitive
__kernel_primitive
__kernel_primitive
__kernel_primitive
__kernel_primitive

:NN
:NN
:NN
:NN

:NN \Umathinnerclosespacing

\Umathfractionnumup
\Umathfractionnumvgap
\Umathfractionrule
\Umathinnerbinspacing

\tex_Umathinnerclosespacing:D

__kernel_primitive:NN \Umathinnerinnerspacing

\tex_Umathinnerinnerspacing:D
__kernel_primitive:NN \Umathinneropenspacing \tex_Umathinneropenspacing:D

292

\tex_Uchar:D
\tex_Ucharcat:D
\tex_Udelcode:D
\tex_Udelcodenum:D
\tex_Udelimiter:D
\tex_Udelimiterover:D
\tex_Udelimiterunder:D
\tex_Uhextensible:D
\tex_Umathaccent:D
\tex_Umathaxis:D
\tex_Umathbinbinspacing:D
\tex_Umathbinclosespacing:D
\tex_Umathbininnerspacing:D
\tex_Umathbinopenspacing:D
\tex_Umathbinopspacing:D
\tex_Umathbinordspacing:D
\tex_Umathbinpunctspacing:D
\tex_Umathbinrelspacing:D
\tex_Umathchar:D
\tex_Umathcharclass:D
\tex_Umathchardef:D
\tex_Umathcharfam:D
\tex_Umathcharnum:D
\tex_Umathcharnumdef :D
\tex_Umathcharslot:D
\tex_Umathclosebinspacing:D

\tex_Umathcloseopspacing:D

\tex_Umathcode:D
\tex_Umathcodenum:D

\tex_Umathfractiondelsize:D

\tex_Umathfractionnumup:D
\tex_Umathfractionnumvgap:D
\tex_Umathfractionrule:D
\tex_Umathinnerbinspacing:D

1097

1098

1099

1100

1102

1103

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

__kernel_primitive:NN \Umathinneropspacing
__kernel _primitive:NN \Umathinnerordspacing \tex_Umathinnerordspacing:D

__kernel_primitive:NN \Umathinnerpunctspacing

\tex_Umathinnerpunctspacing:D

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\Umathinnerrelspacing
\Umathlimitabovebgap
\Umathlimitabovekern
\Umathlimitabovevgap
\Umathlimitbelowbgap
\Umathlimitbelowkern
\Umathlimitbelowvgap
\Umathnolimitsubfactor
\Umathnolimitsupfactor
\Umathopbinspacing
\Umathopclosespacing
\Umathopenbinspacing
\Umathopenclosespacing
\Umathopeninnerspacing
\Umathopenopenspacing
\Umathopenopspacing
\Umathopenordspacing
\Umathopenpunctspacing
\Umathopenrelspacing
\Umathoperatorsize
\Umathopinnerspacing
\Umathopopenspacing
\Umathopopspacing
\Umathopordspacing
\Umathoppunctspacing
\Umathoprelspacing
\Umathordbinspacing
\Umathordclosespacing
\Unmathordinnerspacing
\Umathordopenspacing
\Umathordopspacing
\Umathordordspacing
\Umathordpunctspacing
\Umathordrelspacing
\Umathoverbarkern
\Umathoverbarrule
\Umathoverbarvgap

\Umathoverdelimiterbgap

\tex_Umathoverdelimiterbgap:D

__kernel_primitive:NN \Umathoverdelimitervgap

\tex_Umathoverdelimitervgap:D
__kernel_primitive:NN \Umathpunctbinspacing \tex_Umathpunctbinspacing:D

__kernel_primitive:NN \Umathpunctclosespacing

\tex_Umathpunctclosespacing:D

__kernel_primitive:NN \Umathpunctinnerspacing

\tex_Umathpunctinnerspacing:D
:NN \Umathpunctopenspacing \tex_Umathpunctopenspacing:D

__kernel_primitive
__kernel_primitive
__kernel_primitive
__kernel_primitive

:NN

\Umathpunctopspacing

\tex_Umathinneropspacing:D

\tex_Umathinnerrelspacing:D
\tex_Umathlimitabovebgap:D
\tex_Umathlimitabovekern:D
\tex_Umathlimitabovevgap:D
\tex_Umathlimitbelowbgap:D
\tex_Umathlimitbelowkern:D
\tex_Umathlimitbelowvgap:D
\tex_Umathnolimitsubfactor:D
\tex_Umathnolimitsupfactor:D
\tex_Umathopbinspacing:D
\tex_Umathopclosespacing:D
\tex_Umathopenbinspacing:D
\tex_Umathopenclosespacing:D
\tex_Umathopeninnerspacing:D
\tex_Umathopenopenspacing:D
\tex_Umathopenopspacing:D
\tex_Umathopenordspacing:D
\tex_Umathopenpunctspacing:D
\tex_Umathopenrelspacing:D
\tex_Umathoperatorsize:D
\tex_Umathopinnerspacing:D
\tex_Umathopopenspacing:D
\tex_Umathopopspacing:D
\tex_Umathopordspacing:D
\tex_Umathoppunctspacing:D
\tex_Umathoprelspacing:D
\tex_Umathordbinspacing:D
\tex_Umathordclosespacing:D
\tex_Umathordinnerspacing:D
\tex_Umathordopenspacing:D
\tex_Umathordopspacing:D
\tex_Umathordordspacing:D
\tex_Umathordpunctspacing:D
\tex_Umathordrelspacing:D
\tex_Umathoverbarkern:D
\tex_Umathoverbarrule:D
\tex_Umathoverbarvgap:D

\tex_Umathpunctopspacing:D

:NN \Umathpunctordspacing \tex_Umathpunctordspacing:D

:NN \Umathpunctpunctspacing

293

1151 \tex_Umathpunctpunctspacing:D
152 __kernel_primitive:NN \Umathpunctrelspacing \tex_Umathpunctrelspacing:D

1153 __kernel _primitive:NN \Umathquad \tex_Umathquad:D

1sa __kernel_primitive:NN \Umathradicaldegreeafter

1155 \tex_Umathradicaldegreeafter:D

156 __kernel_primitive:NN \Umathradicaldegreebefore

1157 \tex_Umathradicaldegreebefore:D

1ss __kernel_primitive:NN \Umathradicaldegreeraise

1159 \tex_Umathradicaldegreeraise:D

160 __kernel_primitive:NN \Umathradicalkern \tex_Umathradicalkern:D
161 __kernel_primitive:NN \Umathradicalrule \tex_Umathradicalrule:D
162 __kernel_primitive:NN \Umathradicalvgap \tex_Umathradicalvgap:D

1163 __kernel_primitive:NN \Umathrelbinspacing \tex_Umathrelbinspacing:D
164 __kernel primitive:NN \Umathrelclosespacing \tex_Umathrelclosespacing:D
165 __kernel_primitive:NN \Umathrelinnerspacing \tex_Umathrelinnerspacing:D
166 __kernel_primitive:NN \Umathrelopenspacing \tex_Umathrelopenspacing:D
167 __kernel_primitive:NN \Umathrelopspacing \tex_Umathrelopspacing:D
16 __kernel_primitive:NN \Umathrelordspacing \tex_Umathrelordspacing:D
1160 __kernel_primitive:NN \Umathrelpunctspacing \tex_Umathrelpunctspacing:D

7o __kernel _primitive:NN \Umathrelrelspacing \tex_Umathrelrelspacing:D
urt __kernel_primitive:NN \Umathskewedfractionhgap
1172 \tex_Umathskewedfractionhgap:D

u7s __kernel _primitive:NN \Umathskewedfractionvgap

1174 \tex_Umathskewedfractionvgap:D

1175 __kernel_primitive:NN \Umathspaceafterscript \tex_Umathspaceafterscript:D
s __kernel_primitive:NN \Umathstackdenomdown \tex_Umathstackdenomdown:D

u77 - __kernel_primitive:NN \Umathstacknumup \tex_Umathstacknumup:D

17s __kernel_primitive:NN \Umathstackvgap \tex_Umathstackvgap:D

1o __kernel_primitive:NN \Umathsubshiftdown \tex_Umathsubshiftdown:D
1s0 __kernel_primitive:NN \Umathsubshiftdrop \tex_Umathsubshiftdrop:D
1181 __kernel_primitive:NN \Umathsubsupshiftdown \tex_Umathsubsupshiftdown:D
ns2 __kernel primitive:NN \Umathsubsupvgap \tex_Umathsubsupvgap:D

11e3 __kernel_primitive:NN \Umathsubtopmax \tex_Umathsubtopmax:D

1ss __kernel_primitive:NN \Umathsupbottommin \tex_Umathsupbottommin:D
nss __kernel primitive:NN \Umathsupshiftdrop \tex_Umathsupshiftdrop:D
1ss __kernel_primitive:NN \Umathsupshiftup \tex_Umathsupshiftup:D

157 __kernel_primitive:NN \Umathsupsubbottommax \tex_Umathsupsubbottommax:D
1se __kernel_primitive:NN \Umathunderbarkern \tex_Umathunderbarkern:D
11s0 __kernel_primitive:NN \Umathunderbarrule \tex_Umathunderbarrule:D

1100 __kernel_primitive:NN \Umathunderbarvgap \tex_Umathunderbarvgap:D

nor __kernel primitive:NN \Umathunderdelimiterbgap
1102 \tex_Umathunderdelimiterbgap:D
1103 __kernel_primitive:NN \Umathunderdelimitervgap
1194 \tex_Umathunderdelimitervgap:D

1105 __kernel_primitive:NN \Unosubscript \tex_Unosubscript:D

1196 __kernel_primitive:NN \Unosuperscript \tex_Unosuperscript:D
197 __kernel_primitive:NN \Uoverdelimiter \tex_Uoverdelimiter:D
105 __kernel_primitive:NN \Uradical \tex_Uradical:D

1199 __kernel_primitive:NN \Uroot \tex_Uroot:D

1200 __kernel_primitive:NN \Uskewed \tex_Uskewed:D

1201 __kernel_primitive:NN \Uskewedwithdelims \tex_Uskewedwithdelims:D
202 __kernel_primitive:NN \Ustack \tex_Ustack:D

120 __kernel_primitive:NN \Ustartdisplaymath \tex_Ustartdisplaymath:D
10s __kernel_primitive:NN \Ustartmath \tex_Ustartmath:D

294

1os __kernel_primitive:
1206 __kernel_primitive:
1207 __kernel_primitive:
10 __kernel_primitive:

1200 __kernel_primitive:
110 __kernel_primitive:

Primitives from pIEX.

11 __kernel_primitive:
1212 __kernel _primitive:
113 __kernel_primitive:
112 __kernel_primitive:
1215 __kernel_primitive:
116 __kernel_primitive:
1217 __kernel_primitive:
1215 __kernel_primitive:
1o __kernel_primitive:
1220 __kernel_primitive:
1221 __kernel _primitive:
122 __kernel_primitive:
1225 __kernel_primitive:
1224 __kernel _primitive:
1225 __kernel_primitive:
1226 __kernel_primitive:
1207 __kernel _primitive:
1228 __kernel_primitive:
1220 __kernel_primitive:
130 __kernel_primitive:
1231 __kernel_primitive:
122 __kernel_primitive:
1233 __kernel_primitive:
123s __kernel_primitive:
1235 __kernel_primitive:
1236 __kernel _primitive:
1237 __kernel_primitive:
123¢ __kernel_primitive:
1230 __kernel_primitive:
20 __kernel_primitive:

1241 __kernel_primitive:
1222 __kernel _primitive:
1243 __kernel_primitive:

124¢ __kernel_primitive:
12s5 __kernel _primitive:
1246 __kernel_primitive:
1247 __kernel_primitive:

1225 __kernel_primitive:
1249 __kernel_primitive:
150 __kernel_primitive:

Primitives from uplEX.

1251 __kernel_primitive:
12 __kernel_primitive:
1253 __kernel _primitive:

125 __kernel_primitive:
1255 __kernel_primitive:

NN
NN
NN
NN
NN
NN

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

NN
NN
NN
NN
NN

\Ustopdisplaymath
\Ustopmath
\Usubscript
\Usuperscript
\Uunderdelimiter
\Uvextensible

\autospacing
\autoxspacing
\dtou
\epTeXinputencoding
\epTeXversion
\euc

\ifdbox

\ifddir

\ifmdir

\iftbox

\iftdir

\ifybox

\ifydir
\inhibitglue
\inhibitxspcode
\jcharwidowpenalty
\jfam

\jfont

\jis

\kanjiskip
\kansuji
\kansujichar
\kcatcode

\kuten
\noautospacing
\noautoxspacing
\postbreakpenalty
\prebreakpenalty
\ptexminorversion
\ptexrevision
\ptexversion
\showmode

\sjis

\tate
\tbaselineshift
\tfont
\xkanjiskip
\xspcode
\ybaselineshift
\yoko

\disablecjktoken
\enablecjktoken
\forcecjktoken
\kchar

\kchardef

295

\tex_Ustopdisplaymath:D
\tex_Ustopmath:D
\tex_Usubscript:D
\tex_Usuperscript:D
\tex_Uunderdelimiter:D
\tex_Uvextensible:D

\tex_autospacing:D
\tex_autoxspacing:D
\tex_dtou:D
\tex_epTeXinputencoding:D
\tex_epTeXversion:D
\tex_euc:D
\tex_ifdbox:
\tex_ifddir:
\tex_ifmdir:
\tex_iftbox:
\tex_iftdir:
\tex_ifybox:
\tex_ifydir:D
\tex_inhibitglue:D
\tex_inhibitxspcode:D
\tex_jcharwidowpenalty:D
\tex_jfam:D

\tex_jfont:D

\tex_jis:D
\tex_kanjiskip:D
\tex_kansuji:D
\tex_kansujichar:D
\tex_kcatcode:D
\tex_kuten:D
\tex_noautospacing:D
\tex_noautoxspacing:D
\tex_postbreakpenalty:D
\tex_prebreakpenalty:D
\tex_ptexminorversion:D
\tex_ptexrevision:D
\tex_ptexversion:D
\tex_showmode :D
\tex_sjis:D

\tex_tate:D
\tex_tbaselineshift:D
\tex_tfont:D
\tex_xkanjiskip:D
\tex_xspcode:D
\tex_ybaselineshift:D
\tex_yoko:D

O ouououo

\tex_disablecjktoken:D
\tex_enablecjktoken:D
\tex_forcecjktoken:D
\tex_kchar:D
\tex_kchardef :D

156 __kernel_primitive:NN \kuten \tex_kuten:D

157 __kernel_primitive:NN \ucs \tex_ucs:D
1255 __kernel_primitive:NN \uptexrevision \tex_uptexrevision:D
150 __kernel_primitive:NN \uptexversion \tex_uptexversion:D

End of the “just the names” part of the source.

160 (/initex | names | package)
e (*initex | package)

The job is done: close the group (using the primitive renamed!).
1262 \tex_endgroup:D

ETEX 2¢ moves a few primitives, so these are sorted out. A convenient test for
XTEX 2¢ is the \@@end saved primitive.

163 (*package)

126 \tex_ifdefined:D \@@end

1265 \tex_let:D \tex_end:D \@@end

1266 \tex_let:D \tex_everydisplay:D \frozen@everydisplay
1267 \tex_let:D \tex_everymath:D \frozen@everymath
1265 \tex_let:D \tex_hyphen:D \@0hyph

1260 \tex_let:D \tex_input:D \@@input

1270 \tex_let:D \tex_italiccorrection:D \@@italiccorr

1271 \tex_let:D \tex_underline:D \@Ounderline

The \shipout primitive is particularly tricky as a number of packages want to hook
in here. First, we see if a sufficiently-new kernel has saved a copy: if it has, just use
that. Otherwise, we need to check each of the possible packages/classes that might move
it: here, we are looking for those which do not delay action to the \AtBeginDocument
hook. (We cannot use \primitive as that doesn’t allow us to make a direct copy of the
primitive itself.) As we know that IATEX 2¢ is in use, we use it’s \@tfor loop here.

1272 \tex_ifdefined:D \@@shipout

1273 \tex_let:D \tex_shipout:D \@@shipout

1274 \teX_fi.‘D

1275 \tex_begingroup:D

1276 \tex_edef:D \1_tmpa_tl { \tex_string:D \shipout }
1277 \tex_edef:D \1_tmpb_tl { \tex_meaning:D \shipout }
1278 \tex_ifx:D \1_tmpa_tl \1_tmpb_tl

1279 \tex_else:D

1280 \tex_expandafter:D \@tfor \tex_expandafter:D \@tempa \tex_string:D :=
1281 \CROPG@shipout

1262 \dup@shipout

1283 \GPTorg@shipout

1284 \LL@shipout

1265 \mem@oldshipout

1286 \opem@shipout

1287 \pgfpages@originalshipout

1288 \pr@shipout

1289 \Shipout

1200 \verso@orig@shipout

1291 \do

1292 {

1203 \tex_edef:D \1_tmpb_tl

1204 { \tex_expandafter:D \tex_meaning:D \@tempa }
1205 \tex_ifx:D \1_tmpa_tl \1_tmpb_tl

1296 \tex_global:D \tex_expandafter:D \tex_let:D

296

\tex_expandafter:D \tex_shipout:D \@tempa
\tex_£fi:D

1297

1298

1299 }
\tex_fi:D

\tex_endgroup:D

1300

1301

Some tidying up is needed for \(pdf)tracingfonts. Newer LualTgX has this simply
as \tracingfonts, but that is overwritten by the IXTEX2¢ kernel. So any spurious
definition has to be removed, then the real version saved either from the pdfTEX name
or from LuaTgX. In the latter case, we leave \@@tracingfonts available: this might be
useful and almost all WTEX 2¢ users will have expl3 loaded by fontspec. (We follow the
usual kernel convention that @@ is used for saved primitives.)
\tex_let:D \tex_tracingfonts:D \tex_undefined:D
\tex_ifdefined:D \pdftracingfonts
\tex_let:D \tex_tracingfonts:D \pdftracingfonts
\tex_else:D
\tex_ifdefined:D \tex_directlua:D
\tex_directlua:D { tex.enableprimitives("@@", {"tracingfonts"}) }
\tex_let:D \tex_tracingfonts:D \luatextracingfonts
\tex_fi:D
\tex fi:D
1311 \tex_f£fi:D
That is also true for the LuaTgX primitives under WTEX 2¢ (depending on the format-
building date). There are a few primitives that get the right names anyway so are missing
here!

1302

1303

1304

1305

1306

1307

1308

1309

1310

1312 \tex_ifdefined:D \luatexsuppressfontnotfounderror

113 \tex_let:D \tex_alignmark:D \luatexalignmark

1314 \tex_let:D \tex_aligntab:D \luatexaligntab

1315 \tex_let:D \tex_attribute:D \luatexattribute

1316 \tex_let:D \tex_attributedef:D \luatexattributedef

1317 \tex_let:D \tex_catcodetable:D \luatexcatcodetable

1315 \tex_let:D \tex_clearmarks:D \luatexclearmarks

19 \tex_let:D \tex_crampeddisplaystyle:D \luatexcrampeddisplaystyle
1320 \tex_let:D \tex_crampedscriptscriptstyle:D

1321

\luatexcrampedscriptscriptstyle

1322 \tex_let:D \tex_crampedscriptstyle:D \luatexcrampedscriptstyle
1323 \tex_let:D \tex_crampedtextstyle:D \luatexcrampedtextstyle
1324 \tex_let:D \tex_fontid:D \luatexfontid

1325 \tex_let:D \tex_formatname:D \luatexformatname

1326 \tex_let:D \tex_gleaders:D \luatexgleaders

1327 \tex_let:D \tex_initcatcodetable:D \luatexinitcatcodetable
132 \tex_let:D \tex_latelua:D \luatexlatelua

1320 \tex_let:D \tex_luaescapestring:D \luatexluaescapestring
1330 \tex_let:D \tex_luafunction:D \luatexluafunction

131 \tex_let:D \tex_mathstyle:D \luatexmathstyle

1332 \tex_let:D \tex_nokerns:D \luatexnokerns

1333 \tex_let:D \tex_noligs:D \luatexnoligs

1334 \tex_let:D \tex_outputbox:D \luatexoutputbox

1335 \tex_let:D \tex_pageleftoffset:D \luatexpageleftoffset
1336 \tex_let:D \tex_pagetopoffset:D \luatexpagetopoffset
1337 \tex_let:D \tex_postexhyphenchar:D \luatexpostexhyphenchar
1333 \tex_let:D \tex_posthyphenchar:D \luatexposthyphenchar
1330 \tex_let:D \tex_preexhyphenchar:D \luatexpreexhyphenchar

297

1340

1341

1342

1343

1345

1346

1347

1348

1349

1350

1351

\tex_let:D \tex_prehyphenchar:D
\tex_let:D \tex_savecatcodetable:D
\tex_let:D \tex_scantextokens:D

\luatexprehyphenchar
\luatexsavecatcodetable
\luatexscantextokens

\tex_let:D \tex_suppressifcsnameerror:D

\luatexsuppressifcsnameerror
\tex_let:D \tex_suppresslongerror:D

\tex_let:D \tex_suppressmathparerror:D

\luatexsuppressmathparerror
\tex_let:D \tex_suppressoutererror:D
\tex_let:D \tex_Uchar:D

\luatexsuppresslongerror

\luatexsuppressoutererror
\luatexUchar

\tex_let:D \tex_suppressfontnotfounderror:D

\luatexsuppressfontnotfounderror

Which also covers those slightly odd ones.

1352

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

\tex_let:D \tex_bodydir:D \luatexbodydir
\tex_let:D \tex_boxdir:D \luatexboxdir
\tex_let:D \tex_leftghost:D \luatexleftghost
\tex_let:D \tex_localbrokenpenalty:D \luatexlocalbrokenpenalty
\tex_let:D \tex_localinterlinepenalty:D
\luatexlocalinterlinepenalty
\tex_let:D \tex_localleftbox:D \luatexlocalleftbox
\tex_let:D \tex_localrightbox:D \luatexlocalrightbox
\tex_let:D \tex_mathdir:D \luatexmathdir
\tex_let:D \tex_pagebottomoffset:D \luatexpagebottomoffset
\tex_let:D \tex_pagedir:D \luatexpagedir
\tex_let:D \tex_pageheight:D \luatexpageheight
\tex_let:D \tex_pagerightoffset:D \luatexpagerightoffset
\tex_let:D \tex_pagewidth:D \luatexpagewidth
\tex_let:D \tex_pardir:D \luatexpardir
\tex_let:D \tex_rightghost:D \luatexrightghost
\tex_let:D \tex_textdir:D \luatextextdir
\tex_fi:D

Only pdfTEX and LuaTgX define \pdfmapfile and \pdfmapline: Tidy up the fact that
some format-building processes leave a couple of questionable decisions about that!

1370

1371

1372

1373

1374

1375

1376

1377

\tex_ifnum:D 0O

\tex_ifdefined:D \tex_pdftexversion:D 1 \tex_f£fi:D

\tex_ifdefined:D \tex_luatexversion:D 1 \tex_fi:D
=0 %

\tex_let:D \tex_mapfile:D \tex_undefined:D

\tex_let:D \tex_mapline:D \tex_undefined:D

\tex_fi:D
(/package)

A few packages do unfortunate things to date-related primitives.

1375 \tex_begingroup:D

1379

1380

1381

1382

1383

1384

1385

\tex_edef:D \1_tmpa_tl { \tex_meaning:D \tex_time:D }
\tex_edef:D \1_tmpb_tl { \tex_string:D \time }
\tex_ifx:D \1_tmpa_t1l \1_tmpb_tl
\tex_else:D

\tex_global:D \tex_let:D \tex_time:D \tex_undefined:D
\tex_fi:D
\tex_edef:D \1_tmpa_tl { \tex_meaning:D \tex_day:D }
\tex_edef:D \1_tmpb_tl { \tex_string:D \day }
\tex_ifx:D \1_tmpa_t1l \1_tmpb_tl

298

1388 \tex_else:D

1389 \tex_global:D \tex_let:D \tex_day:D \tex_undefined:D

1390 \tex_fi:D

1301 \tex_edef:D \1_tmpa_tl { \tex_meaning:D \tex_month:D }
12 \tex_edef:D \1_tmpb_tl { \tex_string:D \month }
1303 \tex_ifx:D \1_tmpa_tl \1_tmpb_tl

304 \tex_else:D

1395 \tex_global:D \tex_let:D \tex_month:D \tex_undefined:D

1396 \tex_fi:D

1307 \tex_edef:D \1_tmpa_tl { \tex_meaning:D \tex_year:D }
1308 \tex_edef:D \1_tmpb_tl { \tex_string:D \year }
1300 \tex_ifx:D \1_tmpa_t1l \1_tmpb_tl

1200 \tex_else:D

1401 \tex_global:D \tex_let:D \tex_year:D \tex_undefined:D

w2 \tex_fi:D
103 \tex_endgroup:D

Up to v0.80, LuaTEX defines the pdfTEX version data: rather confusing. Removing them
means that \tex_pdftexversion:D is a marker for pdfTEX alone: useful in engine-

dependent code later.

101 (*initex | package)

105 \tex_ifdefined:D \tex_luatexversion:D

s \tex_let:D \tex_pdftexbanner:D

\tex_undefined:D

o7 \tex_let:D \tex_pdftexrevision:D \tex_undefined:D

w0s \tex_let:D \tex_pdftexversion:D

100 \tex_£i:D
110 {/initex | package)

\tex_undefined:D

For ConTEXt, two tests are needed. Both Mark IT and Mark IV move several primi-
tives: these are all covered by the first test, again using \end as a marker. For Mark IV,
a few more primitives are moved: they are implemented using some Lua code in the

current ConTEXt.

1 (*package)
112 \tex_ifdefined:D \normalend
113 \tex_let:D \tex_end:D
w14 \tex_let:D \tex_everyjob:D
15 \tex_let:D \tex_input:D
116 \tex_let:D \tex_language:D
17 \tex_let:D \tex_mathop:D
118 \tex_let:D \tex_month:D
119 \tex_let:D \tex_outer:D

D

D

D

D

120 \tex_let:D \tex_over:D
1421 \tex_let:D \tex_vcenter:D
122 \tex_let:D \tex_unexpanded:D

1423 \tex_let:
122 \tex_£i:D

\tex_expanded:D

\normalend
\normaleveryjob
\normalinput
\normallanguage
\normalmathop
\normalmonth
\normalouter
\normalover
\normalvcenter
\normalunexpanded
\normalexpanded

1225 \tex_ifdefined:D \normalitaliccorrection

1426 \teX_let:D
127 \tex_let:D
1428 \tex_let:D
1429 \teX_let:D
D
D

\tex_hoffset:D

\tex_voffset:D
\tex_showtokens:D
\tex_bodydir:D
\tex_pagedir:D

1w \tex_let:
1431 \tex_let:
1432 \teX_fi.’D

\normalhoffset

\tex_italiccorrection:D \normalitaliccorrection

\normalvoffset

\normalshowtokens
\spac_directions_normal_body_dir
\spac_directions_normal_page_dir

299

1133 \tex_ifdefined:D \normalleft

3¢ \tex_let:D \tex_left:D \normalleft
1435 \tex_let:D \tex_middle:D \normalmiddle
1z \tex_let:D \tex_right:D \normalright
137 \tex_£fi:D

s (/package)

14.

@

2.1 Deprecated functions

Older versions of expl3 divided up primitives by “source”: that becomes very tricky with
multiple parallel engine developments, so has been dropped. To cover the transition, we
provide the older names here for a limited period (until the end of 2019).
To allow \debug_on:n {(deprecation)} to work we save the list of primitives into

__kernel _primitives:

30 (*package)

1490 \tex_begingroup:D

1441 \tex_long:D \tex_def:D \use_ii:nn #1#2 {#2}

122 \tex_long:D \tex_def:D \use_none:n #1 { }

143 \tex_long:D \tex_def:D __kernel_primitive:NN #1#2

1444 {

1445 \tex_ifdefined:D #1

1446 \tex_expandafter:D \use_ii:nn

1447 \tex_£fi:D

1448 \use_none:n { \tex_global:D \tex_let:D #2 #1 }

1449 }

10 \tex_xdef:D __kernel_primitives:

1451 {

1452 \tex_unexpanded:D

1453 {

1454 __kernel_primitive:NN \beginL \etex_beginL:D

1455 __kernel_primitive:NN \beginR \etex_beginR:D

1456 __kernel_primitive:NN \botmarks \etex_botmarks:D

157 __kernel_primitive:NN \clubpenalties \etex_clubpenalties:D
1ss __kernel_primitive:NN \currentgrouplevel \etex_currentgrouplevel:D
150 __kernel_primitive:NN \currentgrouptype \etex_currentgrouptype:D
6o __kernel_primitive:NN \currentifbranch \etex_currentifbranch:D
1461 __kernel_primitive:NN \currentiflevel \etex_currentiflevel:D
162 __kernel_primitive:NN \currentiftype \etex_currentiftype:D
165 __kernel_primitive:NN \detokenize \etex_detokenize:D

1464 __kernel_primitive:NN \dimexpr \etex_dimexpr:D

ues __kernel_primitive:NN \displaywidowpenalties

1466 \etex_displaywidowpenalties:D

1467 __kernel_primitive:NN \endL \etex_endL:D

165 __kernel_primitive:NN \endR \etex_endR:D

169 __kernel_primitive:NN \eTeXrevision \etex_eTeXrevision:D
170 __kernel_primitive:NN \eTeXversion \etex_eTeXversion:D
1471 __kernel_primitive:NN \everyeof \etex_everyeof:D

172 __kernel_primitive:NN \firstmarks \etex_firstmarks:D

173 __kernel_primitive:NN \fontchardp \etex_fontchardp:D

174 __kernel_primitive:NN \fontcharht \etex_fontcharht:D

1475 __kernel_primitive:NN \fontcharic \etex_fontcharic:D

17 __kernel_primitive:NN \fontcharwd \etex_fontcharwd:D

177 __kernel_primitive:NN \glueexpr \etex_glueexpr:D

300

17z __kernel_primitive:NN \glueshrink \etex_glueshrink:D

170 __kernel_primitive:NN \glueshrinkorder \etex_glueshrinkorder:D
g0 __kernel_primitive:NN \gluestretch \etex_gluestretch:D

1481 __kernel_primitive:NN \gluestretchorder \etex_gluestretchorder:D
g2 __kernel_primitive:NN \gluetomu \etex_gluetomu:D

155 __kernel_primitive:NN \ifcsname \etex_ifcsname:D

1484 __kernel_primitive:NN \ifdefined \etex_ifdefined:D

s __kernel_primitive:NN \iffontchar \etex_iffontchar:D

1ss __kernel_ primitive:NN \interactionmode \etex_interactionmode:D
g7 __kernel_primitive:NN \interlinepenalties \etex_interlinepenalties:D
1ss __kernel_primitive:NN \lastlinefit \etex_lastlinefit:D

g9 __kernel_primitive:NN \lastnodetype \etex_lastnodetype:D

1490 __kernel_primitive:NN \marks \etex_marks:D

101 __kernel_primitive:NN \middle \etex_middle:D

1492 __kernel_primitive:NN \muexpr \etex_muexpr:D

14903 __kernel_primitive:NN \mutoglue \etex_mutoglue:D

190+ __kernel_primitive:NN \numexpr \etex_numexpr:D

1495 __kernel_primitive:NN \pagediscards \etex_pagediscards:D

1496 __kernel_primitive:NN \parshapedimen \etex_parshapedimen:D

107 __kernel_primitive:NN \parshapeindent \etex_parshapeindent :D
1405 __kernel_primitive:NN \parshapelength \etex_parshapelength:D
1499 __kernel_primitive:NN \predisplaydirection \etex_predisplaydirection:D
1500 __kernel_primitive:NN \protected \etex_protected:D

1501 __kernel_primitive:NN \readline \etex_readline:D

1502 __kernel_primitive:NN \savinghyphcodes \etex_savinghyphcodes:D
1503 __kernel_primitive:NN \savingvdiscards \etex_savingvdiscards:D
1504 __kernel_primitive:NN \scantokens \etex_scantokens:D

1505 __kernel_primitive:NN \showgroups \etex_showgroups:D

1506 __kernel_primitive:NN \showifs \etex_showifs:D

507 __kernel_primitive:NN \showtokens \etex_showtokens:D

10 __kernel_primitive:NN \splitbotmarks \etex_splitbotmarks:D

1500 __kernel_primitive:NN \splitdiscards \etex_splitdiscards:D

5.0 __kernel_primitive:NN \splitfirstmarks \etex_splitfirstmarks:D
1511 __kernel_primitive:NN \TeXXeTstate \etex_TeXXeTstate:D

1512 __kernel_primitive:NN \topmarks \etex_topmarks:D

1513 __kernel_primitive:NN \tracingassigns \etex_tracingassigns:D
1514 __kernel_primitive:NN \tracinggroups \etex_tracinggroups:D

1515 __kernel_primitive:NN \tracingifs \etex_tracingifs:D

516 __kernel_primitive:NN \tracingnesting \etex_tracingnesting:D
1517 __kernel_primitive:NN \tracingscantokens \etex_tracingscantokens:D
1518 __kernel_primitive:NN \unexpanded \etex_unexpanded:D

1510 __kernel_primitive:NN \unless \etex_unless:D

1520 __kernel_primitive:NN \widowpenalties \etex_widowpenalties:D
1521 __kernel_primitive:NN \pdfannot \pdftex_pdfannot :D

15 __kernel_primitive:NN \pdfcatalog \pdftex_pdfcatalog:D

1523 __kernel_primitive:NN \pdfcompresslevel \pdftex_pdfcompresslevel:D
1524 __kernel_primitive:NN \pdfcolorstack \pdftex_pdfcolorstack:D
1525 __kernel_primitive:NN \pdfcolorstackinit \pdftex_pdfcolorstackinit:D
1526 __kernel_primitive:NN \pdfcreationdate \pdftex_pdfcreationdate:D

1527 __kernel_primitive:NN \pdfdecimaldigits \pdftex_pdfdecimaldigits:D
152 __kernel_primitive:NN \pdfdest \pdftex_pdfdest:D

1520 __kernel_primitive:NN \pdfdestmargin \pdftex_pdfdestmargin:D
1530 __kernel_primitive:NN \pdfendlink \pdftex_pdfendlink:D

1531 __kernel_primitive:NN \pdfendthread \pdftex_pdfendthread:D

301

1532

1533

1534

1536

1537

1538

1539

1540

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

__kernel_primitive:
:NN
__kernel_primitive:NN
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN

NN
NN
NN
NN
NN

NN
NN
NN

\pdffontattr
\pdffontname
\pdffontobjnum
\pdfgamma
\pdfimageapplygamma
\pdfimagegamma
\pdfgentounicode
\pdfglyphtounicode
\pdfhorigin
\pdfimagehicolor
\pdfimageresolution
\pdfincludechars

\pdfinclusioncopyfonts

\pdftex_pdfinclusioncopyfonts:D

__kernel_primitive:NN \pdfinclusionerrorlevel

\pdftex_pdfinclusionerrorlevel:D

__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:NN
:NN

__kernel_primitive

__kernel_primitive:NN
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN

NN
NN
NN
NN
NN

NN
NN
NN
NN
NN

\pdfinfo
\pdflastannot
\pdflastlink
\pdflastobj
\pdflastxform
\pdflastximage

\pdftex_pdffontattr:D
\pdftex_pdffontname:D
\pdftex_pdffontobjnum:D
\pdftex_pdfgamma:D
\pdftex_pdfimageapplygamma:D
\pdftex_pdfimagegamma :D
\pdftex_pdfgentounicode:D
\pdftex_pdfglyphtounicode:D
\pdftex_pdfhorigin:D
\pdftex_pdfimagehicolor:D
\pdftex_pdfimageresolution:D
\pdftex_pdfincludechars:D

\pdftex_pdfinfo:D
\pdftex_pdflastannot:D
\pdftex_pdflastlink:D
\pdftex_pdflastobj:D
\pdftex_pdflastxform:D
\pdftex_pdflastximage:D

\pdflastximagecolordepth
\pdftex_pdflastximagecolordepth:D

\pdflastximagepages
\pdflinkmargin
\pdfliteral
\pdfminorversion
\pdfnames

\pdfobj
\pdfobjcompresslevel

\pdftex_pdfobjcompresslevel:D

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
__kernel_primitive:NN
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

__kernel_primitive

NN
NN
NN
NN

NN
NN
NN
NN

NN
NN
NN
NN
NN

\pdfoutline
\pdfoutput
\pdfpageattr
\pdfpagebox
\pdfpageref
\pdfpageresources
\pdfpagesattr
\pdfrefobj
\pdfrefxform
\pdfrefximage
\pdfrestore
\pdfretval
\pdfsave
\pdfsetmatrix
\pdfstartlink
\pdfstartthread
\pdfsuppressptexinfo

\pdftex_pdfsuppressptexinfo:D

__kernel_primitive
__kernel_primitive
__kernel_primitive
__kernel_primitive

:NN \pdfthread

:NN \pdfthreadmargin
:NN \pdftrailer

:NN \pdfuniqueresname

302

\pdftex_pdflastximagepages:D
\pdftex_pdflinkmargin:D
\pdftex_pdfliteral:D
\pdftex_pdfminorversion:D
\pdftex_pdfnames:D
\pdftex_pdfobj:D

\pdftex_pdfoutline:D
\pdftex_pdfoutput:D
\pdftex_pdfpageattr:D
\pdftex_pdfpagebox:D
\pdftex_pdfpageref:D
\pdftex_pdfpageresources:D
\pdftex_pdfpagesattr:D
\pdftex_pdfrefobj:D
\pdftex_pdfrefxform:D
\pdftex_pdfrefximage:D
\pdftex_pdfrestore:D
\pdftex_pdfretval:D
\pdftex_pdfsave:D
\pdftex_pdfsetmatrix:D
\pdftex_pdfstartlink:D
\pdftex_pdfstartthread:D

\pdftex_pdfthread:D
\pdftex_pdfthreadmargin:D
\pdftex_pdftrailer:D
\pdftex_pdfuniqueresname:D

1556 __kernel_primitive:NN \pdfvorigin \pdftex_pdfvorigin:D

1557 __kernel_primitive:NN \pdfxform \pdftex_pdfxform:D

1555 __kernel_primitive:NN \pdfxformattr \pdftex_pdfxformattr:D
1550 __kernel_primitive:NN \pdfxformname \pdftex_pdfxformname:D
100 __kernel_primitive:NN \pdfxformresources \pdftex_pdfxformresources:D
101 __kernel_primitive:NN \pdfximage \pdftex_pdfximage:D

1502 __kernel_primitive:NN \pdfximagebbox \pdftex_pdfximagebbox:D
1503 __kernel_primitive:NN \ifpdfabsdim \pdftex_ifabsdim:D

1504 __kernel_primitive:NN \ifpdfabsnum \pdftex_ifabsnum:D

1505 __kernel_primitive:NN \ifpdfprimitive \pdftex_ifprimitive:D
1506 __kernel_primitive:NN \pdfadjustspacing \pdftex_adjustspacing:D
1597 __kernel_primitive:NN \pdfcopyfont \pdftex_copyfont:D

150 __kernel_primitive:NN \pdfdraftmode \pdftex_draftmode:D

1500 __kernel_primitive:NN \pdfeachlinedepth \pdftex_eachlinedepth:D
1600 __kernel_primitive:NN \pdfeachlineheight \pdftex_eachlineheight:D
1601 __kernel_primitive:NN \pdffilemoddate \pdftex_filemoddate:D
w2 __kernel_primitive:NN \pdffilesize \pdftex_filesize:D

w05 __kernel_primitive:NN \pdffirstlineheight \pdftex_firstlineheight:D
w60+ __kernel_primitive:NN \pdffontexpand \pdftex_fontexpand:D

w6os __kernel_primitive:NN \pdffontsize \pdftex_fontsize:D

s __kernel_primitive:NN \pdfignoreddimen \pdftex_ignoreddimen:D
w07 __kernel_primitive:NN \pdfinsertht \pdftex_insertht:D

wos __kernel_primitive:NN \pdflastlinedepth \pdftex_lastlinedepth:D
600 __kernel_primitive:NN \pdflastxpos \pdftex_lastxpos:D

w610 __kernel_primitive:NN \pdflastypos \pdftex_lastypos:D

w11 __kernel_primitive:NN \pdfmapfile \pdftex_mapfile:D

612 __kernel_primitive:NN \pdfmapline \pdftex_mapline:D

1613 __kernel_primitive:NN \pdfmdfivesum \pdftex_mdfivesum:D

w14 __kernel_primitive:NN \pdfnoligatures \pdftex_noligatures:D
1615 __kernel_primitive:NN \pdfnormaldeviate \pdftex_normaldeviate:D
w616 __kernel_primitive:NN \pdfpageheight \pdftex_pageheight :D

w17 __kernel_primitive:NN \pdfpagewidth \pdftex_pagewidth:D

615 __kernel_primitive:NN \pdfpkmode \pdftex_pkmode:D

w610 __kernel_primitive:NN \pdfpkresolution \pdftex_pkresolution:D
w620 __kernel_primitive:NN \pdfprimitive \pdftex_primitive:D

621 __kernel_primitive:NN \pdfprotrudechars \pdftex_protrudechars:D
1622 __kernel_primitive:NN \pdfpxdimen \pdftex_pxdimen:D

1623 __kernel_primitive:NN \pdfrandomseed \pdftex_randomseed:D

1624 __kernel_primitive:NN \pdfsavepos \pdftex_savepos:D

1625 __kernel_primitive:NN \pdfstrcmp \pdftex_strcmp:D

1626 __kernel_primitive:NN \pdfsetrandomseed \pdftex_setrandomseed:D
1627 __kernel_primitive:NN \pdfshellescape \pdftex_shellescape:D
162 __kernel_primitive:NN \pdftracingfonts \pdftex_tracingfonts:D
1620 __kernel_primitive:NN \pdfuniformdeviate \pdftex_uniformdeviate:D
1630 __kernel_primitive:NN \pdftexbanner \pdftex_pdftexbanner:D
1631 __kernel_primitive:NN \pdftexrevision \pdftex_pdftexrevision:D
1632 __kernel_primitive:NN \pdftexversion \pdftex_pdftexversion:D
1633 __kernel_primitive:NN \efcode \pdftex_efcode:D

1634 __kernel_primitive:NN \ifincsname \pdftex_ifincsname:D

1635 __kernel_primitive:NN \leftmarginkern \pdftex_leftmarginkern:D
1636 __kernel_primitive:NN \letterspacefont \pdftex_letterspacefont:D
1637 __kernel_primitive:NN \Ipcode \pdftex_lpcode:D

1633 __kernel_primitive:NN \quitvmode \pdftex_quitvmode:D

1630 __kernel_primitive:NN \rightmarginkern \pdftex_rightmarginkern:D

303

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

__kernel_primitive:
:NN
__kernel_primitive:NN
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN

NN
NN
NN
NN
NN

NN
NN
NN
NN

\rpcode
\synctex
\tagcode
\mdfivesum
\ifprimitive
\primitive
\shellescape
\adjustspacing
\copyfont
\draftmode
\expandglyphsinfont
\ifabsdim
\ifabsnum

\ignoreligaturesinfont

\pdftex_ignoreligaturesinfont:D
__kernel_primitive:NN \insertht
__kernel_primitive:NN \lastsavedboxresourceindex

\pdftex_pdflastxform:D
__kernel_primitive:NN \lastsavedimageresourceindex

\pdftex_pdflastximage:D
__kernel_primitive:NN \lastsavedimageresourcepages

\pdftex_pdflastximagepages:D

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:NN
:NN

__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:

__kernel_primitive:
:NN
__kernel_primitive:NN
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive

__kernel_primitive
__kernel_primitive

__kernel_primitive:

:NN
:NN

NN
NN
NN
NN
NN

NN
NN
NN
NN
NN

NN
NN

NN

NN
NN
NN
NN
NN

NN

\lastxpos
\lastypos
\normaldeviate
\outputmode
\pageheight
\pagewidth
\protrudechars
\pxdimen
\randomseed
\useboxresource
\useimageresource
\savepos
\saveboxresource
\saveimageresource
\setrandomseed
\tracingfonts
\uniformdeviate

\pdftex_rpcode:D
\pdftex_synctex:D
\pdftex_tagcode:D
\pdftex_mdfivesum:D
\pdftex_ifprimitive:D
\pdftex_primitive:D
\pdftex_shellescape:D
\pdftex_adjustspacing:D
\pdftex_copyfont:D
\pdftex_draftmode:D
\pdftex_fontexpand:D
\pdftex_ifabsdim:D
\pdftex_ifabsnum:D

\pdftex_insertht:D

\pdftex_lastxpos:D
\pdftex_lastypos:D
\pdftex_normaldeviate:D
\pdftex_pdfoutput:D
\pdftex_pageheight:D
\pdftex_pagewith:D
\pdftex_protrudechars:D
\pdftex_pxdimen:D
\pdftex_randomseed:D
\pdftex_pdfrefxform:D
\pdftex_pdfrefximage:D
\pdftex_savepos:D
\pdftex_pdfxform:D
\pdftex_pdfximage:D
\pdftex_setrandomseed:D
\pdftex_tracingfonts:D
\pdftex_uniformdeviate:D

\suppressfontnotfounderror
\xetex_suppressfontnotfounderror:D

\XeTeXcharclass
\XeTeXcharglyph
\XeTeXcountfeatures
\XeTeXcountglyphs
\XeTeXcountselectors

\XeTeXcountvariations
\XeTeXdefaultencoding

\XeTeXdashbreakstate
\XeTeXfeaturecode
\XeTeXfeaturename

\XeTeXfindfeaturebyname

\xetex_findfeaturebyname:D
__kernel_primitive:NN \XeTeXfindselectorbyname

304

\xetex_charclass:D
\xetex_charglyph:D
\xetex_countfeatures:D
\xetex_countglyphs:D
\xetex_countselectors:D
\xetex_countvariations:D
\xetex_defaultencoding:D
\xetex_dashbreakstate:D
\xetex_featurecode:D
\xetex_featurename:D

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1716

1717

1718

1719

1720

1722

1723

1724

1725

1726

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

\xetex_findselectorbyname:D
__kernel_primitive:NN \XeTeXfindvariationbyname

\xetex_findvariationbyname:D
__kernel_primitive:NN \XeTeXfirstfontchar
__kernel_primitive:NN \XeTeXfonttype
__kernel_primitive:NN \XeTeXgenerateactualtext

\xetex_generateactualtext:D

__kernel_primitive:
:NN
:NN

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

__kernel_primitive:NN \XeTeXisdefaultselector

NN

NN
NN
NN

\XeTeXglyph
\XeTeXglyphbounds
\XeTeXglyphindex
\XeTeXglyphname
\XeTeXinputencoding

\xetex_firstfontchar:D
\xetex_fonttype:D

\xetex_glyph:D
\xetex_glyphbounds:D
\xetex_glyphindex:D
\xetex_glyphname:D
\xetex_inputencoding:D

\XeTeXinputnormalization
\xetex_inputnormalization:D

__kernel_primitive:NN \XeTeXinterchartokenstate
\xetex_interchartokenstate:D

__kernel_primitive:NN \XeTeXinterchartoks

\xetex_isdefaultselector:D
__kernel_primitive:NN \XeTeXisexclusivefeature
\xetex_isexclusivefeature:D

__kernel_primitive:
:NN
:NN

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:NN
:NN

__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
__kernel_primitive:NN
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN

__kernel_primitive

__kernel_primitive

NN

NN
NN
NN
NN
NN

NN
NN
NN
NN
NN

NN
NN
NN
NN

NN
NN
NN
NN
NN

\XeTeXlastfontchar
\XeTeX1linebreakskip

\XeTeXlinebreaklocale
\XeTeXlinebreakpenalty
\XeTeX0Tcountfeatures
\XeTeX0Tcountlanguages

\XeTeX0Tcountscripts
\XeTeXOTfeaturetag
\XeTeX0Tlanguagetag
\XeTeX0Tscripttag
\XeTeXpdffile
\XeTeXpdfpagecount
\XeTeXpicfile
\XeTeXselectorname
\XeTeXtracingfonts
\XeTeXupwardsmode

\XeTeXuseglyphmetrics

\XeTeXvariation

\XeTeXvariationdefault

\XeTeXvariationmax
\XeTeXvariationmin
\XeTeXvariationname
\XeTeXrevision
\XeTeXversion
\alignmark
\aligntab
\attribute
\attributedef

\automaticdiscretionary

\luatex_automaticdiscretionary:D
__kernel_primitive:NN \automatichyphenmode
\luatex_automatichyphenmode:D

__kernel_primitive:NN \automatichyphenpenalty

305

\xetex_interchartoks:D

\xetex_lastfontchar:D
\xetex_linebreakskip:D
\xetex_linebreaklocale:D
\xetex_linebreakpenalty:D
\xetex_OTcountfeatures:D
\xetex_OTcountlanguages:D
\xetex_0Tcountscripts:D
\xetex_OTfeaturetag:D
\xetex_OTlanguagetag:D
\xetex_OTscripttag:D
\xetex_pdffile:D
\xetex_pdfpagecount :D
\xetex_picfile:D
\xetex_selectorname:D
\xetex_tracingfonts:D
\xetex_upwardsmode:D
\xetex_useglyphmetrics:D
\xetex_variation:D
\xetex_variationdefault:D
\xetex_variationmax:D
\xetex_variationmin:D
\xetex_variationname:D
\xetex_XeTeXrevision:D
\xetex_XeTeXversion:D
\luatex_alignmark:D
\luatex_aligntab:D
\luatex_attribute:D
\luatex_attributedef:D

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1779

1780

1781

1782

1783

1784

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

\luatex_automatichyphenpenalty:D

__kernel_primitive
__kernel_primitive
__kernel_primitive
__kernel_primitive
__kernel_primitive

:NN
:NN
:NN
:NN
:NN

\begincsname
\breakafterdirmode
\catcodetable
\clearmarks
\crampeddisplaystyle

\luatex_crampeddisplaystyle:D
__kernel_primitive:NN \crampedscriptscriptstyle
\luatex_crampedscriptscriptstyle:D

__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

__kernel_primitive

__kernel_primitive:
__kernel_primitive:

:NN
NN
NN
NN
NN
NN
:NN
:NN
NN

\crampedscriptstyle
\crampedtextstyle
\directlua
\dviextension
\dvifeedback
\dvivariable
\etoksapp

\etokspre

\explicithyphenpenalty

\luatex_explicithyphenpenalty:D
__kernel_primitive:NN \expanded

__kernel_primitive:NN \explicitdiscretionary

\luatex_explicitdiscretionary:D

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

:NN
:NN
NN
NN
NN
NN
NN
: NN
:NN
NN
NN
NN
NN
NN
:NN
:NN
NN
NN
NN
NN

\firstvalidlanguage
\fontid

\formatname

\hjcode

\hpack
\hyphenationbounds
\hyphenationmin
\hyphenpenaltymode
\gleaders
\initcatcodetable
\lastnamedcs
\latelua
\letcharcode
\luaescapestring
\luafunction
\luatexbanner
\luatexrevision
\luatexversion
\mathdelimitersmode
\mathdisplayskipmode

\luatex_mathdisplayskipmode:D

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

:NN
NN
NN
NN
NN
NN
:NN
:NN
NN
NN
NN

\matheqnogapstep
\mathnolimitsmode
\mathoption
\mathpenaltiesmode
\mathrulesfam
\mathscriptsmode
\mathscriptboxmode
\mathstyle
\mathsurroundmode
\mathsurroundskip
\nohrule

306

\luatex_begincsname:D
\luatex_breakafterdirmode:D
\luatex_catcodetable:D
\luatex_clearmarks:D

\luatex_crampedscriptstyle:D
\luatex_crampedtextstyle:D
\luatex_directlua:D
\luatex_dviextension:D
\luatex_dvifeedback:D
\luatex_dvivariable:D
\luatex_etoksapp:D
\luatex_etokspre:D

\luatex_expanded:D

\luatex_firstvalidlanguage:D
\luatex_fontid:D
\luatex_formatname:D
\luatex_hjcode:D
\luatex_hpack:D
\luatex_hyphenationbounds:D
\luatex_hyphenationmin:D
\luatex_hyphenpenaltymode:D
\luatex_gleaders:D
\luatex_initcatcodetable:D
\luatex_lastnamedcs:D
\luatex_latelua:D
\luatex_letcharcode:D
\luatex_luaescapestring:D
\luatex_luafunction:D
\luatex_luatexbanner:D
\luatex_luatexrevision:D
\luatex_luatexversion:D
\luatex_mathdelimitersmode:D

\luatex_matheqnogapstep:D
\luatex_mathnolimitsmode:D
\luatex_mathoption:D
\luatex_mathpenaltiesmode:D
\luatex_mathrulesfam:D
\luatex_mathscriptsmode:D
\luatex_mathscriptboxmode:D
\luatex_mathstyle:D
\luatex_mathsurroundmode :D
\luatex_mathsurroundskip:D
\luatex_nohrule:D

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

8

1823

1825

1826

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

__kernel_primitive:
:NN
__kernel_primitive:NN
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN

__kernel_primitive

NN

NN
NN
NN
NN
NN

NN
NN
NN
NN
NN

\nokerns

\noligs

\nospaces
\novrule
\outputbox
\pagebottomoffset
\pageleftoffset
\pagerightoffset
\pagetopoffset
\pdfextension
\pdffeedback
\pdfvariable
\postexhyphenchar
\posthyphenchar
\prebinoppenalty
\predisplaygapfactor

\luatex_predisplaygapfactor:D

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive
__kernel_primitive

__kernel_primitive:

NN
NN
NN
NN
NN

NN

\preexhyphenchar
\prehyphenchar
\prerelpenalty
\savecatcodetable
\scantextokens
\setfontid
\shapemode

\suppressifcsnameerror

\luatex_suppressifcsnameerror:D
__kernel_primitive:NN \suppresslongerror

__kernel_primitive:NN \suppressmathparerror

\luatex_suppressmathparerror:D
__kernel_primitive:NN \suppressoutererror

__kernel_primitive:NN \suppressprimitiveerror

\luatex_suppressprimitiveerror:D

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN

NN
NN
NN
NN

\toksapp

\tokspre

\tpack

\vpack

\bodydir

\boxdir

\leftghost

\linedir
\localbrokenpenalty

\localinterlinepenalty

\luatex_localinterlinepenalty:D

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

__kernel_primitive:NN
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

NN
NN
NN
NN
NN

NN
NN
NN

\localleftbox
\localrightbox
\mathdir
\pagedir
\pardir
\rightghost
\textdir
\Uchar
\Ucharcat
\Udelcode
\Udelcodenum

307

\luatex_nokerns:D
\luatex_noligs:D
\luatex_nospaces:D
\luatex_novrule:D
\luatex_outputbox:D
\luatex_pagebottomoffset:D
\luatex_pageleftoffset:D
\luatex_pagerightoffset:D
\luatex_pagetopoffset:D
\luatex_pdfextension:D
\luatex_pdffeedback:D
\luatex_pdfvariable:D
\luatex_postexhyphenchar:D
\luatex_posthyphenchar:D
\luatex_prebinoppenalty:D

\luatex_preexhyphenchar:D
\luatex_prehyphenchar:D
\luatex_prerelpenalty:D
\luatex_savecatcodetable:D
\luatex_scantextokens:D
\luatex_setfontid:D
\luatex_shapemode:D

\luatex_suppresslongerror:D

\luatex_suppressoutererror:D

\luatex_toksapp:D
\luatex_tokspre:D
\luatex_tpack:D
\luatex_vpack:D
\luatex_bodydir:D
\luatex_boxdir:D
\luatex_leftghost:D
\luatex_linedir:D
\luatex_localbrokenpenalty:D

\luatex_localleftbox:D
\luatex_localrightbox:D
\luatex_mathdir:D
\luatex_pagedir:D
\luatex_pardir:D
\luatex_rightghost:D
\luatex_textdir:D
\utex_char:D
\utex_charcat:D
\utex_delcode:D
\utex_delcodenum:D

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

__kernel_primitive:NN \Udelimiter \utex_delimiter:D
__kernel_primitive:NN \Udelimiterover \utex_delimiterover:D
__kernel_primitive:NN \Udelimiterunder \utex_delimiterunder:D
__kernel_primitive:NN \Uhextensible \utex_hextensible:D
__kernel_primitive:NN \Umathaccent \utex_mathaccent :D
__kernel_primitive:NN \Umathaxis \utex_mathaxis:D
__kernel_primitive:NN \Umathbinbinspacing \utex_binbinspacing:D
__kernel_primitive:NN \Umathbinclosespacing \utex_binclosespacing:D

__kernel_primitive
__kernel_primitive

:NN
:NN

\Umathbininnerspacing
\Umathbinopenspacing

\utex_bininnerspacing:D
\utex_binopenspacing:D

__kernel_primitive:NN \Umathbinopspacing \utex_binopspacing:D
__kernel_primitive:NN \Umathbinordspacing \utex_binordspacing:D
__kernel_primitive:NN \Umathbinpunctspacing \utex_binpunctspacing:D
__kernel_primitive:NN \Umathbinrelspacing \utex_binrelspacing:D
__kernel_primitive:NN \Umathchar \utex_mathchar:D
__kernel_primitive:NN \Umathcharclass \utex_mathcharclass:D
__kernel_primitive:NN \Umathchardef \utex_mathchardef :D
__kernel_primitive:NN \Umathcharfam \utex_mathcharfam:D
__kernel_primitive:NN \Umathcharnum \utex_mathcharnum:D
__kernel_primitive:NN \Umathcharnumdef \utex_mathcharnumdef :D
__kernel_primitive:NN \Umathcharslot \utex_mathcharslot:D
__kernel_primitive:NN \Umathclosebinspacing \utex_closebinspacing:D

__kernel_primitive:NN \Umathcloseclosespacing
\utex_closeclosespacing:D
__kernel_primitive:NN \Umathcloseinnerspacing
\utex_closeinnerspacing:D
__kernel_primitive:NN \Umathcloseopenspacing \utex_closeopenspacing:D
__kernel_primitive:NN \Umathcloseopspacing \utex_closeopspacing:D
__kernel_primitive:NN \Umathcloseordspacing \utex_closeordspacing:D
__kernel_primitive:NN \Umathclosepunctspacing
\utex_closepunctspacing:D
__kernel_primitive:NN \Umathcloserelspacing \utex_closerelspacing:D
__kernel_primitive:NN \Umathcode \utex_mathcode:D
__kernel_primitive:NN \Umathcodenum \utex_mathcodenum:D
__kernel_primitive:NN \Umathconnectoroverlapmin
\utex_connectoroverlapmin:D
__kernel_primitive:NN \Umathfractiondelsize
__kernel_primitive:NN \Umathfractiondenomdown
\utex_fractiondenomdown:D
__kernel_primitive:NN \Umathfractiondenomvgap
\utex_fractiondenomvgap:D
__kernel_primitive:NN \Umathfractionnumup
__kernel_primitive:NN \Umathfractionnumvgap \utex_fractionnumvgap:D
__kernel_primitive:NN \Umathfractionrule \utex_fractionrule:D
__kernel_primitive:NN \Umathinnerbinspacing \utex_innerbinspacing:D
__kernel_primitive:NN \Umathinnerclosespacing
\utex_innerclosespacing:D
__kernel_primitive:NN \Umathinnerinnerspacing
\utex_innerinnerspacing:D
__kernel_primitive:NN \Umathinneropenspacing \utex_inneropenspacing:D
__kernel_primitive:NN \Umathinneropspacing \utex_inneropspacing:D
__kernel_primitive:NN \Umathinnerordspacing \utex_innerordspacing:D
__kernel_primitive:NN \Umathinnerpunctspacing
\utex_innerpunctspacing:D

\utex_fractiondelsize:D

\utex_fractionnumup:D

308

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

__kernel_primitive:
:NN
__kernel_primitive:NN
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
__kernel_primitive:NN
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:NN
:NN

__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive
__kernel_primitive

NN

NN
NN
NN
NN
NN

NN
NN
NN
NN
NN

NN
NN
NN
NN
NN

NN
NN
NN
NN
NN

NN
NN
NN
NN
NN

\Umathinnerrelspacing
\Umathlimitabovebgap
\Umathlimitabovekern
\Umathlimitabovevgap
\Umathlimitbelowbgap
\Umathlimitbelowkern
\Umathlimitbelowvgap
\Umathnolimitsubfactor
\Umathnolimitsupfactor
\Umathopbinspacing
\Umathopclosespacing
\Umathopenbinspacing
\Umathopenclosespacing
\Umathopeninnerspacing
\Umathopenopenspacing
\Umathopenopspacing
\Umathopenordspacing
\Umathopenpunctspacing
\Umathopenrelspacing
\Umathoperatorsize
\Umathopinnerspacing
\Umathopopenspacing
\Umathopopspacing
\Umathopordspacing
\Umathoppunctspacing
\Umathoprelspacing
\Umathordbinspacing
\Umathordclosespacing
\Umathordinnerspacing
\Umathordopenspacing
\Umathordopspacing
\Umathordordspacing
\Umathordpunctspacing
\Umathordrelspacing
\Umathoverbarkern
\Umathoverbarrule
\Umathoverbarvgap

\Umathoverdelimiterbgap

\utex_overdelimiterbgap:D

__kernel_primitive:NN \Umathoverdelimitervgap

\utex_overdelimitervgap:D
__kernel_primitive:NN \Umathpunctbinspacing \utex_punctbinspacing:D

__kernel_primitive:NN \Umathpunctclosespacing

\utex_punctclosespacing:D

__kernel_primitive:NN \Umathpunctinnerspacing

\utex_punctinnerspacing:D

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:

NN
NN
NN

NN
NN

\Umathpunctopenspacing
\Umathpunctopspacing
\Umathpunctordspacing

\utex_innerrelspacing:D
\utex_limitabovebgap:D
\utex_limitabovekern:D
\utex_limitabovevgap:D
\utex_limitbelowbgap:D
\utex_limitbelowkern:D
\utex_limitbelowvgap:D
\utex_nolimitsubfactor:D
\utex_nolimitsupfactor:D
\utex_opbinspacing:D
\utex_opclosespacing:D
\utex_openbinspacing:D
\utex_openclosespacing:D
\utex_openinnerspacing:D
\utex_openopenspacing:D
\utex_openopspacing:D
\utex_openordspacing:D
\utex_openpunctspacing:D
\utex_openrelspacing:D
\utex_operatorsize:D
\utex_opinnerspacing:D
\utex_opopenspacing:D
\utex_opopspacing:D
\utex_opordspacing:D
\utex_oppunctspacing:D
\utex_oprelspacing:D
\utex_ordbinspacing:D
\utex_ordclosespacing:D
\utex_ordinnerspacing:D
\utex_ordopenspacing:D
\utex_ordopspacing:D
\utex_ordordspacing:D
\utex_ordpunctspacing:D
\utex_ordrelspacing:D
\utex_overbarkern:D
\utex_overbarrule:D
\utex_overbarvgap:D

\utex_punctopenspacing:D
\utex_punctopspacing:D
\utex_punctordspacing:D

\Umathpunctpunctspacing\utex_punctpunctspacing:D

\Umathpunctrelspacing
\Umathquad

\utex_punctrelspacing:D
\utex_quad:D

\Umathradicaldegreeafter
\utex_radicaldegreeafter:D

309

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

__kernel_primitive:NN \Umathradicaldegreebefore
\utex_radicaldegreebefore:D
__kernel_primitive:NN \Umathradicaldegreeraise
\utex_radicaldegreeraise:D

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN

__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:NN
:NN

__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
__kernel_primitive:NN
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
:NN
:NN

__kernel_primitive

__kernel_primitive
__kernel_primitive

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN

NN
NN
NN
NN
NN

NN
NN
NN

NN
NN
NN
NN
NN

NN
NN
NN
NN
NN

NN
NN
NN

NN
NN
NN
NN
NN

NN
NN
NN

\Umathradicalkern
\Umathradicalrule
\Umathradicalvgap
\Unmathrelbinspacing

\Umathrelclosespacing
\Umathrelinnerspacing

\Umathrelopenspacing
\Umathrelopspacing
\Umathrelordspacing

\Umathrelpunctspacing

\Umathrelrelspacing

\utex_radicalkern:D
\utex_radicalrule:D
\utex_radicalvgap:D
\utex_relbinspacing:D
\utex_relclosespacing:D
\utex_relinnerspacing:D
\utex_relopenspacing:D
\utex_relopspacing:D
\utex_relordspacing:D
\utex_relpunctspacing:D
\utex_relrelspacing:D

\Umathskewedfractionhgap
\utex_skewedfractionhgap:D
__kernel_primitive:NN \Umathskewedfractionvgap
\utex_skewedfractionvgap:D
\Umathspaceafterscript \utex_spaceafterscript:D

\Umathstackdenomdown
\Umathstacknumup
\Umathstackvgap
\Umathsubshiftdown
\Umathsubshiftdrop

\Umathsubsupshiftdown

\Umathsubsupvgap
\Umathsubtopmax
\Umathsupbottommin
\Umathsupshiftdrop
\Umathsupshiftup

\Umathsupsubbottommax

\Umathunderbarkern
\Umathunderbarrule
\Umathunderbarvgap

\utex_stackdenomdown:D
\utex_stacknumup:D
\utex_stackvgap:D
\utex_subshiftdown:D
\utex_subshiftdrop:D
\utex_subsupshiftdown:D
\utex_subsupvgap:D
\utex_subtopmax:D
\utex_supbottommin:D
\utex_supshiftdrop:D
\utex_supshiftup:D
\utex_supsubbottommax:D
\utex_underbarkern:D
\utex_underbarrule:D
\utex_underbarvgap:D

\Umathunderdelimiterbgap
\utex_underdelimiterbgap:D
__kernel_primitive:NN \Umathunderdelimitervgap
\utex_underdelimitervgap:D

\Unosubscript
\Unosuperscript
\Uoverdelimiter
\Uradical

\Uroot

\Uskewed
\Uskewedwithdelims
\Ustack
\Ustartdisplaymath
\Ustartmath
\Ustopdisplaymath
\Ustopmath
\Usubscript
\Usuperscript
\Uunderdelimiter

310

\utex_nosubscript:D
\utex_nosuperscript:D
\utex_overdelimiter:D
\utex_radical:D
\utex_root:D
\utex_skewed:D
\utex_skewedwithdelims:D
\utex_stack:D
\utex_startdisplaymath:D
\utex_startmath:D
\utex_stopdisplaymath:D
\utex_stopmath:D
\utex_subscript:D
\utex_superscript:D
\utex_underdelimiter:D

2015 __kernel_primitive:
:NN
__kernel_primitive:NN
2021 __kernel_primitive:
__kernel_primitive:
__kernel_primitive:
2024 __kernel_primitive:
__kernel_primitive:
:NN
:NN

2019 __kernel_primitive

2020

2022

2023

2025
__kernel_primitive
__kernel_primitive

2026
2027
2028
2029

2030

2032

2033 __kernel_primitive

2036

2037

2030 __kernel_primitive:
2000 __kernel_primitive
2041 __kernel_primitive

2042

2043

2045

201s __kernel_primitive

2049

2052

2054 __kernel_primitive
__kernel_primitive

2055

2056 __kernel_primitive:
__kernel_primitive:
__kernel_primitive:
2050 __kernel_primitive:
:NN
2061 __kernel_primitive:NN
2062 __kernel_primitive:
2063 __kernel_primitive:
2064 __kernel_primitive:
2065 __kernel_primitive:
2066 __kernel_primitive:
:NN

2057
2058

2060 __kernel_primitive

2067 __kernel_primitive
2068 I

2069 }

2070

2071 \tex_endgroup:D

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
2031 __kernel_primitive:
__kernel_primitive:
:NN
203s __kernel_primitive:NN
2035 __kernel_primitive:
__kernel_primitive:
__kernel_primitive:
2035 __kernel_primitive:

__kernel_primitive:
__kernel_primitive:
2044 __kernel_primitive:
__kernel_primitive:
2006 __kernel_primitive:
2047 __kernel_primitive:NN
:NN
__kernel_primitive:
2050 __kernel_primitive:
2051 __kernel_primitive:
__kernel_primitive:
2053 __kernel_primitive:
:NN
:NN

NN

NN
NN
NN
NN
NN

NN
NN
NN
NN
NN

NN
NN
NN
NN
NN

:NN
:NN

NN
NN
NN
NN
NN

NN
NN
NN
NN
NN

NN
NN
NN
NN

NN
NN
NN
NN
NN

__kernel_primitives:

\Uvextensible
\autospacing
\autoxspacing
\dtou
\epTeXinputencoding
\epTeXversion
\euc

\ifdbox

\ifddir

\ifmdir

\iftbox

\iftdir

\ifybox

\ifydir
\inhibitglue
\inhibitxspcode
\jcharwidowpenalty
\jfam

\jfont

\jis

\kanjiskip
\kansuji
\kansujichar
\kcatcode

\kuten
\noautospacing
\noautoxspacing
\postbreakpenalty
\prebreakpenalty
\ptexminorversion
\ptexrevision
\ptexversion
\showmode

\sjis

\tate
\tbaselineshift
\tfont
\xkanjiskip
\xspcode
\ybaselineshift
\yoko
\disablecjktoken
\enablecjktoken
\forcecjktoken
\kchar

\kchardef

\kuten

\ucs
\uptexrevision
\uptexversion

311

\utex_vextensible:D
\ptex_autospacing:D
\ptex_autoxspacing:D
\ptex_dtou:D
\ptex_inputencoding:D
\ptex_epTeXversion:D
\ptex_euc:D
\ptex_ifdbox:
\ptex_ifddir:
\ptex_ifmdir:
\ptex_iftbox:
\ptex_iftdir:
\ptex_ifybox:
\ptex_ifydir:D
\ptex_inhibitglue:D
\ptex_inhibitxspcode:D
\ptex_jcharwidowpenalty:D
\ptex_jfam:D
\ptex_jfont:D

\ptex_jis:D
\ptex_kanjiskip:D
\ptex_kansuji:D
\ptex_kansujichar:D
\ptex_kcatcode:D
\ptex_kuten:D
\ptex_noautospacing:D
\ptex_noautoxspacing:D
\ptex_postbreakpenalty:D
\ptex_prebreakpenalty:D
\ptex_ptexminorversion:D
\ptex_ptexrevision:D
\ptex_ptexversion:D
\ptex_showmode :D
\ptex_sjis:D

\ptex_tate:D
\ptex_tbaselineshift:D
\ptex_tfont:D
\ptex_xkanjiskip:D
\ptex_xspcode:D
\ptex_ybaselineshift:D
\ptex_yoko:D
\uptex_disablecjktoken:D
\uptex_enablecjktoken:D
\uptex_forcecjktoken:D
\uptex_kchar:D
\uptex_kchardef :D
\uptex_kuten:D
\uptex_ucs:D
\uptex_uptexrevision:D
\uptex_uptexversion:D

Dobuouob

__kernel_chk_cs_exist:N
__kernel_chk_cs_exist:c

__kernel_chk_defined:NT

__kernel_chk_expr:nNnN

__kernel_chk_var_exist:N

__kernel_chk_var_scope:NN

__kernel_chk_var_local:N
__kernel_chk_var_global:N

2072 (/package)
2073 (/initex | package)

3 Internal kernel functions

__kernel_chk_cs_exist:N (cs)

This function is only created if debugging is enabled. It checks that (cs) exists according
to the criteria for \cs_if_exist_p:N, and if not raises a kernel-level error.

__kernel_chk_defined:NT (variable) {(true code)}

If (variable) is not defined (according to \cs_if_exist:NTF), this triggers an error,
otherwise the (true code) is run.

__kernel_chk_expr:nNnN {(expr)} (eval) {(convert)} (caller)

This function is only created if debugging is enabled. By default it is equivalent to \use_-
i:nnnn. When expression checking is enabled, it leaves in the input stream the result of
\tex_the:D (eval) (expr) \tex_relax:D after checking that no token was left over. If
any token was not taken as part of the expression, there is an error message displaying the
result of the evaluation as well as the (caller). For instance (eval) can be __int_eval:w
and (caller) can be \int_eval:n or \int_set:Nn. The argument (convert) is empty
except for mu expressions where it is \tex_mutoglue:D, used for internal purposes.

__kernel_chk_var_exist:N (var)

This function is only created if debugging is enabled. It checks that (var) is defined
according to the criteria for \cs_if_exist_p:N, and if not raises a kernel-level error.

__kernel_chk_var_scope:NN (scope) (var)

Checks the (var) has the correct (scope), and if not raises a kernel-level error. This
function is only created if debugging is enabled. The (scope) is a single letter 1, g, c
denoting local variables, global variables, or constants. More precisely, if the variable
name starts with a letter and an underscore (normal expl3 convention) the function
checks that this single letter matches the (scope). Otherwise the function cannot know
the scope (var) the first time: instead, it defines __debug_chk_/(var name) to store
that information for the next call. Thus, if a given (var) is subject to assignments of
different scopes a kernel error will result.

__kernel_chk_var_local:N (var)
__kernel_chk_var_global:N (var)

Applies __kernel_chk_var_exist:N (var), and assuming that is true applies __-
kernel_chk_var_scope:NN (scope) (var), where (scope) is 1 or g.

__kernel_cs_parm_from_arg_count:nnF __kernel_cs_parm_from_arg_count:nnF {(follow-on)} {(args)}

{(false code)}

Evaluates the number of (args) and leaves the (follow-on) code followed by a brace group
containing the required number of primitive parameter markers (#1, etc.). If the number
of (args) is outside the range [0, 9], the (false code) is inserted instead of the (follow-on).

312

__kernel_deprecation_code:nn __kernel_deprecation_code:nn {({error code)} {(working code)}

__kernel_if_debug:TF

__kernel_debug_log:x

__kernel_exp_not:w *

\1__kernel_expl_bool

__kernel_file_missing:n

Stores both an (error) and (working) definition for given material such that they can be
exchanged by \debug_on: and \debug_off:.

__kernel_if_debug:TF {(true code)} {(false code)}

Runs the (true code) if debugging is enabled, namely only in ¥ TEX 2¢ package mode with
one of the options check-declarations, enable-debug, or log-functions. Otherwise
runs the (false code). The T and F variants are not provided for this low-level conditional.

__kernel_debug_log:x {(message text)}

If the log-functions option is active, this function writes the (message text) to the log
file using \iow_log:x. Otherwise, the (message text) is ignored using \use_none:n. This
function is only created if debugging is enabled.

__kernel_exp_not:w (expandable tokens) {(content)}

Carries out expansion on the (expandable tokens) before preventing further expansion of
the (content) as for \exp_not:n. Typically, the (ezpandable tokens) will alter the nature
of the (content), i.e. allow it to be generated in some way.

A boolean which records the current code syntax status: true if currently inside a code
environment. This variable should only be set by \ExplSyntax0On/\ExplSyntax0ff.

(End definition for \1__kernel_expl_bool.)

__kernel_file_missing:n {(name)}

Expands the (name) as per __kernel_file_name_sanitize:nN then produces an error
message indicating that that file was not found.

__kernel_file_name_sanitize:nN __kernel_file_name_sanitize:nN {(name)} (str var)

For converting a (name) to a string where active characters are treated as strings.

__kernel_file_input_push:n __kernel_file_input_push:n {(name)}
__kernel_file_input_pop: __kernel_file_input_pop:

__kernel_int_add:nnn *

Used to push and pop data from the internal file stack: needed only in package mode,
where interfacing with the IXTEX 2¢ kernel is necessary.

__kernel_int_add:nnn {(integeri)} {(integer2)} {({integers)}

Expands to the result of adding the three (integers) (which must be suitable input for
\int_eval:w), avoiding intermediate overflow. Overflow occurs only if the overall result
is outside [—23'+ 1,231 —1]. The (integers) may be of the form \int_eval:w... \scan_-
stop: but may be evaluated more than once.

313

__kernel_ior_open:Nn
__kernel_ior_open:No

__kernel_iow_with:Nnn

__kernel_msg_new:nnnn
__kernel_msg_new:nnn

__kernel_msg_set:nnnn
__kernel_msg_set:nnn

__kernel_msg_fatal:
__kernel_msg_fatal:
__kernel_msg_fatal:
__kernel_msg_fatal:
__kernel_msg_fatal:
__kernel_msg_fatal:
__kernel_msg_fatal:
__kernel_msg_fatal:
__kernel_msg_fatal:

nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn

__kernel_msg_error:
__kernel_msg_error:
__kernel_msg_error:
__kernel_msg_error:
__kernel_msg_error:
__kernel_msg_error:
__kernel_msg_error:
__kernel_msg_error:
__kernel_msg_error:

nnnnnn
nnxxxx
nnnnn
nnxxx
nnnn
nnxx
nnn
nnx

nn

__kernel_ior_open:Nn (stream) {(file name)}

This function has identical syntax to the public version. However, is does not take
precautions against active characters in the (file name), and it does not attempt to add
a (path) to the (file name): it is therefore intended to be used by higher-level functions
which have already fully expanded the (file name) and which need to perform multiple
open or close operations. See for example the implementation of \file_get_full_-
name:nN,

__kernel_iow_with:Nnn (integer) {(value)} {(code)}

If the (integer) is equal to the (value) then this function simply runs the (code). Oth-
erwise it saves the current value of the (integer), sets it to the (value), runs the
(code), and restores the (integer) to its former value. This is used to ensure that the
\newlinechar is 10 when writing to a stream, which lets \iow_newline: work, and that
\errorcontextlines is —1 when displaying a message.

__kernel_msg_new:nnnn {(module)} {(message)} {(text)} {(more text)}

Creates a kernel (message) for a given (module). The message is defined to first give
(text) and then (more text) if the user requests it. If no (more text) is available then a
standard text is given instead. Within (text) and (more text) four parameters (#1 to #4)
can be used: these will be supplied and expanded at the time the message is used. An
error is raised if the (message) already exists.

__kernel_msg_set:nnnn {(module)} {(message)} {(text)} {(more text)}

Sets up the text for a kernel (message) for a given (module). The message is defined to
first give (text) and then (more text) if the user requests it. If no (more text) is available
then a standard text is given instead. Within (text) and (more text) four parameters (#1
to #4) can be used: these will be supplied and expanded at the time the message is used.

__kernel_msg_fatal:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {({arg
three)} {(arg four)}

Issues kernel (module) error (message), passing (arg one) to {arg four) to the text-creating
functions. After issuing a fatal error the TEX run halts. Cannot be redirected.

__kernel_msg_error:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {({arg
three)} {(arg four)}

Issues kernel (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. The error stops processing and issues the text at the terminal. After user input,
the run continues. Cannot be redirected.

314

__kernel_msg_warning:
__kernel_msg_warning:
__kernel_msg_warning:
__kernel_msg_warning:
__kernel_msg_warning:
__kernel_msg_warning:
__kernel_msg_warning:
__kernel_msg_warning:
__kernel_msg_warning:

nnnnnn __kernel _msg_warning:nnnnnn {(module)} {(message)} {(arg one)} {(arg
nnxxxx two)} {(arg three)} {(arg four)}

nnnnn

DNXXX

nnnn

nnxx

nnn

nnx

nn

__kernel_msg_info:nnnnnn
__kernel_msg_info:nnxxxx
__kernel_msg_info:nnnnn
__kernel_msg_info:nnxxx
__kernel_msg_info:nnnn
__kernel_msg_info:nnxx
__kernel_msg_info:nnn
__kernel_msg_info:nnx
__kernel_msg_info:nn

Issues kernel (module) warning (message), passing (arg one) to {arg four) to the text-
creating functions. The warning text is added to the log file, but the TEX run is not
interrupted.

__kernel_msg_info:nnnnnn {(module)} {(message)} {(arg ome)} {{arg two)} {(arg
three)} {(arg four)}

Issues kernel (module) information (message), passing (arg one) to (arg four) to the
text-creating functions. The information text is added to the log file.

__kernel_msg_expandable_error:nnnnnn * __kernel_msg_expandable_error:nnnnnn {(module)} {<message>}
__kernel msg_expandable_error:nnffff x {(arg one)} {(arg two)} {(arg three)} {(arg four)}
__kernel_msg_expandable_error:nnnnn *

__kernel_msg_expandable_error:nnfff

__kernel_msg_expandable_error:nnnn

__kernel_msg_expandable_error:nnff

__kernel_msg_expandable_error:nnf

*

*

*

__kernel_msg_expandable_error:nnn *
*

*

__kernel_msg_expandable_error:nn

__kernel_patch:nnNNpn

Issues an error, passing (arg one) to (arg four) to the text-creating functions. The
resulting string must be much shorter than a line, otherwise it is cropped.

__kernel_patch:nnNNpn {(before)} {(after)}
(definition) (function) (parameters) {{code)}

If debugging is not enabled, this function ignores the (before) and (after) code and per-
forms the (definition) with no patching. Otherwise it replaces (code) by (before) (code)
(after) (which can involve #1 and so on) in the (definition) that follows. The (definition)
must start with \cs_new:Npn or \cs_set:Npn or \cs_gset:Npn or their _protected
counterparts. Other cases can be added as needed.

__kernel_patch_condit

ional:nNNpnn __kernel_patch_conditional:nNNpnn {(before)}

(definition) (conditional) (parameters) {(type)} {(code)}

Similar to __kernel_patch:nnNNpn for conditionals, namely (definition) must be
\prg_new_conditional:Npnn or its _protected counterpart. There is no (after) code
because that would interfere with the action of the conditional.

315

__kernel_patch_args:nNNpn __kernel_patch_args:nNNpn {(arguments)}
__kernel_patch_conditional_args:nNNpnn (definition) (function) (parameters) {(code)}

Like __kernel_patch:nnNNpn, this tweaks the following definition, but from the “inside
out” (and if debugging is not enabled, the (arguments) are ignored). It replaces #1, #2
and so on in the (code) of the definition as indicated by the {arguments). More precisely,
a temporary function is defined using the (definition) with the (parameters) and (code),
then the result of expanding that function once in front of the (arguments) is used instead
of the (code) when defining the actual function. For instance,

__kernel_patch_args:nNNpn { { (#1) } }
\cs_new:Npn \int_eval:n #1
{ \int_value:w __int_eval:w #1 __int_eval_end: }

would replace #1 by (#1) in the definition of \int_eval:n when debugging is enabled.
This fails if the (code) contains ##. The __kernel_patch_conditional_args:nNNpnn
function is for use before \prg_new_conditional:Npnn or its _protected counterpart.

__kernel_patch_args:nnnNNpn __kernel_patch_args:nnnNNpn {(before)} {(after)}
__kernel_patch_conditional_args:nnnNNpnn {(arguments)}

\g__kernel_prg_map_int

\c__kernel _randint_max_int

__kernel_randint:n

__kernel_randint:nn

__kernel_register_show:N
__kernel_register_show:c

(definition) (function) (parameters) {{code)}

A combination of __kernel_patch:nnNNpn and __kernel_patch_args:nNNpn.

This integer is used by non-expandable mapping functions to track the level of nesting
in force. The functions \(type)_map_1:w, \(type)_map_2:w, etc., labelled by \g__-

kernel_prg_map_int hold functions to be mapped over various list datatypes in inline
and variable mappings.

(End definition for \g__kernel_prg_map_int.)
Maximal allowed argument to __kernel_randint:n. Equal to 217 — 1.

(End definition for \c__kernel_randint_max_int.)

__kernel_randint:n {(max)}

Used in an integer expression this gives a pseudo-random number between 1 and (max)
included. One must have (maz) < 217 —1. The (maz) must be suitable for \int_value:w
(and any \int_eval:w must be terminated by \scan_stop: or equivalent).

__kernel_randint:nn {(min)} {(max)}

Used in an integer expression this gives a pseudo-random number between (min) and
(maz) included. The (min) and (maz) must be suitable for \int_value:w (and any
\int_eval:w must be terminated by \scan_stop: or equivalent). For small ranges
R = (maz) — (min) +1 <217 — 1, (min) — 1+ __kernel_randint:n{R} is faster.

__kernel _register_show:N (register)

Used to show the contents of a TEX register at the terminal, formatted such that internal
parts of the mechanism are not visible.

316

__kernel _register_log:N __kernel_register_log:N (register)
__kernel_register_log:c

__kernel_str_to_other:n *

Used to write the contents of a TEX register to the log file in a form similar to __-
kernel_register_show:N.

__kernel_str_to_other:n {(token list)}

Converts the (token list) to a (other string), where spaces have category code “other”.
This function can be f-expanded without fear of losing a leading space, since spaces do
not have category code 10 in its result. It takes a time quadratic in the character count
of the string.

__kernel_str_to_other_fast:n % __kernel_str_to_other_fast:n {(token list)}

__kernel_tl_to_str:w x

\if_true:
\if _false:
\or:
\else:
\fi:

\reverse_if:
\if:
\if_charcode:
\if_catcode:
\if_meaning:

s 5 5 5 =

\if_mode_math:
\if_mode_horizontal:

\if _mode_vertical:

\if_mode_inner:

Same behaviour __kernel_str_to_other:n but only restricted-expandable. It takes a
time linear in the character count of the string.
__kernel_tl_to_str:w (expandable tokens) {(tokens)}

Carries out expansion on the (ezpandable tokens) before conversion of the (tokens) to a
string as describe for \t1_to_str:n. Typically, the (expandable tokens) will alter the
nature of the (tokens), i.e. allow it to be generated in some way. This function requires
only a single expansion.

4 13basics implementation
2074 (*initex | package)
4.1 Renaming some TEX primitives (again)

Having given all the TEX primitives a consistent name, we need to give sensible names
to the ones we actually want to use. These will be defined as needed in the appropriate
modules, but we do a few now, just to get started.’

Then some conditionals.

2075 \tex_let:D \if_true: \tex_iftrue:D
o076 \tex_let:D \if_false: \tex_iffalse:D
2077 \tex_let:D \or: \tex_or:D

2078 \tex_let:D \else: \tex_else:D
oo \tex_let:D \fi: \tex_fi:D

2080 \tex_let:D \reverse_if:N \tex_unless:D
2081 \tex_let:D \if:w \tex_if:D

2082 \tex_let:D \if_charcode:w \tex_if:D

2083 \tex_let:D \if_catcode:w \tex_ifcat:D
2004 \tex_let:D \if_meaning:w \tex_ifx:D

(End definition for \if_true: and others. These functions are documented on page 22.)

TEX lets us detect some if its modes.

205 \tex_let:D \if_mode_math: \tex_ifmmode:D
2086 \tex_let:D \if_mode_horizontal: \tex_ifhmode:D
2067 \tex_let:D \if_mode_vertical: \tex_ifvmode:D
2088 \tex_let:D \if_mode_inner: \tex_ifinner:D

6This renaming gets expensive in terms of csname usage, an alternative scheme would be to just use
the \tex_...:D name in the cases where no good alternative exists.

317

\if_cs_exist:N
\if_cs_exist:w
\cs:w

\cs_end:

\exp_after:wN
\exp_not:N
\exp_not:n

\token_to_meaning:N
\cs_meaning:N

\tl_to_str:n
\token_to_str:N
__kernel_tl_to_str:w

\scan_stop:
\group_begin:
\group_end:

\if _int_compare:w

__int_to_roman:w

\group_insert_after:N

(End definition for \if_mode_math: and others. These functions are documented on page 23.)

Building csnames and testing if control sequences exist.

2030 \tex_let:D \if_cs_exist:N \tex_ifdefined:D
2000 \tex_let:D \if_cs_exist:w \tex_ifcsname:D
2001 \tex_let:D \cs:w \tex_csname:D

2002 \tex_let:D \cs_end: \tex_endcsname:D

(End definition for \if_cs_exist:N and others. These functions are documented on page 23.)

The five \exp_ functions are used in the I3expan module where they are described.

2003 \tex_let:D \exp_after:wN \tex_expandafter:D
200 \tex_let:D \exp_not:N \tex_noexpand:D

2005 \tex_let:D \exp_not:n \tex_unexpanded:D
2005 \tex_let:D \exp:w \tex_romannumeral:D
2007 \tex_chardef:D \exp_end: = 0 ~

(End definition for \exp_after:wN, \exp_not:N, and \exp_not:n. These functions are documented on
page 32.)

Examining a control sequence or token.
2005 \tex_let:D \token_to_meaning:N \tex_meaning:D

2000 \tex_let:D \cs_meaning:N \tex_meaning:D

(End definition for \token_to_meaning:N and \cs_meaning:N. These functions are documented on page
125.)

Making strings.
2100 \tex_let:D \tl_to_str:n \tex_detokenize:D

2100 \tex_let:D \token_to_str:N \tex_string:D
2102 \tex_let:D __kernel_tl_to_str:w \tex_detokenize:D

(End definition for \t1_to_str:n, \token_to_str:N, and __kernel_tl_to_str:w. These functions are
documented on page 44.)

The next three are basic functions for which there also exist versions that are safe inside
alignments. These safe versions are defined in the 13prg module.

2103 \tex_let:D \scan_stop: \tex_relax:D
2104 \tex_let:D \group_begin: \tex_begingroup:D
2105 \tex_let:D \group_end: \tex_endgroup:D

(End definition for \scan_stop:, \group_begin:, and \group_end:. These functions are documented
on page 9.)

2106 <@@=int>

For integers.

2107 \tex_let:D \if_int_compare:w \tex_ifnum:D
2108 \tex_let:D __int_to_roman:w \tex_romannumeral:D

(End definition for \if_int_compare:w and __int_to_roman:w. This function is documented on page

94.)

Adding material after the end of a group.
2100 \tex_let:D \group_insert_after:N \tex_aftergroup:D

(End definition for \group_insert_after:N. This function is documented on page 9.)

318

\exp_args:Nc
\exp_args:cc

\token_to_meaning:c
\token_to_str:c
\cs_meaning:c

\c_zero_int

\c_max_register_int

Discussed in 13expan, but needed much earlier.
o110 \tex_long:D \tex_def:D \exp_args:Nc #1#2
aur { \exp_after:wN #1 \cs:w #2 \cs_end: }
2112 \tex_long:D \tex_def:D \exp_args:cc #1#2
s { \cs:w #1 \exp_after:wN \cs_end: \cs:w #2 \cs_end: }

(End definition for \exp_args:Nc and \exp_args:cc. These functions are documented on page 28.)

A small number of variants defined by hand. Some of the necessary functions (\use_-
i:nn, \use_ii:nn, and \exp_args:NNc) are not defined at that point yet, but will be
defined before those variants are used. The \cs_meaning:c command must check for an
undefined control sequence to avoid defining it mistakenly.

2112 \tex_def:D \token_to_str:c { \exp_args:Nc \token_to_str:N }

2115 \tex_long:D \tex_def:D \cs_meaning:c #1

2116 {

2117 \if _cs_exist:w #1 \cs_end:

2118 \exp_after:wN \use_i:nn

2119 \else:

2120 \exp_after:wN \use_ii:nn

2121 \fi:

2122 { \exp_args:Nc \cs_meaning:N {#1} }
2123 { \tl_to_str:n {undefined} }

2124 }

2125 \tex_let:D \token_to_meaning:c = \cs_meaning:c

(End definition for \token_to_meaning:N. This function is documented on page 125.)

4.2 Defining some constants

We need the constant \c_zero_int which is used by some functions in the I3alloc module.
The rest are defined in the I3int module — at least for the ones that can be defined
with \tex_chardef:D or \tex_mathchardef:D. For other constants the I13int module is
required but it can’t be used until the allocation has been set up properly!

2126 \tex_chardef:D \c_zero_int =0 ~

(End definition for \c_zero_int. This variable is documented on page 93.)

This is here as this particular integer is needed both in package mode and to bootstrap
I3alloc, and is documented in 13int.

2127 \tex_ifdefined:D \tex_luatexversion:D

218 \tex_chardef:D \c_max_register_int = 65 535 ~

2120 \tex_else:D

2130 \tex_mathchardef:D \c_max_register_int = 32 767 ~

2131 \tex_£fi:D

(End definition for \c_max_register_int. This variable is documented on page 93.)

319

\cs_set_nopar:
\cs_set_nopar:

\cs_set:

\cs_set:
\cs_set_protected_nopar:
\cs_set_protected_nopar:
\cs_set_protected:
\cs_set_protected:

\cs_gset_nopar:
\cs_gset_nopar:

\cs_gset:

\cs_gset:
\cs_gset_protected_nopar:
\cs_gset_protected_nopar:
\cs_gset_protected:
\cs_gset_protected:

Npn
Npx
Npn
Npx
Npn
Npx
Npn
Npx

Npn
Npx
Npn
Npx
Npn
Npx
Npn
Npx

\1__exp_internal_tl

\use:c

4.3 Defining functions

We start by providing functions for the typical definition functions. First the local ones.

All assignment functions in IATEX3 should be naturally protected; after all, the TEX
primitives for assignments are and it can be a cause of problems if others aren’t.
2132 \tex_let:D \cs_set_nopar:Npn \tex_def:D
2133 \tex_let:D \cs_set_nopar:Npx \tex_edef:D
2131 \tex_protected:D \tex_long:D \tex_def:D \cs_set:Npn
2135 { \tex_long:D \tex_def:D }
2136 \tex_protected:D \tex_long:D \tex_def:D \cs_set:Npx
237 { \tex_long:D \tex_edef:D }
2133 \tex_protected:D \tex_long:D \tex_def:D \cs_set_protected_nopar:Npn
239 { \tex_protected:D \tex_def:D }
210 \tex_protected:D \tex_long:D \tex_def:D \cs_set_protected_nopar:Npx
a1 { \tex_protected:D \tex_edef:D }
212 \tex_protected:D \tex_long:D \tex_def:D \cs_set_protected:Npn
2.3 { \tex_protected:D \tex_long:D \tex_def:D }
12 \tex_protected:D \tex_long:D \tex_def:D \cs_set_protected:Npx
2us { \tex_protected:D \tex_long:D \tex_edef:D }

(End definition for \cs_set_nopar:Npn and others. These functions are documented on page 11.)

Global versions of the above functions.
26 \tex_let:D \cs_gset_nopar:Npn \tex_gdef:D
2147 \tex_let:D \cs_gset_nopar:Npx \tex_xdef:D
s \cs_set_protected:Npn \cs_gset:Npn
2o { \tex_long:D \tex_gdef:D }
2150 \cs_set_protected:Npn \cs_gset:Npx
2151 { \tex_long:D \tex_xdef:D }
2152 \cs_set_protected:Npn \cs_gset_protected_nopar:Npn
253 { \tex_protected:D \tex_gdef:D }
2152 \cs_set_protected:Npn \cs_gset_protected_nopar:Npx
255 { \tex_protected:D \tex_xdef:D }
2156 \cs_set_protected:Npn \cs_gset_protected:Npn
257 { \tex_protected:D \tex_long:D \tex_gdef:D }
2155 \cs_set_protected:Npn \cs_gset_protected:Npx
259 { \tex_protected:D \tex_long:D \tex_xdef:D }

(End definition for \cs_gset_nopar:Npn and others. These functions are documented on page 12.)

4.4 Selecting tokens
2160 (@@=exp>

Scratch token list variable for 13expan, used by \use:x, used in defining conditionals. We
don’t use t1 methods because I3basics is loaded earlier.

2160 \cs_set_nopar:Npn \1__exp_internal_tl { }

(End definition for \1__exp_internal_t1.)

This macro grabs its argument and returns a csname from it.

212 \cs_set:Npn \use:c #1 { \cs:w #1 \cs_end: }

(End definition for \use:c. This function is documented on page 16.)

320

\use:x Fully expands its argument and passes it to the input stream. Uses the reserved \1__-
exp_internal_tl which will be set up in I3expan.

2163 \cs_set_protected:Npn \use:x #1

2164 {

2165 \cs_set_nopar:Npx \1__exp_internal_tl {#1}
2166 \1__exp_internal_tl

2167 }

(End definition for \use:x. This function is documented on page 20.)

2168 (@@=use>

\use:e Currently LuaTgX-only: emulated for older engines.
210 \cs_set:Npn \use:e #1 { \tex_expanded:D {#1} }
2170 \tex_ifdefined:D \tex_expanded:D \tex_else:D
271 \cs_set:Npn \use:e #1 { \exp_args:Ne \use:n {#1} }
2172 \tex_£fi:D

(End definition for \use:e. This function is documented on page 20.)

2173 (@@=exp)

\use:n These macros grab their arguments and return them back to the input (with outer braces
\use:nn removed).
\use:nnn ., \cs_set:Npn \use:n #1 {#1}
\use:nnnn .5 \cs_set:Npn \use:nn #1#2 {#1#2}
2176 \cs_set:Npn \use:nnn #1#2#3 {#1#2#3}
2177 \cs_set:Npn \use:nnnn #1#2#3#4 {#1#2#3#4}

=)

(End definition for \use:n and others. These functions are documented on page 19.)

\use_i:nn The equivalent to BTEX 2¢’s \@firstoftwo and \@secondoftwo.

\use_ii:nn 2175 \cs_set:Npn \use_i:nn #1#2 {#1}
2170 \cs_set:Npn \use_ii:nn #1#2 {#2}

(End definition for \use_i:nn and \use_ii:nn. These functions are documented on page 19.)

\use_i:nnn We also need something for picking up arguments from a longer list.

\use_ii:nnn ;5 \cs_set:Npn \use_i:nnn #1#2#3 {#1}
\use_iii:nnn 2151 \cs_set:Npn \use_ii:nnn #1#2#3 {#2}
\use_i_ii:nnn 212 \cs_set:Npn \use_iii:nnn #1#2#3 {#3}

\use_i:nnnn 2183 \cs_set:an \use_i_ii:nnn #1#2#3 {#1#2}
\use ii:nnnn 2% \cS_set:Npn \use_i:nnnn #1#2#3#4 {#1}
2155 \cs_set:Npn \use_ii:nnnn #1#2#3#4 {#2}
216 \cs_set:Npn \use_iii:nnnn #1#2#3#4 {#3}
2157 \cs_set:Npn \use_iv:nnnn #1#2#3#4 {#4}

\use_iii:nnnn
\use_iv:nnnn

(End definition for \use_i:nnn and others. These functions are documented on page 19.)

\use_none_delimit_by_q_nil:w Functions that gobble everything until they see either \q_nil, \q_stop, or \q_-
\use_none_delimit by q stop:w recursion_stop, respectively.
\use_none_delimit_by_q recursion_stop:w 21 \cs_set:Npn \use_none_delimit_by_q_nil:w #1 \q_nil { }
210 \cs_set:Npn \use_none_delimit_by_q_stop:w #1 \q_stop { }
2100 \cs_set:Npn \use_none_delimit_by_q_recursion_stop:w #1 \g_recursion_stop { }

321

(End definition for \use_none_delimit_by_q_nil:w, \use_none_delimit_by_q_stop:w, and \use_-
none_delimit_by_q_recursion_stop:w. These functions are documented on page 20.)

\use_i_delimit_by_q_nil:nw Same as above but execute first argument after gobbling. Very useful when you need to
\use_i_delimit_by_q_stop:nw skip the rest of a mapping sequence but want an easy way to control what should be
\use i delimit by q recursion stop:nv expanded next.
2101 \cs_set:Npn \use_i_delimit_by_q _nil:nw #1#2 \q_nil {#1}
212 \cs_set:Npn \use_i_delimit_by_q_stop:nw #1#2 \q_stop {#1}
2103 \cs_set:Npn \use_i_delimit_by_q_recursion_stop:nw
2101 #1#2 \q_recursion_stop {#1}

(End definition for \use_i_delimit_by_q_nil:nw, \use_i_delimit_by_q_stop:nw, and \use_i_delimit_-
by_q_recursion_stop:nw. These functions are documented on page 21.)

4.5 Gobbling tokens from input

\use_none:n To gobble tokens from the input we use a standard naming convention: the number of
\use_none:nn tokens gobbled is given by the number of n’s following the : in the name. Although we
\use_none:nnn could define functions to remove ten arguments or more using separate calls of \use_-
\use_none:nnnn none:nnnnn, this is very non-intuitive to the programmer who will assume that expanding
\use_none:nnnnn such a function once takes care of gobbling all the tokens in one go.

\use_none:nnnnnn 2105 \cs_set:Npn \use_none:n #1 {1}
\use_none :nnnnnnn 21905 \cs_set:Npn \use_none:nn #1#2 {1
\use_none:nnnnnnnn 2197 \cs_set:Npn \use_none:nnn #1#2#3 {7
\use_none:nnnnnnnnn 2108 \cs_set:Npn \use_none:nnnn #1#2#3#4 {1}
2199 \cs_set:Npn \use_none:nnnnn #1#2#3#4#5 {1}

200 \cs_set:Npn \use_none:nnnnnn #1#2#3#4#5#6 {1}

201 \cs_set:Npn \use_none:nnnnnnn #1#2#3#4#5#6#7 {17}

202 \cs_set:Npn \use_none:nnnnnnnn #1#2#3#4#5#6#7#8 { }

203 \cs_set:Npn \use_none:nnnnnnnnn #1#2#3#4#5#6#7#8#9 { }

(End definition for \use_none:n and others. These functions are documented on page 20.)

4.6 Debugging and patching later definitions
2204 <@@=debug>

__kernel_if_debug:TF A more meaningful test of whether debugging is enabled than messing up with guards.
We can also more easily change the logic in one place then. At present, debugging is
disabled in the format and in generic mode, while in I#TEX 2¢ mode it is enabled if one
of the options enable-debug, log-functions or check-declarations was given.

205 \cs_set_protected:Npn __kernel_if_debug:TF #1#2 {#2}
200 (*package)

7 \tex_ifodd:D \1@expl@enable@debug@bool

20s \cs_set_protected:Npn __kernel_if_debug:TF #1#2 {#1}

2000 \fi:

2210 {/package)

220

(End definition for __kernel_if_debug:TF.)

\debug_on:n
\debug_off:n ,,; __kernel_if_debug:TF
__debug_all_on: 2212 {
__debug_all_off: 2213 \cs_set_protected:Npn \debug_on:n #1

322

215 \exp_args:No \clist_map_inline:nn { \tl_to_str:n {#1} }
2216 {

2217 \cs_if_exist_use:cF { __debug_ ##1 _on: }

018 { __kernel_msg_error:nnn { kernel } { debug } {##1} }
2219 }

2220 ¥

2201 \cs_set_protected:Npn \debug_off:n #1

2222 {

2223 \exp_args:No \clist_map_inline:nn { \tl_to_str:n {#1} }
2224 {

2225 \cs_if_exist_use:cF { __debug_ ##1 _off: }

2226 { __kernel_msg_error:nnn { kernel } { debug } {##1} }
2227 }

2228 }

2229 \cs_set_protected:Npn __debug_all_on:

2230 {

2231 \debug_on:n

2232 {

2233 check-declarations ,

2234 check-expressions ,

2235 deprecation ,

2236 log-functions ,

2237 }

2238 ¥

2239 \cs_set_protected:Npn __debug_all_off:

2240 {

2241 \debug_off:n

2242 {

2043 check-declarations ,

2244 check-expressions ,

2245 deprecation ,

2246 log-functions ,

2247 }

2248 }

2249 }

2250 {

2251 \cs_set_protected:Npn \debug_on:n #1

2252 {

2253 __kernel_msg_error:nnx { kernel } { enable-debug }
2254 { \tl_to_str:n { \debug_on:n {#1} } }

2255 }

2256 \cs_set_protected:Npn \debug_off:n #1

2257 {

2258 __kernel_msg_error:nnx { kernel } { enable-debug }
2250 { \tl_to_str:n { \debug_off:n {#1} } }

2260 }

261}

(End definition for \debug_on:n and others. These functions are documented on page 2/4.)

\debug_suspend: Suspend and resume locally all debug-related errors and logging except deprecation errors.

\debug_resume: The \debug_suspend: and \debug_resume: pairs can be nested. We keep track of
__debug_suspended:T
\1__debug_suspended_t1

323

nesting in a token list containing a number of periods. At first begin with the “non-
suspended” version of __debug_suspended:T.

262 __kernel_if_debug:TF

2263 {

2264 \cs_set_nopar:Npn \1__debug_suspended_tl { }
2265 \cs_set_protected:Npn \debug_suspend:

2266 {

2267 \tl_put_right:Nn \1__debug_suspended_tl { . }
2268 \cs_set_eq:NN __debug_suspended:T \use:n
2269 }

2270 \cs_set_protected:Npn \debug_resume:

2271 {

2272 \tl_set:Nx \1__debug_suspended_tl

2273 { \tl_tail:N \1__debug_suspended_tl }
2274 \tl_if_empty:NT \1__debug_suspended_tl

2275 {

2276 \cs_set_eq:NN __debug_suspended:T \use_none:n
2277 }

2278 }

2279 \cs_set:Npn __debug_suspended:T #1 { }

2280 }

2281 {

2282 \cs_set_protected:Npn \debug_suspend: { }

2283 \cs_set_protected:Npn \debug_resume: { }

2284 }

(End definition for \debug_suspend: and others. These functions are documented on page 244.)

_debug check-declarations on: When debugging is enabled these two functions set up functions that test their argument
__debug_check-declarations off: (when check-declarations is active)

__kernel_chk_var_exist:N]
e __kernel chk_var_exist:N and __kernel_chk_cs_exist:N, two functions

that test that their argument is defined;

__kernel_chk_cs_exist:N

__kernel_chk_cs_exist:c

__kernel_chk_var_local:N

__kernel_chk_var_global:N

__kernel_chk_var_scope:NN e __kernel_chk_var_local:N and __kernel_chk_var_global:N that perform
both checks.

e __kernel_chk_var_scope:NN that checks that its argument #2 has scope #1.

285 __kernel_if_debug:TF

2286 {

2287 \exp_args:Nc \cs_set_protected:Npn { __debug_check-declarations_on: }
2288 {

2289 \cs_set_protected:Npn __kernel_chk_var_exist:N ##1

2290 {

2201 __debug_suspended:T \use_none:nnn

2202 \cs_if_exist:NF ##1

2293 {

2204 __kernel_msg_error:nnx { kernel } { non-declared-variable }
2205 { \token_to_str:N ##1 }

2296 }

2297 ¥

2208 \cs_set_protected:Npn __kernel_chk_cs_exist:N ##1

2299 {

2300 __debug_suspended:T \use_none:nnn

324

__debug_chk var _scope_aux:NN\
__debug chk var scope au

__debug chk var scope aux:NNn

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

\cs_if_exist:NF ##1
{
__kernel_msg_error:nnx { kernel } { command-not-defined }
{ \token_to_str:N ##1 }

}
¥
\cs_set_protected:Npn __kernel_chk_var_scope:NN
{
__debug_suspended:T \use_none:nnn
__debug_chk_var_scope_aux:NN
}
\cs_set_protected:Npn __kernel_chk_var_local:N ##1
{
__debug_suspended:T \use_none:nnnnn
__kernel_chk_var_exist:N ##1
__debug_chk_var_scope_aux:NN 1 ##1
}
\cs_set_protected:Npn __kernel_chk_var_global:N ##1
{
__debug_suspended:T \use_none:nnnnn
__kernel_chk_var_exist:N ##1
__debug_chk_var_scope_aux:NN g ##1
}

}
\exp_args:Nc \cs_set_protected:Npn { __debug_check-declarations_off: }
{
\cs_set_protected:Npn __kernel_chk_var_exist:N ##1 { }
\cs_set_protected:Npn __kernel_chk_cs_exist:N ##1 { }
\cs_set_protected:Npn __kernel_chk_var_local:N ##1 { }
\cs_set_protected:Npn __kernel_chk_var_global:N ##1 { }
\cs_set_protected:Npn __kernel_chk_var_scope:NN ##1##2 { }
}
\cs_set_protected:Npn __kernel_chk_cs_exist:c
{ \exp_args:Nc __kernel_chk_cs_exist:N }
\tex_ifodd:D \l@expl@check@declarations@bool
\use:c { __debug_check-declarations_on: }
\else:
\use:c { __debug_check-declarations_off: }
\fi:
}
{1}

(End definition for __debug_check-declarations_on: and others.)

First check whether the name of the variable #2 starts with (letter)_. If it does then pass
that letter, the (scope), and the variable name to __debug_chk_var_scope_aux:NNn.
That function compares the two letters and triggers an error if they differ (the \scan_-
stop: case is not reachable here). If the second character was not _ then pass the same
data to the same auxiliary, except for its first argument which is now a control sequence.
That control sequence is actually a token list (but to avoid triggering the checking code
we manipulate it using \cs_set_nopar:Npn) containing a single letter (scope) according

to what the first assignment to the given variable was.
2322 __kernel_if_debug:TF

2343

{

325

__debug_check-expressions_on:
__debug_check-expressions off:
__kernel_chk_expr:nNnN
__debug_chk_expr_aux:nNnN

2344 \cs_set_protected:Npn __debug_chk_var_scope_aux:NN #1#2

2345 { \exp_args:NNf __debug_chk_var_scope_aux:Nn #1 { \cs_to_str:N #2 } }
2346 \cs_set_protected:Npn __debug_chk_var_scope_aux:Nn #1#2

2347 {

2348 \if:w _ \use_i:nn \use_i_delimit_by_q_stop:nw #2 7 7 \q_stop
2349 \exp_after:wN __debug_chk_var_scope_aux:NNn

2350 \use_i_delimit_by_q_stop:nw #2 7 \q_stop

2351 #1 {#2}

2352 \else:

2353 \exp_args:Nc __debug_chk_var_scope_aux:NNn

2354 { __debug_chk_/ #2 }

2355 #1 {#2}

2356 \fi:

2357 }

2358 \cs_set_protected:Npn __debug_chk_var_scope_aux:NNn #1#2#3
2359 {

2360 \if:w #1 #2

2361 \else:

2362 \if:w #1 \scan_stop:

2363 \cs_gset_nopar:Npn #1 {#2}

2364 \else:

2365 __kernel_msg_error:nnxxx { kernel } { local-global }
2366 {#1} {#2} { \iow_char:N \\ #3 }

2367 \fi:

2368 \fi:

2369 }

2370 }

2371 {}

(End definition for __debug_chk_var_scope_aux:NN, __debug_chk_var_scope_aux:Nn, and __debug_-
chk_var_scope_aux:NNn)

When debugging is enabled these two functions set __kernel_chk_expr:nNnN to test or
not whether the given expression is valid. The idea is to evaluate the expression within
a brace group (to catch trailing \use_none:nn or similar), then test that the result is
what we expect. This is done by turning it to an integer and hitting that with \tex_-
romannumeral :D after replacing the first character by -0. If all goes well, that primitive
finds a non-positive integer and gives an empty output. If the original expression evalu-
ation stopped early it leaves a trailing \tex_relax:D, which stops the second evaluation
(used to convert to integer) before it encounters the final \tex_relax:D. Since \tex_-
romannumeral :D does not absorb \tex_relax:D the output will be nonempty. Note
that #3 is empty except for mu expressions for which it is \tex_mutoglue:D to avoid
an “incompatible glue units” error. Note also that if we had omitted the first \tex_-
relax:D then for instance 1+2\relax+3 would incorrectly be accepted as a valid integer
expression.

232 __kernel_if_debug:TF

2373 {

2374 \exp_args:Nc \cs_set_protected:Npn { __debug_check-expressions_on: }
2375 {

2376 \cs_set:Npn __kernel_chk_expr:nNnN ##1##2

2377 {

2378 __debug_suspended:T { ##1 \use_none:nnnnnnn }

2379 \exp_after:wN __debug_chk_expr_aux:nNnN

326

2380 \exp_after:wN { \tex_the:D ##2 ##1 \scan_stop: }

2381 ##2

2382 }

2383 }

2384 \exp_args:Nc \cs_set_protected:Npn { __debug_check-expressions_off: }
2385 { \cs_set:Npn __kernel_chk_expr:nNnN ##1##2##3##4 {##1} }
2386 \use:c { __debug_check-expressions_off: }

2387 \cs_set:Npn __debug_chk_expr_aux:nNnN #1#2#3#4
2388 {

2389 \tl_if_empty:oF

2390 {

2301 \tex_romannumeral:D - 0

2392 \exp_after:wN \use_none:n

2303 \int_value:w #3 #2 #1 \scan_stop:

2394 }

2395 {

2396 __kernel_msg_expandable_error:nnnn

2307 { kernel } { expr } {#4} {#1}

2398 }

2399 #1

2400 }

2401 }

2402 {3}

(End definition for __debug_check-expressions_on: and others.)

__debug_log-functions_on: These two functions (corresponding to the expl3 option log-functions) control whether
__debug_log-functions_off: __kernel_debug_log:x writes to the log file or not. Since \iow_log:x does not yet
__kernel debug_log:x have its final definition we do not use \cs_set_eq:NN (not defined yet anyway). Once
everything is defined, turn logging on or off depending on what option was given. When

debugging is not enabled, simply produce an error.

2203 __kernel_if_debug:TF

2404 {

2405 \exp_args:Nc \cs_set_protected:Npn { __debug_log-functions_on: }
2406 {

2407 \cs_set_protected:Npn __kernel_debug_log:x

2408 { __debug_suspended:T \use_none:nn \iow_log:x }

2409 }

2410 \exp_args:Nc \cs_set_protected:Npn { __debug_log-functions_off: }
2411 { \cs_set_protected:Npn __kernel_debug_log:x { \use_none:n } }
2412 \tex_ifodd:D \1l@expl@log@functions@bool

2413 \use:c { __debug_log-functions_on: }

2414 \else:

2415 \use:c { __debug_log-functions_off: }

2416 \fi:

2417 }

2418 {}

(End definition for __debug_log-functions_on:, __debug_log-functions_off:, and __kernel_-
debug_log:x.)

__debug_deprecation_on: Some commands were more recently deprecated and not yet removed; only make these
__debug_deprecation_off: into errors if the user requests it. This relies on two token lists, filled up in |3deprecation.
__kernel deprecation code:nn 220 __kernel_if_debug:TF
\g__debug_deprecation_on_tl
\g__debug_deprecation_off_tl
327

__kernel_patch:nnNNpn
__kernel patch_conditional:nNNpnn
__debug_patch_aux:nnnn

__debug_patch_auxii:nnnn

__kernel_patch_args:nNNpn
__kernel patch_conditional args:nlNlNpnn
__kernel_patch_args:nnnNan
__kernel patch conditional args:nnnNNpnn
__debug_tmp:w

__debug_patch_args aux:nnnlNnn

__debug patch args aux:nnnNNnnn
__debug_patch_args_aux:nnnn

2421 \cs_set_protected:Npn __debug_deprecation_on:

2422 { \g__debug_deprecation_on_tl }

2423 \cs_set_protected:Npn __debug_deprecation_off:

2424 { \g__debug_deprecation_off_tl }

2425 \cs_set_nopar:Npn \g__debug_deprecation_on_tl { }

2426 \cs_set_nopar:Npn \g__debug_deprecation_off_tl { }

2427 \cs_set_protected:Npn __kernel_deprecation_code:nn #1#2
2428 {

2429 \tl_gput_right:Nn \g__debug_deprecation_on_t1l {#1}
2430 \tl_gput_right:Nn \g__debug_deprecation_off_tl {#2}
2431 }

2432 }

2433 {

2434 \cs_set_protected:Npn __kernel_deprecation_code:nn #1#2 { }
2435 }

(End definition for __debug_deprecation_on: and others.)

When debugging is not enabled, __kernel_patch:nnNNpn and __kernel_patch_-
conditional :nNNpnn throw the patch away. Otherwise they can be followed by \cs_-
new:Npn (or similar), and \prg_new_conditional:Npnn (or similar), respectively. In
each case, grab the name of the function to be defined and its parameters then insert
tokens before and/or after the definition.

2236 __kernel_if_debug:TF

2437 {

2438 \cs_set_protected:Npn __kernel_patch:nnNNpn #1#2#3#4#5#

2439 { __debug_patch_aux:nnnn {#1} {#2} { #3 #4 #5 } }

2440 \cs_set_protected:Npn __kernel_patch_conditional:nNNpnn #1#2#3#4#
2441 { __debug_patch_auxii:nnnn {#1} { #2 #3 #4 } }

2442 \cs_set_protected:Npn __debug_patch_aux:nnnn #1#2#3#4

2443 {#3 {#1 #4 #2 1} }

2444 \cs_set_protected:Npn __debug_patch_auxii:nnnn #1#2#3#4

2445 {#2 {#3} { #1 #4 } }

2446 }

2447 {

2448 \cs_set_protected:Npn __kernel_patch:nnNNpn #1#2 { }

2449 \cs_set_protected:Npn __kernel_patch_conditional:nNNpnn #1 { }
2450 }

(End definition for __kernel_patch:nnNNpn and others.)

See __kernel_patch:nnNNpn. The first argument is something like {#1}{(#2)}. Define
a temporary macro using the (parameters) and (code) of the definition that follows, then
expand that temporary macro in front of the first argument to obtain new (code). Then
perform the definition as if that new (code) was directly typed in the file.

251 \cs_set_protected:Npn __kernel_patch_args:nNNpn

252 { __kernel_patch_args:nnnNNpn { } { } }

253 \cs_set_protected:Npn __kernel_patch_conditional_args:nNNpnn

2ss - { __kernel_patch_conditional_args:nnnNNponn { } { } }

255 __kernel_if_debug:TF

2456 {
2457 \cs_set_protected:Npn __kernel_patch_args:nnnNNpn #1#2#3#4#5#6#
2458 { __debug_patch_args_aux:nnnNNnn {#1} {#2} {#3} #4 #5 {#6} }

328

\prg_return_true:
\prg_return_false:

2459 \cs_set_protected:Npn __kernel_patch_conditional_args:nnnNNpnn
2460 #1#2#3#4#5#6#

2461 { __debug_patch_args_aux:nnnNNnnn {#1} {#2} {#3} #4 #5 {#6} }
2462 \cs_set_protected:Npn __debug_patch_args_aux:nnnNNnn #1#2#3#4#5#6#7
2463 {

2464 \cs_set:Npn __debug_tmp:w #6 {#7}

2465 \exp_after:wN __debug_patch_args_aux:nnnn \exp_after:wN

2466 { __debug_tmp:w #3 } { #4 #5 #6 } {#1} {#2}

2467 }

2468 \cs_set_protected:Npn __debug_patch_args_aux:nnnNNnnn #1#2#3#4#5#6#7#8
2469 {

2470 \cs_set:Npn __debug_tmp:w #6 {#8}

2471 \exp_after:wN __debug_patch_args_aux:nnnn \exp_after:wN

2472 { __debug_tmp:w #3 } { #4 #5 #6 {#7} } {#1} {#2}

2473 }

2474 \cs_set_protected:Npn __debug_patch_args_aux:nnnn #1#2#3#4

2475 {#2 { #3 #1 #4 } }

2476 }

2477 {

2478 \cs_set_protected:Npn __kernel_patch_args:nnnNNpn #1#2#3 { }
2479 \cs_set_protected:Npn __kernel_patch_conditional_args:nnnNNpnn
2480 #1#2#3 { }

2481 }

(End definition for __kernel_patch_args:nNNpn and others.)

4.7 Conditional processing and definitions
2482 (©©=prg>

Underneath any predicate function (_p) or other conditional forms (TF, etc.) is a
built-in logic saying that it after all of the testing and processing must return the (state)
this leaves TEX in. Therefore, a simple user interface could be something like

\if _meaning:w #1#2

\prg_return_true:

\else:
\if _meaning:w #1#3
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:

Usually, a TEX programmer would have to insert a number of \exp_after:wNs to ensure
the state value is returned at exactly the point where the last conditional is finished.
However, that obscures the code and forces the TEX programmer to prove that he/she
knows the 2" — 1 table. We therefore provide the simpler interface.

The idea here is that \exp:w expands fully any \else: and \fi: that are waiting to be
discarded, before reaching the \exp_end: which leaves an empty expansion. The code
can then leave either the first or second argument in the input stream. This means that
all of the branching code has to contain at least two tokens: see how the logical tests are
actually implemented to see this.

329

\prg_set_conditional:Npnn
\prg_new_conditional:Npnn
\prg_set_protected _conditional:Npm
\prg_new_protected_conditional:Npmn

__prg_generate conditional parm:NNNpnn

\prg_set_conditional:Nnn
\prg_new_conditional:Nnn
\prg_set_protected conditional:Nnn

\prg_new_protected_conditional:linn

233 \cs_set:Npn \prg_return_true:
2use { \exp_after:wN \use_i:nn \exp:w }
2255 \cs_set:Npn \prg_return_false:
26 { \exp_after:wN \use_ii:nn \exp:w}

An extended state space could be implemented by including a more elaborate function

in place of \use_i:nn/\use_ii:nn. Provided two arguments are absorbed then the code
would work.

(End definition for \prg_return_true: and \prg_return_false:. These functions are documented on
page 100.)

The user functions for the types using parameter text from the programmer. The various
functions only differ by which function is used for the assignment. For those Npnn type
functions, we must grab the parameter text, reading everything up to a left brace before
continuing. Then split the base function into name and signature, and feed {(name)}
{(signature)} (boolean) {(set or new)} {(maybe protected)} {({parameters)} {TF,...}
{{code)} to the auxiliary function responsible for defining all conditionals. Note that e
stands for expandable and p for protected.

257 \cs_set_protected:Npn \prg_set_conditional:Npnn

2uss { __prg_generate_conditional_parm:NNNpnn \cs_set:Npn e }

2280 \cs_set_protected:Npn \prg_new_conditional:Npnn

2200 { __prg_generate_conditional_parm:NNNpnn \cs_new:Npn e }

201 \cs_set_protected:Npn \prg_set_protected_conditional:Npnn

202 { __prg_generate_conditional_parm:NNNpnn \cs_set_protected:Npn p }
2203 \cs_set_protected:Npn \prg_new_protected_conditional:Npnn

2200 { __prg_generate_conditional_parm:NNNpnn \cs_new_protected:Npn p }
2205 \cs_set_protected:Npn __prg_generate_conditional_parm:NNNpnn #1#2#3#4#
2496 {

2497 \use:x

2498 {

2499 __prg_generate_conditional :nnNNNnnn
2500 \cs_split_function:N #3

2501 }

2502 #1 #2 {#4}

2503 }

(End definition for \prg_set_conditional:Npnn and others. These functions are documented on page
98.)

The user functions for the types automatically inserting the correct parameter text based
on the signature. The various functions only differ by which function is used for the
assignment. Split the base function into name and signature. The second auxiliary
generates the parameter text from the number of letters in the signature. Then feed
{(name)} {(signature)} (boolean) {(set or new)} {(maybe protected)} {(parameters)}
{TF, ...} {(code)} to the auxiliary function responsible for defining all conditionals. If
the (signature) has more than 9 letters, the definition is aborted since TEX macros have
at most 9 arguments. The erroneous case where the function name contains no colon is
captured later.

2504 \cs_set_protected:Npn \prg_set_conditional:Nnn

05 { __prg_generate_conditional_count:NNNnn \cs_set:Npn e }

2506 \cs_set_protected:Npn \prg_new_conditional:Nnn

207 { __prg_generate_conditional_count:NNNnn \cs_new:Npn e }

2508 \cs_set_protected:Npn \prg_set_protected_conditional:Nnn

330

__prg_generate_conditional:nnNNNnnn
__prg generate _conditional:NNnnnnliw
__prg generate conditional test:w

__prg_generate conditional fast:nw

00 { __prg_generate_conditional_count:NNNnn \cs_set_protected:Npn p }
10 \cs_set_protected:Npn \prg_new_protected_conditional:Nnn

11 { __prg_generate_conditional_count:NNNnn \cs_new_protected:Npn p }
2512 \cs_set_protected:Npn __prg_generate_conditional_count:NNNnn #1#2#3
2513 {

2514 \use:x

2515 {

2516 __prg_generate_conditional_count :nnNNNnn
2517 \cs_split_function:N #3

2518 ¥

2519 #1 #2

2520 }

2521 \cs_set_protected:Npn __prg_generate_conditional_count:nnNNNnn #1#2#3#4#5
2522 {

2523 __kernel_cs_parm_from_arg_count :nnF

2524 { __prg_generate_conditional:nnNNNnnn {#1} {#2} #3 #4 #5 }

2525 { \tl_count:n {#2} }

2526 {

2527 __kernel_msg_error:nnxx { kernel } { bad-number-of-arguments }
2528 { \token_to_str:c { #1 : #2 } }

2529 { \tl_count:n {#2} }

2530 \use_none:nn

2531 }

2532 }

(End definition for \prg_set_conditional:Nnn and others. These functions are documented on page
98.)

The workhorse here is going through a list of desired forms, i.e., p, TF, T and F. The first
three arguments come from splitting up the base form of the conditional, which gives the
name, signature and a boolean to signal whether or not there was a colon in the name.
In the absence of a colon, we throw an error and don’t define any conditional. The fourth
and fifth arguments build up the defining function. The sixth is the parameters to use
(possibly empty), the seventh is the list of forms to define, the eighth is the replacement
text which we will augment when defining the forms. The use of \t1_to_str:n makes
the later loop more robust.

A large number of our low-level conditionals look like (code) \prg_return_true:
\else: \prg_return_false: \fi: so we optimize this special case by calling __prg_-
generate_conditional_fast:nw {(code)}. This passes \use_i:nn instead of \use_-
i_ii:nnn to functions such as __prg_generate_p_form:wNNnnnnN.

2533 \cs_set_protected:Npn __prg_generate_conditional :nnNNNnnn #1#2#3#4#5#6#7#8
2534 {

2535 \if_meaning:w \c_false_bool #3

2536 __kernel_msg_error:nnx { kernel } { missing-colon }
2537 { \token_to_str:c {#1} }

2538 \exp_after:wN \use_none:nn

2539 \fi:

2540 \use:x

2541 {

2542 \exp_not:N __prg_generate_conditional: NNnnnnNw
2543 \exp_not:n { #4 #5 {#1} {#2} {#6} }

2544 __prg_generate_conditional_test:w

2545 #8 \q_mark

331

__prg generate p form

__prg_generate TF form

__prg nnnn
__prg_generate F_form:wNNnnnn

__prg_p_true:w

generate T form

N
N
N
N

2546 __prg_generate_conditional_fast:nw

2547 \prg_return_true: \else: \prg_return_false: \fi: \q_mark
2548 \use_none:n

2549 \exp_not:n { {#8} \use_i_ii:nnn }

2550 \tl_to_str:n {#7}

2561 \exp_not:n { , \g_recursion_tail , \g_recursion_stop }

2552 }

2553 }

255 \cs_set:Npn __prg_generate_conditional_test:w

2555 #1 \prg_return_true: \else: \prg_return_false: \fi: \q_mark #2

2556 { #2 {#1} }

2557 \cs_set:Npn __prg_generate_conditional_fast:nw #1#2 \exp_not:n #3

2555 { \exp_nmot:n { {#1} \use_i:nn } }
Looping through the list of desired forms. First are six arguments and seventh is the
form. Use the form to call the correct type. If the form does not exist, the \use:c
construction results in \relax, and the error message is displayed (unless the form is
empty, to allow for {T, , F}), then \use_none:nnnnnnnn cleans up. Otherwise, the
error message is removed by the variant form.

250 \cs_set_protected:Npn __prg_generate_conditional:NNnnnnNw #1#2#3#4#5#6#7#8 ,
2560 {

2561 \if_meaning:w \g_recursion_tail #8

2562 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
2563 \fi:

2564 \use:c { __prg_generate_ #8 _form:wNNnnnnN }

2565 \tl_if_empty:nF {#8}

2566 {

2567 __kernel_msg_error:nnxx

2568 { kernel } { conditional-form-unknown }

2569 {#8} { \token_to_str:c { #3 : #4 } }

2570 }

2571 \use_none:nnnnnnnn

2572 \q_stop

2573 #1 #2 {#3} {#4} {#5} {#6} #7

2574 __prg_generate_conditional :NNnnnnNw #1 #2 {#3} {#4} {#5} {#6} #7

2575
(End definition for __prg_generate_conditional:nnNNNnnn and others.)

How to generate the various forms. Those functions take the following arguments: 1:
junk, 2: \cs_set:Npn or similar, 3: p (for protected conditionals) or e, 4: function
name, 5: signature, 6: parameter text, 7: replacement (possibly trimmed by __prg_-
generate_conditional_fast:nw), 8: \use_i_ii:nnn or \use_i:nn (for “fast” condi-
tionals). Remember that the logic-returning functions expect two arguments to be present
after \exp_end:: notice the construction of the different variants relies on this, and that
the TF and F variants will be slightly faster than the T version. The p form is only
valid for expandable tests, we check for that by making sure that the second argument
is empty. For “fast” conditionals, #7 has an extra \if_.... To optimize a bit further
we could replace \exp_after:wN \use_ii:nnn and similar by a single macro similar to
__prg_p_true:w. The drawback is that if the T or F arguments are actually missing,
the recovery from the runaway argument would not insert \fi: back, messing up nesting
of conditionals.

2576 \cs_set_protected:Npn __prg_generate_p_form:wNNnnnnN

332

2577 #1 \q_stop #2#3#4#5#6#7#8

2578 {

2579 \if_meaning:w e #3

2580 \exp_after:wN \use_i:nn
2581 \else :

2582 \exp_after:wN \use_ii:nn
2583 \fi:

2584 {

2585 #8

{ \exp_args:Nc #2 { #4 _p: #5 } #6 }
2587 { { #7 \exp_end: \c_true_bool \c_false_bool } }
{ #7 __prg_p_true:w \fi: \c_false_bool }
2589 ¥
2590 {
2501 __kernel_msg_error:nnx { kernel } { protected-predicate }
2502 { \token_to_str:c { #4 _p: #5 } }

2594 }

2505 \cs_set_protected:Npn __prg_generate_T_form:wNNnnnnN

2596 #1 \q_stop #2#3#4#5#6#7#38

2597 {

2508 #3

2599 { \exp_args:Nc #2 { #4 : #5 T } #6 }

2600 { { #7 \exp_end: \use:n \use_none:n } }
{#

2601 7 \exp_after:wN \use_ii:nn \fi: \use_none:n }

2602 }

2603 \cs_set_protected:Npn __prg_generate_F_form:wNNnnnnN
2604 #1 \q_StOp H2HIHAHSHOHTHS

2605 {

2606 #3

{ \exp_args:Nc #2 { #4 : #5 F } #6 }
2608 { { %7 \exp_end: {}}r1?
{#

7 \exp_after:wN \use_none:nn \fi: \use:n }

2610 }

2611 \cs_set_protected:Npn __prg_generate_TF_form:wNNnnnnN
2612 #1 \q_stop #2#3#4#5#6#7#8

2613 {

2614 #3

{ \exp_args:Nc #2 { #4 : #5 TF } #6 }
2616 { { #7 \exp_end: } }
{ #7 \exp_after:wN \use_ii:nnn \fi: \use_ii:nn }
2618 }
2610 \cs_set:Npn __prg_p_true:w \fi: \c_false_bool { \fi: \c_true_bool }

(End definition for __prg_generate_p_form:wNNnnnnN and others.)

\prg_set_eq_conditional:NNn The setting-equal functions. Split both functions and feed {(name;)} {({signature;)}
\prg_new_eq_conditional:NNn (boolean;) {(names)} {(signatures)} (booleans) {copying function) {conditions) , \q_-
\ prg set eq conditional:Niln recursion_tail , \q_recursion_stop to a first auxiliary.

2020 \cs_set_protected:Npn \prg_set_eq_conditional:NNn
221 { __prg_set_eq_conditional:NNNn \cs_set_eq:cc }
2622 \cs_set_protected:Npn \prg_new_eq_conditional:NNn
203 { __prg_set_eq_conditional:NNNn \cs_new_eq:cc }
26214 \cs_set_protected:Npn __prg_set_eq_conditional :NNNn #1#2#3#4

333

__prg set eq conditional:nnNnnllw
__prg_set_eq conditional loop:nnnnlly
__prg_set_eq_conditional p_form:nnn
__prg_set eq conditional T form:nmn

__prg set eq conditional F form:nnn

2626 \use X

2627 {

2628 \exp_not:N __prg_set_eq_conditional:nnNnnNNw

2629 \cs_split_function:N #2

2630 \cs_split_function:N #3

2631 \exp_not:N #1

2632 \tl_to_str:n {#4}

2633 \exp_not:n { , \g_recursion_tail , \g_recursion_stop }
2634 }

2635 }

(End definition for \prg_set_eq_conditional:NNn, \prg_new_eq_conditional:NNn, and __prg_set_-
eq_conditional:NNNn. These functions are documented on page 99.)

Split the function to be defined, and setup a manual clist loop over argument #6 of the
first auxiliary. The second auxiliary receives twice three arguments coming from splitting
the function to be defined and the function to copy. Make sure that both functions
contained a colon, otherwise we don’t know how to build conditionals, hence abort. Call
the looping macro, with arguments {(name;)} {(signature;)} {(names)} {(signatures)}
(copying function) and followed by the comma list. At each step in the loop, make sure
that the conditional form we copy is defined, and copy it, otherwise abort.

2636 \cs_set_protected:Npn __prg_set_eq_conditional :nnNnnNNw #1#2#3#4#5#6
2637 {

2638 \if_meaning:w \c_false_bool #3

2639 __kernel_msg_error:nnx { kernel } { missing-colon }
2640 { \token_to_str:c {#1} }

2641 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
2642 \fi:

2643 \if_meaning:w \c_false_bool #6

2644 __kernel_msg_error:nnx { kernel } { missing-colon }
2645 { \token_to_str:c {#4} }

2646 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
2647 \fi:

2648 __prg_set_eq_conditional_loop:nnnnNw {#1} {#2} {#4} {#5}
2649 }

265 \cs_set_protected:Npn __prg_set_eq_conditional_loop:nnnnNw #1#2#3#4#5#6 ,
2651 '{:

2652 \if _meaning:w \g_recursion_tail #6

2653 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
2654 \fi:

2655 \use:c { __prg_set_eq_conditional_ #6 _form:wNnnnn }
2656 \tl_if_empty:nF {#63}

2657 {

2658 __kernel_msg_error:nnxx

2659 { kernel } { conditional-form-unknown }

2660 {#6} { \token_to_str:c { #1 : #2 } }

2661 }

2662 \use_none:nnnnnn

2663 \q_stop

2664 #5 {#1} {#2} {#3} {#4}

2665 __prg_set_eq_conditional_loop:nnnnNw {#1} {#2} {#3} {#4} #5
2666 }

2667 __kernel_patch:nnNNpn

334

\c_true_bool
\c_false_bool

__cs_count_signature:N

265 { __kernel_chk_cs_exist:c { #5 _p : #6 Fr{z

2660 \cs_set:Npn __prg_set_eq_conditional_p_form:wNnnnn #1 \q_stop #2#3#4#5#6
w0 { #2 { #3 _p : #4 } {#5 _p : #6 }}r

2671 __kernel_patch:nnNNpn

2672 { __kernel_chk_cs_exist:c { #5 :#6 TF + } { }

2673 \cs_set:Npn __prg_set_eq_conditional TF_form:wNnnnn #1 \q_stop #2#3#4#5#6
wra { #2 { #3 : #4 TF } { #5 : #6 TF } }

2675 __kernel_patch:nnNNpn

%76 { __kernel_chk_cs_exist:c { #5 :#6 T } {1}

2677 \cs_set:Npn __prg_set_eq_conditional _T_form:wNnnnn #1 \q_stop #2#3#4#5#6
2678 { #2 { #3 c #4 T } { #5 c #6 T 1} }

2679 __kernel_patch:nnNNpn

680 { __kernel_chk_cs_exist:c { #5 :#6 F } Y {1}

261 \cs_set:Npn __prg_set_eq_conditional F_form:wNnnnn #1 \q_stop #2#3#4#5#6
2682 {#2 { #3 : #4 F } { #5 : #6 F } }

(End definition for __prg_set_eq_conditional:nnNnnNNw and others.)

All that is left is to define the canonical boolean true and false. I think Michael
originated the idea of expandable boolean tests. At first these were supposed to expand
into either TT or TF to be tested using \if:w but this was later changed to 00 and 01,
so they could be used in logical operations. Later again they were changed to being
numerical constants with values of 1 for true and 0 for false. We need this from the
get-go.

Here are the canonical boolean values.

283 \tex_chardef:D \c_true_bool =1
2684 \tex_chardef:D \c_false_bool = 0 ~

(End definition for \c_true_bool and \c_false_bool. These variables are documented on page 22.)

4.8 Dissecting a control sequence

2685 <@@=CS>

__cs_count_signature:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (number) of tokens in the (signature) is then left in the input
stream. If there was no (signature) then the result is the marker value —1.

__cs_get_function_name:N x __cs_get_function_name:N <function>

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (name) is then left in the input stream without the escape
character present made up of tokens with category code 12 (other).

__cs_get_function_signature:N * __cs_get_function_signature:N <function>

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (signature) is then left in the input stream made up of tokens
with category code 12 (other).

335

__cs_tmp:w

\cs_to_str:N
__cs_to_str:N
__cs_to_str:w

Function used for various short-term usages, for instance defining functions whose defini-
tion involves tokens which are hard to insert normally (spaces, characters with category
other).

This converts a control sequence into the character string of its name, removing the
leading escape character. This turns out to be a non-trivial matter as there a different
cases:

e The usual case of a printable escape character;

e the case of a non-printable escape characters, e.g., when the value of the
\escapechar is negative;

e when the escape character is a space.

One approach to solve this is to test how many tokens result from \token_to_str:N \a.
If there are two tokens, then the escape character is printable, while if it is non-printable
then only one is present.

However, there is an additional complication: the control sequence itself may start
with a space. Clearly that should not be lost in the process of converting to a string. So
the approach adopted is a little more intricate still. When the escape character is print-
able, \token_to_str:N,,\ yields the escape character itself and a space. The character
codes are different, thus the \if :w test is false, and TEX reads __cs_to_str:N after turn-
ing the following control sequence into a string; this auxiliary removes the escape char-
acter, and stops the expansion of the initial \tex_romannumeral:D. The second case is
that the escape character is not printable. Then the \if :w test is unfinished after reading
a the space from \token_to_str:N,_, and the auxiliary __cs_to_str:w is expanded,
feeding - as a second character for the test; the test is false, and TEX skips to \fi:, then
performs \token_to_str:N, and stops the \tex_romannumeral:D with \c_zero_int.
The last case is that the escape character is itself a space. In this case, the \if:w test
is true, and the auxiliary __cs_to_str:w comes into play, inserting -\int_value:w,
which expands \c_zero_int to the character 0. The initial \tex_romannumeral:D then
sees 0, which is not a terminated number, followed by the escape character, a space,
which is removed, terminating the expansion of \tex_romannumeral:D. In all three
cases, \cs_to_str:N takes two expansion steps to be fully expanded.

2636 \cs_set:Npn \cs_to_str:N

2687 {
We implement the expansion scheme using \tex_romannumeral:D terminating it with
\c_zero_int rather than using \exp:w and \exp_end: as we normally do. The reason
is that the code heavily depends on terminating the expansion with \c_zero_int so we
make this dependency explicit.

2688 \tex_romannumeral:D

2689 \if:w \token_to_str:N \ __cs_to_str:w \fi:
2690 \exp_after:wN __cs_to_str:N \token_to_str:N
2601 }

2692 \cs_set:Npn __cs_to_str:N #1 { \c_zero_int }

2603 \cs_set:Npn __cs_to_str:w #1 __cs_to_str:N

2604 { = \int_value:w \fi: \exp_after:wN \c_zero_int }
If speed is a concern we could use \csstring in LuaTgX. For the empty csname that
primitive gives an empty result while the current \cs_to_str:N gives incorrect results
in all engines (this is impossible to fix without huge performance hit).

336

\cs_split_function:N
__cs_split_function_auxi:w
__cs_split_function_auxii:w

\cs_if_exist_p:N
\cs_if_exist_p:c
\cs_if_exist:NTF
\cs_if_exist:cTF

(End definition for \cs_to_str:N, __cs_to_str:N, and __cs_to_str:w. This function is documented
on page 17.)

This function takes a function name and splits it into name with the escape char removed
and argument specification. In addition to this, a third argument, a boolean (¢rue) or
(false) is returned with (true) for when there is a colon in the function and (false) if there
is not.

We cannot use : directly as it has the wrong category code so an x-type expansion
is used to force the conversion.

First ensure that we actually get a properly evaluated string by expanding \cs_-
to_str:N twice. If the function contained a colon, the auxiliary takes as #1 the function
name, delimited by the first colon, then the signature #2, delimited by \q_mark, then
\c_true_bool as #3, and #4 cleans up until \q_stop. Otherwise, the #1 contains the
function name and \q_mark \c_true_bool, #2 is empty, #3 is \c_false_bool, and #4
cleans up. The second auxiliary trims the trailing \q_mark from the function name if
present (that is, if the original function had no colon).

2005 \cs_set_protected:Npn __cs_tmp:w #1

2696 {

2697 \cs_set:Npn \cs_split_function:N ##1

2698 {

2609 \exp_after:wN \exp_after:wN \exp_after:wN

2700 __cs_split_function_auxi:w

2701 \cs_to_str:N ##1 \g_mark \c_true_bool

2702 #1 \g_mark \c_false_bool \g_stop

2703 }

2704 \cs_set:Npn __cs_split_function_auxi:w

2705 ##1 #1 ##2 \q_mark ##3##4 \q_stop

2706 { __cs_split_function_auxii:w ##1 \q_mark \q_stop {##2} ##3 }
2707 \cs_set:Npn __cs_split_function_auxii:w ##1 \q_mark ##2 \g_stop
2708 { {## 1} }

2709 }

o710 \exp_after:wN __cs_tmp:w \token_to_str:N :

(End definition for \cs_split_function:N, __cs_split_function_auxi:w, and __cs_split_function_-
auxii:w. This function is documented on page 17.)

4.9 Exist or free

A control sequence is said to ezist (to be used) if has an entry in the hash table and its
meaning is different from the primitive \relax token. A control sequence is said to be
free (to be defined) if it does not already exist.

Two versions for checking existence. For the N form we firstly check for \scan_stop: and
then if it is in the hash table. There is no problem when inputting something like \else:
or \fi: as TEX will only ever skip input in case the token tested against is \scan_stop:.
o1 \prg_set_conditional:Npnn \cs_if_exist:N #1 {p , T , F , TF }
2712 {

2713 \if_meaning:w #1 \scan_stop:
2714 \prg_return_false:

2715 \else :

2716 \if_cs_exist:N #1

2117 \prg_return_true:

2718 \else:

337

2719 \prg_return_false:
2720 \fi:

For the ¢ form we firstly check if it is in the hash table and then for \scan_stop: so
that we do not add it to the hash table unless it was already there. Here we have to be
careful as the text to be skipped if the first test is false may contain tokens that disturb
the scanner. Therefore, we ensure that the second test is performed after the first one
has concluded completely.

o723 \prg_set_conditional:Npnn \cs_if_exist:c #1 { p , T , F , TF }

2724 {

2725 \if _cs_exist:w #1 \cs_end:
2726 \exp_after:wN \use_i:nn
2727 \else:

2728 \exp_after:wN \use_ii:nn
2729 \fi:

2730 {

2731 \exp_after:wN \if_meaning:w \cs:w #1 \cs_end: \scan_stop:
2732 \prg_return_false:

2733 \else:

2734 \prg_return_true:

2735 \fi:

2736 }

2737 \prg_return_false:

2738 }

(End definition for \cs_if_exist:NTF. This function is documented on page 22.)

\cs_if_free_p:N The logical reversal of the above.

\cs_if_free_ p:c 2730 \prg_set_conditional:Npnn \cs_if_free:N #1 {p , T , F , TF }
\cs_if_free:NTF ..o {

\cs_if_free:cTF 2741 \if_meaning:w #1 \scan_stop:
2742 \prg_return_true:
2743 \else:
2744 \if_cs_exist:N #1
2745 \prg_return_false:
2746 \else:
2747 \prg_return_true:
2748 \fi:
2749 \fi:
2750 }
2751 \prg_set_conditional:Npnn \cs_if_free:c #1 {p , T , F , TF }
2752 {
2753 \if _cs_exist:w #1 \cs_end:
2754 \exp_after:wN \use_i:nn
2755 \else:
2756 \exp_after:wN \use_ii:nn
2757 \fi:
2758 {
2759 \exp_after:wN \if_meaning:w \cs:w #1 \cs_end: \scan_stop:
2760 \prg_return_true:
2761 \else:
2762 \prg_return_false:

338

\cs_if_exist_use:N
\cs_if_exist_use:c

2763 \fi:

2764 }
2765 { \prg_return_true: }
2766 }

(End definition for \cs_if_free:NTF. This function is documented on page 22.)

The \cs_if_exist_use:... functions cannot be implemented as conditionals because
the true branch must leave both the control sequence itself and the true code in the input

\cs_if_exist_use:NTF stream. For the c variants, we are careful not to put the control sequence in the hash

\cs_if_exist_use:cTF

__kernel_msg_error :nnxx
__kernel_msg_error:nnx

__kernel_msg_error:nn

table if it does not exist. In LuaTgX we could use the \lastnamedcs primitive.

2767 \cs_set:Npn \cs_if_exist_use:NTF #1#2

oo { \cs_if_exist:NTF #1 { #1 #2 } }

2760 \cs_set:Npn \cs_if_exist_use:NF #1

o770 { \cs_if_exist:NTF #1 { #1 } }

o1 \cs_set:Npn \cs_if_exist_use:NT #1 #2

o2 { \cs_if_exist:NTF #1 { #1 #2 } { } }

2773 \cs_set:Npn \cs_if_exist_use:N #1

e { \cs_if_exist:NTF #1 { #1 } { } }

2775 \cs_set:Npn \cs_if_exist_use:cTF #1#2

276 { \cs_if_exist:cTF {#1} { \use:c {#1} #2 } }
77 \cs_set:Npn \cs_if_exist_use:cF #1

o { \cs_if_exist:cTF {#1} { \use:c {#1} } }

o779 \cs_set:Npn \cs_if_exist_use:cT #1#2

50 { \cs_if_exist:cTF {#1} { \use:c {#1} #2 } { } }
o751 \cs_set:Npn \cs_if_exist_use:c #1

ez { \cs_if_exist:cTF {#1} { \use:c {#1} > { } }

2

3

(End definition for \cs_if_exist_use:NTF. This function is documented on page 16.)

4.10 Preliminaries for new functions

We provide two kinds of functions that can be used to define control sequences. On the
one hand we have functions that check if their argument doesn’t already exist, they are
called \..._new. The second type of defining functions doesn’t check if the argument is
already defined.

Before we can define them, we need some auxiliary macros that allow us to generate
error messages. The next few definitions here are only temporary, they will be redefined
later on.

If an internal error occurs before INTEX3 has loaded 13msg then the code should issue a
usable if terse error message and halt. This can only happen if a coding error is made by
the team, so this is a reasonable response. Setting the \newlinechar is needed, to turn
~~J into a proper line break in plain TEX.

2753 \cs_set_protected:Npn __kernel_msg_error:nnxx #1#2#3#4

2784 {

2785 \tex_newlinechar:D = ‘\""J \scan_stop:

2786 \tex_errmessage:D

2787 {

2788 N N N AT e
2789 Argh,~internal~LaTeX3~error! ~°J ~7J

2790 Module ~ #1 , ~ message~name~"#2": ~7J

2791 Arguments~’#3’~and~’#4’ ~7J °7J

339

2792 This~is~one~for~The~LaTeX3~Project:~bailing~out
2793 }

2794 \tex_end:D

2795 }

2796 \cs_set_protected:Npn __kernel_msg_error:nnx #1#2#3
2707 { __kernel_msg_error:nnxx {#1} {#2} {#3} { } }

2795 \cs_set_protected:Npn __kernel_msg_error:nn #1#2

o790 { __kernel_msg_error:nnxx {#1} {#2} { > { } }

(End definition for __kernel_msg_error:nnxx, __kernel_msg_error:nnx, and __kernel_msg_error:nn.)

\msg_line_context: Another one from I3msg which will be altered later.

2500 \cs_set:Npn \msg_line_context:
2500 { on~line~ \tex_the:D \tex_inputlineno:D }

(End definition for \msg_line_context:. This function is documented on page 141.)

\iow_log:x We define a routine to write only to the log file. And a similar one for writing to both
\iow_term:x the log file and the terminal. These will be redefined later by I3io.
2502 \cs_set_protected:Npn \iow_log:x
203 { \tex_immediate:D \tex_write:D -1 }
+ \cs_set_protected:Npn \iow_term:x
205 { \tex_immediate:D \tex_write:D 16 }

28

(End definition for \iow_log:n. This function is documented on page 150.)

__kernel chk_if_free_cs:N This command is called by \cs_new_nopar:Npn and \cs_new_eq:NN etc. to make sure
__kernel_chk_if_free_cs:c that the argument sequence is not already in use. If it is, an error is signalled. It checks
if (¢csname) is undefined or \scan_stop:. Otherwise an error message is issued. We have
to make sure we don’t put the argument into the conditional processing since it may be

an \if... type function!
2s06 __kernel_patch:nnNNpn { }
2807 {
2808 __kernel_debug_log:x
2800 { Defining~\token_to_str:N #1~ \msg_line_context: }
2810 }
2511 \cs_set_protected:Npn __kernel_chk_if_free_cs:N #1
2812 {
2813 \cs_if_free:NF #1
2814 {
2815 __kernel_msg_error:nnxx { kernel } { command-already-defined }
2816 { \token_to_str:N #1 } { \token_to_meaning:N #1 }
2817 3
2818 }

2519 \cs_set_protected:Npn __kernel_chk_if_free_cs:c
20 { \exp_args:Nc __kernel_chk_if_free_cs:N }

(End definition for __kernel_chk_if_free_cs:N.)

340

\cs_new_nopar:
\cs_new_nopar:

\cs_new:

\cs_new:
\cs_new_protected_nopar:
\cs_new_protected_nopar:
\cs_new_protected:
\cs_new_protected:

Npn
Npx
Npn
Npx
Npn
Npx
Npn
Npx

__cs_tmp:w

\cs_set_nopar:
\cs_set_nopar:
\cs_gset_nopar:
\cs_gset_nopar:
\cs_new_nopar:
\cs_new_nopar:

\cs_set:
\cs_set:
\cs_gset:
\cs_gset:
\cs_new:
\cs_new:

cpn
cpx
cpn
cpx
cpn
cpx

cpn
cpx
cpn
cpx
cpn
cpx

4.11 Defining new functions
2821 <@@=CS>

Function which check that the control sequence is free before defining it.

232 \cs_set:Npn __cs_tmp:w #1#2

2823 {

2824 \cs_set_protected:Npn #1 ##1

2825 {

2826 __kernel_chk_if_free_cs:N ##1

2827 #2 ##1

2828 }

2829 }

2330 __cs_tmp:w \cs_new_nopar:Npn \cs_gset_nopar:Npn
2831 __cs_tmp:w \cs_new_nopar:Npx \cs_gset_nopar:Npx
232 __cs_tmp:w \cs_new:Npn \cs_gset:Npn

2533 __cs_tmp:w \cs_new:Npx \cs_gset :Npx

2834 __cs_tmp:
2835 __cs_tmp :
2336 __CS_tmp:
2837 __cs_tmp :

W
W
W
W
w \cs_new_protected_nopar:Npn \cs_gset_protected_nopar:Npn
w \cs_new_protected_nopar:Npx \cs_gset_protected_nopar:Npx
w \cs_new_protected:Npn \cs_gset_protected:Npn

w \cs_new_protected:Npx \cs_gset_protected:Npx

(End definition for \cs_new_nopar:Npn and others. These functions are documented on page 11.)

Like \cs_set_nopar:Npn and \cs_new_nopar:Npn, except that the first argument con-
sists of the sequence of characters that should be used to form the name of the desired
control sequence (the ¢ stands for csname argument, see the expansion module). Global
versions are also provided.

\cs_set_nopar:cpn(string) (rep-text) turns (string) into a csname and then assigns
(rep-text) to it by using \cs_set_nopar:Npn. This means that there might be a param-
eter string between the two arguments.

2533 \cs_set:Npn __cs_tmp:w #1#2

230 { \cs_new_protected_nopar:Npn #1 { \exp_args:Nc #2 } }
230 __cs_tmp:w \cs_set_nopar:cpn \cs_set_nopar:Npn

2341 __cs_tmp:w \cs_set_nopar:cpx \cs_set_nopar:Npx

s> __cs_tmp:w \cs_gset_nopar:cpn \cs_gset_nopar:Npn

2043 __cs_tmp:w \cs_gset_nopar:cpx \cs_gset_nopar:Npx

2344 __cs_tmp:w \cs_new_nopar:cpn \cs_new_nopar:Npn

2e5 __cs_tmp:w \cs_new_nopar:cpx \cs_new_nopar:Npx

(End definition for \cs_set_nopar:Npn. This function is documented on page 11.)

Variants of the \cs_set :Npn versions which make a csname out of the first arguments.
We may also do this globally.

2846 __cs_tmp:
2347 __cs_tmp:
2305 __cs_tmp:
2849 __cs_tmp:
2850 __Cs_tmp:
2551 __cs_tmp:

w \cs_set:cpn \cs_set:Npn
w \cs_set:cpx \cs_set:Npx
w \cs_gset:cpn \cs_gset:Npn
w \cs_gset:cpx \cs_gset:Npx
w \cs_new:cpn \cs_new:Npn
w \cs_new:cpx \cs_new:Npx

(End definition for \cs_set:Npn. This function is documented on page 11.)

341

\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:cpx
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:cpx
\cs_new_protected_nopar:cpn
\cs_new_protected_nopar:cpx

\cs_set_protected:cpn
\cs_set_protected:cpx
\cs_gset_protected:cpn
\cs_gset_protected:cpx
\cs_new_protected:cpn
\cs_new_protected:cpx

\cs_set_eq:NN
\cs_set_eq:cN
\cs_set_eq:Nc
\cs_set_eq:cc
\cs_gset_eq:NN
\cs_gset_eq:cN
\cs_gset_eq:Nc
\cs_gset_eq:cc
\cs_new_eq:NN
\cs_new_eq:cN
\cs_new_eq:Nc
\cs_new_eq:cc

Variants of the \cs_set_protected_nopar:Npn versions which make a csname out of
the first arguments. We may also do this globally.

252 __cs_tmp:w \cs_set_protected_nopar:cpn \cs_set_protected_nopar:Npn

253 __cs_tmp:w \cs_set_protected_nopar:cpx \cs_set_protected_nopar:Npx

2852 __cs_tmp:w \cs_gset_protected_nopar:cpn \cs_gset_protected_nopar:Npn

2555 __cs_tmp:w \cs_gset_protected_nopar:cpx \cs_gset_protected_nopar:Npx

256 __cs_tmp:w \cs_new_protected_nopar:cpn \cs_new_protected_nopar:Npn

2857 __cs_tmp:w \cs_new_protected_nopar:cpx \cs_new_protected_nopar:Npx

(End definition for \cs_set_protected_nopar:Npn. This function is documented on page 12.)

Variants of the \cs_set_protected:Npn versions which make a csname out of the first
arguments. We may also do this globally.

2855 __CsS_tmp:
2859 __cs_tmp:
2860 __cs_tmp:
2861 __Cs_tmp:
2862 __cs_tmp:
2363 __CS_tmp:

w \cs_set_protected:cpn \cs_set_protected:Npn
w \cs_set_protected:cpx \cs_set_protected:Npx
w \cs_gset_protected:cpn \cs_gset_protected:Npn
w \cs_gset_protected:cpx \cs_gset_protected:Npx
w \cs_new_protected:cpn \cs_new_protected:Npn
w \cs_new_protected:cpx \cs_new_protected:Npx

(End definition for \cs_set_protected:Npn. This function is documented on page 11.)

4.12 Copying definitions

These macros allow us to copy the definition of a control sequence to another control
sequence.
The = sign allows us to define funny char tokens like = itself or , with this function.
For the definition of \c_space_char{~} to work we need the ~ after the =.
\cs_set_eq:NN is long to avoid problems with a literal argument of \par. While
\cs_new_eq:NN will probably never be correct with a first argument of \par, define it
long in order to throw an “already defined” error rather than “runaway argument”.
s \Ccs_new_protected:Npn \cs_set_eq:NN #1 { \tex_let:D #1 =~ }
2565 \cs_new_protected:Npn \cs_set_eq:cN { \exp_args:Nc \cs_set_eq:NN }
266 \cs_new_protected:Npn \cs_set_eq:Nc { \exp_args:NNc \cs_set_eq:NN }
267 \cs_new_protected:Npn \cs_set_eq:cc { \exp_args:Ncc \cs_set_eq:NN }
268 \cs_new_protected:Npn \cs_gset_eq:NN { \tex_global:D \cs_set_eq:NN }
2500 \cs_new_protected:Npn \cs_gset_eq:Nc { \exp_args:NNc \cs_gset_eq:NN }
2570 \cs_new_protected:Npn \cs_gset_eq:cN { \exp_args:Nc \cs_gset_eq:NN }
271 \cs_new_protected:Npn \cs_gset_eq:cc { \exp_args:Ncc \cs_gset_eq:NN }
2572 \cs_new_protected:Npn \cs_new_eq:NN #1

2873 {

2874 __kernel_chk_if_free_cs:N #1
2875 \tex_global:D \cs_set_eq:NN #1
2876 }

2577 \cs_new_protected:Npn \cs_new_eq:cN { \exp_args:Nc \cs_new_eq:NN }
2578 \cs_new_protected:Npn \cs_new_eq:Nc { \exp_args:NNc \cs_new_eq:NN }
2579 \cs_new_protected:Npn \cs_new_eq:cc { \exp_args:Ncc \cs_new_eq:NN }

(End definition for \cs_set_eq:NN, \cs_gset_eq:NN, and \cs_new_eq:NN. These functions are docu-
mented on page 15.)

342

\cs_undefine:N
\cs_undefine:c

__kernel cs parm from arg count:nnF
__cs_parm_from arg count_test:nnF

4.13 Undefining functions

The following function is used to free the main memory from the definition of some
function that isn’t in use any longer. The c variant is careful not to add the control
sequence to the hash table if it isn’t there yet, and it also avoids nesting TEX conditionals
in case #1 is unbalanced in this matter.

2330 \cs_new_protected:Npn \cs_undefine:N #1

281 { \cs_gset_eq:NN #1 \tex_undefined:D }

232 \cs_new_protected:Npn \cs_undefine:c #1

2883 {

2884 \if_cs_exist:w #1 \cs_end:

2885 \exp_after:wN \use:n

2886 \else:

2887 \exp_after:wN \use_none:n

2888 \fi:

2889 { \cs_gset_eq:cN {#1} \tex_undefined:D }
2890 }

(End definition for \cs_undefine:N. This function is documented on page 15.)

4.14 Generating parameter text from argument count
2891 <@@=CS>

IXTEX3 provides shorthands to define control sequences and conditionals with a simple
parameter text, derived directly from the signature, or more generally from knowing the
number of arguments, between 0 and 9. This function expands to its first argument,
untouched, followed by a brace group containing the parameter text {#1...#n}, where
n is the result of evaluating the second argument (as described in \int_eval:n). If the
second argument gives a result outside the range [0,9], the third argument is returned
instead, normally an error message. Some of the functions use here are not defined yet,
but will be defined before this function is called.

232 \cs_set_protected:Npn __kernel_cs_parm_from_arg_count:nnF #1#2

2893 {

2804 \exp_args:Nx __cs_parm_from_arg_count_test:nnF
2895 {

2896 \exp_after:wN \exp_not:n

2807 \if_case:w \int_eval:n {#2}

2898 { }

2899 \or: { ##1 }

2900 \or: { ##1##2 }

2901 \or: { ##1##2##3 }

2902 \or: { ##1##2##3##4 }

2903 \or: { ##1##2#H#IHH#4AHHS }

2904 \or: { ##1##2##3HHAHHOHH#E6 T

2905 \or: { ##1##2HH#IHHAHHOH#OHHT }

2906 \or: { #H#1##2#HIHHAHHOHHCHHTHES T
2907 N\or: { #H#1##2##3HHAHUOHFCHHTHUSHHI }
2008 \else: { \c_false_bool }

2909 \fi:

2910 ¥

2011 {#1}

2912 }

2013 \cs_set_protected:Npn __cs_parm_from_arg_count_test:nnF #1#2

343

__cs_count_signature:N
__cs_count_signature:c
__cs_count_signature:n
__cs_count_signature:nnN

\cs_generate from arg_count:NNnn
\cs_generate_from_arg_count:chnn
\cs_generate_from_arg_count:Ncmn

2914 {

2015 \if_meaning:w \c_false_bool #1
2016 \exp_after:wN \use_ii:nn

2017 \else:

2018 \exp_after:wN \use_i:nn

2019 \fi:

2020 { #2 {#1} }

2021 }

(End definition for __kernel_cs_parm_from_arg_count:nnF and __cs_parm_from_arg_count_test:nnF.)

4.15 Defining functions from a given number of arguments
2922 <©@=CS>

Counting the number of tokens in the signature, i.e., the number of arguments the func-
tion should take. Since this is not used in any time-critical function, we simply use
\tl_count:n if there is a signature, otherwise —1 arguments to signal an error. We need
a variant form right away.

2023 \cs_new:Npn __cs_count_signature:N #1

204 { \exp_args:Nf __cs_count_signature:n { \cs_split_function:N #1 } }

205 \cs_new:Npn __cs_count_signature:n #1

206 { \int_eval:n { __cs_count_signature:nnN #1 } }

2027 \cs_new:Npn __cs_count_signature:nnN #1#2#3

2928 {

2029 \if _meaning:w \c_true_bool #3
2030 \tl_count:n {#2}

2031 \else:

2932 -1

2933 \fi:

2934 }

2035 \cs_new:Npn __cs_count_signature:c
203 { \exp_args:Nc __cs_count_signature:N }

(End definition for __cs_count_signature:N, __cs_count_signature:n, and __cs_count_signature:nnN.)

We provide a constructor function for defining functions with a given number of argu-
ments. For this we need to choose the correct parameter text and then use that when
defining. Since TEX supports from zero to nine arguments, we use a simple switch to
choose the correct parameter text, ensuring the result is returned after finishing the
conditional. If it is not between zero and nine, we throw an error.

1: function to define, 2: with what to define it, 3: the number of args it requires and
4: the replacement text

2037 \cs_new_protected:Npn \cs_generate_from_arg_count:NNnn #1#2#3#4

2938 {

2039 __kernel_cs_parm_from_arg_count:nnF { \use:nnn #2 #1 } {#3}

2940 {

2041 __kernel_msg_error:nnxx { kernel } { bad-number-of-arguments }
2042 { \token_to_str:N #1 } { \int_eval:n {#3} }

2043 \use_none:n

2944 }

2045 {#4}

2046 }

344

\cs_set:Nn

\cs_set:Nx
\cs_set_nopar:Nn
\cs_set_nopar:Nx
\cs_set_protected:Nn
\cs_set_protected:Nx
\cs_set_protected_nopar:Nn
\cs_set_protected_nopar:Nx
\cs_gset:Nn

\cs_gset:Nx
\cs_gset_nopar:Nn
\cs_gset_nopar:Nx
\cs_gset_protected:Nn
\cs_gset_protected:Nx
\cs_gset_protected_nopar:Nn
\cs_gset_protected_nopar:Nx
\cs_new:Nn

\cs_new:Nx
\cs_new_nopar:Nn
\cs_new_nopar:Nx
\cs_new_protected:Nn
\cs_new_protected:Nx
\cs_new_protected_nopar:Nn
\cs_new_protected_nopar:Nx

A variant form we need right away, plus one which is used elsewhere but which is most
logically created here.

2047 \cs_new_protected:Npn \cs_generate_from_arg_count:cNnn
{ \exp_args:Nc \cs_generate_from_arg_count:NNnn }
2049 \cs_new_protected:Npn \cs_generate_from_arg_count:Ncnn
{ \exp_args:NNc \cs_generate_from_arg_count:NNnn }

2948

2950

(End definition for \cs_generate_from_arg_count:NNnn. This function is documented on page 14.)

4.16 Using the signature to define functions
2051 <@@=CS>

We can now combine some of the tools we have to provide a simple interface for
defining functions, where the number of arguments is read from the signature. For
instance, \cs_set:Nn \foo_bar:nn {#1,#2}.

We want to define \cs_set:Nn as

\cs_set_protected:Npn \cs_set:Nn #1#2
{
\cs_generate_from_arg_count:NNnn #1 \cs_set:Npn
{ \@@_count_signature:N #1 } {#2}
}

In short, to define \cs_set :Nn we need just use \cs_set :Npn, everything else is the same
for each variant. Therefore, we can make it simpler by temporarily defining a function
to do this for us.

2052 \cs_set:Npn __cs_tmp:w #1#2#3

2953 {

2054 \cs_new_protected:cpx { cs_ #1 : #2 }

2955 {

2056 \exp_not:N __cs_generate_from_signature:NNn

2057 \exp_after:wN \exp_not:N \cs:w cs_ #1 : #3 \cs_end:
2058 }

2059 }

\cs_new_protected:Npn __cs_generate_from_signature:NNn #1#2
2061 {
\use:x
2063 {
__cs_generate_from_signature:nnNNNn
\cs_split_function:N #2
2066 3
2967 #1 #2
2968 }
2000 \cs_new_protected:Npn __cs_generate_from_signature:nnNNNn #1#2#3#4#5#6
2970 {
\bool_if :NTF #3
2972 {
\str_if_eq:eeF { }
{ \tl_map_function:nN {#2} __cs_generate_from_signature:n }
2975 {
__kernel_msg_error:nnx { kernel } { non-base-function }
{ \token_to_str:N #5 }

345

2979 \cs_generate_from_arg_count:NNnn
2080 #5 #4 { \tl_count:n {#2} } {#6}

new_protected_nopar } { Nn
new_protected_nopar } { Nx

3014 __cs_tmp:
3015 __cs_tmp:

Npn
Npx

2981 }

2082 {

2083 __kernel_msg_error:nnx { kernel } { missing-colon }

2084 { \token_to_str:N #5 }

2985 }

2986 }

2057 \cs_new:Npn __cs_generate_from_signature:n #1

2088 {

2089 \if:w n #1 \else: \if:w N #1 \else:

2990 \if:w T #1 \else: \if:w F #1 \else: #1 \fi: \fi: \fi: \fi:

2991 }

Then we define the 24 variants beginning with N.

2002 __cs_tmp:w { set } {Nn } { Npn }

2003 __cs_tmp:w { set } {Nx } { Npx }

2004 __cs_tmp:w { set_nopar } {Nn } { Npn }

2005 __cs_tmp:w { set_nopar } {Nx } { Npx }

2006 __cs_tmp:w { set_protected } {Nn } { Npn }

2007 __cs_tmp:w { set_protected } {Nx } { Npx }

2005 __cs_tmp:w { set_protected_nopar } { Nn } { Npn }

2000 __cs_tmp:w { set_protected_nopar } { Nx } { Npx }

000 __cs_tmp:w { gset } {Nn } { Npn }

s00 __cs_tmp:w { gset } {Nx } { Npx }

3002 __cs_tmp:w { gset_nopar } {Nn } { Npn }

000 __cs_tmp:w { gset_nopar } { Nx } { Npx }

s000 __cs_tmp:w { gset_protected } {Nn } { Npn }

s00s __cs_tmp:w { gset_protected } { Nx } { Npx }

000 __cs_tmp:w { gset_protected_nopar } { Nn } { Npn }

5007 __cs_tmp:w { gset_protected_nopar } { Nx } { Npx }

s00s __cs_tmp:w { new } {Nn } { Npn }

000 __cs_tmp:w { new } {Nx } { Npx }

s010 __cs_tmp:w { new_nopar } {Nn } { Npn }

s01 __cs_tmp:w { new_nopar } {Nx } { Npx }

02 __cs_tmp:w { new_protected } {Nn } { Npn }

5013 __cs_tmp:w { new_protected } {Nx } { Npx }
w { A }
w { A }

(End definition for \cs_set:Nn and others. These functions are documented on page 13.)

\cs_set:cn The 24 c variants simply use \exp_args:Nc.

\cs_set:cx s016 \cs_set:Npn __cs_tmp:w #1#2
\cs_set_nopar:cn a7 {
\cs_set_nopar:cx 3018 \cs_new_protected:cpx { cs_ #1 : c #2 }

\cs_set_protected:cn 3019 {

\cs_set_protected:cx 3020 \exp_not:N \exp_args:Nc
\cs_set_protected_nopar:cn 3021 \exp_after:wN \exp_not:N \cs:w cs_ #1 : N #2 \cs_end:
\cs_set_protected_nopar:cx 2022 } ¥

3023
tzz‘izzzzzz 5000 __cs_tmp:w { set } {n}
- 3005 __cs_tmp:w { set } {x1}
\cs_gset_nopar:cn 3000 __cs_tmp:w { set_nopar } {n}
\cs_gset_nopar:cx 5007 __cs_tmp:w { set_nopar } {x}

\cs_gset_protected:cn
\cs_gset_protected:cx
\cs_gset_protected_nopar:cn 346
\cs_gset_protected_nopar:cx
\cs_new:cn
\cs_new:cx
\cs_new_nopar:cn
\cs_new_nopar:cx
\cs_new_protected:cn
\cs_new_protected:cx

008 __cs_tmp:w { set_protected } {n}
5000 __cs_tmp:w { set_protected } {x}
s030 __cs_tmp:w { set_protected_nopar } { n }
001 __cs_tmp:w { set_protected_nopar } { x }
5022 __cs_tmp:w { gset } {n}
3033 __cs_tmp:w { gset } {x1}
303 __cs_tmp:w { gset_nopar } {n}
5035 __cs_tmp:w { gset_nopar } {x}?}
s03 __cs_tmp:w { gset_protected } {n}
3037 __cs_tmp:w { gset_protected } {x}
s03s __cs_tmp:w { gset_protected_nopar } { n }
3030 __cs_tmp:w { gset_protected_nopar } { x }
s040 __cs_tmp:w { new } {n}
s00 __cs_tmp:w { new } {x}
3022 __cs_tmp:w { new_nopar } {n}
3043 __cs_tmp:w { new_nopar } {x1}
s00e __cs_tmp:w { new_protected } {n}
s045 __cs_tmp:w { new_protected } {x1}
s046 __cs_tmp:w { new_protected_nopar } { n }
s07 __cs_tmp:w { new_protected_nopar } { x }

(End definition for \cs_set:Nn. This function is documented on page 13.)

4.17 Checking control sequence equality

\cs_if_eq_p:NN Check if two control sequences are identical.

\cs_if_eq p:cN s0ss \prg_new_conditional:Npnn \cs_if_eq:NN #1#2 { p , T , F , TF }
\cs_if_eq_p:Nc 3049 {

\cs_if_eq_p:cc 3050 \if_meaning:w #1#2

\cs_if_eq:NNTF 3051 \prg_return_true: \else: \prg_return_false: \fi:
\cs_if_eq:cNTF 2.}

\cs_if_eq:NcTF 5053 \cs_new:Npn \cs_if_eq_p:cN
s0s4 \cs_new:Npn \cs_if_eq:cNTF
3055 \cs_new:Npn \cs_if_eq:cNT
;056 \cs_new:Npn \cs_if_eq:cNF

{ \exp_args:Nc \cs_if_eq_p:NN }
\cs_if_eq:ccTF { \exp_args:Nc \cs_if_eq:NNTF }
47 { \exp_args:Nc \cs_if_eq:NNT }
{ \exp_args:Nc \cs_if_eq:NNF }
s0s7 \cs_new:Npn \cs_if_eq_p:Nc { \exp_args:NNc \cs_if_eq_p:NN }
s0ss \cs_new:Npn \cs_if_eq:NcTF { \exp_args:NNc \cs_if_eq:NNTF }
;050 \cs_new:Npn \cs_if_eq:NcT { \exp_args:NNc \cs_if_eq:NNT }
a0 \cs_new:Npn \cs_if_eq:NcF { \exp_args:NNc \cs_if_eq:NNF }
s60 \cs_new:Npn \cs_if_eq_p:cc { \exp_args:Ncc \cs_if_eq_p:NN }
3002 \cs_new:Npn \cs_if_eq:ccTF { \exp_args:Ncc \cs_if_eq:NNTF }
3063 \cs_new:Npn \cs_if_eq:ccT { \exp_args:Ncc \cs_if_eq:NNT }
s64 \cs_new:Npn \cs_if_eq:ccF { \exp_args:Ncc \cs_if_eq:NNF }

(End definition for \cs_if_eq:NNTF. This function is documented on page 22.)

4.18 Diagnostic functions
s005 {@@=kernel)

__kernel_chk_defined:NT Error if the variable #1 is not defined.

000 \cs_new_protected:Npn __kernel_chk_defined:NT #1#2

3067 {
3068 \cs_if_exist:NTF #1

347

__kernel_register_show:N
__kernel_register_show:c
__kernel_register_log:N
__kernel_register_log:c
__kernel register show aux:NN

__kernel register show aux:niiN

\cs_show:N
\cs_show:c
\cs_log:N
\cs_log:c
__kernel_show:NN

3069 {#2}

3070 {

3071 __kernel_msg_error:nnx { kernel } { variable-not-defined }
3072 { \token_to_str:N #1 }

3073 }

3074 }

(End definition for __kernel_chk_defined:NT.)

Simply using the \showthe primitive does not allow for line-wrapping, so instead use
\t1l_show:n and \tl_log:n (defined in I3tl and that performs line-wrapping). This dis-
plays >~(variable)=(value). We expand the value before-hand as otherwise some integers
(such as \currentgrouplevel or \currentgrouptype) altered by the line-wrapping code
would show wrong values.

;075 \cs_new_protected:Npn __kernel_register_show:N

a6 { __kernel_register_show_aux:NN \tl_show:n }

7 \cs_new_protected:Npn __kernel_register_show:c

ss { \exp_args:Nc __kernel_register_show:N }

;070 \cs_new_protected:Npn __kernel_register_log:N

s0 { __kernel_register_show_aux:NN \tl_log:n }

;081 \cs_new_protected:Npn __kernel_register_log:c

a2 { \exp_args:Nc __kernel_register_log:N }

3033 \cs_new_protected:Npn __kernel_register_show_aux:NN #1#2

3084 {

30

1

3085 __kernel_chk_defined:NT #2

3086 {

3087 \exp_args:No __kernel_register_show_aux:nNN
3088 { \tex_the:D #2 } #2 #1

3089 }

3090 }

;01 \cs_new_protected:Npn __kernel_register_show_aux:nNN #1#2#3
a2 { \exp_args:No #3 { \token_to_str:N #2 = #1 } }

(End definition for __kernel_register_show:N and others.)

Some control sequences have a very long name or meaning. Thus, simply using TEX’s
primitive \show could lead to overlong lines. The output of this primitive is mimicked
to some extent, then the re-built string is given to \t1_show:n or \tl_log:n for line-
wrapping. We must expand the meaning before passing it to the wrapping code as
otherwise we would wrongly see the definitions that are in place there. To get correct
escape characters, set the \escapechar in a group; this also localizes the assignment
performed by x-expansion. The \cs_show:c and \cs_log:c commands convert their
argument to a control sequence within a group to avoid showing \relax for undefined
control sequences.

3003 \cs_new_protected:Npn \cs_show:N { __kernel_show:NN \tl_show:n }

004 \cs_new_protected:Npn \cs_show:c

s0s { \group_begin: \exp_args:NNc \group_end: \cs_show:N }

3006 \cs_new_protected:Npn \cs_log:N { __kernel_show:NN \tl_log:n }

3007 \cs_new_protected:Npn \cs_log:c

s { \group_begin: \exp_args:NNc \group_end: \cs_log:N }

3099 \cs_new_protected:Npn __kernel_show:NN #1#2

3100 {

3101 \group_begin:

348

\cs_prefix_spec:
\cs_argument_spec:
\cs_replacement_spec:

__kernel prefix arg replacement:

= =2 =2 =2

3102 \int_set:Nn \tex_escapechar:D { ‘\\ }

3103 \exp_args:NNx

3104 \group_end:

3105 #1 { \token_to_str:N #2 = \cs_meaning:N #2 }
3106 }

(End definition for \cs_show:N, \cs_log:N, and __kernel_show:NN. These functions are documented
on page 16.)

4.19 Decomposing a macro definition

We sometimes want to test if a control sequence can be expanded to reveal a hidden value.
However, we cannot just expand the macro blindly as it may have arguments and none
might be present. Therefore we define these functions to pick either the prefix(es), the
argument specification, or the replacement text from a macro. All of this information is
returned as characters with catcode 12. If the token in question isn’t a macro, the token
\scan_stop: is returned instead.

3107 \use:x

3108 {

3100 \exp_not:n { \cs_new:Npn __kernel_prefix_arg replacement:wN #1 }
3110 \tl_to_str:n { macro : } \exp_not:n { #2 -> #3 \g_stop #4 }

3111 }

3112 { #4 {#1} {#2} {#3} }

;13 \cs_new:Npn \cs_prefix_spec:N #1

3114 {

3115 \token_if_macro:NTF #1

3116 {

3117 \exp_after:wN __kernel_prefix_arg_replacement:wN
3118 \token_to_meaning:N #1 \q_stop \use_i:nnn

3119 }

3120 { \scan_stop: }

3121 }

;122 \cs_new:Npn \cs_argument_spec:N #1

3123 {

3124 \token_if_macro:NTF #1

3125 {

3126 \exp_after:wN __kernel_prefix_arg_replacement:wN
3127 \token_to_meaning:N #1 \q_stop \use_ii:nnn

3128 }

3129 { \scan_stop: }

3130 }

si31 \cs_new:Npn \cs_replacement_spec:N #1

3132 {

3133 \token_if_macro:NTF #1

3134 {

3135 \exp_after:wN __kernel_prefix_arg_replacement:wN
3136 \token_to_meaning:N #1 \q_stop \use_iii:nnn

3137 }

3138 { \scan_stop: }

3139 }

(End definition for \cs_prefix_spec:N and others. These functions are documented on page 18.)

349

\prg_do_nothing:

\prg_break_point:Nn
\prg_map_break:Nn

\prg_break_point:
\prg_break:
\prg_break:n

\1__exp_internal_tl

\exp_after:wN
\exp_not:N
\exp_not:n

4.20 Doing nothing functions

This does not fit anywhere else!
;10 \cs_new:Npn \prg_do_nothing: { }

(End definition for \prg_do_nothing:. This function is documented on page 9.)

4.21 Breaking out of mapping functions

3141 (@@=prg>
In inline mappings, the nesting level must be reset at the end of the mapping, even when
the user decides to break out. This is done by putting the code that must be performed
as an argument of __prg_break_point:Nn. The breaking functions are then defined to
jump to that point and perform the argument of __prg_break_point:Nn, before the
user’s code (if any). There is a check that we close the correct loop, otherwise we continue
breaking.

;312 \cs_new_eq:NN \prg_break_point:Nn \use_ii:nn

s1.3 \cs_new:Npn \prg_map_break:Nn #1#2#3 \prg_break_point:Nn #4#5
3144 {

3145 #5

3146 \if _meaning:w #1 #4

3147 \exp_after:wN \use_iii:nnn
3148 \fi:

3149 \prg_map_break:Nn #1 {#2}
3150 }

(End definition for \prg_break_point:Nn and \prg_map_break:Nn. These functions are documented on
page 106.)

Very simple analogues of \prg_break_point:Nn and \prg_map_break:Nn, for use in fast
short-term recursions which are not mappings, do not need to support nesting, and in
which nothing has to be done at the end of the loop.

3151 \cs_new_eq:NN \prg_break_point: \prg_do_nothing:
s12 \cs_new:Npn \prg_break: #1 \prg_break_point: { }
3153 \cs_new:Npn \prg_break:n #1#2 \prg_break_point: {#1}

(End definition for \prg_break_point:, \prg_break:, and \prg_break:n. These functions are docu-
mented on page 106.)

si4 (/initex | package)

5 I13expan implementation

a5 (¥initex | package)
3156 (@@=exp>

The \exp_ module has its private variable to temporarily store the result of x-type argu-
ment expansion. This is done to avoid interference with other functions using temporary
variables.

(End definition for \1__exp_internal_t1.)

These are defined in [3basics, as they are needed “early”. This is just a reminder of that
fact!

(End definition for \exp_after:wN, \exp_not:N, and \exp_not:n. These functions are documented on
page 32.)

350

\1__exp_internal_tl

__exp_arg_next:nnn
__exp_arg_next:Nnn

\::

\::n
\::N
\::p

5.1 General expansion

In this section a general mechanism for defining functions that handle arguments is
defined. These general expansion functions are expandable unless x is used. (Any version
of x is going to have to use one of the IXTEX3 names for \cs_set :Npx at some point, and
so is never going to be expandable.)

The definition of expansion functions with this technique happens in section 5.3. In
section 5.2 some common cases are coded by a more direct method for efficiency, typically
using calls to \exp_after:wN.

This scratch token list variable is defined in 13basics.

(End definition for \1__exp_internal_t1.)

This code uses internal functions with names that start with \:: to perform the
expansions. All macros are long since the tokens undergoing expansion may be arbitrary
user input.

An argument manipulator \::(Z) always has signature #1\: : : #2#3 where #1 holds
the remaining argument manipulations to be performed, \::: serves as an end marker
for the list of manipulations, #2 is the carried over result of the previous expansion steps
and #3 is the argument about to be processed. One exception to this rule is \: :p, which
has to grab an argument delimited by a left brace.

#1 is the result of an expansion step, #2 is the remaining argument manipulations and
#3 is the current result of the expansion chain. This auxiliary function moves #1 back
after #3 in the input stream and checks if any expansion is left to be done by calling
#2. In by far the most cases we need to add a set of braces to the result of an argument
manipulation so it is more effective to do it directly here. Actually, so far only the c of
the final argument manipulation variants does not require a set of braces.

a7 \cs_new:Npn __exp_arg _next:nnn #1#2#3 { #2 \::: { #3 {#1} } }
;155 \cs_new:Npn __exp_arg_next:Nnn #1#2#3 { #2 \::: { #3 #1 } }

(End definition for __exp_arg_next:nnn and __exp_arg_next:Nnn.)

The end marker is just another name for the identity function.
a0 \cs_new:Npn \::: #1 {#1}

(End definition for \:::. This function is documented on page 36.)

This function is used to skip an argument that doesn’t need to be expanded.
si0 \cs_new:Npn \::n #1 \::: #2#3 { #1 \::: { #2 {#3} } }

(End definition for \::n. This function is documented on page 36.)

This function is used to skip an argument that consists of a single token and doesn’t need
to be expanded.

st \cs_new:Npn \::N #1 \::: #2#3 { #1 \::: {#2#3} }

(End definition for \::N. This function is documented on page 36.)

This function is used to skip an argument that is delimited by a left brace and doesn’t
need to be expanded. It is not wrapped in braces in the result.

sz \cs_new:Npn \::p #1 \::: #2#3# { #1 \::: {#2#3} }

(End definition for \::p. This function is documented on page 36.)

351

\::f
\exp_stop_£:

This function is used to skip an argument that is turned into a control sequence without
expansion.

s13 \cs_new:Npn \::c #1 \::: #2#3

sie { \exp_after:wN __exp_arg _next:Nnn \cs:w #3 \cs_end: {#1} {#2} }

(End definition for \::c. This function is documented on page 36.)

This function is used to expand an argument once.
s \cs_new:Npn \::o #1 \::: #2#3
sie { \exp_after:wN __exp_arg_next:nnn \exp_after:wN {#3} {#1} {#2} }

(End definition for \::o0. This function is documented on page 36.)

With the \expanded primitive available, just expand. Otherwise defer to \exp_args:Ne
implemented later.

s167 \cs_if_exist:NTF \tex_expanded:D

3168 '{:

3169 \cs_new:Npn \::e #1 \::: #2#3

3170 { \tex_expanded:D { \exp_not:n { #1 \::: } { \exp_not:n {#2} {#3} } } }
3171 }

3172 {

3173 \cs_new:Npn \::e #1 \::: #2#3

3174 { \exp_args:Ne __exp_arg_next:nnn {#3} {#1} {#2} }

3175 }

(End definition for \::e. This function is documented on page 36.)

This function is used to expand a token list until the first unexpandable token is
found. This is achieved through \exp:w \exp_end_continue_f:w that expands every-
thing in its way following it. This scanning procedure is terminated once the expan-
sion hits something non-expandable (if that is a space it is removed). We introduce
\exp_stop_f: to mark such an end-of-expansion marker. For example, f-expanding
\cs_set_eq:Nc \aaa { b \1_tmpa_tl b } where \1_tmpa_t1l contains the characters
lur gives \tex_let:D \aaa = \blurb which then turns out to start with the non-
expandable token \tex_let:D. Since the expansion of \exp:w \exp_end_continue_f:w
is empty, we wind up with a fully expanded list, only TEX has not tried to execute any of
the non-expandable tokens. This is what differentiates this function from the x argument
type.
si76 \cs_new:Npn \::f #1 \::: #2#3

3177 {

3178 \exp_after:wN __exp_arg_next:nnn

3179 \exp_after:wN { \exp:w \exp_end_continue_f:w #3 }
3180 {#1} {#2}

3181 }

si;2 \use:nn { \cs_new_eq:NN \exp_stop_f: } { ~ }
(End definition for \::f and \exp_stop_f:. These functions are documented on page 36.)

This function is used to expand an argument fully. We build in the expansion of __-
exp_arg_next:nnn.

si:3 \cs_new_protected:Npn \::x #1 \::: #2#3
3184 {

3185 \cs_set_nopar:Npx \1__exp_internal_tl

352

o -
< <

__exp_eval_register:N
__exp_eval_register:c
__exp_eval_error_msg:w

3186 { \exp_not:n { #1 \::: } { \exp_not:n {#2} {#3} } }
3187 \1__exp_internal_tl
3188 }

(End definition for \::x. This function is documented on page 36.)

These functions return the value of a register, i.e., one of t1, clist, int, skip, dim,
muskip, or built-in TEX register. The V version expects a single token whereas v like ¢
creates a csname from its argument given in braces and then evaluates it as if it was a
V. The \exp:w sets off an expansion similar to an f-type expansion, which we terminate
using \exp_end:. The argument is returned in braces.

sie0 \cs_new:Npn \::V #1 \::: #2#3

3190 {

3101 \exp_after:wN __exp_arg_next:nnn

3192 \exp_after:wN { \exp:w __exp_eval_register:N #3 }
3193 {#1} {#2}

3104

si5 \cs_new:Npn \::v # 1\::: #2#3

3196 {

3197 \exp_after:wN __exp_arg_next:nnn

3108 \exp_after:wN { \exp:w __exp_eval_register:c {#3} }
3199 {#1} {#2}

3200 }

(End definition for \::v and \::V. These functions are documented on page 36.)

This function evaluates a register. Now a register might exist as one of two things: A
parameter-less macro or a built-in TEX register such as \count. For the TEX registers
we have to utilize a \the whereas for the macros we merely have to expand them once.
The trick is to find out when to use \the and when not to. What we want here is to
find out whether the token expands to something else when hit with \exp_after:wN.
The technique is to compare the meaning of the token in question when it has been
prefixed with \exp_not:N and the token itself. If it is a macro, the prefixed \exp_not:N
temporarily turns it into the primitive \scan_stop:.

2201 \cs_new:Npn __exp_eval_register:N #1

3202 {

3203 \exp_after:wN \if_meaning:w \exp_not:N #1 #1
If the token was not a macro it may be a malformed variable from a ¢ expansion in which
case it is equal to the primitive \scan_stop:. In that case we throw an error. We could
let TEX do it for us but that would result in the rather obscure

! You can’t use ‘\relax’ after \the.

which while quite true doesn’t give many hints as to what actually went wrong. We
provide something more sensible.

3204 \if _meaning:w \scan_stop: #1
3205 __exp_eval_error_msg:w
3206 \fi:

The next bit requires some explanation. The function must be initiated by \exp:w and
we want to terminate this expansion chain by inserting the \exp_end: token. However,
we have to expand the register #1 before we do that. If it is a TEX register, we need
to execute the sequence \exp_after:wN \exp_end: \tex_the:D #1 and if it is a macro

353

we need to execute \exp_after:wN \exp_end: #1. We therefore issue the longer of the
two sequences and if the register is a macro, we remove the \tex_the:D.

3207 \else:

3208 \exp_after:wN \use_i_ii:nnn

3209 \fi:

3210 \exp_after:wN \exp_end: \tex_the:D #1
3211 }

212 \cs_new:Npn __exp_eval_register:c #1

213 { \exp_after:wN __exp_eval_register:N \cs:w #1 \cs_end: }
Clean up nicely, then call the undefined control sequence. The result is an error message
looking like this:

! Undefined control sequence.
<argument> \LaTeX3 error:

Erroneous variable used!
1.55 \tl_set:Nv \1_tmpa_tl {undefined_t1}

2212 \cs_new:Npn __exp_eval_error_msg:w #1 \tex_the:D #2

3215 {

3216 \fi:

3217 \fi:

3218 __kernel_msg_expandable_error:nnn { kernel } { bad-variable } {#2}
3219 \exp_end:

3220 }

(End definition for __exp_eval_register:N and __exp_eval_error_msg:w.)

5.2 Hand-tuned definitions

One of the most important features of these functions is that they are fully expandable.

\exp_args:Nc In I3basics.

\exp_args:cc
(End definition for \exp_args:Nc and \exp_args:cc. These functions are documented on page 28.)

\exp_args:NNc Here are the functions that turn their argument into csnames but are expandable.
\exp_args:Ncc s221 \cs_new:Npn \exp_args:NNc #1#2#3
\exp_args:Nccc 22 { \exp_after:wN #1 \exp_after:wN #2 \cs:w # 3\cs_end: }
1223 \cs_new:Npn \exp_args:Ncc #1#2#3
300 { \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: \cs:w #3 \cs_end: }
3225 \cs_new:Npn \exp_args:Nccc #1#2#3#4

3226 {

3227 \exp_after:wN #1

3228 \cs:w #2 \exp_after:wN \cs_end:
3229 \cs:w #3 \exp_after:wN \cs_end:
3230 \cs:w #4 \cs_end:

3231 }

(End definition for \exp_args:NNc, \exp_args:Ncc, and \exp_args:Nccc. These functions are docu-
mented on page 30.)

354

\exp_args:No

\exp_args:NNo

\exp_args:NNNo

\exp_args:Ne

\exp_args:Nf

\exp_args:NV

\exp_args:Nv

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNV
NNv
NNe
NNf
Nco
NcV
Necv
Ncf
NVV

Those lovely runs of expansion!
232 \cs_new:Npn \exp_args:No #1#2 { \exp_after:wN #1 \exp_after:wN {#2} }
3233 \cs_new:Npn \exp_args:NNo #1#2#3
23 { \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN {#3} }
2235 \cs_new:Npn \exp_args:NNNo #1#2#3#4
3236 { \exp_after:wN #1 \exp_after:wN#2 \exp_after:wN #3 \exp_after:wN {#4} }

(End definition for \exp_args:No, \exp_args:NNo, and \exp_args:NNNo. These functions are docu-
mented on page 29.)

When the \expanded primitive is available, use it. Otherwise use __exp_e:nn, defined
later, to fully expand tokens.

2237 \cs_1if_exist:NTF \tex_expanded:D

3238 {

3239 \cs_new:Npn \exp_args:Ne #1#2

3240 { \exp_after:wN #1 \tex_expanded:D { {#2} } }
3241 }

3242 {

3243 \cs_new:Npn \exp_args:Ne #1#2

3244 {

3245 \exp_after:wN #1 \exp_after:wN
3246 { \exp:w __exp_e:nn {#2} { } 2
3247 3

3248 }

(End definition for \exp_args:Ne. This function is documented on page 29.)

2200 \cs_new:Npn \exp_args:Nf #1#2
250 { \exp_after:wN #1 \exp_after:wN { \exp:w \exp_end_continue_f:w #2 } }
2251 \cs_new:Npn \exp_args:Nv #1#2

3252 {

3253 \exp_after:wN #1 \exp_after:wN

3254 { \exp:w __exp_eval_register:c {#2} }
3255 }

256 \cs_new:Npn \exp_args:NV #1#2

3257 {

3258 \exp_after:wN #1 \exp_after:wN

3259 { \exp:w __exp_eval_register:N #2 }
3260 }

(End definition for \exp_args:Nf, \exp_args:NV, and \exp_args:Nv. These functions are documented
on page 29.)

Some more hand-tuned function with three arguments. If we forced that an o argument
always has braces, we could implement \exp_args:Nco with less tokens and only two
arguments.

361 \cs_new:Npn \exp_args:NNV #1#2#3

3262 {

3263 \exp_after:wN #1

3264 \exp_after:wN #2

3265 \exp_after:wN { \exp:w __exp_eval_register:N #3 }
3266 }

3267 \cs_new:Npn \exp_args:NNv #1#2#3

355

3268 {
3269 \exp_after:wN #1

3270 \exp_after:wN #2

3271 \exp_after:wN { \exp:w __exp_eval_register:c {#3} }
3272 }

373 \cs_if_exist:NTF \tex_expanded:D

EECIE

3275 \cs_new:Npn \exp_args:NNe #1#2#3
3276 {

3277 \exp_after:wN #1

3278 \exp_after:wN #2

3279 \tex_expanded:D { {#3} }

3280 }

3281 }

262 { \cs_new:Npn \exp_args:NNe { \::N \::e \::: } }
283 \cs_new:Npn \exp_args:NNf #1#2#3

3284 {

3285 \exp_after:wN #1

3286 \exp_after:wN #2

3287 \exp_after:wN { \exp:w \exp_end_continue_f:w #3 }
3288 }

3280 \cs_new:Npn \exp_args:Nco #1#2#3

3290 {

3201 \exp_after:wN #1

3202 \cs:w #2 \exp_after:wN \cs_end:

3203 \exp_after:wN {#3}

3294 }

3205 \cs_new:Npn \exp_args:NcV #1#2#3

3206 {

3207 \exp_after:wN #1

3208 \cs:w #2 \exp_after:wN \cs_end:

3200 \exp_after:wN { \exp:w __exp_eval_register:N #3 }
3300 }

3300 \cs_new:Npn \exp_args:Ncv #1#2#3

3302 {

3303 \exp_after:wN #1

3304 \cs:w #2 \exp_after:wN \cs_end:

3305 \exp_after:wN { \exp:w __exp_eval_register:c {#3} }
3306 }

3307 \cs_new:Npn \exp_args:Ncf #1#2#3

3308 {

3300 \exp_after:wN #1

3310 \cs:w #2 \exp_after:wN \cs_end:
3311 \exp_after:wN { \exp:w \exp_end_continue_f:w #3 }

3312 ¥

3313 \cs_new:Npn \exp_args:NVV #1#2#3

3314 {

3315 \exp_after:wN #1

3316 \exp_after:wN { \exp:w \exp_after:wN

3317 __exp_eval_register:N \exp_after:wN #2 \exp_after:wN }
3318 \exp_after:wN { \exp:w __exp_eval_register:N #3 }

3319 }

(End definition for \exp_args:NNV and others. These functions are documented on page 30.)

356

\exp_args:NNNV A few more that we can hand-tune.

\exp_args:NcNc 3320 \cs_new:Npn \exp_args:NNNV #1#2#3#4
\exp_args:NcNo s o
\exp_args:Ncco 3322 \exp_after:wN #1
3323 \exp_after:wN #2
3324 \exp_after:wN #3
3325 \exp_after:wN { \exp:w __exp_eval_register:N #4 }
3326 }
3227 \cs_new:Npn \exp_args:NcNc #1#2#3#4
3328 {
3320 \exp_after:wN #1
3330 \cs:w #2 \exp_after:wN \cs_end:
3331 \exp_after:wN #3
3332 \cs:w #4 \cs_end:
3333 }
;33 \cs_new:Npn \exp_args:NcNo #1#2#3#4
3335 {
3336 \exp_after:wN #1
3337 \cs:w #2 \exp_after:wN \cs_end:
3338 \exp_after:wN #3
3339 \exp_after:wN {#4}
3340 }
;341 \cs_new:Npn \exp_args:Ncco #1#2#3#4
3342 {
3343 \exp_after:wN #1
3344 \cs:w #2 \exp_after:wN \cs_end:
3345 \cs:w #3 \exp_after:wN \cs_end:
3346 \exp_after:wN {#4}
3347 }

(End definition for \exp_args:NNNV and others. These functions are documented on page 31.)

5.3 Definitions with the automated technique

Some of these could be done more efficiently, but the complexity of coding then becomes
an issue. Notice that the auto-generated functions actually take no arguments themselves.

\exp_args:Nx
;s \cs_new_protected:Npn \exp_args:Nx { \::x \::: }

(End definition for \exp_args:Nx. This function is documented on page 30.)

\exp_args:Nnc Here are the actual function definitions, using the helper functions above.

\exp_args:Nno .., \cs_new:Npn \exp_args:Nnc { \::n \::c \::: }
\exp_args:NnV s \cs_new:Npn \exp_args:Nno { \::n \::0 \::: }
\exp_args:Nnv 1351 \cs_new:Npn \exp_args:NnV { \::n \::V \::: }
\exp_args:Nne 3352 \cs_new:Npn \exp_args:Nnv { \::n \::v \::: }
\exp_args:Nnf 3353 \cs_new:Npn \exp_args:Nne { \::n \::e \::: }
\exp_args:Noc 1352 \cs_new:Npn \exp_args:Nnf { \::n \::f \::: }
\exp_args:Noo ¥ \cs_new:Npn \exp_args:Noc { \::0 \::c \::: }
- 335 \cs_new:Npn \exp_args:Noo { \::o \::0 \::: }
\exp_args:Nof
\exp. args:NVo 1357 \cs_new:Npn \exp_args:Nof { \::o \::f \::: }
p_ares: 3358 \cs_new:Npn \exp_args:NVo { \::V \::0 \::: }
\exp_args:Nfo 3350 \cs_new:Npn \exp_args:Nfo { \::f \::0 \::: }
\exp_args:Nff
\exp_args:NNx
\exp_args:Ncx 357

\exp_args:Nnx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

;30 \cs_new:Npn \exp_args:Nff { \::f \::f \::: }

3361 \cs_new_protected:Npn \exp_args:NNx { \::N \::x \::: }
3362 \cs_new_protected:Npn \exp_args:Ncx { \::c \::x \::: }
3363 \cs_new_protected:Npn \exp_args:Nnx { \::n \::x \::: }
s34 \cs_new_protected:Npn \exp_args:Nox { \::o \::x \::: }
3365 \cs_new_protected:Npn \exp_args:Nxo { \::x \::0 \::: }
3366 \cs_new_protected:Npn \exp_args:Nxx { \::x \::x \::: }

(End definition for \exp_args:Nnc and others. These functions are documented on page 30.)

\exp_args:NNNv

\exp_args:NNcf 1367 \cs_new:Npn \exp_args:NNNv { \::N \::N \::v \::: }
\exp_args:NNno ;368 \cs_new:Npn \exp_args:NNcf { \::N \::c \::f \::: }
\exp_args:NNnV 330 \cs_new:Npn \exp_args:NNno { \::N \::n \::o \::: }
\exp_args:NNoo 1370 \cs_new:Npn \exp_args:NNnV { \::N \::n \::V \::: }
\exp_args:NNVV *7 \cs_new:Npn \exp_args:NNoo { \::N \::o \::o \::: }
\exp_args:Ncno ;32 \cs_new:Npn \exp_args:NNVV { \::N \::V \::V \::: }
\exp_args:NenV 7 \cs_new:Npn \exp_args:Ncno { \::c \::n \::0 \::: }
\exp_args:Ncoo \cs_new:Npn \exp_args:NcnV { \::c \::n \::V \::: }

- 3375 \cs_new:Npn \exp_args:Ncoo { \::c \::0 \::0 \::: }
\exp_args:NcVV ;376 \cs_new:Npn \exp_args:NcVV { \::c \::V \::V \::: }
\exp_args:Nmnc \cs_new:Npn \exp_args:Nnnc { \::n \::n \::c \::: }
\exp_args:Nnno ;378 \cs_new:Npn \exp_args:Nnno { \::n \::n \::0 \::: }
\exp_args:Nnnf ;379 \cs_new:Npn \exp_args:Nnnf { \::n \::n \::f \::: }
\exp_args:Nnff 3 \cs_new:Npn \exp_args:Nnff { \::n \::f \::f \::: }
\exp_args:Nooo ;381 \cs_new:Npn \exp_args:Nooo { \::0 \::0 \::0 \::: }
\exp_args:Noof ;32 \cs_new:Npn \exp_args:Noof { \::o \::o \::f \::: }
\exp_args:Nffo @ \cs_new:Npn \exp_args:Nffo { \::f \::f \::0 \::: }
\exp_args:NNNx ¥ \cs_new_protected:Npn \exp_args:NNNx { \::N \::N \::x \::: }
\exp_args:NNnx \cs_new_protected:Npn \exp_args:NNnx { \::N \::n \::x \::: }
\exp_args:NNox \cs_new_protected:Npn \exp_args:NNox { \::N \::o \::x \::: }
\exp—args:Nccx ;37 \cs_new_protected:Npn \exp_args:Nnnx { \::n \::n \::x \::: }

- ;333 \cs_new_protected:Npn \exp_args:Nnox { \::n \::o \::x \::: }
\exp_args:Nemx . \cs_new_protected:Npn \exp_args:Nccx { \::c \::c \::x \::: }
\exp_args:Nnnx \cs_new_protected:Npn \exp_args:Ncnx { \::c \::n \::x \::: }
\exp_args:Nnox ., \cs_new_protected:Npn \exp_args:Noox { \::0 \::o \::x \::: }

\exp_args:Noox
(End definition for \exp_args:NNNv and others. These functions are documented on page 31.)

5.4 Last-unbraced versions

__exp_arg_last_unbraced:nn There are a few places where the last argument needs to be available unbraced. First
\::o_unbraced some helper macros.

\::V_unbraced ;32 \cs_new:Npn __exp_arg_last_unbraced:nn #1#2 { #2#1 }
\::v_unbraced 3303 \cs_new:Npn \::o_unbraced \::: #1#2
\::e_unbraced 3304 { \exp_after:wN __exp_arg_last_unbraced:nn \exp_after:wN {#2} {#1} }
\::f_unbraced 3305 \cs_new:Npn \::V_unbraced \::: #1#2
\::x_unbraced s {
3307 \exp_after:wN __exp_arg_last_unbraced:nn
3308 \exp_after:wN { \exp:w __exp_eval_register:N #2 } {#1}
3399 }
a0 \cs_new:Npn \::v_unbraced \::: #1#2
3401 {
3402 \exp_after:wN __exp_arg_last_unbraced:nn

358

\exp_last_unbraced:No
\exp_last_unbraced:NV
\exp_last_unbraced:Nv
\exp_last_unbraced:Nf
\exp_last_unbraced:NNo
\exp_last_unbraced:NNV
\exp_last_unbraced:NNf
\exp_last_unbraced:Nco
\exp_last_unbraced:NcV
\exp_last_unbraced:NNNo
\exp_last_unbraced:NNNV
\exp_last_unbraced:NNNf
\exp_last_unbraced:Nno
\exp_last_unbraced:Noo
\exp_last_unbraced:Nfo
\exp_last_unbraced:NnNo
\exp_last_unbraced:NNNNo
\exp_last_unbraced:NNNNf
\exp_last_unbraced:Nx

3416

3417

3418

3419

3420

}

\cs_

{
}
{

}

\cs_

{

}

\cs_

{

}

\exp_after:wN { \exp:w __exp_eval_register:c {#2} } {#1}
if_exist:NTF \tex_expanded:D
\cs_new:Npn \::e_unbraced \::: #1#2
{ \tex_expanded:D { \exp_not:n {#1} #2 } }
\cs_new:Npn \::e_unbraced \::: #1#2
{ \exp:w __exp_e:nn {#2} {#1} }
new:Npn \::f_unbraced \::: #1#2

\exp_after:wN __exp_arg_last_unbraced:nn
\exp_after:wN { \exp:w \exp_end_continue_f:w #2 } {#1}

new_protected:Npn \::x_unbraced \::: #1#2

\cs_set_nopar:Npx \1__exp_internal_tl { \exp_not:n {#1} #2 }
\1__exp_internal_tl

(End definition for __exp_arg_last_unbraced:nn and others. These functions are documented on page

36.)

Now the business end: most of these are hand-tuned for speed, but the general system is
in place.

3424

3425

3426

3427

3428

3429

3431

3432

3434

3435

3436

3437

3438

3439

3440

3441

3443

3444

3446

3447

3449

3450

\cs_
\cs_

{

\cs_

{

\cs_

{

}
{

\cs_

{

\cs_

{

\cs_

{

}

5 \cs_

{

}

new:Npn \exp_last_unbraced:No #1#2 { \exp_after:wN #1 #2 }
new:Npn \exp_last_unbraced:NV #1#2

\exp_after:wN #1 \exp:w __exp_eval_register:N #2 }
new:Npn \exp_last_unbraced:Nv #1#2

\exp_after:wN #1 \exp:w __exp_eval_register:c {#2} }
if_exist:NTF \tex_expanded:D

\cs_new:Npn \exp_last_unbraced:Ne #1#2
{ \exp_after:wN #1 \tex_expanded:D {#2} }

\cs_new:Npn \exp_last_unbraced:Ne { \::e_unbraced \::: } }
new:Npn \exp_last_unbraced:Nf #1#2

\exp_after:wN #1 \exp:w \exp_end_continue_f:w #2 }
new:Npn \exp_last_unbraced:NNo #1#2#3

\exp_after:wN #1 \exp_after:wN #2 #3 }

new:Npn \exp_last_unbraced:NNV #1#2#3

\exp_after:wN #1

\exp_after:wN #2

\exp:w __exp_eval_register:N #3
new:Npn \exp_last_unbraced:NNf #1#2#3
\exp_after:wN #1

\exp_after:wN #2
\exp:w \exp_end_continue_f:w #3

359

\exp_last_two_unbraced:Noo
__exp_last_two_unbraced:noN

151 \cs_new:Npn \exp_last_unbraced:Nco #1#2#3
a2 { \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: #3 }
253 \cs_new:Npn \exp_last_unbraced:NcV #1#2#3

3454 {

3455 \exp_after:wN #1

3456 \cs:w #2 \exp_after:wN \cs_end:
3457 \exp:w __exp_eval_register:N #3
3458 }

s50 \cs_new:Npn \exp_last_unbraced:NNNo #1#2#3#4
a0 { \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN #3 #4 }
a1 \cs_new:Npn \exp_last_unbraced:NNNV #1#2#3#4

3462 {

3463 \exp_after:wN #1

3464 \exp_after:wN #2

3465 \exp_after:wN #3

3466 \exp:w __exp_eval_register:N #4
3467 }

ss6s \cs_new:Npn \exp_last_unbraced:NNNf #1#2#3#4
3469 {

3470 \exp_after:wN #1

3471 \exp_after:wN #2

3472 \exp_after:wN #3

3473 \exp:w \exp_end_continue_f:w #4
3474 }

275 \cs_new:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }

276 \cs_new:Npn \exp_last_unbraced:Noo { \::0 \::o_unbraced \::: }

377 \cs_new:Npn \exp_last_unbraced:Nfo { \::f \::o_unbraced \::: }

sa7s \cs_new:Npn \exp_last_unbraced:NnNo { \::n \::N \::o_unbraced \::: }

270 \cs_new:Npn \exp_last_unbraced:NNNNo #1#2#3#4#5

10 { \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN #3 \exp_after:wN #4 #5 }
as1 \cs_new:Npn \exp_last_unbraced:NNNNf #1#2#3#4#5

3482 {

3483 \exp_after:wN #1

3484 \exp_after:wN #2

3485 \exp_after:wN #3

3486 \exp_after:wN #4

3487 \exp:w \exp_end_continue_f:w #5

3488 }

1150 \cs_new_protected:Npn \exp_last_unbraced:Nx { \::x_unbraced \::: }

(End definition for \exp_last_unbraced:No and others. These functions are documented on page 52.)

If #2 is a single token then this can be implemented as

\cs_new:Npn \exp_last_two_unbraced:Noo #1 #2 #3
{ \exp_after:wN \exp_after:wN \exp_after:wN #1 \exp_after:wN #2 #3 }

However, for robustness this is not suitable. Instead, a bit of a shuffle is used to ensure
that #2 can be multiple tokens.
;00 \cs_new:Npn \exp_last_two_unbraced:Noo #1#2#3
201 { \exp_after:wN __exp_last_two_unbraced:noN \exp_after:wN {#3} {#2} #1 }
2202 \cs_new:Npn __exp_last_two_unbraced:noN #1#2#3
3493 { \exp_after:wN #3 #2 #1 }

(End definition for \exp_last_two_unbraced:Noo and __exp_last_two_unbraced:noN. This function is
documented on page 32.)

360

__kernel_exp_not:w

\exp_not:
\exp_not:
\exp_not:
\exp_not:
\exp_not:

< < Hh ©O O O

\exp_not:

\exp:w

\exp_end:
\exp_end_continue_f:w
\exp_end_continue_f :nw

5.5 Preventing expansion

At the kernel level, we need the primitive behaviour to allow expansion before the brace
group.

;0o \cs_new_eq:NN __kernel_exp_not:w \tex_unexpanded:D

(End definition for __kernel_exp_not:w.)

All these except \exp_not:c call the kernel-internal __kernel_exp_not:w namely
\tex_unexpanded:D.

3205 \cs_new:Npn \exp_not:c #1 { \exp_after:wN \exp_not:N \cs:w #1 \cs_end: }

200 \cs_new:Npn \exp_not:o #1 { __kernel_exp_not:w \exp_after:wN {#1} }

;07 \cs_if _exist:NTF \tex_expanded:D

3498 {

3499 \cs_new:Npn \exp_not:e #1

3500 { __kernel_exp_not:w \tex_expanded:D { {#1} } }

3501 }

3502 {

3503 \cs_new:Npn \exp_not:e

3504 { __kernel_exp_not:w \exp_args:Ne \prg_do_nothing: }
3505 }

3500 \cs_new:Npn \exp_not:f #1
ss07 - { __kernel_exp_not:w \exp_after:wN { \exp:w \exp_end_continue_f:w #1 } }
;50 \cs_new:Npn \exp_not:V #1

3509 {

3510 __kernel_exp_not:w \exp_after:wN

3511 { \exp:w __exp_eval_register:N #1 }
3512 }

3513 \cs_new:Npn \exp_not:v #1

3514 {

3515 __kernel_exp_not:w \exp_after:wN

3516 { \exp:w __exp_eval_register:c {#1} }
3517 }

(End definition for \exp_not:c and others. These functions are documented on page 33.)

5.6 Controlled expansion

To trigger a sequence of “arbitrarily” many expansions we need a method to invoke TEX’s
expansion mechanism in such a way that (a) we are able to stop it in a controlled manner
and (b) the result of what triggered the expansion in the first place is null, i.e., that we
do not get any unwanted side effects. There aren’t that many possibilities in TEX; in fact
the one explained below might well be the only one (as normally the result of expansion
is not null).

The trick here is to make use of the fact that \tex_romannumeral:D expands the
tokens following it when looking for a number and that its expansion is null if that number
turns out to be zero or negative. So we use that to start the expansion sequence: \exp:w
is set equal to \tex_romannumeral:D in I3basics. To stop the expansion sequence in a
controlled way all we need to provide is a constant integer zero as part of expanded tokens.
As this is an integer constant it immediately stops \tex_romannumeral:D’s search for a
number. Again, the definition of \exp_end: as the integer constant zero is in I3basics.
(Note that according to our specification all tokens we expand initiated by \exp:w are
supposed to be expandable (as well as their replacement text in the expansion) so we will

361

__exp_e:nn

__exp_e_end:nn

not encounter a “number” that actually result in a roman numeral being generated. Or
if we do then the programmer made a mistake.)

If on the other hand we want to stop the initial expansion sequence but continue
with an f-type expansion we provide the alphabetic constant ‘~~@ that also represents
0 but this time TEX’s syntax for a (number) continues searching for an optional space
(and it continues expansion doing that) — see TEXbook page 269 for details.

;515 \group_begin:

3519 \tex_catcode:D ‘\""@ = 13

320 \cs_new_protected:Npn \exp_end_continue_f:w { ‘77@ }
If the above definition ever appears outside its proper context the active character ~~@ will
be executed so we turn this into an error. The test for existence covers the (unlikely) case
that some other code has already defined ~~@: this is true for example for xmltex.tex.

3521 \if_cs_exist:N ~"@

3522 \else:

3523 \cs_new:Npn ~~@

3524 { __kernel_msg_expandable_error:nn { kernel } { bad-exp-end-f } }
3525 \fi:

The same but grabbing an argument to remove spaces and braces.

326 \cs_new:Npn \exp_end_continue_f:nw #1 { ‘77@ #1 }
3527 \group_end:

(End definition for \exp:w and others. These functions are documented on page 35.)

5.7 Emulating e-type expansion

When the \expanded primitive is available it is used to implement e-type expansion;
otherwise we emulate it.

3508 \cs_1f_exist:NF \tex_expanded:D
3529 {

Repeatedly expand tokens, keeping track of fully-expanded tokens in the second argument
to __exp_e:nn; this function eventually calls __exp_e_end:nn to leave \exp_end: in
the input stream, followed by the result of the expansion. There are many special cases:
spaces, brace groups, \noexpand, \unexpanded, \the, \primitive. While we use brace
tricks \if _false: { \fi:, the expansion of this function is always triggered by \exp:w
so brace balance is eventually restored after that is hit with a single step of expansion.
Otherwise we could not nest e-type expansions within each other.

3530 \cs_new:Npn __exp_e:nn #1

3531 {

3532 \if_false: { \fi:

3533 \tl_if_head_is_N_type:nTF {#1}

3534 { __exp_e:N }

3535 {

3536 \tl_if_head_is_group:nTF {#1}

3537 { __exp_e_group:n }

3538 {

3539 \tl_if_empty:nTF {#1}

3540 { \exp_after:wN __exp_e_end:nn }
3541 { \exp_after:wN __exp_e_space:nn }
3542 \exp_after:wN { \if_false: } \fi:
3543 }

362

__exp_e_space:nn

__exp_e_group:n
__exp_e_put:nn
__exp_e_put:nnn

__exp_e:N

__exp_e:Nnn
__exp_e_protected:Nnn
__exp_e_expandable:Nnn

3544 }

3545 #1

3546 }

3547 }

3548 \cs_new:Npn __exp_e_end:nn #1#2 { \exp_end: #2 }

(End definition for __exp_e:nn and __exp_e_end:nn.)

For an explicit space character, remove it by f-expansion and put it in the (future)
output.

3549 \cs_new:Npn __exp_e_space:nn #1#2
3550 { \exp_args:Nf __exp_e:nn {#1} { #2 ~ } }

(End definition for __exp_e_space:nn.)

For a group, expand its contents, wrap it in two pairs of braces, and call __exp_-
e_put:nn. This function places the first item (the double-brace wrapped result) into the
output. Importantly, \t1_head:n works even if the input contains quarks.

3551 \cs_new:Npn __exp_e_group:n #1

3552 {

3553 \exp_after:wN __exp_e_put:nn

3554 \exp_after:wN { \exp_after:wN { \exp_after:wN {

3555 \exp:w \if_false: } \fi: __exp_e:nn {#1} { } } }
3556 }

3557 \cs_new:Npn __exp_e_put:nn #1

3558 {

3550 \exp_args:NNo \exp_args:No __exp_e_put:nnn

3560 { \tl_head:n {#1} } {#1}

3561 }

3562 \cs_new:Npn __exp_e_put:nnn #1#2#3

3563 { \exp_args:No __exp_e:nn { \use_none:n #2 } { #3 #1 } }

(End definition for __exp_e_group:n, __exp_e_put:nn, and __exp_e_put:nnn.)

For an N-type token, call __exp_e:Nnn with arguments the (first token), the remain-
ing tokens to expand and what’s already been expanded. If the (first token) is non-
expandable, including \protected (\long or not) macros, it is put in the result by
__exp_e_protected:Nnn. The four special primitives \unexpanded, \noexpand, \the
\primitive are detected; otherwise the token is expanded by __exp_e_expandable:Nnn.

3564 \cs_new:Npn __exp_e:N #1

3565 {

3566 \exp_after:wN __exp_e:Nnn

3567 \exp_after:wN #1

3568 \exp_after:wN { \if_false: } \fi:

3569 }

3570 \cs_new:Npn __exp_e:Nnn #1

3571 {

3572 \if_case:w

3573 \exp_after:wN \if_meaning:w \exp_not:N #1 #1 1 ~ \fi:
3574 \token_if_protected_macro:NT #1 { 1 ~ }

3575 \token_if_protected_long_macro:NT #1 { 1 ~ }
3576 \if _meaning:w \exp_not:n #1 2 ~ \fi:

3577 \if _meaning:w \exp_not:N #1 3 ~ \fi:

3578 \if_meaning:w \tex_the:D #1 4 ~ \fi:

363

__exp_e_primitive:Nnn
__exp_e_primitive_aux:NNw
__exp_e_primitive_aux:NNnn
__exp e prinitive other:Ninn

__exp_e primitive other aux:nNinn

3588

3589

3590

3591

3592

3593

}

\if _meaning:w

0

\exp_after:wN

\or:
\or:
\or:
\or:
\or:
\fi:
#1

\exp_after:
\exp_after:
\exp_after:
\exp_after:
\exp_after:

\tex_primitive:D #1 5 ~ \fi:

__exp_e_expandable:Nnn
wN __exp_e_protected:Nnn
wN __exp_e_unexpanded:Nnn
wN __exp_e_noexpand:Nnn
wN __exp_e_the:Nnn

wN __exp_e_primitive:Nnn

\cs_new:Npn __exp_e_protected:Nnn #1#2#3
{ __exp_e:nn {#2} { #3 #1 } }

\cs_new:Npn __exp_e_expandable:Nnn #1#2
{ \exp_args:No __exp_e:nn { #1 #2 } }

(End definition for __exp_e:N and others.)

We don’t try hard to make sensible error recovery since the error recovery of \tex_-
primitive:D when followed by something else than a primitive depends on the engine.
The only valid case is when what follows is N-type. Then distinguish special primitives
\unexpanded, \noexpand, \the, \primitive from other primitives. In the “other” case,
the only reasonable way to check if the primitive that follows \tex_primitive:D is
expandable is to expand and compare the before-expansion and after-expansion results.
If they coincide then probably the primitive is non-expandable and should be put in the
output together with \tex_primitive:D (one can cook up contrived counter-examples
where the true \expanded would have an infinite loop), and otherwise one should continue

expanding.

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

\cs_new:Npn __exp_e_primitive:Nnn #1#2

{

}

\if_false: { \fi:
\tl_if_head_is_N_type:nTF {#2}
{ __exp_e_primitive_aux:NNw #1 }

#2
}

{

}

__kernel _
{ Missin
__exp_e_p

msg_expandable_error:nnn { kernel } { e-type }

g~primitive~name }

rimitive_aux:NNw #1 \c_empty_tl

\cs_new:Npn __exp_e_primitive_aux:NNw #1#2

{

}

\exp_after:wN _
\exp_after:wN #1
\exp_after:wN #2
\exp_after:wN {

_exp_e_primitive_aux:NNnn

\if_false: } \fi:

\cs_new:Npn __exp_e_primitive_aux:NNnn #1#2

{

\exp_args:Nf \str_case_e:nnTF { \cs_to_str:N #2 }

{

{ unexpanded } { __exp_e_unexpanded:Nnn \exp_not:n }
{ noexpand } { __exp_e_noexpand:Nnn \exp_not:N }

364

\

__eXp_e_noeXpand:Nnn

exp_e_unexpanded:Nnn

__exp_e_unexpanded:nn
__exp_e_unexpanded:nN

__exp_e_unexpanded:N

3620 { the } { __exp_e_the:Nnn \tex_the:D }

3621 {

3622 \sys_if_engine_xetex:T { pdf }

3623 \sys_if_engine_luatex:T { pdf }

3624 primitive

3625 } { __exp_e_primitive:Nnn #1 }

3626 }

3627 { __exp_e_primitive_other:NNnn #1 #2 }

3628 }

3629 \cs_new:Npn __exp_e_primitive_other:NNnn #1#2#3
3630 {

3631 \exp_args:No __exp_e_primitive_other_aux:nNNnn
3632 { #1 #2 #3 }

3633 #1 #2 {#3}

3634 }

3635 \cs_new:Npn __exp_e_primitive_other_aux:nNNnn #1#2#3#4#5
3636 {

3637 \str_if_eq:nnTF {#1} { #2 #3 #4 }

3638 { __exp_e:nn {#4} { #5 #2 #3 } }

3639 { __exp_e:nn {#1} {#5} }

3640 }

(End definition for __exp_e_primitive:Nnn and others.)

The \noexpand primitive has no effect when followed by a token that is not N-type;
otherwise __exp_e_put:nn can grab the next token and put it in the result unchanged.

3641 \cs_new:Npn __exp_e_noexpand:Nnn #1#2

3642 {

3643 \tl_if_head_is_N_type:nTF {#2}

3644 { __exp_e_put:nn } { __exp_e:nn } {#2}
3645 ¥

(End definition for __exp_e_noexpand:Nnn.)

The \unexpanded primitive expands and ignores any space, \scan_stop:, or token af-
fected by \exp_not:N, then expects a brace group. Since we only support brace-balanced
token lists it is impossible to support the case where the argument of \unexpanded starts
with an implicit brace. Even though we want to expand and ignore spaces we cannot
blindly f-expand because tokens affected by \exp_not:N should discarded without being
expanded further.

As usual distinguish four cases: brace group (the normal case, where we just put the
item in the result), space (just f-expand to remove the space), empty (an error), or N-
type (token). In the last case call __exp_e_unexpanded:nN triggered by an f-expansion.
Having a non-expandable (token) after \unexpanded is an error (we recover by passing
{} to \unexpanded; this is different from TEX because the error recovery of \unexpanded
changes the balance of braces), unless that (token) is \scan_stop: or a space (recall that
we don’t implement the case of an implicit begin-group token). An expandable (token)
is instead expanded, unless it is \noexpand. The latter primitive can be followed by an
expandable N-type token (removed), by a non-expandable one (kept and later causing
an error), by a space (removed by f-expansion), or by a brace group or nothing (later
causing an error).

3646 \cs_new:Npn __exp_e_unexpanded:Nnn #1 { __exp_e_unexpanded:nn }
3647 \cs_new:Npn __exp_e_unexpanded:nn #1

365

3649 \tl_if_head_is_N_type:nTF {#1}

3650 {

3651 \exp_args:Nf __exp_e_unexpanded:nn

3652 { __exp_e_unexpanded:nN {#1} #1 }

3653 }

3654 {

3655 \tl_if_head_is_group:nTF {#1}

3656 { __exp_e_put:nn }

3657 {

3658 \tl_if_empty:nTF {#1}

3659 {

3660 __kernel_msg_expandable_error:nnn
3661 { kernel } { e-type }

3662 { \unexpanded missing~brace }
3663 __exp_e_end:nn

3664 }

3665 { \exp_args:Nf __exp_e_unexpanded:nn }
3666 }

3667 {#1}

3668 }

3669 }

3670 \cs_new:Npn __exp_e_unexpanded:nN #1#2

3671 {

3672 \exp_after:wN \if_meaning:w \exp_not:N #2 #2
3673 \exp_after:wN \use_i:nn

3674 \else:

3675 \exp_after:wN \use_ii:nn

3676 \fi:

3677 {

3678 \token_if_eq_catcode:NNTF #2 \c_space_token
3679 { \exp_stop_f: }

3680 {

3681 \token_if_eq_meaning:NNTF #2 \scan_stop:
3682 { \exp_stop_f: }

3683 {

3684 __kernel_msg_expandable_error:nnn
3685 { kernel } { e-type }

3686 { \unexpanded missing~brace }
3687 {3}

3688 }

3689 }

3690 }

3601 {

3692 \token_if_eq_meaning:NNTF #2 \exp_not:N
3693 {

3604 \exp_args:No \tl_if_head_is_N_type:nT { \use_none:n #1 }
3695 { __exp_e_unexpanded:N }

3696 }

3697 { \exp_after:wN \exp_stop_f: #2 }

3698 }

3699 ¥

3700 \cs_new:Npn __exp_e_unexpanded:N #1

3701 {

366

__exp_e_the:Nnn
__exp_e_the:N
__eXp_e_the_toks_reg:N

\exp_after:wN \if_meaning:w \exp_not:N #1 #1 \else:
\exp_after:wN \use_i:nn
\fi:
\exp_stop_£f: #1
}

(End definition for __exp_e_unexpanded:Nnn and others.)

Finally implement \the. Followed by anything other than an N-type (token) this causes
an error (we just let TEX make one), otherwise we test the (token). If the (token)
is expandable, expand it. Otherwise it could be any kind of register, or things like
\numexpr, so there is no way to deal with all cases. Thankfully, only \toks data needs
to be protected from expansion since everything else gives a string of characters. If the
(token) is \toks we find a number and unpack using the the_toks functions. If it is a
token register we unpack it in a brace group and call __exp_e_put:nn to move it to
the result. Otherwise we unpack and continue expanding (useless but safe) since it is
basically impossible to have a handle on where the result of \the ends.

3707

\cs_new:Npn __exp_e_the:Nnn #1#2
{
\tl_if_head_is_N_type:nTF {#2}
{ \if_false: { \fi: __exp_e_the:N #2 } }
{ \exp_args:No __exp_e:nn { \tex_the:D #2 } }
}
\cs_new:Npn __exp_e_the:N #1
{
\exp_after:wN \if _meaning:w \exp_not:N #1 #1
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_ii:nn
\fi:
{
\if_meaning:w \tex_toks:D #1
\exp_after:wN __exp_e_the_toks:wnn \int_value:w
\exp_after:wN __exp_e_the_toks:n
\exp_after:wN { \int_value:w \if_false: } \fi:
\else:
__exp_e_if_toks_register:NTF #1
{ \exp_after:wN __exp_e_the_toks_reg:N }
{
\exp_after:wN __exp_e:nn \exp_after:wN {
\tex_the:D \if_false: } \fi:
}
\exp_after:wN #1
\fi:
}
{
\exp_after:wN __exp_e_the:Nnn \exp_after:wN ?
\exp_after:wN { \exp:w \if_false: } \fi:
\exp_after:wN \exp_end: #1
}
}
\cs_new:Npn __exp_e_the_toks_reg:N #1
{
\exp_after:wN __exp_e_put:nn \exp_after:wN {

367

3744 \exp_after:wN {
3745 \tex_the:D \if_false: } \fi: #1 }
3746 }

(End definition for __exp_e_the:Nnn, __exp_e_the:N, and __exp_e_the_toks_reg:N.)

__exp_e_the_toks:wnn The calling function has applied \int_value:w so we collect digits with __exp_e_the_-
__exp_e_the_toks:n toks:n (which gets the token list as an argument) and __exp_e_the_toks:N (which
__exp_e_the_toks:N gets the first token in case it is N-type). The digits are themselves collected into an

\int_value:w argument to __exp_e_the_toks:wnn. Then that function unpacks the
\toks(number) into the result. We include ? because __exp_e_put:nnn removes one
item from its second argument. Note that our approach is rather crude: in cases like
\the\toks12~34 the first \int_value:w removes the space and we will incorrectly unpack
the \the\toks1234.

3747 \cs_new:Npn __exp_e_the_toks:wnn #1; #2

3748 {

3749 \exp_args:No __exp_e_put:nnn

3750 { \tex_the:D \tex_toks:D #1 } { 7 #2 }
3751 }

3752 \cs_new:Npn __exp_e_the_toks:n #1

3753 {

3754 \tl_if_head_is_N_type:nTF {#1}

3755 { \exp_after:wN __exp_e_the_toks:N \if_false: { \fi: #1 } }
3756 { H {#1} }

3757 }

3758 \cs_new:Npn __exp_e_the_toks:N #1

3759 {

3760 \if_int_compare:w 10 < 9 \token_to_str:N #1 \exp_stop_f:
3761 \exp_after:wN \use_i:nn

3762 \else:

3763 \exp_after:wN \use_ii:nn

3764 \fi:

3765 {

3766 #1

3767 \exp_after:wN __exp_e_the_toks:n

3768 \exp_after:wN { \if_false: } \fi:

3769 }

3770 {

3771 \exp_after:wN ;

3772 \exp_after:wN { \if_false: } \fi: #1
3773 }

3774 3

(End definition for __exp_e_the_toks:wnn, __exp_e_the_toks:n, and __exp_e_the_toks:N.)

\ exp e if toks register:NTF We need to detect both \toks registers like \toks@ in KTEX 2¢ and parameters such as

_exp e the XeTelinterchartoks: \everypar, as the result of unpacking the register should not expand further. Registers

__exp_e_the_errhelp: are found by \token_if_toks_register:NTF by inspecting the meaning. The list of

__exp_e_the_everycr: parameters is finite so we just use a \cs_if_exist:cTF test to look up in a table. We
__exp_e_the_everydisplay: abuse \cs_to_str:N’s ability to remove a leading escape character whatever it is.

__exp_e_the_everyeof: 3775 \prg_new_conditional:Npnn __exp_e_if_toks_register:N #1 { TF }
__exp_e_the_everyhbox: 3776 {

__exp_e_the_everyjob: 3777 \token_if_toks_register:NTF #1 { \prg_return_true: }
__exp_e_the_everymath: 3778 {

__exp_e_the_everypar:
__exp_e_the_everyvbox: 368
__exp_e_the_output:
__exp_e_the_pdfpageattr:
__exp e the pdfpageresources:
__exp_e_the_pdfpagesattr:
__exp_e_the_pdfpkmode:

3779 \cs_if_exist:cTF

3780 {

3781 __exp_e_the_

3782 \exp_after:wN \cs_to_str:N

3783 \token_to_meaning:N #1

3784 .

3785 } { \prg_return_true: } { \prg_return_false: }
3786 }

3787 }

3788 \cs_new_eq:NN __exp_e_the_XeTeXinterchartoks: 7
3789 \cs_new_eq:NN __exp_e_the_errhelp: ?

3790 \cs_new_eq:NN __exp_e_the_everycr: ?

3791 \cs_new_eq:NN __exp_e_the_everydisplay: 7

3792 \cs_new_eq:NN __exp_e_the_everyeof: 7

3793 \cs_new_eq:NN __exp_e_the_everyhbox: ?

3794 \cs_new_eq:NN __exp_e_the_everyjob: 7

3795 \cs_new_eq:NN __exp_e_the_everymath: ?

3796 \cs_new_eq:NN __exp_e_the_everypar: 7

3797 \cs_new_eq:NN __exp_e_the_everyvbox: ?

3798 \cs_new_eq:NN __exp_e_the_output: ?

3799 \cs_new_eq:NN __exp_e_the_pdfpageattr: 7

3800 \cs_new_eq:NN __exp_e_the_pdfpageresources: 7
3801 \cs_new_eq:NN __exp_e_the_pdfpagesattr: 7

3802 \cs_new_eq:NN __exp_e_the_pdfpkmode: ?

(End definition for __exp_e_if_toks_register:NTF and others.)
We are done emulating e-type argument expansion when \expanded is unavailable.

3803 ¥

5.8 Defining function variants
3804 <@@=CS>

\cs_generate_variant:Nn #1 : Base form of a function; e.g., \t1_set:Nn
\cs_generate_variant:cn #2: Omne or more variant argument specifiers; e.g., {Nx,c,cx}

After making sure that the base form exists, test whether it is protected or not and
define __cs_tmp:w as either \cs_new:Npx or \cs_new_protected:Npx, which is then
used to define all the variants (except those involving x-expansion, always protected).
Split up the original base function only once, to grab its name and signature. Then
we wish to iterate through the comma list of variant argument specifiers, which we first
convert to a string: the reason is explained later.

3305 __kernel_patch:nnNNpn { __kernel_chk_cs_exist:N #1 } { }
;006 \cs_new_protected:Npn \cs_generate_variant:Nn #1#2

3807 {

3808 __cs_generate_variant:N #1

3800 \use:x

3810 {

3811 __cs_generate_variant:nnNN
3812 \cs_split_function:N #1
3813 \exp_not:N #1

3814 \tl_to_str:n {#2} ,

3815 \exp_not:N \scan_stop: ,
3816 \exp_not:N \gq_recursion_stop
3817 3

369

__cs_generate_variant:N
__cs_generate_variant:ww

__cs_generate_variant:wwNw

__cs_generate_variant:nnNN

3818 }
ss10 \cs_new_protected:Npn \cs_generate_variant:cn
s20 { \exp_args:Nc \cs_generate_variant:Nn }

(End definition for \cs_generate_variant:Nn. This function is documented on page 26.)

The goal here is to pick up protected parent functions. There are four cases: the parent
function can be a primitive or a macro, and can be expandable or not. For non-expandable
primitives, all variants should be protected; skipping the \else: branch is safe because
non-expandable primitives cannot be TEX conditionals.

The other case where variants should be protected is when the parent function is a
protected macro: then protected appears in the meaning before the fist occurrence of
macro. The ww auxiliary removes everything in the meaning string after the first ma. We
use ma rather than the full macro because the meaning of the \firstmark primitive (and
four others) can contain an arbitrary string after a leading firstmark:. Then, look for
pr in the part we extracted: no need to look for anything longer: the only strings we
can have are an empty string, \long,,, \protected,,, \protected\long,, \first, \top,
\bot, \splittop, or \splitbot, with \ replaced by the appropriate escape character. If
pr appears in the part before ma, the first \q_mark is taken as an argument of the wwNw
auxiliary, and #3 is \cs_new_protected:Npx, otherwise it is \cs_new:Npx.

;21 \cs_new_protected:Npx __cs_generate_variant:N #1

3822 {

3823 \exp_not:N \exp_after:wN \exp_not:N \if_meaning:w

3824 \exp_not:N \exp_not:N #1 #1

3825 \cs_set_eq:NN \exp_not:N __cs_tmp:w \cs_new_protected:Npx
3826 \exp_not:N \else:

3827 \exp_not:N \exp_after:wN \exp_not:N __cs_generate_variant:ww
3828 \exp_not:N \token_to_meaning:N #1 \tl_to_str:n { ma }
3829 \exp_not:N \q_mark

3830 \exp_not:N \g_mark \cs_new_protected:Npx

3831 \tl_to_str:n { pr }

3832 \exp_not:N \g_mark \cs_new:Npx

3833 \exp_not:N \qg_stop

3834 \exp_not:N \fi:

3835 }

3336 \exp_last_unbraced:NNNNo
3837 \cs_new_protected:Npn __cs_generate_variant:ww

3838 #1 { \tl_to_str:n { ma } } #2 \g_mark

3839 { __cs_generate_variant:wwNw #1 }

ses0 \exp_last_unbraced:NNNNo

;341 \cs_new_protected:Npn __cs_generate_variant:wwNw

3842 #1 { \tl_to_str:n { pr } } #2 \g_mark #3 #4 \qg_stop

3843 { \cs_set_eq:NN __cs_tmp:w #3 }

(End definition for __cs_generate_variant:N, __cs_generate_variant:ww, and __cs_generate_-
variant :wwhw.)

#1 : Base name.

#2 : Base signature.
#3 : Boolean.

#4 : Base function.

370

__cs_generate_variant:Nnnw

If the boolean is \c_false_bool, the base function has no colon and we abort with
an error; otherwise, set off a loop through the desired variant forms. The original function
is retained as #4 for efficiency.

see2 \cs_new_protected:Npn __cs_generate_variant:nnNN #1#2#3#4

3845 {

3846 \if_meaning:w \c_false_bool #3

3847 __kernel_msg_error:nnx { kernel } { missing-colon }
3848 { \token_to_str:c {#1} }

3849 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
3850 \fi:

3851 __cs_generate_variant:Nnnw #4 {#1}{#2}

3852 3

(End definition for __cs_generate_variant :nnNN.)

#1 : Base function.

#2 : DBase name.

#3 : DBase signature.

#4 . Beginning of variant signature.

First check whether to terminate the loop over variant forms. Then, for each variant
form, construct a new function name using the original base name, the variant signature
consisting of [letters and the last k — [letters of the base signature (of length k). For
example, for a base function \prop_put:Nnn which needs a cV variant form, we want the
new signature to be cVn.

There are further subtleties:

e In\cs_generate_variant:Nn \foo:nnTF {xxTF}, we must define \foo:xxTF using
\exp_args:Nxx, rather than a hypothetical \exp_args:NxxTF. Thus, we wish to
trim a common trailing part from the base signature and the variant signature.

e In\cs_generate_variant:Nn \foo:on {ox}, the function \foo: ox must be defined
using \exp_args:Nnx, not \exp_args:Nox, to avoid double o expansion.

o Lastly, \cs_generate_variant:Nn \foo:on {xn} must trigger an error, because
we do not have a means to replace o-expansion by x-expansion. More generally, we
can only convert N to c, or convert n to V, v, o, £, x.

All this boils down to a few rules. Only n and N-type arguments can be replaced by
\cs_generate_variant:Nn. Other argument types are allowed to be passed unchanged
from the base form to the variant: in the process they are changed to n except for N and
p-type arguments. A common trailing part is ignored.

We compare the base and variant signatures one character at a time within x-
expansion. The result is given to __cs_generate_variant:wwNN (defined later) in
the form (processed variant signature) \q_mark (errors) \q_stop (base function) (new
function). If all went well, (errors) is empty; otherwise, it is a kernel error message and
some clean-up code.

Note the space after #3 and after the following brace group. Those are ignored by
TEX when fetching the last argument for __cs_generate_variant_loop:nNwN, but can
be used as a delimiter for __cs_generate_variant_loop_end:nwwwNNnn.

3653 \cs_new_protected:Npn __cs_generate_variant:Nnnw #1#2#3#4 ,
3854 {

3855 \if_meaning:w \scan_stop: #4

371

3856 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w

3857 \fi:

3858 \use:x

3859 {

3860 \exp_not:N __cs_generate_variant:wwNN

3861 __cs_generate_variant_loop:nNwN { }

3862 #4

3863 __cs_generate_variant_loop_end:nwwwNNnn
3864 \q_mark

3865 #3 ~

3866 { ~ { } \fi: __cs_generate_variant_loop_long:wNNnn } ~
3867 { }

3868 \gq_stop

3869 \exp_not:N #1 {#2} {#4}

3870 }

3871 __cs_generate_variant:Nnnw #1 {#2} {#3}

3872 }
(End definition for __cs_generate_variant:Nnnw.)

__cs generate variant loop:nlill #1 : Last few consecutive letters common between the base and variant (more precisely,
__cs_generate variant loop base:N __cs_generate_variant_same:N (letter) for each letter).
_cs generate variant loop same:w #2 : Next variant letter.
m #3 : Remainder of variant form.
m #4 : Next base letter.

The first argument is populated by __cs_generate_variant_loop_same:w when
a variant letter and a base letter match. It is flushed into the input stream whenever the
two letters are different: if the loop ends before, the argument is dropped, which means
that trailing common letters are ignored.

The case where the two letters are different is only allowed if the base is N and the
variant is ¢, or when the base is n and the variant is o, V, v, £ or x. Otherwise, call
__cs_generate_variant_loop_invalid:NNwNNnn to remove the end of the loop, get
arguments at the end of the loop, and place an appropriate error message as a second
argument of __cs_generate_variant:wwNN. If the letters are distinct and the base
letter is indeed n or N, leave in the input stream whatever argument #1 was collected, and
the next variant letter #2, then loop by calling __cs_generate_variant_loop:nNwN.

The loop can stop in three ways.

__cs_generate variant loop end:n
__cs_generate variant loop long:s

__cs_generate variant loop invalid:

o If the end of the variant form is encountered first, #2 is __cs_generate_variant_-
loop_end:nwwwlNnn (expanded by the conditional \if :w), which inserts some to-
kens to end the conditional; grabs the (base name) as #7, the (variant signature)
#8, the (next base letter) #1 and the part #3 of the base signature that wasn’t read
yet; and combines those into the (new function) to be defined.

o If the end of the base form is encountered first, #4 is ~{}\fi: which ends the condi-
tional (with an empty expansion), followed by __cs_generate_variant_loop_-
long:wNNnn, which places an error as the second argument of __cs_generate_-
variant :wwNN.

e The loop can be interrupted early if the requested expansion is unavailable, namely
when the variant and base letters differ and the base is not the right one (n or N to
support the variant). In that case too an error is placed as the second argument of
__cs_generate_variant:wwNN.

372

Note that if the variant form has the same length as the base form, #2 is as described in
the first point, and #4 as described in the second point above. The __cs_generate_-
variant_loop_end:nwwwNNnn breaking function takes the empty brace group in #4 as
its first argument: this empty brace group produces the correct signature for the full
variant.

;73 \cs_new:Npn __cs_generate_variant_loop:nNwN #1#2#3 \q_mark #4
3874 {

3875 \if:w #2 #4

3876 \exp_after:wN __cs_generate_variant_loop_same:w

3877 \else:

3878 \if:w #4 __cs_generate_variant_loop_base:N #2 \else:
3879 \if:w O

3880 \if:w N #4 \else: \if:w n #4 \else: 1 \fi: \fi:

3881 \if:w \scan_stop: __cs_generate_variant_loop_base:N #2 1 \fi:
3882 0

3883 __cs_generate_variant_loop_special:NNwNNnn #4#2
3884 \else :

3885 __cs_generate_variant_loop_invalid:NNwNNnn #4#2
3886 \fi:

3887 \fi:

3888 \fi:

3889 #1

3890 \prg_do_nothing:

3891 #2

3892 __cs_generate_variant_loop:nNwN { } #3 \q_mark
3893 }

;0 \cs_new:Npn __cs_generate_variant_loop_base:N #1
3895 {

3896 \if:w c #1 N \else:

3807 \if:w o #1 n \else:

3808 \if:w V #1 n \else:

3899 \if:w v #1 n \else:

3900 \if:w f #1 n \else:

3901 \if:w e #1 n \else:

3002 \if:w x #1 n \else:

3903 \if:w n #1 n \else:

3904 \if:w N #1 N \else:

3905 \scan_stop:

3906 \fi:

3907 \fi:

3908 \fi:

3909 \fi:

3910 \fi:

3911 \fi:

3912 \fi:

3913 \fi:

3914 \fi:

3915 }

3016 \cs_new:Npn __cs_generate_variant_loop_same:w

3017 #1 \prg_do_nothing: #2#3#4

;00 { #3 { #1 __cs_generate_variant_same:N #2 } }

3019 \cs_new:Npn __cs_generate_variant_loop_end:nwwwNNnn
3920 #1#2 \q_mark #3 ~ #4 \q_stop #L#6#7#8

373

3022 \scan_stop: \scan_stop: \fi:

3923 \exp_not:N \q_mark

3924 \exp_not:N \g_stop

3925 \exp_not:N #6

3926 \exp_not:c { #7 : #8 #1 #3 }

3927 }

;s \cs_new:Npn __cs_generate_variant_loop_long:wNNnn #1 \q_stop #2#3#4#5
3929 {

3930 \exp_not:n

3931 {

3032 \q_mark

3033 __kernel_msg_error:nnxx { kernel } { variant-too-long }
3034 {#5} { \token_to_str:N #3 }

3935 \use_none:nnn

3936 \q_stop

3937 #3

3038 #3

3939 }

3940 }

3041 \cs_new:Npn __cs_generate_variant_loop_invalid:NNwNNnn
3942 #1#2 \fi: \fi: \fi: #3 \q_stop #4#5#6#7

3943 {

3944 \fi: \fi: \fi:

3945 \exp_not:n

3946 {

3947 \q_mark

3048 __kernel_msg_error:nnxxxx { kernel } { invalid-variant }
3049 {#7} { \token_to_str:N #5 } {#1} {#2}

3950 \use_none:nnn

3951 \q_StOp

3952 #5

3953 #5

3954 3

3955 ¥

056 \cs_new:Npn __cs_generate_variant_loop_special:NNwNNnn
3957 #1#2#3 \q_stop #4#54#64#7

3958 {

3959 #3 \q_stop #4 #5 {#6} {#7}

3960 \exp_not:n

3961 {

3962 __kernel_msg_error :nnxxxx

3963 { kernel } { deprecated-variant }

3064 {#7} { \token_to_str:N #5 } {#1} {#2}
3965 }

3966 }

(End definition for __cs_generate_variant_loop:nNwN and others.)

\cs generate variant sane:l When the base and variant letters are identical, don’t do any expansion. For most

argument types, we can use the n-type no-expansion, but the N and p types require a
slightly different behaviour with respect to braces. For V-type this function could output
N to avoid adding useless braces but that is not a problem.

2067 \cs_new:Npn __cs_generate_variant_same:N #1

374

__cs_generate_variant:wwNN

__cs_generate_internal variant:n

__cs_generate_internal variant:wwnw

W

__cs_generate_internal variant_loop:n

3068 {
3069 \if:w N #1 N \else:

3970 \if:w p #1 p \else:

3971 n

3972 \if:w n #1 \else:

3073 __cs_generate_variant_loop_special :NNwNNnn #1#1
3074 \fi:

3975 \fi:

3076 \fi:

3977 }

(End definition for __cs_generate_variant_same:N.)

If the variant form has already been defined, log its existence (provided log-functions
is active). Otherwise, make sure that the \exp_args:N #3 form is defined, and if it
contains x, change __cs_tmp:w locally to \cs_new_protected:Npx. Then define the
variant by combining the \exp_args:N #3 variant and the base function.

;078 __kernel_patch:nnNNpn

3979 {

30980 \cs_if_free:NF #4

3981 {

3082 __kernel_debug_log:x

3983 {

3984 Variant~\token_to_str:N #4-~%

3085 already~defined;~ not~ changing~ it~ \msg_line_context:
3986 }

3987 }

3988 }

3989 { }

;000 \cs_new_protected:Npn __cs_generate_variant:wwNN
3901 #1 \q_mark #2 \q_stop #3#4

3992 {

3993 #2

3994 \cs_if_free:NT #4

3995 {

3996 \group_begin:

3097 __cs_generate_internal_variant:n {#1}

3908 __cs_tmp:w #4 { \exp_not:c { exp_args:N #1 } \exp_not:N #3 }
3999 \group_end:

4000 }

4001 }

(End definition for __cs_generate_variant:wwNN.)

Test if \exp_args:N #1 is already defined and if not define it via the \: : commands using
the chars in #1. If #1 contains an x (this is the place where having converted the original
comma-list argument to a string is very important), the result should be protected, and
the next variant to be defined using that internal variant should be protected.

2002 \cs_new_protected:Npx __cs_generate_internal_variant:n #1

4003 '{:

4004 \exp_not:N __cs_generate_internal_variant:wwnNwnn

4005 #1 \exp_not:N \q_mark
4006 { \cs_set_eq:NN \exp_not:N __cs_tmp:w \cs_new_protected:Npx }
4007 \cs_new_protected:cpx

375

\prg_generate conditional variant:linn
__cs_generate_variant:nnNnn
__cs_generate_variant:w
__cs_generate_variant:n
__cs_generate variant p form:nnn

__cs _generate variant T form:nnn

\

__cs_generate variant F form:nnn

__cs_generate variant TF form:nnn

4008 \token_to_str:N x \exp_not:N \g_mark

4009 { }

4010 \cs_new:cpx

4011 \exp_not:N \g_stop

4012 { exp_args:N #1 }

4013 {

4014 \exp_not:N __cs_generate_internal_variant_loop:n #1
4015 { : \exp_not:N \use_i:nn }

4016 }

4017 }

2015 \exp_last_unbraced:NNNNo
4019 \cs_new_protected:Npn __cs_generate_internal_variant:wwnNwnn #1

4020 { \token_to_str:N x } #2 \qg_mark #3#4#5 \q_stop #6#7
4021 {

4022 #3

4023 \cs_if_free:cT {#6} { #4 {#6} {#7} }

4024 }

This command grabs char by char outputting \::#1 (not expanded further). We avoid
tests by putting a trailing : \use_i:nn, which leaves \cs_end: and removes the looping

macro. The colon is in fact also turned into \::: so that the required structure for
\exp_args:N... commands is correctly terminated.

2025 \cs_new:Npn __cs_generate_internal_variant_loop:n #1

4026 {

4027 \exp_after:wN \exp_not:N \cs:w :: #1 \cs_end:

4028 __cs_generate_internal_variant_loop:n

4029 }

(End definition for __cs_generate_internal_variant:n, __cs_generate_internal_variant:wwnw,
and __cs_generate_internal_variant_loop:n.)

203 \cs_new_protected:Npn \prg_generate_conditional_variant:Nnn #1

4031 '{:

4032 \use:x

4033 {

4034 __cs_generate_variant:nnNnn

4035 \cs_split_function:N #1

4036 }

4037 }

203 \cs_new_protected:Npn __cs_generate_variant:nnNnn #1#2#3#4#5
4039 {

4040 \if_meaning:w \c_false_bool #3

4041 __kernel_msg_error:nnx { kernel } { missing-colon }
4042 { \token_to_str:c {#1} }

4043 \use_i_delimit_by_q_stop:nw

4044 \fi:

4045 \exp_after:wN __cs_generate_variant:w

4046 \tl_to_str:n {#5} , \scan_stop: , \g_recursion_stop
4047 \use_none_delimit_by_q_stop:w \q_mark {#1} {#2} {#4} \q_stop
4048 }

204 \cs_new_protected:Npn __cs_generate_variant:w

4050 #1 , #2 \q_mark #3#4#5

4051 {

4052 \if _meaning:w \scan_stop: #1 \scan_stop:

376

4053 \if _meaning:w \g_nil #1 \g_nil

4054 \use_i:nnn

4055 \fi:

4056 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
4057 \else:

4058 \cs_if_exist_use:cTF { __cs_generate_variant_#1_form:nnn }
4059 { {#3} {#4} {#5} }

4060 {

4061 __kernel_msg_error:nnxx

4062 { kernel } { conditional-form-unknown }

4063 {#1} { \token_to_str:c { #3 : #4 } }

4064 }

4065 \fi:

4066 __cs_generate_variant:w #2 \q_mark {#3} {#4} {#5}

4067 }

s06: \Cs_new_protected:Npn __cs_generate_variant_p_form:nnn #1#2
200 { \cs_generate_variant:cn { #1 _p : #2 } }
2070 \cs_new_protected:Npn __cs_generate_variant_T_form:nnn #1#2
4071 { \cs_generate_variant:cn { #1 : #2 T } }
2072 \cs_new_protected:Npn __cs_generate_variant_F_form:nnn #1#2
2073 { \cs_generate_variant:cn { #1 : #2 F } }
2074 \cs_new_protected:Npn __cs_generate_variant_TF_form:nnn #1#2
205 { \cs_generate_variant:cn { #1 : #2 TF } }

(End definition for \prg_generate_conditional_variant:Nnn and others. This function is documented
on page 100.)

\exp_args_generate:n This function is not used in the kernel hence we can use functions that are defined in
__cs_args_generate:Nin later modules. It also does not need to be fast so use inline mappings. For each requested
__cs_args_generate:n variant we check that there are no characters besides NnpcofVvx, in particular that there
are no spaces. Then we loop through the variant specifier and convert each letter to

\::(variant letter), with a trailing \:::.

2076 \cs_new_protected:Npn \exp_args_generate:n #1

4077 {

4078 \exp_args:No \clist_map_inline:nn { \tl_to_str:n {#1} }

4079 {

4080 \str_map_inline:nn {##1}

4081 {

4082 \str_if_in:nnF { NnpcofeVvx } {####1}

4083 {

4084 __kernel_msg_error:nnnn { kernel } { invalid-exp-args }
4085 {####1} {##1}

4086 \str_map_break:n { \use_none:nnnn }

4087 }

4088 }

4089 \exp_args:Nc __cs_args_generate:Nn { exp_args:N ##1 } {##1}
4090 }

4091 }

2002 \cs_new_protected:Npn __cs_args_generate:Nn #1#2

4093 {

4004 \cs_if_exist:NF #1

4095 {

4096 \str_if_in:nnTF {#2} { x } { \cs_new_protected:Npx } { \cs_new:Npx }
4007 #1 { \tl_map_function:nN { #2 : } __cs_args_generate:n }

377

\tl_new:N
\tl_new:c

\tl_const:Nn
\tl_const:Nx
\tl_const:cn
\tl_const:cx

\tl_clear:N
\tl_clear:c
\tl_gclear:N
\tl_gclear:c

4008 T
4099 }
2100 \cs_new:Npn __cs_args_generate:n #1 { \exp_not:c { :: #1 } }

(End definition for \exp_args_generate:n, __cs_args_generate:Nn, and __cs_args_generate:n.
This function is documented on page 245.)

a0 (/initex | package)

6 13tl implementation

a0z (*initex | package)
4103 <@@=tl>
A token list variable is a TEX macro that holds tokens. By using the e-TEX primitive
\unexpanded inside a TEX \edef it is possible to store any tokens, including #, in this
way.

6.1 Functions

Creating new token list variables is a case of checking for an existing definition and doing
the definition.
2104 \cs_new_protected:Npn \tl_new:N #1

4105 {
4106 __kernel_chk_if_free_cs:N #1
4107 \cs_gset_eq:NN #1 \c_empty_tl
4108 }

2100 \cs_generate_variant:Nn \tl_new:N { c }
(End definition for \tl_new:N. This function is documented on page 37.)
Constants are also easy to generate.

2110 __kernel_patch:nnNNpn { __kernel_chk_var_scope:NN c #1 } { }
2111 \cs_new_protected:Npn \tl_const:Nn #1#2

4112 {

4113 __kernel_chk_if_free_cs:N #1

4114 \cs_gset_nopar:Npx #1 { \exp_not:n {#2} }
4115 }

2116 __kernel_patch:nnNNpn { __kernel_chk_var_scope:NN c #1 } { }
2117 \cs_new_protected:Npn \tl_const:Nx #1#2

4118 {

4119 __kernel_chk_if_free_cs:N #1
4120 \cs_gset_nopar:Npx #1 {#2}
4121 }

2122 \cs_generate_variant:Nn \tl_const:Nn { ¢ }
2123 \cs_generate_variant:Nn \tl_const:Nx { ¢ }

(End definition for \tl_const:Nn. This function is documented on page 37.)

Clearing a token list variable means setting it to an empty value. Error checking is sorted
out by the parent function.

2124 \cs_new_protected:Npn \tl_clear:N #1

a5 { \tl_set_eq:NN #1 \c_empty_tl }

4126 \cs_new_protected:Npn \tl_gclear:N #1

227 { \tl_gset_eq:NN #1 \c_empty_tl }

2126 \cs_generate_variant:Nn \tl_clear:N { c }

2120 \cs_generate_variant:Nn \tl_gclear:N { c }

378

\tl_clear_new:N
\tl_clear_new:c
\tl_gclear_new:N
\tl_gclear_new:c

\tl_set_eq:NN
\tl_set_eq:Nc
\tl_set_eq:cN
\tl_set_eq:cc
\tl_gset_eq:NN
\tl_gset_eq:Nc
\tl_gset_eq:cN
\tl_gset_eq:cc

\tl_concat:NNN
\tl_concat:ccc
\tl_gconcat :NNN

\tl_gconcat:ccc

(End definition for \tl_clear:N and \tl_gclear:N. These functions are documented on page 37.)

Clearing a token list variable means setting it to an empty value. Error checking is sorted
out by the parent function.

2130 \cs_new_protected:Npn \tl_clear_new:N #1

4131 { \tl_if_exist:NTF #1 { \tl_clear:N #1 } { \tl_new:N #1 } }

2132 \cs_new_protected:Npn \tl_gclear_new:N #1

a3z { \tl_if_exist:NTF #1 { \tl_gclear:N #1 } { \tl_new:N #1 } }

2131 \cs_generate_variant:Nn \tl_clear_new:N { c }

2135 \cs_generate_variant:Nn \tl_gclear_new:N { c }

(End definition for \tl_clear_new:N and \tl_gclear_new:N. These functions are documented on page
38.)

For setting token list variables equal to each other. When checking is turned on, make
sure both variables exist.

2136 __kernel_if_debug:TF

4137 {

4138 \cs_new_protected:Npn \tl_set_eq:NN #1#2
4139 {

4140 __kernel_chk_var_local:N #1

4141 __kernel_chk_var_exist:N #2

4142 \cs_set_eq:NN #1 #2

4143 }

4144 \cs_new_protected:Npn \tl_gset_eq:NN #1#2
4145 {

4146 __kernel_chk_var_global:N #1

4147 __kernel_chk_var_exist:N #2

4148 \cs_gset_eq:NN #1 #2

4149 }

4150 }

4151 {

4152 \cs_new_eq:NN \tl_set_eq:NN \cs_set_eq:NN
4153 \cs_new_eq:NN \tl_gset_eq:NN \cs_gset_eq:NN
4154 }

2155 \cs_generate_variant:Nn \tl_set_eq:NN { cN, Nc, cc }
2156 \cs_generate_variant:Nn \tl_gset_eq:NN { cN, Nc, cc }

(End definition for \tl_set_eq:NN and \tl_gset_eq:NN. These functions are documented on page 38.)

Concatenating token lists is easy. When checking is turned on, all three arguments must
be checked: a token list #2 or #3 equal to \scan_stop: would lead to problems later on.

2157 __kernel_patch:nnNNpn

4158 {

4159 __kernel_chk_var_exist:N #2
4160 __kernel_chk_var_exist:N #3
4161 }

4162 { }

4163 \cs_new_protected:Npn \tl_concat:NNN #1#2#3
264 { \tl_set:Nx #1 { \exp_not:o {#2} \exp_not:o {#3} } }
2165 __kernel_patch:nnNNpn

4166 {
4167 __kernel_chk_var_exist:N #2
4168 __kernel_chk_var_exist:N #3

379

\tl_if_exist_p:N
\tl_if_exist_p:c
\tl_if_exist:NTF
\tl_if_exist:cTF

\c_empty_tl

\c_novalue_tl

\c_space_tl

\tl_set:
\tl_set:
\tl_set:
\tl_set:
\tl_set:
\tl_set:
\tl_set:
\tl_set:
\tl_set:
\tl_set:
\tl_set:
\tl_set:
\tl_gset:
\tl_gset:
\tl_gset:
:No

\tl_gset

\tl_gset:
\tl_gset:
\tl_gset:
\tl gset:

Nn
NV
Nv
No
Nf
Nx
cn
cV
cv
co
cf
cx

Nn
NV
Nv

Nf
Nx
cn
cV

4160 }

4170 {}

«71 \cs_new_protected:Npn \tl_gconcat:NNN #1#2#3

a2 { \tl_gset:Nx #1 { \exp_not:o {#2} \exp_not:o {#3} } }
2173 \cs_generate_variant:Nn \tl_concat:NNN { ccc }

2174 \cs_generate_variant:Nn \tl_gconcat:NNN { ccc }

(End definition for \tl_concat:NNN and \tl_gconcat:NNN. These functions are documented on page
38.)
Copies of the cs functions defined in I3basics.
2175 \prg_new_eq_conditional:NNn \tl_if_exist:N \cs_if _exist:N { TF , T , F, p }
2176 \prg_new_eq_conditional:NNn \tl_if_exist:c \cs_if_exist:c { TF , T , F , p }

(End definition for \tl_if_exist:NTF. This function is documented on page 38.)

6.2 Constant token lists

Never full. We need to define that constant before using \t1_new:N.
2177 \tl_const:Nn \c_empty_tl { }

(End definition for \c_empty_tl. This variable is documented on page 51.)

A special marker: as we don’t have \char_generate:nn yet, has to be created the old-
fashioned way.
s17e \group_begin:
2179 \tex_lccode:D ‘A
12180 \tex_lccode:D ‘N = ‘N

2181 \tex_lccode:D ‘V = ‘V

2132 \tex_lowercase:D

4183 {

4184 \group_end:

4185 \tl_const:Nn \c_novalue_tl { ANoValue- }
4186 }

(End definition for \c_novalue_tl. This variable is documented on page 51.)

A space as a token list (as opposed to as a character).
2157 \tl_const:Nn \c_space_tl { ~ }

(End definition for \c_space_tl. This variable is documented on page 51.)

6.3 Adding to token list variables

By using \exp_not:n token list variables can contain # tokens, which makes the token
list registers provided by TEX more or less redundant. The \t1l_set:No version is done
“by hand” as it is used quite a lot. Each definition is prefixed by a call to __kernel_ -
patch:nnNNpn which adds an existence check to the definition.

sss __kernel_patch:nnNNpn { __kernel_chk_var_local:N #1 } { }

2150 \cs_new_protected:Npn \tl_set:Nn #1#2

290 { \cs_set_nopar:Npx #1 { \exp_not:n {#2} } }

2101 __kernel_patch:nnNNpn { __kernel_chk_var_local:N #1 } { }

2192 \cs_new_protected:Npn \tl_set:No #1#2

2103 { \cs_set_nopar:Npx #1 { \exp_not:o {#2} } }

380

2194 __kernel_patch:nnNNpn { __kernel_chk_var_local:N #1 } { }
2105 \cs_new_protected:Npn \tl_set:Nx #1#2

2106 { \cs_set_nopar:Npx #1 {#2} }

2107 __kernel_patch:nnNNpn { __kernel_chk_var_global:N #1 } { }
2105 \cs_new_protected:Npn \tl_gset:Nn #1#2

200 { \cs_gset_nopar:Npx #1 { \exp_not:n {#2} } }

200 __kernel_patch:nnNNpn { __kernel_chk_var_global:N #1 } { }
201 \cs_new_protected:Npn \tl_gset:No #1#2

20 { \cs_gset_nopar:Npx #1 { \exp_not:o {#2} } }

203 __kernel_patch:nnNNpn { __kernel_chk_var_global:N #1 } { }
20: \cs_new_protected:Npn \tl_gset:Nx #1#2

205 { \cs_gset_nopar:Npx #1 {#2} }

206 \cs_generate_variant:Nn \tl_set:Nn { NV , Nv , Nf }
207 \cs_generate_variant:Nn \tl_set:Nx { c }

208 \cs_generate_variant:Nn \tl_set:Nn { c, co, ¢V, cv , cf }
200 \cs_generate_variant:Nn \tl_gset:Nn { NV , Nv , Nf }
210 \cs_generate_variant:Nn \tl_gset:Nx { ¢ }

211 \cs_generate_variant:Nn \tl_gset:Nn { ¢, co , ¢V, cv , cf }

(End definition for \tl_set:Nn and \tl_gset:Nn. These functions are documented on page 38.)

\tl_put_left:Nn Adding to the left is done directly to gain a little performance.

\tl_put_left:NV 212 __kernel_patch:nnNNpn { __kernel_chk_var_local:N #1 } { }
\tl_put_left:No 213 \cs_new_protected:Npn \tl_put_left:Nn #1#2
\tl_put_left:Nx 4214 { \cs_set_nopar:Npx #1 { \exp_not:n {#2} \exp_not:o #1 } }
\tl_put_left:cn 2215 __kernel_patch:nnNNpn { __kernel_chk_var_local:N #1 } { }
\tl_put_left:cV 2216 \cs_new_protected:Npn \tl_put_left:NV #1#2
\tl_put_left:co 217 { \cs_set_nopar:Npx #1 { \exp_not:V #2 \exp_not:o #1 } }
2215 __kernel_patch:nnNNpn { __kernel_chk_var_local:N #1 } { }
2210 \cs_new_protected:Npn \tl_put_left:No #1#2
\t1_gput_left:NV 220 { \cs_set_nopar:Npx #1 { \exp_not:o {#2} \exp_not:o #1 } }
221 __kernel_patch:nnNNpn { __kernel_chk_var_local:N #1 } { }
\tl_gput_left:No 222 \cs_new_protected:Npn \tl_put_left:Nx #1#2
\tl_gput_left:Nx . \cs_set_nopar:Npx #1 { #2 \exp_not:o #1 } }
\tl_gput_left:cn 224 __kernel_patch:nnNNpn { __kernel_chk_var_global:N #1 } { }
\tl_gput_left:cV 225 \cs_new_protected:Npn \tl_gput_left:Nn #1#2
\tl_gput_left:co 226 { \cs_gset_nopar:Npx #1 { \exp_not:n {#2} \exp_not:o #1 } }
\tl_gput_left:cx 227 __kernel_patch:nnNNpn { __kernel_chk_var_global:N #1 } { }
42¢ \cs_new_protected:Npn \tl_gput_left:NV #1#2
220 { \cs_gset_nopar:Npx #1 { \exp_not:V #2 \exp_not:o #1 } }
23 __kernel_patch:nnNNpn { __kernel_chk_var_global:N #1 } { }
231 \cs_new_protected:Npn \tl_gput_left:No #1#2
232 { \cs_gset_nopar:Npx #1 { \exp_not:o {#2} \exp_not:o #1 } }
233 __kernel_patch:nnNNpn { __kernel_chk_var_global:N #1 } { }
223 \cs_new_protected:Npn \tl_gput_left:Nx #1#2
235 { \cs_gset_nopar:Npx #1 { #2 \exp_not:o {#1} } }

\tl_put_left:cx
\tl_gput_left:Nn

236 \cs_generate_variant:Nn \tl_put_left:Nn { c }
237 \cs_generate_variant:Nn \tl_put_left:NV { c }
23 \cs_generate_variant:Nn \tl_put_left:No { c }
230 \cs_generate_variant:Nn \tl_put_left:Nx { c }
240 \cs_generate_variant:Nn \tl_gput_left:Nn { c }
24 \cs_generate_variant:Nn \tl_gput_left:NV { c }
242 \cs_generate_variant:Nn \tl_gput_left:No { c }
243 \cs_generate_variant:Nn \tl_gput_left:Nx { c }

381

(End definition for \tl_put_left:Nn and \tl_gput_left:Nn. These functions are documented on page
38.)

\tl_put_right:Nn The same on the right.

\tl_put_right:NV 241 __kernel_patch:nnNNpn { __kernel_chk_var_local:N #1 } { }
\tl_put_right:No 205 \cs_new_protected:Npn \tl_put_right:Nn #1#2
\tl_put_right:Nx 26 { \cs_set_nopar:Npx #1 { \exp_not:o #1 \exp_not:n {#2} } }
\tl_put_right:cn 247 __kernel_patch:nnNNpn { __kernel_chk_var_local:N #1 } { }
\tl_put_right:cV 245 \cs_new_protected:Npn \tl_put_right:NV #1#2
a4 { \cs_set_nopar:Npx #1 { \exp_not:o #1 \exp_not:V #2 } }
250 __kernel_patch:nnNNpn { __kernel_chk_var_local:N #1 } { }
251 \cs_new_protected:Npn \tl_put_right:No #1#2
w52 { \cs_set_nopar:Npx #1 { \exp_not:o #1 \exp_not:o {#2} } }
253 __kernel_patch:nnNNpn { __kernel_chk_var_local:N #1 } { }
2254 \cs_new_protected:Npn \tl_put_right:Nx #1#2
\tl_gput_right:Nx . ¢ \cs_set_nopar:Npx #1 { \exp_not:o #1 #2 } }
\tl_gput_right:cn 256 __kernel_patch:nnNNpn { __kernel_chk_var_global:N #1 } { }
\tl_gput_right:cV 257 \cs_new_protected:Npn \tl_gput_right:Nn #1#2
\tl_gput_right:co ass { \cs_gset_nopar:Npx #1 { \exp_not:o #1 \exp_not:n {#2} } }
\tl_gput_right:cx 250 __kernel_patch:nnNNpn { __kernel_chk_var_global:N #1 } { }
260 \cs_new_protected:Npn \tl_gput_right:NV #1#2
261 { \cs_gset_nopar:Npx #1 { \exp_not:o #1 \exp_not:V #2 } }
262 __kernel_patch:nnNNpn { __kernel_chk_var_global:N #1 } { }
2263 \cs_new_protected:Npn \tl_gput_right:No #1#2
260 { \cs_gset_nopar:Npx #1 { \exp_not:o #1 \exp_not:o {#2} } }
265 __kernel_patch:nnNNpn { __kernel_chk_var_global:N #1 } { }
266 \cs_new_protected:Npn \tl_gput_right:Nx #1#2
267 { \cs_gset_nopar:Npx #1 { \exp_not:o {#1} #2 } }
265 \cs_generate_variant:Nn \tl_put_right:Nn {
200 \Cs_generate_variant:Nn \tl_put_right:NV
270 \cs_generate_variant:Nn \tl_put_right:No
271 \cs_generate_variant:Nn \tl_put_right:Nx
272 \cs_generate_variant:Nn \tl_gput_right:Nn
273 \cs_generate_variant:Nn \tl_gput_right:NV
271 \cs_generate_variant:Nn \tl_gput_right:No
275 \cs_generate_variant:Nn \tl_gput_right:Nx

\tl_put_right:co
\tl_put_right:cx
\tl_gput_right:Nn
\tl_gput_right:NV
\tl_gput_right:No

O 0O 0 0 0 0 0 0
el ol e R

N N N

(End definition for \t1_put_right:Nn and \tl_gput_right:Nn. These functions are documented on page
38.)

6.4 Reassigning token list category codes

\c__tl_rescan_marker_t1l The rescanning code needs a special token list containing the same character (chosen here
to be a colon) with two different category codes: it cannot appear in the tokens being
rescanned since all colons have the same category code.

276 \tl_const:Nx \c__tl_rescan_marker_tl { : \token_to_str:N : }

(End definition for \c__t1l_rescan_marker_tl.)

\tl_set_rescan:Nnn In a group, after some initial setup explained below and the user setup #3 (followed by
\tl_set_rescan:Nno \scan_stop: to be safe), thereis a call to __t1_set_rescan:nNN. This shared auxiliary
\tl_set_rescan:Nnx distinguishes single-line and multi-line files as explained below. In the simplest case of
\tl_set_rescan:cnn multi-line files it calls (with the same arguments) __t1_set_rescan_multi:nNN, whose
\tl_set_rescan:cno
\tl_set_rescan:cnx
\tl_gset_rescan:Nnn
\tl_gset_rescan:Nno 382
\tl_gset_rescan:Nnx
\tl_gset_rescan:cnn
\tl_gset_rescan:cno
\tl_gset_rescan:cnx
\tl_rescan:nn
__tl_set_rescan:NNnn
__tl_set_rescan_multi:nNN

code is included here to help understand the approach: it rescans its argument #1, closes
the group, and performs the assignment.

One difficulty when rescanning is that \scantokens treats the argument as a file,
and without the correct settings a TEX error occurs:

! File ended while scanning definition of

A related minor issue is a warning due to opening a group before the \scantokens and
closing it inside that temporary file; we avoid that by setting \tracingnesting. The
standard solution to the “File ended” error is to grab the rescanned tokens as a delimited
argument of an auxiliary, here __t1l_set_rescan:NNw, that performs the assignment,
then let TEX “execute” the end of file marker. As usual in delimited arguments we use
\prg_do_nothing: to avoid stripping an outer set braces: this is removed by using o-
expanding assignments. The delimiter cannot appear within the rescanned token list
because it contains twice the same character, with different catcodes.

For \tl_rescan:nn we cannot simply call __tl_set_rescan:NNnn \prg_do_-
nothing: \use:n because that would leave the end-of-file marker after the result of
rescanning. If that rescanned result is code that looks further in the input stream for
arguments, it would break.

The two \if_false: ... \fi: are there to prevent alignment tabs to cause a change
of tabular cell while rescanning. We put the “opening” one after \group_begin: so that
if one accidentally f-expands \tl_set_rescan:Nnn braces remain balanced. This is
essential in e-type arguments when \expanded is not available.

277 \cs_new_protected:Npn \tl_set_rescan:Nnn
2 { __tl_set_rescan:NNnn \tl_set:No }
2270 \cs_new_protected:Npn \tl_gset_rescan:Nnn

280 { __tl_set_rescan:NNnn \tl_gset:No }

281 \cs_new_protected:Npn \tl_rescan:nn #1#2

4282 {

4283 \tl_set_rescan:Nnn \1__tl_internal_a_tl {#1} {#2}

4284 \exp_after:wN \tl_clear:N \exp_after:wN \1__tl_internal_a_tl
4285 \1__tl_internal_a_tl

4286 }

287 \cs_new_protected:Npn __tl_set_rescan:NNnn #1#2#3#4

4288 {

4289 \group_begin:

4290 \if_false: { \fi:

4201 \int_set_eq:NN \tex_tracingnesting:D \c_zero_int

4202 \exp_args:No \tex_everyeof:D { \c__tl_rescan_marker_tl }
4203 \int_compare:nNnT \tex_endlinechar:D = { 32 }

4294 { \int_set:Nn \tex_endlinechar:D { -1 } }

4205 \int_set_eq:NN \tex_newlinechar:D \tex_endlinechar:D

4296 #3 \scan_stop:

4297 \exp_args:No __tl_set_rescan:nNN { \tl_to_str:n {#4} } #1 #2
4208 \if_false: } \fi:

4299 }

2300 \cs_new_protected:Npn __tl_set_rescan_multi:nNN #1#2#3

4301 {

4302 \exp_after:wN __tl_rescan:NNw

4303 \exp_after:wN #2

4304 \exp_after:wN #3

4305 \exp_after:wN \prg_do_nothing:

4306 \tex_scantokens:D {#1}

383

4307 }
2308 \exp_args:Nno \use:nn
2300 { \cs_new:Npn __tl_rescan:NNw #1#2#3 } \c__tl_rescan_marker_tl

4310 {

4311 \group_end:

4312 #1 #2 {#3}

4313 }

2314 \cs_generate_variant:Nn \tl_set_rescan:Nnn { Nno , Nnx }
2315 \cs_generate_variant:Nn \tl_set_rescan:Nnn { ¢ , cno , cnx }
2316 \cs_generate_variant:Nn \tl_gset_rescan:Nnn { Nno , Nnx }

2317 \cs_generate_variant:Nn \tl_gset_rescan:Nnn { ¢ , cno }

(End definition for \tl_set_rescan:Nnn and others. These functions are documented on page 40.)

__tl_set_rescan:nNN This function calls __t1l_set_rescan_multi:nNN or __tl_set_rescan_single:nnNN

__tl_set_rescan_single:nnll { ’ } depending on whether its argument is a single-line fragment of code/data or is

_ t1 set rescan single awc:inlll made of multiple lines by testing for the presence of a \newlinechar character. If
\newlinechar is out of range, the argument is assumed to be a single line.

The case of multiple lines is a straightforward application of \scantokens as de-
scribed above. The only subtlety is that \newlinechar should be equal to \endlinechar
because \newlinechar characters become new lines and then become \endlinechar
characters when writing to an abstract file and reading back. This equality is ensured by
setting \newlinechar equal to \endlinechar. Prior to this, \endlinechar is set to —1
it it was 32 (in particular true after \ExplSyntax0On) to avoid unreasonable line-breaks at
every space for instance in error messages triggered by the user setup. Another side effect
of reading back from the file is that spaces (catcode 10) are ignored at the beginning of
lines, and spaces and tabs (character code 32 and 9) are ignored at the end of lines.

For a single line, no \endlinechar should be added, so it is set to —1, and spaces
should not be removed. Trailing spaces and tabs are a difficult matter, as TEX removes
these at a very low level. The only way to preserve them is to rescan not the argument but
the argument followed by a character with a reasonable category code. Here, 11 (letter)
and 12 (other) are accepted, as these are convenient, suitable for delimiting an argument,
and it is very unlikely that none of the ASCII characters are in one of these categories.
To avoid selecting one particular character to put at the end, whose category code may
have been modified, there is a loop through characters from ’> (ASCII 39) to ~ (ASCII
127). The choice of starting point was made because this is the start of a very long range
of characters whose standard category is letter or other, thus minimizing the number of
steps needed by the loop (most often just a single one). Once a valid character is found,
run some code very similar to __t1_set_rescan_multi:nNN but with that character put
at the start and end. The auxiliary __t1_rescan:NNw must be redefined to also remove
the additional character (with the appropriate catcode thanks to \char_generate:nn).
If no valid character is found (very rare), fall-back on __t1l_set_rescan_multi:nNN.

2315 \cs_new_protected:Npn __tl_set_rescan:nNN #1

4319 {

4320 \int_compare:nNnTF \tex_newlinechar:D < 0O

4321 { \use_ii:nn }

4322 {

4323 \exp_args:Nnf \tl_if_in:nnTF {#1}

432 { \char_generate:nn { \tex_newlinechar:D } { 12 } }
4325 }

4326 { __tl_set_rescan_multi:nNN }

4327 {

384

\tl_replace_all:
\tl_replace_all:
\tl_greplace_all:
\tl_greplace_all:
\tl_replace_once:
\tl_replace_once:
\tl_greplace_once:
\tl_greplace_once:

Nnn
cnn
Nnn
cnn
Nnn
cnn
Nnn
cnn

4328 \int_set:Nn \tex_endlinechar:D { -1 }

4329 __tl_set_rescan_single:nnNN { ¢’ }

4330 }

4331 {#1}

4332 }

2333 \cs_new_protected:Npn __tl_set_rescan_single:nnNN #1
4334 {

4335 \int_compare:nNnTF

4336 { \char_value_catcode:n {#1} / 2 } = 6

4337 {

4338 \exp_args:Nf __tl_set_rescan_single_aux:nnNN
4339 { \char_generate:nn {#1} { \char_value_catcode:n {#1} } }
4340 }

4341 {

4302 \int_compare:nNnTF {#1} < { ‘\~ }

4343 {

4344 \exp_args:Nf __tl_set_rescan_single:nnNN
4345 { \int_eval:n { #1 + 1 } }

4346 }

4347 { __tl_set_rescan_multi:nNN }

4348 T

4349 }

2350 \cs_new_protected:Npn __tl_set_rescan_single_aux:nnNN #1#2#3#4
4351 {

4352 \exp_args:Nno \use:nn

4353 { \cs_set:Npn __tl_rescan:NNw ##1##2##3 #1 }
4354 \c__tl_rescan_marker_tl

4355 {

4356 \group_end:

4357 ##1 ##2 { \use_none:n ##3 }
4358 3

4359 \exp_after:wN __tl_rescan:NNw
4360 \exp_after:wN #3

4361 \exp_after:wN #4

4362 \tex_scantokens:D { #1 #2 #1 }
4363 }

(End definition for __tl_set_rescan:nNN, __tl_set_rescan_single:nnNN, and __tl_set_rescan_-
single_aux:nnNN.)

6.5 Modifying token list variables

All of the replace functions call __t1_replace:NnNNNnn with appropriate arguments.
The first two arguments are explained later. The next controls whether the replacement
function calls itself (__tl_replace_next:w) or stops (__tl_replace_wrap:w) after
the first replacement. Next comes an x-type assignment function \tl_set:Nx or \tl_-
gset :Nx for local or global replacements. Finally, the three arguments (¢! var) {(pattern)}
{({replacement)} provided by the user. When describing the auxiliary functions below,
we denote the contents of the (¢l var) by (token list).

2364 \cs_new_protected:Npn \tl_replace_once:Nnn

a5 { __tl_replace:NnNNNnn \g_mark ? __tl_replace_wrap:w \tl_set:Nx 1}
«c \cs_new_protected:Npn \tl_greplace_once:Nnn
267 { __tl_replace:NnNNNnn \g_mark ? __tl_replace_wrap:w \tl_gset:Nx }
236s \cs_new_protected:Npn \tl_replace_all:Nnn

43

385

__tl_replace:NnNNNnn
__t1l_replace_auxi:NnnNNNnn
__tl_replace_auxii:nNNNnn
__tl_replace_next:w
__tl_replace_wrap:w

260 { __tl_replace:NnNNNnn \g_mark ? __tl_replace_next:w \tl_set:Nx 1}
2370 \cs_new_protected:Npn \tl_greplace_all:Nnn

w1 { __tl_replace:NnNNNnn \g_mark ? __tl_replace_next:w \tl_gset:Nx }
2372 \cs_generate_variant:Nn \tl_replace_once:Nnn { c }

2373 \cs_generate_variant:Nn \tl_greplace_once:Nnn { ¢ }

«374 \cs_generate_variant:Nn \tl_replace_all:Nnn { c }

2375 \cs_generate_variant:Nn \tl_greplace_all:Nnn { c }

(End definition for \tl_replace_all:Nnn and others. These functions are documented on page 39.)

To implement the actual replacement auxiliary __t1l_replace_auxii:nNNNnn we need
a (delimiter) with the following properties:

o all occurrences of the (pattern) #6 in “(token list) (delimiter)” belong to the (token
list) and have no overlap with the (delimiter),

o the first occurrence of the (delimiter) in “(token list) (delimiter)” is the trailing
(delimiter).

We first find the building blocks for the (delimiter), namely two tokens (A) and (B) such
that (A) does not appear in #6 and #6 is not (B) (this condition is trivial if #6 has more
than one token). Then we consider the delimiters “(A4)” and “(4) (4)™ (B) (A)™ (B)”,
for n > 1, where (A)™ denotes n copies of (A), and we choose as our (delimiter) the first
one which is not in the (token list).

Every delimiter in the set obeys the first condition: #6 does not contain (A4) hence
cannot be overlapping with the (token list) and the (delimiter), and it cannot be within
the (delimiter) since it would have to be in one of the two (B) hence be equal to this single
token (or empty, but this is an error case filtered separately). Given the particular form
of these delimiters, for which no prefix is also a suffix, the second condition is actually a
consequence of the weaker condition that the (delimiter) we choose does not appear in
the (token list). Additionally, the set of delimiters is such that a (token list) of n tokens
can contain at most O(n'/2) of them, hence we find a (delimiter) with at most O(n'/?)
tokens in a time at most O(n®/2). Bear in mind that these upper bounds are reached
only in very contrived scenarios: we include the case “(A)” in the list of delimiters to try,
so that the (delimiter) is simply \q_mark in the most common situation where neither
the (token list) nor the (pattern) contains \q_mark.

Let us now ahead, optimizing for this most common case. First, two special cases:
an empty (pattern) #6 is an error, and if #1 is absent from both the (token list) #5 and the
(pattern) #6 then we can use it as the {delimiter) through __t1_replace_auxii:nNNNnn
{#1}. Otherwise, we end up calling __t1_replace:NnNNNnn repeatedly with the first
two arguments \q_mark {7}, \? {77}, \?? {777}, and so on, until #6 does not contain
the control sequence #1, which we take as our (A). The argument #2 only serves to
collect 7 characters for #1. Note that the order of the tests means that the first two are
done every time, which is wasteful (for instance, we repeatedly test for the emptyness
of #6). However, this is rare enough not to matter. Finally, choose (B) to be \q_nil
or \q_stop such that it is not equal to #6.

The __t1_replace_auxi:NnnNNNnn auxiliary receives {(A)} and {(A)"(B)} as its
arguments, initially with n = 1. If “(A) (A)™(B) (A)"(B)” is in the (token list) then
increase n and try again. Once it is not anymore in the (token list) we take it as our
(delimiter) and pass this to the auxii auxiliary.

4376 \cs_new_protected:Npn __tl_replace:NnNNNnn #1#2#3#4#5#6#7
4377 {

386

4378 \tl_if_empty:nTF {#6}

4379 {

4380 __kernel_msg_error:nnx { kernel } { empty-search-pattern }
4381 { \tl_to_str:n {#7} }

4382 }

4383 {

4384 \tl_if_in:onTF { #5 #6 } {#1}

4385 {

1386 \tl_if_in:nnTF {#6} {#1}

4387 { \exp_args:Nc __tl_replace:NnNNNnn {#2} {#27} }

4388 {

4389 \quark_if_nil:nTF {#6}

4390 { __tl_replace_auxi:NnnNNNnn #5 {#1} { #1 \q_stop } }
4301 { __tl_replace_auxi:NnnNNNnn #5 {#1} { #1 \gq_nil } }
4392 }

4393 }

4304 { __tl_replace_auxii:nNNNnn {#1} }

4305 #3#4#5 {#6} {#7}

4396 ¥

4397 }

2308 \cs_new_protected:Npn __tl_replace_auxi:NnnNNNnn #1#2#3

4399 {

4400 \tl_if_in:NnTF #1 { #2 #3 #3 }

4401 { __tl_replace_auxi:NnnNNNnn #1 { #2 #3 } {#2} }

4402 { __tl_replace_auxii:nNNNnn { #2 #3 #3 } }

4403 }

The auxiliary __t1_replace_auxii:nNNNnn receives the following arguments:

{(delimiter)} (function) (assignment)
(¢l var) {{pattern)} {(replacement)?

All of its work is done between \group_align_safe_begin: and \group_align_safe_-
end: to avoid issues in alignments. It does the actual replacement within #3 #4 {...}, an
x-expanding (assignment) #3 to the (tl var) #4. The auxiliary __t1_replace_next:w
is called, followed by the (token list), some tokens including the (delimiter) #1, followed
by the (pattern) #5. This auxiliary finds an argument delimited by #5 (the presence of a
trailing #5 avoids runaway arguments) and calls __t1_replace_wrap:w to test whether
this #5 is found within the (token list) or is the trailing one.

If on the one hand it is found within the (token list), then ##1 cannot contain
the (delimiter) #1 that we worked so hard to obtain, thus __tl_replace_wrap:w
gets ##1 as its own argument ##1, and protects it against the x-expanding assignment.
It also finds \exp_not:n as ##2 and does nothing to it, thus letting through \exp_not:n
{(replacement)} into the assignment. Note that __t1l_replace_next:w and __tl_-
replace_wrap:w are always called followed by two empty brace groups. These are safe
because no delimiter can match them. They prevent losing braces when grabbing de-
limited arguments, but require the use of \exp_not:o and \use_none:nn, rather than
simply \exp_not:n. Afterwards, __tl_replace_next:w is called to repeat the replace-
ment, or __tl_replace_wrap:w if we only want a single replacement. In this second
case, ##1 is the (remaining tokens) in the (token list) and ##2 is some (ending code)
which ends the assignment and removes the trailing tokens #5 using some \if_false: {
\fi: } trickery because #5 may contain any delimiter.

If on the other hand the argument ##1 of __t1l_replace_next:w is delimited by
the trailing (pattern) #5, then ##1 is “{ } { } (token list) (delimiter) {{ending code)}”,

387

\tl_remove_once:
\tl_remove_once:
\tl_gremove_once:
\tl_gremove_once:

\tl_remove_all:
\tl_remove_all:
\tl_gremove_all:
\tl_gremove_all:

Nn
cn
Nn
cn

Nn
cn
Nn
cn

hence __t1_replace_wrap:w finds “{ } { } (token list)” as ##1 and the (ending code)
as ##2. It leaves the (foken list) into the assignment and unbraces the (ending code)
which removes what remains (essentially the (delimiter) and (replacement)).

2104 \cs_new_protected:Npn __tl_replace_auxii:nNNNnn #1#2#3#4#5#6
4405 {

4406 \group_align_safe_begin:

4407 \cs_set:Npn __tl_replace_wrap:w ##1 #1 ##2
4408 { \exp_not:o { \use_none:nn ##1 } ##2 }
4409 \cs_set:Npx __tl_replace_next:w ##1 #5
4410 {

4411 \exp_not:N __tl_replace_wrap:w #i#1
4412 \exp_not:n { #1 }

4413 \exp_not:n { \exp_not:n {#6} }

4414 \exp_not:n { #2 { } { } }

4415 }

4416 #3 #4

4417 {

4418 \exp_after:wN __tl_replace_next:w
4419 \exp_after:wN { \exp_after:wN }

4420 \exp_after:wN { \exp_after:wN }

4421 #4

4422 #1

4423 {

4424 \if_false: { \fi: }

4425 \exp_after:wN \use_none:n \exp_after:wN { \if_false: } \fi:
4426 }

4427 #5

4428 ¥

4429 \group_align_safe_end:

4430 ¥

231 \cs_new_eq:NN __tl_replace_wrap:w 7
2132 \cs_new_eq:NN __tl_replace_next:w ?

(End definition for __tl_replace:NnNNNnn and others.)

Removal is just a special case of replacement.

2133 \cs_new_protected:Npn \tl_remove_once:Nn #1#2

wmz { \tl_replace_once:Nnn #1 {#2} { } }

235 \cs_new_protected:Npn \tl_gremove_once:Nn #1#2
23 { \tl_greplace_once:Nnn #1 {#2} { } }

4137 \cs_generate_variant:Nn \tl_remove_once:Nn { c }
235 \cs_generate_variant:Nn \tl_gremove_once:Nn { c }

(End definition for \t1_remove_once:Nn and \tl_gremove_once:Nn. These functions are documented on
page 39.)

Removal is just a special case of replacement.
230 \cs_new_protected:Npn \tl_remove_all:Nn #1#2
a0 { \tl_replace_all:Nnn #1 {#2} { } }
241 \cs_new_protected:Npn \tl_gremove_all:Nn #1#2
wme { \tl_greplace_all:Nnn #1 {#2} { } }
243 \cs_generate_variant:Nn \tl_remove_all:Nn { c }
242 \Ccs_generate_variant:Nn \tl_gremove_all:Nn { c }

(End definition for \tl_remove_all:Nn and \tl_gremove_all:Nn. These functions are documented on
page 39.)

388

\tl_if_blank_p:n
\tl_if_blank_p:V
\tl_if_blank_p:o
\tl_if_blank:nTF
\tl_if_blank:VTF
\tl_if_blank:oTF
__tl_if_blank_p:NNw

\tl_if_empty_p:N
\tl_if_empty_p:c
\tl_if_empty:NTF
\tl_if_empty:cTF

\tl_if_empty_p:n
\tl_if_empty_p:V
\tl_if_empty:nTF
\tl_if_empty:VTF

6.6 Token list conditionals

TEX skips spaces when reading a non-delimited arguments. Thus, a (token list) is blank
if and only if \use_none:n (token list) 7 is empty after one expansion. The auxiliary
__tl_if_empty_if:o is a fast emptyness test, converting its argument to a string (after
one expansion) and using the test \if _meaning:w \q_nil ... \q_nil.

2125 \prg_new_conditional:Npnn \tl_if_blank:n #1 { p , T , F , TF }

4446 {

4447 __tl_if_empty_if:o { \use_none:n #1 7 }
4448 \prg_return_true:

4449 \else:

4450 \prg_return_false:

4451 \fi:

4452 }

253 \prg_generate_conditional_variant:Nnn \tl_if_blank:n
4454 {V,O}{P,T:F3TF}

(End definition for \t1_if_blank:nTF and __t1_if_blank_p:NNw. This function is documented on page
40.)

These functions check whether the token list in the argument is empty and execute the
proper code from their argument(s).
255 \prg_new_conditional:Npnn \tl_if_empty:N #1 { p , T , F , TF }

4456 {

4457 \if_meaning:w #1 \c_empty_tl
4458 \prg_return_true:

4459 \else:

4460 \prg_return_false:

4461 \fi:

4462 3

w63 \prg_generate_conditional_variant:Nnn \tl_if_empty:N
4464 {c}{p,T,F,TF}

(End definition for \tl_if_empty:NTF. This function is documented on page 41.)

Convert the argument to a string: this is empty if and only if the argument is. Then
\if _meaning:w \gq_nil ... \g_nil is true if and only if the string ... is empty. It
could be tempting to use \if_meaning:w \q_nil #1 \g_nil directly. This fails on a
token list starting with \q_nil of course but more troubling is the case where argument
is a complete conditional such as \if_true: a \else: b \fi: because then \if_true:
is used by \if_meaning:w, the test turns out false, the \else: executes the false
branch, the \fi: ends it and the \q_nil at the end starts executing. ..

265 \prg_new_conditional:Npnn \tl_if_empty:n #1 { p , TF , T , F }

4466 {

4467 \exp_after:wN \if_meaning:w \exp_after:wN \qg_nil
4468 \tl_to_str:n {#1} \q_nil

4460 \prg_return_true:

4470 \else :

a1 \prg_return_false:

4472 \fi:

4473 }

274 \prg_generate_conditional_variant:Nnn \tl_if_empty:n
4475 {v{p,TF, T, F}

389

(End definition for \tl_if_empty:nTF. This function is documented on page 41.)

\tl_if_empty_p:o The auxiliary function __t1_if_empty_if:o is for use in various token list conditionals
\tl_if_empty:oTF which reduce to testing if a given token list is empty after applying a simple function to it.
__tl_if_empty_if:o The test for emptiness is based on \t1l_if_empty:nTF, but the expansion is hard-coded
for efficiency, as this auxiliary function is used in several places. We don’t put \prg_-
return_true: and so on in the definition of the auxiliary, because that would prevent

an optimization applied to conditionals that end with this code.

276 \cs_new:Npn __tl_if_empty_if:o #1

4477 {

4478 \exp_after:wN \if_meaning:w \exp_after:wN \g_nil

4479 __kernel_tl_to_str:w \exp_after:wN {#1} \q_nil

4480 }

251 \prg_new_conditional:Npnn \tl_if_empty:o #1 { p , TF , T , F }

4482 {

4483 __tl_if_empty_if:o {#1}

4484 \prg_return_true:

4485 \else:

4486 \prg_return_false:

4487 \fi:

4488 }
(End definition for \t1_if_empty:nTF and __tl_if_empty_if:o. This function is documented on page
41.)

\tl_if_eq_p:NN Returns \c_true_bool if and only if the two token list variables are equal.
\tl_if_eq p:Nc .z \prg_new_conditional:Npnn \t1_if_eq:NN #1#2 { p , T , F , TF }
\tl_if_eq_p:cN a0 o

\tl_if_e :cc 4491 \if_meaning:w #1 #2

_1f_eq_p g

\tl_if_eq:NNTF 4 \prg_return_true:

\tl_if_eq:NcTF 4493 \else:

\tl_if_eq:cNTF 4494 \prg_return_false:
T . 4495 \fi:

\tl_if_eq:ccTF

4496 }
207 \prg_generate_conditional_variant:Nnn \tl_if_eq:NN
49 {Ne ,c,ccr{p,TF, T, F}

(End definition for \tl_if_eq:NNTF. This function is documented on page 41.)

\tl_if_eq:nnTF A simple store and compare routine.

\1__tl_internal_a tl 200 \prg_new_protected_conditional:Npnn \tl_if_eq:nn #1#2 { T , F , TF }
\1l__tl_internal_b_tl 4500

4501 \group_begin:

4502 \tl_set:Nn \1__tl_internal_a_tl {#1}

4503 \tl_set:Nn \1__tl_internal_b_t1l {#2}

4504 \exp_after:wN

4505 \group_end:

4506 \if _meaning:w \1__tl_internal_a_t1l \1__tl_internal_b_tl

4507 \prg_return_true:

4508 \else:

4500 \prg_return_false:

4510 \fi:

4511 }

512 \tl_new:N \1__tl_internal_a_tl
4513 \tl_new:N \1__tl_internal_b_tl

390

\tl_if_in:NnTF
\tl_if_in:cnTF

\tl_if_in:nnTF
\tl_if_in:VnTF
\tl_if_in:onTF
\tl_if_in:noTF

\tl_if_novalue_p:n

(End definition for \t1_if_eq:nnTF, \1__t1_internal_a_t1, and \1__tl_internal_b_t1l. This function
is documented on page 41.)

See \t1_if_in:nnTF for further comments. Here we simply expand the token list variable
and pass it to \t1l_if_in:nnTF.

2514 \cs_new_protected:Npn \tl_if_in:NnT { \exp_args:No \tl_if_in:nnT }

4515 \cs_new_protected:Npn \tl_if_in:NnF { \exp_args:No \tl_if_in:nnF }

2516 \cs_new_protected:Npn \tl_if_in:NnTF { \exp_args:No \tl_if_in:nnTF }

«s17 \prg_generate_conditional _variant:Nnn \tl_if_in:Nn

4518 {C}{T,F,TF}

(End definition for \tl_if_in:NnTF. This function is documented on page 41.)

Once more, the test relies on the emptiness test for robustness. The function __t1_-
tmp:w removes tokens until the first occurrence of #2. If this does not appear in #1, then
the final #2 is removed, leaving an empty token list. Otherwise some tokens remain, and
the test is false. See \t1_if_empty:nTF for details on the emptiness test.

Treating correctly cases like \t1_if_in:nnTF {a state}{states}, where #1#2 con-
tains #2 before the end, requires special care. To cater for this case, we insert {}{} be-
tween the two token lists. This marker may not appear in #2 because of TEX limitations
on what can delimit a parameter, hence we are safe. Using two brace groups makes the
test work also for empty arguments. The \if _false: constructions are a faster way to do
\group_align_safe_begin: and \group_align_safe_end:. The \scan_stop: ensures
that f-expanding \t1_if_in:nn does not lead to unbalanced braces.

4510 \prg_new_protected_conditional:Npnn \tl_if_in:nn #1#2 { T , F , TF }
4520 {

4521 \scan_stop:

4522 \if_false: { \fi:

4523 \cs_set:Npn __tl_tmp:w ##1 #2 { }

4524 \tl_if_empty:oTF { __tl_tmp:w #1 {} {} #2 }
4525 { \prg_return_false: } { \prg_return_true: }
4526 \if_false: } \fi:

4527 }

s52¢ \prg_generate_conditional_variant:Nnn \tl_if_in:nn
4529 {V,o,nl}{T,F, TF}Z}

(End definition for \t1_if_in:nnTF. This function is documented on page 41.)

Tests for ~NoValue-: this is similar to \t1_if_in:nn but set up to be expandable and

\tl_if_novalue:nTF to check the value exactly. The question mark prevents the auxiliary from losing braces.

__tl_if novalue:w

2530 \cs_set_protected:Npn __tl_tmp:w #1

4531 {

4532 \prg_new_conditional:Npnn \tl_if_novalue:n ##1
4533 {p, T, F,TF}

4534 {

4535 \str_if_eq:onTF

4536 { __tl_if _novalue:w 7 ##1 { } #1 }
4537 {7?2{} #17}

4538 { \prg_return_true: }

4539 { \prg_return_false: }

4540 3

4541 \cs_new:Npn __tl_if_novalue:w ##1 #1 {##1}
4542 }

4543 \exp_args:No __tl_tmp:w { \c_novalue_tl }

391

\tl_if_single_p:N
\tl_if_single:NTF

\tl_if_single_p:n
\tl_if_single:nTF
__tl_if_single_p:n
__tl_if_single :nTF

\tl_if_single_token_p:n
\tl_if_single_token:nTF

(End definition for \t1_if_novalue:nTF and __tl_if_novalue:w. This function is documented on page

/1)

Expand the token list and feed it to \t1_if_single:n.
250 \cs_new:Npn \tl_if_single_p:N { \exp_args:No \tl_if_single_p:n }
sss5 \cs_new:Npn \tl_if_single:NT { \exp_args:No \tl_if_single:nT }
4546 \cs_new:Npn \tl_if_single:NF { \exp_args:No \tl_if_single:nF }
2547 \cs_new:Npn \tl_if_single:NTF { \exp_args:No \tl_if_single:nTF }

(End definition for \tl_if_single:NTF. This function is documented on page 42.)

This test is similar to \t1_if_empty:nTF. Expanding \use_none:nn #1 7?7 once yields
an empty result if #1 is blank, a single 7 if #1 has a single item, and otherwise yields some
tokens ending with ??. Then, \t1_to_str:n makes sure there are no odd category codes.
An earlier version would compare the result to a single ? using string comparison, but
the Lua call is slow in LuaTEX. Instead, __t1_if_single:nnw picks the second token
in front of it. If #1 is empty, this token is the trailing ? and the catcode test yields false.
If #1 has a single item, the token is ~ and the catcode test yields true. Otherwise, it is
one of the characters resulting from \tl_to_str:n, and the catcode test yields false.
Note that \if _catcode:w and __kernel_tl_to_str:w are primitives that take care of
expansion.

4505 \prg_new_conditional:Npnn \tl_if_single:n #1 { p , T , F , TF }

4549 {

4550 \if_catcode:w ~ \exp_after:wN __tl_if_single:nnw

4551 __kernel_tl_to_str:w

4552 \exp_after:wN { \use_none:nn #1 7?7 } ~ ? \g_stop
4553 \prg_return_true:

4554 \else:

4555 \prg_return_false:

4556 \fi:

4557 }

2555 \cs_new:Npn __tl_if_single:nnw #1#2#3 \q_stop {#2}

(End definition for \t1_if_single:nTF and __tl_if_single:nTF. This function is documented on page
42)

There are four cases: empty token list, token list starting with a normal token, with a
brace group, or with a space token. If the token list starts with a normal token, remove
it and check for emptiness. For the next case, an empty token list is not a single token.
Finally, we have a non-empty token list starting with a space or a brace group. Applying
f-expansion yields an empty result if and only if the token list is a single space.

4550 \prg_new_conditional:Npnn \tl_if_single_token:n #1 { p , T , F , TF }

4560 {

4561 \tl_if_head_is_N_type:nTF {#1}

4562 { __tl_if_empty_if:o { \use_none:n #1 } }

4563 {

4564 \tl_if_empty:nTF {#1}

4565 { \if_false: }

4566 { __tl_if_empty_if:o { \exp:w \exp_end_continue_f:w #1 } }
4567 ¥

4568 \prg_return_true:

4569 \else:

4570 \prg_return_false:

392

\tl_case:Nn
\tl_case:cn
\tl_case:NnTF
\tl_case:cnTF
__t1l_case:nnTF
__tl_case:Nw
__tl_case_end:nw

4571 \fi:
4572 }

(End definition for \t1_if_single_token:nTF. This function is documented on page 42.)

The aim here is to allow the case statement to be evaluated using a known number of
expansion steps (two), and without needing to use an explicit “end of recursion” marker.
That is achieved by using the test input as the final case, as this is always true. The
trick is then to tidy up the output such that the appropriate case code plus either the
true or false branch code is inserted.

4573 \cs_new:Npn \tl_case:Nn #1#2

4574 {

4575 \exp:w

4576 __tl_case:NnTF #1 {#2} { } { }
4577 }

2572 \cs_new:Npn \tl_case:NnT #1#2#3

4579 {

4580 \exp W

4581 __tl_case:NnTF #1 {#2} {#3} { }
4582 }

2553 \cs_new:Npn \tl_case:NnF #1#2#3

4584 {

4585 \exp:w

4586 __tl_case:NnTF #1 {#2} { } {#3}
4587 }

ssse \cs_new:Npn \tl_case:NnTF #1#2

4589 {

4590 \exp:w

4501 __t1l_case:NnTF #1 {#2}

4592 }

2503 \cs_new:Npn __tl_case:NnTF #1#2#3#4
asos { __tl_case:Nw #1 #2 #1 { } \g_mark {#3} \q_mark {#4} \q_stop }
2505 \cs_new:Npn __tl_case:Nw #1#2#3

4596 {

4507 \tl_if_eq:NNTF #1 #2

4508 { __tl_case_end:nw {#3} }
4599 { __tl_case:Nw #1 }

4600 }

w01 \cs_generate_variant:Nn \tl_case:Nn { ¢ }

w602 \prg_generate_conditional_variant:Nnn \tl_case:Nn

4603 {c}Y{T,F,TF}
To tidy up the recursion, there are two outcomes. If there was a hit to one of the cases
searched for, then #1 is the code to insert, #2 is the next case to check on and #3 is all
of the rest of the cases code. That means that #4 is the true branch code, and #5 tidies
up the spare \q_mark and the false branch. On the other hand, if none of the cases
matched then we arrive here using the “termination” case of comparing the search with
itself. That means that #1 is empty, #2 is the first \q_mark and so #4 is the false code
(the true code is mopped up by #3).

2604 \cs_new:Npn __tl_case_end:nw #1#2#3 \q_mark #4#5 \q_stop

w05 { \exp_end: #1 #4 }

(End definition for \tl_case:NnTF and others. This function is documented on page /2.)

393

\tl_map_function:nN
\tl_map_function:NN
\tl_map_function:cN
__tl_map_function:Nn

\tl_map_inline:nn
\tl_map_inline:Nn
\tl_map_inline:cn

\tl_map_variable:nNn
\tl_map_variable:NNn
\tl_map_variable:cNn
__tl_map_variable:Nnn

6.7 Mapping to token lists

Expandable loop macro for token lists. These have the advantage of not needing to test
if the argument is empty, because if it is, the stop marker is read immediately and the
loop terminated.

2606 \cs_new:Npn \tl_map_function:nN #1#2

4607 {

4608 __tl_map_function:Nn #2 #1

4609 \q_recursion_tail

4610 \prg_break_point:Nn \tl_map_break: { }
4611 }

2612 \cs_new:Npn \tl_map_function:NN

w613 { \exp_args:No \tl_map_function:nN }

2614 \cs_new:Npn __tl_map_function:Nn #1#2

4615 {

4616 \quark_if_recursion_tail_break:nN {#2} \tl_map_break:
4617 #1 {#2} __tl_map_function:Nn #1

4618 }

w610 \cs_generate_variant:Nn \tl_map_function:NN { c }

(End definition for \tl_map_function:nN, \tl_map_function:NN, and __tIl_map_function:Nn. These
functions are documented on page 42.)

The inline functions are straight forward by now. We use a little trick with the counter
\g__kernel_prg_map_int to make them nestable. We can also make use of __tl_-
map_function:Nn from before.

2620 \cs_new_protected:Npn \tl_map_inline:nn #1#2

4621 {

4622 \int_gincr:N \g__kernel_prg_map_int

4623 \cs_gset_protected:cpn

4624 { __tl_map_ \int_use:N \g__kernel_prg_map_int :w } ##1 {#2}
4625 \exp_args:Nc __tl_map_function:Nn

4626 { __tl_map_ \int_use:N \g__kernel_prg_map_int :w }

4627 #1 \q_recursion_tail

4628 \prg_break_point:Nn \tl_map_break:

4629 { \int_gdecr:N \g__kernel_prg_map_int }

4630 ¥

4631 \cs_new_protected:Npn \tl_map_inline:Nn
w632 { \exp_args:No \tl_map_inline:nn }
2633 \cs_generate_variant:Nn \tl_map_inline:Nn { ¢ }

(End definition for \tl_map_inline:nn and \tl_map_inline:Nn. These functions are documented on

page 43.)

\tl_map_variable:nNn (token list) (temp) {(action) assigns (temp) to each element and
executes (action).
s34 \cs_new_protected:Npn \tl_map_variable:nNn #1#2#3

4635 {

4636 __tl_map_variable:Nnn #2 {#3} #1

4637 \q_recursion_tail

4638 \prg_break_point:Nn \tl_map_break: { }
4639 }

2640 \cs_new_protected:Npn \tl_map_variable:NNn
s { \exp_args:No \tl_map_variable:nNn }

394

w642 \cs_new_protected:Npn __tl_map_variable:Nnn #1#2#3

4643 {

4644 \tl_set:Nn #1 {#3}

4645 \quark_if_recursion_tail_break:NN #1 \tl_map_break:
4646 \use:n {#2}

4647 __tl_map_variable:Nnn #1 {#2}

4648 }

2640 \cs_generate_variant:Nn \tl_map_variable:NNn { c }

(End definition for \tl_map_variable:nNn, \tl_map_variable:NNn, and __tl_map_variable:Nnn.
These functions are documented on page 43.)

\tl_map_break: The break statements use the general \prg_map_break:Nn.

\tl_map_break:n s \cs_new:Npn \tl_map_break:
w51 { \prg_map_break:Nn \tl_map_break: { } }
25 \cs_new:Npn \tl_map_break:n
w53 { \prg_map_break:Nn \tl_map_break: }

(End definition for \tl_map_break: and \tl_map_break:n. These functions are documented on page
42)
6.8 Using token lists

\tl_to_str:n Another name for a primitive: defined in I3basics.
\tl_to_str:V w54 \cs_generate_variant:Nn \tl_to_str:n { V }

(End definition for \tl_to_str:n. This function is documented on page 44.)

\tl_to_str:N These functions return the replacement text of a token list as a string.

\tl_to_str:c 2655 \cs_new:Npn \tl_to_str:N #1 { __kernel_tl_to_str:w \exp_after:wN {#1} }
w656 \cs_generate_variant:Nn \tl_to_str:N { ¢ }

(End definition for \tl_to_str:N. This function is documented on page 44.)

\tl_use:N Token lists which are simply not defined give a clear TEX error here. No such luck for
\tl_use:c ones equal to \scan_stop: so instead a test is made and if there is an issue an error is

forced.
2657 \cs_new:Npn \tl_use:N #1
4658 {
4659 \tl_if_exist:NTF #1 {#1}
4660 {
4661 __kernel_msg_expandable_error:nnn
4662 { kernel } { bad-variable } {#1}
4663 ¥
4664 }

w665 \cS_generate_variant:Nn \tl_use:N { c }

(End definition for \tl_use:N. This function is documented on page 45.)

395

\tl_count:n
\tl_count:V
\tl_count:o
\tl_count:N
\tl_count:c
__tl_count:n

\tl_count_tokens:n
__tl_act_count_normal:nN
__tl_act_count_group:nn
__tl_act_count_space:n

6.9 Working with the contents of token lists

Count number of elements within a token list or token list variable. Brace groups within
the list are read as a single element. Spaces are ignored. __tl_count:n grabs the
element and replaces it by +1. The 0 ensures that it works on an empty list.

2666 \cs_new:Npn \tl_count:n #1

4667 {

4668 \int_eval:n

4669 { 0 \tl_map_function:nN {#1} __tl_count:n }
4670 }

2671 \cs_new:Npn \tl_count:N #1

4672 {

4673 \int_eval:n

4674 { 0 \tl_map_function:NN #1 __tl_count:n }
4675 }

2676 \cs_new:Npn __tl_count:n #1 { + 1 }
s677 \cs_generate_variant:Nn \tl_count:n { V , o }
«7s \cs_generate_variant:Nn \tl_count:N { ¢ }

(End definition for \tl_count:n, \tl_count:N, and __tl_count:n. These functions are documented
on page 45.)

The token count is computed through an \int_eval:n construction. Each 1+ is output
to the left, into the integer expression, and the sum is ended by the \exp_end: inserted
by __tl_act_end:wn (which is technically implemented as \c_zero_int). Somewhat a
hack!

2670 \cs_new:Npn \tl_count_tokens:n #1

4680 '{:
4681 \int_eval:n

4682 {

4683 __t1_act:NNNnn

4684 __tl_act_count_normal:nN
4685 __tl_act_count_group:nn
4686 __tl_act_count_space:n
4687 { }

4688 {#1}

4689 }

4690 }

2601 \cs_new:Npn __tl_act_count_normal:nN #1 #2 { 1 + }
2602 \cs_new:Npn __tl_act_count_space:n #1 { 1 + }

2003 \cs_new:Npn __tl_act_count_group:nn #1 #2

w600 { 2 + \tl_count_tokens:n {#2} + }

(End definition for \tl_count_tokens:n and others. This function is documented on page 45.)

\tl_reverse_items:n Reversal of a token list is done by taking one item at a time and putting it after \q_stop.

__tl_reverse_items:nwNwn

__tl_reverse_items:wn

2605 \cs_new:Npn \tl_reverse_items:n #1

4696 '{:

4607 __tl_reverse_items:nwNwn #1 7

4698 \q_mark __tl_reverse_items:nwNwn
4699 \q_mark __tl_reverse_items:wn
4700 \q_stop {1}

4701 }

4702 \cs_new:Npn __tl_reverse_items:nwNwn #1 #2 \g_mark #3 #4 \q_stop #5

396

\tl_trim_spaces:

\tl_trim_spaces:

n
o

\tl_trim_spaces_apply:nN

\tl_trim_spaces_apply:oN

\tl_trim_spaces:

\tl_trim_spaces:

\tl_gtrim_spaces:

\tl_gtrim_spaces:

N
c
N
c

__tl_trim_spaces:nn

__tl_trim_spaces_auxi:
__tl_trim_spaces_auxii:
__tl_trim_spaces_auxiii:

__tl_trim_spaces_auxiv:

w

w
W
W

4703 {

4704 #3 #2

4705 \q_mark __tl_reverse_items:nwNwn
4706 \q_mark __tl_reverse_items:wn
4707 \gq_stop { {#1} #5 }

4708 }

4700 \cs_new:Npn __tl_reverse_items:wn #1 \q_stop #2
a70 { \exp_not:o { \use_none:nn #2 } }

(End definition for \tl_reverse_items:n, __tl_reverse_items:nwNwn, and __tl_reverse_items:wn
This function is documented on page 46.)

Trimming spaces from around the input is deferred to an internal function whose first
argument is the token list to trim, augmented by an initial \q_mark, and whose second
argument is a (continuation), which receives as a braced argument \use_none:n \q_mark
(trimmed token list). In the case at hand, we take \exp_not:o as our continuation, so
that space trimming behaves correctly within an x-type expansion.

4711 \cs_new:Npn \tl_trim_spaces:n #1

az2 { __tl_trim_spaces:nn { \q_mark #1 } \exp_not:o }

4713 \cs_generate_variant:Nn \tl_trim_spaces:n { o }

4714 \cs_new:Npn \tl_trim_spaces_apply:nN #1#2

a5 { __tl_trim_spaces:nn { \q_mark #1 } { \exp_args:No #2 } }

2716 \cs_generate_variant:Nn \tl_trim_spaces_apply:nN { o }

4117 \cs_new_protected:Npn \tl_trim_spaces:N #1

ane { \tl_set:Nx #1 { \exp_args:No \tl_trim_spaces:n {#1} } }

4719 \cs_new_protected:Npn \tl_gtrim_spaces:N #1

a0 { \tl_gset:Nx #1 { \exp_args:No \tl_trim_spaces:n {#1} } }

421 \cs_generate_variant:Nn \tl_trim_spaces:N { c }

2722 \cs_generate_variant:Nn \tl_gtrim_spaces:N { c }

Trimming spaces from around the input is done using delimited arguments and quarks,
and to get spaces at odd places in the definitions, we nest those in __t1_tmp:w, which
then receives a single space as its argument: #1 is ;. Removing leading spaces is done
with __t1_trim_spaces_auxi:w, which loops until \q_mark,; matches the end of the
token list: then ##1 is the token list and ##3 is __tl_trim_spaces_auxii:w. This
hands the relevant tokens to the loop __tl_trim_spaces_auxiii:w, responsible for
trimming trailing spaces. The end is reached when |, \q_nil matches the one present in
the definition of \t1_trim_spacs:n. Then __tl_trim_spaces_auxiv:w puts the token
list into a group, with \use_none:n placed there to gobble a lingering \q_mark, and feeds
this to the (continuation).

4723 \cs_set:Npn __tl_tmp:w #1

4724 {

4725 \cs_new:Npn __tl_trim_spaces:nn ##1
4726 {

4727 __tl_trim_spaces_auxi:w

4728 #i#1

4729 \gq_nil

4730 \q_mark #1 { }

4731 \gq_mark __tl_trim_spaces_auxii:w
4732 __tl_trim_spaces_auxiii:w

4733 #1 \q_nil

4734 __tl_trim_spaces_auxiv:w

4735 \q_S‘tOp

397

\tl_sort:Nn
\tl_sort:cn
\tl_gsort:Nn
\tl_gsort:cn
\tl_sort:nN

\q__t1l_act_mark
\q__tl_act_stop

__t1_act:NNNnn
__tl_act_output:n
__tl_act_reverse_output:n
__tl_act_loop:w
__tl_act_normal:NwnNNN
__tl_act_group:nwnNNN
__tl_act_space:wwnNNN
__tl act_end:w

4736 }

4737 \cs_new:Npn __tl_trim_spaces_auxi:w ##1 \q_mark #1 ##2 \q_mark ##3
4738 {

4739 ##3

4740 __tl_trim_spaces_auxi:w

4741 \q_mark

4742 ##2

4743 \q_mark #1 {##1}

4744 T

4745 \cs_new:Npn __tl_trim_spaces_auxii:w

4746 __tl_trim_spaces_auxi:w \g_mark \g_mark ##1

4747 {

4748 __tl_trim_spaces_auxiii:w

4749 ##1

4750 }

4751 \cs_new:Npn __tl_trim_spaces_auxiii:w ##1 #1 \q_nil ##2
4752 {

4753 ##2

4754 ##1 \q_nil

4755 __tl_trim_spaces_auxiii:w

4756 }

4757 \cs_new:Npn __tl_trim_spaces_auxiv:w ##1 \q_nil ##2 \q_stop ##3
4758 { ##3 { \use_none:n ##1 } }

4759 }

a0 __tl_tmp:w { ~ }

(End definition for \tl_trim_spaces:n and others. These functions are documented on page 46.)

Implemented in [3sort.

(End definition for \t1l_sort:Nn, \tl_gsort:Nn, and \tl_sort:nN. These functions are documented on
page 46.)

6.10 Token by token changes

The __tl_act_... functions may be applied to any token list. Hence, we use two private
quarks, to allow any token, even quarks, in the token list. Only \q__t1_act_mark and
\g__tl_act_stop may not appear in the token lists manipulated by __t1_act:NNNnn
functions. No quark module yet, so do things by hand.

4761 \cs_new_nopar:Npn \q__tl_act_mark { \g__tl_act_mark }

2762 \cs_new_nopar:Npn \q__tl_act_stop { \q__tl_act_stop }

(End definition for \q__tl_act_mark and \q__tl_act_stop.)

To help control the expansion, __t1_act:NNNnn should always be proceeded by \exp:w
and ends by producing \exp_end: once the result has been obtained. Then loop over
tokens, groups, and spaces in #5. The marker \q__t1_act_mark is used both to avoid
losing outer braces and to detect the end of the token list more easily. The result is stored
as an argument for the dummy function __tl_act_result:n.

4763 \cs_new:Npn __tl_act:NNNnn #1#2#3#4#5

4764 {

4765 \group_align_safe_begin:

4766 __tl_act_loop:w #5 \q__tl_act_mark \gq__tl_act_stop
4767 {#4} #1 #2 #3

398

4768 __tl_act_result:n { }

4769 }
In the loop, we check how the token list begins and act accordingly. In the “normal” case,
we may have reached \q__t1_act_mark, the end of the list. Then leave \exp_end: and
the result in the input stream, to terminate the expansion of \exp:w. Otherwise, apply
the relevant function to the “arguments”, #3 and to the head of the token list. Then
repeat the loop. The scheme is the same if the token list starts with a group or with a
space. Some extra work is needed to make __t1_act_space:wwnNNN gobble the space.

4770 \cs_new:Npn __tl_act_loop:w #1 \q__tl_act_stop

4771 {

4772 \tl_if_head_is_N_type:nTF {#1}
4773 { __tl_act_normal:NwnNNN }

4774 {

4775 \tl_if_head_is_group:nTF {#1}
4776 { __tl_act_group:nwnNNN }
4777 { __tl_act_space:wwnNNN }
4778 }

4779 #1 \q__tl_act_stop

4780 }

4731 \cs_new:Npn __tl_act_normal:NwnNNN #1 #2 \q__tl_act_stop #3#4
4782 {

4783 \if_meaning:w \g__tl_act_mark #1
4784 \exp_after:wN __tl_act_end:wn
4785 \fi:

4786 #4 {#3} #1

4787 __tl_act_loop:w #2 \q__tl_act_stop
4788 {#3} #4

4789 }

2790 \cs_new:Npn __tl_act_end:wn #1 __tl_act_result:n #2

a1 { \group_align_safe_end: \exp_end: #2 }

2792 \cs_new:Npn __tl_act_group:nwnNNN #1 #2 \q__tl_act_stop #3#4#5
4793 {

4794 #5 {#3} {#1}

4795 __tl_act_loop:w #2 \g__tl_act_stop
4796 {#3} #4 #5

4797 }

2795 \exp_last_unbraced:NNo
4799 \cs_new:Npn __tl_act_space:wwnNNN \c_space_tl #1 \q__tl_act_stop #2#3#4#5

4800 {

4801 #5 {#2}

4802 __tl_act_loop:w #1 \q__tl_act_stop
4803 {#2} #3 #4 #5

4804 }

Typically, the output is done to the right of what was already output, using __t1l_-
act_output:n, but for the __t1l_act_reverse functions, it should be done to the left.
2505 \cs_new:Npn __tl_act_output:n #1 #2 __tl_act_result:n #3
a0 { #2 __tl_act_result:n { #3 #1 } }
207 \cs_new:Npn __tl_act_reverse_output:n #1 #2 __tl_act_result:n #3
a8 { #2 __tl_act_result:n { #1 #3 } }

(End definition for __tl_act:NNNnn and others.)

399

\tl_reverse:n
\tl_reverse:o
\tl_reverse:V
__tl_reverse_normal:nN
__tl reverse group preserve:nn
__tl_reverse_space:n

\tl_reverse:
\tl_reverse:

\tl_greverse:

o = 0 =

\tl_greverse:

\tl_head:N
\tl_head:n
\tl_head:V
\tl_head:v
\tl_head:f
__tl_head_auxi:nw
__t1l_head_auxii:n
\tl_head:w
\tl_tail:N
\tl_tail:n
\tl_tail:V
\tl_tail:v
\tl_tail:f

The goal here is to reverse without losing spaces nor braces. This is done using the
general internal function __t1_act:NNNnn. Spaces and “normal” tokens are output on
the left of the current output. Grouped tokens are output to the left but without any
reversal within the group. All of the internal functions here drop one argument: this is
needed by __t1_act:NNNnn when changing case (to record which direction the change
is in), but not when reversing the tokens.

4500 \cs_new:Npn \tl_reverse:n #1

4810 {

4811 __kernel_exp_not:w \exp_after:wN
4812 {

4813 \exp W

4814 __tl_act:NNNnn

4815 __t1l_reverse_normal:nN

4816 __tl_reverse_group_preserve:nn
4817 __tl_reverse_space:n

4818 {17}

4819 {#1}

4820 }

4821 }

222 \cs_generate_variant:Nn \tl_reverse:n { o , V }
2523 \cs_new:Npn __tl_reverse_normal:nN #1#2

a2 { __tl_act_reverse_output:n {#2} }

225 \cs_new:Npn __tl_reverse_group_preserve:nn #1#2
s { __tl_act_reverse_output:n { {#2} } }

227 \cs_new:Npn __tl_reverse_space:n #1

a5 { __tl_act_reverse_output:n { ~ } }

(End definition for \tl_reverse:n and others. This function is documented on page 45.)

This reverses the list, leaving \exp_stop_£f: in front, which stops the f-expansion.
220 \cs_new_protected:Npn \tl_reverse:N #1
w30 { \tl_set:Nx #1 { \exp_args:No \tl_reverse:n { #1 } } }
231 \cs_new_protected:Npn \tl_greverse:N #1
22 { \tl_gset:Nx #1 { \exp_args:No \tl_reverse:n { #1 } } }
233 \cs_generate_variant:Nn \tl_reverse:N { c }
s34 \cs_generate_variant:Nn \tl_greverse:N { c }

(End definition for \tl_reverse:N and \tl_greverse:N. These functions are documented on page 45.)

6.11 The first token from a token list

Finding the head of a token list expandably always strips braces, which is fine as this
is consistent with for example mapping to a list. The empty brace groups in \tl_-
head:n ensure that a blank argument gives an empty result. The result is returned
within the \unexpanded primitive. The approach here is to use \if _false: to allow
us to use } as the closing delimiter: this is the only safe choice, as any other token
would not be able to parse it’s own code. Using a marker, we can see if what we are
grabbing is exactly the marker, or there is anything else to deal with. Is there is, there
is a loop. If not, tidy up and leave the item in the output stream. More detail in

http://tex.stackexchange.com/a/70168.
235 \cs_new:Npn \tl_head:n #1
4836 {
4837 __kernel_exp_not:w

400

http://tex.stackexchange.com/a/70168

\tl_if_head_eq_meaning p:nN
\tl_if_head_eq_meaning:nNTF
\tl_if_head_eq_charcode_p:nN
\tl_if_head_eq_charcode:nNTF
\tl_if_head_eq_charcode_p:fN
\tl_if_head_eq_charcode:fNTF
\tl_if_head_eq_catcode_p:nN
\tl_if_head_eq_catcode:nNTF

4838 \if_false: { \fi: __tl_head_auxi:nw #1 { } \g_stop }
4839 }

230 \cs_new:Npn __tl_head_auxi:nw #1#2 \q_stop

4841 {

4842 \exp_after:wN __tl_head_auxii:n \exp_after:wN {
4843 \if_false: } \fi: {#1}

4844 }

2345 \cs_new:Npn __tl_head_auxii:n #1

4846 {

4847 \exp_after:wN \if_meaning:w \exp_after:wN \g_nil
4848 __kernel_tl_to_str:w \exp_after:wN { \use_none:n #1 } \q_nil
4849 \exp_after:wN \use_i:nn

4850 \else:

4851 \exp_after:wN \use_ii:nn

4852 \fi:

4853 {#1}

4854 { \if_false: { \fi: __tl_head_auxi:nw #1 } }
4855 }

a6 \cs_generate_variant:Nn \tl_head:n { V , v , £ }

257 \cs_new:Npn \tl_head:w #1#2 \q_stop {#1}

255 \cs_new:Npn \tl_head:N { \exp_args:No \tl_head:n }
To correctly leave the tail of a token list, it’s important not to absorb any of the tail part
as an argument. For example, the simple definition

\cs_new:Npn \tl_tail:n #1 { \tl_tail:w #1 \g_stop }
\cs_new:Npn \tl_tail:w #1#2 \q_stop

would give the wrong result for \tl_tail:n { a { bc } } (the braces would be
stripped). Thus the only safe way to proceed is to first check that there is an item to grab
(i.e. that the argument is not blank) and assuming there is to dispose of the first item.
As with \t1l_head:n, the result is protected from further expansion by \unexpanded.
While we could optimise the test here, this would leave some tokens “banned” in the
input, which we do not have with this definition.

250 \cs_new:Npn \tl_tail:n #1

4860 {

4861 __kernel_exp_not:w

s \tl_if_blank:nTF {#1}

4863 {{1r1}

4864 { \exp_after:wN { \use_none:n #1 } }
4865 }

s66 \CS_generate_variant:Nn \tl_tailin { V , v , £ }
2567 \cs_new:Npn \tl_tail:N { \exp_args:No \tl_tail:n }

(End definition for \t1_head:N and others. These functions are documented on page 47.)

Accessing the first token of a token list is tricky in three cases: when it has category code
1 (begin-group token), when it is an explicit space, with category code 10 and character
code 32, or when the token list is empty (obviously).

Forgetting temporarily about this issue we would use the following test in \t1_if -
head_eq_charcode:nN. Here, \t1_head:w yields the first token of the token list, then
passed to \exp_not:N.

401

\if _charcode:w
\exp_after:wN \exp_not:N \tl_head:w #1 \g_nil \g_stop
\exp_not:N #2

The two first special cases are detected by testing if the token list starts with