
The LATEX3 Sources
The LATEX3 Project∗

March 26, 2016

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for LATEX commands, which
allow the LATEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and ε-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level LATEX3 programming
language.

At present, the expl3 modules are designed to be loaded on top of LATEX2ε. In time,
a LATEX3 format will be produced based on this code. This allows the code to be
used in LATEX2ε packages now while a stand-alone LATEX3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly
stable. The syntax conventions and functions provided are now ready
for wider use. There may still be changes to some functions, but these
will be minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they
reach maturity.

∗E-mail: latex-team@latex-project.org

i

mailto:latex-team@latex-project.org

Contents

I Introduction to expl3 and this document 1

1 Naming functions and variables 1
1.1 Terminological inexactitude . 3

2 Documentation conventions 3

3 Formal language conventions which apply generally 5

4 TEX concepts not supported by LATEX3 6

II The l3bootstrap package: Bootstrap code 7

1 Using the LATEX3 modules 7
1.1 Internal functions and variables . 8

III The l3names package: Namespace for primitives 9

1 Setting up the LATEX3 programming language 9

IV The l3basics package: Basic definitions 10

1 No operation functions 10

2 Grouping material 10

3 Control sequences and functions 11
3.1 Defining functions . 11
3.2 Defining new functions using parameter text 12
3.3 Defining new functions using the signature 14
3.4 Copying control sequences . 16
3.5 Deleting control sequences . 17
3.6 Showing control sequences . 17
3.7 Converting to and from control sequences 18

4 Using or removing tokens and arguments 19
4.1 Selecting tokens from delimited arguments 21

5 Predicates and conditionals 21
5.1 Tests on control sequences . 23
5.2 Primitive conditionals . 23

ii

6 Internal kernel functions 24

V The l3expan package: Argument expansion 26

1 Defining new variants 26

2 Methods for defining variants 27

3 Introducing the variants 27

4 Manipulating the first argument 29

5 Manipulating two arguments 30

6 Manipulating three arguments 31

7 Unbraced expansion 32

8 Preventing expansion 33

9 Controlled expansion 34

10 Internal functions and variables 35

VI The l3prg package: Control structures 37

1 Defining a set of conditional functions 37

2 The boolean data type 39

3 Boolean expressions 41

4 Logical loops 42

5 Producing multiple copies 43

6 Detecting TEX’s mode 43

7 Primitive conditionals 44

8 Internal programming functions 44

VII The l3quark package: Quarks 46

1 Introduction to quarks and scan marks 46
1.1 Quarks . 46

iii

2 Defining quarks 47

3 Quark tests 47

4 Recursion 48

5 An example of recursion with quarks 49

6 Internal quark functions 49

7 Scan marks 50

VIII The l3token package: Token manipulation 51

1 All possible tokens 51

2 Creating character tokens 51

3 Manipulating and interrogating character tokens 53

4 Generic tokens 56

5 Converting tokens 57

6 Token conditionals 57

7 Peeking ahead at the next token 61

8 Decomposing a macro definition 64

9 Internal functions 65

IX The l3int package: Integers 66

1 Integer expressions 66

2 Creating and initialising integers 67

3 Setting and incrementing integers 68

4 Using integers 69

5 Integer expression conditionals 69

6 Integer expression loops 71

7 Integer step functions 73

iv

8 Formatting integers 73

9 Converting from other formats to integers 75

10 Viewing integers 76

11 Constant integers 77

12 Scratch integers 77

13 Primitive conditionals 78

14 Internal functions 78

X The l3skip package: Dimensions and skips 80

1 Creating and initialising dim variables 80

2 Setting dim variables 81

3 Utilities for dimension calculations 81

4 Dimension expression conditionals 82

5 Dimension expression loops 84

6 Using dim expressions and variables 85

7 Viewing dim variables 87

8 Constant dimensions 87

9 Scratch dimensions 88

10 Creating and initialising skip variables 88

11 Setting skip variables 89

12 Skip expression conditionals 89

13 Using skip expressions and variables 90

14 Viewing skip variables 90

15 Constant skips 90

16 Scratch skips 91

v

17 Inserting skips into the output 91

18 Creating and initialising muskip variables 91

19 Setting muskip variables 92

20 Using muskip expressions and variables 93

21 Viewing muskip variables 93

22 Constant muskips 93

23 Scratch muskips 94

24 Primitive conditional 94

25 Internal functions 94

XI The l3tl package: Token lists 95

1 Creating and initialising token list variables 96

2 Adding data to token list variables 97

3 Modifying token list variables 97

4 Reassigning token list category codes 98

5 Token list conditionals 99

6 Mapping to token lists 101

7 Using token lists 103

8 Working with the content of token lists 103

9 The first token from a token list 105

10 Using a single item 107

11 Viewing token lists 107

12 Constant token lists 108

13 Scratch token lists 108

14 Internal functions 108

vi

XII The l3str package:Strings 109

1 Building strings 109

2 Adding data to string variables 110
2.1 String conditionals . 111

3 Working with the content of strings 112

4 String manipulation 115

5 Viewing strings 116

6 Constant token lists 117

7 Scratch strings 117
7.1 Internal string functions . 117

XIII The l3seq package: Sequences and stacks 119

1 Creating and initialising sequences 119

2 Appending data to sequences 120

3 Recovering items from sequences 120

4 Recovering values from sequences with branching 122

5 Modifying sequences 123

6 Sequence conditionals 124

7 Mapping to sequences 124

8 Using the content of sequences directly 126

9 Sequences as stacks 126

10 Sequences as sets 128

11 Constant and scratch sequences 129

12 Viewing sequences 130

13 Internal sequence functions 130

XIV The l3clist package: Comma separated lists 131

vii

1 Creating and initialising comma lists 131

2 Adding data to comma lists 132

3 Modifying comma lists 133

4 Comma list conditionals 134

5 Mapping to comma lists 135

6 Using the content of comma lists directly 137

7 Comma lists as stacks 137

8 Using a single item 139

9 Viewing comma lists 139

10 Constant and scratch comma lists 139

XV The l3prop package: Property lists 141

1 Creating and initialising property lists 141

2 Adding entries to property lists 142

3 Recovering values from property lists 142

4 Modifying property lists 143

5 Property list conditionals 143

6 Recovering values from property lists with branching 144

7 Mapping to property lists 144

8 Viewing property lists 145

9 Scratch property lists 146

10 Constants 146

11 Internal property list functions 146

XVI The l3box package: Boxes 147

1 Creating and initialising boxes 147

viii

2 Using boxes 148

3 Measuring and setting box dimensions 148

4 Box conditionals 149

5 The last box inserted 150

6 Constant boxes 150

7 Scratch boxes 150

8 Viewing box contents 150

9 Horizontal mode boxes 151

10 Vertical mode boxes 152

11 Primitive box conditionals 154

XVII The l3coffins package: Coffin code layer 155

1 Creating and initialising coffins 155

2 Setting coffin content and poles 155

3 Joining and using coffins 157

4 Measuring coffins 157

5 Coffin diagnostics 158
5.1 Constants and variables . 158

XVIII The l3color package: Color support 159

1 Color in boxes 159

XIX The l3msg package: Messages 160

1 Creating new messages 160

2 Contextual information for messages 161

3 Issuing messages 162

4 Redirecting messages 164

ix

5 Low-level message functions 165

6 Kernel-specific functions 167

7 Expandable errors 168

8 Internal l3msg functions 169

XX The l3keys package: Key–value interfaces 171

1 Creating keys 172

2 Sub-dividing keys 176

3 Choice and multiple choice keys 176

4 Setting keys 179

5 Handling of unknown keys 179

6 Selective key setting 180

7 Utility functions for keys 181

8 Low-level interface for parsing key–val lists 182

XXI The l3file package: File and I/O operations 184

1 File operation functions 184
1.1 Input–output stream management . 185
1.2 Reading from files . 186

2 Writing to files 187
2.1 Wrapping lines in output . 189
2.2 Constant input–output streams . 190
2.3 Primitive conditionals . 190
2.4 Internal file functions and variables . 190
2.5 Internal input–output functions . 191

XXII The l3fp package: floating points 192

1 Creating and initialising floating point variables 193

2 Setting floating point variables 194

3 Using floating point numbers 194

x

4 Floating point conditionals 196

5 Floating point expression loops 197

6 Some useful constants, and scratch variables 199

7 Floating point exceptions 199

8 Viewing floating points 201

9 Floating point expressions 201
9.1 Input of floating point numbers . 201
9.2 Precedence of operators . 202
9.3 Operations . 203

10 Disclaimer and roadmap 209

XXIII The l3candidates package: Experimental additions to
l3kernel 212

1 Important notice 212

2 Additions to l3basics 212

3 Additions to l3box 213
3.1 Affine transformations . 213
3.2 Viewing part of a box . 215
3.3 Internal variables . 215

4 Additions to l3clist 216

5 Additions to l3coffins 216

6 Additions to l3file 217

7 Additions to l3fp 218

8 Additions to l3int 218

9 Additions to l3keys 219

10 Additions to l3msg 219

11 Additions to l3prg 219

12 Additions to l3prop 221

13 Additions to l3seq 221

xi

14 Additions to l3skip 222

15 Additions to l3tl 223

16 Additions to l3tokens 227

XXIV The l3sys package:System/runtime functions 228

1 The name of the job 228

2 Date and time 228
2.1 Engine . 228
2.2 Output format . 229

XXV The l3luatex package:LuaTeX-specific functions 230

1 Breaking out to Lua 230
1.1 TEX code interfaces . 230
1.2 Lua interfaces . 231

XXVI The l3drivers package: Drivers 232

1 Box clipping 232

2 Box rotation and scaling 233

3 Color support 233

XXVII Implementation 233

1 l3bootstrap implementation 233
1.1 Format-specific code . 234
1.2 The \pdfstrcmp primitive in X ETEX . 235
1.3 Loading support Lua code . 235
1.4 Engine requirements . 236
1.5 Extending allocators . 237
1.6 Character data . 238
1.7 The LATEX3 code environment . 240

2 l3names implementation 241

xii

3 l3basics implementation 264
3.1 Renaming some TEX primitives (again) 264
3.2 Defining some constants . 266
3.3 Defining functions . 267
3.4 Selecting tokens . 268
3.5 Gobbling tokens from input . 269
3.6 Conditional processing and definitions 270
3.7 Dissecting a control sequence . 275
3.8 Exist or free . 277
3.9 Defining and checking (new) functions 279
3.10 More new definitions . 282
3.11 Copying definitions . 284
3.12 Undefining functions . 285
3.13 Generating parameter text from argument count 285
3.14 Defining functions from a given number of arguments 286
3.15 Using the signature to define functions 287
3.16 Checking control sequence equality . 289
3.17 Diagnostic functions . 289
3.18 Doing nothing functions . 290
3.19 Breaking out of mapping functions . 290

4 l3expan implementation 291
4.1 General expansion . 291
4.2 Hand-tuned definitions . 295
4.3 Definitions with the automated technique 297
4.4 Last-unbraced versions . 298
4.5 Preventing expansion . 300
4.6 Controlled expansion . 300
4.7 Defining function variants . 301

5 l3prg implementation 308
5.1 Primitive conditionals . 308
5.2 Defining a set of conditional functions 308
5.3 The boolean data type . 308
5.4 Boolean expressions . 311
5.5 Logical loops . 317
5.6 Producing multiple copies . 318
5.7 Detecting TEX’s mode . 320
5.8 Internal programming functions . 320
5.9 Deprecated functions . 321

6 l3quark implementation 321
6.1 Quarks . 321
6.2 Scan marks . 324

7 l3token implementation 325

xiii

8 Manipulating and interrogating character tokens 325

9 Creating character tokens 328
9.1 Generic tokens . 332
9.2 Token conditionals . 333
9.3 Peeking ahead at the next token . 341
9.4 Decomposing a macro definition . 347

10 l3int implementation 348
10.1 Integer expressions . 349
10.2 Creating and initialising integers . 351
10.3 Setting and incrementing integers . 353
10.4 Using integers . 353
10.5 Integer expression conditionals . 354
10.6 Integer expression loops . 358
10.7 Integer step functions . 359
10.8 Formatting integers . 361
10.9 Converting from other formats to integers 367
10.10Viewing integer . 370
10.11Constant integers . 370
10.12Scratch integers . 371

11 l3skip implementation 372
11.1 Length primitives renamed . 372
11.2 Creating and initialising dim variables 372
11.3 Setting dim variables . 373
11.4 Utilities for dimension calculations . 374
11.5 Dimension expression conditionals . 375
11.6 Dimension expression loops . 376
11.7 Using dim expressions and variables . 378
11.8 Viewing dim variables . 379
11.9 Constant dimensions . 380
11.10Scratch dimensions . 380
11.11Creating and initialising skip variables 380
11.12Setting skip variables . 381
11.13Skip expression conditionals . 382
11.14Using skip expressions and variables 382
11.15Inserting skips into the output . 383
11.16Viewing skip variables . 383
11.17Constant skips . 383
11.18Scratch skips . 383
11.19Creating and initialising muskip variables 384
11.20Setting muskip variables . 385
11.21Using muskip expressions and variables 385
11.22Viewing muskip variables . 386
11.23Constant muskips . 386

xiv

11.24Scratch muskips . 386

12 l3tl implementation 386
12.1 Functions . 386
12.2 Constant token lists . 388
12.3 Adding to token list variables . 388
12.4 Reassigning token list category codes 391
12.5 Modifying token list variables . 395
12.6 Token list conditionals . 399
12.7 Mapping to token lists . 403
12.8 Using token lists . 405
12.9 Working with the contents of token lists 405
12.10Token by token changes . 407
12.11The first token from a token list . 410
12.12Using a single item . 414
12.13Viewing token lists . 415
12.14Scratch token lists . 416
12.15Deprecated functions . 416

13 l3str implementation 416
13.1 Creating and setting string variables . 416
13.2 String comparisons . 417
13.3 Accessing specific characters in a string 421
13.4 Counting characters . 425
13.5 The first character in a string . 427
13.6 String manipulation . 428
13.7 Viewing strings . 430
13.8 Unicode data for case changing . 430

14 l3seq implementation 434
14.1 Allocation and initialisation . 435
14.2 Appending data to either end . 438
14.3 Modifying sequences . 439
14.4 Sequence conditionals . 441
14.5 Recovering data from sequences . 442
14.6 Mapping to sequences . 446
14.7 Using sequences . 449
14.8 Sequence stacks . 449
14.9 Viewing sequences . 450
14.10Scratch sequences . 451

xv

15 l3clist implementation 451
15.1 Allocation and initialisation . 452
15.2 Removing spaces around items . 454
15.3 Adding data to comma lists . 455
15.4 Comma lists as stacks . 456
15.5 Modifying comma lists . 458
15.6 Comma list conditionals . 460
15.7 Mapping to comma lists . 461
15.8 Using comma lists . 465
15.9 Using a single item . 466
15.10Viewing comma lists . 467
15.11Scratch comma lists . 468

16 l3prop implementation 468
16.1 Allocation and initialisation . 469
16.2 Accessing data in property lists . 470
16.3 Property list conditionals . 474
16.4 Recovering values from property lists with branching 476
16.5 Mapping to property lists . 476
16.6 Viewing property lists . 477

17 l3box implementation 478
17.1 Creating and initialising boxes . 478
17.2 Measuring and setting box dimensions 479
17.3 Using boxes . 479
17.4 Box conditionals . 480
17.5 The last box inserted . 480
17.6 Constant boxes . 481
17.7 Scratch boxes . 481
17.8 Viewing box contents . 481
17.9 Horizontal mode boxes . 482
17.10Vertical mode boxes . 483

18 l3coffins Implementation 485
18.1 Coffins: data structures and general variables 485
18.2 Basic coffin functions . 487
18.3 Measuring coffins . 491
18.4 Coffins: handle and pole management 492
18.5 Coffins: calculation of pole intersections 494
18.6 Aligning and typesetting of coffins . 498
18.7 Coffin diagnostics . 502
18.8 Messages . 508

19 l3color Implementation 509

xvi

20 l3msg implementation 510
20.1 Creating messages . 510
20.2 Messages: support functions and text 511
20.3 Showing messages: low level mechanism 512
20.4 Displaying messages . 515
20.5 Kernel-specific functions . 522
20.6 Expandable errors . 528
20.7 Showing variables . 529

21 l3keys Implementation 533
21.1 Low-level interface . 533
21.2 Constants and variables . 536
21.3 The key defining mechanism . 538
21.4 Turning properties into actions . 540
21.5 Creating key properties . 545
21.6 Setting keys . 549
21.7 Utilities . 555
21.8 Messages . 556
21.9 Deprecated functions . 558

22 l3file implementation 558
22.1 File operations . 558
22.2 Input operations . 564

22.2.1 Variables and constants . 564
22.2.2 Stream management . 565
22.2.3 Reading input . 567

22.3 Output operations . 568
22.3.1 Variables and constants . 568

22.4 Stream management . 570
22.4.1 Deferred writing . 571
22.4.2 Immediate writing . 571
22.4.3 Special characters for writing . 572
22.4.4 Hard-wrapping lines to a character count 573

22.5 Messages . 579

23 l3fp implementation 579

xvii

24 l3fp-aux implementation 579
24.1 Internal representation . 579
24.2 Internal storage of floating points numbers 580
24.3 Using arguments and semicolons . 581
24.4 Constants, and structure of floating points 582
24.5 Overflow, underflow, and exact zero . 584
24.6 Expanding after a floating point number 585
24.7 Packing digits . 586
24.8 Decimate (dividing by a power of 10) 588
24.9 Functions for use within primitive conditional branches 590
24.10Small integer floating points . 592
24.11Length of a floating point array . 593
24.12x-like expansion expandably . 593
24.13Messages . 594

25 l3fp-traps Implementation 594
25.1 Flags . 594
25.2 Traps . 595
25.3 Errors . 599
25.4 Messages . 599

26 l3fp-round implementation 600
26.1 Rounding tools . 600
26.2 The round function . 604

27 l3fp-parse implementation 607
27.1 Work plan . 607

27.1.1 Storing results . 608
27.1.2 Precedence and infix operators . 609
27.1.3 Prefix operators, parentheses, and functions 612
27.1.4 Numbers and reading tokens one by one 613

27.2 Main auxiliary functions . 615
27.3 Helpers . 616
27.4 Parsing one number . 617

27.4.1 Numbers: trimming leading zeros 622
27.4.2 Number: small significand . 624
27.4.3 Number: large significand . 626
27.4.4 Number: beyond 16 digits, rounding 628
27.4.5 Number: finding the exponent . 631

27.5 Constants, functions and prefix operators 634
27.5.1 Prefix operators . 634
27.5.2 Constants . 636
27.5.3 Functions . 637

27.6 Main functions . 640
27.7 Infix operators . 641

27.7.1 Closing parentheses and commas 642

xviii

27.7.2 Usual infix operators . 643
27.7.3 Juxtaposition . 644
27.7.4 Multi-character cases . 645
27.7.5 Ternary operator . 646
27.7.6 Comparisons . 647

27.8 Candidate: defining new l3fp functions 649
27.9 Messages . 651

28 l3fp-logic Implementation 652
28.1 Syntax of internal functions . 652
28.2 Existence test . 652
28.3 Comparison . 652
28.4 Floating point expression loops . 655
28.5 Extrema . 656
28.6 Boolean operations . 657
28.7 Ternary operator . 658

29 l3fp-basics Implementation 659
29.1 Common to several operations . 660
29.2 Addition and subtraction . 661

29.2.1 Sign, exponent, and special numbers 661
29.2.2 Absolute addition . 663
29.2.3 Absolute subtraction . 666

29.3 Multiplication . 671
29.3.1 Signs, and special numbers . 671
29.3.2 Absolute multiplication . 672

29.4 Division . 674
29.4.1 Signs, and special numbers . 674
29.4.2 Work plan . 676
29.4.3 Implementing the significand division 679

29.5 Square root . 684
29.6 Setting the sign . 691

30 l3fp-extended implementation 692
30.1 Description of fixed point numbers . 692
30.2 Helpers for numbers with extended precision 693
30.3 Multiplying a fixed point number by a short one 694
30.4 Dividing a fixed point number by a small integer 694
30.5 Adding and subtracting fixed points . 696
30.6 Multiplying fixed points . 696
30.7 Combining product and sum of fixed points 698
30.8 Extended-precision floating point numbers 700
30.9 Dividing extended-precision numbers . 703
30.10Inverse square root of extended precision numbers 706
30.11Converting from fixed point to floating point 708

xix

31 l3fp-expo implementation 710
31.1 Logarithm . 711

31.1.1 Work plan . 711
31.1.2 Some constants . 711
31.1.3 Sign, exponent, and special numbers 711
31.1.4 Absolute ln . 712

31.2 Exponential . 719
31.2.1 Sign, exponent, and special numbers 719

31.3 Power . 724

32 l3fp-trig Implementation 731
32.1 Direct trigonometric functions . 731

32.1.1 Filtering special cases . 732
32.1.2 Distinguishing small and large arguments 735
32.1.3 Small arguments . 736
32.1.4 Argument reduction in degrees . 736
32.1.5 Argument reduction in radians . 738
32.1.6 Computing the power series . 744

32.2 Inverse trigonometric functions . 747
32.2.1 Arctangent and arccotangent . 748
32.2.2 Arcsine and arccosine . 753
32.2.3 Arccosecant and arcsecant . 756

33 l3fp-convert implementation 757
33.1 Trimming trailing zeros . 757
33.2 Scientific notation . 757
33.3 Decimal representation . 759
33.4 Token list representation . 761
33.5 Formatting . 762
33.6 Convert to dimension or integer . 762
33.7 Convert from a dimension . 763
33.8 Use and eval . 764
33.9 Convert an array of floating points to a comma list 764

34 l3fp-assign implementation 765
34.1 Assigning values . 765
34.2 Updating values . 766
34.3 Showing values . 767
34.4 Some useful constants and scratch variables 767

xx

35 l3candidates Implementation 767
35.1 Additions to l3basics . 767
35.2 Additions to l3box . 768
35.3 Affine transformations . 768
35.4 Viewing part of a box . 776
35.5 Additions to l3clist . 779
35.6 Additions to l3coffins . 779
35.7 Rotating coffins . 779
35.8 Resizing coffins . 784
35.9 Coffin diagnostics . 787
35.10Additions to l3file . 787
35.11Additions to l3fp-assign . 789
35.12Additions to l3int . 789
35.13Additions to l3keys . 789
35.14Additions to l3msg . 790
35.15Additions to l3prg . 790
35.16Additions to l3prop . 792
35.17Additions to l3seq . 792
35.18Additions to l3skip . 794
35.19Additions to l3tl . 795

35.19.1Unicode case changing . 797
35.20Additions to l3tokens . 822

36 l3sys implementation 823
36.1 The name of the job . 823
36.2 Time and date . 823
36.3 Detecting the engine . 824
36.4 Detecting the output . 825
36.5 Deprecated functions . 826

37 l3luatex implementation 826
37.1 Breaking out to Lua . 826
37.2 Messages . 827
37.3 Lua functions for internal use . 827
37.4 Format mode code: font loader . 828

38 l3drivers Implementation 829
38.1 Settings for direct PDF output . 830
38.2 Driver utility functions . 831
38.3 Box clipping . 833
38.4 Box rotation and scaling . 834
38.5 Color support . 836

xxi

Part I

Introduction to expl3 and this
document
This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the LATEX3 programming language is found in expl3.pdf.

1 Naming functions and variables
LATEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

D The D specifier means do not use. All of the TEX primitives are initially \let to a D
name, and some are then given a second name. Only the kernel team should use
anything with a D specifier!

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

c This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example
\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

1

x The x specifier stands for exhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are in
general not expandable, unless specifically noted.

f The f specifier stands for full expansion, and in contrast to x stops at the first non-
expandable item (reading the argument from left to right) without trying to expand
it. For example, when setting a token list variable (a macro used for storage), the
sequence

\tl_set:Nn \l_mya_tl { A }
\tl_set:Nn \l_myb_tl { B }
\tl_set:Nf \l_mya_tl { \l_mya_tl \l_myb_tl }

will leave \l_mya_tl with the content A\l_myb_tl, as A cannot be expanded and
so terminates expansion before \l_myb_tl is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some arbitrary string).

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

c Constant: global parameters whose value should not be changed.

g Parameters whose value should only be set globally.

l Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module1 name and then a descriptive part. Variables end with a short
identifier to show the variable type:

bool Either true or false.

box Box register.
1The module names are not used in case of generic scratch registers defined in the data type modules,

e.g., the int module contains some scratch variables called \l_tmpa_int, \l_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \l_int_tmpa_int would be very unreadable.

2

clist Comma separated list.

coffin a “box with handles” — a higher-level data type for carrying out box alignment
operations.

dim “Rigid” lengths.

fp floating-point values;

int Integer-valued count register.

prop Property list.

seq “Sequence”: a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.

stream An input or output stream (for reading from or writing to, respectively).

tl Token list variables: placeholder for a token list.

1.1 Terminological inexactitude
A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and a
“token list variable” are in truth one and the same. On the other hand, some “variables”
are actually registers that must be initialised and their values set and retrieved with
specific functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

2 Documentation conventions
This document is typeset with the experimental l3doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

3

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntaxOff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

\ExplSyntaxOn
\ExplSyntaxOff

For programming functions, which use _ and : in their name there are a few addi-
tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

\seq_new:N 〈sequence〉

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, 〈sequence〉 indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

\seq_new:N
\seq_new:c

Fully expandable functions Some functions are fully expandable, which allows it
to be used within an x-type argument (in plain TEX terms, inside an \edef), as well
as within an f-type argument. These fully expandable functions are indicated in the
documentation by a star:

\cs_to_str:N 〈cs〉

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a 〈cs〉, shorthand for a 〈control sequence〉.

\cs_to_str:N ?

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN 〈seq〉 〈function〉\seq_map_function:NN I

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

4

\xetex_if_engine:TF {〈true code〉} {〈false code〉}

The underlining and italic of TF indicates that \xetex_if_engine:T, \xetex_if_engine:F
and \xetex_if_engine:TF are all available. Usually, the illustration will use the TF vari-
ant, and so both 〈true code〉 and 〈false code〉 will be shown. The two variant forms T
and F take only 〈true code〉 and 〈false code〉, respectively. Here, the star also shows that
this function is expandable. With some minor exceptions, all conditional functions in
the expl3 modules should be defined in this way.

\xetex_if_engine:TF ?

Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.\l_tmpa_tl

In some cases, the function is similar to one in LATEX2ε or plain TEX. In these cases,
the text will include an extra “TEXhackers note” section:

\token_to_str:N 〈token〉

The normal description text.

TEXhackers note: Detail for the experienced TEX or LATEX2ε programmer. In this case,
it would point out that this function is the TEX primitive \string.

\token_to_str:N ?

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way unless they impact on the
expected behaviour.

3 Formal language conventions which apply generally
As this is a formal reference guide for LATEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the 〈true code〉 or the
〈false code〉 will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left
in the input stream: this will typically be part of a larger logical construct.

5

4 TEX concepts not supported by LATEX3
The TEX concept of an “\outer” macro is not supported at all by LATEX3. As such, the
functions provided here may break when used on top of LATEX2ε if \outer tokens are
used in the arguments.

6

Part II

The l3bootstrap package
Bootstrap code
1 Using the LATEX3 modules
The modules documented in source3 are designed to be used on top of LATEX2ε and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions. These modules will also form the basis of the LATEX3 format, but work in
this area is incomplete and not included in this documentation at present.

As the modules use a coding syntax different from standard LATEX2ε it provides a
few functions for setting it up.

\ExplSyntaxOn 〈code〉 \ExplSyntaxOff

The \ExplSyntaxOn function switches to a category code régime in which spaces are
ignored and in which the colon (:) and underscore (_) are treated as “letters”, thus
allowing access to the names of code functions and variables. Within this environment,
~ is used to input a space. The \ExplSyntaxOff reverts to the document category code
régime.

\ExplSyntaxOn
\ExplSyntaxOff

Updated: 2011-08-13

\RequirePackage{expl3}
\ProvidesExplPackage {〈package〉} {〈date〉} {〈version〉} {〈description〉}
These functions act broadly in the same way as the corresponding LATEX2ε kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntaxOn for the remainder of the code with the file. At the end
of the file, \ExplSyntaxOff will be called to reverse this. (This is the same concept as
LATEX2ε provides in turning on \makeatletter within package and class code.) The
〈date〉 should be given in the format 〈year〉/〈month〉/〈day〉.

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

\RequirePackage{l3bootstrap}
\GetIdInfo $Id: 〈SVN info field〉 $ {〈description〉}
Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion
for version and \ExplFileDescription for the description.

\GetIdInfo

Updated: 2012-06-04

To summarize: Every single package using this syntax should identify itself using
one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or alike are loaded with usual LATEX2ε category codes and the
LATEX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with
\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

7

1.1 Internal functions and variables

A boolean which records the current code syntax status: true if currently inside a code
environment. This variable should only be set by \ExplSyntaxOn/\ExplSyntaxOff.

\l__kernel_expl_bool

8

Part III

The l3names package
Namespace for primitives
1 Setting up the LATEX3 programming language
This module is at the core of the LATEX3 programming language. It performs the following
tasks:

• defines new names for all TEX primitives;

• switches to the category code régime for programming;

• provides support settings for building the code as a TEX format.

This module is entirely dedicated to primitives, which should not be used directly
within LATEX3 code (outside of “kernel-level” code). As such, the primitives are not
documented here: The TEXbook, TEX by Topic and the manuals for pdfTEX, X ETEX and
LuaTEX should be consulted for details of the primitives. These are named based on the
engine which first introduced them:

\tex_... Introduced by TEX itself;

\etex_... Introduced by the ε-TEX extensions;

\pdftex_... Introduced by pdfTEX;

\xetex_... Introduced by X ETEX;

\luatex_... Introduced by LuaTEX.

9

Part IV

The l3basics package
Basic definitions
As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\prg_do_nothing: ?

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

\scan_stop:

2 Grouping material

\group_begin:
\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

\group_begin:
\group_end:

\group_insert_after:N 〈token〉

Adds 〈token〉 to the list of 〈tokens〉 to be inserted when the current group level ends.
The list of 〈tokens〉 to be inserted will be empty at the beginning of a group: multiple
applications of \group_insert_after:Nmay be used to build the inserted list one 〈token〉
at a time. The current group level may be closed by a \group_end: function or by a
token with category code 2 (close-group). The later will be a } if standard category codes
apply.

\group_insert_after:N

10

3 Control sequences and functions
As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, 〈code〉 is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” will be fully expanded inside an x expansion.
In contrast, “protected” functions are not expanded within x expansions.

3.1 Defining functions
Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen will be checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new...
functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, . . .).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and will result in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and will not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset:Npn. The definition
is global and will not result in an error if the function is already defined.

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an x-type expansion.

Finally, the functions in Subsections 3.2 and 3.3 are primarily meant to define base
functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 1).

p and w These are special cases.

11

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 2.

3.2 Defining new functions using parameter text

\cs_new:Npn 〈function〉 〈parameters〉 {〈code〉}

Creates 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the
〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error will result if the 〈function〉 is already defined.

\cs_new:Npn
\cs_new:cpn
\cs_new:Npx
\cs_new:cpx

\cs_new_nopar:Npn 〈function〉 〈parameters〉 {〈code〉}

Creates 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the
〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. When the
〈function〉 is used the 〈parameters〉 absorbed cannot contain \par tokens. The definition
is global and an error will result if the 〈function〉 is already defined.

\cs_new_nopar:Npn
\cs_new_nopar:cpn
\cs_new_nopar:Npx
\cs_new_nopar:cpx

\cs_new_protected:Npn 〈function〉 〈parameters〉 {〈code〉}

Creates 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the
〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. The
〈function〉 will not expand within an x-type argument. The definition is global and an
error will result if the 〈function〉 is already defined.

\cs_new_protected:Npn
\cs_new_protected:cpn
\cs_new_protected:Npx
\cs_new_protected:cpx

\cs_new_protected_nopar:Npn 〈function〉 〈parameters〉 {〈code〉}\cs_new_protected_nopar:Npn
\cs_new_protected_nopar:cpn
\cs_new_protected_nopar:Npx
\cs_new_protected_nopar:cpx

Creates 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the
〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. When the
〈function〉 is used the 〈parameters〉 absorbed cannot contain \par tokens. The 〈function〉
will not expand within an x-type argument. The definition is global and an error will
result if the 〈function〉 is already defined.

\cs_set:Npn 〈function〉 〈parameters〉 {〈code〉}

Sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the
〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the 〈function〉 is restricted to the current TEX group level.

\cs_set:Npn
\cs_set:cpn
\cs_set:Npx
\cs_set:cpx

12

\cs_set_nopar:Npn 〈function〉 〈parameters〉 {〈code〉}

Sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the
〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. When the
〈function〉 is used the 〈parameters〉 absorbed cannot contain \par tokens. The assignment
of a meaning to the 〈function〉 is restricted to the current TEX group level.

\cs_set_nopar:Npn
\cs_set_nopar:cpn
\cs_set_nopar:Npx
\cs_set_nopar:cpx

\cs_set_protected:Npn 〈function〉 〈parameters〉 {〈code〉}

Sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the
〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the 〈function〉 is restricted to the current TEX group level.
The 〈function〉 will not expand within an x-type argument.

\cs_set_protected:Npn
\cs_set_protected:cpn
\cs_set_protected:Npx
\cs_set_protected:cpx

\cs_set_protected_nopar:Npn 〈function〉 〈parameters〉 {〈code〉}\cs_set_protected_nopar:Npn
\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:Npx
\cs_set_protected_nopar:cpx

Sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the
〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. When
the 〈function〉 is used the 〈parameters〉 absorbed cannot contain \par tokens. The as-
signment of a meaning to the 〈function〉 is restricted to the current TEX group level. The
〈function〉 will not expand within an x-type argument.

\cs_gset:Npn 〈function〉 〈parameters〉 {〈code〉}

Globally sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉,
the 〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the 〈function〉 is not restricted to the current TEX group
level: the assignment is global.

\cs_gset:Npn
\cs_gset:cpn
\cs_gset:Npx
\cs_gset:cpx

\cs_gset_nopar:Npn 〈function〉 〈parameters〉 {〈code〉}

Globally sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉,
the 〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function.
When the 〈function〉 is used the 〈parameters〉 absorbed cannot contain \par tokens. The
assignment of a meaning to the 〈function〉 is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn
\cs_gset_nopar:cpn
\cs_gset_nopar:Npx
\cs_gset_nopar:cpx

\cs_gset_protected:Npn 〈function〉 〈parameters〉 {〈code〉}

Globally sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉,
the 〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the 〈function〉 is not restricted to the current TEX group level:
the assignment is global. The 〈function〉 will not expand within an x-type argument.

\cs_gset_protected:Npn
\cs_gset_protected:cpn
\cs_gset_protected:Npx
\cs_gset_protected:cpx

13

\cs_gset_protected_nopar:Npn 〈function〉 〈parameters〉 {〈code〉}\cs_gset_protected_nopar:Npn
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpx

Globally sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉,
the 〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function.
When the 〈function〉 is used the 〈parameters〉 absorbed cannot contain \par tokens. The
assignment of a meaning to the 〈function〉 is not restricted to the current TEX group level:
the assignment is global. The 〈function〉 will not expand within an x-type argument.

3.3 Defining new functions using the signature

\cs_new:Nn 〈function〉 {〈code〉}

Creates 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the
number of 〈parameters〉 is detected automatically from the function signature. These
〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error will result if the 〈function〉 is already defined.

\cs_new:Nn
\cs_new:(cn|Nx|cx)

\cs_new_nopar:Nn 〈function〉 {〈code〉}

Creates 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the
number of 〈parameters〉 is detected automatically from the function signature. These
〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. When the
〈function〉 is used the 〈parameters〉 absorbed cannot contain \par tokens. The definition
is global and an error will result if the 〈function〉 is already defined.

\cs_new_nopar:Nn
\cs_new_nopar:(cn|Nx|cx)

\cs_new_protected:Nn 〈function〉 {〈code〉}

Creates 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the
number of 〈parameters〉 is detected automatically from the function signature. These
〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. The
〈function〉 will not expand within an x-type argument. The definition is global and an
error will result if the 〈function〉 is already defined.

\cs_new_protected:Nn
\cs_new_protected:(cn|Nx|cx)

\cs_new_protected_nopar:Nn 〈function〉 {〈code〉}\cs_new_protected_nopar:Nn
\cs_new_protected_nopar:(cn|Nx|cx)

Creates 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the
number of 〈parameters〉 is detected automatically from the function signature. These
〈parameters〉 (#1, #2, etc.) will be replaced by those absorbed by the function. When the
〈function〉 is used the 〈parameters〉 absorbed cannot contain \par tokens. The 〈function〉
will not expand within an x-type argument. The definition is global and an error will
result if the 〈function〉 is already defined.

14

\cs_set:Nn 〈function〉 {〈code〉}

Sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the number of
〈parameters〉 is detected automatically from the function signature. These 〈parameters〉
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the 〈function〉 is restricted to the current TEX group level.

\cs_set:Nn
\cs_set:(cn|Nx|cx)

\cs_set_nopar:Nn 〈function〉 {〈code〉}

Sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the number of
〈parameters〉 is detected automatically from the function signature. These 〈parameters〉
(#1, #2, etc.) will be replaced by those absorbed by the function. When the 〈function〉
is used the 〈parameters〉 absorbed cannot contain \par tokens. The assignment of a
meaning to the 〈function〉 is restricted to the current TEX group level.

\cs_set_nopar:Nn
\cs_set_nopar:(cn|Nx|cx)

\cs_set_protected:Nn 〈function〉 {〈code〉}

Sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the number of
〈parameters〉 is detected automatically from the function signature. These 〈parameters〉
(#1, #2, etc.) will be replaced by those absorbed by the function. The 〈function〉 will
not expand within an x-type argument. The assignment of a meaning to the 〈function〉
is restricted to the current TEX group level.

\cs_set_protected:Nn
\cs_set_protected:(cn|Nx|cx)

\cs_set_protected_nopar:Nn 〈function〉 {〈code〉}\cs_set_protected_nopar:Nn
\cs_set_protected_nopar:(cn|Nx|cx)

Sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the number of
〈parameters〉 is detected automatically from the function signature. These 〈parameters〉
(#1, #2, etc.) will be replaced by those absorbed by the function. When the 〈function〉
is used the 〈parameters〉 absorbed cannot contain \par tokens. The 〈function〉 will not
expand within an x-type argument. The assignment of a meaning to the 〈function〉 is
restricted to the current TEX group level.

\cs_gset:Nn 〈function〉 {〈code〉}

Sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the number of
〈parameters〉 is detected automatically from the function signature. These 〈parameters〉
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the 〈function〉 is global.

\cs_gset:Nn
\cs_gset:(cn|Nx|cx)

\cs_gset_nopar:Nn 〈function〉 {〈code〉}

Sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the number of
〈parameters〉 is detected automatically from the function signature. These 〈parameters〉
(#1, #2, etc.) will be replaced by those absorbed by the function. When the 〈function〉
is used the 〈parameters〉 absorbed cannot contain \par tokens. The assignment of a
meaning to the 〈function〉 is global.

\cs_gset_nopar:Nn
\cs_gset_nopar:(cn|Nx|cx)

15

\cs_gset_protected:Nn 〈function〉 {〈code〉}\cs_gset_protected:Nn
\cs_gset_protected:(cn|Nx|cx)

Sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the number of
〈parameters〉 is detected automatically from the function signature. These 〈parameters〉
(#1, #2, etc.) will be replaced by those absorbed by the function. The 〈function〉 will
not expand within an x-type argument. The assignment of a meaning to the 〈function〉
is global.

\cs_gset_protected_nopar:Nn 〈function〉 {〈code〉}\cs_gset_protected_nopar:Nn
\cs_gset_protected_nopar:(cn|Nx|cx)

Sets 〈function〉 to expand to 〈code〉 as replacement text. Within the 〈code〉, the number of
〈parameters〉 is detected automatically from the function signature. These 〈parameters〉
(#1, #2, etc.) will be replaced by those absorbed by the function. When the 〈function〉
is used the 〈parameters〉 absorbed cannot contain \par tokens. The 〈function〉 will not
expand within an x-type argument. The assignment of a meaning to the 〈function〉 is
global.

\cs_generate_from_arg_count:NNnn 〈function〉 〈creator〉 〈number〉
〈code〉

\cs_generate_from_arg_count:NNnn
\cs_generate_from_arg_count:(cNnn|Ncnn)

Updated: 2012-01-14

Uses the 〈creator〉 function (which should have signature Npn, for example \cs_new:Npn)
to define a 〈function〉 which takes 〈number〉 arguments and has 〈code〉 as replacement
text. The 〈number〉 of arguments is an integer expression, evaluated as detailed for
\int_eval:n.

3.4 Copying control sequences
Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN 〈cs1〉 〈cs2〉
\cs_new_eq:NN 〈cs1〉 〈token〉

Globally creates 〈control sequence1〉 and sets it to have the same meaning as 〈control
sequence2〉 or 〈token〉. The second control sequence may subsequently be altered without
affecting the copy.

\cs_new_eq:NN
\cs_new_eq:(Nc|cN|cc)

16

\cs_set_eq:NN 〈cs1〉 〈cs2〉
\cs_set_eq:NN 〈cs1〉 〈token〉

Sets 〈control sequence1〉 to have the same meaning as 〈control sequence2〉 (or 〈token〉).
The second control sequence may subsequently be altered without affecting the copy.
The assignment of a meaning to the 〈control sequence1〉 is restricted to the current TEX
group level.

\cs_set_eq:NN
\cs_set_eq:(Nc|cN|cc)

\cs_gset_eq:NN 〈cs1〉 〈cs2〉
\cs_gset_eq:NN 〈cs1〉 〈token〉

Globally sets 〈control sequence1〉 to have the same meaning as 〈control sequence2〉 (or
〈token〉). The second control sequence may subsequently be altered without affecting the
copy. The assignment of a meaning to the 〈control sequence1〉 is not restricted to the
current TEX group level: the assignment is global.

\cs_gset_eq:NN
\cs_gset_eq:(Nc|cN|cc)

3.5 Deleting control sequences
There are occasions where control sequences need to be deleted. This is handled in a
very simple manner.

\cs_undefine:N 〈control sequence〉

Sets 〈control sequence〉 to be globally undefined.
\cs_undefine:N
\cs_undefine:c

Updated: 2011-09-15

3.6 Showing control sequences

\cs_meaning:N 〈control sequence〉

This function expands to the meaning of the 〈control sequence〉 control sequence. This
will show the 〈replacement text〉 for a macro.

TEXhackers note: This is TEX’s \meaning primitive. The c variant correctly reports
undefined arguments.

\cs_meaning:N ?
\cs_meaning:c ?

Updated: 2011-12-22

\cs_show:N 〈control sequence〉

Displays the definition of the 〈control sequence〉 on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_show:N
\cs_show:c

Updated: 2015-08-03

17

3.7 Converting to and from control sequences

\use:c {〈control sequence name〉}

Converts the given 〈control sequence name〉 into a single control sequence token. This
process requires two expansions. The content for 〈control sequence name〉 may be literal
material or from other expandable functions. The 〈control sequence name〉 must, when
fully expanded, consist of character tokens which are not active: typically, they will be
of category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

\use:c ?

As an example of the \use:c function, both

\use:c { a b c }

and

\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl { a b c }
\use:c { \tl_use:N \l_my_tl }

would be equivalent to

\abc

after two expansions of \use:c.

\cs_if_exist_use:N 〈control sequence〉

Tests whether the 〈control sequence〉 is currently defined (whether as a function or another
control sequence type), and if it does inserts the 〈control sequence〉 into the input stream.

\cs_if_exist_use:N ?
\cs_if_exist_use:c ?

New: 2012-11-10

\cs_if_exist_use:NTF 〈control sequence〉 {〈true code〉} {〈false code〉}

Tests whether the 〈control sequence〉 is currently defined (whether as a function or another
control sequence type), and if it does inserts the 〈control sequence〉 into the input stream
followed by the 〈true code〉.

\cs_if_exist_use:NTF ?
\cs_if_exist_use:cTF ?

New: 2012-11-10

\cs:w 〈control sequence name〉 \cs_end:

Converts the given 〈control sequence name〉 into a single control sequence token. This
process requires one expansion. The content for 〈control sequence name〉 may be literal
material or from other expandable functions. The 〈control sequence name〉 must, when
fully expanded, consist of character tokens which are not active: typically, they will be
of category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TEXhackers note: These are the TEX primitives \csname and \endcsname.

\cs:w ?
\cs_end: ?

As an example of the \cs:w and \cs_end: functions, both

\cs:w a b c \cs_end:

and

18

\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl { a b c }
\cs:w \tl_use:N \l_my_tl \cs_end:

would be equivalent to

\abc

after one expansion of \cs:w.

\cs_to_str:N 〈control sequence〉

Converts the given 〈control sequence〉 into a series of characters with category code 12
(other), except spaces, of category code 10. The sequence will not include the current
escape token, cf. \token_to_str:N. Full expansion of this function requires exactly 2
expansion steps, and so an x-type expansion, or two o-type expansions will be required
to convert the 〈control sequence〉 to a sequence of characters in the input stream. In most
cases, an f-expansion will be correct as well, but this loses a space at the start of the
result.

\cs_to_str:N ?

4 Using or removing tokens and arguments
Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then in absorbing them the outer set will be removed. At the same
time, the category code of each token is set when the token is read by a function (if it
is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

\use:n {〈group1〉}
\use:nn {〈group1〉} {〈group2〉}
\use:nnn {〈group1〉} {〈group2〉} {〈group3〉}
\use:nnnn {〈group1〉} {〈group2〉} {〈group3〉} {〈group4〉}
As illustrated, these functions will absorb between one and four arguments, as indicated
by the argument specifier. The braces surrounding each argument will be removed leaving
the remaining tokens in the input stream. The category code of these tokens will also be
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } }

will result in the input stream containing

abc { def }

i.e. only the outer braces will be removed.

\use:n ?
\use:nn ?
\use:nnn ?
\use:nnnn ?

19

\use_i:nn {〈arg1〉} {〈arg2〉}

These functions absorb two arguments from the input stream. The function \use_i:nn
discards the second argument, and leaves the content of the first argument in the input
stream. \use_ii:nn discards the first argument and leaves the content of the second
argument in the input stream. The category code of these tokens will also be fixed (if
it has not already been by some other absorption). A single expansion is needed for the
functions to take effect.

\use_i:nn ?
\use_ii:nn ?

\use_i:nnn {〈arg1〉} {〈arg2〉} {〈arg3〉}

These functions absorb three arguments from the input stream. The function \use_i:nnn
discards the second and third arguments, and leaves the content of the first argument in
the input stream. \use_ii:nnn and \use_iii:nnn work similarly, leaving the content of
second or third arguments in the input stream, respectively. The category code of these
tokens will also be fixed (if it has not already been by some other absorption). A single
expansion is needed for the functions to take effect.

\use_i:nnn ?
\use_ii:nnn ?
\use_iii:nnn ?

\use_i:nnnn {〈arg1〉} {〈arg2〉} {〈arg3〉} {〈arg4〉}

These functions absorb four arguments from the input stream. The function \use_-
i:nnnn discards the second, third and fourth arguments, and leaves the content of the
first argument in the input stream. \use_ii:nnnn, \use_iii:nnnn and \use_iv:nnnn
work similarly, leaving the content of second, third or fourth arguments in the input
stream, respectively. The category code of these tokens will also be fixed (if it has not
already been by some other absorption). A single expansion is needed for the functions
to take effect.

\use_i:nnnn ?
\use_ii:nnnn ?
\use_iii:nnnn ?
\use_iv:nnnn ?

\use_i_ii:nnn {〈arg1〉} {〈arg2〉} {〈arg3〉}

This functions will absorb three arguments and leave the content of the first and second
in the input stream. The category code of these tokens will also be fixed (if it has not
already been by some other absorption). A single expansion is needed for the functions
to take effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }

will result in the input stream containing

abc { def }

i.e. the outer braces will be removed and the third group will be removed.

\use_i_ii:nnn ?

20

\use_none:n {〈group1〉}

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

\use_none:n ?
\use_none:nn ?
\use_none:nnn ?
\use_none:nnnn ?
\use_none:nnnnn ?
\use_none:nnnnnn ?
\use_none:nnnnnnn ?
\use_none:nnnnnnnn ?
\use_none:nnnnnnnnn ?

\use:x {〈expandable tokens〉}

Fully expands the 〈expandable tokens〉 and inserts the result into the input stream at the
current location. Any hash characters (#) in the argument must be doubled.

\use:x

Updated: 2011-12-31

4.1 Selecting tokens from delimited arguments
A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q_nil:w 〈balanced text〉 \q_nil
\use_none_delimit_by_q_stop:w 〈balanced text〉 \q_stop
\use_none_delimit_by_q_recursion_stop:w 〈balanced text〉
\q_recursion_stop

\use_none_delimit_by_q_nil:w ?
\use_none_delimit_by_q_stop:w ?
\use_none_delimit_by_q_recursion_stop:w ?

Absorb the 〈balanced text〉 form the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.

\use_i_delimit_by_q_nil:nw {〈inserted tokens〉} 〈balanced text〉
\q_nil
\use_i_delimit_by_q_stop:nw {〈inserted tokens〉} 〈balanced
text〉 \q_stop
\use_i_delimit_by_q_recursion_stop:nw {〈inserted tokens〉}
〈balanced text〉 \q_recursion_stop

\use_i_delimit_by_q_nil:nw ?
\use_i_delimit_by_q_stop:nw ?
\use_i_delimit_by_q_recursion_stop:nw ?

Absorb the 〈balanced text〉 form the input stream delimited by the marker given in the
function name, leaving 〈inserted tokens〉 in the input stream for further processing.

5 Predicates and conditionals
LATEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending
on its result, either the code supplied as the 〈true code〉 or the 〈false code〉. These
arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abc} {〈true code〉} {〈false code〉}

21

a function that will turn the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carry out the code in the second argument (true case) or in the third
argument (false case).
These type of functions are known as “conditionals”; whenever a TF function is
defined it will usually be accompanied by T and F functions as well. These are
provided for convenience when the branch only needs to go a single way. Package
writers are free to choose which types to define but the kernel definitions will always
provide all three versions.
Important to note is that these branching conditionals with 〈true code〉 and/or
〈false code〉 are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.
These conditional functions may or may not be fully expandable, but if they are
expandable they will be accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which
can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if:nTF {
\cs_if_free_p:N \l_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl

} {〈true code〉} {〈false code〉}

For each predicate defined, a “branching conditional” will also exist that behaves
like a conditional described above.

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and LATEX2ε. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

Constants that represent true and false, respectively. Used to implement predicates.\c_true_bool
\c_false_bool

22

5.1 Tests on control sequences

\cs_if_eq_p:NN {〈cs1〉} {〈cs2〉}
\cs_if_eq:NNTF {〈cs1〉} {〈cs2〉} {〈true code〉} {〈false code〉}

Compares the definition of two 〈control sequences〉 and is logically true the same, i.e. if
they have exactly the same definition when examined with \cs_show:N.

\cs_if_eq_p:NN ?
\cs_if_eq:NNTF ?

\cs_if_exist_p:N 〈control sequence〉
\cs_if_exist:NTF 〈control sequence〉 {〈true code〉} {〈false code〉}

Tests whether the 〈control sequence〉 is currently defined (whether as a function or another
control sequence type). Any valid definition of 〈control sequence〉 will evaluate as true.

\cs_if_exist_p:N ?
\cs_if_exist_p:c ?
\cs_if_exist:NTF ?
\cs_if_exist:cTF ?

\cs_if_free_p:N 〈control sequence〉
\cs_if_free:NTF 〈control sequence〉 {〈true code〉} {〈false code〉}

Tests whether the 〈control sequence〉 is currently free to be defined. This test will be
false if the 〈control sequence〉 currently exists (as defined by \cs_if_exist:N).

\cs_if_free_p:N ?
\cs_if_free_p:c ?
\cs_if_free:NTF ?
\cs_if_free:cTF ?

5.2 Primitive conditionals
The ε-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions will
often contain a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if_int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We will prefix primitive conditionals with \if_.

\if_true: 〈true code〉 \else: 〈false code〉 \fi:
\if_false: 〈true code〉 \else: 〈false code〉 \fi:
\reverse_if:N 〈primitive conditional〉

\if_true: always executes 〈true code〉, while \if_false: always executes 〈false code〉.
\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. The function \or: is documented in l3int and used in
case switches.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is ε-TEX’s \unless.

\if_true: ?
\if_false: ?
\else: ?
\fi: ?
\reverse_if:N ?

\if_meaning:w 〈arg1〉 〈arg2〉 〈true code〉 \else: 〈false code〉 \fi:

\if_meaning:w executes 〈true code〉 when 〈arg1〉 and 〈arg2〉 are the same, otherwise it
executes 〈false code〉. 〈arg1〉 and 〈arg2〉 could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TEXhackers note: This is TEX’s \ifx.

\if_meaning:w ?

23

\if:w 〈token1〉 〈token2〉 〈true code〉 \else: 〈false code〉 \fi:
\if_catcode:w 〈token1〉 〈token2〉 〈true code〉 \else: 〈false code〉 \fi:

These conditionals will expand any following tokens until two unexpandable tokens are
left. If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if_catcode:w tests if the category codes of the two tokens are the same whereas \if:w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if:w.

\if:w ?
\if_charcode:w ?
\if_catcode:w ?

\if_cs_exist:N 〈cs〉 〈true code〉 \else: 〈false code〉 \fi:
\if_cs_exist:w 〈tokens〉 \cs_end: 〈true code〉 \else: 〈false code〉 \fi:

Check if 〈cs〉 appears in the hash table or if the control sequence that can be formed
from 〈tokens〉 appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

\if_cs_exist:N ?
\if_cs_exist:w ?

\if_mode_horizontal: 〈true code〉 \else: 〈false code〉 \fi:

Execute 〈true code〉 if currently in horizontal mode, otherwise execute 〈false code〉. Sim-
ilar for the other functions.

\if_mode_horizontal: ?
\if_mode_vertical: ?
\if_mode_math: ?
\if_mode_inner: ?

6 Internal kernel functions

__chk_if_exist_cs:N 〈cs〉

This function checks that 〈cs〉 exists according to the criteria for \cs_if_exist_p:N, and
if not raises a kernel-level error.

__chk_if_exist_cs:N
__chk_if_exist_cs:c

__chk_if_free_cs:N 〈cs〉

This function checks that 〈cs〉 is free according to the criteria for \cs_if_free_p:N, and
if not raises a kernel-level error.

__chk_if_free_cs:N
__chk_if_free_cs:c

__chk_if_exist_var:N 〈var〉

This function checks that 〈var〉 is defined according to the criteria for \cs_if_free_p:N,
and if not raises a kernel-level error. This function is only created if the package option
check-declarations is active.

__chk_if_exist_var:N

__chk_log:x {〈message text〉}

If the log-functions option is active, this function writes the 〈message text〉 to the log
file using \iow_log:x. Otherwise, the 〈message text〉 is ignored using \use_none:n.

__chk_log:x

__chk_suspend_log: ... __chk_log:x ... __chk_resume_log:

Any __chk_log:x command between __chk_suspend_log: and __chk_resume_log:
is suppressed. These commands can be nested.

__chk_suspend_log:
__chk_resume_log:

24

__cs_count_signature:N 〈function〉

Splits the 〈function〉 into the 〈name〉 (i.e. the part before the colon) and the 〈signature〉
(i.e. after the colon). The 〈number〉 of tokens in the 〈signature〉 is then left in the input
stream. If there was no 〈signature〉 then the result is the marker value −1.

__cs_count_signature:N ?
__cs_count_signature:c ?

__cs_split_function:NN 〈function〉 〈processor〉

Splits the 〈function〉 into the 〈name〉 (i.e. the part before the colon) and the 〈signature〉
(i.e. after the colon). This information is then placed in the input stream after the
〈processor〉 function in three parts: the 〈name〉, the 〈signature〉 and a logic token indi-
cating if a colon was found (to differentiate variables from function names). The 〈name〉
will not include the escape character, and both the 〈name〉 and 〈signature〉 are made
up of tokens with category code 12 (other). The 〈processor〉 should be a function with
argument specification :nnN (plus any trailing arguments needed).

__cs_split_function:NN ?

__cs_get_function_name:N 〈function〉__cs_get_function_name:N ?

Splits the 〈function〉 into the 〈name〉 (i.e. the part before the colon) and the 〈signature〉
(i.e. after the colon). The 〈name〉 is then left in the input stream without the escape
character present made up of tokens with category code 12 (other).

__cs_get_function_signature:N 〈function〉__cs_get_function_signature:N ?

Splits the 〈function〉 into the 〈name〉 (i.e. the part before the colon) and the 〈signature〉
(i.e. after the colon). The 〈signature〉 is then left in the input stream made up of tokens
with category code 12 (other).

Function used for various short-term usages, for instance defining functions whose defini-
tion involves tokens which are hard to insert normally (spaces, characters with category
other).

__cs_tmp:w

__kernel_register_show:N 〈register〉

Used to show the contents of a TEX register at the terminal, formatted such that internal
parts of the mechanism are not visible.

__kernel_register_show:N
__kernel_register_show:c

__prg_case_end:nw {〈code〉} 〈tokens〉 \q_mark {〈true code〉} \q_mark {〈false code〉}
\q_stop

Used to terminate case statements (\int_case:nnTF, etc.) by removing trailing 〈tokens〉
and the end marker \q_stop, inserting the 〈code〉 for the successful case (if one is found)
and either the true code or false code for the over all outcome, as appropriate.

__prg_case_end:nw ?

25

Part V

The l3expan package
Argument expansion
This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the LATEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

1 Defining new variants
The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions from the \exp_ mod-
ule. They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo will expand the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
\l_tmpa_tl

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_new_nopar:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is uncritical as the \cs_new_nopar:Npn func-
tion will silently accept definitions whenever the new definition is identical to an already
given one. Therefore adding such definition to later releases of the kernel will not make
such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

26

2 Methods for defining variants

\cs_generate_variant:Nn 〈parent control sequence〉 {〈variant argument specifiers〉}

This function is used to define argument-specifier variants of the 〈parent control sequence〉
for LATEX3 code-level macros. The 〈parent control sequence〉 is first separated into the
〈base name〉 and 〈original argument specifier〉. The comma-separated list of 〈variant
argument specifiers〉 is then used to define variants of the 〈original argument specifier〉
where these are not already defined. For each 〈variant〉 given, a function is created which
will expand its arguments as detailed and pass them to the 〈parent control sequence〉. So
for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { c }

will create a new function \foo:cn which will expand its first argument into a control
sequence name and pass the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

would generate the functions \foo:NV and \foo:cV in the same way. The \cs_-
generate_variant:Nn function can only be applied if the 〈parent control sequence〉 is
already defined. If the 〈parent control sequence〉 is protected then the new sequence will
also be protected. The 〈variant〉 is created globally, as is any \exp_args:N〈variant〉
function needed to carry out the expansion.

\cs_generate_variant:Nn

Updated: 2015-08-06

3 Introducing the variants
The available internal functions for argument expansion come in two flavours, some of
them are faster then others. Therefore it is usually best to follow the following guidelines
when defining new functions that are supposed to come with variant forms:

• Arguments that might need expansion should come first in the list of arguments to
make processing faster.

• Arguments that should consist of single tokens should come first.

• Arguments that need full expansion (i.e., are denoted with x) should be avoided if
possible as they can not be processed expandably, i.e., functions of this type will
not work correctly in arguments that are themselves subject to x expansion.

• In general, unless in the last position, multi-token arguments n, f, and o will need
special processing when more than one argument is being expanded. This special
processing is not fast. Therefore it is best to use the optimized functions, namely
those that contain only N, c, V, and v, and, in the last position, o, f, with possible
trailing N or n, which are not expanded.

27

The V type returns the value of a register, which can be one of tl, num, int, skip,
dim, toks, or built-in TEX registers. The v type is the same except it first creates a
control sequence out of its argument before returning the value. This recent addition to
the argument specifiers may shake things up a bit as most places where o is used will be
replaced by V. The documentation you are currently reading will therefore require a fair
bit of re-writing.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only
when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The f type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and f-
expansion provides an alternative that expands as much as can be done in such contexts.
For instance, say that we want to evaluate the integer expression 3+4 and pass the result
7 as an argument to an expandable function \example:n. For this, one should define a
variant using \cs_generate_variant:Nn \example:n { f }, then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }

will result in the call \example:n { 3 , \int_eval:n { 3 + 4 } } while using \example:x
instead results in \example:n { 3 , 7 } at the cost of being protected. If you use this
type of expansion in conditional processing then you should stick to using TF type func-
tions only as it does not try to finish any \if... \fi: itself!

If is important to note that both f- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the emphfirst non-expandable token. This
means for example that both

\tl_set:No \l_tmpa_tl { { \l_tmpa_tl } }

and

\tl_set:Nf \l_tmpa_tl { { \l_tmpa_tl } }

leave \l_tmpa_tl unchanged: { is the first token in the argument and is non-expandable.

28

4 Manipulating the first argument
These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

\exp_args:No 〈function〉 {〈tokens〉} ...

This function absorbs two arguments (the 〈function〉 name and the 〈tokens〉). The
〈tokens〉 are expanded once, and the result is inserted in braces into the input stream af-
ter reinsertion of the 〈function〉. Thus the 〈function〉 may take more than one argument:
all others will be left unchanged.

\exp_args:No ?

\exp_args:Nc 〈function〉 {〈tokens〉}

This function absorbs two arguments (the 〈function〉 name and the 〈tokens〉). The
〈tokens〉 are expanded until only characters remain, and are then turned into a con-
trol sequence. (An internal error will occur if such a conversion is not possible). The
result is inserted into the input stream after reinsertion of the 〈function〉. Thus the
〈function〉 may take more than one argument: all others will be left unchanged.

The :cc variant constructs the 〈function〉 name in the same manner as described for
the 〈tokens〉.

\exp_args:Nc ?
\exp_args:cc ?

\exp_args:NV 〈function〉 〈variable〉

This function absorbs two arguments (the names of the 〈function〉 and the 〈variable〉).
The content of the 〈variable〉 are recovered and placed inside braces into the input stream
after reinsertion of the 〈function〉. Thus the 〈function〉may take more than one argument:
all others will be left unchanged.

\exp_args:NV ?

\exp_args:Nv 〈function〉 {〈tokens〉}

This function absorbs two arguments (the 〈function〉 name and the 〈tokens〉). The
〈tokens〉 are expanded until only characters remain, and are then turned into a con-
trol sequence. (An internal error will occur if such a conversion is not possible). This
control sequence should be the name of a 〈variable〉. The content of the 〈variable〉 are re-
covered and placed inside braces into the input stream after reinsertion of the 〈function〉.
Thus the 〈function〉 may take more than one argument: all others will be left unchanged.

\exp_args:Nv ?

\exp_args:Nf 〈function〉 {〈tokens〉}

This function absorbs two arguments (the 〈function〉 name and the 〈tokens〉). The
〈tokens〉 are fully expanded until the first non-expandable token or space is found, and
the result is inserted in braces into the input stream after reinsertion of the 〈function〉.
Thus the 〈function〉 may take more than one argument: all others will be left unchanged.

\exp_args:Nf ?

29

\exp_args:Nx 〈function〉 {〈tokens〉}

This function absorbs two arguments (the 〈function〉 name and the 〈tokens〉) and ex-
haustively expands the 〈tokens〉 second. The result is inserted in braces into the input
stream after reinsertion of the 〈function〉. Thus the 〈function〉 may take more than one
argument: all others will be left unchanged.

\exp_args:Nx

5 Manipulating two arguments

\exp_args:NNc 〈token1〉 〈token2〉 {〈tokens〉}\exp_args:NNo ?
\exp_args:(NNv|NNV|NNf|Nco|Ncf) ?
\exp_args:NNc ?
\exp_args:Ncc ?
\exp_args:NVV ?

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Noo 〈token〉 {〈tokens1〉} {〈tokens2〉}\exp_args:Nno ?
\exp_args:(NnV|Nnf|Noo|Nof|Nff|Nfo) ?
\exp_args:Noc ?
\exp_args:Nnc ?

Updated: 2012-01-14

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions need special (slower) processing.

\exp_args:NNx 〈token1〉 〈token2〉 {〈tokens〉}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable.

\exp_args:NNx
\exp_args:Ncx
\exp_args:Nnx
\exp_args:(Nox|Nxo|Nxx)

30

6 Manipulating three arguments

\exp_args:NNNo 〈token1〉 〈token2〉 〈token3〉 {〈tokens〉}\exp_args:NNNo ?
\exp_args:(NNNV|NcNo|Ncco) ?
\exp_args:Nccc ?
\exp_args:NcNc ?

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

\exp_args:NNoo 〈token1〉 〈token2〉 {〈token3〉} {〈tokens〉}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc. These
functions need special (slower) processing.

\exp_args:NNoo ?
\exp_args:NNno ?
\exp_args:Nnno ?
\exp_args:Nooo ?
\exp_args:Nnnc ?

\exp_args:NNnx 〈token1〉 〈token2〉 {〈tokens1〉} {〈tokens2〉}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

\exp_args:NNNx
\exp_args:Nccx
\exp_args:NNnx
\exp_args:(NNox|Ncnx)
\exp_args:Nnnx
\exp_args:(Nnox|Noox)

New: 2015-08-12

31

7 Unbraced expansion

\exp_last_unbraced:Nno 〈token〉 〈tokens1〉 〈tokens2〉\exp_last_unbraced:Nf ?
\exp_last_unbraced:(NV|No|Nv) ?
\exp_last_unbraced:Nco ?
\exp_last_unbraced:(NcV|NNV|NNo) ?
\exp_last_unbraced:Nno ?
\exp_last_unbraced:(Noo|Nfo) ?
\exp_last_unbraced:NNNV ?
\exp_last_unbraced:NNNo ?
\exp_last_unbraced:NnNo ?

Updated: 2012-02-12

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, and :Nfo variants need
special (slower) processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \foo_bar:w { } \q_stop leads to an infinite loop, as the quark is f-
expanded.

\exp_last_unbraced:Nx 〈function〉 {〈tokens〉}

This functions fully expands the 〈tokens〉 and leaves the result in the input stream after
reinsertion of 〈function〉. This function is not expandable.

\exp_last_unbraced:Nx

\exp_last_two_unbraced:Noo 〈token〉 〈tokens1〉 {〈tokens2〉}\exp_last_two_unbraced:Noo ?

This function absorbs three arguments and expand the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

\exp_after:wN 〈token1〉 〈token2〉

Carries out a single expansion of 〈token2〉 (which may consume arguments) prior to
the expansion of 〈token1〉. If 〈token2〉 is a TEX primitive, it will be executed rather
than expanded, while if 〈token2〉 has not expansion (for example, if it is a character)
then it will be left unchanged. It is important to notice that 〈token1〉 may be any single
token, including group-opening and -closing tokens ({ or } assuming normal TEX category
codes). Unless specifically required, expansion should be carried out using an appropriate
argument specifier variant or the appropriate \exp_arg:N function.

TEXhackers note: This is the TEX primitive \expandafter renamed.

\exp_after:wN ?

32

8 Preventing expansion
Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves will not appear after the expansion has completed.

\exp_not:N 〈token〉

Prevents expansion of the 〈token〉 in a context where it would otherwise be expanded,
for example an x-type argument.

TEXhackers note: This is the TEX \noexpand primitive.

\exp_not:N ?

\exp_not:c {〈tokens〉}

Expands the 〈tokens〉 until only unexpandable content remains, and then converts this
into a control sequence. Further expansion of this control sequence is then inhibited.

\exp_not:c ?

\exp_not:n {〈tokens〉}

Prevents expansion of the 〈tokens〉 in a context where they would otherwise be expanded,
for example an x-type argument.

TEXhackers note: This is the ε-TEX \unexpanded primitive. Hence its argument must
be surrounded by braces.

\exp_not:n ?

\exp_not:V 〈variable〉

Recovers the content of the 〈variable〉, then prevents expansion of this material in a
context where it would otherwise be expanded, for example an x-type argument.

\exp_not:V ?

\exp_not:v {〈tokens〉}

Expands the 〈tokens〉 until only unexpandable content remains, and then converts this
into a control sequence (which should be a 〈variable〉 name). The content of the 〈variable〉
is recovered, and further expansion is prevented in a context where it would otherwise
be expanded, for example an x-type argument.

\exp_not:v ?

\exp_not:o {〈tokens〉}

Expands the 〈tokens〉 once, then prevents any further expansion in a context where they
would otherwise be expanded, for example an x-type argument.

\exp_not:o ?

\exp_not:f {〈tokens〉}

Expands 〈tokens〉 fully until the first unexpandable token is found. Expansion then
stops, and the result of the expansion (including any tokens which were not expanded)
is protected from further expansion.

\exp_not:f ?

33

\foo_bar:f { 〈tokens〉 \exp_stop_f: 〈more tokens〉 }

This function terminates an f-type expansion. Thus if a function \foo_bar:f starts an
f-type expansion and all of 〈tokens〉 are expandable \exp_stop_f: will terminate the
expansion of tokens even if 〈more tokens〉 are also expandable. The function itself is an
implicit space token. Inside an x-type expansion, it will retain its form, but when typeset
it produces the underlying space (␣).

\exp_stop_f: ?

Updated: 2011-06-03

9 Controlled expansion
The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to
calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. You will find
these commands used throughout the kernel code, but we hope that outside the kernel
there will be little need to resort to them. Instead the argument manipulation methods
document above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to
expand several tokens in one go. The next set of commands provide this functionality.
Be aware that it is absolutely required that the programmer has full control over the
tokens to be expanded, i.e., it is not possible to use these functions to expand unknown
input as part of 〈expandable-tokens〉 as that will break badly if unexpandable tokens are
encountered in that place!

\exp:w 〈expandable-tokens〉 \exp_end:

Expands 〈expandable-tokens〉 until reaching \exp_end: at which point expansion stops.
The full expansion of 〈expandable-tokens〉 has to be empty. If any token in 〈expandable-tokens〉
or any token generated by expanding the tokens therein is not expandable the expansion
will end prematurely and as a result \exp_end: will be misinterpreted later on.2

In typical use cases the \exp_end: will be hidden somewhere in the replacement text
of 〈expandable-tokens〉 rather than being on the same expansion level than \exp:w, e.g.,
you may see code such as

\exp:w \@@_case:NnTF #1 {#2} { } { }

where somewhere during the expansion of \@@_case:NnTF the \exp_end: gets generated.

\exp:w ?
\exp_end: ?

New: 2015-08-23

2Due to the implementation you might get the character in position 0 in the current font (typically
“‘”) in the output without any error message!

34

\exp:w 〈expandable-tokens〉 \exp_end_continue_f:w 〈further-tokens〉

Expands 〈expandable-tokens〉 until reaching \exp_end_continue_f:w at which point ex-
pansion continues as an f-type expansion expanding 〈further-tokens〉 until an unexpand-
able token is encountered (or the f-type expansion is explicitly terminated by \exp_-
stop_f:). As with all f-type expansions a space ending the expansion will get removed.

The full expansion of 〈expandable-tokens〉 has to be empty. If any token in
〈expandable-tokens〉 or any token generated by expanding the tokens therein is not ex-
pandable the expansion will end prematurely and as a result \exp_end_continue_f:w
will be misinterpreted later on.3

In typical use cases 〈expandable-tokens〉 contains no tokens at all, e.g., you will see
code such as

\exp_after:wN { \exp:w \exp_end_continue_f:w #2 }

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical
reasons this has to happen using two tokens (if they would be hidden inside another
command \exp_after:wN would only expand the command but not trigger any additional
f-expansion).

You might wonder why there are two different approaches available, after all the
effect of

\exp:w 〈expandable-tokens〉 \exp_end:

can be alternatively achieved through an f-type expansion by using \exp_stop_f:, i.e.

\exp:w \exp_end_continue_f:w 〈expandable-tokens〉 \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and
less expansion internally) so in places where such performance really matters and where
we want to explicitly stop the expansion at a defined point the first form is preferable.

\exp:w ?
\exp_end_continue_f:w ?

New: 2015-08-23

\exp:w 〈expandable-tokens〉 \exp_end_continue_f:nw 〈further-tokens〉

The difference to \exp_end_continue_f:w is that we first we pick up an argument which
is then returned to the input stream. If 〈further-tokens〉 starts with a brace group then
the braces are removed. If on the other hand it starts with space tokens then these space
tokens are removed while searching for the argument. Thus such space tokens will not
terminate the f-type expansion.

\exp:w ?
\exp_end_continue_f:nw ?

New: 2015-08-23

10 Internal functions and variables

The \exp_ module has its private variables to temporarily store results of the argument
expansion. This is done to avoid interference with other functions using temporary
variables.

\l__exp_internal_tl

3In this particular case you may get a character into the output as well as an error message.

35

\cs_set_nopar:Npn \exp_args:Ncof { \::c \::o \::f \::: }

Internal forms for the base expansion types. These names do not conform to the general
LATEX3 approach as this makes them more readily visible in the log and so forth.

\::n
\::N
\::p
\::c
\::o
\::f
\::x
\::v
\::V
\:::

36

Part VI

The l3prg package
Control structures
Conditional processing in LATEX3 is defined as something that performs a series of tests,
possibly involving assignments and calling other functions that do not read further ahead
in the input stream. After processing the input, a state is returned. The states returned
are 〈true〉 and 〈false〉.

LATEX3 has two forms of conditional flow processing based on these states. The first
form is predicate functions that turn the returned state into a boolean 〈true〉 or 〈false〉.
For example, the function \cs_if_free_p:N checks whether the control sequence given
as its argument is free and then returns the boolean 〈true〉 or 〈false〉 values to be used in
testing with \if_predicate:w or in functions to be described below. The second form
is the kind of functions choosing a particular argument from the input stream based on
the result of the testing as in \cs_if_free:NTF which also takes one argument (the N)
and then executes either true or false depending on the result.

TEXhackers note: The arguments are executed after exiting the underlying \if...\fi:
structure.

1 Defining a set of conditional functions

\prg_new_conditional:Npnn \〈name〉:〈arg spec〉 〈parameters〉 {〈conditions〉} {〈code〉}
\prg_new_conditional:Nnn \〈name〉:〈arg spec〉 {〈conditions〉} {〈code〉}

These functions create a family of conditionals using the same {〈code〉} to perform the
test created. Those conditionals are expandable if 〈code〉 is. The new versions will
check for existing definitions and perform assignments globally (cf. \cs_new:Npn) whereas
the set versions do no check and perform assignments locally (cf. \cs_set:Npn). The
conditionals created are dependent on the comma-separated list of 〈conditions〉, which
should be one or more of p, T, F and TF.

\prg_new_conditional:Npnn
\prg_new_conditional:Nnn
\prg_set_conditional:Npnn
\prg_set_conditional:Nnn

Updated: 2012-02-06

37

\prg_new_protected_conditional:Npnn \〈name〉:〈arg spec〉 〈parameters〉
{〈conditions〉} {〈code〉}
\prg_new_protected_conditional:Nnn \〈name〉:〈arg spec〉
{〈conditions〉} {〈code〉}

\prg_new_protected_conditional:Npnn
\prg_new_protected_conditional:Nnn
\prg_set_protected_conditional:Npnn
\prg_set_protected_conditional:Nnn

Updated: 2012-02-06

These functions create a family of protected conditionals using the same {〈code〉} to
perform the test created. The 〈code〉 does not need to be expandable. The new version will
check for existing definitions and perform assignments globally (cf. \cs_new:Npn) whereas
the set version will not (cf. \cs_set:Npn). The conditionals created are depended on
the comma-separated list of 〈conditions〉, which should be one or more of T, F and TF
(not p).

The conditionals are defined by \prg_new_conditional:Npnn and friends as:

• \〈name〉_p:〈arg spec〉 — a predicate function which will supply either a logical
true or logical false. This function is intended for use in cases where one or more
logical tests are combined to lead to a final outcome. This function cannot be
defined for protected conditionals.

• \〈name〉:〈arg spec〉T — a function with one more argument than the original 〈arg
spec〉 demands. The 〈true branch〉 code in this additional argument will be left on
the input stream only if the test is true.

• \〈name〉:〈arg spec〉F — a function with one more argument than the original 〈arg
spec〉 demands. The 〈false branch〉 code in this additional argument will be left on
the input stream only if the test is false.

• \〈name〉:〈arg spec〉TF — a function with two more argument than the original
〈arg spec〉 demands. The 〈true branch〉 code in the first additional argument will
be left on the input stream if the test is true, while the 〈false branch〉 code in the
second argument will be left on the input stream if the test is false.

The 〈code〉 of the test may use 〈parameters〉 as specified by the second argument to \prg_-
set_conditional:Npnn: this should match the 〈argument specification〉 but this is not
enforced. The Nnn versions infer the number of arguments from the argument specification
given (cf. \cs_new:Nn, etc.). Within the 〈code〉, the functions \prg_return_true: and
\prg_return_false: are used to indicate the logical outcomes of the test.

An example can easily clarify matters here:

\prg_set_conditional:Npnn \foo_if_bar:NN #1#2 { p , T , TF }
{
\if_meaning:w \l_tmpa_tl #1
\prg_return_true:

\else:
\if_meaning:w \l_tmpa_tl #2
\prg_return_true:

\else:
\prg_return_false:

38

\fi:
\fi:

}

This defines the function \foo_if_bar_p:NN, \foo_if_bar:NNTF and \foo_if_bar:NNT
but not \foo_if_bar:NNF (because F is missing from the 〈conditions〉 list). The return
statements take care of resolving the remaining \else: and \fi: before returning the
state. There must be a return statement for each branch; failing to do so will result in
erroneous output if that branch is executed.

\prg_new_eq_conditional:NNn \〈name1〉:〈arg spec1〉 \〈name2〉:〈arg spec2〉
{〈conditions〉}

\prg_new_eq_conditional:NNn
\prg_set_eq_conditional:NNn

These functions copy a family of conditionals. The new version will check for existing
definitions (cf. \cs_new:Npn) whereas the set version will not (cf. \cs_set:Npn). The
conditionals copied are depended on the comma-separated list of 〈conditions〉, which
should be one or more of p, T, F and TF.

\prg_return_true:
\prg_return_false:

These ‘return’ functions define the logical state of a conditional statement. They appear
within the code for a conditional function generated by \prg_set_conditional:Npnn,
etc, to indicate when a true or false branch should be taken. While they may appear
multiple times each within the code of such conditionals, the execution of the conditional
must result in the expansion of one of these two functions exactly once.

The return functions trigger what is internally an f-expansion process to complete the
evaluation of the conditional. Therefore, after \prg_return_true: or \prg_return_-
false: there must be no non-expandable material in the input stream for the remainder
of the expansion of the conditional code. This includes other instances of either of these
functions.

\prg_return_true: ?
\prg_return_false: ?

2 The boolean data type
This section describes a boolean data type which is closely connected to conditional
processing as sometimes you want to execute some code depending on the value of a
switch (e.g., draft/final) and other times you perhaps want to use it as a predicate
function in an \if_predicate:w test. The problem of the primitive \if_false: and
\if_true: tokens is that it is not always safe to pass them around as they may interfere
with scanning for termination of primitive conditional processing. Therefore, we employ
two canonical booleans: \c_true_bool or \c_false_bool. Besides preventing problems
as described above, it also allows us to implement a simple boolean parser supporting
the logical operations And, Or, Not, etc. which can then be used on both the boolean
type and predicate functions.

All conditional \bool_ functions except assignments are expandable and expect the
input to also be fully expandable (which will generally mean being constructed from
predicate functions, possibly nested).

39

TEXhackers note: The bool data type is not implemented using the \iffalse/\iftrue
primitives, in contrast to \newif, etc., in plain TEX, LATEX2ε and so on. Programmers should
not base use of bool switches on any particular expectation of the implementation.

\bool_new:N 〈boolean〉

Creates a new 〈boolean〉 or raises an error if the name is already taken. The declaration
is global. The 〈boolean〉 will initially be false.

\bool_new:N
\bool_new:c

\bool_set_false:N 〈boolean〉

Sets 〈boolean〉 logically false.
\bool_set_false:N
\bool_set_false:c
\bool_gset_false:N
\bool_gset_false:c

\bool_set_true:N 〈boolean〉

Sets 〈boolean〉 logically true.
\bool_set_true:N
\bool_set_true:c
\bool_gset_true:N
\bool_gset_true:c

\bool_set_eq:NN 〈boolean1〉 〈boolean2〉

Sets the content of 〈boolean1〉 equal to that of 〈boolean2〉.
\bool_set_eq:NN
\bool_set_eq:(cN|Nc|cc)
\bool_gset_eq:NN
\bool_gset_eq:(cN|Nc|cc)

\bool_set:Nn 〈boolean〉 {〈boolexpr〉}

Evaluates the 〈boolean expression〉 as described for \bool_if:n(TF), and sets the
〈boolean〉 variable to the logical truth of this evaluation.

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn

Updated: 2012-07-08

\bool_if_p:N 〈boolean〉
\bool_if:NTF 〈boolean〉 {〈true code〉} {〈false code〉}

Tests the current truth of 〈boolean〉, and continues expansion based on this result.

\bool_if_p:N ?
\bool_if_p:c ?
\bool_if:NTF ?
\bool_if:cTF ?

\bool_show:N 〈boolean〉

Displays the logical truth of the 〈boolean〉 on the terminal.
\bool_show:N
\bool_show:c

New: 2012-02-09

Updated: 2015-08-01

\bool_show:n {〈boolean expression〉}

Displays the logical truth of the 〈boolean expression〉 on the terminal.
\bool_show:n

New: 2012-02-09

Updated: 2015-08-07

40

\bool_if_exist_p:N 〈boolean〉
\bool_if_exist:NTF 〈boolean〉 {〈true code〉} {〈false code〉}

Tests whether the 〈boolean〉 is currently defined. This does not check that the 〈boolean〉
really is a boolean variable.

\bool_if_exist_p:N ?
\bool_if_exist_p:c ?
\bool_if_exist:NTF ?
\bool_if_exist:cTF ?

New: 2012-03-03

A scratch boolean for local assignment. It is never used by the kernel code, and so is
safe for use with any LATEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

\l_tmpa_bool
\l_tmpb_bool

A scratch boolean for global assignment. It is never used by the kernel code, and so is
safe for use with any LATEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

\g_tmpa_bool
\g_tmpb_bool

3 Boolean expressions
As we have a boolean datatype and predicate functions returning boolean 〈true〉 or 〈false〉
values, it seems only fitting that we also provide a parser for 〈boolean expressions〉.

A boolean expression is an expression which given input in the form of predicate
functions and boolean variables, return boolean 〈true〉 or 〈false〉. It supports the log-
ical operations And, Or and Not as the well-known infix operators &&, || and ! with
their usual precedences (namely, && binds more tightly than ||). In addition to this,
parentheses can be used to isolate sub-expressions. For example,

\int_compare_p:n { 1 = 1 } &&
(
\int_compare_p:n { 2 = 3 } ||
\int_compare_p:n { 4 <= 4 } ||
\str_if_eq_p:nn { abc } { def }

) &&
! \int_compare_p:n { 2 = 4 }

is a valid boolean expression.
At present, the infix operators && and || perform lazy evaluation as well, but this

will change in a future release.

\bool_if_p:n {〈boolean expression〉}
\bool_if:nTF {〈boolean expression〉} {〈true code〉} {〈false code〉}

Tests the current truth of 〈boolean expression〉, and continues expansion based on this
result. The 〈boolean expression〉 should consist of a series of predicates or boolean vari-
ables with the logical relationship between these defined using && (“And”), || (“Or”), !
(“Not”) and parentheses. The logical Not applies to the next predicate or group.

\bool_if_p:n ?
\bool_if:nTF ?

Updated: 2012-07-08

\bool_not_p:n {〈boolean expression〉}

Function version of !(〈boolean expression〉) within a boolean expression.
\bool_not_p:n ?

Updated: 2012-07-08

41

\bool_xor_p:nn {〈boolexpr1〉} {〈boolexpr2〉}

Implements an “exclusive or” operation between two boolean expressions. There is no
infix operation for this logical operator.

\bool_xor_p:nn ?

Updated: 2012-07-08

4 Logical loops
Loops using either boolean expressions or stored boolean values.

\bool_do_until:Nn 〈boolean〉 {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then checks the logical value
of the 〈boolean〉. If it is false then the 〈code〉 will be inserted into the input stream again
and the process will loop until the 〈boolean〉 is true.

\bool_do_until:Nn I

\bool_do_until:cn I

\bool_do_while:Nn 〈boolean〉 {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then checks the logical
value of the 〈boolean〉. If it is true then the 〈code〉 will be inserted into the input stream
again and the process will loop until the 〈boolean〉 is false.

\bool_do_while:Nn I

\bool_do_while:cn I

\bool_until_do:Nn 〈boolean〉 {〈code〉}

This function firsts checks the logical value of the 〈boolean〉. If it is false the 〈code〉 is
placed in the input stream and expanded. After the completion of the 〈code〉 the truth
of the 〈boolean〉 is re-evaluated. The process will then loop until the 〈boolean〉 is true.

\bool_until_do:Nn I

\bool_until_do:cn I

\bool_while_do:Nn 〈boolean〉 {〈code〉}

This function firsts checks the logical value of the 〈boolean〉. If it is true the 〈code〉 is
placed in the input stream and expanded. After the completion of the 〈code〉 the truth
of the 〈boolean〉 is re-evaluated. The process will then loop until the 〈boolean〉 is false.

\bool_while_do:Nn I

\bool_while_do:cn I

\bool_do_until:nn {〈boolean expression〉} {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then checks the logical
value of the 〈boolean expression〉 as described for \bool_if:nTF. If it is false then the
〈code〉 will be inserted into the input stream again and the process will loop until the
〈boolean expression〉 evaluates to true.

\bool_do_until:nn I

Updated: 2012-07-08

\bool_do_while:nn {〈boolean expression〉} {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then checks the logical
value of the 〈boolean expression〉 as described for \bool_if:nTF. If it is true then the
〈code〉 will be inserted into the input stream again and the process will loop until the
〈boolean expression〉 evaluates to false.

\bool_do_while:nn I

Updated: 2012-07-08

42

\bool_until_do:nn {〈boolean expression〉} {〈code〉}

This function firsts checks the logical value of the 〈boolean expression〉 (as described for
\bool_if:nTF). If it is false the 〈code〉 is placed in the input stream and expanded.
After the completion of the 〈code〉 the truth of the 〈boolean expression〉 is re-evaluated.
The process will then loop until the 〈boolean expression〉 is true.

\bool_until_do:nn I

Updated: 2012-07-08

\bool_while_do:nn {〈boolean expression〉} {〈code〉}

This function firsts checks the logical value of the 〈boolean expression〉 (as described for
\bool_if:nTF). If it is true the 〈code〉 is placed in the input stream and expanded.
After the completion of the 〈code〉 the truth of the 〈boolean expression〉 is re-evaluated.
The process will then loop until the 〈boolean expression〉 is false.

\bool_while_do:nn I

Updated: 2012-07-08

5 Producing multiple copies

\prg_replicate:nn {〈integer expression〉} {〈tokens〉}

Evaluates the 〈integer expression〉 (which should be zero or positive) and creates the
resulting number of copies of the 〈tokens〉. The function is both expandable and safe for
nesting. It yields its result after two expansion steps.

\prg_replicate:nn ?

Updated: 2011-07-04

6 Detecting TEX’s mode

\mode_if_horizontal_p:
\mode_if_horizontal:TF {〈true code〉} {〈false code〉}
Detects if TEX is currently in horizontal mode.

\mode_if_horizontal_p: ?
\mode_if_horizontal:TF ?

\mode_if_inner_p:
\mode_if_inner:TF {〈true code〉} {〈false code〉}
Detects if TEX is currently in inner mode.

\mode_if_inner_p: ?
\mode_if_inner:TF ?

\mode_if_math:TF {〈true code〉} {〈false code〉}

Detects if TEX is currently in maths mode.
\mode_if_math_p: ?
\mode_if_math:TF ?

Updated: 2011-09-05

\mode_if_vertical_p:
\mode_if_vertical:TF {〈true code〉} {〈false code〉}
Detects if TEX is currently in vertical mode.

\mode_if_vertical_p: ?
\mode_if_vertical:TF ?

43

7 Primitive conditionals

\if_predicate:w 〈predicate〉 〈true code〉 \else: 〈false code〉 \fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the 〈predicate〉 but
to make the coding clearer this should be done through \if_bool:N.)

\if_predicate:w ?

\if_bool:N 〈boolean〉 〈true code〉 \else: 〈false code〉 \fi:

This function takes a boolean variable and branches according to the result.
\if_bool:N ?

8 Internal programming functions

\group_align_safe_begin:
...
\group_align_safe_end:

These functions are used to enclose material in a TEX alignment environment within a
specially-constructed group. This group is designed in such a way that it does not add
brace groups to the output but does act as a group for the & token inside \halign. This
is necessary to allow grabbing of tokens for testing purposes, as TEX uses group level
to determine the effect of alignment tokens. Without the special grouping, the use of a
function such as \peek_after:Nw will result in a forbidden comparison of the internal
\endtemplate token, yielding a fatal error. Each \group_align_safe_begin: must be
matched by a \group_align_safe_end:, although this does not have to occur within
the same function.

\group_align_safe_begin: ?
\group_align_safe_end: ?

Updated: 2011-08-11

__prg_break_point:Nn \〈type〉_map_break: 〈tokens〉

Used to mark the end of a recursion or mapping: the functions \〈type〉_map_break: and
\〈type〉_map_break:n use this to break out of the loop. After the loop ends, the 〈tokens〉
are inserted into the input stream. This occurs even if the break functions are not applied:
__prg_break_point:Nn is functionally-equivalent in these cases to \use_ii:nn.

__prg_break_point:Nn ?

__prg_map_break:Nn \〈type〉_map_break: {〈user code〉}
...
__prg_break_point:Nn \〈type〉_map_break: {〈ending code〉}

Breaks a recursion in mapping contexts, inserting in the input stream the 〈user code〉
after the 〈ending code〉 for the loop. The function breaks loops, inserting their 〈ending
code〉, until reaching a loop with the same 〈type〉 as its first argument. This \〈type〉_-
map_break: argument is simply used as a recognizable marker for the 〈type〉.

__prg_map_break:Nn ?

This integer is used by non-expandable mapping functions to track the level of nesting
in force. The functions __prg_map_1:w, __prg_map_2:w, etc., labelled by \g__prg_-
map_int hold functions to be mapped over various list datatypes in inline and variable
mappings.

\g__prg_map_int

44

This copy of \prg_do_nothing: is used to mark the end of a fast short-term recursions:
the function __prg_break:n uses this to break out of the loop.

__prg_break_point: ?

__prg_break:n {〈tokens〉} ... __prg_break_point:

Breaks a recursion which has no 〈ending code〉 and which is not a user-breakable mapping
(see for instance \prop_get:Nn), and inserts 〈tokens〉 in the input stream.

__prg_break: ?
__prg_break:n ?

45

Part VII

The l3quark package
Quarks
1 Introduction to quarks and scan marks
Two special types of constants in LATEX3 are “quarks” and “scan marks”. By convention
all constants of type quark start out with \q_, and scan marks start with \s_. Scan
marks are for internal use by the kernel: they are not intended for more general use.

1.1 Quarks
Quarks are control sequences that expand to themselves and should therefore never be
executed directly in the code. This would result in an endless loop!

They are meant to be used as delimiter in weird functions, with the most command
use case as the ‘stop token’ (i.e. \q_stop). For example, when writing a macro to parse
a user-defined date

\date_parse:n {19/June/1981}

one might write a command such as

\cs_new:Npn \date_parse:n #1 { \date_parse_aux:w #1 \q_stop }
\cs_new:Npn \date_parse_aux:w #1 / #2 / #3 \q_stop
{ <do something with the date> }

Quarks are sometimes also used as error return values for functions that receive
erroneous input. For example, in the function \prop_get:NnN to retrieve a value stored
in some key of a property list, if the key does not exist then the return value is the quark
\q_no_value. As mentioned above, such quarks are extremely fragile and it is imperative
when using such functions that code is carefully written to check for pathological cases
to avoid leakage of a quark into an uncontrolled environment.

Quarks also permit the following ingenious trick when parsing tokens: when you
pick up a token in a temporary variable and you want to know whether you have picked
up a particular quark, all you have to do is compare the temporary variable to the quark
using \tl_if_eq:NNTF. A set of special quark testing functions is set up below. All the
quark testing functions are expandable although the ones testing only single tokens are
much faster. An example of the quark testing functions and their use in recursion can
be seen in the implementation of \clist_map_function:NN.

46

2 Defining quarks

\quark_new:N 〈quark〉

Creates a new 〈quark〉 which expands only to 〈quark〉. The 〈quark〉 will be defined
globally, and an error message will be raised if the name was already taken.

\quark_new:N

Used as a marker for delimited arguments, such as

\cs_set:Npn \tmp:w #1#2 \q_stop {#1}

\q_stop

Used as a marker for delimited arguments when \q_stop is already in use.\q_mark

Quark to mark a null value in structured variables or functions. Used as an end delimiter
when this may itself may need to be tested (in contrast to \q_stop, which is only ever
used as a delimiter).

\q_nil

A canonical value for a missing value, when one is requested from a data structure. This
is therefore used as a “return” value by functions such as \prop_get:NnN if there is no
data to return.

\q_no_value

3 Quark tests
The method used to define quarks means that the single token (N) tests are faster than
the multi-token (n) tests. The later should therefore only be used when the argument
can definitely take more than a single token.

\quark_if_nil_p:N 〈token〉
\quark_if_nil:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if the 〈token〉 is equal to \q_nil.

\quark_if_nil_p:N ?
\quark_if_nil:NTF ?

\quark_if_nil_p:n {〈token list〉}
\quark_if_nil:nTF {〈token list〉} {〈true code〉} {〈false code〉}

Tests if the 〈token list〉 contains only \q_nil (distinct from 〈token list〉 being empty or
containing \q_nil plus one or more other tokens).

\quark_if_nil_p:n ?
\quark_if_nil_p:(o|V) ?
\quark_if_nil:nTF ?
\quark_if_nil:(o|V)TF ?

\quark_if_no_value_p:N 〈token〉
\quark_if_no_value:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if the 〈token〉 is equal to \q_no_value.

\quark_if_no_value_p:N ?
\quark_if_no_value_p:c ?
\quark_if_no_value:NTF ?
\quark_if_no_value:cTF ?

\quark_if_no_value_p:n {〈token list〉}
\quark_if_no_value:nTF {〈token list〉} {〈true code〉} {〈false code〉}

Tests if the 〈token list〉 contains only \q_no_value (distinct from 〈token list〉 being empty
or containing \q_no_value plus one or more other tokens).

\quark_if_no_value_p:n ?
\quark_if_no_value:nTF ?

47

4 Recursion
This module provides a uniform interface to intercepting and terminating loops as when
one is doing tail recursion. The building blocks follow below and an example is shown in
Section 5.

This quark is appended to the data structure in question and appears as a real element
there. This means it gets any list separators around it.

\q_recursion_tail

This quark is added after the data structure. Its purpose is to make it possible to
terminate the recursion at any point easily.

\q_recursion_stop

\quark_if_recursion_tail_stop:N 〈token〉\quark_if_recursion_tail_stop:N

Tests if 〈token〉 contains only the marker \q_recursion_tail, and if so terminates the
recursion this is part of using \use_none_delimit_by_q_recursion_stop:w. The recur-
sion input must include the marker tokens \q_recursion_tail and \q_recursion_stop
as the last two items.

\quark_if_recursion_tail_stop:n {〈token list〉}\quark_if_recursion_tail_stop:n
\quark_if_recursion_tail_stop:o

Updated: 2011-09-06

Tests if the 〈token list〉 contains only \q_recursion_tail, and if so terminates the recur-
sion this is part of using \use_none_delimit_by_q_recursion_stop:w. The recursion
input must include the marker tokens \q_recursion_tail and \q_recursion_stop as
the last two items.

\quark_if_recursion_tail_stop_do:Nn 〈token〉 {〈insertion〉}\quark_if_recursion_tail_stop_do:Nn

Tests if 〈token〉 contains only the marker \q_recursion_tail, and if so terminates the
recursion this is part of using \use_none_delimit_by_q_recursion_stop:w. The recur-
sion input must include the marker tokens \q_recursion_tail and \q_recursion_stop
as the last two items. The 〈insertion〉 code is then added to the input stream after the
recursion has ended.

\quark_if_recursion_tail_stop_do:nn {〈token list〉} {〈insertion〉}\quark_if_recursion_tail_stop_do:nn
\quark_if_recursion_tail_stop_do:on

Updated: 2011-09-06

Tests if the 〈token list〉 contains only \q_recursion_tail, and if so terminates the recur-
sion this is part of using \use_none_delimit_by_q_recursion_stop:w. The recursion
input must include the marker tokens \q_recursion_tail and \q_recursion_stop as
the last two items. The 〈insertion〉 code is then added to the input stream after the
recursion has ended.

48

5 An example of recursion with quarks
Quarks are mainly used internally in the expl3 code to define recursion functions such
as \tl_map_inline:nn and so on. Here is a small example to demonstrate how to
use quarks in this fashion. We shall define a command called \my_map_dbl:nn which
takes a token list and applies an operation to every pair of tokens. For example,
\my_map_dbl:nn {abcd} {[--#1--#2--]~} would produce “[–a–b–] [–c–d–] ”. Us-
ing quarks to define such functions simplifies their logic and ensures robustness in many
cases.

Here’s the definition of \my_map_dbl:nn. First of all, define the function that will
do the processing based on the inline function argument #2. Then initiate the recursion
using an internal function. The token list #1 is terminated using \q_recursion_tail,
with delimiters according to the type of recursion (here a pair of \q_recursion_tail),
concluding with \q_recursion_stop. These quarks are used to mark the end of the
token list being operated upon.
\cs_new:Npn \my_map_dbl:nn #1#2
{
\cs_set:Npn __my_map_dbl_fn:nn ##1 ##2 {#2}
__my_map_dbl:nn #1 \q_recursion_tail \q_recursion_tail
\q_recursion_stop

}

The definition of the internal recursion function follows. First check if either of the
input tokens are the termination quarks. Then, if not, apply the inline function to the
two arguments.
\cs_new:Nn __my_map_dbl:nn
{
\quark_if_recursion_tail_stop:n {#1}
\quark_if_recursion_tail_stop:n {#2}
__my_map_dbl_fn:nn {#1} {#2}

Finally, recurse:
__my_map_dbl:nn

}

Note that contrarily to LATEX3 built-in mapping functions, this mapping function cannot
be nested, since the second map will overwrite the definition of __my_map_dbl_fn:nn.

6 Internal quark functions

__quark_if_recursion_tail_break:nN {〈token list〉}
\〈type〉_map_break:

__quark_if_recursion_tail_break:NN
__quark_if_recursion_tail_break:nN

Tests if 〈token list〉 contains only \q_recursion_tail, and if so terminates the recur-
sion using \〈type〉_map_break:. The recursion end should be marked by \prg_break_-
point:Nn \〈type〉_map_break:.

49

7 Scan marks
Scan marks are control sequences set equal to \scan_stop:, hence will never expand in an
expansion context and will be (largely) invisible if they are encountered in a typesetting
context.

Like quarks, they can be used as delimiters in weird functions and are often safer to
use for this purpose. Since they are harmless when executed by TEX in non-expandable
contexts, they can be used to mark the end of a set of instructions. This allows to skip
to that point if the end of the instructions should not be performed (see l3regex).

The scan marks system is only for internal use by the kernel team in a small number
of very specific places. These functions should not be used more generally.

__scan_new:N 〈scan mark〉

Creates a new 〈scan mark〉 which is set equal to \scan_stop:. The 〈scan mark〉 will be
defined globally, and an error message will be raised if the name was already taken by
another scan mark.

__scan_new:N

Used at the end of a set of instructions, as a marker that can be jumped to using __-
use_none_delimit_by_s__stop:w.

\s__stop

__use_none_delimit_by_s__stop:w 〈tokens〉 \s__stop__use_none_delimit_by_s__stop:w

Removes the 〈tokens〉 and \s__stop from the input stream. This leads to a low-level
TEX error if \s__stop is absent.

50

Part VIII

The l3token package
Token manipulation
This module deals with tokens. Now this is perhaps not the most precise description so
let’s try with a better description: When programming in TEX, it is often desirable to
know just what a certain token is: is it a control sequence or something else. Similarly
one often needs to know if a control sequence is expandable or not, a macro or a primitive,
how many arguments it takes etc. Another thing of great importance (especially when it
comes to document commands) is looking ahead in the token stream to see if a certain
character is present and maybe even remove it or disregard other tokens while scanning.
This module provides functions for both and as such will have two primary function
categories: \token_ for anything that deals with tokens and \peek_ for looking ahead
in the token stream.

Most of the time we will be using the term “token” but most of the time the function
we’re describing can equally well by used on a control sequence as such one is one token
as well.

1 All possible tokens
Let us start by reviewing every case that a given token can fall into. It is very important
to distinguish two aspects of a token: its meaning, and what it looks like.

For instance, \if:w, \if_charcode:w, and \tex_if:D are three names for the same
internal operation of TEX, namely the primitive testing the next two characters for equal-
ity of their character code. They behave identically in many situations. However, TEX
distinguishes them when searching for a delimited argument. Namely, the example func-
tion \show_until_if:w defined below will take everything until \if:w as an argument,
despite the presence of other copies of \if:w under different names.

\cs_new:Npn \show_until_if:w #1 \if:w { \tl_show:n {#1} }
\show_until_if:w \tex_if:D \if_charcode:w \if:w

2 Creating character tokens

\char_set_active_eq:NN 〈char〉 〈function〉

Sets the behaviour of the 〈char〉 in situations where it is active (category code 13) to be
equivalent to that of the 〈function〉. The category code of the 〈char〉 is unchanged by
this process. The 〈function〉 may itself be an active character.

\char_set_active_eq:NN
\char_set_active_eq:Nc
\char_gset_active_eq:NN
\char_gset_active_eq:Nc

Updated: 2015-11-12

51

\char_set_active_eq:nN {〈integer expression〉}
〈function〉

\char_set_active_eq:nN
\char_set_active_eq:nc \char_gset_active_eq:nN
\char_gset_active_eq:nc

New: 2015-11-12

Sets the behaviour of the 〈char〉 which has character code as given by the 〈integer
expression〉 in situations where it is active (category code 13) to be equivalent to that
of the 〈function〉. The category code of the 〈char〉 is unchanged by this process. The
〈function〉 may itself be an active character.

\char_generate:nn {〈charcode〉} {〈catcode〉}

Generates a character token of the given 〈charcode〉 and 〈catcode〉 (both of which may be
integer expressions). The 〈catcode〉 may be one of

• 1 (begin group)

• 2 (end group)

• 3 (math toggle)

• 4 (alignment)

• 6 (parameter)

• 7 (math superscript)

• 8 (math subscript)

• 11 (letter)

• 12 (other)

and other values will raise an error.
The 〈charcode〉 may be any one valid for the engine in use. Note however that for

X ETEX releases prior to 0.99992 only the 8-bit range (0 to 255) is accepted due to engine
limitations.

\char_generate:nn ?

New: 2015-09-09

52

3 Manipulating and interrogating character tokens

\char_set_catcode_letter:N 〈character〉\char_set_catcode_escape:N
\char_set_catcode_group_begin:N
\char_set_catcode_group_end:N
\char_set_catcode_math_toggle:N
\char_set_catcode_alignment:N
\char_set_catcode_end_line:N
\char_set_catcode_parameter:N
\char_set_catcode_math_superscript:N
\char_set_catcode_math_subscript:N
\char_set_catcode_ignore:N
\char_set_catcode_space:N
\char_set_catcode_letter:N
\char_set_catcode_other:N
\char_set_catcode_active:N
\char_set_catcode_comment:N
\char_set_catcode_invalid:N

Updated: 2015-11-11

Sets the category code of the 〈character〉 to that indicated in the function name. De-
pending on the current category code of the 〈token〉 the escape token may also be needed:

\char_set_catcode_other:N \%

The assignment is local.

\char_set_catcode_letter:n {〈integer expression〉}\char_set_catcode_escape:n
\char_set_catcode_group_begin:n
\char_set_catcode_group_end:n
\char_set_catcode_math_toggle:n
\char_set_catcode_alignment:n
\char_set_catcode_end_line:n
\char_set_catcode_parameter:n
\char_set_catcode_math_superscript:n
\char_set_catcode_math_subscript:n
\char_set_catcode_ignore:n
\char_set_catcode_space:n
\char_set_catcode_letter:n
\char_set_catcode_other:n
\char_set_catcode_active:n
\char_set_catcode_comment:n
\char_set_catcode_invalid:n

Updated: 2015-11-11

Sets the category code of the 〈character〉 which has character code as given by the 〈integer
expression〉. This version can be used to set up characters which cannot otherwise be
given (cf. the N-type variants). The assignment is local.

53

\char_set_catcode:nn {〈intexpr1〉} {〈intexpr2〉}

These functions set the category code of the 〈character〉 which has character code as
given by the 〈integer expression〉. The first 〈integer expression〉 is the character code
and the second is the category code to apply. The setting applies within the current
TEX group. In general, the symbolic functions \char_set_catcode_〈type〉 should be
preferred, but there are cases where these lower-level functions may be useful.

\char_set_catcode:nn

Updated: 2015-11-11

\char_value_catcode:n {〈integer expression〉}

Expands to the current category code of the 〈character〉 with character code given by
the 〈integer expression〉.

\char_value_catcode:n ?

\char_show_value_catcode:n {〈integer expression〉}

Displays the current category code of the 〈character〉 with character code given by the
〈integer expression〉 on the terminal.

\char_show_value_catcode:n

\char_set_lccode:nn {〈intexpr1〉} {〈intexpr2〉}

Sets up the behaviour of the 〈character〉 when found inside \tl_to_lowercase:n, such
that 〈character1〉 will be converted into 〈character2〉. The two 〈characters〉 may be spec-
ified using an 〈integer expression〉 for the character code concerned. This may include
the TEX ‘〈character〉 method for converting a single character into its character code:

\char_set_lccode:nn { ‘\A } { ‘\a } % Standard behaviour
\char_set_lccode:nn { ‘\A } { ‘\A + 32 }
\char_set_lccode:nn { 50 } { 60 }

The setting applies within the current TEX group.

\char_set_lccode:nn

Updated: 2015-08-06

\char_value_lccode:n {〈integer expression〉}

Expands to the current lower case code of the 〈character〉 with character code given by
the 〈integer expression〉.

\char_value_lccode:n ?

\char_show_value_lccode:n {〈integer expression〉}

Displays the current lower case code of the 〈character〉 with character code given by the
〈integer expression〉 on the terminal.

\char_show_value_lccode:n

54

\char_set_uccode:nn {〈intexpr1〉} {〈intexpr2〉}

Sets up the behaviour of the 〈character〉 when found inside \tl_to_uppercase:n, such
that 〈character1〉 will be converted into 〈character2〉. The two 〈characters〉 may be spec-
ified using an 〈integer expression〉 for the character code concerned. This may include
the TEX ‘〈character〉 method for converting a single character into its character code:

\char_set_uccode:nn { ‘\a } { ‘\A } % Standard behaviour
\char_set_uccode:nn { ‘\A } { ‘\A - 32 }
\char_set_uccode:nn { 60 } { 50 }

The setting applies within the current TEX group.

\char_set_uccode:nn

Updated: 2015-08-06

\char_value_uccode:n {〈integer expression〉}

Expands to the current upper case code of the 〈character〉 with character code given by
the 〈integer expression〉.

\char_value_uccode:n ?

\char_show_value_uccode:n {〈integer expression〉}

Displays the current upper case code of the 〈character〉 with character code given by the
〈integer expression〉 on the terminal.

\char_show_value_uccode:n

\char_set_mathcode:nn {〈intexpr1〉} {〈intexpr2〉}

This function sets up the math code of 〈character〉. The 〈character〉 is specified as an
〈integer expression〉 which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

\char_set_mathcode:nn

Updated: 2015-08-06

\char_value_mathcode:n {〈integer expression〉}

Expands to the current math code of the 〈character〉 with character code given by the
〈integer expression〉.

\char_value_mathcode:n ?

\char_show_value_mathcode:n {〈integer expression〉}\char_show_value_mathcode:n

Displays the current math code of the 〈character〉 with character code given by the
〈integer expression〉 on the terminal.

\char_set_sfcode:nn {〈intexpr1〉} {〈intexpr2〉}

This function sets up the space factor for the 〈character〉. The 〈character〉 is specified as
an 〈integer expression〉 which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

\char_set_sfcode:nn

Updated: 2015-08-06

\char_value_sfcode:n {〈integer expression〉}

Expands to the current space factor for the 〈character〉 with character code given by the
〈integer expression〉.

\char_value_sfcode:n ?

55

\char_show_value_sfcode:n {〈integer expression〉}

Displays the current space factor for the 〈character〉 with character code given by the
〈integer expression〉 on the terminal.

\char_show_value_sfcode:n

Used to track which tokens may require special handling at the document level as they
are (or have been at some point) of category 〈active〉 (catcode 13). Each entry in the
sequence consists of a single escaped token, for example \~. Active tokens should be
added to the sequence when they are defined for general document use.

\l_char_active_seq

New: 2012-01-23

Updated: 2015-11-11

Used to track which tokens will require special handling when working with verbatim-
like material at the document level as they are not of categories 〈letter〉 (catcode 11) or
〈other〉 (catcode 12). Each entry in the sequence consists of a single escaped token, for
example \\ for the backslash or \{ for an opening brace.Escaped tokens should be added
to the sequence when they are defined for general document use.

\l_char_special_seq

New: 2012-01-23

Updated: 2015-11-11

4 Generic tokens

\token_new:Nn 〈token1〉 {〈token2〉}

Defines 〈token1〉 to globally be a snapshot of 〈token2〉. This will be an implicit represen-
tation of 〈token2〉.

\token_new:Nn

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes but are also available to the programmer for other
uses.

\c_group_begin_token
\c_group_end_token
\c_math_toggle_token
\c_alignment_token
\c_parameter_token
\c_math_superscript_token
\c_math_subscript_token
\c_space_token

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes and should not be used other than for category code
tests.

\c_catcode_letter_token
\c_catcode_other_token

A token list containing an active token. This is used internally for test purposes and
should not be used other than in appropriately-constructed category code tests.

\c_catcode_active_tl

56

5 Converting tokens

\token_to_meaning:N 〈token〉

Inserts the current meaning of the 〈token〉 into the input stream as a series of characters
of category code 12 (other). This will be the primitive TEX description of the 〈token〉,
thus for example both functions defined by \cs_set_nopar:Npn and token list variables
defined using \tl_new:N will be described as macros.

TEXhackers note: This is the TEX primitive \meaning.

\token_to_meaning:N ?
\token_to_meaning:c ?

\token_to_str:N 〈token〉

Converts the given 〈token〉 into a series of characters with category code 12 (other). The
current escape character will be the first character in the sequence, although this will
also have category code 12 (the escape character is part of the 〈token〉). This function
requires only a single expansion.

TEXhackers note: \token_to_str:N is the TEX primitive \string renamed.

\token_to_str:N ?
\token_to_str:c ?

6 Token conditionals

\token_if_group_begin_p:N 〈token〉
\token_if_group_begin:NTF 〈token〉 {〈true code〉} {〈false code〉}

\token_if_group_begin_p:N ?
\token_if_group_begin:NTF ?

Tests if 〈token〉 has the category code of a begin group token ({ when normal TEX
category codes are in force). Note that an explicit begin group token cannot be tested in
this way, as it is not a valid N-type argument.

\token_if_group_end_p:N 〈token〉
\token_if_group_end:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if 〈token〉 has the category code of an end group token (} when normal TEX category
codes are in force). Note that an explicit end group token cannot be tested in this way,
as it is not a valid N-type argument.

\token_if_group_end_p:N ?
\token_if_group_end:NTF ?

\token_if_math_toggle_p:N 〈token〉
\token_if_math_toggle:NTF 〈token〉 {〈true code〉} {〈false code〉}

\token_if_math_toggle_p:N ?
\token_if_math_toggle:NTF ?

Tests if 〈token〉 has the category code of a math shift token ($ when normal TEX category
codes are in force).

\token_if_alignment_p:N 〈token〉
\token_if_alignment:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if 〈token〉 has the category code of an alignment token (& when normal TEX category
codes are in force).

\token_if_alignment_p:N ?
\token_if_alignment:NTF ?

57

\token_if_parameter_p:N 〈token〉
\token_if_alignment:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if 〈token〉 has the category code of a macro parameter token (# when normal TEX
category codes are in force).

\token_if_parameter_p:N ?
\token_if_parameter:NTF ?

\token_if_math_superscript_p:N 〈token〉
\token_if_math_superscript:NTF 〈token〉 {〈true code〉} {〈false code〉}

\token_if_math_superscript_p:N ?
\token_if_math_superscript:NTF ?

Tests if 〈token〉 has the category code of a superscript token (^ when normal TEX category
codes are in force).

\token_if_math_subscript_p:N 〈token〉
\token_if_math_subscript:NTF 〈token〉 {〈true code〉} {〈false code〉}

\token_if_math_subscript_p:N ?
\token_if_math_subscript:NTF ?

Tests if 〈token〉 has the category code of a subscript token (_ when normal TEX category
codes are in force).

\token_if_space_p:N 〈token〉
\token_if_space:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if 〈token〉 has the category code of a space token. Note that an explicit space token
with character code 32 cannot be tested in this way, as it is not a valid N-type argument.

\token_if_space_p:N ?
\token_if_space:NTF ?

\token_if_letter_p:N 〈token〉
\token_if_letter:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if 〈token〉 has the category code of a letter token.

\token_if_letter_p:N ?
\token_if_letter:NTF ?

\token_if_other_p:N 〈token〉
\token_if_other:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if 〈token〉 has the category code of an “other” token.

\token_if_other_p:N ?
\token_if_other:NTF ?

\token_if_active_p:N 〈token〉
\token_if_active:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if 〈token〉 has the category code of an active character.

\token_if_active_p:N ?
\token_if_active:NTF ?

\token_if_eq_catcode_p:NN 〈token1〉 〈token2〉
\token_if_eq_catcode:NNTF 〈token1〉 〈token2〉 {〈true code〉} {〈false code〉}

\token_if_eq_catcode_p:NN ?
\token_if_eq_catcode:NNTF ?

Tests if the two 〈tokens〉 have the same category code.

\token_if_eq_charcode_p:NN 〈token1〉 〈token2〉
\token_if_eq_charcode:NNTF 〈token1〉 〈token2〉 {〈true code〉} {〈false code〉}

\token_if_eq_charcode_p:NN ?
\token_if_eq_charcode:NNTF ?

Tests if the two 〈tokens〉 have the same character code.

58

\token_if_eq_meaning_p:NN 〈token1〉 〈token2〉
\token_if_eq_meaning:NNTF 〈token1〉 〈token2〉 {〈true code〉} {〈false code〉}

\token_if_eq_meaning_p:NN ?
\token_if_eq_meaning:NNTF ?

Tests if the two 〈tokens〉 have the same meaning when expanded.

\token_if_macro_p:N 〈token〉
\token_if_macro:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if the 〈token〉 is a TEX macro.

\token_if_macro_p:N ?
\token_if_macro:NTF ?

Updated: 2011-05-23

\token_if_cs_p:N 〈token〉
\token_if_cs:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if the 〈token〉 is a control sequence.

\token_if_cs_p:N ?
\token_if_cs:NTF ?

\token_if_expandable_p:N 〈token〉
\token_if_expandable:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if the 〈token〉 is expandable. This test returns 〈false〉 for an undefined token.

\token_if_expandable_p:N ?
\token_if_expandable:NTF ?

\token_if_long_macro_p:N 〈token〉
\token_if_long_macro:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if the 〈token〉 is a long macro.

\token_if_long_macro_p:N ?
\token_if_long_macro:NTF ?

Updated: 2012-01-20

\token_if_protected_macro_p:N 〈token〉
\token_if_protected_macro:NTF 〈token〉 {〈true code〉} {〈false code〉}

\token_if_protected_macro_p:N ?
\token_if_protected_macro:NTF ?

Updated: 2012-01-20

Tests if the 〈token〉 is a protected macro: a macro which is both protected and long will
return logical false.

\token_if_protected_long_macro_p:N 〈token〉
\token_if_protected_long_macro:NTF 〈token〉 {〈true code〉} {〈false
code〉}

\token_if_protected_long_macro_p:N ?
\token_if_protected_long_macro:NTF ?

Updated: 2012-01-20

Tests if the 〈token〉 is a protected long macro.

\token_if_chardef_p:N 〈token〉
\token_if_chardef:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if the 〈token〉 is defined to be a chardef.

TEXhackers note: Booleans, boxes and small integer constants are implemented as chard-
efs.

\token_if_chardef_p:N ?
\token_if_chardef:NTF ?

Updated: 2012-01-20

59

\token_if_mathchardef_p:N 〈token〉
\token_if_mathchardef:NTF 〈token〉 {〈true code〉} {〈false code〉}

\token_if_mathchardef_p:N ?
\token_if_mathchardef:NTF ?

Updated: 2012-01-20

Tests if the 〈token〉 is defined to be a mathchardef.

\token_if_dim_register_p:N 〈token〉
\token_if_dim_register:NTF 〈token〉 {〈true code〉} {〈false code〉}

\token_if_dim_register_p:N ?
\token_if_dim_register:NTF ?

Updated: 2012-01-20

Tests if the 〈token〉 is defined to be a dimension register.

\token_if_int_register_p:N 〈token〉
\token_if_int_register:NTF 〈token〉 {〈true code〉} {〈false code〉}

\token_if_int_register_p:N ?
\token_if_int_register:NTF ?

Updated: 2012-01-20

Tests if the 〈token〉 is defined to be a integer register.

TEXhackers note: Constant integers may be implemented as integer registers, chardefs,
or mathchardefs depending on their value.

\token_if_muskip_register_p:N 〈token〉
\token_if_muskip_register:NTF 〈token〉 {〈true code〉} {〈false code〉}

\token_if_muskip_register_p:N ?
\token_if_muskip_register:NTF ?

New: 2012-02-15

Tests if the 〈token〉 is defined to be a muskip register.

\token_if_skip_register_p:N 〈token〉
\token_if_skip_register:NTF 〈token〉 {〈true code〉} {〈false code〉}

\token_if_skip_register_p:N ?
\token_if_skip_register:NTF ?

Updated: 2012-01-20

Tests if the 〈token〉 is defined to be a skip register.

\token_if_toks_register_p:N 〈token〉
\token_if_toks_register:NTF 〈token〉 {〈true code〉} {〈false code〉}

\token_if_toks_register_p:N ?
\token_if_toks_register:NTF ?

Updated: 2012-01-20

Tests if the 〈token〉 is defined to be a toks register (not used byLATEX3).

\token_if_primitive_p:N 〈token〉
\token_if_primitive:NTF 〈token〉 {〈true code〉} {〈false code〉}

Tests if the 〈token〉 is an engine primitive.

\token_if_primitive_p:N ?
\token_if_primitive:NTF ?

Updated: 2011-05-23

60

7 Peeking ahead at the next token
There is often a need to look ahead at the next token in the input stream while leaving
it in place. This is handled using the “peek” functions. The generic \peek_after:Nw is
provided along with a family of predefined tests for common cases. As peeking ahead does
not skip spaces the predefined tests include both a space-respecting and space-skipping
version.

\peek_after:Nw 〈function〉 〈token〉

Locally sets the test variable \l_peek_token equal to 〈token〉 (as an implicit token, not
as a token list), and then expands the 〈function〉. The 〈token〉 will remain in the input
stream as the next item after the 〈function〉. The 〈token〉 here may be ␣, { or } (assuming
normal TEX category codes), i.e. it is not necessarily the next argument which would be
grabbed by a normal function.

\peek_after:Nw

\peek_gafter:Nw 〈function〉 〈token〉

Globally sets the test variable \g_peek_token equal to 〈token〉 (as an implicit token,
not as a token list), and then expands the 〈function〉. The 〈token〉 will remain in the
input stream as the next item after the 〈function〉. The 〈token〉 here may be ␣, { or }
(assuming normal TEX category codes), i.e. it is not necessarily the next argument which
would be grabbed by a normal function.

\peek_gafter:Nw

Token set by \peek_after:Nw and available for testing as described above.\l_peek_token

Token set by \peek_gafter:Nw and available for testing as described above.\g_peek_token

\peek_catcode:NTF 〈test token〉 {〈true code〉} {〈false code〉}

Tests if the next 〈token〉 in the input stream has the same category code as the 〈test
token〉 (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the 〈token〉 will be left in the input stream after the 〈true code〉 or 〈false
code〉 (as appropriate to the result of the test).

\peek_catcode:NTF

Updated: 2012-12-20

\peek_catcode_ignore_spaces:NTF 〈test token〉 {〈true code〉} {〈false
code〉}

\peek_catcode_ignore_spaces:NTF

Updated: 2012-12-20

Tests if the next non-space 〈token〉 in the input stream has the same category code as the
〈test token〉 (as defined by the test \token_if_eq_catcode:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the 〈token〉 will be left in the input stream after the 〈true code〉 or 〈false
code〉 (as appropriate to the result of the test).

61

\peek_catcode_remove:NTF 〈test token〉 {〈true code〉} {〈false code〉}

Tests if the next 〈token〉 in the input stream has the same category code as the 〈test
token〉 (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the 〈token〉 will be removed from the input stream if the test is true. The
function will then place either the 〈true code〉 or 〈false code〉 in the input stream (as
appropriate to the result of the test).

\peek_catcode_remove:NTF

Updated: 2012-12-20

\peek_catcode_remove_ignore_spaces:NTF 〈test token〉 {〈true
code〉} {〈false code〉}

\peek_catcode_remove_ignore_spaces:NTF

Updated: 2012-12-20

Tests if the next non-space 〈token〉 in the input stream has the same category code as the
〈test token〉 (as defined by the test \token_if_eq_catcode:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed
by the test and the 〈token〉 will be removed from the input stream if the test is true.
The function will then place either the 〈true code〉 or 〈false code〉 in the input stream (as
appropriate to the result of the test).

\peek_charcode:NTF 〈test token〉 {〈true code〉} {〈false code〉}

Tests if the next 〈token〉 in the input stream has the same character code as the 〈test
token〉 (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the 〈token〉 will be left in the input stream after the 〈true code〉 or 〈false
code〉 (as appropriate to the result of the test).

\peek_charcode:NTF

Updated: 2012-12-20

\peek_charcode_ignore_spaces:NTF 〈test token〉 {〈true code〉} {〈false
code〉}

\peek_charcode_ignore_spaces:NTF

Updated: 2012-12-20

Tests if the next non-space 〈token〉 in the input stream has the same character code as
the 〈test token〉 (as defined by the test \token_if_eq_charcode:NNTF). Explicit and
implicit space tokens (with character code 32 and category code 10) are ignored and
removed by the test and the 〈token〉 will be left in the input stream after the 〈true code〉
or 〈false code〉 (as appropriate to the result of the test).

\peek_charcode_remove:NTF 〈test token〉 {〈true code〉} {〈false code〉}

Tests if the next 〈token〉 in the input stream has the same character code as the 〈test
token〉 (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the 〈token〉 will be removed from the input stream if the test is true. The
function will then place either the 〈true code〉 or 〈false code〉 in the input stream (as
appropriate to the result of the test).

\peek_charcode_remove:NTF

Updated: 2012-12-20

62

\peek_charcode_remove_ignore_spaces:NTF 〈test token〉
{〈true code〉} {〈false code〉}

\peek_charcode_remove_ignore_spaces:NTF

Updated: 2012-12-20

Tests if the next non-space 〈token〉 in the input stream has the same character code as
the 〈test token〉 (as defined by the test \token_if_eq_charcode:NNTF). Explicit and
implicit space tokens (with character code 32 and category code 10) are ignored and
removed by the test and the 〈token〉 will be removed from the input stream if the test
is true. The function will then place either the 〈true code〉 or 〈false code〉 in the input
stream (as appropriate to the result of the test).

\peek_meaning:NTF 〈test token〉 {〈true code〉} {〈false code〉}

Tests if the next 〈token〉 in the input stream has the same meaning as the 〈test token〉
(as defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test
and the 〈token〉 will be left in the input stream after the 〈true code〉 or 〈false code〉 (as
appropriate to the result of the test).

\peek_meaning:NTF

Updated: 2011-07-02

\peek_meaning_ignore_spaces:NTF 〈test token〉 {〈true code〉} {〈false
code〉}

\peek_meaning_ignore_spaces:NTF

Updated: 2012-12-05

Tests if the next non-space 〈token〉 in the input stream has the same meaning as the
〈test token〉 (as defined by the test \token_if_eq_meaning:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the 〈token〉 will be left in the input stream after the 〈true code〉 or 〈false
code〉 (as appropriate to the result of the test).

\peek_meaning_remove:NTF 〈test token〉 {〈true code〉} {〈false code〉}

Tests if the next 〈token〉 in the input stream has the same meaning as the 〈test token〉
(as defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test
and the 〈token〉 will be removed from the input stream if the test is true. The function
will then place either the 〈true code〉 or 〈false code〉 in the input stream (as appropriate
to the result of the test).

\peek_meaning_remove:NTF

Updated: 2011-07-02

\peek_meaning_remove_ignore_spaces:NTF 〈test token〉
{〈true code〉} {〈false code〉}

\peek_meaning_remove_ignore_spaces:NTF

Updated: 2012-12-05

Tests if the next non-space 〈token〉 in the input stream has the same meaning as the
〈test token〉 (as defined by the test \token_if_eq_meaning:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed
by the test and the 〈token〉 will be removed from the input stream if the test is true.
The function will then place either the 〈true code〉 or 〈false code〉 in the input stream (as
appropriate to the result of the test).

63

8 Decomposing a macro definition
These functions decompose TEX macros into their constituent parts: if the 〈token〉 passed
is not a macro then no decomposition can occur. In the later case, all three functions
leave \scan_stop: in the input stream.

\token_get_arg_spec:N 〈token〉

If the 〈token〉 is a macro, this function will leave the primitive TEX argument specification
in input stream as a string of tokens of category code 12 (with spaces having category
code 10). Thus for example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1 y #2 }

will leave #1#2 in the input stream. If the 〈token〉 is not a macro then \scan_stop: will
be left in the input stream.

TEXhackers note: If the arg spec. contains the string ->, then the spec function will
produce incorrect results.

\token_get_arg_spec:N ?

\token_get_replacement_spec:N 〈token〉\token_get_replacement_spec:N ?

If the 〈token〉 is a macro, this function will leave the replacement text in input stream as
a string of tokens of category code 12 (with spaces having category code 10). Thus for
example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1~y #2 }

will leave x#1 y#2 in the input stream. If the 〈token〉 is not a macro then \scan_stop:
will be left in the input stream.

TEXhackers note: If the arg spec. contains the string ->, then the spec function will
produce incorrect results.

\token_get_prefix_spec:N 〈token〉

If the 〈token〉 is a macro, this function will leave the TEX prefixes applicable in input
stream as a string of tokens of category code 12 (with spaces having category code 10).
Thus for example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1~y #2 }

will leave \long in the input stream. If the 〈token〉 is not a macro then \scan_stop:
will be left in the input stream

\token_get_prefix_spec:N ?

64

9 Internal functions

__char_generate:nn {〈charcode〉} {〈catcode〉}

This function is identical in operation to the public \char_generate:nn but omits various
sanity tests. In particular, this means it is used in certain places where engine variations
need to be accounted for by the kernel.

__char_generate:nn ?

New: 2016-03-25

65

Part IX

The l3int package
Integers
Calculation and comparison of integer values can be carried out using literal numbers, int
registers, constants and integers stored in token list variables. The standard operators
+, -, / and * and parentheses can be used within such expressions to carry arithmetic
operations. This module carries out these functions on integer expressions (“intexpr”).

1 Integer expressions

\int_eval:n {〈integer expression〉}

Evaluates the 〈integer expression〉, expanding any integer and token list variables within
the 〈expression〉 to their content (without requiring \int_use:N/\tl_use:N) and apply-
ing the standard mathematical rules. For example both

\int_eval:n { 5 + 4 * 3 - (3 + 4 * 5) }

and

\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl { 5 }
\int_new:N \l_my_int
\int_set:Nn \l_my_int { 4 }
\int_eval:n { \l_my_tl + \l_my_int * 3 - (3 + 4 * 5) }

both evaluate to −6. The {〈integer expression〉} may contain the operators +, -, * and /,
along with parenthesis (and). Any functions within the expressions should expand to
an 〈integer denotation〉: a sequence of a sign and digits matching the regex \-?[0-9]+).
After expansion \int_eval:n yields an 〈integer denotation〉 which is left in the input
stream.

TEXhackers note: Exactly two expansions are needed to evaluate \int_eval:n. The
result is not an 〈internal integer〉, and therefore requires suitable termination if used in a TEX-
style integer assignment.

\int_eval:n ?

\int_abs:n {〈integer expression〉}

Evaluates the 〈integer expression〉 as described for \int_eval:n and leaves the absolute
value of the result in the input stream as an 〈integer denotation〉 after two expansions.

\int_abs:n ?

Updated: 2012-09-26

66

\int_div_round:nn {〈intexpr1〉} {〈intexpr2〉}

Evaluates the two 〈integer expressions〉 as described earlier, then divides the first value
by the second, and rounds the result to the closest integer. Ties are rounded away from
zero. Note that this is identical to using / directly in an 〈integer expression〉. The result
is left in the input stream as an 〈integer denotation〉 after two expansions.

\int_div_round:nn ?

Updated: 2012-09-26

\int_div_truncate:nn {〈intexpr1〉} {〈intexpr2〉}

Evaluates the two 〈integer expressions〉 as described earlier, then divides the first value by
the second, and rounds the result towards zero. Note that division using / rounds to the
closest integer instead. The result is left in the input stream as an 〈integer denotation〉
after two expansions.

\int_div_truncate:nn ?

Updated: 2012-02-09

\int_max:nn {〈intexpr1〉} {〈intexpr2〉}
\int_min:nn {〈intexpr1〉} {〈intexpr2〉}

Evaluates the 〈integer expressions〉 as described for \int_eval:n and leaves either the
larger or smaller value in the input stream as an 〈integer denotation〉 after two expansions.

\int_max:nn ?
\int_min:nn ?

Updated: 2012-09-26

\int_mod:nn {〈intexpr1〉} {〈intexpr2〉}

Evaluates the two 〈integer expressions〉 as described earlier, then calculates the integer
remainder of dividing the first expression by the second. This is obtained by subtract-
ing \int_div_truncate:nn {〈intexpr1〉} {〈intexpr2〉} times 〈intexpr2〉 from 〈intexpr1〉.
Thus, the result has the same sign as 〈intexpr1〉 and its absolute value is strictly less than
that of 〈intexpr2〉. The result is left in the input stream as an 〈integer denotation〉 after
two expansions.

\int_mod:nn ?

Updated: 2012-09-26

2 Creating and initialising integers

\int_new:N 〈integer〉

Creates a new 〈integer〉 or raises an error if the name is already taken. The declaration
is global. The 〈integer〉 will initially be equal to 0.

\int_new:N
\int_new:c

\int_const:Nn 〈integer〉 {〈integer expression〉}

Creates a new constant 〈integer〉 or raises an error if the name is already taken. The
value of the 〈integer〉 will be set globally to the 〈integer expression〉.

\int_const:Nn
\int_const:cn

Updated: 2011-10-22

\int_zero:N 〈integer〉

Sets 〈integer〉 to 0.
\int_zero:N
\int_zero:c
\int_gzero:N
\int_gzero:c

67

\int_zero_new:N 〈integer〉

Ensures that the 〈integer〉 exists globally by applying \int_new:N if necessary, then
applies \int_(g)zero:N to leave the 〈integer〉 set to zero.

\int_zero_new:N
\int_zero_new:c
\int_gzero_new:N
\int_gzero_new:c

New: 2011-12-13

\int_set_eq:NN 〈integer1〉 〈integer2〉

Sets the content of 〈integer1〉 equal to that of 〈integer2〉.
\int_set_eq:NN
\int_set_eq:(cN|Nc|cc)
\int_gset_eq:NN
\int_gset_eq:(cN|Nc|cc)

\int_if_exist_p:N 〈int〉
\int_if_exist:NTF 〈int〉 {〈true code〉} {〈false code〉}

Tests whether the 〈int〉 is currently defined. This does not check that the 〈int〉 really is
an integer variable.

\int_if_exist_p:N ?
\int_if_exist_p:c ?
\int_if_exist:NTF ?
\int_if_exist:cTF ?

New: 2012-03-03

3 Setting and incrementing integers

\int_add:Nn 〈integer〉 {〈integer expression〉}

Adds the result of the 〈integer expression〉 to the current content of the 〈integer〉.
\int_add:Nn
\int_add:cn
\int_gadd:Nn
\int_gadd:cn

Updated: 2011-10-22

\int_decr:N 〈integer〉

Decreases the value stored in 〈integer〉 by 1.
\int_decr:N
\int_decr:c
\int_gdecr:N
\int_gdecr:c

\int_incr:N 〈integer〉

Increases the value stored in 〈integer〉 by 1.
\int_incr:N
\int_incr:c
\int_gincr:N
\int_gincr:c

\int_set:Nn 〈integer〉 {〈integer expression〉}

Sets 〈integer〉 to the value of 〈integer expression〉, which must evaluate to an integer (as
described for \int_eval:n).

\int_set:Nn
\int_set:cn
\int_gset:Nn
\int_gset:cn

Updated: 2011-10-22

68

\int_sub:Nn 〈integer〉 {〈integer expression〉}

Subtracts the result of the 〈integer expression〉 from the current content of the 〈integer〉.
\int_sub:Nn
\int_sub:cn
\int_gsub:Nn
\int_gsub:cn

Updated: 2011-10-22

4 Using integers

\int_use:N 〈integer〉

Recovers the content of an 〈integer〉 and places it directly in the input stream. An
error will be raised if the variable does not exist or if it is invalid. Can be omitted
in places where an 〈integer〉 is required (such as in the first and third arguments of
\int_compare:nNnTF).

TEXhackers note: \int_use:N is the TEX primitive \the: this is one of several LATEX3
names for this primitive.

\int_use:N ?
\int_use:c ?

Updated: 2011-10-22

5 Integer expression conditionals

\int_compare_p:nNn {〈intexpr1〉} 〈relation〉 {〈intexpr2〉}
\int_compare:nNnTF
{〈intexpr1〉} 〈relation〉 {〈intexpr2〉}
{〈true code〉} {〈false code〉}

This function first evaluates each of the 〈integer expressions〉 as described for \int_-
eval:n. The two results are then compared using the 〈relation〉:

Equal =
Greater than >
Less than <

\int_compare_p:nNn ?
\int_compare:nNnTF ?

69

\int_compare_p:n
{
〈intexpr1〉 〈relation1〉
...
〈intexprN 〉 〈relationN 〉
〈intexprN+1〉

}
\int_compare:nTF
{
〈intexpr1〉 〈relation1〉
...
〈intexprN 〉 〈relationN 〉
〈intexprN+1〉

}
{〈true code〉} {〈false code〉}

This function evaluates the 〈integer expressions〉 as described for \int_eval:n and com-
pares consecutive result using the corresponding 〈relation〉, namely it compares 〈intexpr1〉
and 〈intexpr2〉 using the 〈relation1〉, then 〈intexpr2〉 and 〈intexpr3〉 using the 〈relation2〉,
until finally comparing 〈intexprN 〉 and 〈intexprN+1〉 using the 〈relationN 〉. The test yields
true if all comparisons are true. Each 〈integer expression〉 is evaluated only once, and
the evaluation is lazy, in the sense that if one comparison is false, then no other 〈integer
expression〉 is evaluated and no other comparison is performed. The 〈relations〉 can be
any of the following:

Equal = or ==
Greater than or equal to >=
Greater than >
Less than or equal to <=
Less than <
Not equal !=

\int_compare_p:n ?
\int_compare:nTF ?

Updated: 2013-01-13

70

\int_case:nnTF {〈test integer expression〉}
{
{〈intexpr case1〉} {〈code case1〉}
{〈intexpr case2〉} {〈code case2〉}
...
{〈intexpr casen〉} {〈code casen〉}

}
{〈true code〉}
{〈false code〉}

This function evaluates the 〈test integer expression〉 and compares this in turn to each
of the 〈integer expression cases〉. If the two are equal then the associated 〈code〉 is left
in the input stream. If any of the cases are matched, the 〈true code〉 is also inserted into
the input stream (after the code for the appropriate case), while if none match then the
〈false code〉 is inserted. The function \int_case:nn, which does nothing if there is no
match, is also available. For example

\int_case:nnF
{ 2 * 5 }
{
{ 5 } { Small }
{ 4 + 6 } { Medium }
{ -2 * 10 } { Negative }

}
{ No idea! }

will leave “Medium” in the input stream.

\int_case:nnTF ?

New: 2013-07-24

\int_if_odd_p:n {〈integer expression〉}
\int_if_odd:nTF {〈integer expression〉}
{〈true code〉} {〈false code〉}

This function first evaluates the 〈integer expression〉 as described for \int_eval:n. It
then evaluates if this is odd or even, as appropriate.

\int_if_even_p:n ?
\int_if_even:nTF ?
\int_if_odd_p:n ?
\int_if_odd:nTF ?

6 Integer expression loops

\int_do_until:nNnn {〈intexpr1〉} 〈relation〉 {〈intexpr2〉} {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then evaluates the rela-
tionship between the two 〈integer expressions〉 as described for \int_compare:nNnTF. If
the test is false then the 〈code〉 will be inserted into the input stream again and a loop
will occur until the 〈relation〉 is true.

\int_do_until:nNnn I

71

\int_do_while:nNnn {〈intexpr1〉} 〈relation〉 {〈intexpr2〉} {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then evaluates the rela-
tionship between the two 〈integer expressions〉 as described for \int_compare:nNnTF. If
the test is true then the 〈code〉 will be inserted into the input stream again and a loop
will occur until the 〈relation〉 is false.

\int_do_while:nNnn I

\int_until_do:nNnn {〈intexpr1〉} 〈relation〉 {〈intexpr2〉} {〈code〉}

Evaluates the relationship between the two 〈integer expressions〉 as described for \int_-
compare:nNnTF, and then places the 〈code〉 in the input stream if the 〈relation〉 is false.
After the 〈code〉 has been processed by TEX the test will be repeated, and a loop will
occur until the test is true.

\int_until_do:nNnn I

\int_while_do:nNnn {〈intexpr1〉} 〈relation〉 {〈intexpr2〉} {〈code〉}

Evaluates the relationship between the two 〈integer expressions〉 as described for \int_-
compare:nNnTF, and then places the 〈code〉 in the input stream if the 〈relation〉 is true.
After the 〈code〉 has been processed by TEX the test will be repeated, and a loop will
occur until the test is false.

\int_while_do:nNnn I

\int_do_until:nn {〈integer relation〉} {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then evaluates the 〈integer
relation〉 as described for \int_compare:nTF. If the test is false then the 〈code〉 will be
inserted into the input stream again and a loop will occur until the 〈relation〉 is true.

\int_do_until:nn I

Updated: 2013-01-13

\int_do_while:nn {〈integer relation〉} {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then evaluates the 〈integer
relation〉 as described for \int_compare:nTF. If the test is true then the 〈code〉 will be
inserted into the input stream again and a loop will occur until the 〈relation〉 is false.

\int_do_while:nn I

Updated: 2013-01-13

\int_until_do:nn {〈integer relation〉} {〈code〉}

Evaluates the 〈integer relation〉 as described for \int_compare:nTF, and then places the
〈code〉 in the input stream if the 〈relation〉 is false. After the 〈code〉 has been processed
by TEX the test will be repeated, and a loop will occur until the test is true.

\int_until_do:nn I

Updated: 2013-01-13

\int_while_do:nn {〈integer relation〉} {〈code〉}

Evaluates the 〈integer relation〉 as described for \int_compare:nTF, and then places the
〈code〉 in the input stream if the 〈relation〉 is true. After the 〈code〉 has been processed
by TEX the test will be repeated, and a loop will occur until the test is false.

\int_while_do:nn I

Updated: 2013-01-13

72

7 Integer step functions

\int_step_function:nnnN {〈initial value〉} {〈step〉} {〈final value〉} 〈function〉

This function first evaluates the 〈initial value〉, 〈step〉 and 〈final value〉, all of which should
be integer expressions. The 〈function〉 is then placed in front of each 〈value〉 from the
〈initial value〉 to the 〈final value〉 in turn (using 〈step〉 between each 〈value〉). The 〈step〉
must be non-zero. If the 〈step〉 is positive, the loop stops when the 〈value〉 becomes larger
than the 〈final value〉. If the 〈step〉 is negative, the loop stops when the 〈value〉 becomes
smaller than the 〈final value〉. The 〈function〉 should absorb one numerical argument.
For example

\cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
\int_step_function:nnnN { 1 } { 1 } { 5 } \my_func:n

would print

[I saw 1] [I saw 2] [I saw 3] [I saw 4] [I saw 5]

\int_step_function:nnnN I

New: 2012-06-04

Updated: 2014-05-30

\int_step_inline:nnnn {〈initial value〉} {〈step〉} {〈final value〉} {〈code〉}

This function first evaluates the 〈initial value〉, 〈step〉 and 〈final value〉, all of which
should be integer expressions. Then for each 〈value〉 from the 〈initial value〉 to the 〈final
value〉 in turn (using 〈step〉 between each 〈value〉), the 〈code〉 is inserted into the input
stream with #1 replaced by the current 〈value〉. Thus the 〈code〉 should define a function
of one argument (#1).

\int_step_inline:nnnn

New: 2012-06-04

Updated: 2014-05-30

\int_step_variable:nnnNn
{〈initial value〉} {〈step〉} {〈final value〉} 〈tl var〉 {〈code〉}

This function first evaluates the 〈initial value〉, 〈step〉 and 〈final value〉, all of which
should be integer expressions. Then for each 〈value〉 from the 〈initial value〉 to the 〈final
value〉 in turn (using 〈step〉 between each 〈value〉), the 〈code〉 is inserted into the input
stream, with the 〈tl var〉 defined as the current 〈value〉. Thus the 〈code〉 should make
use of the 〈tl var〉.

\int_step_variable:nnnNn

New: 2012-06-04

Updated: 2014-05-30

8 Formatting integers
Integers can be placed into the output stream with formatting. These conversions apply
to any integer expressions.

\int_to_arabic:n {〈integer expression〉}

Places the value of the 〈integer expression〉 in the input stream as digits, with category
code 12 (other).

\int_to_arabic:n ?

Updated: 2011-10-22

73

\int_to_alph:n {〈integer expression〉}

Evaluates the 〈integer expression〉 and converts the result into a series of letters, which
are then left in the input stream. The conversion rule uses the 26 letters of the English
alphabet, in order, adding letters when necessary to increase the total possible range of
representable numbers. Thus

\int_to_alph:n { 1 }

places a in the input stream,

\int_to_alph:n { 26 }

is represented as z and

\int_to_alph:n { 27 }

is converted to aa. For conversions using other alphabets, use \int_to_symbols:nnn to
define an alphabet-specific function. The basic \int_to_alph:n and \int_to_Alph:n
functions should not be modified. The resulting tokens are digits with category code 12
(other) and letters with category code 11 (letter).

\int_to_alph:n ?
\int_to_Alph:n ?

Updated: 2011-09-17

\int_to_symbols:nnn
{〈integer expression〉} {〈total symbols〉}
〈value to symbol mapping〉

This is the low-level function for conversion of an 〈integer expression〉 into a symbolic
form (which will often be letters). The 〈total symbols〉 available should be given as an
integer expression. Values are actually converted to symbols according to the 〈value to
symbol mapping〉. This should be given as 〈total symbols〉 pairs of entries, a number and
the appropriate symbol. Thus the \int_to_alph:n function is defined as

\cs_new:Npn \int_to_alph:n #1
{
\int_to_symbols:nnn {#1} { 26 }
{
{ 1 } { a }
{ 2 } { b }
...
{ 26 } { z }

}
}

\int_to_symbols:nnn ?

Updated: 2011-09-17

\int_to_bin:n {〈integer expression〉}

Calculates the value of the 〈integer expression〉 and places the binary representation of
the result in the input stream.

\int_to_bin:n ?

New: 2014-02-11

74

\int_to_hex:n {〈integer expression〉}

Calculates the value of the 〈integer expression〉 and places the hexadecimal (base 16)
representation of the result in the input stream. Letters are used for digits beyond 9:
lower case letters for \int_to_hex:n and upper case ones for \int_to_Hex:n. The
resulting tokens are digits with category code 12 (other) and letters with category code
11 (letter).

\int_to_hex:n ?
\int_to_Hex:n ?

New: 2014-02-11

\int_to_oct:n {〈integer expression〉}

Calculates the value of the 〈integer expression〉 and places the octal (base 8) representa-
tion of the result in the input stream. The resulting tokens are digits with category code
12 (other) and letters with category code 11 (letter).

\int_to_oct:n ?

New: 2014-02-11

\int_to_base:nn {〈integer expression〉} {〈base〉}

Calculates the value of the 〈integer expression〉 and converts it into the appropriate
representation in the 〈base〉; the later may be given as an integer expression. For bases
greater than 10 the higher “digits” are represented by letters from the English alphabet:
lower case letters for \int_to_base:n and upper case ones for \int_to_Base:n. The
maximum 〈base〉 value is 36. The resulting tokens are digits with category code 12 (other)
and letters with category code 11 (letter).

TEXhackers note: This is a generic version of \int_to_bin:n, etc.

\int_to_base:nn ?
\int_to_Base:nn ?

Updated: 2014-02-11

\int_to_roman:n {〈integer expression〉}

Places the value of the 〈integer expression〉 in the input stream as Roman numerals,
either lower case (\int_to_roman:n) or upper case (\int_to_Roman:n). The Roman
numerals are letters with category code 11 (letter).

\int_to_roman:n I

\int_to_Roman:n I

Updated: 2011-10-22

9 Converting from other formats to integers

\int_from_alph:n {〈letters〉}

Converts the 〈letters〉 into the integer (base 10) representation and leaves this in the
input stream. The 〈letters〉 are first converted to a string, with no expansion. Lower and
upper case letters from the English alphabet may be used, with “a” equal to 1 through
to “z” equal to 26. The function also accepts a leading sign, made of + and -. This is
the inverse function of \int_to_alph:n and \int_to_Alph:n.

\int_from_alph:n ?

Updated: 2014-08-25

\int_from_bin:n {〈binary number〉}

Converts the 〈binary number〉 into the integer (base 10) representation and leaves this in
the input stream. The 〈binary number〉 is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by binary digits. This is
the inverse function of \int_to_bin:n.

\int_from_bin:n ?

New: 2014-02-11

Updated: 2014-08-25

75

\int_from_hex:n {〈hexadecimal number〉}

Converts the 〈hexadecimal number〉 into the integer (base 10) representation and leaves
this in the input stream. Digits greater than 9 may be represented in the 〈hexadecimal
number〉 by upper or lower case letters. The 〈hexadecimal number〉 is first converted to
a string, with no expansion. The function also accepts a leading sign, made of + and -.
This is the inverse function of \int_to_hex:n and \int_to_Hex:n.

\int_from_hex:n ?

New: 2014-02-11

Updated: 2014-08-25

\int_from_oct:n {〈octal number〉}

Converts the 〈octal number〉 into the integer (base 10) representation and leaves this in
the input stream. The 〈octal number〉 is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by octal digits. This is
the inverse function of \int_to_oct:n.

\int_from_oct:n ?

New: 2014-02-11

Updated: 2014-08-25

\int_from_roman:n {〈roman numeral〉}

Converts the 〈roman numeral〉 into the integer (base 10) representation and leaves this in
the input stream. The 〈roman numeral〉 is first converted to a string, with no expansion.
The 〈roman numeral〉 may be in upper or lower case; if the numeral contains characters
besides mdclxvi or MDCLXVI then the resulting value will be −1. This is the inverse
function of \int_to_roman:n and \int_to_Roman:n.

\int_from_roman:n ?

Updated: 2014-08-25

\int_from_base:nn {〈number〉} {〈base〉}

Converts the 〈number〉 expressed in 〈base〉 into the appropriate value in base 10. The
〈number〉 is first converted to a string, with no expansion. The 〈number〉 should consist
of digits and letters (either lower or upper case), plus optionally a leading sign. The
maximum 〈base〉 value is 36. This is the inverse function of \int_to_base:nn and \int_-
to_Base:nn.

\int_from_base:nn ?

Updated: 2014-08-25

10 Viewing integers

\int_show:N 〈integer〉

Displays the value of the 〈integer〉 on the terminal.
\int_show:N
\int_show:c

\int_show:n {〈integer expression〉}

Displays the result of evaluating the 〈integer expression〉 on the terminal.
\int_show:n

New: 2011-11-22

Updated: 2015-08-07

76

11 Constant integers

Integer values used with primitive tests and assignments: self-terminating nature makes
these more convenient and faster than literal numbers.

\c_minus_one
\c_zero
\c_one
\c_two
\c_three
\c_four
\c_five
\c_six
\c_seven
\c_eight
\c_nine
\c_ten
\c_eleven
\c_twelve
\c_thirteen
\c_fourteen
\c_fifteen
\c_sixteen
\c_thirty_two
\c_one_hundred
\c_two_hundred_fifty_five
\c_two_hundred_fifty_six
\c_one_thousand
\c_ten_thousand

The maximum value that can be stored as an integer.\c_max_int

Maximum number of registers.\c_max_register_int

12 Scratch integers

Scratch integer for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_int
\l_tmpb_int

Scratch integer for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_int
\g_tmpb_int

77

13 Primitive conditionals

\if_int_compare:w 〈integer1〉 〈relation〉 〈integer2〉
〈true code〉

\else:
〈false code〉

\fi:

Compare two integers using 〈relation〉, which must be one of =, < or > with category code
12. The \else: branch is optional.

TEXhackers note: These are both names for the TEX primitive \ifnum.

\if_int_compare:w ?

\if_case:w 〈integer〉 〈case0〉
\or: 〈case1〉
\or: ...
\else: 〈default〉

\fi:

Selects a case to execute based on the value of the 〈integer〉. The first case (〈case0〉) is
executed if 〈integer〉 is 0, the second (〈case1〉) if the 〈integer〉 is 1, etc. The 〈integer〉
may be a literal, a constant or an integer expression (e.g. using \int_eval:n).

TEXhackers note: These are the TEX primitives \ifcase and \or.

\if_case:w ?
\or: ?

\if_int_odd:w 〈tokens〉 〈optional space〉
〈true code〉

\else:
〈true code〉

\fi:

Expands 〈tokens〉 until a non-numeric token or a space is found, and tests whether the
resulting 〈integer〉 is odd. If so, 〈true code〉 is executed. The \else: branch is optional.

TEXhackers note: This is the TEX primitive \ifodd.

\if_int_odd:w ?

14 Internal functions

__int_to_roman:w 〈integer〉 〈space〉 or 〈non-expandable token〉

Converts 〈integer〉 to it lower case Roman representation. Expansion ends when a space
or non-expandable token is found. Note that this function produces a string of letters with
category code 12 and that protected functions are expanded by this process. Negative
〈integer〉 values result in no output, although the function does not terminate expansion
until a suitable endpoint is found in the same way as for positive numbers.

TEXhackers note: This is the TEX primitive \romannumeral renamed.

__int_to_roman:w ?

78

__int_value:w 〈integer〉
__int_value:w 〈tokens〉 〈optional space〉

Expands 〈tokens〉 until an 〈integer〉 is formed. One space may be gobbled in the process.

TEXhackers note: This is the TEX primitive \number.

__int_value:w ?

__int_eval:w 〈intexpr〉 __int_eval_end:

Evaluates 〈integer expression〉 as described for \int_eval:n. The evaluation stops when
an unexpandable token which is not a valid part of an integer is read or when __int_-
eval_end: is reached. The latter is gobbled by the scanner mechanism: __int_eval_-
end: itself is unexpandable but used correctly the entire construct is expandable.

TEXhackers note: This is the ε-TEX primitive \numexpr.

__int_eval:w ?
__int_eval_end: ?

__prg_compare_error:
__prg_compare_error:Nw 〈token〉
These are used within \int_compare:n(TF), \dim_compare:n(TF) and so on to recover
correctly if the n-type argument does not contain a properly-formed relation.

__prg_compare_error:
__prg_compare_error:Nw

79

Part X

The l3skip package
Dimensions and skips
LATEX3 provides two general length variables: dim and skip. Lengths stored as dim
variables have a fixed length, whereas skip lengths have a rubber (stretch/shrink) com-
ponent. In addition, the muskip type is available for use in math mode: this is a special
form of skip where the lengths involved are determined by the current math font (in
mu). There are common features in the creation and setting of length variables, but for
clarity the functions are grouped by variable type.

1 Creating and initialising dim variables

\dim_new:N 〈dimension〉

Creates a new 〈dimension〉 or raises an error if the name is already taken. The declaration
is global. The 〈dimension〉 will initially be equal to 0 pt.

\dim_new:N
\dim_new:c

\dim_const:Nn 〈dimension〉 {〈dimension expression〉}

Creates a new constant 〈dimension〉 or raises an error if the name is already taken. The
value of the 〈dimension〉 will be set globally to the 〈dimension expression〉.

\dim_const:Nn
\dim_const:cn

New: 2012-03-05

\dim_zero:N 〈dimension〉

Sets 〈dimension〉 to 0 pt.
\dim_zero:N
\dim_zero:c
\dim_gzero:N
\dim_gzero:c

\dim_zero_new:N 〈dimension〉

Ensures that the 〈dimension〉 exists globally by applying \dim_new:N if necessary, then
applies \dim_(g)zero:N to leave the 〈dimension〉 set to zero.

\dim_zero_new:N
\dim_zero_new:c
\dim_gzero_new:N
\dim_gzero_new:c

New: 2012-01-07

\dim_if_exist_p:N 〈dimension〉
\dim_if_exist:NTF 〈dimension〉 {〈true code〉} {〈false code〉}

Tests whether the 〈dimension〉 is currently defined. This does not check that the
〈dimension〉 really is a dimension variable.

\dim_if_exist_p:N ?
\dim_if_exist_p:c ?
\dim_if_exist:NTF ?
\dim_if_exist:cTF ?

New: 2012-03-03

80

2 Setting dim variables

\dim_add:Nn 〈dimension〉 {〈dimension expression〉}

Adds the result of the 〈dimension expression〉 to the current content of the 〈dimension〉.
\dim_add:Nn
\dim_add:cn
\dim_gadd:Nn
\dim_gadd:cn

Updated: 2011-10-22

\dim_set:Nn 〈dimension〉 {〈dimension expression〉}

Sets 〈dimension〉 to the value of 〈dimension expression〉, which must evaluate to a length
with units.

\dim_set:Nn
\dim_set:cn
\dim_gset:Nn
\dim_gset:cn

Updated: 2011-10-22

\dim_set_eq:NN 〈dimension1〉 〈dimension2〉

Sets the content of 〈dimension1〉 equal to that of 〈dimension2〉.
\dim_set_eq:NN
\dim_set_eq:(cN|Nc|cc)
\dim_gset_eq:NN
\dim_gset_eq:(cN|Nc|cc)

\dim_sub:Nn 〈dimension〉 {〈dimension expression〉}

Subtracts the result of the 〈dimension expression〉 from the current content of the
〈dimension〉.

\dim_sub:Nn
\dim_sub:cn
\dim_gsub:Nn
\dim_gsub:cn

Updated: 2011-10-22

3 Utilities for dimension calculations

\dim_abs:n {〈dimexpr〉}

Converts the 〈dimexpr〉 to its absolute value, leaving the result in the input stream as a
〈dimension denotation〉.

\dim_abs:n ?

Updated: 2012-09-26

\dim_max:nn {〈dimexpr1〉} {〈dimexpr2〉}
\dim_min:nn {〈dimexpr1〉} {〈dimexpr2〉}

Evaluates the two 〈dimension expressions〉 and leaves either the maximum or minimum
value in the input stream as appropriate, as a 〈dimension denotation〉.

\dim_max:nn ?
\dim_min:nn ?

New: 2012-09-09

Updated: 2012-09-26

81

\dim_ratio:nn {〈dimexpr1〉} {〈dimexpr2〉}

Parses the two 〈dimension expressions〉 and converts the ratio of the two to a form
suitable for use inside a 〈dimension expression〉. This ratio is then left in the input
stream, allowing syntax such as

\dim_set:Nn \l_my_dim
{ 10 pt * \dim_ratio:nn { 5 pt } { 10 pt } }

The output of \dim_ratio:nn on full expansion is a ration expression between two inte-
gers, with all distances converted to scaled points. Thus

\tl_set:Nx \l_my_tl { \dim_ratio:nn { 5 pt } { 10 pt } }
\tl_show:N \l_my_tl

will display 327680/655360 on the terminal.

\dim_ratio:nn I

Updated: 2011-10-22

4 Dimension expression conditionals

\dim_compare_p:nNn {〈dimexpr1〉} 〈relation〉 {〈dimexpr2〉}
\dim_compare:nNnTF
{〈dimexpr1〉} 〈relation〉 {〈dimexpr2〉}
{〈true code〉} {〈false code〉}

This function first evaluates each of the 〈dimension expressions〉 as described for \dim_-
eval:n. The two results are then compared using the 〈relation〉:

Equal =
Greater than >
Less than <

\dim_compare_p:nNn ?
\dim_compare:nNnTF ?

82

\dim_compare_p:n
{
〈dimexpr1〉 〈relation1〉
...
〈dimexprN 〉 〈relationN 〉
〈dimexprN+1〉

}
\dim_compare:nTF
{
〈dimexpr1〉 〈relation1〉
...
〈dimexprN 〉 〈relationN 〉
〈dimexprN+1〉

}
{〈true code〉} {〈false code〉}

This function evaluates the 〈dimension expressions〉 as described for \dim_eval:n and
compares consecutive result using the corresponding 〈relation〉, namely it compares
〈dimexpr1〉 and 〈dimexpr2〉 using the 〈relation1〉, then 〈dimexpr2〉 and 〈dimexpr3〉 us-
ing the 〈relation2〉, until finally comparing 〈dimexprN 〉 and 〈dimexprN+1〉 using the
〈relationN 〉. The test yields true if all comparisons are true. Each 〈dimension
expression〉 is evaluated only once, and the evaluation is lazy, in the sense that if one
comparison is false, then no other 〈dimension expression〉 is evaluated and no other
comparison is performed. The 〈relations〉 can be any of the following:

Equal = or ==
Greater than or equal to >=
Greater than >
Less than or equal to <=
Less than <
Not equal !=

\dim_compare_p:n ?
\dim_compare:nTF ?

Updated: 2013-01-13

83

\dim_case:nnTF {〈test dimension expression〉}
{
{〈dimexpr case1〉} {〈code case1〉}
{〈dimexpr case2〉} {〈code case2〉}
...
{〈dimexpr casen〉} {〈code casen〉}

}
{〈true code〉}
{〈false code〉}

This function evaluates the 〈test dimension expression〉 and compares this in turn to each
of the 〈dimension expression cases〉. If the two are equal then the associated 〈code〉 is
left in the input stream. If any of the cases are matched, the 〈true code〉 is also inserted
into the input stream (after the code for the appropriate case), while if none match then
the 〈false code〉 is inserted. The function \dim_case:nn, which does nothing if there is
no match, is also available. For example

\dim_set:Nn \l_tmpa_dim { 5 pt }
\dim_case:nnF
{ 2 \l_tmpa_dim }
{
{ 5 pt } { Small }
{ 4 pt + 6 pt } { Medium }
{ - 10 pt } { Negative }

}
{ No idea! }

will leave “Medium” in the input stream.

\dim_case:nnTF ?

New: 2013-07-24

5 Dimension expression loops

\dim_do_until:nNnn {〈dimexpr1〉} 〈relation〉 {〈dimexpr2〉} {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then evaluates the relation-
ship between the two 〈dimension expressions〉 as described for \dim_compare:nNnTF. If
the test is false then the 〈code〉 will be inserted into the input stream again and a loop
will occur until the 〈relation〉 is true.

\dim_do_until:nNnn I

\dim_do_while:nNnn {〈dimexpr1〉} 〈relation〉 {〈dimexpr2〉} {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then evaluates the relation-
ship between the two 〈dimension expressions〉 as described for \dim_compare:nNnTF. If
the test is true then the 〈code〉 will be inserted into the input stream again and a loop
will occur until the 〈relation〉 is false.

\dim_do_while:nNnn I

84

\dim_until_do:nNnn {〈dimexpr1〉} 〈relation〉 {〈dimexpr2〉} {〈code〉}

Evaluates the relationship between the two 〈dimension expressions〉 as described for
\dim_compare:nNnTF, and then places the 〈code〉 in the input stream if the 〈relation〉 is
false. After the 〈code〉 has been processed by TEX the test will be repeated, and a loop
will occur until the test is true.

\dim_until_do:nNnn I

\dim_while_do:nNnn {〈dimexpr1〉} 〈relation〉 {〈dimexpr2〉} {〈code〉}

Evaluates the relationship between the two 〈dimension expressions〉 as described for
\dim_compare:nNnTF, and then places the 〈code〉 in the input stream if the 〈relation〉 is
true. After the 〈code〉 has been processed by TEX the test will be repeated, and a loop
will occur until the test is false.

\dim_while_do:nNnn I

\dim_do_until:nn {〈dimension relation〉} {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then evaluates the
〈dimension relation〉 as described for \dim_compare:nTF. If the test is false then the
〈code〉 will be inserted into the input stream again and a loop will occur until the 〈relation〉
is true.

\dim_do_until:nn I

Updated: 2013-01-13

\dim_do_while:nn {〈dimension relation〉} {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then evaluates the
〈dimension relation〉 as described for \dim_compare:nTF. If the test is true then the
〈code〉 will be inserted into the input stream again and a loop will occur until the 〈relation〉
is false.

\dim_do_while:nn I

Updated: 2013-01-13

\dim_until_do:nn {〈dimension relation〉} {〈code〉}

Evaluates the 〈dimension relation〉 as described for \dim_compare:nTF, and then places
the 〈code〉 in the input stream if the 〈relation〉 is false. After the 〈code〉 has been
processed by TEX the test will be repeated, and a loop will occur until the test is true.

\dim_until_do:nn I

Updated: 2013-01-13

\dim_while_do:nn {〈dimension relation〉} {〈code〉}

Evaluates the 〈dimension relation〉 as described for \dim_compare:nTF, and then places
the 〈code〉 in the input stream if the 〈relation〉 is true. After the 〈code〉 has been processed
by TEX the test will be repeated, and a loop will occur until the test is false.

\dim_while_do:nn I

Updated: 2013-01-13

6 Using dim expressions and variables

\dim_eval:n {〈dimension expression〉}

Evaluates the 〈dimension expression〉, expanding any dimensions and token list variables
within the 〈expression〉 to their content (without requiring \dim_use:N/\tl_use:N) and
applying the standard mathematical rules. The result of the calculation is left in the
input stream as a 〈dimension denotation〉 after two expansions. This will be expressed
in points (pt), and will require suitable termination if used in a TEX-style assignment as
it is not an 〈internal dimension〉.

\dim_eval:n ?

Updated: 2011-10-22

85

\dim_use:N 〈dimension〉

Recovers the content of a 〈dimension〉 and places it directly in the input stream. An
error will be raised if the variable does not exist or if it is invalid. Can be omitted in
places where a 〈dimension〉 is required (such as in the argument of \dim_eval:n).

TEXhackers note: \dim_use:N is the TEX primitive \the: this is one of several LATEX3
names for this primitive.

\dim_use:N ?
\dim_use:c ?

\dim_to_decimal:n {〈dimexpr〉}

Evaluates the 〈dimension expression〉, and leaves the result, expressed in points (pt) in
the input stream, with no units. The result is rounded by TEX to four or five decimal
places. If the decimal part of the result is zero, it is omitted, together with the decimal
marker.

For example

\dim_to_decimal:n { 1bp }

leaves 1.00374 in the input stream, i.e. the magnitude of one “big point” when converted
to (TEX) points.

\dim_to_decimal:n ?

New: 2014-07-15

\dim_to_decimal_in_bp:n {〈dimexpr〉}

Evaluates the 〈dimension expression〉, and leaves the result, expressed in big points (bp)
in the input stream, with no units. The result is rounded by TEX to four or five decimal
places. If the decimal part of the result is zero, it is omitted, together with the decimal
marker.

For example

\dim_to_decimal_in_bp:n { 1pt }

leaves 0.99628 in the input stream, i.e. the magnitude of one (TEX) point when converted
to big points.

\dim_to_decimal_in_bp:n ?

New: 2014-07-15

\dim_to_decimal_in_sp:n {〈dimexpr〉}

Evaluates the 〈dimension expression〉, and leaves the result, expressed in scaled points
(sp) in the input stream, with no units. The result will necessarily be an integer.

\dim_to_decimal_in_sp:n ?

New: 2015-05-18

86

\dim_to_decimal_in_unit:nn {〈dimexpr1〉} {〈dimexpr2〉}\dim_to_decimal_in_unit:nn ?

New: 2014-07-15

Evaluates the 〈dimension expressions〉, and leaves the value of 〈dimexpr1〉, expressed in a
unit given by 〈dimexpr2〉, in the input stream. The result is a decimal number, rounded
by TEX to four or five decimal places. If the decimal part of the result is zero, it is
omitted, together with the decimal marker.

For example

\dim_to_decimal_in_unit:nn { 1bp } { 1mm }

leaves 0.35277 in the input stream, i.e. the magnitude of one big point when converted
to millimetres.

Note that this function is not optimised for any particular output and as such may
give different results to \dim_to_decimal_in_bp:n or \dim_to_decimal_in_sp:n. In
particular, the latter is able to take a wider range of input values as it is not limited
by the ability to calculate a ratio using ε-TEX primitives, which is required internally by
\dim_to_decimal_in_unit:nn.

\dim_to_fp:n {〈dimexpr〉}

Expands to an internal floating point number equal to the value of the 〈dimexpr〉 in
pt. Since dimension expressions are evaluated much faster than their floating point
equivalent, \dim_to_fp:n can be used to speed up parts of a computation where a low
precision is acceptable.

\dim_to_fp:n ?

New: 2012-05-08

7 Viewing dim variables

\dim_show:N 〈dimension〉

Displays the value of the 〈dimension〉 on the terminal.
\dim_show:N
\dim_show:c

\dim_show:n {〈dimension expression〉}

Displays the result of evaluating the 〈dimension expression〉 on the terminal.
\dim_show:n

New: 2011-11-22

Updated: 2015-08-07

8 Constant dimensions

The maximum value that can be stored as a dimension. This can also be used as a
component of a skip.

\c_max_dim

A zero length as a dimension. This can also be used as a component of a skip.\c_zero_dim

87

9 Scratch dimensions

Scratch dimension for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_dim
\l_tmpb_dim

Scratch dimension for global assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_dim
\g_tmpb_dim

10 Creating and initialising skip variables

\skip_new:N 〈skip〉

Creates a new 〈skip〉 or raises an error if the name is already taken. The declaration is
global. The 〈skip〉 will initially be equal to 0 pt.

\skip_new:N
\skip_new:c

\skip_const:Nn 〈skip〉 {〈skip expression〉}

Creates a new constant 〈skip〉 or raises an error if the name is already taken. The value
of the 〈skip〉 will be set globally to the 〈skip expression〉.

\skip_const:Nn
\skip_const:cn

New: 2012-03-05

\skip_zero:N 〈skip〉

Sets 〈skip〉 to 0 pt.
\skip_zero:N
\skip_zero:c
\skip_gzero:N
\skip_gzero:c

\skip_zero_new:N 〈skip〉

Ensures that the 〈skip〉 exists globally by applying \skip_new:N if necessary, then applies
\skip_(g)zero:N to leave the 〈skip〉 set to zero.

\skip_zero_new:N
\skip_zero_new:c
\skip_gzero_new:N
\skip_gzero_new:c

New: 2012-01-07

\skip_if_exist_p:N 〈skip〉
\skip_if_exist:NTF 〈skip〉 {〈true code〉} {〈false code〉}

Tests whether the 〈skip〉 is currently defined. This does not check that the 〈skip〉 really
is a skip variable.

\skip_if_exist_p:N ?
\skip_if_exist_p:c ?
\skip_if_exist:NTF ?
\skip_if_exist:cTF ?

New: 2012-03-03

88

11 Setting skip variables

\skip_add:Nn 〈skip〉 {〈skip expression〉}

Adds the result of the 〈skip expression〉 to the current content of the 〈skip〉.
\skip_add:Nn
\skip_add:cn
\skip_gadd:Nn
\skip_gadd:cn

Updated: 2011-10-22

\skip_set:Nn 〈skip〉 {〈skip expression〉}

Sets 〈skip〉 to the value of 〈skip expression〉, which must evaluate to a length with units
and may include a rubber component (for example 1 cm plus 0.5 cm.

\skip_set:Nn
\skip_set:cn
\skip_gset:Nn
\skip_gset:cn

Updated: 2011-10-22

\skip_set_eq:NN 〈skip1〉 〈skip2〉

Sets the content of 〈skip1〉 equal to that of 〈skip2〉.
\skip_set_eq:NN
\skip_set_eq:(cN|Nc|cc)
\skip_gset_eq:NN
\skip_gset_eq:(cN|Nc|cc)

\skip_sub:Nn 〈skip〉 {〈skip expression〉}

Subtracts the result of the 〈skip expression〉 from the current content of the 〈skip〉.
\skip_sub:Nn
\skip_sub:cn
\skip_gsub:Nn
\skip_gsub:cn

Updated: 2011-10-22

12 Skip expression conditionals

\skip_if_eq_p:nn {〈skipexpr1〉} {〈skipexpr2〉}
\dim_compare:nTF
{〈skipexpr1〉} {〈skipexpr2〉}
{〈true code〉} {〈false code〉}

This function first evaluates each of the 〈skip expressions〉 as described for \skip_-
eval:n. The two results are then compared for exact equality, i.e. both the fixed and
rubber components must be the same for the test to be true.

\skip_if_eq_p:nn ?
\skip_if_eq:nnTF ?

\skip_if_finite_p:n {〈skipexpr〉}
\skip_if_finite:nTF {〈skipexpr〉} {〈true code〉} {〈false code〉}

Evaluates the 〈skip expression〉 as described for \skip_eval:n, and then tests if all of
its components are finite.

\skip_if_finite_p:n ?
\skip_if_finite:nTF ?

New: 2012-03-05

89

13 Using skip expressions and variables

\skip_eval:n {〈skip expression〉}

Evaluates the 〈skip expression〉, expanding any skips and token list variables within the
〈expression〉 to their content (without requiring \skip_use:N/\tl_use:N) and applying
the standard mathematical rules. The result of the calculation is left in the input stream
as a 〈glue denotation〉 after two expansions. This will be expressed in points (pt), and
will require suitable termination if used in a TEX-style assignment as it is not an 〈internal
glue〉.

\skip_eval:n ?

Updated: 2011-10-22

\skip_use:N 〈skip〉

Recovers the content of a 〈skip〉 and places it directly in the input stream. An error will
be raised if the variable does not exist or if it is invalid. Can be omitted in places where
a 〈dimension〉 is required (such as in the argument of \skip_eval:n).

TEXhackers note: \skip_use:N is the TEX primitive \the: this is one of several LATEX3
names for this primitive.

\skip_use:N ?
\skip_use:c ?

14 Viewing skip variables

\skip_show:N 〈skip〉

Displays the value of the 〈skip〉 on the terminal.
\skip_show:N
\skip_show:c

\skip_show:n {〈skip expression〉}

Displays the result of evaluating the 〈skip expression〉 on the terminal.
\skip_show:n

New: 2011-11-22

Updated: 2015-08-07

15 Constant skips

The maximum value that can be stored as a skip (equal to \c_max_dim in length), with
no stretch nor shrink component.

\c_max_skip

Updated: 2012-11-02

A zero length as a skip, with no stretch nor shrink component.\c_zero_skip

Updated: 2012-11-01

90

16 Scratch skips

Scratch skip for local assignment. These are never used by the kernel code, and so are
safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_skip
\l_tmpb_skip

Scratch skip for global assignment. These are never used by the kernel code, and so are
safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_skip
\g_tmpb_skip

17 Inserting skips into the output

\skip_horizontal:N 〈skip〉
\skip_horizontal:n {〈skipexpr〉}

Inserts a horizontal 〈skip〉 into the current list.

TEXhackers note: \skip_horizontal:N is the TEX primitive \hskip renamed.

\skip_horizontal:N
\skip_horizontal:c
\skip_horizontal:n

Updated: 2011-10-22

\skip_vertical:N 〈skip〉
\skip_vertical:n {〈skipexpr〉}

Inserts a vertical 〈skip〉 into the current list.

TEXhackers note: \skip_vertical:N is the TEX primitive \vskip renamed.

\skip_vertical:N
\skip_vertical:c
\skip_vertical:n

Updated: 2011-10-22

18 Creating and initialising muskip variables

\muskip_new:N 〈muskip〉

Creates a new 〈muskip〉 or raises an error if the name is already taken. The declaration
is global. The 〈muskip〉 will initially be equal to 0mu.

\muskip_new:N
\muskip_new:c

\muskip_const:Nn 〈muskip〉 {〈muskip expression〉}

Creates a new constant 〈muskip〉 or raises an error if the name is already taken. The
value of the 〈muskip〉 will be set globally to the 〈muskip expression〉.

\muskip_const:Nn
\muskip_const:cn

New: 2012-03-05

\skip_zero:N 〈muskip〉

Sets 〈muskip〉 to 0mu.
\muskip_zero:N
\muskip_zero:c
\muskip_gzero:N
\muskip_gzero:c

91

\muskip_zero_new:N 〈muskip〉

Ensures that the 〈muskip〉 exists globally by applying \muskip_new:N if necessary, then
applies \muskip_(g)zero:N to leave the 〈muskip〉 set to zero.

\muskip_zero_new:N
\muskip_zero_new:c
\muskip_gzero_new:N
\muskip_gzero_new:c

New: 2012-01-07

\muskip_if_exist_p:N 〈muskip〉
\muskip_if_exist:NTF 〈muskip〉 {〈true code〉} {〈false code〉}

Tests whether the 〈muskip〉 is currently defined. This does not check that the 〈muskip〉
really is a muskip variable.

\muskip_if_exist_p:N ?
\muskip_if_exist_p:c ?
\muskip_if_exist:NTF ?
\muskip_if_exist:cTF ?

New: 2012-03-03

19 Setting muskip variables

\muskip_add:Nn 〈muskip〉 {〈muskip expression〉}

Adds the result of the 〈muskip expression〉 to the current content of the 〈muskip〉.
\muskip_add:Nn
\muskip_add:cn
\muskip_gadd:Nn
\muskip_gadd:cn

Updated: 2011-10-22

\muskip_set:Nn 〈muskip〉 {〈muskip expression〉}

Sets 〈muskip〉 to the value of 〈muskip expression〉, which must evaluate to a math length
with units and may include a rubber component (for example 1 mu plus 0.5 mu.

\muskip_set:Nn
\muskip_set:cn
\muskip_gset:Nn
\muskip_gset:cn

Updated: 2011-10-22

\muskip_set_eq:NN 〈muskip1〉 〈muskip2〉

Sets the content of 〈muskip1〉 equal to that of 〈muskip2〉.
\muskip_set_eq:NN
\muskip_set_eq:(cN|Nc|cc)
\muskip_gset_eq:NN
\muskip_gset_eq:(cN|Nc|cc)

\muskip_sub:Nn 〈muskip〉 {〈muskip expression〉}

Subtracts the result of the 〈muskip expression〉 from the current content of the 〈skip〉.
\muskip_sub:Nn
\muskip_sub:cn
\muskip_gsub:Nn
\muskip_gsub:cn

Updated: 2011-10-22

92

20 Using muskip expressions and variables

\muskip_eval:n {〈muskip expression〉}

Evaluates the 〈muskip expression〉, expanding any skips and token list variables within
the 〈expression〉 to their content (without requiring \muskip_use:N/\tl_use:N) and
applying the standard mathematical rules. The result of the calculation is left in the
input stream as a 〈muglue denotation〉 after two expansions. This will be expressed in
mu, and will require suitable termination if used in a TEX-style assignment as it is not an
〈internal muglue〉.

\muskip_eval:n ?

Updated: 2011-10-22

\muskip_use:N 〈muskip〉

Recovers the content of a 〈skip〉 and places it directly in the input stream. An error will
be raised if the variable does not exist or if it is invalid. Can be omitted in places where
a 〈dimension〉 is required (such as in the argument of \muskip_eval:n).

TEXhackers note: \muskip_use:N is the TEX primitive \the: this is one of several LATEX3
names for this primitive.

\muskip_use:N ?
\muskip_use:c ?

21 Viewing muskip variables

\muskip_show:N 〈muskip〉

Displays the value of the 〈muskip〉 on the terminal.
\muskip_show:N
\muskip_show:c

\muskip_show:n {〈muskip expression〉}

Displays the result of evaluating the 〈muskip expression〉 on the terminal.
\muskip_show:n

New: 2011-11-22

Updated: 2015-08-07

22 Constant muskips

The maximum value that can be stored as a muskip, with no stretch nor shrink compo-
nent.

\c_max_muskip

A zero length as a muskip, with no stretch nor shrink component.\c_zero_muskip

93

23 Scratch muskips

Scratch muskip for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_muskip
\l_tmpb_muskip

Scratch muskip for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_muskip
\g_tmpb_muskip

24 Primitive conditional

\if_dim:w 〈dimen1〉 〈relation〉 〈dimen2〉
〈true code〉

\else:
〈false〉

\fi:

Compare two dimensions. The 〈relation〉 is one of <, = or > with category code 12.

TEXhackers note: This is the TEX primitive \ifdim.

\if_dim:w

25 Internal functions

__dim_eval:w 〈dimexpr〉 __dim_eval_end:

Evaluates 〈dimension expression〉 as described for \dim_eval:n. The evaluation stops
when an unexpandable token which is not a valid part of a dimension is read or when _-
_dim_eval_end: is reached. The latter is gobbled by the scanner mechanism: __dim_-
eval_end: itself is unexpandable but used correctly the entire construct is expandable.

TEXhackers note: This is the ε-TEX primitive \dimexpr.

__dim_eval:w ?
__dim_eval_end: ?

94

Part XI

The l3tl package
Token lists
TEX works with tokens, and LATEX3 therefore provides a number of functions to deal with
lists of tokens. Token lists may be present directly in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored in a so-called “token list variable”, which have the suffix tl: a token
list variable can also be used as the argument to a function, for example

\foo:N \l_some_tl

In both cases, functions are available to test an manipulate the lists of tokens, and these
have the module prefix tl. In many cases, function which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”,
or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single
non-space token or a brace group, with optional leading explicit space characters (each
item is thus itself a token list). A token is either a normal N argument, or ␣, {, or }
(assuming normal TEX category codes). Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, l and d), but thirteen tokens ({, H, e, l, l, o, }, ␣, w,
o, r, l and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

TEXhackers note: When TEX fetches an undelimited argument from the input stream,
explicit character tokens with character code 32 (space) and category code 10 (space), which we
here call “explicit space characters”, are ignored. If the following token is an explicit character
token with category code 1 (begin-group) and an arbitrary character code, then TEX scans ahead
to obtain an equal number of explicit character tokens with category code 1 (begin-group) and 2
(end-group), and the resulting list of tokens (with outer braces removed) becomes the argument.
Otherwise, a single token is taken as the argument for the macro: we call such single tokens
“N-type”, as they are suitable to be used as an argument for a function with the signature :N.

When TEX reads a character of category code 10 for the first time, it is converted to
an explicit space character, with character code 32, regardless of the initial character code.
“Funny” spaces with a different category code, can be produced using \tex_lowercase:D or
\tex_uppercase:D. Explicit space characters are also produced as a result of \token_to_str:N,
\tl_to_str:n, etc.

95

1 Creating and initialising token list variables

\tl_new:N 〈tl var〉

Creates a new 〈tl var〉 or raises an error if the name is already taken. The declaration is
global. The 〈tl var〉 will initially be empty.

\tl_new:N
\tl_new:c

\tl_const:Nn 〈tl var〉 {〈token list〉}

Creates a new constant 〈tl var〉 or raises an error if the name is already taken. The value
of the 〈tl var〉 will be set globally to the 〈token list〉.

\tl_const:Nn
\tl_const:(Nx|cn|cx)

\tl_clear:N 〈tl var〉

Clears all entries from the 〈tl var〉.
\tl_clear:N
\tl_clear:c
\tl_gclear:N
\tl_gclear:c

\tl_clear_new:N 〈tl var〉

Ensures that the 〈tl var〉 exists globally by applying \tl_new:N if necessary, then applies
\tl_(g)clear:N to leave the 〈tl var〉 empty.

\tl_clear_new:N
\tl_clear_new:c
\tl_gclear_new:N
\tl_gclear_new:c

\tl_set_eq:NN 〈tl var1〉 〈tl var2〉

Sets the content of 〈tl var1〉 equal to that of 〈tl var2〉.
\tl_set_eq:NN
\tl_set_eq:(cN|Nc|cc)
\tl_gset_eq:NN
\tl_gset_eq:(cN|Nc|cc)

\tl_concat:NNN 〈tl var1〉 〈tl var2〉 〈tl var3〉

Concatenates the content of 〈tl var2〉 and 〈tl var3〉 together and saves the result in
〈tl var1〉. The 〈tl var2〉 will be placed at the left side of the new token list.

\tl_concat:NNN
\tl_concat:ccc
\tl_gconcat:NNN
\tl_gconcat:ccc

New: 2012-05-18

\tl_if_exist_p:N 〈tl var〉
\tl_if_exist:NTF 〈tl var〉 {〈true code〉} {〈false code〉}

Tests whether the 〈tl var〉 is currently defined. This does not check that the 〈tl var〉
really is a token list variable.

\tl_if_exist_p:N ?
\tl_if_exist_p:c ?
\tl_if_exist:NTF ?
\tl_if_exist:cTF ?

New: 2012-03-03

96

2 Adding data to token list variables

\tl_set:Nn 〈tl var〉 {〈tokens〉}\tl_set:Nn
\tl_set:(NV|Nv|No|Nf|Nx|cn|cV|cv|co|cf|cx)
\tl_gset:Nn
\tl_gset:(NV|Nv|No|Nf|Nx|cn|cV|cv|co|cf|cx)

Sets 〈tl var〉 to contain 〈tokens〉, removing any previous content from the variable.

\tl_put_left:Nn 〈tl var〉 {〈tokens〉}\tl_put_left:Nn
\tl_put_left:(NV|No|Nx|cn|cV|co|cx)
\tl_gput_left:Nn
\tl_gput_left:(NV|No|Nx|cn|cV|co|cx)

Appends 〈tokens〉 to the left side of the current content of 〈tl var〉.

\tl_put_right:Nn 〈tl var〉 {〈tokens〉}\tl_put_right:Nn
\tl_put_right:(NV|No|Nx|cn|cV|co|cx)
\tl_gput_right:Nn
\tl_gput_right:(NV|No|Nx|cn|cV|co|cx)

Appends 〈tokens〉 to the right side of the current content of 〈tl var〉.

3 Modifying token list variables

\tl_replace_once:Nnn 〈tl var〉 {〈old tokens〉} {〈new tokens〉}

Replaces the first (leftmost) occurrence of 〈old tokens〉 in the 〈tl var〉 with 〈new tokens〉.
〈Old tokens〉 cannot contain {, } or # (more precisely, explicit character tokens with
category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_replace_once:Nnn
\tl_replace_once:cnn
\tl_greplace_once:Nnn
\tl_greplace_once:cnn

Updated: 2011-08-11

\tl_replace_all:Nnn 〈tl var〉 {〈old tokens〉} {〈new tokens〉}

Replaces all occurrences of 〈old tokens〉 in the 〈tl var〉 with 〈new tokens〉. 〈Old tokens〉
cannot contain {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function
operates from left to right, the pattern 〈old tokens〉 may remain after the replacement
(see \tl_remove_all:Nn for an example).

\tl_replace_all:Nnn
\tl_replace_all:cnn
\tl_greplace_all:Nnn
\tl_greplace_all:cnn

Updated: 2011-08-11

\tl_remove_once:Nn 〈tl var〉 {〈tokens〉}

Removes the first (leftmost) occurrence of 〈tokens〉 from the 〈tl var〉. 〈Tokens〉 cannot
contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_remove_once:Nn
\tl_remove_once:cn
\tl_gremove_once:Nn
\tl_gremove_once:cn

Updated: 2011-08-11

97

\tl_remove_all:Nn 〈tl var〉 {〈tokens〉}

Removes all occurrences of 〈tokens〉 from the 〈tl var〉. 〈Tokens〉 cannot contain {, } or #
(more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-
group), and tokens with category code 6). As this function operates from left to right,
the pattern 〈tokens〉 may remain after the removal, for instance,

\tl_set:Nn \l_tmpa_tl {abbccd} \tl_remove_all:Nn \l_tmpa_tl {bc}

will result in \l_tmpa_tl containing abcd.

\tl_remove_all:Nn
\tl_remove_all:cn
\tl_gremove_all:Nn
\tl_gremove_all:cn

Updated: 2011-08-11

4 Reassigning token list category codes
These functions allow the rescanning of tokens: re-apply TEX’s tokenization process to
apply category codes different from those in force when the tokens were absorbed. Whilst
this functionality is supported, it is often preferable to find alternative approaches to
achieving outcomes rather than rescanning tokens (for example construction of token
lists token-by-token with intervening category code changes).

\tl_set_rescan:Nnn 〈tl var〉 {〈setup〉} {〈tokens〉}\tl_set_rescan:Nnn
\tl_set_rescan:(Nno|Nnx|cnn|cno|cnx)
\tl_gset_rescan:Nnn
\tl_gset_rescan:(Nno|Nnx|cnn|cno|cnx)

Updated: 2015-08-11

Sets 〈tl var〉 to contain 〈tokens〉, applying the category code régime specified in the 〈setup〉
before carrying out the assignment. (Category codes applied to tokens not explicitly
covered by the 〈setup〉 will be those in force at the point of use of \tl_set_rescan:Nnn.)
This allows the 〈tl var〉 to contain material with category codes other than those that
apply when 〈tokens〉 are absorbed. The 〈setup〉 is run within a group and may contain
any valid input, although only changes in category codes are relevant. See also \tl_-
rescan:nn.

TEXhackers note: The 〈tokens〉 are first turned into a string (using \tl_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user 〈setup〉), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file. Only the case of a single line is supported in LuaTEX because
of a bug in this engine.

98

\tl_rescan:nn {〈setup〉} {〈tokens〉}

Rescans 〈tokens〉 applying the category code régime specified in the 〈setup〉, and leaves
the resulting tokens in the input stream. (Category codes applied to tokens not explicitly
covered by the 〈setup〉 will be those in force at the point of use of \tl_rescan:nn.) The
〈setup〉 is run within a group and may contain any valid input, although only changes in
category codes are relevant. See also \tl_set_rescan:Nnn, which is more robust than
using \tl_set:Nn in the 〈tokens〉 argument of \tl_rescan:nn.

TEXhackers note: The 〈tokens〉 are first turned into a string (using \tl_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user 〈setup〉), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file. Only the case of a single line is supported in LuaTEX because
of a bug in this engine.

\tl_rescan:nn

Updated: 2015-08-11

5 Token list conditionals

\tl_if_blank_p:n {〈token list〉}
\tl_if_blank:nTF {〈token list〉} {〈true code〉} {〈false code〉}

Tests if the 〈token list〉 consists only of blank spaces (i.e. contains no item). The test is
true if 〈token list〉 is zero or more explicit space characters (explicit tokens with character
code 32 and category code 10), and is false otherwise.

\tl_if_blank_p:n ?
\tl_if_blank_p:(V|o) ?
\tl_if_blank:nTF ?
\tl_if_blank:(V|o)TF ?

\tl_if_empty_p:N 〈tl var〉
\tl_if_empty:NTF 〈tl var〉 {〈true code〉} {〈false code〉}

Tests if the 〈token list variable〉 is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:N ?
\tl_if_empty_p:c ?
\tl_if_empty:NTF ?
\tl_if_empty:cTF ?

\tl_if_empty_p:n {〈token list〉}
\tl_if_empty:nTF {〈token list〉} {〈true code〉} {〈false code〉}

Tests if the 〈token list〉 is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:n ?
\tl_if_empty_p:(V|o) ?
\tl_if_empty:nTF ?
\tl_if_empty:(V|o)TF ?

New: 2012-05-24

Updated: 2012-06-05

99

\tl_if_eq_p:NN 〈tl var1〉 〈tl var2〉
\tl_if_eq:NNTF 〈tl var1〉 〈tl var2〉 {〈true code〉} {〈false code〉}

Compares the content of two 〈token list variables〉 and is logically true if the two contain
the same list of tokens (i.e. identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \l_tmpa_tl { abc }
\tl_set:Nx \l_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NNTF \l_tmpa_tl \l_tmpb_tl { true } { false }

yields false.

\tl_if_eq_p:NN ?
\tl_if_eq_p:(Nc|cN|cc) ?
\tl_if_eq:NNTF ?
\tl_if_eq:(Nc|cN|cc)TF ?

\tl_if_eq:nnTF {〈token list1〉} {〈token list2〉} {〈true code〉} {〈false code〉}

Tests if 〈token list1〉 and 〈token list2〉 contain the same list of tokens, both in respect of
character codes and category codes.

\tl_if_eq:nnTF

\tl_if_in:NnTF 〈tl var〉 {〈token list〉} {〈true code〉} {〈false code〉}

Tests if the 〈token list〉 is found in the content of the 〈tl var〉. The 〈token list〉 cannot
contain the tokens {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:NnTF
\tl_if_in:cnTF

\tl_if_in:nnTF {〈token list1〉} {〈token list2〉} {〈true code〉} {〈false code〉}

Tests if 〈token list2〉 is found inside 〈token list1〉. The 〈token list2〉 cannot contain the
tokens {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:nnTF
\tl_if_in:(Vn|on|no)TF

\tl_if_single_p:N 〈tl var〉
\tl_if_single:NTF 〈tl var〉 {〈true code〉} {〈false code〉}

Tests if the content of the 〈tl var〉 consists of a single item, i.e. is a single normal token
(neither an explicit space character nor a begin-group character) or a single brace group,
surrounded by optional spaces on both sides. In other words, such a token list has token
count 1 according to \tl_count:N.

\tl_if_single_p:N ?
\tl_if_single_p:c ?
\tl_if_single:NTF ?
\tl_if_single:cTF ?

Updated: 2011-08-13

\tl_if_single_p:n {〈token list〉}
\tl_if_single:nTF {〈token list〉} {〈true code〉} {〈false code〉}

Tests if the 〈token list〉 has exactly one item, i.e. is a single normal token (neither an
explicit space character nor a begin-group character) or a single brace group, surrounded
by optional spaces on both sides. In other words, such a token list has token count 1
according to \tl_count:n.

\tl_if_single_p:n ?
\tl_if_single:nTF ?

Updated: 2011-08-13

100

\tl_case:NnTF 〈test token list variable〉
{
〈token list variable case1〉 {〈code case1〉}
〈token list variable case2〉 {〈code case2〉}
...
〈token list variable casen〉 {〈code casen〉}

}
{〈true code〉}
{〈false code〉}

This function compares the 〈test token list variable〉 in turn with each of the 〈token
list variable cases〉. If the two are equal (as described for \tl_if_eq:NNTF) then the
associated 〈code〉 is left in the input stream. If any of the cases are matched, the 〈true
code〉 is also inserted into the input stream (after the code for the appropriate case),
while if none match then the 〈false code〉 is inserted. The function \tl_case:Nn, which
does nothing if there is no match, is also available.

\tl_case:NnTF ?
\tl_case:cnTF ?

New: 2013-07-24

6 Mapping to token lists

\tl_map_function:NN 〈tl var〉 〈function〉

Applies 〈function〉 to every 〈item〉 in the 〈tl var〉. The 〈function〉 will receive one ar-
gument for each iteration. This may be a number of tokens if the 〈item〉 was stored
within braces. Hence the 〈function〉 should anticipate receiving n-type arguments. See
also \tl_map_function:nN.

\tl_map_function:NN I

\tl_map_function:cN I

Updated: 2012-06-29

\tl_map_function:nN 〈token list〉 〈function〉

Applies 〈function〉 to every 〈item〉 in the 〈token list〉, The 〈function〉 will receive one
argument for each iteration. This may be a number of tokens if the 〈item〉 was stored
within braces. Hence the 〈function〉 should anticipate receiving n-type arguments. See
also \tl_map_function:NN.

\tl_map_function:nN I

Updated: 2012-06-29

\tl_map_inline:Nn 〈tl var〉 {〈inline function〉}

Applies the 〈inline function〉 to every 〈item〉 stored within the 〈tl var〉. The 〈inline
function〉 should consist of code which will receive the 〈item〉 as #1. One in line mapping
can be nested inside another. See also \tl_map_function:NN.

\tl_map_inline:Nn
\tl_map_inline:cn

Updated: 2012-06-29

\tl_map_inline:nn 〈token list〉 {〈inline function〉}

Applies the 〈inline function〉 to every 〈item〉 stored within the 〈token list〉. The 〈inline
function〉 should consist of code which will receive the 〈item〉 as #1. One in line mapping
can be nested inside another. See also \tl_map_function:nN.

\tl_map_inline:nn

Updated: 2012-06-29

\tl_map_variable:NNn 〈tl var〉 〈variable〉 {〈function〉}

Applies the 〈function〉 to every 〈item〉 stored within the 〈tl var〉. The 〈function〉 should
consist of code which will receive the 〈item〉 stored in the 〈variable〉. One variable map-
ping can be nested inside another. See also \tl_map_inline:Nn.

\tl_map_variable:NNn
\tl_map_variable:cNn

Updated: 2012-06-29

101

\tl_map_variable:nNn 〈token list〉 〈variable〉 {〈function〉}

Applies the 〈function〉 to every 〈item〉 stored within the 〈token list〉. The 〈function〉
should consist of code which will receive the 〈item〉 stored in the 〈variable〉. One variable
mapping can be nested inside another. See also \tl_map_inline:nn.

\tl_map_variable:nNn

Updated: 2012-06-29

\tl_map_break:

Used to terminate a \tl_map_... function before all entries in the 〈token list variable〉
have been processed. This will normally take place within a conditional statement, for
example

\tl_map_inline:Nn \l_my_tl
{
\str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
% Do something useful

}

See also \tl_map_break:n. Use outside of a \tl_map_... scenario will lead to low level
TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the 〈tokens〉 are inserted into the input stream.
This will depend on the design of the mapping function.

\tl_map_break: I

Updated: 2012-06-29

\tl_map_break:n {〈tokens〉}

Used to terminate a \tl_map_... function before all entries in the 〈token list variable〉
have been processed, inserting the 〈tokens〉 after the mapping has ended. This will
normally take place within a conditional statement, for example

\tl_map_inline:Nn \l_my_tl
{
\str_if_eq:nnT { #1 } { bingo }
{ \tl_map_break:n { <tokens> } }

% Do something useful
}

Use outside of a \tl_map_... scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the 〈tokens〉 are inserted into the input stream.
This will depend on the design of the mapping function.

\tl_map_break:n I

Updated: 2012-06-29

102

7 Using token lists

\tl_to_str:n {〈token list〉}

Converts the 〈token list〉 to a 〈string〉, leaving the resulting character tokens in the input
stream. A 〈string〉 is a series of tokens with category code 12 (other) with the exception
of spaces, which retain category code 10 (space).

TEXhackers note: Converting a 〈token list〉 to a 〈string〉 yields a concatenation of the
string representations of every token in the 〈token list〉. The string representation of a control
sequence is

• an escape character, whose character code is given by the internal parameter \escapechar,
absent if the \escapechar is negative or greater than the largest character code;

• the control sequence name, as defined by \cs_to_str:N;
• a space, unless the control sequence name is a single character whose category at the time

of expansion of \tl_to_str:n is not “letter”.

The string representation of an explicit character token is that character, doubled in the case
of (explicit) macro parameter characters (normally #). In particular, the string representation
of a token list may depend on the category codes in effect when it is evaluated, and the value
of the \escapechar: for instance \tl_to_str:n {\a} normally produces the three character
“backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the
escape character is negative and a is currently not a letter.

\tl_to_str:n ?

\tl_to_str:N 〈tl var〉

Converts the content of the 〈tl var〉 into a series of characters with category code 12
(other) with the exception of spaces, which retain category code 10 (space). This 〈string〉
is then left in the input stream. For low-level details, see the notes given for \tl_to_-
str:n.

\tl_to_str:N ?
\tl_to_str:c ?

\tl_use:N 〈tl var〉

Recovers the content of a 〈tl var〉 and places it directly in the input stream. An error
will be raised if the variable does not exist or if it is invalid. Note that it is possible to
use a 〈tl var〉 directly without an accessor function.

\tl_use:N ?
\tl_use:c ?

8 Working with the content of token lists

\tl_count:n {〈tokens〉}

Counts the number of 〈items〉 in 〈tokens〉 and leaves this information in the input stream.
Unbraced tokens count as one element as do each token group ({. . . }). This process will
ignore any unprotected spaces within 〈tokens〉. See also \tl_count:N. This function
requires three expansions, giving an 〈integer denotation〉.

\tl_count:n ?
\tl_count:(V|o) ?

New: 2012-05-13

103

\tl_count:N 〈tl var〉

Counts the number of token groups in the 〈tl var〉 and leaves this information in the
input stream. Unbraced tokens count as one element as do each token group ({. . . }).
This process will ignore any unprotected spaces within the 〈tl var〉. See also \tl_count:n.
This function requires three expansions, giving an 〈integer denotation〉.

\tl_count:N ?
\tl_count:c ?

New: 2012-05-13

\tl_reverse:n {〈token list〉}

Reverses the order of the 〈items〉 in the 〈token list〉, so that 〈item1〉〈item2〉〈item3〉
. . . 〈itemn〉 becomes 〈itemn〉. . . 〈item3〉〈item2〉〈item1〉. This process will preserve unpro-
tected space within the 〈token list〉. Tokens are not reversed within braced token groups,
which keep their outer set of braces. In situations where performance is important,
consider \tl_reverse_items:n. See also \tl_reverse:N.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list will not expand further when appearing in an x-type argument expansion.

\tl_reverse:n ?
\tl_reverse:(V|o) ?

Updated: 2012-01-08

\tl_reverse:N 〈tl var〉

Reverses the order of the 〈items〉 stored in 〈tl var〉, so that 〈item1〉〈item2〉〈item3〉
. . . 〈itemn〉 becomes 〈itemn〉. . . 〈item3〉〈item2〉〈item1〉. This process will preserve unpro-
tected spaces within the 〈token list variable〉. Braced token groups are copied without
reversing the order of tokens, but keep the outer set of braces. See also \tl_reverse:n,
and, for improved performance, \tl_reverse_items:n.

\tl_reverse:N
\tl_reverse:c
\tl_greverse:N
\tl_greverse:c

Updated: 2012-01-08

\tl_reverse_items:n {〈token list〉}

Reverses the order of the 〈items〉 stored in 〈tl var〉, so that {〈item1〉}{〈item2〉}{〈item3〉}
. . . {〈itemn〉} becomes {〈itemn〉} . . . {〈item3〉}{〈item2〉}{〈item1〉}. This process will
remove any unprotected space within the 〈token list〉. Braced token groups are copied
without reversing the order of tokens, and keep the outer set of braces. Items which are
initially not braced are copied with braces in the result. In cases where preserving spaces
is important, consider the slower function \tl_reverse:n.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list will not expand further when appearing in an x-type argument expansion.

\tl_reverse_items:n ?

New: 2012-01-08

\tl_trim_spaces:n {〈token list〉}

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the 〈token list〉 and leaves the result in the input
stream.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list will not expand further when appearing in an x-type argument expansion.

\tl_trim_spaces:n ?

New: 2011-07-09

Updated: 2012-06-25

104

\tl_trim_spaces:N 〈tl var〉

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the content of the 〈tl var〉. Note that this therefore
resets the content of the variable.

\tl_trim_spaces:N
\tl_trim_spaces:c
\tl_gtrim_spaces:N
\tl_gtrim_spaces:c

New: 2011-07-09

9 The first token from a token list
Functions which deal with either only the very first item (balanced text or single normal
token) in a token list, or the remaining tokens.

\tl_head:n {〈token list〉}

Leaves in the input stream the first 〈item〉 in the 〈token list〉, discarding the rest of the
〈token list〉. All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded; for example

\tl_head:n { abc }

and

\tl_head:n { ~ abc }

will both leave a in the input stream. If the “head” is a brace group, rather than a single
token, the braces will be removed, and so

\tl_head:n { ~ { ~ ab } c }

yields ␣ab. A blank 〈token list〉 (see \tl_if_blank:nTF) will result in \tl_head:n leaving
nothing in the input stream.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list will not expand further when appearing in an x-type argument expansion.

\tl_head:N ?
\tl_head:n ?
\tl_head:(V|v|f) ?

Updated: 2012-09-09

\tl_head:w 〈token list〉 { } \q_stop

Leaves in the input stream the first 〈item〉 in the 〈token list〉, discarding the rest of
the 〈token list〉. All leading explicit space characters (explicit tokens with character
code 32 and category code 10) are discarded. A blank 〈token list〉 (which consists only
of space characters) will result in a low-level TEX error, which may be avoided by the
inclusion of an empty group in the input (as shown), without the need for an explicit
test. Alternatively, \tl_if_blank:nF may be used to avoid using the function with a
“blank” argument. This function requires only a single expansion, and thus is suitable
for use within an o-type expansion. In general, \tl_head:n should be preferred if the
number of expansions is not critical.

\tl_head:w ?

105

\tl_tail:n {〈token list〉}

Discards all leading explicit space characters (explicit tokens with character code 32 and
category code 10) and the first 〈item〉 in the 〈token list〉, and leaves the remaining tokens
in the input stream. Thus for example

\tl_tail:n { a ~ {bc} d }

and

\tl_tail:n { ~ a ~ {bc} d }

will both leave ␣{bc}d in the input stream. A blank 〈token list〉 (see \tl_if_blank:nTF)
will result in \tl_tail:n leaving nothing in the input stream.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list will not expand further when appearing in an x-type argument expansion.

\tl_tail:N ?
\tl_tail:n ?
\tl_tail:(V|v|f) ?

Updated: 2012-09-01

\tl_if_head_eq_catcode_p:nN {〈token list〉} 〈test token〉
\tl_if_head_eq_catcode:nNTF {〈token list〉} 〈test token〉

{〈true code〉} {〈false code〉}

\tl_if_head_eq_catcode_p:nN ?
\tl_if_head_eq_catcode:nNTF ?

Updated: 2012-07-09

Tests if the first 〈token〉 in the 〈token list〉 has the same category code as the 〈test token〉.
In the case where the 〈token list〉 is empty, the test will always be false.

\tl_if_head_eq_charcode_p:nN {〈token list〉} 〈test token〉
\tl_if_head_eq_charcode:nNTF {〈token list〉} 〈test token〉

{〈true code〉} {〈false code〉}

\tl_if_head_eq_charcode_p:nN ?
\tl_if_head_eq_charcode_p:fN ?
\tl_if_head_eq_charcode:nNTF ?
\tl_if_head_eq_charcode:fNTF ?

Updated: 2012-07-09

Tests if the first 〈token〉 in the 〈token list〉 has the same character code as the 〈test token〉.
In the case where the 〈token list〉 is empty, the test will always be false.

\tl_if_head_eq_meaning_p:nN {〈token list〉} 〈test token〉
\tl_if_head_eq_meaning:nNTF {〈token list〉} 〈test token〉

{〈true code〉} {〈false code〉}

\tl_if_head_eq_meaning_p:nN ?
\tl_if_head_eq_meaning:nNTF ?

Updated: 2012-07-09

Tests if the first 〈token〉 in the 〈token list〉 has the same meaning as the 〈test token〉. In
the case where 〈token list〉 is empty, the test will always be false.

\tl_if_head_is_group_p:n {〈token list〉}
\tl_if_head_is_group:nTF {〈token list〉} {〈true code〉} {〈false code〉}

Tests if the first 〈token〉 in the 〈token list〉 is an explicit begin-group character (with
category code 1 and any character code), in other words, if the 〈token list〉 starts with a
brace group. In particular, the test is false if the 〈token list〉 starts with an implicit token
such as \c_group_begin_token, or if it is empty. This function is useful to implement
actions on token lists on a token by token basis.

\tl_if_head_is_group_p:n ?
\tl_if_head_is_group:nTF ?

New: 2012-07-08

106

\tl_if_head_is_N_type_p:n {〈token list〉}
\tl_if_head_is_N_type:nTF {〈token list〉} {〈true code〉} {〈false code〉}

\tl_if_head_is_N_type_p:n ?
\tl_if_head_is_N_type:nTF ?

New: 2012-07-08

Tests if the first 〈token〉 in the 〈token list〉 is a normal N-type argument. In other words, it
is neither an explicit space character (explicit token with character code 32 and category
code 10) nor an explicit begin-group character (with category code 1 and any character
code). An empty argument yields false, as it does not have a “normal” first token. This
function is useful to implement actions on token lists on a token by token basis.

\tl_if_head_is_space_p:n {〈token list〉}
\tl_if_head_is_space:nTF {〈token list〉} {〈true code〉} {〈false code〉}

Tests if the first 〈token〉 in the 〈token list〉 is an explicit space character (explicit token
with character code 12 and category code 10). In particular, the test is false if the
〈token list〉 starts with an implicit token such as \c_space_token, or if it is empty. This
function is useful to implement actions on token lists on a token by token basis.

\tl_if_head_is_space_p:n ?
\tl_if_head_is_space:nTF ?

Updated: 2012-07-08

10 Using a single item

\tl_item:nn {〈token list〉} {〈integer expression〉}

Indexing items in the 〈token list〉 from 1 on the left, this function will evaluate the 〈integer
expression〉 and leave the appropriate item from the 〈token list〉 in the input stream. If
the 〈integer expression〉 is negative, indexing occurs from the right of the token list,
starting at −1 for the right-most item. If the index is out of bounds, then thr function
expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the 〈item〉 will not expand further when appearing in an x-type argument
expansion.

\tl_item:nn ?
\tl_item:Nn ?
\tl_item:cn ?

New: 2014-07-17

11 Viewing token lists

\tl_show:N 〈tl var〉

Displays the content of the 〈tl var〉 on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\tl_show:N
\tl_show:c

Updated: 2015-08-01

107

\tl_show:n 〈token list〉

Displays the 〈token list〉 on the terminal.

TEXhackers note: This is similar to the ε-TEX primitive \showtokens, wrapped to a fixed
number of characters per line.

\tl_show:n

Updated: 2015-08-07

12 Constant token lists

Constant that is always empty.\c_empty_tl

An explicit space character contained in a token list (compare this with \c_space_token).
For use where an explicit space is required.

\c_space_tl

13 Scratch token lists

Scratch token lists for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_tl
\l_tmpb_tl

Scratch token lists for global assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_tl
\g_tmpb_tl

14 Internal functions

__tl_trim_spaces:nn { \q_mark 〈token list〉 } {〈continuation〉}

This function removes all leading and trailing explicit space characters from the 〈token
list〉, and expands to the 〈continuation〉, followed by a brace group containing \use_-
none:n \q_mark 〈trimmed token list〉. For instance, \tl_trim_spaces:n is implemented
by taking the 〈continuation〉 to be \exp_not:o, and the o-type expansion removes the
\q_mark. This function is also used in l3clist and l3candidates.

__tl_trim_spaces:nn

108

Part XII

The l3str package
Strings
TEX associates each character with a category code: as such, there is no concept of
a “string” as commonly understood in many other programming languages. However,
there are places where we wish to manipulate token lists while in some sense “ignoring”
category codes: this is done by treating token lists as strings in a TEX sense.

A TEX string (and thus an expl3 string) is a series of characters which have category
code 12 (“other”) with the exception of space characters which have category code 10
(“space”). Thus at a technical level, a TEX string is a token list with the appropriate
category codes. In this documentation, these will simply be referred to as strings.

String variables are simply specialised token lists, but by convention should be named
with the suffix ...str. Such variables should contain characters with category code 12
(other), except spaces, which have category code 10 (blank space). All the functions in
this module which accept a token list argument first convert it to a string using \tl_to_-
str:n for internal processing, and will not treat a token list or the corresponding string
representation differently.

Note that as string variables are a special case of token list variables the coverage of
\str_...:N functions is somewhat smaller than \tl_...:N.

The functions \cs_to_str:N, \tl_to_str:n, \tl_to_str:N and \token_to_str:N
(and variants) will generate strings from the appropriate input: these are documented in
l3basics, l3tl and l3token, respectively.

Most expandable functions in this module come in three flavours:

• \str_...:N, which expect a token list or string variable as their argument;

• \str_...:n, taking any token list (or string) as an argument;

• \str_..._ignore_spaces:n, which ignores any space encountered during the op-
eration: these functions are typically faster than those which take care of escaping
spaces appropriately.

1 Building strings

\str_new:N 〈str var〉

Creates a new 〈str var〉 or raises an error if the name is already taken. The declaration
is global. The 〈str var〉 will initially be empty.

\str_new:N
\str_new:c

New: 2015-09-18

\str_const:Nn 〈str var〉 {〈token list〉}

Creates a new constant 〈str var〉 or raises an error if the name is already taken. The
value of the 〈str var〉 will be set globally to the 〈token list〉, converted to a string.

\str_const:Nn
\str_const:(Nx|cn|cx)

New: 2015-09-18

109

\str_clear:N 〈str var〉

Clears the content of the 〈str var〉.
\str_clear:N
\str_clear:c
\str_gclear:N
\str_gclear:c

New: 2015-09-18

\str_clear_new:N 〈str var〉

Ensures that the 〈str var〉 exists globally by applying \str_new:N if necessary, then
applies \str_(g)clear:N to leave the 〈str var〉 empty.

\str_clear_new:N
\str_clear_new:c

New: 2015-09-18

\str_set_eq:NN 〈str var1〉 〈str var2〉

Sets the content of 〈str var1〉 equal to that of 〈str var2〉.
\str_set_eq:NN
\str_set_eq:(cN|Nc|cc)
\str_gset_eq:NN
\str_gset_eq:(cN|Nc|cc)

New: 2015-09-18

2 Adding data to string variables

\str_set:Nn 〈str var〉 {〈token list〉}

Converts the 〈token list〉 to a 〈string〉, and stores the result in 〈str var〉.
\str_set:Nn
\str_set:(Nx|cn|cx)
\str_gset:Nn
\str_gset:(Nx|cn|cx)

New: 2015-09-18

\str_put_left:Nn 〈str var〉 {〈token list〉}

Converts the 〈token list〉 to a 〈string〉, and prepends the result to 〈str var〉. The current
contents of the 〈str var〉 are not automatically converted to a string.

\str_put_left:Nn
\str_put_left:(Nx|cn|cx)
\str_gput_left:Nn
\str_gput_left:(Nx|cn|cx)

New: 2015-09-18

\str_put_right:Nn 〈str var〉 {〈token list〉}

Converts the 〈token list〉 to a 〈string〉, and appends the result to 〈str var〉. The current
contents of the 〈str var〉 are not automatically converted to a string.

\str_put_right:Nn
\str_put_right:(Nx|cn|cx)
\str_gput_right:Nn
\str_gput_right:(Nx|cn|cx)

New: 2015-09-18

110

2.1 String conditionals

\str_if_exist_p:N 〈str var〉
\str_if_exist:NTF 〈str var〉 {〈true code〉} {〈false code〉}

Tests whether the 〈str var〉 is currently defined. This does not check that the 〈str var〉
really is a string.

\str_if_exist_p:N ?
\str_if_exist_p:c ?
\str_if_exist:NTF ?
\str_if_exist:cTF ?

New: 2015-09-18

\sr_if_empty_p:N 〈str var〉
\str_if_empty:NTF 〈str var〉 {〈true code〉} {〈false code〉}

Tests if the 〈string variable〉 is entirely empty (i.e. contains no characters at all).

\str_if_empty_p:N ?
\str_if_empty_p:c ?
\str_if_empty:NTF ?
\str_if_empty:cTF ?

New: 2015-09-18

\str_if_eq_p:NN 〈str var1〉 〈str var2〉
\str_if_eq:NNTF 〈str var1〉 〈str var2〉 {〈true code〉} {〈false code〉}

Compares the content of two 〈str variables〉 and is logically true if the two contain the
same characters.

\str_if_eq_p:NN ?
\str_if_eq_p:(Nc|cN|cc) ?
\str_if_eq:NNTF ?
\str_if_eq:(Nc|cN|cc)TF ?

New: 2015-09-18

\str_if_eq_p:nn {〈tl1〉} {〈tl2〉}
\str_if_eq:nnTF {〈tl1〉} {〈tl2〉} {〈true code〉} {〈false code〉}

\str_if_eq_p:nn ?
\str_if_eq_p:(Vn|on|no|nV|VV) ?
\str_if_eq:nnTF ?
\str_if_eq:(Vn|on|no|nV|VV)TF ?

Compares the two 〈token lists〉 on a character by character basis, and is true if the two
lists contain the same characters in the same order. Thus for example

\str_if_eq_p:no { abc } { \tl_to_str:n { abc } }

is logically true.

\str_if_eq_x_p:nn {〈tl1〉} {〈tl2〉}
\str_if_eq_x:nnTF {〈tl1〉} {〈tl2〉} {〈true code〉} {〈false code〉}

Compares the full expansion of two 〈token lists〉 on a character by character basis, and
is true if the two lists contain the same characters in the same order. Thus for example

\str_if_eq_x_p:nn { abc } { \tl_to_str:n { abc } }

is logically true.

\str_if_eq_x_p:nn ?
\str_if_eq_x:nnTF ?

New: 2012-06-05

111

\str_case:nnTF {〈test string〉}
{
{〈string case1〉} {〈code case1〉}
{〈string case2〉} {〈code case2〉}
...
{〈string casen〉} {〈code casen〉}

}
{〈true code〉}
{〈false code〉}

This function compares the 〈test string〉 in turn with each of the 〈string cases〉. If the
two are equal (as described for \str_if_eq:nnTF then the associated 〈code〉 is left in
the input stream. If any of the cases are matched, the 〈true code〉 is also inserted into
the input stream (after the code for the appropriate case), while if none match then the
〈false code〉 is inserted. The function \str_case:nn, which does nothing if there is no
match, is also available.

\str_case:nnTF ?
\str_case:(on|nV|nv)TF ?

New: 2013-07-24

Updated: 2015-02-28

\str_case_x:nnF {〈test string〉}
{
{〈string case1〉} {〈code case1〉}
{〈string case2〉} {〈code case2〉}
...
{〈string casen〉} {〈code casen〉}

}
{〈true code〉}
{〈false code〉}

This function compares the full expansion of the 〈test string〉 in turn with the full ex-
pansion of the 〈string cases〉. If the two full expansions are equal (as described for
\str_if_eq:nnTF then the associated 〈code〉 is left in the input stream. If any of the
cases are matched, the 〈true code〉 is also inserted into the input stream (after the code
for the appropriate case), while if none match then the 〈false code〉 is inserted. The
function \str_case_x:nn, which does nothing if there is no match, is also available. The
〈test string〉 is expanded in each comparison, and must always yield the same result: for
example, random numbers must not be used within this string.

\str_case_x:nnTF ?

New: 2013-07-24

3 Working with the content of strings

\str_use:N 〈str var〉

Recovers the content of a 〈str var〉 and places it directly in the input stream. An error
will be raised if the variable does not exist or if it is invalid. Note that it is possible to
use a 〈str〉 directly without an accessor function.

\str_use:N ?
\str_use:c ?

New: 2015-09-18

112

\str_count:n {〈token list〉}\str_count:N ?
\str_count:c ?
\str_count:n ?
\str_count_ignore_spaces:n ?

New: 2015-09-18

Leaves in the input stream the number of characters in the string representation of 〈token
list〉, as an integer denotation. The functions differ in their treatment of spaces. In the
case of \str_count:N and \str_count:n, all characters including spaces are counted.
The \str_count_ignore_spaces:n function leaves the number of non-space characters
in the input stream.

\str_count_spaces:n {〈token list〉}

Leaves in the input stream the number of space characters in the string representation of
〈token list〉, as an integer denotation. Of course, this function has no _ignore_spaces
variant.

\str_count_spaces:N ?
\str_count_spaces:c ?
\str_count_spaces:n ?

New: 2015-09-18

\str_head:n {〈token list〉}\str_head:N ?
\str_head:c ?
\str_head:n ?
\str_head_ignore_spaces:n ?

New: 2015-09-18

Converts the 〈token list〉 into a 〈string〉. The first character in the 〈string〉 is then left in
the input stream, with category code “other”. The functions differ if the first character is a
space: \str_head:N and \str_head:n return a space token with category code 10 (blank
space), while the \str_head_ignore_spaces:n function ignores this space character and
leaves the first non-space character in the input stream. If the 〈string〉 is empty (or only
contains spaces in the case of the _ignore_spaces function), then nothing is left on the
input stream.

\str_tail:n {〈token list〉}\str_tail:N ?
\str_tail:c ?
\str_tail:n ?
\str_tail_ignore_spaces:n ?

New: 2015-09-18

Converts the 〈token list〉 to a 〈string〉, removes the first character, and leaves the remain-
ing characters (if any) in the input stream, with category codes 12 and 10 (for spaces).
The functions differ in the case where the first character is a space: \str_tail:N and
\str_tail:n will trim only that space, while \str_tail_ignore_spaces:n removes the
first non-space character and any space before it. If the 〈token list〉 is empty (or blank
in the case of the _ignore_spaces variant), then nothing is left on the input stream.

113

\str_item:nn {〈token list〉} {〈integer expression〉}\str_item:Nn ?
\str_item:nn ?
\str_item_ignore_spaces:nn ?

New: 2015-09-18

Converts the 〈token list〉 to a 〈string〉, and leaves in the input stream the character
in position 〈integer expression〉 of the 〈string〉, starting at 1 for the first (left-most)
character. In the case of \str_item:Nn and \str_item:nn, all characters including
spaces are taken into account. The \str_item_ignore_spaces:nn function skips spaces
when counting characters. If the 〈integer expression〉 is negative, characters are counted
from the end of the 〈string〉. Hence, −1 is the right-most character, etc.

\str_range:nnn {〈token list〉} {〈start index〉} {〈end index〉}\str_range:Nnn ?
\str_range:cnn ?
\str_range:nnn ?
\str_range_ignore_spaces:nnn ?

New: 2015-09-18

Converts the 〈token list〉 to a 〈string〉, and leaves in the input stream the characters from
the 〈start index〉 to the 〈end index〉 inclusive. Positive 〈indices〉 are counted from the
start of the string, 1 being the first character, and negative 〈indices〉 are counted from
the end of the string, −1 being the last character. If either of 〈start index〉 or 〈end index〉
is 0, the result is empty. For instance,

\iow_term:x { \str_range:nnn { abcdef } { 2 } { 5 } }
\iow_term:x { \str_range:nnn { abcdef } { -4 } { -1 } }
\iow_term:x { \str_range:nnn { abcdef } { -2 } { -1 } }
\iow_term:x { \str_range:nnn { abcdef } { 0 } { -1 } }

will print bcde, cdef, ef, and an empty line to the terminal. The 〈start index〉 must
always be smaller than or equal to the 〈end index〉: if this is not the case then no output
is generated. Thus

\iow_term:x { \str_range:nnn { abcdef } { 5 } { 2 } }
\iow_term:x { \str_range:nnn { abcdef } { -1 } { -4 } }

both yield empty strings.

114

4 String manipulation

\str_lower_case:n {〈tokens〉}
\str_upper_case:n {〈tokens〉}

Converts the input 〈tokens〉 to their string representation, as described for \tl_to_-
str:n, and then to the lower or upper case representation using a one-to-one mapping
as described by the Unicode Consortium file UnicodeData.txt.

These functions are intended for case changing programmatic data in places where
upper/lower case distinctions are meaningful. One example would be automatically gen-
erating a function name from user input where some case changing is needed. In this
situation the input is programmatic, not textual, case does have meaning and a language-
independent one-to-one mapping is appropriate. For example

\cs_new_protected:Npn \myfunc:nn #1#2
{
\cs_set_protected:cpn
{
user
\str_upper_case:f { \tl_head:n {#1} }
\str_lower_case:f { \tl_tail:n {#1} }

}
{ #2 }

}

would be used to generate a function with an auto-generated name consisting of the
upper case equivalent of the supplied name followed by the lower case equivalent of the
rest of the input.

These functions should not be used for

• Caseless comparisons: use \str_fold_case:n for this situation (case folding is
district from lower casing).

• Case changing text for typesetting: see the \tl_lower_case:n(n), \tl_upper_-
case:n(n) and \tl_mixed_case:n(n) functions which correctly deal with context-
dependence and other factors appropriate to text case changing.

TEXhackers note: As with all expl3 functions, the input supported by \str_fold_case:n
is engine-native characters which are or interoperate with utf-8. As such, when used with
pdfTEX only the Latin alphabet characters A–Z will be case-folded (i.e. the ascii range which
coincides with utf-8). Full utf-8 support is available with both X ETEX and LuaTEX, subject
only to the fact that X ETEX in particular has issues with characters of code above hexadecimal
0xFFFF when interacting with \tl_to_str:n.

\str_lower_case:n I

\str_lower_case:f I

\str_upper_case:n I

\str_upper_case:f I

New: 2015-03-01

115

\str_fold_case:n {〈tokens〉}

Converts the input 〈tokens〉 to their string representation, as described for \tl_to_str:n,
and then folds the case of the resulting 〈string〉 to remove case information. The result
of this process is left in the input stream.

String folding is a process used for material such as identifiers rather than for “text”.
The folding provided by \str_fold_case:n follows the mappings provided by the Uni-
code Consortium, who state:

Case folding is primarily used for caseless comparison of text, such as iden-
tifiers in a computer program, rather than actual text transformation. Case
folding in Unicode is based on the lowercase mapping, but includes additional
changes to the source text to help make it language-insensitive and consistent.
As a result, case-folded text should be used solely for internal processing and
generally should not be stored or displayed to the end user.

The folding approach implemented by \str_fold_case:n follows the “full” scheme de-
fined by the Unicode Consortium (e.g. ßfolds to SS). As case-folding is a language-
insensitive process, there is no special treatment of Turkic input (i.e. I always folds to i
and not to ı).

TEXhackers note: As with all expl3 functions, the input supported by \str_fold_case:n
is engine-native characters which are or interoperate with utf-8. As such, when used with
pdfTEX only the Latin alphabet characters A–Z will be case-folded (i.e. the ascii range which
coincides with utf-8). Full utf-8 support is available with both X ETEX and LuaTEX, subject
only to the fact that X ETEX in particular has issues with characters of code above hexadecimal
0xFFFF when interacting with \tl_to_str:n.

\str_fold_case:n ?
\str_fold_case:V ?

New: 2014-06-19

Updated: 2016-03-07

5 Viewing strings

\str_show:N 〈str var〉

Displays the content of the 〈str var〉 on the terminal.
\str_show:N
\str_show:c
\str_show:n

New: 2015-09-18

116

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org/faq/casemap_charprop.html#2

6 Constant token lists

Constant strings, containing a single character token, with category code 12.\c_ampersand_str
\c_atsign_str
\c_backslash_str
\c_left_brace_str
\c_right_brace_str
\c_circumflex_str
\c_colon_str
\c_dollar_str
\c_hash_str
\c_percent_str
\c_tilde_str
\c_underscore_str

New: 2015-09-19

7 Scratch strings

Scratch strings for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_str
\l_tmpb_str

Scratch strings for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_str
\g_tmpb_str

7.1 Internal string functions

__str_if_eq_x:nn {〈tl1〉} {〈tl2〉}

Compares the full expansion of two 〈token lists〉 on a character by character basis, and
is true if the two lists contain the same characters in the same order. Leaves 0 in the
input stream if the condition is true, and +1 or -1 otherwise.

__str_if_eq_x:nn ?

__str_if_eq_x_return:nn {〈tl1〉} {〈tl2〉}

Compares the full expansion of two 〈token lists〉 on a character by character basis, and
is true if the two lists contain the same characters in the same order. Either \prg_-
return_true: or \prg_return_false: is then left in the input stream. This is a version
of \str_if_eq_x:nn(TF) coded for speed.

__str_if_eq_x_return:nn

117

__str_to_other:n {〈token list〉}

Converts the 〈token list〉 to a 〈other string〉, where spaces have category code “other”.
This function can be f-expanded without fear of losing a leading space, since spaces do
not have category code 10 in its result. It takes a time quadratic in the character count
of the string.

__str_to_other:n ?

__str_count:n {〈other string〉}

This function expects an argument that is entirely made of characters with category
“other”, as produced by __str_to_other:n. It leaves in the input stream the number of
character tokens in the 〈other string〉, faster than the analogous \str_count:n function.

__str_count:n ?

__str_range:nnn {〈other string〉} {〈start index〉} {〈end index〉}

Identical to \str_range:nnn except that the first argument is expected to be entirely
made of characters with category “other”, as produced by __str_to_other:n, and the
result is also an 〈other string〉.

__str_range:nnn ?

118

Part XIII

The l3seq package
Sequences and stacks
LATEX3 implements a “sequence” data type, which contain an ordered list of entries which
may contain any 〈balanced text〉. It is possible to map functions to sequences such that
the function is applied to every item in the sequence.

Sequences are also used to implement stack functions in LATEX3. This is achieved
using a number of dedicated stack functions.

1 Creating and initialising sequences

\seq_new:N 〈sequence〉

Creates a new 〈sequence〉 or raises an error if the name is already taken. The declaration
is global. The 〈sequence〉 will initially contain no items.

\seq_new:N
\seq_new:c

\seq_clear:N 〈sequence〉

Clears all items from the 〈sequence〉.
\seq_clear:N
\seq_clear:c
\seq_gclear:N
\seq_gclear:c

\seq_clear_new:N 〈sequence〉

Ensures that the 〈sequence〉 exists globally by applying \seq_new:N if necessary, then
applies \seq_(g)clear:N to leave the 〈sequence〉 empty.

\seq_clear_new:N
\seq_clear_new:c
\seq_gclear_new:N
\seq_gclear_new:c

\seq_set_eq:NN 〈sequence1〉 〈sequence2〉

Sets the content of 〈sequence1〉 equal to that of 〈sequence2〉.
\seq_set_eq:NN
\seq_set_eq:(cN|Nc|cc)
\seq_gset_eq:NN
\seq_gset_eq:(cN|Nc|cc)

\seq_set_from_clist:NN 〈sequence〉 〈comma-list〉\seq_set_from_clist:NN
\seq_set_from_clist:(cN|Nc|cc)
\seq_set_from_clist:Nn
\seq_set_from_clist:cn
\seq_gset_from_clist:NN
\seq_gset_from_clist:(cN|Nc|cc)
\seq_gset_from_clist:Nn
\seq_gset_from_clist:cn

New: 2014-07-17

Converts the data in the 〈comma list〉 into a 〈sequence〉: the original 〈comma list〉 is
unchanged.

119

\seq_set_split:Nnn 〈sequence〉 {〈delimiter〉} {〈token list〉}

Splits the 〈token list〉 into 〈items〉 separated by 〈delimiter〉, and assigns the result to the
〈sequence〉. Spaces on both sides of each 〈item〉 are ignored, then one set of outer braces
is removed (if any); this space trimming behaviour is identical to that of l3clist functions.
Empty 〈items〉 are preserved by \seq_set_split:Nnn, and can be removed afterwards
using \seq_remove_all:Nn 〈sequence〉 {〈〉}. The 〈delimiter〉 may not contain {, } or #
(assuming TEX’s normal category code régime). If the 〈delimiter〉 is empty, the 〈token
list〉 is split into 〈items〉 as a 〈token list〉.

\seq_set_split:Nnn
\seq_set_split:NnV
\seq_gset_split:Nnn
\seq_gset_split:NnV

New: 2011-08-15

Updated: 2012-07-02

\seq_concat:NNN 〈sequence1〉 〈sequence2〉 〈sequence3〉

Concatenates the content of 〈sequence2〉 and 〈sequence3〉 together and saves the result in
〈sequence1〉. The items in 〈sequence2〉 will be placed at the left side of the new sequence.

\seq_concat:NNN
\seq_concat:ccc
\seq_gconcat:NNN
\seq_gconcat:ccc

\seq_if_exist_p:N 〈sequence〉
\seq_if_exist:NTF 〈sequence〉 {〈true code〉} {〈false code〉}

Tests whether the 〈sequence〉 is currently defined. This does not check that the 〈sequence〉
really is a sequence variable.

\seq_if_exist_p:N ?
\seq_if_exist_p:c ?
\seq_if_exist:NTF ?
\seq_if_exist:cTF ?

New: 2012-03-03

2 Appending data to sequences

\seq_put_left:Nn 〈sequence〉 {〈item〉}\seq_put_left:Nn
\seq_put_left:(NV|Nv|No|Nx|cn|cV|cv|co|cx)
\seq_gput_left:Nn
\seq_gput_left:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

Appends the 〈item〉 to the left of the 〈sequence〉.

\seq_put_right:Nn 〈sequence〉 {〈item〉}\seq_put_right:Nn
\seq_put_right:(NV|Nv|No|Nx|cn|cV|cv|co|cx)
\seq_gput_right:Nn
\seq_gput_right:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

Appends the 〈item〉 to the right of the 〈sequence〉.

3 Recovering items from sequences
Items can be recovered from either the left or the right of sequences. For implementa-
tion reasons, the actions at the left of the sequence are faster than those acting on the
right. These functions all assign the recovered material locally, i.e. setting the 〈token list
variable〉 used with \tl_set:Nn and never \tl_gset:Nn.

120

\seq_get_left:NN 〈sequence〉 〈token list variable〉

Stores the left-most item from a 〈sequence〉 in the 〈token list variable〉 without removing
it from the 〈sequence〉. The 〈token list variable〉 is assigned locally. If 〈sequence〉 is empty
the 〈token list variable〉 will contain the special marker \q_no_value.

\seq_get_left:NN
\seq_get_left:cN

Updated: 2012-05-14

\seq_get_right:NN 〈sequence〉 〈token list variable〉

Stores the right-most item from a 〈sequence〉 in the 〈token list variable〉 without removing
it from the 〈sequence〉. The 〈token list variable〉 is assigned locally. If 〈sequence〉 is empty
the 〈token list variable〉 will contain the special marker \q_no_value.

\seq_get_right:NN
\seq_get_right:cN

Updated: 2012-05-19

\seq_pop_left:NN 〈sequence〉 〈token list variable〉

Pops the left-most item from a 〈sequence〉 into the 〈token list variable〉, i.e. removes the
item from the sequence and stores it in the 〈token list variable〉. Both of the variables are
assigned locally. If 〈sequence〉 is empty the 〈token list variable〉 will contain the special
marker \q_no_value.

\seq_pop_left:NN
\seq_pop_left:cN

Updated: 2012-05-14

\seq_gpop_left:NN 〈sequence〉 〈token list variable〉

Pops the left-most item from a 〈sequence〉 into the 〈token list variable〉, i.e. removes
the item from the sequence and stores it in the 〈token list variable〉. The 〈sequence〉 is
modified globally, while the assignment of the 〈token list variable〉 is local. If 〈sequence〉
is empty the 〈token list variable〉 will contain the special marker \q_no_value.

\seq_gpop_left:NN
\seq_gpop_left:cN

Updated: 2012-05-14

\seq_pop_right:NN 〈sequence〉 〈token list variable〉

Pops the right-most item from a 〈sequence〉 into the 〈token list variable〉, i.e. removes the
item from the sequence and stores it in the 〈token list variable〉. Both of the variables are
assigned locally. If 〈sequence〉 is empty the 〈token list variable〉 will contain the special
marker \q_no_value.

\seq_pop_right:NN
\seq_pop_right:cN

Updated: 2012-05-19

\seq_gpop_right:NN 〈sequence〉 〈token list variable〉

Pops the right-most item from a 〈sequence〉 into the 〈token list variable〉, i.e. removes
the item from the sequence and stores it in the 〈token list variable〉. The 〈sequence〉 is
modified globally, while the assignment of the 〈token list variable〉 is local. If 〈sequence〉
is empty the 〈token list variable〉 will contain the special marker \q_no_value.

\seq_gpop_right:NN
\seq_gpop_right:cN

Updated: 2012-05-19

121

\seq_item:Nn 〈sequence〉 {〈integer expression〉}

Indexing items in the 〈sequence〉 from 1 at the top (left), this function will evaluate
the 〈integer expression〉 and leave the appropriate item from the sequence in the input
stream. If the 〈integer expression〉 is negative, indexing occurs from the bottom (right)
of the sequence. When the 〈integer expression〉 is larger than the number of items in the
〈sequence〉 (as calculated by \seq_count:N) then the function will expand to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the 〈item〉 will not expand further when appearing in an x-type argument
expansion.

\seq_item:Nn ?
\seq_item:cn ?

New: 2014-07-17

4 Recovering values from sequences with branching
The functions in this section combine tests for non-empty sequences with recovery of an
item from the sequence. They offer increased readability and performance over separate
testing and recovery phases.

\seq_get_left:NNTF 〈sequence〉 〈token list variable〉 {〈true code〉} {〈false code〉}

If the 〈sequence〉 is empty, leaves the 〈false code〉 in the input stream. The value of the
〈token list variable〉 is not defined in this case and should not be relied upon. If the
〈sequence〉 is non-empty, stores the left-most item from a 〈sequence〉 in the 〈token list
variable〉 without removing it from a 〈sequence〉. The 〈token list variable〉 is assigned
locally.

\seq_get_left:NNTF
\seq_get_left:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_get_right:NNTF 〈sequence〉 〈token list variable〉 {〈true code〉} {〈false code〉}

If the 〈sequence〉 is empty, leaves the 〈false code〉 in the input stream. The value of the
〈token list variable〉 is not defined in this case and should not be relied upon. If the
〈sequence〉 is non-empty, stores the right-most item from a 〈sequence〉 in the 〈token list
variable〉 without removing it from a 〈sequence〉. The 〈token list variable〉 is assigned
locally.

\seq_get_right:NNTF
\seq_get_right:cNTF

New: 2012-05-19

\seq_pop_left:NNTF 〈sequence〉 〈token list variable〉 {〈true code〉} {〈false code〉}

If the 〈sequence〉 is empty, leaves the 〈false code〉 in the input stream. The value of the
〈token list variable〉 is not defined in this case and should not be relied upon. If the
〈sequence〉 is non-empty, pops the left-most item from a 〈sequence〉 in the 〈token list
variable〉, i.e. removes the item from a 〈sequence〉. Both the 〈sequence〉 and the 〈token
list variable〉 are assigned locally.

\seq_pop_left:NNTF
\seq_pop_left:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_gpop_left:NNTF 〈sequence〉 〈token list variable〉 {〈true code〉} {〈false code〉}

If the 〈sequence〉 is empty, leaves the 〈false code〉 in the input stream. The value of the
〈token list variable〉 is not defined in this case and should not be relied upon. If the
〈sequence〉 is non-empty, pops the left-most item from a 〈sequence〉 in the 〈token list
variable〉, i.e. removes the item from a 〈sequence〉. The 〈sequence〉 is modified globally,
while the 〈token list variable〉 is assigned locally.

\seq_gpop_left:NNTF
\seq_gpop_left:cNTF

New: 2012-05-14

Updated: 2012-05-19

122

\seq_pop_right:NNTF 〈sequence〉 〈token list variable〉 {〈true code〉} {〈false code〉}

If the 〈sequence〉 is empty, leaves the 〈false code〉 in the input stream. The value of the
〈token list variable〉 is not defined in this case and should not be relied upon. If the
〈sequence〉 is non-empty, pops the right-most item from a 〈sequence〉 in the 〈token list
variable〉, i.e. removes the item from a 〈sequence〉. Both the 〈sequence〉 and the 〈token
list variable〉 are assigned locally.

\seq_pop_right:NNTF
\seq_pop_right:cNTF

New: 2012-05-19

\seq_gpop_right:NNTF 〈sequence〉 〈token list variable〉 {〈true code〉} {〈false code〉}

If the 〈sequence〉 is empty, leaves the 〈false code〉 in the input stream. The value of the
〈token list variable〉 is not defined in this case and should not be relied upon. If the
〈sequence〉 is non-empty, pops the right-most item from a 〈sequence〉 in the 〈token list
variable〉, i.e. removes the item from a 〈sequence〉. The 〈sequence〉 is modified globally,
while the 〈token list variable〉 is assigned locally.

\seq_gpop_right:NNTF
\seq_gpop_right:cNTF

New: 2012-05-19

5 Modifying sequences
While sequences are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update sequences, while retaining the order
of the unaffected entries.

\seq_remove_duplicates:N 〈sequence〉

Removes duplicate items from the 〈sequence〉, leaving the left most copy of each item
in the 〈sequence〉. The 〈item〉 comparison takes place on a token basis, as for \tl_if_-
eq:nn(TF).

TEXhackers note: This function iterates through every item in the 〈sequence〉 and does a
comparison with the 〈items〉 already checked. It is therefore relatively slow with large sequences.

\seq_remove_duplicates:N
\seq_remove_duplicates:c
\seq_gremove_duplicates:N
\seq_gremove_duplicates:c

\seq_remove_all:Nn 〈sequence〉 {〈item〉}

Removes every occurrence of 〈item〉 from the 〈sequence〉. The 〈item〉 comparison takes
place on a token basis, as for \tl_if_eq:nn(TF).

\seq_remove_all:Nn
\seq_remove_all:cn
\seq_gremove_all:Nn
\seq_gremove_all:cn

\seq_reverse:N 〈sequence〉

Reverses the order of the items stored in the 〈sequence〉.
\seq_reverse:N
\seq_reverse:c
\seq_greverse:N
\seq_greverse:c

New: 2014-07-18

123

6 Sequence conditionals

\seq_if_empty_p:N 〈sequence〉
\seq_if_empty:NTF 〈sequence〉 {〈true code〉} {〈false code〉}

Tests if the 〈sequence〉 is empty (containing no items).

\seq_if_empty_p:N ?
\seq_if_empty_p:c ?
\seq_if_empty:NTF ?
\seq_if_empty:cTF ?

\seq_if_in:NnTF 〈sequence〉 {〈item〉} {〈true code〉} {〈false code〉}\seq_if_in:NnTF
\seq_if_in:(NV|Nv|No|Nx|cn|cV|cv|co|cx)TF

Tests if the 〈item〉 is present in the 〈sequence〉.

7 Mapping to sequences

\seq_map_function:NN 〈sequence〉 〈function〉

Applies 〈function〉 to every 〈item〉 stored in the 〈sequence〉. The 〈function〉 will receive
one argument for each iteration. The 〈items〉 are returned from left to right. The function
\seq_map_inline:Nn is faster than \seq_map_function:NN for sequences with more
than about 10 items. One mapping may be nested inside another.

\seq_map_function:NN I

\seq_map_function:cN I

Updated: 2012-06-29

\seq_map_inline:Nn 〈sequence〉 {〈inline function〉}

Applies 〈inline function〉 to every 〈item〉 stored within the 〈sequence〉. The 〈inline
function〉 should consist of code which will receive the 〈item〉 as #1. One in line mapping
can be nested inside another. The 〈items〉 are returned from left to right.

\seq_map_inline:Nn
\seq_map_inline:cn

Updated: 2012-06-29

\seq_map_variable:NNn 〈sequence〉 〈tl var.〉 {〈function using tl var.〉}\seq_map_variable:NNn
\seq_map_variable:(Ncn|cNn|ccn)

Updated: 2012-06-29

Stores each entry in the 〈sequence〉 in turn in the 〈tl var.〉 and applies the 〈function using
tl var.〉 The 〈function〉 will usually consist of code making use of the 〈tl var.〉, but this
is not enforced. One variable mapping can be nested inside another. The 〈items〉 are
returned from left to right.

124

\seq_map_break:

Used to terminate a \seq_map_... function before all entries in the 〈sequence〉 have been
processed. This will normally take place within a conditional statement, for example

\seq_map_inline:Nn \l_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break: }
{
% Do something useful

}
}

Use outside of a \seq_map_... scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before further items are taken from the input stream.
This will depend on the design of the mapping function.

\seq_map_break: I

Updated: 2012-06-29

\seq_map_break:n {〈tokens〉}

Used to terminate a \seq_map_... function before all entries in the 〈sequence〉 have been
processed, inserting the 〈tokens〉 after the mapping has ended. This will normally take
place within a conditional statement, for example

\seq_map_inline:Nn \l_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break:n { <tokens> } }
{
% Do something useful

}
}

Use outside of a \seq_map_... scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the 〈tokens〉 are inserted into the input stream.
This will depend on the design of the mapping function.

\seq_map_break:n I

Updated: 2012-06-29

\seq_count:N 〈sequence〉

Leaves the number of items in the 〈sequence〉 in the input stream as an 〈integer
denotation〉. The total number of items in a 〈sequence〉 will include those which are
empty and duplicates, i.e. every item in a 〈sequence〉 is unique.

\seq_count:N ?
\seq_count:c ?

New: 2012-07-13

125

8 Using the content of sequences directly

\seq_use:Nnnn 〈seq var〉 {〈separator between two〉}
{〈separator between more than two〉} {〈separator between final two〉}

Places the contents of the 〈seq var〉 in the input stream, with the appropriate 〈separator〉
between the items. Namely, if the sequence has more than two items, the 〈separator
between more than two〉 is placed between each pair of items except the last, for which
the 〈separator between final two〉 is used. If the sequence has exactly two items, then they
are placed in the input stream separated by the 〈separator between two〉. If the sequence
has a single item, it is placed in the input stream, and an empty sequence produces no
output. An error will be raised if the variable does not exist or if it is invalid.

For example,

\seq_set_split:Nnn \l_tmpa_seq { | } { a | b | c | {de} | f }
\seq_use:Nnnn \l_tmpa_seq { ~and~ } { ,~ } { ,~and~ }

will insert “a, b, c, de, and f” in the input stream. The first separator argument is
not used in this case because the sequence has more than 2 items.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the 〈items〉 will not expand further when appearing in an x-type argument
expansion.

\seq_use:Nnnn ?
\seq_use:cnnn ?

New: 2013-05-26

\seq_use:Nn 〈seq var〉 {〈separator〉}

Places the contents of the 〈seq var〉 in the input stream, with the 〈separator〉 between
the items. If the sequence has a single item, it is placed in the input stream with no
〈separator〉, and an empty sequence produces no output. An error will be raised if the
variable does not exist or if it is invalid.

For example,

\seq_set_split:Nnn \l_tmpa_seq { | } { a | b | c | {de} | f }
\seq_use:Nn \l_tmpa_seq { ~and~ }

will insert “a and b and c and de and f” in the input stream.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the 〈items〉 will not expand further when appearing in an x-type argument
expansion.

\seq_use:Nn ?
\seq_use:cn ?

New: 2013-05-26

9 Sequences as stacks
Sequences can be used as stacks, where data is pushed to and popped from the top of
the sequence. (The left of a sequence is the top, for performance reasons.) The stack
functions for sequences are not intended to be mixed with the general ordered data

126

functions detailed in the previous section: a sequence should either be used as an ordered
data type or as a stack, but not in both ways.

\seq_get:NN 〈sequence〉 〈token list variable〉

Reads the top item from a 〈sequence〉 into the 〈token list variable〉 without removing it
from the 〈sequence〉. The 〈token list variable〉 is assigned locally. If 〈sequence〉 is empty
the 〈token list variable〉 will contain the special marker \q_no_value.

\seq_get:NN
\seq_get:cN

Updated: 2012-05-14

\seq_pop:NN 〈sequence〉 〈token list variable〉

Pops the top item from a 〈sequence〉 into the 〈token list variable〉. Both of the variables
are assigned locally. If 〈sequence〉 is empty the 〈token list variable〉 will contain the special
marker \q_no_value.

\seq_pop:NN
\seq_pop:cN

Updated: 2012-05-14

\seq_gpop:NN 〈sequence〉 〈token list variable〉

Pops the top item from a 〈sequence〉 into the 〈token list variable〉. The 〈sequence〉 is
modified globally, while the 〈token list variable〉 is assigned locally. If 〈sequence〉 is empty
the 〈token list variable〉 will contain the special marker \q_no_value.

\seq_gpop:NN
\seq_gpop:cN

Updated: 2012-05-14

\seq_get:NNTF 〈sequence〉 〈token list variable〉 {〈true code〉} {〈false code〉}

If the 〈sequence〉 is empty, leaves the 〈false code〉 in the input stream. The value of the
〈token list variable〉 is not defined in this case and should not be relied upon. If the
〈sequence〉 is non-empty, stores the top item from a 〈sequence〉 in the 〈token list variable〉
without removing it from the 〈sequence〉. The 〈token list variable〉 is assigned locally.

\seq_get:NNTF
\seq_get:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_pop:NNTF 〈sequence〉 〈token list variable〉 {〈true code〉} {〈false code〉}

If the 〈sequence〉 is empty, leaves the 〈false code〉 in the input stream. The value of
the 〈token list variable〉 is not defined in this case and should not be relied upon. If
the 〈sequence〉 is non-empty, pops the top item from the 〈sequence〉 in the 〈token list
variable〉, i.e. removes the item from the 〈sequence〉. Both the 〈sequence〉 and the 〈token
list variable〉 are assigned locally.

\seq_pop:NNTF
\seq_pop:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_gpop:NNTF 〈sequence〉 〈token list variable〉 {〈true code〉} {〈false code〉}

If the 〈sequence〉 is empty, leaves the 〈false code〉 in the input stream. The value of
the 〈token list variable〉 is not defined in this case and should not be relied upon. If
the 〈sequence〉 is non-empty, pops the top item from the 〈sequence〉 in the 〈token list
variable〉, i.e. removes the item from the 〈sequence〉. The 〈sequence〉 is modified globally,
while the 〈token list variable〉 is assigned locally.

\seq_gpop:NNTF
\seq_gpop:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_push:Nn 〈sequence〉 {〈item〉}\seq_push:Nn
\seq_push:(NV|Nv|No|Nx|cn|cV|cv|co|cx)
\seq_gpush:Nn
\seq_gpush:(NV|Nv|No|Nx|cn|cV|cv|co|cx)

Adds the {〈item〉} to the top of the 〈sequence〉.

127

10 Sequences as sets
Sequences can also be used as sets, such that all of their items are distinct. Usage of
sequences as sets is not currently widespread, hence no specific set function is provided.
Instead, it is explained here how common set operations can be performed by combining
several functions described in earlier sections. When using sequences to implement sets,
one should be careful not to rely on the order of items in the sequence representing the
set.

Sets should not contain several occurences of a given item. To make sure that a
〈sequence variable〉 only has distinct items, use \seq_remove_duplicates:N 〈sequence
variable〉. This function is relatively slow, and to avoid performance issues one should
only use it when necessary.

Some operations on a set 〈seq var〉 are straightforward. For instance, \seq_count:N
〈seq var〉 expands to the number of items, while \seq_if_in:Nn(TF) 〈seq var〉 {〈item〉}
tests if the 〈item〉 is in the set.

Adding an 〈item〉 to a set 〈seq var〉 can be done by appending it to the 〈seq var〉 if
it is not already in the 〈seq var〉:

\seq_if_in:NnF 〈seq var〉 {〈item〉}
{ \seq_put_right:Nn 〈seq var〉 {〈item〉} }

Removing an 〈item〉 from a set 〈seq var〉 can be done using \seq_remove_all:Nn,

\seq_remove_all:Nn 〈seq var〉 {〈item〉}

The intersection of two sets 〈seq var1〉 and 〈seq var2〉 can be stored into 〈seq var3〉
by collecting items of 〈seq var1〉 which are in 〈seq var2〉.

\seq_clear:N 〈seq var3〉
\seq_map_inline:Nn 〈seq var1〉
{
\seq_if_in:NnT 〈seq var2〉 {#1}
{ \seq_put_right:Nn 〈seq var3〉 {#1} }
}

The code as written here only works if 〈seq var3〉 is different from the other two se-
quence variables. To cover all cases, items should first be collected in a sequence
\l__〈pkg〉_internal_seq, then 〈seq var3〉 should be set equal to this internal sequence.
The same remark applies to other set functions.

The union of two sets 〈seq var1〉 and 〈seq var2〉 can be stored into 〈seq var3〉 through

\seq_concat:NNN 〈seq var3〉 〈seq var1〉 〈seq var2〉
\seq_remove_duplicates:N 〈seq var3〉

or by adding items to (a copy of) 〈seq var1〉 one by one

\seq_set_eq:NN 〈seq var3〉 〈seq var1〉
\seq_map_inline:Nn 〈seq var2〉
{

128

\seq_if_in:NnF 〈seq var3〉 {#1}
{ \seq_put_right:Nn 〈seq var3〉 {#1} }
}

The second approach is faster than the first when the 〈seq var2〉 is short compared to
〈seq var1〉.

The difference of two sets 〈seq var1〉 and 〈seq var2〉 can be stored into 〈seq var3〉 by
removing items of the 〈seq var2〉 from (a copy of) the 〈seq var1〉 one by one.

\seq_set_eq:NN 〈seq var3〉 〈seq var1〉
\seq_map_inline:Nn 〈seq var2〉
{ \seq_remove_all:Nn 〈seq var3〉 {#1} }

The symmetric difference of two sets 〈seq var1〉 and 〈seq var2〉 can be stored into
〈seq var3〉 by computing the difference between 〈seq var1〉 and 〈seq var2〉 and storing the
result as \l__〈pkg〉_internal_seq, then the difference between 〈seq var2〉 and 〈seq var1〉,
and finally concatenating the two differences to get the symmetric differences.

\seq_set_eq:NN \l__〈pkg〉_internal_seq 〈seq var1〉
\seq_map_inline:Nn 〈seq var2〉
{ \seq_remove_all:Nn \l__〈pkg〉_internal_seq {#1} }
\seq_set_eq:NN 〈seq var3〉 〈seq var2〉
\seq_map_inline:Nn 〈seq var1〉
{ \seq_remove_all:Nn 〈seq var3〉 {#1} }
\seq_concat:NNN 〈seq var3〉 〈seq var3〉 \l__〈pkg〉_internal_seq

11 Constant and scratch sequences

Constant that is always empty.\c_empty_seq

New: 2012-07-02

Scratch sequences for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_seq
\l_tmpb_seq

New: 2012-04-26

Scratch sequences for global assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_seq
\g_tmpb_seq

New: 2012-04-26

129

12 Viewing sequences

\seq_show:N 〈sequence〉

Displays the entries in the 〈sequence〉 in the terminal.
\seq_show:N
\seq_show:c

Updated: 2015-08-01

13 Internal sequence functions

This scan mark (equal to \scan_stop:) marks the beginning of a sequence variable.\s__seq

__seq_item:n {〈item〉}

The internal token used to begin each sequence entry. If expanded outside of a mapping
or manipulation function, an error will be raised. The definition should always be set
globally.

__seq_item:n ?

__seq_push_item_def:n {〈code〉}

Saves the definition of __seq_item:n and redefines it to accept one parameter and
expand to 〈code〉. This function should always be balanced by use of __seq_pop_-
item_def:.

__seq_push_item_def:n
__seq_push_item_def:x

__seq_pop_item_def:

Restores the definition of __seq_item:n most recently saved by __seq_push_item_-
def:n. This function should always be used in a balanced pair with __seq_push_-
item_def:n.

__seq_pop_item_def:

130

Part XIV

The l3clist package
Comma separated lists
Comma lists contain ordered data where items can be added to the left or right end of the
list. The resulting ordered list can then be mapped over using \clist_map_function:NN.
Several items can be added at once, and spaces are removed from both sides of each item
on input. Hence,

\clist_new:N \l_my_clist
\clist_put_left:Nn \l_my_clist { ~ a ~ , ~ {b} ~ }
\clist_put_right:Nn \l_my_clist { ~ { c ~ } , d }

results in \l_my_clist containing a,{b},{c~},d. Comma lists cannot contain empty
items, thus

\clist_clear_new:N \l_my_clist
\clist_put_right:Nn \l_my_clist { , ~ , , }
\clist_if_empty:NTF \l_my_clist { true } { false }

will leave true in the input stream. To include an item which contains a comma, or
starts or ends with a space, surround it with braces. The sequence data type should
be preferred to comma lists if items are to contain {, }, or # (assuming the usual TEX
category codes apply).

1 Creating and initialising comma lists

\clist_new:N 〈comma list〉

Creates a new 〈comma list〉 or raises an error if the name is already taken. The declaration
is global. The 〈comma list〉 will initially contain no items.

\clist_new:N
\clist_new:c

\clist_const:Nn 〈clist var〉 {〈comma list〉}

Creates a new constant 〈clist var〉 or raises an error if the name is already taken. The
value of the 〈clist var〉 will be set globally to the 〈comma list〉.

\clist_const:Nn
\clist_const:(Nx|cn|cx)

New: 2014-07-05

\clist_clear:N 〈comma list〉

Clears all items from the 〈comma list〉.
\clist_clear:N
\clist_clear:c
\clist_gclear:N
\clist_gclear:c

131

\clist_clear_new:N 〈comma list〉

Ensures that the 〈comma list〉 exists globally by applying \clist_new:N if necessary,
then applies \clist_(g)clear:N to leave the list empty.

\clist_clear_new:N
\clist_clear_new:c
\clist_gclear_new:N
\clist_gclear_new:c

\clist_set_eq:NN 〈comma list1〉 〈comma list2〉

Sets the content of 〈comma list1〉 equal to that of 〈comma list2〉.
\clist_set_eq:NN
\clist_set_eq:(cN|Nc|cc)
\clist_gset_eq:NN
\clist_gset_eq:(cN|Nc|cc)

\clist_set_from_seq:NN 〈comma list〉 〈sequence〉\clist_set_from_seq:NN
\clist_set_from_seq:(cN|Nc|cc)
\clist_gset_from_seq:NN
\clist_gset_from_seq:(cN|Nc|cc)

New: 2014-07-17

Converts the data in the 〈sequence〉 into a 〈comma list〉: the original 〈sequence〉 is un-
changed. Items which contain either spaces or commas are surrounded by braces.

\clist_concat:NNN 〈comma list1〉 〈comma list2〉 〈comma list3〉

Concatenates the content of 〈comma list2〉 and 〈comma list3〉 together and saves the
result in 〈comma list1〉. The items in 〈comma list2〉 will be placed at the left side of the
new comma list.

\clist_concat:NNN
\clist_concat:ccc
\clist_gconcat:NNN
\clist_gconcat:ccc

\clist_if_exist_p:N 〈comma list〉
\clist_if_exist:NTF 〈comma list〉 {〈true code〉} {〈false code〉}

Tests whether the 〈comma list〉 is currently defined. This does not check that the 〈comma
list〉 really is a comma list.

\clist_if_exist_p:N ?
\clist_if_exist_p:c ?
\clist_if_exist:NTF ?
\clist_if_exist:cTF ?

New: 2012-03-03

2 Adding data to comma lists

\clist_set:Nn 〈comma list〉 {〈item1〉,...,〈itemn〉}\clist_set:Nn
\clist_set:(NV|No|Nx|cn|cV|co|cx)
\clist_gset:Nn
\clist_gset:(NV|No|Nx|cn|cV|co|cx)

New: 2011-09-06

Sets 〈comma list〉 to contain the 〈items〉, removing any previous content from the variable.
Spaces are removed from both sides of each item.

132

\clist_put_left:Nn 〈comma list〉 {〈item1〉,...,〈itemn〉}\clist_put_left:Nn
\clist_put_left:(NV|No|Nx|cn|cV|co|cx)
\clist_gput_left:Nn
\clist_gput_left:(NV|No|Nx|cn|cV|co|cx)

Updated: 2011-09-05

Appends the 〈items〉 to the left of the 〈comma list〉. Spaces are removed from both sides
of each item.

\clist_put_right:Nn 〈comma list〉 {〈item1〉,...,〈itemn〉}\clist_put_right:Nn
\clist_put_right:(NV|No|Nx|cn|cV|co|cx)
\clist_gput_right:Nn
\clist_gput_right:(NV|No|Nx|cn|cV|co|cx)

Updated: 2011-09-05

Appends the 〈items〉 to the right of the 〈comma list〉. Spaces are removed from both
sides of each item.

3 Modifying comma lists
While comma lists are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update comma lists, while retaining the
order of the unaffected entries.

\clist_remove_duplicates:N 〈comma list〉\clist_remove_duplicates:N
\clist_remove_duplicates:c
\clist_gremove_duplicates:N
\clist_gremove_duplicates:c

Removes duplicate items from the 〈comma list〉, leaving the left most copy of each item
in the 〈comma list〉. The 〈item〉 comparison takes place on a token basis, as for \tl_-
if_eq:nn(TF).

TEXhackers note: This function iterates through every item in the 〈comma list〉 and does
a comparison with the 〈items〉 already checked. It is therefore relatively slow with large comma
lists. Furthermore, it will not work if any of the items in the 〈comma list〉 contains {, }, or #
(assuming the usual TEX category codes apply).

\clist_remove_all:Nn 〈comma list〉 {〈item〉}

Removes every occurrence of 〈item〉 from the 〈comma list〉. The 〈item〉 comparison takes
place on a token basis, as for \tl_if_eq:nn(TF).

TEXhackers note: The 〈item〉 may not contain {, }, or # (assuming the usual TEX
category codes apply).

\clist_remove_all:Nn
\clist_remove_all:cn
\clist_gremove_all:Nn
\clist_gremove_all:cn

Updated: 2011-09-06

133

\clist_reverse:N 〈comma list〉

Reverses the order of items stored in the 〈comma list〉.
\clist_reverse:N
\clist_reverse:c
\clist_greverse:N
\clist_greverse:c

New: 2014-07-18

\clist_reverse:n {〈comma list〉}

Leaves the items in the 〈comma list〉 in the input stream in reverse order. Braces and
spaces are preserved by this process.

TEXhackers note: The result is returned within \unexpanded, which means that the
comma list will not expand further when appearing in an x-type argument expansion.

\clist_reverse:n

New: 2014-07-18

4 Comma list conditionals

\clist_if_empty_p:N 〈comma list〉
\clist_if_empty:NTF 〈comma list〉 {〈true code〉} {〈false code〉}

Tests if the 〈comma list〉 is empty (containing no items).

\clist_if_empty_p:N ?
\clist_if_empty_p:c ?
\clist_if_empty:NTF ?
\clist_if_empty:cTF ?

\clist_if_empty_p:n {〈comma list〉}
\clist_if_empty:nTF {〈comma list〉} {〈true code〉} {〈false code〉}

Tests if the 〈comma list〉 is empty (containing no items). The rules for space trimming
are as for other n-type comma-list functions, hence the comma list {~,~,,~} (without
outer braces) is empty, while {~,{},} (without outer braces) contains one element, which
happens to be empty: the comma-list is not empty.

\clist_if_empty_p:n ?
\clist_if_empty:nTF ?

New: 2014-07-05

\clist_if_in:NnTF 〈comma list〉 {〈item〉} {〈true code〉} {〈false code〉}\clist_if_in:NnTF
\clist_if_in:(NV|No|cn|cV|co)TF
\clist_if_in:nnTF
\clist_if_in:(nV|no)TF

Updated: 2011-09-06

Tests if the 〈item〉 is present in the 〈comma list〉. In the case of an n-type 〈comma list〉,
spaces are stripped from each item, but braces are not removed. Hence,

\clist_if_in:nnTF { a , {b}~ , {b} , c } { b } {true} {false}

yields false.

TEXhackers note: The 〈item〉 may not contain {, }, or # (assuming the usual TEX
category codes apply), and should not contain , nor start or end with a space.

134

5 Mapping to comma lists
The functions described in this section apply a specified function to each item of a comma
list.

When the comma list is given explicitly, as an n-type argument, spaces are trimmed
around each item. If the result of trimming spaces is empty, the item is ignored.
Otherwise, if the item is surrounded by braces, one set is removed, and the result is
passed to the mapped function. Thus, if your comma list that is being mapped is
{a␣,␣{{b}␣},␣,{},␣{c},} then the arguments passed to the mapped function are ‘a’,
‘{b}␣’, an empty argument, and ‘c’.

When the comma list is given as an N-type argument, spaces have already been
trimmed on input, and items are simply stripped of one set of braces if any. This case is
more efficient than using n-type comma lists.

\clist_map_function:NN 〈comma list〉 〈function〉

Applies 〈function〉 to every 〈item〉 stored in the 〈comma list〉. The 〈function〉 will receive
one argument for each iteration. The 〈items〉 are returned from left to right. The function
\clist_map_inline:Nn is in general more efficient than \clist_map_function:NN. One
mapping may be nested inside another.

\clist_map_function:NN I

\clist_map_function:cN I

\clist_map_function:nN I

Updated: 2012-06-29

\clist_map_inline:Nn 〈comma list〉 {〈inline function〉}

Applies 〈inline function〉 to every 〈item〉 stored within the 〈comma list〉. The 〈inline
function〉 should consist of code which will receive the 〈item〉 as #1. One in line mapping
can be nested inside another. The 〈items〉 are returned from left to right.

\clist_map_inline:Nn
\clist_map_inline:cn
\clist_map_inline:nn

Updated: 2012-06-29

\clist_map_variable:NNn 〈comma list〉 〈tl var.〉 {〈function using tl var.〉}

Stores each entry in the 〈comma list〉 in turn in the 〈tl var.〉 and applies the 〈function
using tl var.〉 The 〈function〉 will usually consist of code making use of the 〈tl var.〉, but
this is not enforced. One variable mapping can be nested inside another. The 〈items〉
are returned from left to right.

\clist_map_variable:NNn
\clist_map_variable:cNn
\clist_map_variable:nNn

Updated: 2012-06-29

135

\clist_map_break:

Used to terminate a \clist_map_... function before all entries in the 〈comma list〉 have
been processed. This will normally take place within a conditional statement, for example

\clist_map_inline:Nn \l_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break: }
{
% Do something useful

}
}

Use outside of a \clist_map_... scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before further items are taken from the input stream.
This will depend on the design of the mapping function.

\clist_map_break: I

Updated: 2012-06-29

\clist_map_break:n {〈tokens〉}

Used to terminate a \clist_map_... function before all entries in the 〈comma list〉 have
been processed, inserting the 〈tokens〉 after the mapping has ended. This will normally
take place within a conditional statement, for example

\clist_map_inline:Nn \l_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break:n { <tokens> } }
{
% Do something useful

}
}

Use outside of a \clist_map_... scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the 〈tokens〉 are inserted into the input stream.
This will depend on the design of the mapping function.

\clist_map_break:n I

Updated: 2012-06-29

\clist_count:N 〈comma list〉

Leaves the number of items in the 〈comma list〉 in the input stream as an 〈integer
denotation〉. The total number of items in a 〈comma list〉 will include those which are
duplicates, i.e. every item in a 〈comma list〉 is unique.

\clist_count:N ?
\clist_count:c ?
\clist_count:n ?

New: 2012-07-13

136

6 Using the content of comma lists directly

\clist_use:Nnnn 〈clist var〉 {〈separator between two〉}
{〈separator between more than two〉} {〈separator between final two〉}

Places the contents of the 〈clist var〉 in the input stream, with the appropriate 〈separator〉
between the items. Namely, if the comma list has more than two items, the 〈separator
between more than two〉 is placed between each pair of items except the last, for which
the 〈separator between final two〉 is used. If the comma list has exactly two items, then
they are placed in the input stream separated by the 〈separator between two〉. If the
comma list has a single item, it is placed in the input stream, and a comma list with no
items produces no output. An error will be raised if the variable does not exist or if it is
invalid.

For example,

\clist_set:Nn \l_tmpa_clist { a , b , , c , {de} , f }
\clist_use:Nnnn \l_tmpa_clist { ~and~ } { ,~ } { ,~and~ }

will insert “a, b, c, de, and f” in the input stream. The first separator argument is
not used in this case because the comma list has more than 2 items.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the 〈items〉 will not expand further when appearing in an x-type argument
expansion.

\clist_use:Nnnn ?
\clist_use:cnnn ?

New: 2013-05-26

\clist_use:Nn 〈clist var〉 {〈separator〉}

Places the contents of the 〈clist var〉 in the input stream, with the 〈separator〉 between
the items. If the comma list has a single item, it is placed in the input stream, and a
comma list with no items produces no output. An error will be raised if the variable does
not exist or if it is invalid.

For example,

\clist_set:Nn \l_tmpa_clist { a , b , , c , {de} , f }
\clist_use:Nn \l_tmpa_clist { ~and~ }

will insert “a and b and c and de and f” in the input stream.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the 〈items〉 will not expand further when appearing in an x-type argument
expansion.

\clist_use:Nn ?
\clist_use:cn ?

New: 2013-05-26

7 Comma lists as stacks
Comma lists can be used as stacks, where data is pushed to and popped from the top
of the comma list. (The left of a comma list is the top, for performance reasons.) The

137

stack functions for comma lists are not intended to be mixed with the general ordered
data functions detailed in the previous section: a comma list should either be used as an
ordered data type or as a stack, but not in both ways.

\clist_get:NN 〈comma list〉 〈token list variable〉

Stores the left-most item from a 〈comma list〉 in the 〈token list variable〉 without removing
it from the 〈comma list〉. The 〈token list variable〉 is assigned locally. If the 〈comma list〉
is empty the 〈token list variable〉 will contain the marker value \q_no_value.

\clist_get:NN
\clist_get:cN

Updated: 2012-05-14

\clist_get:NNTF 〈comma list〉 〈token list variable〉 {〈true code〉} {〈false code〉}

If the 〈comma list〉 is empty, leaves the 〈false code〉 in the input stream. The value of
the 〈token list variable〉 is not defined in this case and should not be relied upon. If the
〈comma list〉 is non-empty, stores the top item from the 〈comma list〉 in the 〈token list
variable〉 without removing it from the 〈comma list〉. The 〈token list variable〉 is assigned
locally.

\clist_get:NNTF
\clist_get:cNTF

New: 2012-05-14

\clist_pop:NN 〈comma list〉 〈token list variable〉

Pops the left-most item from a 〈comma list〉 into the 〈token list variable〉, i.e. removes the
item from the comma list and stores it in the 〈token list variable〉. Both of the variables
are assigned locally.

\clist_pop:NN
\clist_pop:cN

Updated: 2011-09-06

\clist_gpop:NN 〈comma list〉 〈token list variable〉

Pops the left-most item from a 〈comma list〉 into the 〈token list variable〉, i.e. removes
the item from the comma list and stores it in the 〈token list variable〉. The 〈comma list〉
is modified globally, while the assignment of the 〈token list variable〉 is local.

\clist_gpop:NN
\clist_gpop:cN

\clist_pop:NNTF 〈comma list〉 〈token list variable〉 {〈true code〉} {〈false code〉}

If the 〈comma list〉 is empty, leaves the 〈false code〉 in the input stream. The value of
the 〈token list variable〉 is not defined in this case and should not be relied upon. If the
〈comma list〉 is non-empty, pops the top item from the 〈comma list〉 in the 〈token list
variable〉, i.e. removes the item from the 〈comma list〉. Both the 〈comma list〉 and the
〈token list variable〉 are assigned locally.

\clist_pop:NNTF
\clist_pop:cNTF

New: 2012-05-14

\clist_gpop:NNTF 〈comma list〉 〈token list variable〉 {〈true code〉} {〈false code〉}

If the 〈comma list〉 is empty, leaves the 〈false code〉 in the input stream. The value of
the 〈token list variable〉 is not defined in this case and should not be relied upon. If the
〈comma list〉 is non-empty, pops the top item from the 〈comma list〉 in the 〈token list
variable〉, i.e. removes the item from the 〈comma list〉. The 〈comma list〉 is modified
globally, while the 〈token list variable〉 is assigned locally.

\clist_gpop:NNTF
\clist_gpop:cNTF

New: 2012-05-14

138

\clist_push:Nn 〈comma list〉 {〈items〉}\clist_push:Nn
\clist_push:(NV|No|Nx|cn|cV|co|cx)
\clist_gpush:Nn
\clist_gpush:(NV|No|Nx|cn|cV|co|cx)

Adds the {〈items〉} to the top of the 〈comma list〉. Spaces are removed from both sides
of each item.

8 Using a single item

\clist_item:Nn 〈comma list〉 {〈integer expression〉}

Indexing items in the 〈comma list〉 from 1 at the top (left), this function will evaluate
the 〈integer expression〉 and leave the appropriate item from the comma list in the input
stream. If the 〈integer expression〉 is negative, indexing occurs from the bottom (right)
of the comma list. When the 〈integer expression〉 is larger than the number of items in
the 〈comma list〉 (as calculated by \clist_count:N) then the function will expand to
nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the 〈item〉 will not expand further when appearing in an x-type argument
expansion.

\clist_item:Nn ?
\clist_item:cn ?
\clist_item:nn ?

New: 2014-07-17

9 Viewing comma lists

\clist_show:N 〈comma list〉

Displays the entries in the 〈comma list〉 in the terminal.
\clist_show:N
\clist_show:c

Updated: 2015-08-03

\clist_show:n {〈tokens〉}

Displays the entries in the comma list in the terminal.
\clist_show:n

Updated: 2013-08-03

10 Constant and scratch comma lists

Constant that is always empty.\c_empty_clist

New: 2012-07-02

Scratch comma lists for local assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\l_tmpa_clist
\l_tmpb_clist

New: 2011-09-06

139

Scratch comma lists for global assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_clist
\g_tmpb_clist

New: 2011-09-06

140

Part XV

The l3prop package
Property lists
LATEX3 implements a “property list” data type, which contain an unordered list of entries
each of which consists of a 〈key〉 and an associated 〈value〉. The 〈key〉 and 〈value〉 may
both be any 〈balanced text〉. It is possible to map functions to property lists such that
the function is applied to every key–value pair within the list.

Each entry in a property list must have a unique 〈key〉: if an entry is added to
a property list which already contains the 〈key〉 then the new entry will overwrite the
existing one. The 〈keys〉 are compared on a string basis, using the same method as
\str_if_eq:nn.

Property lists are intended for storing key-based information for use within code.
This is in contrast to key–value lists, which are a form of input parsed by the keys
module.

1 Creating and initialising property lists

\prop_new:N 〈property list〉

Creates a new 〈property list〉 or raises an error if the name is already taken. The decla-
ration is global. The 〈property list〉 will initially contain no entries.

\prop_new:N
\prop_new:c

\prop_clear:N 〈property list〉

Clears all entries from the 〈property list〉.
\prop_clear:N
\prop_clear:c
\prop_gclear:N
\prop_gclear:c

\prop_clear_new:N 〈property list〉

Ensures that the 〈property list〉 exists globally by applying \prop_new:N if necessary,
then applies \prop_(g)clear:N to leave the list empty.

\prop_clear_new:N
\prop_clear_new:c
\prop_gclear_new:N
\prop_gclear_new:c

\prop_set_eq:NN 〈property list1〉 〈property list2〉

Sets the content of 〈property list1〉 equal to that of 〈property list2〉.
\prop_set_eq:NN
\prop_set_eq:(cN|Nc|cc)
\prop_gset_eq:NN
\prop_gset_eq:(cN|Nc|cc)

141

2 Adding entries to property lists

\prop_put:Nnn 〈property list〉
{〈key〉} {〈value〉}

\prop_put:Nnn
\prop_put:(NnV|Nno|Nnx|NVn|NVV|Non|Noo|cnn|cnV|cno|cnx|cVn|cVV|con|coo)
\prop_gput:Nnn
\prop_gput:(NnV|Nno|Nnx|NVn|NVV|Non|Noo|cnn|cnV|cno|cnx|cVn|cVV|con|coo)

Updated: 2012-07-09

Adds an entry to the 〈property list〉 which may be accessed using the 〈key〉 and which
has 〈value〉. Both the 〈key〉 and 〈value〉 may contain any 〈balanced text〉. The 〈key〉 is
stored after processing with \tl_to_str:n, meaning that category codes are ignored. If
the 〈key〉 is already present in the 〈property list〉, the existing entry is overwritten by the
new 〈value〉.

\prop_put_if_new:Nnn 〈property list〉 {〈key〉} {〈value〉}

If the 〈key〉 is present in the 〈property list〉 then no action is taken. If the 〈key〉 is not
present in the 〈property list〉 then a new entry is added. Both the 〈key〉 and 〈value〉 may
contain any 〈balanced text〉. The 〈key〉 is stored after processing with \tl_to_str:n,
meaning that category codes are ignored.

\prop_put_if_new:Nnn
\prop_put_if_new:cnn
\prop_gput_if_new:Nnn
\prop_gput_if_new:cnn

3 Recovering values from property lists

\prop_get:NnN 〈property list〉 {〈key〉} 〈tl var〉\prop_get:NnN
\prop_get:(NVN|NoN|cnN|cVN|coN)

Updated: 2011-08-28

Recovers the 〈value〉 stored with 〈key〉 from the 〈property list〉, and places this in the
〈token list variable〉. If the 〈key〉 is not found in the 〈property list〉 then the 〈token list
variable〉 will contain the special marker \q_no_value. The 〈token list variable〉 is set
within the current TEX group. See also \prop_get:NnNTF.

\prop_pop:NnN 〈property list〉 {〈key〉} 〈tl var〉

Recovers the 〈value〉 stored with 〈key〉 from the 〈property list〉, and places this in the
〈token list variable〉. If the 〈key〉 is not found in the 〈property list〉 then the 〈token list
variable〉 will contain the special marker \q_no_value. The 〈key〉 and 〈value〉 are then
deleted from the property list. Both assignments are local. See also \prop_pop:NnNTF.

\prop_pop:NnN
\prop_pop:(NoN|cnN|coN)

Updated: 2011-08-18

\prop_gpop:NnN 〈property list〉 {〈key〉} 〈tl var〉

Recovers the 〈value〉 stored with 〈key〉 from the 〈property list〉, and places this in the
〈token list variable〉. If the 〈key〉 is not found in the 〈property list〉 then the 〈token
list variable〉 will contain the special marker \q_no_value. The 〈key〉 and 〈value〉 are
then deleted from the property list. The 〈property list〉 is modified globally, while the
assignment of the 〈token list variable〉 is local. See also \prop_gpop:NnNTF.

\prop_gpop:NnN
\prop_gpop:(NoN|cnN|coN)

Updated: 2011-08-18

142

\prop_item:Nn 〈property list〉 {〈key〉}

Expands to the 〈value〉 corresponding to the 〈key〉 in the 〈property list〉. If the 〈key〉 is
missing, this has an empty expansion.

TEXhackers note: This function is slower than the non-expandable analogue \prop_-
get:NnN. The result is returned within the \unexpanded primitive (\exp_not:n), which means
that the 〈value〉 will not expand further when appearing in an x-type argument expansion.

\prop_item:Nn ?
\prop_item:cn ?

New: 2014-07-17

4 Modifying property lists

\prop_remove:Nn 〈property list〉 {〈key〉}

Removes the entry listed under 〈key〉 from the 〈property list〉. If the 〈key〉 is not found
in the 〈property list〉 no change occurs, i.e there is no need to test for the existence of a
key before deleting it.

\prop_remove:Nn
\prop_remove:(NV|cn|cV)
\prop_gremove:Nn
\prop_gremove:(NV|cn|cV)

New: 2012-05-12

5 Property list conditionals

\prop_if_exist_p:N 〈property list〉
\prop_if_exist:NTF 〈property list〉 {〈true code〉} {〈false code〉}

Tests whether the 〈property list〉 is currently defined. This does not check that the
〈property list〉 really is a property list variable.

\prop_if_exist_p:N ?
\prop_if_exist_p:c ?
\prop_if_exist:NTF ?
\prop_if_exist:cTF ?

New: 2012-03-03

\prop_if_empty_p:N 〈property list〉
\prop_if_empty:NTF 〈property list〉 {〈true code〉} {〈false code〉}

Tests if the 〈property list〉 is empty (containing no entries).

\prop_if_empty_p:N ?
\prop_if_empty_p:c ?
\prop_if_empty:NTF ?
\prop_if_empty:cTF ?

\prop_if_in:NnTF 〈property list〉 {〈key〉} {〈true code〉} {〈false code〉}\prop_if_in_p:Nn ?
\prop_if_in_p:(NV|No|cn|cV|co) ?
\prop_if_in:NnTF ?
\prop_if_in:(NV|No|cn|cV|co)TF ?

Updated: 2011-09-15

Tests if the 〈key〉 is present in the 〈property list〉, making the comparison using the
method described by \str_if_eq:nnTF.

TEXhackers note: This function iterates through every key–value pair in the 〈property
list〉 and is therefore slower than using the non-expandable \prop_get:NnNTF.

143

6 Recovering values from property lists with branch-
ing

The functions in this section combine tests for the presence of a key in a property list
with recovery of the associated valued. This makes them useful for cases where different
cases follow dependent on the presence or absence of a key in a property list. They offer
increased readability and performance over separate testing and recovery phases.

\prop_get:NnNTF 〈property list〉 {〈key〉} 〈token list variable〉
{〈true code〉} {〈false code〉}

\prop_get:NnNTF
\prop_get:(NVN|NoN|cnN|cVN|coN)TF

Updated: 2012-05-19

If the 〈key〉 is not present in the 〈property list〉, leaves the 〈false code〉 in the input stream.
The value of the 〈token list variable〉 is not defined in this case and should not be relied
upon. If the 〈key〉 is present in the 〈property list〉, stores the corresponding 〈value〉 in the
〈token list variable〉 without removing it from the 〈property list〉, then leaves the 〈true
code〉 in the input stream. The 〈token list variable〉 is assigned locally.

\prop_pop:NnNTF 〈property list〉 {〈key〉} 〈token list variable〉 {〈true code〉}
{〈false code〉}

If the 〈key〉 is not present in the 〈property list〉, leaves the 〈false code〉 in the input stream.
The value of the 〈token list variable〉 is not defined in this case and should not be relied
upon. If the 〈key〉 is present in the 〈property list〉, pops the corresponding 〈value〉 in the
〈token list variable〉, i.e. removes the item from the 〈property list〉. Both the 〈property
list〉 and the 〈token list variable〉 are assigned locally.

\prop_pop:NnNTF
\prop_pop:cnNTF

New: 2011-08-18

Updated: 2012-05-19

\prop_gpop:NnNTF 〈property list〉 {〈key〉} 〈token list variable〉 {〈true code〉}
{〈false code〉}

If the 〈key〉 is not present in the 〈property list〉, leaves the 〈false code〉 in the input stream.
The value of the 〈token list variable〉 is not defined in this case and should not be relied
upon. If the 〈key〉 is present in the 〈property list〉, pops the corresponding 〈value〉 in the
〈token list variable〉, i.e. removes the item from the 〈property list〉. The 〈property list〉 is
modified globally, while the 〈token list variable〉 is assigned locally.

\prop_gpop:NnNTF
\prop_gpop:cnNTF

New: 2011-08-18

Updated: 2012-05-19

7 Mapping to property lists

\prop_map_function:NN 〈property list〉 〈function〉

Applies 〈function〉 to every 〈entry〉 stored in the 〈property list〉. The 〈function〉 will
receive two argument for each iteration: the 〈key〉 and associated 〈value〉. The order in
which 〈entries〉 are returned is not defined and should not be relied upon.

\prop_map_function:NN I

\prop_map_function:cN I

Updated: 2013-01-08

144

\prop_map_inline:Nn 〈property list〉 {〈inline function〉}

Applies 〈inline function〉 to every 〈entry〉 stored within the 〈property list〉. The 〈inline
function〉 should consist of code which will receive the 〈key〉 as #1 and the 〈value〉 as #2.
The order in which 〈entries〉 are returned is not defined and should not be relied upon.

\prop_map_inline:Nn
\prop_map_inline:cn

Updated: 2013-01-08

\prop_map_break:

Used to terminate a \prop_map_... function before all entries in the 〈property list〉 have
been processed. This will normally take place within a conditional statement, for example

\prop_map_inline:Nn \l_my_prop
{
\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break: }
{
% Do something useful

}
}

Use outside of a \prop_map_... scenario will lead to low level TEX errors.

\prop_map_break: I

Updated: 2012-06-29

\prop_map_break:n {〈tokens〉}

Used to terminate a \prop_map_... function before all entries in the 〈property list〉 have
been processed, inserting the 〈tokens〉 after the mapping has ended. This will normally
take place within a conditional statement, for example

\prop_map_inline:Nn \l_my_prop
{
\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break:n { <tokens> } }
{
% Do something useful

}
}

Use outside of a \prop_map_... scenario will lead to low level TEX errors.

\prop_map_break:n I

Updated: 2012-06-29

8 Viewing property lists

\prop_show:N 〈property list〉

Displays the entries in the 〈property list〉 in the terminal.
\prop_show:N
\prop_show:c

Updated: 2015-08-01

145

9 Scratch property lists

Scratch property lists for local assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\l_tmpa_prop
\l_tmpb_prop

New: 2012-06-23

Scratch property lists for global assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_prop
\g_tmpb_prop

New: 2012-06-23

10 Constants

A permanently-empty property list used for internal comparisons.\c_empty_prop

11 Internal property list functions

The internal token used at the beginning of property lists. This is also used after each
〈key〉 (see __prop_pair:wn).

\s__prop

__prop_pair:wn 〈key〉 \s__prop {〈item〉}

The internal token used to begin each key–value pair in the property list. If expanded
outside of a mapping or manipulation function, an error will be raised. The definition
should always be set globally.

__prop_pair:wn

Token list used to store new key–value pairs to be inserted by functions of the \prop_-
put:Nnn family.

\l__prop_internal_tl

__prop_split:NnTF 〈property list〉 {〈key〉} {〈true code〉} {〈false code〉}

Splits the 〈property list〉 at the 〈key〉, giving three token lists: the 〈extract〉 of 〈property
list〉 before the 〈key〉, the 〈value〉 associated with the 〈key〉 and the 〈extract〉 of the
〈property list〉 after the 〈value〉. Both 〈extracts〉 retain the internal structure of a property
list, and the concatenation of the two 〈extracts〉 is a property list. If the 〈key〉 is present
in the 〈property list〉 then the 〈true code〉 is left in the input stream, with #1, #2, and
#3 replaced by the first 〈extract〉, the 〈value〉, and the second extract. If the 〈key〉 is not
present in the 〈property list〉 then the 〈false code〉 is left in the input stream, with no
trailing material. Both 〈true code〉 and 〈false code〉 are used in the replacement text of
a macro defined internally, hence macro parameter characters should be doubled, except
#1, #2, and #3 which stand in the 〈true code〉 for the three extracts from the property
list. The 〈key〉 comparison takes place as described for \str_if_eq:nn.

__prop_split:NnTF

Updated: 2013-01-08

146

Part XVI

The l3box package
Boxes
There are three kinds of box operations: horizontal mode denoted with prefix \hbox_,
vertical mode with prefix \vbox_, and the generic operations working in both modes with
prefix \box_.

1 Creating and initialising boxes

\box_new:N 〈box〉

Creates a new 〈box〉 or raises an error if the name is already taken. The declaration is
global. The 〈box〉 will initially be void.

\box_new:N
\box_new:c

\box_clear:N 〈box〉

Clears the content of the 〈box〉 by setting the box equal to \c_void_box.
\box_clear:N
\box_clear:c
\box_gclear:N
\box_gclear:c

\box_clear_new:N 〈box〉

Ensures that the 〈box〉 exists globally by applying \box_new:N if necessary, then applies
\box_(g)clear:N to leave the 〈box〉 empty.

\box_clear_new:N
\box_clear_new:c
\box_gclear_new:N
\box_gclear_new:c

\box_set_eq:NN 〈box1〉 〈box2〉

Sets the content of 〈box1〉 equal to that of 〈box2〉.
\box_set_eq:NN
\box_set_eq:(cN|Nc|cc)
\box_gset_eq:NN
\box_gset_eq:(cN|Nc|cc)

\box_set_eq_clear:NN 〈box1〉 〈box2〉

Sets the content of 〈box1〉 within the current TEX group equal to that of 〈box2〉, then
clears 〈box2〉 globally.

\box_set_eq_clear:NN
\box_set_eq_clear:(cN|Nc|cc)

\box_gset_eq_clear:NN 〈box1〉 〈box2〉\box_gset_eq_clear:NN
\box_gset_eq_clear:(cN|Nc|cc)

Sets the content of 〈box1〉 equal to that of 〈box2〉, then clears 〈box2〉. These assignments
are global.

147

\box_if_exist_p:N 〈box〉
\box_if_exist:NTF 〈box〉 {〈true code〉} {〈false code〉}

Tests whether the 〈box〉 is currently defined. This does not check that the 〈box〉 really is
a box.

\box_if_exist_p:N ?
\box_if_exist_p:c ?
\box_if_exist:NTF ?
\box_if_exist:cTF ?

New: 2012-03-03

2 Using boxes

\box_use:N 〈box〉

Inserts the current content of the 〈box〉 onto the current list for typesetting.

TEXhackers note: This is the TEX primitive \copy.

\box_use:N
\box_use:c

\box_use_clear:N 〈box〉

Inserts the current content of the 〈box〉 onto the current list for typesetting, then globally
clears the content of the 〈box〉.

TEXhackers note: This is the TEX primitive \box.

\box_use_clear:N
\box_use_clear:c

\box_move_right:nn {〈dimexpr〉} {〈box function〉}

This function operates in vertical mode, and inserts the material specified by the 〈box
function〉 such that its reference point is displaced horizontally by the given 〈dimexpr〉
from the reference point for typesetting, to the right or left as appropriate. The 〈box
function〉 should be a box operation such as \box_use:N \<box> or a “raw” box specifi-
cation such as \vbox:n { xyz }.

\box_move_right:nn
\box_move_left:nn

\box_move_up:nn {〈dimexpr〉} {〈box function〉}

This function operates in horizontal mode, and inserts the material specified by the
〈box function〉 such that its reference point is displaced vertical by the given 〈dimexpr〉
from the reference point for typesetting, up or down as appropriate. The 〈box function〉
should be a box operation such as \box_use:N \<box> or a “raw” box specification such
as \vbox:n { xyz }.

\box_move_up:nn
\box_move_down:nn

3 Measuring and setting box dimensions

\box_dp:N 〈box〉

Calculates the depth (below the baseline) of the 〈box〉 in a form suitable for use in a
〈dimension expression〉.

TEXhackers note: This is the TEX primitive \dp.

\box_dp:N
\box_dp:c

148

\box_ht:N 〈box〉

Calculates the height (above the baseline) of the 〈box〉 in a form suitable for use in a
〈dimension expression〉.

TEXhackers note: This is the TEX primitive \ht.

\box_ht:N
\box_ht:c

\box_wd:N 〈box〉

Calculates the width of the 〈box〉 in a form suitable for use in a 〈dimension expression〉.

TEXhackers note: This is the TEX primitive \wd.

\box_wd:N
\box_wd:c

\box_set_dp:Nn 〈box〉 {〈dimension expression〉}

Set the depth (below the baseline) of the 〈box〉 to the value of the {〈dimension
expression〉}. This is a global assignment.

\box_set_dp:Nn
\box_set_dp:cn

Updated: 2011-10-22

\box_set_ht:Nn 〈box〉 {〈dimension expression〉}

Set the height (above the baseline) of the 〈box〉 to the value of the {〈dimension
expression〉}. This is a global assignment.

\box_set_ht:Nn
\box_set_ht:cn

Updated: 2011-10-22

\box_set_wd:Nn 〈box〉 {〈dimension expression〉}

Set the width of the 〈box〉 to the value of the {〈dimension expression〉}. This is a global
assignment.

\box_set_wd:Nn
\box_set_wd:cn

Updated: 2011-10-22

4 Box conditionals

\box_if_empty_p:N 〈box〉
\box_if_empty:NTF 〈box〉 {〈true code〉} {〈false code〉}

Tests if 〈box〉 is a empty (equal to \c_empty_box).

\box_if_empty_p:N ?
\box_if_empty_p:c ?
\box_if_empty:NTF ?
\box_if_empty:cTF ?

\box_if_horizontal_p:N 〈box〉
\box_if_horizontal:NTF 〈box〉 {〈true code〉} {〈false code〉}

Tests if 〈box〉 is a horizontal box.

\box_if_horizontal_p:N ?
\box_if_horizontal_p:c ?
\box_if_horizontal:NTF ?
\box_if_horizontal:cTF ?

\box_if_vertical_p:N 〈box〉
\box_if_vertical:NTF 〈box〉 {〈true code〉} {〈false code〉}

Tests if 〈box〉 is a vertical box.

\box_if_vertical_p:N ?
\box_if_vertical_p:c ?
\box_if_vertical:NTF ?
\box_if_vertical:cTF ?

149

5 The last box inserted

\box_set_to_last:N 〈box〉

Sets the 〈box〉 equal to the last item (box) added to the current partial list, removing the
item from the list at the same time. When applied to the main vertical list, the 〈box〉
will always be void as it is not possible to recover the last added item.

\box_set_to_last:N
\box_set_to_last:c
\box_gset_to_last:N
\box_gset_to_last:c

6 Constant boxes

This is a permanently empty box, which is neither set as horizontal nor vertical.\c_empty_box

Updated: 2012-11-04

7 Scratch boxes

Scratch boxes for local assignment. These are never used by the kernel code, and so are
safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_box
\l_tmpb_box

Updated: 2012-11-04

Scratch boxes for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_box
\g_tmpb_box

8 Viewing box contents

\box_show:N 〈box〉

Shows full details of the content of the 〈box〉 in the terminal.
\box_show:N
\box_show:c

Updated: 2012-05-11

\box_show:Nnn 〈box〉 〈intexpr1〉 〈intexpr2〉

Display the contents of 〈box〉 in the terminal, showing the first 〈intexpr1〉 items of the
box, and descending into 〈intexpr2〉 group levels.

\box_show:Nnn
\box_show:cnn

New: 2012-05-11

\box_log:N 〈box〉

Writes full details of the content of the 〈box〉 to the log.
\box_log:N
\box_log:c

New: 2012-05-11

150

\box_log:Nnn 〈box〉 〈intexpr1〉 〈intexpr2〉

Writes the contents of 〈box〉 to the log, showing the first 〈intexpr1〉 items of the box, and
descending into 〈intexpr2〉 group levels.

\box_log:Nnn
\box_log:cnn

New: 2012-05-11

9 Horizontal mode boxes

\hbox:n {〈contents〉}

Typesets the 〈contents〉 into a horizontal box of natural width and then includes this box
in the current list for typesetting.

\hbox:n

\hbox_to_wd:nn {〈dimexpr〉} {〈contents〉}

Typesets the 〈contents〉 into a horizontal box of width 〈dimexpr〉 and then includes this
box in the current list for typesetting.

\hbox_to_wd:nn

\hbox_to_zero:n {〈contents〉}

Typesets the 〈contents〉 into a horizontal box of zero width and then includes this box in
the current list for typesetting.

\hbox_to_zero:n

\hbox_set:Nn 〈box〉 {〈contents〉}

Typesets the 〈contents〉 at natural width and then stores the result inside the 〈box〉.
\hbox_set:Nn
\hbox_set:cn
\hbox_gset:Nn
\hbox_gset:cn

\hbox_set_to_wd:Nnn 〈box〉 {〈dimexpr〉} {〈contents〉}

Typesets the 〈contents〉 to the width given by the 〈dimexpr〉 and then stores the result
inside the 〈box〉.

\hbox_set_to_wd:Nnn
\hbox_set_to_wd:cnn
\hbox_gset_to_wd:Nnn
\hbox_gset_to_wd:cnn

\hbox_overlap_right:n {〈contents〉}

Typesets the 〈contents〉 into a horizontal box of zero width such that material will pro-
trude to the right of the insertion point.

\hbox_overlap_right:n

\hbox_overlap_left:n {〈contents〉}

Typesets the 〈contents〉 into a horizontal box of zero width such that material will pro-
trude to the left of the insertion point.

\hbox_overlap_left:n

\hbox_set:Nw 〈box〉 〈contents〉 \hbox_set_end:

Typesets the 〈contents〉 at natural width and then stores the result inside the 〈box〉. In
contrast to \hbox_set:Nn this function does not absorb the argument when finding the
〈content〉, and so can be used in circumstances where the 〈content〉 may not be a simple
argument.

\hbox_set:Nw
\hbox_set:cw
\hbox_set_end:
\hbox_gset:Nw
\hbox_gset:cw
\hbox_gset_end:

151

\hbox_unpack:N 〈box〉

Unpacks the content of the horizontal 〈box〉, retaining any stretching or shrinking applied
when the 〈box〉 was set.

TEXhackers note: This is the TEX primitive \unhcopy.

\hbox_unpack:N
\hbox_unpack:c

\hbox_unpack_clear:N 〈box〉

Unpacks the content of the horizontal 〈box〉, retaining any stretching or shrinking applied
when the 〈box〉 was set. The 〈box〉 is then cleared globally.

TEXhackers note: This is the TEX primitive \unhbox.

\hbox_unpack_clear:N
\hbox_unpack_clear:c

10 Vertical mode boxes
Vertical boxes inherit their baseline from their contents. The standard case is that the
baseline of the box is at the same position as that of the last item added to the box.
This means that the box will have no depth unless the last item added to it had depth.
As a result most vertical boxes have a large height value and small or zero depth. The
exception are _top boxes, where the reference point is that of the first item added. These
tend to have a large depth and small height, although the latter will typically be non-zero.

\vbox:n {〈contents〉}

Typesets the 〈contents〉 into a vertical box of natural height and includes this box in the
current list for typesetting.

TEXhackers note: This is the TEX primitive \vbox.

\vbox:n

Updated: 2011-12-18

\vbox_top:n {〈contents〉}

Typesets the 〈contents〉 into a vertical box of natural height and includes this box in the
current list for typesetting. The baseline of the box will be equal to that of the first item
added to the box.

TEXhackers note: This is the TEX primitive \vtop.

\vbox_top:n

Updated: 2011-12-18

\vbox_to_ht:nn {〈dimexpr〉} {〈contents〉}

Typesets the 〈contents〉 into a vertical box of height 〈dimexpr〉 and then includes this
box in the current list for typesetting.

\vbox_to_ht:nn

Updated: 2011-12-18

\vbox_to_zero:n {〈contents〉}

Typesets the 〈contents〉 into a vertical box of zero height and then includes this box in
the current list for typesetting.

\vbox_to_zero:n

Updated: 2011-12-18

152

\vbox_set:Nn 〈box〉 {〈contents〉}

Typesets the 〈contents〉 at natural height and then stores the result inside the 〈box〉.
\vbox_set:Nn
\vbox_set:cn
\vbox_gset:Nn
\vbox_gset:cn

Updated: 2011-12-18

\vbox_set_top:Nn 〈box〉 {〈contents〉}

Typesets the 〈contents〉 at natural height and then stores the result inside the 〈box〉. The
baseline of the box will be equal to that of the first item added to the box.

\vbox_set_top:Nn
\vbox_set_top:cn
\vbox_gset_top:Nn
\vbox_gset_top:cn

Updated: 2011-12-18

\vbox_set_to_ht:Nnn 〈box〉 {〈dimexpr〉} {〈contents〉}

Typesets the 〈contents〉 to the height given by the 〈dimexpr〉 and then stores the result
inside the 〈box〉.

\vbox_set_to_ht:Nnn
\vbox_set_to_ht:cnn
\vbox_gset_to_ht:Nnn
\vbox_gset_to_ht:cnn

Updated: 2011-12-18

\vbox_set:Nw 〈box〉 〈contents〉 \vbox_set_end:

Typesets the 〈contents〉 at natural height and then stores the result inside the 〈box〉. In
contrast to \vbox_set:Nn this function does not absorb the argument when finding the
〈content〉, and so can be used in circumstances where the 〈content〉 may not be a simple
argument.

\vbox_set:Nw
\vbox_set:cw
\vbox_set_end:
\vbox_gset:Nw
\vbox_gset:cw
\vbox_gset_end:

Updated: 2011-12-18

\vbox_set_split_to_ht:NNn 〈box1〉 〈box2〉 {〈dimexpr〉}

Sets 〈box1〉 to contain material to the height given by the 〈dimexpr〉 by removing content
from the top of 〈box2〉 (which must be a vertical box).

TEXhackers note: This is the TEX primitive \vsplit.

\vbox_set_split_to_ht:NNn

Updated: 2011-10-22

\vbox_unpack:N 〈box〉

Unpacks the content of the vertical 〈box〉, retaining any stretching or shrinking applied
when the 〈box〉 was set.

TEXhackers note: This is the TEX primitive \unvcopy.

\vbox_unpack:N
\vbox_unpack:c

\vbox_unpack:N 〈box〉

Unpacks the content of the vertical 〈box〉, retaining any stretching or shrinking applied
when the 〈box〉 was set. The 〈box〉 is then cleared globally.

TEXhackers note: This is the TEX primitive \unvbox.

\vbox_unpack_clear:N
\vbox_unpack_clear:c

153

11 Primitive box conditionals

\if_hbox:N 〈box〉
〈true code〉

\else:
〈false code〉

\fi:

Tests is 〈box〉 is a horizontal box.

TEXhackers note: This is the TEX primitive \ifhbox.

\if_hbox:N ?

\if_vbox:N 〈box〉
〈true code〉

\else:
〈false code〉

\fi:

Tests is 〈box〉 is a vertical box.

TEXhackers note: This is the TEX primitive \ifvbox.

\if_vbox:N ?

\if_box_empty:N 〈box〉
〈true code〉

\else:
〈false code〉

\fi:

Tests is 〈box〉 is an empty (void) box.

TEXhackers note: This is the TEX primitive \ifvoid.

\if_box_empty:N ?

154

Part XVII

The l3coffins package
Coffin code layer
The material in this module provides the low-level support system for coffins. For details
about the design concept of a coffin, see the xcoffinsmodule (in the l3experimental bundle).

1 Creating and initialising coffins

\coffin_new:N 〈coffin〉

Creates a new 〈coffin〉 or raises an error if the name is already taken. The declaration is
global. The 〈coffin〉 will initially be empty.

\coffin_new:N
\coffin_new:c

New: 2011-08-17

\coffin_clear:N 〈coffin〉

Clears the content of the 〈coffin〉 within the current TEX group level.
\coffin_clear:N
\coffin_clear:c

New: 2011-08-17

\coffin_set_eq:NN 〈coffin1〉 〈coffin2〉

Sets both the content and poles of 〈coffin1〉 equal to those of 〈coffin2〉 within the current
TEX group level.

\coffin_set_eq:NN
\coffin_set_eq:(Nc|cN|cc)

New: 2011-08-17

\coffin_if_exist_p:N 〈box〉
\coffin_if_exist:NTF 〈box〉 {〈true code〉} {〈false code〉}

Tests whether the 〈coffin〉 is currently defined.

\coffin_if_exist_p:N ?
\coffin_if_exist_p:c ?
\coffin_if_exist:NTF ?
\coffin_if_exist:cTF ?

New: 2012-06-20

2 Setting coffin content and poles
All coffin functions create and manipulate coffins locally within the current TEX group
level.

\hcoffin_set:Nn 〈coffin〉 {〈material〉}

Typesets the 〈material〉 in horizontal mode, storing the result in the 〈coffin〉. The stan-
dard poles for the 〈coffin〉 are then set up based on the size of the typeset material.

\hcoffin_set:Nn
\hcoffin_set:cn

New: 2011-08-17

Updated: 2011-09-03

155

\hcoffin_set:Nw 〈coffin〉 〈material〉 \hcoffin_set_end:

Typesets the 〈material〉 in horizontal mode, storing the result in the 〈coffin〉. The stan-
dard poles for the 〈coffin〉 are then set up based on the size of the typeset material. These
functions are useful for setting the entire contents of an environment in a coffin.

\hcoffin_set:Nw
\hcoffin_set:cw
\hcoffin_set_end:

New: 2011-09-10

\vcoffin_set:Nnn 〈coffin〉 {〈width〉} {〈material〉}

Typesets the 〈material〉 in vertical mode constrained to the given 〈width〉 and stores the
result in the 〈coffin〉. The standard poles for the 〈coffin〉 are then set up based on the
size of the typeset material.

\vcoffin_set:Nnn
\vcoffin_set:cnn

New: 2011-08-17

Updated: 2012-05-22

\vcoffin_set:Nnw 〈coffin〉 {〈width〉} 〈material〉 \vcoffin_set_end:

Typesets the 〈material〉 in vertical mode constrained to the given 〈width〉 and stores the
result in the 〈coffin〉. The standard poles for the 〈coffin〉 are then set up based on the
size of the typeset material. These functions are useful for setting the entire contents of
an environment in a coffin.

\vcoffin_set:Nnw
\vcoffin_set:cnw
\vcoffin_set_end:

New: 2011-09-10

Updated: 2012-05-22

\coffin_set_horizontal_pole:Nnn 〈coffin〉
{〈pole〉} {〈offset〉}

\coffin_set_horizontal_pole:Nnn
\coffin_set_horizontal_pole:cnn

New: 2012-07-20

Sets the 〈pole〉 to run horizontally through the 〈coffin〉. The 〈pole〉 will be located at the
〈offset〉 from the bottom edge of the bounding box of the 〈coffin〉. The 〈offset〉 should
be given as a dimension expression.

\coffin_set_vertical_pole:Nnn 〈coffin〉 {〈pole〉} {〈offset〉}\coffin_set_vertical_pole:Nnn
\coffin_set_vertical_pole:cnn

New: 2012-07-20

Sets the 〈pole〉 to run vertically through the 〈coffin〉. The 〈pole〉 will be located at the
〈offset〉 from the left-hand edge of the bounding box of the 〈coffin〉. The 〈offset〉 should
be given as a dimension expression.

156

3 Joining and using coffins

\coffin_attach:NnnNnnnn
〈coffin1〉 {〈coffin1-pole1〉} {〈coffin1-pole2〉}
〈coffin2〉 {〈coffin2-pole1〉} {〈coffin2-pole2〉}
{〈x-offset〉} {〈y-offset〉}

\coffin_attach:NnnNnnnn
\coffin_attach:(cnnNnnnn|Nnncnnnn|cnncnnnn)

This function attaches 〈coffin2〉 to 〈coffin1〉 such that the bounding box of 〈coffin1〉
is not altered, i.e. 〈coffin2〉 can protrude outside of the bounding box of the cof-
fin. The alignment is carried out by first calculating 〈handle1〉, the point of intersec-
tion of 〈coffin1-pole1〉 and 〈coffin1-pole2〉, and 〈handle2〉, the point of intersection of
〈coffin2-pole1〉 and 〈coffin2-pole2〉. 〈coffin2〉 is then attached to 〈coffin1〉 such that the
relationship between 〈handle1〉 and 〈handle2〉 is described by the 〈x-offset〉 and 〈y-offset〉.
The two offsets should be given as dimension expressions.

\coffin_join:NnnNnnnn
〈coffin1〉 {〈coffin1-pole1〉} {〈coffin1-pole2〉}
〈coffin2〉 {〈coffin2-pole1〉} {〈coffin2-pole2〉}
{〈x-offset〉} {〈y-offset〉}

\coffin_join:NnnNnnnn
\coffin_join:(cnnNnnnn|Nnncnnnn|cnncnnnn)

This function joins 〈coffin2〉 to 〈coffin1〉 such that the bounding box of 〈coffin1〉 may
expand. The new bounding box will cover the area containing the bounding boxes of
the two original coffins. The alignment is carried out by first calculating 〈handle1〉, the
point of intersection of 〈coffin1-pole1〉 and 〈coffin1-pole2〉, and 〈handle2〉, the point of
intersection of 〈coffin2-pole1〉 and 〈coffin2-pole2〉. 〈coffin2〉 is then attached to 〈coffin1〉
such that the relationship between 〈handle1〉 and 〈handle2〉 is described by the 〈x-offset〉
and 〈y-offset〉. The two offsets should be given as dimension expressions.

\coffin_typeset:Nnnnn 〈coffin〉 {〈pole1〉} {〈pole2〉}
{〈x-offset〉} {〈y-offset〉}

Typesetting is carried out by first calculating 〈handle〉, the point of intersection of 〈pole1〉
and 〈pole2〉. The coffin is then typeset in horizontal mode such that the relationship be-
tween the current reference point in the document and the 〈handle〉 is described by the
〈x-offset〉 and 〈y-offset〉. The two offsets should be given as dimension expressions. Type-
setting a coffin is therefore analogous to carrying out an alignment where the “parent”
coffin is the current insertion point.

\coffin_typeset:Nnnnn
\coffin_typeset:cnnnn

Updated: 2012-07-20

4 Measuring coffins

\coffin_dp:N 〈coffin〉

Calculates the depth (below the baseline) of the 〈coffin〉 in a form suitable for use in a
〈dimension expression〉.

\coffin_dp:N
\coffin_dp:c

157

\coffin_ht:N 〈coffin〉

Calculates the height (above the baseline) of the 〈coffin〉 in a form suitable for use in a
〈dimension expression〉.

\coffin_ht:N
\coffin_ht:c

\coffin_wd:N 〈coffin〉

Calculates the width of the 〈coffin〉 in a form suitable for use in a 〈dimension expression〉.
\coffin_wd:N
\coffin_wd:c

5 Coffin diagnostics

\coffin_display_handles:Nn 〈coffin〉 {〈color〉}

This function first calculates the intersections between all of the 〈poles〉 of the 〈coffin〉 to
give a set of 〈handles〉. It then prints the 〈coffin〉 at the current location in the source,
with the position of the 〈handles〉 marked on the coffin. The 〈handles〉 will be labelled
as part of this process: the locations of the 〈handles〉 and the labels are both printed in
the 〈color〉 specified.

\coffin_display_handles:Nn
\coffin_display_handles:cn

Updated: 2011-09-02

\coffin_mark_handle:Nnnn 〈coffin〉 {〈pole1〉} {〈pole2〉} {〈color〉}

This function first calculates the 〈handle〉 for the 〈coffin〉 as defined by the intersection
of 〈pole1〉 and 〈pole2〉. It then marks the position of the 〈handle〉 on the 〈coffin〉. The
〈handle〉 will be labelled as part of this process: the location of the 〈handle〉 and the
label are both printed in the 〈color〉 specified.

\coffin_mark_handle:Nnnn
\coffin_mark_handle:cnnn

Updated: 2011-09-02

\coffin_show_structure:N 〈coffin〉

This function shows the structural information about the 〈coffin〉 in the terminal. The
width, height and depth of the typeset material are given, along with the location of all
of the poles of the coffin.

Notice that the poles of a coffin are defined by four values: the x and y co-ordinates
of a point that the pole passes through and the x- and y-components of a vector denoting
the direction of the pole. It is the ratio between the later, rather than the absolute values,
which determines the direction of the pole.

\coffin_show_structure:N
\coffin_show_structure:c

Updated: 2015-08-01

5.1 Constants and variables

A permanently empty coffin.\c_empty_coffin

Scratch coffins for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_coffin
\l_tmpb_coffin

New: 2012-06-19

158

Part XVIII

The l3color package
Color support
This module provides support for color in LATEX3. At present, the material here is mainly
intended to support a small number of low-level requirements in other l3kernel modules.

1 Color in boxes
Controlling the color of text in boxes requires a small number of control functions, so
that the boxed material uses the color at the point where it is set, rather than where it
is used.

\color_group_begin:
...
\color_group_end:

Creates a color group: one used to “trap” color settings.

\color_group_begin:
\color_group_end:

New: 2011-09-03

\color_ensure_current:

Ensures that material inside a box will use the foreground color at the point where the
box is set, rather than that in force when the box is used. This function should usually
be used within a \color_group_begin: . . . \color_group_end: group.

\color_ensure_current:

New: 2011-09-03

159

Part XIX

The l3msg package
Messages
Messages need to be passed to the user by modules, either when errors occur or to indicate
how the code is proceeding. The l3msg module provides a consistent method for doing
this (as opposed to writing directly to the terminal or log).

The system used by l3msg to create messages divides the process into two distinct
parts. Named messages are created in the first part of the process; at this stage, no
decision is made about the type of output that the message will produce. The second
part of the process is actually producing a message. At this stage a choice of message
class has to be made, for example error, warning or info.

By separating out the creation and use of messages, several benefits are available.
First, the messages can be altered later without needing details of where they are used
in the code. This makes it possible to alter the language used, the detail level and so
on. Secondly, the output which results from a given message can be altered. This can be
done on a message class, module or message name basis. In this way, message behaviour
can be altered and messages can be entirely suppressed.

1 Creating new messages
All messages have to be created before they can be used. The text of messages will
automatically by wrapped to the length available in the console. As a result, formatting
is only needed where it will help to show meaning. In particular, \\ may be used to force
a new line and \␣ forces an explicit space. Additionally, \{, \#, \}, \% and \~ can be
used to produce the corresponding character.

Messages may be subdivided by one level using the / character. This is used within
the message filtering system to allow for example the LATEX kernel messages to belong to
the module LaTeX while still being filterable at a more granular level. Thus for example

\msg_new:nnnn { mymodule } { submodule / message } ...

will allow only those messages from the submodule to be filtered out.

\msg_new:nnnn {〈module〉} {〈message〉} {〈text〉} {〈more text〉}

Creates a 〈message〉 for a given 〈module〉. The message will be defined to first give 〈text〉
and then 〈more text〉 if the user requests it. If no 〈more text〉 is available then a standard
text is given instead. Within 〈text〉 and 〈more text〉 four parameters (#1 to #4) can be
used: these will be supplied at the time the message is used. An error will be raised if
the 〈message〉 already exists.

\msg_new:nnnn
\msg_new:nnn

Updated: 2011-08-16

160

\msg_set:nnnn {〈module〉} {〈message〉} {〈text〉} {〈more text〉}

Sets up the text for a 〈message〉 for a given 〈module〉. The message will be defined to
first give 〈text〉 and then 〈more text〉 if the user requests it. If no 〈more text〉 is available
then a standard text is given instead. Within 〈text〉 and 〈more text〉 four parameters (#1
to #4) can be used: these will be supplied at the time the message is used.

\msg_set:nnnn
\msg_set:nnn
\msg_gset:nnnn
\msg_gset:nnn

\msg_if_exist_p:nn {〈module〉} {〈message〉}
\msg_if_exist:nnTF {〈module〉} {〈message〉} {〈true code〉} {〈false code〉}

Tests whether the 〈message〉 for the 〈module〉 is currently defined.

\msg_if_exist_p:nn ?
\msg_if_exist:nnTF ?

New: 2012-03-03

2 Contextual information for messages

\msg_line_context:

Prints the current line number when a message is given, and thus suitable for giving
context to messages. The number itself is proceeded by the text on line.

\msg_line_context: I

\msg_line_number:

Prints the current line number when a message is given.
\msg_line_number: ?

\msg_fatal_text:n {〈module〉}

Produces the standard text

Fatal 〈module〉 error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the 〈module〉 to be included.

\msg_fatal_text:n ?

\msg_critical_text:n {〈module〉}

Produces the standard text

Critical 〈module〉 error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the 〈module〉 to be included.

\msg_critical_text:n ?

\msg_error_text:n {〈module〉}

Produces the standard text

〈module〉 error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the 〈module〉 to be included.

\msg_error_text:n ?

161

\msg_warning_text:n {〈module〉}

Produces the standard text

〈module〉 warning

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the 〈module〉 to be included.

\msg_warning_text:n ?

\msg_info_text:n {〈module〉}

Produces the standard text:

〈module〉 info

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the 〈module〉 to be included.

\msg_info_text:n ?

\msg_see_documentation_text:n {〈module〉}\msg_see_documentation_text:n ?

Produces the standard text

See the 〈module〉 documentation for further information.

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the 〈module〉 to be included.

3 Issuing messages
Messages behave differently depending on the message class. In all cases, the message
may be issued supplying 0 to 4 arguments. If the number of arguments supplied here does
not match the number in the definition of the message, extra arguments will be ignored,
or empty arguments added (of course the sense of the message may be impaired). The
four arguments will be converted to strings before being added to the message text: the
x-type variants should be used to expand material.

\msg_fatal:nnnnnn {〈module〉} {〈message〉} {〈arg one〉} {〈arg two〉} {〈arg three〉}
{〈arg four〉}

Issues 〈module〉 error 〈message〉, passing 〈arg one〉 to 〈arg four〉 to the text-creating
functions. After issuing a fatal error the TEX run will halt.

\msg_fatal:nnnnnn
\msg_fatal:nnxxxx
\msg_fatal:nnnnn
\msg_fatal:nnxxx
\msg_fatal:nnnn
\msg_fatal:nnxx
\msg_fatal:nnn
\msg_fatal:nnx
\msg_fatal:nn

Updated: 2012-08-11

162

\msg_critical:nnnnnn {〈module〉} {〈message〉} {〈arg one〉} {〈arg two〉} {〈arg three〉}
{〈arg four〉}

Issues 〈module〉 error 〈message〉, passing 〈arg one〉 to 〈arg four〉 to the text-creating
functions. After issuing a critical error, TEX will stop reading the current input file. This
may halt the TEX run (if the current file is the main file) or may abort reading a sub-file.

TEXhackers note: The TEX \endinput primitive is used to exit the file. In particular,
the rest of the current line remains in the input stream.

\msg_critical:nnnnnn
\msg_critical:nnxxxx
\msg_critical:nnnnn
\msg_critical:nnxxx
\msg_critical:nnnn
\msg_critical:nnxx
\msg_critical:nnn
\msg_critical:nnx
\msg_critical:nn

Updated: 2012-08-11

\msg_error:nnnnnn {〈module〉} {〈message〉} {〈arg one〉} {〈arg two〉} {〈arg three〉}
{〈arg four〉}

Issues 〈module〉 error 〈message〉, passing 〈arg one〉 to 〈arg four〉 to the text-creating
functions. The error will interrupt processing and issue the text at the terminal. After
user input, the run will continue.

\msg_error:nnnnnn
\msg_error:nnxxxx
\msg_error:nnnnn
\msg_error:nnxxx
\msg_error:nnnn
\msg_error:nnxx
\msg_error:nnn
\msg_error:nnx
\msg_error:nn

Updated: 2012-08-11

\msg_warning:nnxxxx {〈module〉} {〈message〉} {〈arg one〉} {〈arg two〉} {〈arg three〉}
{〈arg four〉}

Issues 〈module〉 warning 〈message〉, passing 〈arg one〉 to 〈arg four〉 to the text-creating
functions. The warning text will be added to the log file and the terminal, but the TEX
run will not be interrupted.

\msg_warning:nnnnnn
\msg_warning:nnxxxx
\msg_warning:nnnnn
\msg_warning:nnxxx
\msg_warning:nnnn
\msg_warning:nnxx
\msg_warning:nnn
\msg_warning:nnx
\msg_warning:nn

Updated: 2012-08-11

\msg_info:nnnnnn {〈module〉} {〈message〉} {〈arg one〉} {〈arg two〉} {〈arg three〉} {〈arg
four〉}

Issues 〈module〉 information 〈message〉, passing 〈arg one〉 to 〈arg four〉 to the text-creating
functions. The information text will be added to the log file.

\msg_info:nnnnnn
\msg_info:nnxxxx
\msg_info:nnnnn
\msg_info:nnxxx
\msg_info:nnnn
\msg_info:nnxx
\msg_info:nnn
\msg_info:nnx
\msg_info:nn

Updated: 2012-08-11

163

\msg_log:nnnnnn {〈module〉} {〈message〉} {〈arg one〉} {〈arg two〉} {〈arg three〉} {〈arg
four〉}

Issues 〈module〉 information 〈message〉, passing 〈arg one〉 to 〈arg four〉 to the text-creating
functions. The information text will be added to the log file: the output is briefer than
\msg_info:nnnnnn.

\msg_log:nnnnnn
\msg_log:nnxxxx
\msg_log:nnnnn
\msg_log:nnxxx
\msg_log:nnnn
\msg_log:nnxx
\msg_log:nnn
\msg_log:nnx
\msg_log:nn

Updated: 2012-08-11

\msg_none:nnnnnn {〈module〉} {〈message〉} {〈arg one〉} {〈arg two〉} {〈arg three〉} {〈arg
four〉}

Does nothing: used as a message class to prevent any output at all (see the discussion of
message redirection).

\msg_none:nnnnnn
\msg_none:nnxxxx
\msg_none:nnnnn
\msg_none:nnxxx
\msg_none:nnnn
\msg_none:nnxx
\msg_none:nnn
\msg_none:nnx
\msg_none:nn

Updated: 2012-08-11

4 Redirecting messages
Each message has a “name”, which can be used to alter the behaviour of the message
when it is given. Thus we might have

\msg_new:nnnn { module } { my-message } { Some~text } { Some~more~text }

to define a message, with

\msg_error:nn { module } { my-message }

when it is used. With no filtering, this will raise an error. However, we could alter the
behaviour with

\msg_redirect_class:nn { error } { warning }

to turn all errors into warnings, or with

\msg_redirect_module:nnn { module } { error } { warning }

to alter only messages from that module, or even

\msg_redirect_name:nnn { module } { my-message } { warning }

164

to target just one message. Redirection applies first to individual messages, then to
messages from one module and finally to messages of one class. Thus it is possible to
select out an individual message for special treatment even if the entire class is already
redirected.

Multiple redirections are possible. Redirections can be cancelled by providing an
empty argument for the target class. Redirection to a missing class will raise errors
immediately. Infinite loops are prevented by eliminating the redirection starting from
the target of the redirection that caused the loop to appear. Namely, if redirections are
requested as A → B, B → C and C → A in this order, then the A → B redirection is
cancelled.

\msg_redirect_class:nn {〈class one〉} {〈class two〉}

Changes the behaviour of messages of 〈class one〉 so that they are processed using the
code for those of 〈class two〉.

\msg_redirect_class:nn

Updated: 2012-04-27

\msg_redirect_module:nnn {〈module〉} {〈class one〉} {〈class two〉}

Redirects message of 〈class one〉 for 〈module〉 to act as though they were from 〈class
two〉. Messages of 〈class one〉 from sources other than 〈module〉 are not affected by this
redirection. This function can be used to make some messages “silent” by default. For
example, all of the warning messages of 〈module〉 could be turned off with:

\msg_redirect_module:nnn { module } { warning } { none }

\msg_redirect_module:nnn

Updated: 2012-04-27

\msg_redirect_name:nnn {〈module〉} {〈message〉} {〈class〉}

Redirects a specific 〈message〉 from a specific 〈module〉 to act as a member of 〈class〉 of
messages. No further redirection is performed. This function can be used to make a
selected message “silent” without changing global parameters:

\msg_redirect_name:nnn { module } { annoying-message } { none }

\msg_redirect_name:nnn

Updated: 2012-04-27

5 Low-level message functions
The lower-level message functions should usually be accessed from the higher-level system.
However, there are occasions where direct access to these functions is desirable.

165

\msg_interrupt:nnn {〈first line〉} {〈text〉} {〈extra text〉}

Interrupts the TEX run, issuing a formatted message comprising 〈first line〉 and 〈text〉
laid out in the format

!!
!
! <first line>
!
! <text>
!...

where the 〈text〉 will be wrapped to fit within the current line length. The user may then
request more information, at which stage the 〈extra text〉 will be shown in the terminal
in the format

|’’’
| <extra text>
|...

where the 〈extra text〉 will be wrapped within the current line length. Wrapping of both
〈text〉 and 〈more text〉 takes place using \iow_wrap:nnnN; the documentation for the
latter should be consulted for full details.

\msg_interrupt:nnn

New: 2012-06-28

\msg_log:n {〈text〉}

Writes to the log file with the 〈text〉 laid out in the format

...

. <text>

...

where the 〈text〉 will be wrapped to fit within the current line length. Wrapping takes
place using \iow_wrap:nnnN; the documentation for the latter should be consulted for
full details.

\msg_log:n

New: 2012-06-28

\msg_term:n {〈text〉}

Writes to the terminal and log file with the 〈text〉 laid out in the format

* <text>

where the 〈text〉 will be wrapped to fit within the current line length. Wrapping takes
place using \iow_wrap:nnnN; the documentation for the latter should be consulted for
full details.

\msg_term:n

New: 2012-06-28

166

6 Kernel-specific functions
Messages from LATEX3 itself are handled by the general message system, but have their
own functions. This allows some text to be pre-defined, and also ensures that serious
errors can be handled properly.

__msg_kernel_new:nnnn {〈module〉} {〈message〉} {〈text〉} {〈more text〉}

Creates a kernel 〈message〉 for a given 〈module〉. The message will be defined to first give
〈text〉 and then 〈more text〉 if the user requests it. If no 〈more text〉 is available then a
standard text is given instead. Within 〈text〉 and 〈more text〉 four parameters (#1 to #4)
can be used: these will be supplied and expanded at the time the message is used. An
error will be raised if the 〈message〉 already exists.

__msg_kernel_new:nnnn
__msg_kernel_new:nnn

Updated: 2011-08-16

__msg_kernel_set:nnnn {〈module〉} {〈message〉} {〈text〉} {〈more text〉}

Sets up the text for a kernel 〈message〉 for a given 〈module〉. The message will be defined
to first give 〈text〉 and then 〈more text〉 if the user requests it. If no 〈more text〉 is available
then a standard text is given instead. Within 〈text〉 and 〈more text〉 four parameters (#1
to #4) can be used: these will be supplied and expanded at the time the message is used.

__msg_kernel_set:nnnn
__msg_kernel_set:nnn

__msg_kernel_fatal:nnnnnn {〈module〉} {〈message〉} {〈arg one〉} {〈arg two〉} {〈arg
three〉} {〈arg four〉}

Issues kernel 〈module〉 error 〈message〉, passing 〈arg one〉 to 〈arg four〉 to the text-creating
functions. After issuing a fatal error the TEX run will halt. Cannot be redirected.

__msg_kernel_fatal:nnnnnn
__msg_kernel_fatal:nnxxxx
__msg_kernel_fatal:nnnnn
__msg_kernel_fatal:nnxxx
__msg_kernel_fatal:nnnn
__msg_kernel_fatal:nnxx
__msg_kernel_fatal:nnn
__msg_kernel_fatal:nnx
__msg_kernel_fatal:nn

Updated: 2012-08-11

__msg_kernel_error:nnnnnn {〈module〉} {〈message〉} {〈arg one〉} {〈arg two〉} {〈arg
three〉} {〈arg four〉}

Issues kernel 〈module〉 error 〈message〉, passing 〈arg one〉 to 〈arg four〉 to the text-creating
functions. The error will stop processing and issue the text at the terminal. After user
input, the run will continue. Cannot be redirected.

__msg_kernel_error:nnnnnn
__msg_kernel_error:nnxxxx
__msg_kernel_error:nnnnn
__msg_kernel_error:nnxxx
__msg_kernel_error:nnnn
__msg_kernel_error:nnxx
__msg_kernel_error:nnn
__msg_kernel_error:nnx
__msg_kernel_error:nn

Updated: 2012-08-11

167

__msg_kernel_warning:nnnnnn {〈module〉} {〈message〉} {〈arg one〉} {〈arg
two〉} {〈arg three〉} {〈arg four〉}

__msg_kernel_warning:nnnnnn
__msg_kernel_warning:nnxxxx
__msg_kernel_warning:nnnnn
__msg_kernel_warning:nnxxx
__msg_kernel_warning:nnnn
__msg_kernel_warning:nnxx
__msg_kernel_warning:nnn
__msg_kernel_warning:nnx
__msg_kernel_warning:nn

Updated: 2012-08-11

Issues kernel 〈module〉 warning 〈message〉, passing 〈arg one〉 to 〈arg four〉 to the text-
creating functions. The warning text will be added to the log file, but the TEX run will
not be interrupted.

__msg_kernel_info:nnnnnn {〈module〉} {〈message〉} {〈arg one〉} {〈arg two〉} {〈arg
three〉} {〈arg four〉}

Issues kernel 〈module〉 information 〈message〉, passing 〈arg one〉 to 〈arg four〉 to the
text-creating functions. The information text will be added to the log file.

__msg_kernel_info:nnnnnn
__msg_kernel_info:nnxxxx
__msg_kernel_info:nnnnn
__msg_kernel_info:nnxxx
__msg_kernel_info:nnnn
__msg_kernel_info:nnxx
__msg_kernel_info:nnn
__msg_kernel_info:nnx
__msg_kernel_info:nn

Updated: 2012-08-11

7 Expandable errors
In a few places, the LATEX3 kernel needs to produce errors in an expansion only context.
This must be handled internally very differently from normal error messages, as none of
the tools to print to the terminal or the log file are expandable. However, the interface is
similar, with the important caveat that the message text and arguments are not expanded,
and messages should be very short.

__msg_kernel_expandable_error:nnnnnn {〈module〉} {〈message〉}
{〈arg one〉} {〈arg two〉} {〈arg three〉} {〈arg four〉}

__msg_kernel_expandable_error:nnnnnn ?
__msg_kernel_expandable_error:nnnnn ?
__msg_kernel_expandable_error:nnnn ?
__msg_kernel_expandable_error:nnn ?
__msg_kernel_expandable_error:nn ?

New: 2011-11-23

Issues an error, passing 〈arg one〉 to 〈arg four〉 to the text-creating functions. The
resulting string must be shorter than a line, otherwise it will be cropped.

168

__msg_expandable_error:n {〈error message〉}__msg_expandable_error:n ?

New: 2011-08-11

Updated: 2011-08-13

Issues an “Undefined error” message from TEX itself, and prints the 〈error message〉.
The 〈error message〉 must be short: it is cropped at the end of one line.

TEXhackers note: This function expands to an empty token list after two steps. Tokens
inserted in response to TEX’s prompt are read with the current category code setting, and
inserted just after the place where the error message was issued.

8 Internal l3msg functions
The following functions are used in several kernel modules.

__msg_log_next: 〈show-command〉

Causes the next 〈show-command〉 to send its output to the log file instead of the terminal.
This allows for instance \cs_log:N to be defined as __msg_log_next: \cs_show:N. The
effect of this command lasts until the next use of __msg_show_wrap:Nn or __msg_-
show_wrap:n or __msg_show_variable:NNNnn, in other words until the next time the
ε-TEX primitive \showtokens would have been used for showing to the terminal or until
the next variable-not-defined error.

__msg_log_next:

New: 2015-08-05

__msg_show_pre:nnnnnn {〈module〉} {〈message〉} {〈arg one〉} {〈arg two〉}
{〈arg three〉} {〈arg four〉}

__msg_show_pre:nnnnnn
__msg_show_pre:(nnxxxx|nnnnnV)

New: 2015-08-05

Prints the 〈message〉 from 〈module〉 in the terminal (or log file if __msg_log_next:
was issued) without formatting. Used in messages which print complex variable contents
completely.

__msg_show_variable:NNNnn 〈variable〉 〈if-exist〉 〈if-empty〉 {〈msg〉} {〈formatted
content〉}

If the 〈variable〉 does not exist according to 〈if-exist〉 (typically \cs_if_exist:NTF) then
throw an error and do nothing more. Otherwise, if 〈msg〉 is not empty, display the message
LaTeX/kernel/show-〈msg〉 with \token_to_str:N 〈variable〉 as a first argument, and
a second argument that is ? or empty depending on the result of 〈if-empty〉 (typically
\tl_if_empty:NTF) on the 〈variable〉. Then display the 〈formatted content〉 by giving it
as an argument to __msg_show_wrap:n.

__msg_show_variable:NNNnn

New: 2015-08-04

169

__msg_show_wrap:Nn 〈function〉 {〈expression〉}

Shows or logs the 〈expression〉 (turned into a string), an equal sign, and the result of
applying the 〈function〉 to the {〈expression〉}. For instance, if the 〈function〉 is \int_-
eval:n and the 〈expression〉 is 1+2 then this will log > 1+2=3. The case where the
〈function〉 is \tl_to_str:n is special: then the string representation of the 〈expression〉
is only logged once.

__msg_show_wrap:Nn

New: 2015-08-03

Updated: 2015-08-07

__msg_show_wrap:n {〈formatted text〉}

Shows or logs the 〈formatted text〉. After expansion, unless it is empty, the 〈formatted
text〉must contain >, and the part of 〈formatted text〉 before the first > is removed. Failure
to do so causes low-level TEX errors.

__msg_show_wrap:n

New: 2015-08-03

__msg_show_item:n 〈item〉
__msg_show_item:nn 〈item-key〉 〈item-value〉

__msg_show_item:n
__msg_show_item:nn
__msg_show_item_unbraced:nn

Updated: 2012-09-09

Auxiliary functions used within the last argument of __msg_show_variable:NNNnn or
__msg_show_wrap:n to format variable items correctly for display. The __msg_show_-
item:n version is used for simple lists, the __msg_show_item:nn and __msg_show_-
item_unbraced:nn versions for key–value like data structures.

\c__msg_coding_error_text_tl

The text

This is a coding error.

used by kernel functions when erroneous programming input is encountered.

170

Part XX

The l3keys package
Key–value interfaces
The key–value method is a popular system for creating large numbers of settings for
controlling function or package behaviour. The system normally results in input of the
form

\MyModuleSetup{
key-one = value one,
key-two = value two

}

or

\MyModuleMacro[
key-one = value one,
key-two = value two

]{argument}

for the user.
The high level functions here are intended as a method to create key–value controls.

Keys are themselves created using a key–value interface, minimising the number of func-
tions and arguments required. Each key is created by setting one or more properties of
the key:

\keys_define:nn { mymodule }
{
key-one .code:n = code including parameter #1,
key-two .tl_set:N = \l_mymodule_store_tl

}

These values can then be set as with other key–value approaches:

\keys_set:nn { mymodule }
{
key-one = value one,
key-two = value two

}

At a document level, \keys_set:nn will be used within a document function, for
example

\DeclareDocumentCommand \MyModuleSetup { m }
{ \keys_set:nn { mymodule } { #1 } }

\DeclareDocumentCommand \MyModuleMacro { o m }
{

171

\group_begin:
\keys_set:nn { mymodule } { #1 }
% Main code for \MyModuleMacro

\group_end:
}

Key names may contain any tokens, as they are handled internally using \tl_to_-
str:n; spaces are ignored in key names. As will be discussed in section 2, it is suggested
that the character / is reserved for sub-division of keys into logical groups. Functions
and variables are not expanded when creating key names, and so

\tl_set:Nn \l_mymodule_tmp_tl { key }
\keys_define:nn { mymodule }
{
\l_mymodule_tmp_tl .code:n = code

}

will create a key called \l_mymodule_tmp_tl, and not one called key.

1 Creating keys

\keys_define:nn {〈module〉} {〈keyval list〉}

Parses the 〈keyval list〉 and defines the keys listed there for 〈module〉. The 〈module〉
name should be a text value, but there are no restrictions on the nature of the text. In
practice the 〈module〉 should be chosen to be unique to the module in question (unless
deliberately adding keys to an existing module).

The 〈keyval list〉 should consist of one or more key names along with an associated
key property. The properties of a key determine how it acts. The individual properties
are described in the following text; a typical use of \keys_define:nn might read

\keys_define:nn { mymodule }
{
keyname .code:n = Some~code~using~#1,
keyname .value_required:n = true

}

where the properties of the key begin from the . after the key name.

\keys_define:nn

Updated: 2015-11-07

The various properties available take either no arguments at all, or require one
or more arguments. This is indicated in the name of the property using an argument
specification. In the following discussion, each property is illustrated attached to an
arbitrary 〈key〉, which when used may be supplied with a 〈value〉. All key definitions are
local.

Key properties are applied in the reading order and so the ordering is significant.
Key properties which define “actions”, such as .code:n, .tl_set:N, etc., will override
one another. Some other properties are mutually exclusive, notably .value_required:n

172

and .value_forbidden:n, and so will replace one another. However, properties covering
non-exclusive behaviours may be given in any order. Thus for example the following
defintions are equivalent.

\keys_define:nn { mymodule }
{
keyname .code:n = Some~code~using~#1,
keyname .value_required:n = true

}
\keys_define:nn { mymodule }
{
keyname .value_required:n = true,
keyname .code:n = Some~code~using~#1

}

Note that with the exception of the special .undefine: property, all key properties will
define the key within the current TEX scope.

〈key〉 .bool_set:N = 〈boolean〉

Defines 〈key〉 to set 〈boolean〉 to 〈value〉 (which must be either true or false). If the
variable does not exist, it will be created globally at the point that the key is set up.

.bool_set:N

.bool_set:c

.bool_gset:N

.bool_gset:c

Updated: 2013-07-08

〈key〉 .bool_set_inverse:N = 〈boolean〉

Defines 〈key〉 to set 〈boolean〉 to the logical inverse of 〈value〉 (which must be either true
or false). If the 〈boolean〉 does not exist, it will be created globally at the point that
the key is set up.

.bool_set_inverse:N

.bool_set_inverse:c

.bool_gset_inverse:N

.bool_gset_inverse:c

New: 2011-08-28

Updated: 2013-07-08

〈key〉 .choice:

Sets 〈key〉 to act as a choice key. Each valid choice for 〈key〉 must then be created, as
discussed in section 3.

.choice:

〈key〉 .choices:nn = {〈choices〉} {〈code〉}

Sets 〈key〉 to act as a choice key, and defines a series 〈choices〉 which are implemented
using the 〈code〉. Inside 〈code〉, \l_keys_choice_tl will be the name of the choice
made, and \l_keys_choice_int will be the position of the choice in the list of 〈choices〉
(indexed from 1). Choices are discussed in detail in section 3.

.choices:nn

.choices:Vn

.choices:on

.choices:xn

New: 2011-08-21

Updated: 2013-07-10

173

〈key〉 .clist_set:N = 〈comma list variable〉

Defines 〈key〉 to set 〈comma list variable〉 to 〈value〉. Spaces around commas and empty
items will be stripped. If the variable does not exist, it will be created globally at the
point that the key is set up.

.clist_set:N

.clist_set:c

.clist_gset:N

.clist_gset:c

New: 2011-09-11

〈key〉 .code:n = {〈code〉}

Stores the 〈code〉 for execution when 〈key〉 is used. The 〈code〉 can include one parameter
(#1), which will be the 〈value〉 given for the 〈key〉. The x-type variant will expand 〈code〉
at the point where the 〈key〉 is created.

.code:n

Updated: 2013-07-10

〈key〉 .default:n = {〈default〉}

Creates a 〈default〉 value for 〈key〉, which is used if no value is given. This will be used
if only the key name is given, but not if a blank 〈value〉 is given:

\keys_define:nn { mymodule }
{
key .code:n = Hello~#1,
key .default:n = World

}
\keys_set:nn { mymodule }
{
key = Fred, % Prints ’Hello Fred’
key, % Prints ’Hello World’
key = , % Prints ’Hello ’

}

The default does not affect keys where values are required or forbidden. Thus a required
value cannot be supplied by a default value, and giving a default value for a key which
cannot take a value will not trigger an error.

.default:n

.default:V

.default:o

.default:x

Updated: 2013-07-09

〈key〉 .dim_set:N = 〈dimension〉

Defines 〈key〉 to set 〈dimension〉 to 〈value〉 (which must a dimension expression). If the
variable does not exist, it will be created globally at the point that the key is set up.

.dim_set:N

.dim_set:c

.dim_gset:N

.dim_gset:c

〈key〉 .fp_set:N = 〈floating point〉

Defines 〈key〉 to set 〈floating point〉 to 〈value〉 (which must a floating point expression).
If the variable does not exist, it will be created globally at the point that the key is set
up.

.fp_set:N

.fp_set:c

.fp_gset:N

.fp_gset:c

〈key〉 .groups:n = {〈groups〉}

Defines 〈key〉 as belonging to the 〈groups〉 declared. Groups provide a “secondary axis”
for selectively setting keys, and are described in Section 6.

.groups:n

New: 2013-07-14

174

〈key〉 .initial:n = {〈value〉}

Initialises the 〈key〉 with the 〈value〉, equivalent to

\keys_set:nn {〈module〉} { 〈key〉 = 〈value〉 }

.initial:n

.initial:V

.initial:o

.initial:x

Updated: 2013-07-09

〈key〉 .int_set:N = 〈integer〉

Defines 〈key〉 to set 〈integer〉 to 〈value〉 (which must be an integer expression). If the
variable does not exist, it will be created globally at the point that the key is set up.

.int_set:N

.int_set:c

.int_gset:N

.int_gset:c

〈key〉 .meta:n = {〈keyval list〉}

Makes 〈key〉 a meta-key, which will set 〈keyval list〉 in one go. If 〈key〉 is given with a
value at the time the key is used, then the value will be passed through to the subsidiary
〈keys〉 for processing (as #1).

.meta:n

Updated: 2013-07-10

〈key〉 .meta:nn = {〈path〉} {〈keyval list〉}

Makes 〈key〉 a meta-key, which will set 〈keyval list〉 in one go using the 〈path〉 in place of
the current one. If 〈key〉 is given with a value at the time the key is used, then the value
will be passed through to the subsidiary 〈keys〉 for processing (as #1).

.meta:nn

New: 2013-07-10

〈key〉 .multichoice:

Sets 〈key〉 to act as a multiple choice key. Each valid choice for 〈key〉 must then be
created, as discussed in section 3.

.multichoice:

New: 2011-08-21

〈key〉 .multichoices:nn {〈choices〉} {〈code〉}

Sets 〈key〉 to act as a multiple choice key, and defines a series 〈choices〉 which are im-
plemented using the 〈code〉. Inside 〈code〉, \l_keys_choice_tl will be the name of the
choice made, and \l_keys_choice_int will be the position of the choice in the list of
〈choices〉 (indexed from 1). Choices are discussed in detail in section 3.

.multichoices:nn

.multichoices:Vn

.multichoices:on

.multichoices:xn

New: 2011-08-21

Updated: 2013-07-10

〈key〉 .skip_set:N = 〈skip〉

Defines 〈key〉 to set 〈skip〉 to 〈value〉 (which must be a skip expression). If the variable
does not exist, it will be created globally at the point that the key is set up.

.skip_set:N

.skip_set:c

.skip_gset:N

.skip_gset:c

〈key〉 .tl_set:N = 〈token list variable〉

Defines 〈key〉 to set 〈token list variable〉 to 〈value〉. If the variable does not exist, it will
be created globally at the point that the key is set up.

.tl_set:N

.tl_set:c

.tl_gset:N

.tl_gset:c

175

〈key〉 .tl_set_x:N = 〈token list variable〉

Defines 〈key〉 to set 〈token list variable〉 to 〈value〉, which will be subjected to an x-
type expansion (i.e. using \tl_set:Nx). If the variable does not exist, it will be created
globally at the point that the key is set up.

.tl_set_x:N

.tl_set_x:c

.tl_gset_x:N

.tl_gset_x:c

〈key〉 .undefine:

Removes the definition of the 〈key〉 within the current scope.
.undefine:

New: 2015-07-14

〈key〉 .value_forbidden:n = true|false

Specifies that 〈key〉 cannot receive a 〈value〉 when used. If a 〈value〉 is given then an error
will be issued. Setting the property false will cancel the restriction.

.value_forbidden:n

New: 2015-07-14

〈key〉 .value_required:n = true|false

Specifies that 〈key〉 must receive a 〈value〉 when used. If a 〈value〉 is not given then an
error will be issued. Setting the property false will cancel the restriction.

.value_required:n

New: 2015-07-14

2 Sub-dividing keys
When creating large numbers of keys, it may be desirable to divide them into several
sub-groups for a given module. This can be achieved either by adding a sub-division to
the module name:

\keys_define:nn { module / subgroup }
{ key .code:n = code }

or to the key name:

\keys_define:nn { mymodule }
{ subgroup / key .code:n = code }

As illustrated, the best choice of token for sub-dividing keys in this way is /. This is
because of the method that is used to represent keys internally. Both of the above code
fragments set the same key, which has full name module/subgroup/key.

As will be illustrated in the next section, this subdivision is particularly relevant to
making multiple choices.

3 Choice and multiple choice keys
The l3keys system supports two types of choice key, in which a series of pre-defined input
values are linked to varying implementations. Choice keys are usually created so that the
various values are mutually-exclusive: only one can apply at any one time. “Multiple”
choice keys are also supported: these allow a selection of values to be chosen at the same
time.

Mutually-exclusive choices are created by setting the .choice: property:

176

\keys_define:nn { mymodule }
{ key .choice: }

For keys which are set up as choices, the valid choices are generated by creating sub-keys
of the choice key. This can be carried out in two ways.

In many cases, choices execute similar code which is dependant only on the name of
the choice or the position of the choice in the list of all possibilities. Here, the keys can
share the same code, and can be rapidly created using the .choices:nn property.

\keys_define:nn { mymodule }
{
key .choices:nn =
{ choice-a, choice-b, choice-c }
{
You~gave~choice~’\tl_use:N \l_keys_choice_tl’,~
which~is~in~position~\int_use:N \l_keys_choice_int \c_space_tl
in~the~list.

}
}

The index \l_keys_choice_int in the list of choices starts at 1.

Inside the code block for a choice generated using .choices:nn, the variables \l_keys_-
choice_tl and \l_keys_choice_int are available to indicate the name of the current
choice, and its position in the comma list. The position is indexed from 1. Note that,
as with standard key code generated using .code:n, the value passed to the key (i.e. the
choice name) is also available as #1.

\l_keys_choice_int
\l_keys_choice_tl

On the other hand, it is sometimes useful to create choices which use entirely different
code from one another. This can be achieved by setting the .choice: property of a key,
then manually defining sub-keys.

\keys_define:nn { mymodule }
{
key .choice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,

}

It is possible to mix the two methods, but manually-created choices should not
use \l_keys_choice_tl or \l_keys_choice_int. These variables do not have defined
behaviour when used outside of code created using .choices:nn (i.e. anything might
happen).

It is possible to allow choice keys to take values which have not previously been
defined by adding code for the special unknown choice. The general behavior of the
unknown key is described in Section 5. A typical example in the case of a choice would
be to issue a custom error message:

177

\keys_define:nn { mymodule }
{
key .choice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,
key / unknown .code:n =
\msg_error:nnxxx { mymodule } { unknown-choice }
{ key } % Name of choice key
{ choice-a , choice-b , choice-c } % Valid choices
{ \exp_not:n {#1} } % Invalid choice given

%
%

}

Multiple choices are created in a very similar manner to mutually-exclusive choices,
using the properties .multichoice: and .multichoices:nn. As with mutually exclusive
choices, multiple choices are define as sub-keys. Thus both

\keys_define:nn { mymodule }
{
key .multichoices:nn =
{ choice-a, choice-b, choice-c }
{
You~gave~choice~’\tl_use:N \l_keys_choice_tl’,~
which~is~in~position~
\int_use:N \l_keys_choice_int \c_space_tl
in~the~list.

}
}

and

\keys_define:nn { mymodule }
{
key .multichoice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,

}

are valid.
When a multiple choice key is set

\keys_set:nn { mymodule }
{
key = { a , b , c } % ’key’ defined as a multiple choice

}

178

each choice is applied in turn, equivalent to a clist mapping or to applying each value
individually:

\keys_set:nn { mymodule }
{
key = a ,
key = b ,
key = c ,

}

Thus each separate choice will have passed to it the \l_keys_choice_tl and \l_keys_-
choice_int in exactly the same way as described for .choices:nn.

4 Setting keys

\keys_set:nn {〈module〉} {〈keyval list〉}

Parses the 〈keyval list〉, and sets those keys which are defined for 〈module〉. The behaviour
on finding an unknown key can be set by defining a special unknown key: this will be
illustrated later.

\keys_set:nn
\keys_set:(nV|nv|no)

Updated: 2015-11-07

For each key processed, information of the full path of the key, the name of the key and
the value of the key is available within three token list variables. These may be used
within the code of the key.

The value is everything after the =, which may be empty if no value was given. This
is stored in \l_keys_value_tl, and is not processed in any way by \keys_set:nn.

The path of the key is a “full” description of the key, and is unique for each key. It
consists of the module and full key name, thus for example

\keys_set:nn { mymodule } { key-a = some-value }

has path mymodule/key-a while

\keys_set:nn { mymodule } { subset / key-a = some-value }

has path mymodule/subset/key-a. This information is stored in \l_keys_path_tl, and
will have been processed by \tl_to_str:n.

The name of the key is the part of the path after the last /, and thus is not unique.
In the preceding examples, both keys have name key-a despite having different paths.
This information is stored in \l_keys_key_tl, and will have been processed by \tl_-
to_str:n.

\l_keys_key_tl
\l_keys_path_tl
\l_keys_value_tl

Updated: 2015-07-14

5 Handling of unknown keys
If a key has not previously been defined (is unknown), \keys_set:nn will look for a special
unknown key for the same module, and if this is not defined raises an error indicating that

179

the key name was unknown. This mechanism can be used for example to issue custom
error texts.

\keys_define:nn { mymodule }
{
unknown .code:n =
You~tried~to~set~key~’\l_keys_key_tl’~to~’#1’.

}

\keys_set_known:nnN {〈module〉} {〈keyval list〉} 〈tl〉\keys_set_known:nnN
\keys_set_known:(nVN|nvN|noN)
\keys_set_known:nn
\keys_set_known:(nV|nv|no)

New: 2011-08-23

Updated: 2015-11-07

In some cases, the desired behavior is to simply ignore unknown keys, collecting up
information on these for later processing. The \keys_set_known:nnN function parses
the 〈keyval list〉, and sets those keys which are defined for 〈module〉. Any keys which are
unknown are not processed further by the parser. The key–value pairs for each unknown
key name will be stored in the 〈tl〉 in a comma-separated form (i.e. an edited version of
the 〈keyval list〉). The \keys_set_known:nn version skips this stage.

Use of \keys_set_known:nnN can be nested, with the correct residual 〈keyval list〉
returned at each stage.

6 Selective key setting
In some cases it may be useful to be able to select only some keys for setting, even though
these keys have the same path. For example, with a set of keys defined using

\keys define:nn { mymodule }
{
key-one .code:n = { \my_func:n {#1} } ,
key-two .tl_set:N = \l_my_a_tl ,
key-three .tl_set:N = \l_my_b_tl ,
key-four .fp_set:N = \l_my_a_fp ,

}

the use of \keys_set:nn will attempt to set all four keys. However, in some contexts it
may only be sensible to set some keys, or to control the order of setting. To do this, keys
may be assigned to groups: arbitrary sets which are independent of the key tree. Thus
modifying the example to read

\keys define:nn { mymodule }
{
key-one .code:n = { \my_func:n {#1} } ,
key-one .groups:n = { first } ,

180

key-two .tl_set:N = \l_my_a_tl ,
key-two .groups:n = { first } ,
key-three .tl_set:N = \l_my_b_tl ,
key-three .groups:n = { second } ,
key-four .fp_set:N = \l_my_a_fp ,

}

will assign key-one and key-two to group first, key-three to group second, while
key-four is not assigned to a group.

Selective key setting may be achieved either by selecting one or more groups to be
made “active”, or by marking one or more groups to be ignored in key setting.

\keys_set_filter:nnnN {〈module〉} {〈groups〉} {〈keyval list〉} 〈tl〉\keys_set_filter:nnnN
\keys_set_filter:(nnVN|nnvN|nnoN)
\keys_set_filter:nnn
\keys_set_filter:(nnV|nnv|nno)

New: 2013-07-14

Updated: 2015-11-07

Actives key filtering in an “opt-out” sense: keys assigned to any of the 〈groups〉 specified
will be ignored. The 〈groups〉 are given as a comma-separated list. Unknown keys are
not assigned to any group and will thus always be set. The key–value pairs for each key
which is filtered out will be stored in the 〈tl〉 in a comma-separated form (i.e. an edited
version of the 〈keyval list〉). The \keys_set_filter:nnn version skips this stage.

Use of \keys_set_filter:nnnN can be nested, with the correct residual 〈keyval list〉
returned at each stage.

\keys_set_groups:nnn {〈module〉} {〈groups〉} {〈keyval list〉}\keys_set_groups:nnn
\keys_set_groups:(nnV|nnv|nno)

New: 2013-07-14

Updated: 2015-11-07

Actives key filtering in an “opt-in” sense: only keys assigned to one or more of the 〈groups〉
specified will be set. The 〈groups〉 are given as a comma-separated list. Unknown keys
are not assigned to any group and will thus never be set.

7 Utility functions for keys

\keys_if_exist_p:nn {〈module〉} {〈key〉}
\keys_if_exist:nnTF {〈module〉} {〈key〉} {〈true code〉} {〈false code〉}

Tests if the 〈key〉 exists for 〈module〉, i.e. if any code has been defined for 〈key〉.

\keys_if_exist_p:nn ?
\keys_if_exist:nnTF ?

Updated: 2015-11-07

181

\keys_if_choice_exist_p:nnn {〈module〉} {〈key〉} {〈choice〉}
\keys_if_choice_exist:nnnTF {〈module〉} {〈key〉} {〈choice〉} {〈true code〉}
{〈false code〉}

\keys_if_choice_exist_p:nnn ?
\keys_if_choice_exist:nnnTF ?

New: 2011-08-21

Updated: 2015-11-07

Tests if the 〈choice〉 is defined for the 〈key〉 within the 〈module〉, i.e. if any code has been
defined for 〈key〉/〈choice〉. The test is false if the 〈key〉 itself is not defined.

\keys_show:nn {〈module〉} {〈key〉}

Shows the information associated to the 〈key〉 for a 〈module〉, including the function
which is used to actually implement it.

\keys_show:nn

Updated: 2015-08-09

8 Low-level interface for parsing key–val lists
To re-cap from earlier, a key–value list is input of the form

KeyOne = ValueOne ,
KeyTwo = ValueTwo ,
KeyThree

where each key–value pair is separated by a comma from the rest of the list, and each
key–value pair does not necessarily contain an equals sign or a value! Processing this
type of input correctly requires a number of careful steps, to correctly account for braces,
spaces and the category codes of separators.

While the functions described earlier are used as a high-level interface for processing
such input, in special circumstances you may wish to use a lower-level approach. The
low-level parsing system converts a 〈key–value list〉 into 〈keys〉 and associated 〈values〉.
After the parsing phase is completed, the resulting keys and values (or keys alone) are
available for further processing. This processing is not carried out by the low-level parser
itself, and so the parser requires the names of two functions along with the key–value
list. One function is needed to process key–value pairs (it receives two arguments), and
a second function is required for keys given without any value (it is called with a single
argument).

The parser does not double # tokens or expand any input. Active tokens = and ,
appearing at the outer level of braces are converted to category “other” (12) so that the
parser does not “miss” any due to category code changes. Spaces are removed from the
ends of the keys and values. Keys and values which are given in braces will have exactly
one set removed (after space trimming), thus

key = {value here},

and

key = value here,

182

are treated identically.

\keyval_parse:NNn 〈function1〉 〈function2〉 {〈key–value list〉}

Parses the 〈key–value list〉 into a series of 〈keys〉 and associated 〈values〉, or keys alone
(if no 〈value〉 was given). 〈function1〉 should take one argument, while 〈function2〉
should absorb two arguments. After \keyval_parse:NNn has parsed the 〈key–value list〉,
〈function1〉 will be used to process keys given with no value and 〈function2〉 will be used
to process keys given with a value. The order of the 〈keys〉 in the 〈key–value list〉 will be
preserved. Thus

\keyval_parse:NNn \function:n \function:nn
{ key1 = value1 , key2 = value2, key3 = , key4 }

will be converted into an input stream

\function:nn { key1 } { value1 }
\function:nn { key2 } { value2 }
\function:nn { key3 } { }
\function:n { key4 }

Note that there is a difference between an empty value (an equals sign followed by noth-
ing) and a missing value (no equals sign at all). Spaces are trimmed from the ends of the
〈key〉 and 〈value〉, then one outer set of braces is removed from the 〈key〉 and 〈value〉 as
part of the processing.

\keyval_parse:NNn

Updated: 2011-09-08

183

Part XXI

The l3file package
File and I/O operations
This module provides functions for working with external files. Some of these functions
apply to an entire file, and have prefix \file_..., while others are used to work with
files on a line by line basis and have prefix \ior_... (reading) or \iow_... (writing).

It is important to remember that when reading external files TEX will attempt to
locate them both the operating system path and entries in the TEX file database (most
TEX systems use such a database). Thus the “current path” for TEX is somewhat broader
than that for other programs.

For functions which expect a 〈file name〉 argument, this argument may contain both
literal items and expandable content, which should on full expansion be the desired file
name. Any active characters (as declared in \l_char_active_seq) will not be expanded,
allowing the direct use of these in file names. File names will be quoted using " tokens
if they contain spaces: as a result, " tokens are not permitted in file names.

1 File operation functions

Contains the name of the current LATEX file. This variable should not be modified: it is
intended for information only. It will be equal to \c_sys_jobname_str at the start of a
LATEX run and will be modified each time a file is read using \file_input:n.

\g_file_current_name_tl

\file_if_exist:nTF {〈file name〉} {〈true code〉} {〈false code〉}

Searches for 〈file name〉 using the current TEX search path and the additional paths
controlled by \file_path_include:n).

\file_if_exist:nTF

Updated: 2012-02-10

\file_add_path:nN {〈file name〉} 〈tl var〉

Searches for 〈file name〉 in the path as detailed for \file_if_exist:nTF, and if found
sets the 〈tl var〉 the fully-qualified name of the file, i.e. the path and file name. If the file
is not found then the 〈tl var〉 will contain the marker \q_no_value.

\file_add_path:nN

Updated: 2012-02-10

\file_input:n {〈file name〉}

Searches for 〈file name〉 in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional LATEX source. All files read are recorded for information
and the file name stack is updated by this function. An error will be raised if the file is
not found.

\file_input:n

Updated: 2012-02-17

184

\file_path_include:n {〈path〉}

Adds 〈path〉 to the list of those used to search when reading files. The assignment is local.
The 〈path〉 is processed in the same way as a 〈file name〉, i.e., with x-type expansion
except active characters.

\file_path_include:n

Updated: 2012-07-04

\file_path_remove:n {〈path〉}

Removes 〈path〉 from the list of those used to search when reading files. The assignment
is local. The 〈path〉 is processed in the same way as a 〈file name〉, i.e., with x-type
expansion except active characters.

\file_path_remove:n

Updated: 2012-07-04

\file_list:

This function will list all files loaded using \file_input:n in the log file.
\file_list:

1.1 Input–output stream management
As TEX is limited to 16 input streams and 16 output streams, direct use of the streams
by the programmer is not supported in LATEX3. Instead, an internal pool of streams is
maintained, and these are allocated and deallocated as needed by other modules. As a
result, the programmer should close streams when they are no longer needed, to release
them for other processes.

Note that I/O operations are global: streams should all be declared with global
names and treated accordingly.

\ior_new:N 〈stream〉
\iow_new:N 〈stream〉

Globally reserves the name of the 〈stream〉, either for reading or for writing as appropri-
ate. The 〈stream〉 is not opened until the appropriate \..._open:Nn function is used.
Attempting to use a 〈stream〉 which has not been opened is an error, and the 〈stream〉
will behave as the corresponding \c_term_....

\ior_new:N
\ior_new:c
\iow_new:N
\iow_new:c

New: 2011-09-26

Updated: 2011-12-27

\ior_open:Nn 〈stream〉 {〈file name〉}

Opens 〈file name〉 for reading using 〈stream〉 as the control sequence for file access. If the
〈stream〉 was already open it is closed before the new operation begins. The 〈stream〉 is
available for access immediately and will remain allocated to 〈file name〉 until a \ior_-
close:N instruction is given or the TEX run ends.

\ior_open:Nn
\ior_open:cn

Updated: 2012-02-10

\ior_open:NnTF 〈stream〉 {〈file name〉} {〈true code〉} {〈false code〉}

Opens 〈file name〉 for reading using 〈stream〉 as the control sequence for file access. If the
〈stream〉 was already open it is closed before the new operation begins. The 〈stream〉 is
available for access immediately and will remain allocated to 〈file name〉 until a \ior_-
close:N instruction is given or the TEX run ends. The 〈true code〉 is then inserted into
the input stream. If the file is not found, no error is raised and the 〈false code〉 is inserted
into the input stream.

\ior_open:NnTF
\ior_open:cnTF

New: 2013-01-12

185

\iow_open:Nn 〈stream〉 {〈file name〉}

Opens 〈file name〉 for writing using 〈stream〉 as the control sequence for file access. If the
〈stream〉 was already open it is closed before the new operation begins. The 〈stream〉 is
available for access immediately and will remain allocated to 〈file name〉 until a \iow_-
close:N instruction is given or the TEX run ends. Opening a file for writing will clear
any existing content in the file (i.e. writing is not additive).

\iow_open:Nn
\iow_open:cn

Updated: 2012-02-09

\ior_close:N 〈stream〉
\iow_close:N 〈stream〉

Closes the 〈stream〉. Streams should always be closed when they are finished with as this
ensures that they remain available to other programmers.

\ior_close:N
\ior_close:c
\iow_close:N
\iow_close:c

Updated: 2012-07-31

\ior_list_streams:
\iow_list_streams:

Displays a list of the file names associated with each open stream: intended for tracking
down problems.

\ior_list_streams:
\iow_list_streams:

Updated: 2015-08-01

1.2 Reading from files

\ior_get:NN 〈stream〉 〈token list variable〉

Function that reads one or more lines (until an equal number of left and right braces are
found) from the input 〈stream〉 and stores the result locally in the 〈token list〉 variable.
If the 〈stream〉 is not open, input is requested from the terminal. The material read from
the 〈stream〉 will be tokenized by TEX according to the category codes in force when
the function is used. Note that any blank lines will be converted to the token \par.
Therefore, if skipping blank lines is requires a test such as

\ior_get:NN \l_my_stream \l_tmpa_tl
\tl_set:Nn \l_tmpb_tl { \par }
\tl_if_eq:NNF \l_tmpa_tl \l_tmpb_tl
...

may be used. Also notice that if multiple lines are read to match braces then the resulting
token list will contain \par tokens. As normal TEX tokenization is in force, any lines
which do not end in a comment character (usually %) will have the line ending converted
to a space, so for example input

a b c

will result in a token list a b c .

TEXhackers note: This protected macro expands to the TEX primitive \read along with
the to keyword.

\ior_get:NN

New: 2012-06-24

186

\ior_get_str:NN 〈stream〉 〈token list variable〉

Function that reads one line from the input 〈stream〉 and stores the result locally in the
〈token list〉 variable. If the 〈stream〉 is not open, input is requested from the terminal.
The material is read from the 〈stream〉 as a series of tokens with category code 12 (other),
with the exception of space characters which are given category code 10 (space). Multiple
whitespace characters are retained by this process. It will always only read one line and
any blank lines in the input will result in the 〈token list variable〉 being empty. Unlike
\ior_get:NN, line ends do not receive any special treatment. Thus input

a b c

will result in a token list a b c with the letters a, b, and c having category code 12.

TEXhackers note: This protected macro is a wrapper around the ε-TEX primitive
\readline. However, the end-line character normally added by this primitive is not included in
the result of \ior_get_str:NN.

\ior_get_str:NN

New: 2012-06-24

Updated: 2012-07-31

\ior_if_eof_p:N 〈stream〉
\ior_if_eof:NTF 〈stream〉 {〈true code〉} {〈false code〉}

Tests if the end of a 〈stream〉 has been reached during a reading operation. The test will
also return a true value if the 〈stream〉 is not open.

\ior_if_eof_p:N ?
\ior_if_eof:NTF ?

Updated: 2012-02-10

2 Writing to files

\iow_now:Nn 〈stream〉 {〈tokens〉}

This functions writes 〈tokens〉 to the specified 〈stream〉 immediately (i.e. the write oper-
ation is called on expansion of \iow_now:Nn).

\iow_now:Nn
\iow_now:(Nx|cn|cx)

Updated: 2012-06-05

\iow_log:n {〈tokens〉}

This function writes the given 〈tokens〉 to the log (transcript) file immediately: it is a
dedicated version of \iow_now:Nn.

\iow_log:n
\iow_log:x

\iow_term:n {〈tokens〉}

This function writes the given 〈tokens〉 to the terminal file immediately: it is a dedicated
version of \iow_now:Nn.

\iow_term:n
\iow_term:x

187

\iow_shipout:Nn 〈stream〉 {〈tokens〉}

This functions writes 〈tokens〉 to the specified 〈stream〉 when the current page is finalised
(i.e. at shipout). The x-type variants expand the 〈tokens〉 at the point where the function
is used but not when the resulting tokens are written to the 〈stream〉 (cf. \iow_shipout_-
x:Nn).

TEXhackers note: When using expl3 with a format other than LATEX, new line charac-
ters inserted using \iow_newline: or using the line-wrapping code \iow_wrap:nnnN will not be
recognized in the argument of \iow_shipout:Nn. This may lead to the insertion of additionnal
unwanted line-breaks.

\iow_shipout:Nn
\iow_shipout:(Nx|cn|cx)

\iow_shipout_x:Nn 〈stream〉 {〈tokens〉}

This functions writes 〈tokens〉 to the specified 〈stream〉 when the current page is finalised
(i.e. at shipout). The 〈tokens〉 are expanded at the time of writing in addition to any
expansion when the function is used. This makes these functions suitable for including
material finalised during the page building process (such as the page number integer).

TEXhackers note: This is a wrapper around the TEX primitive \write. When using expl3
with a format other than LATEX, new line characters inserted using \iow_newline: or using the
line-wrapping code \iow_wrap:nnnN will not be recognized in the argument of \iow_shipout:Nn.
This may lead to the insertion of additionnal unwanted line-breaks.

\iow_shipout_x:Nn
\iow_shipout_x:(Nx|cn|cx)

Updated: 2012-09-08

\iow_char:N \〈char〉

Inserts 〈char〉 into the output stream. Useful when trying to write difficult characters
such as %, {, }, etc. in messages, for example:

\iow_now:Nx \g_my_iow { \iow_char:N \{ text \iow_char:N \} }

The function has no effect if writing is taking place without expansion (e.g. in the second
argument of \iow_now:Nn).

\iow_char:N ?

\iow_newline:

Function to add a new line within the 〈tokens〉 written to a file. The function has no
effect if writing is taking place without expansion (e.g. in the second argument of \iow_-
now:Nn).

TEXhackers note: When using expl3 with a format other than LATEX, the character
inserted by \iow_newline: will not be recognized by TEX, which may lead to the insertion of
additionnal unwanted line-breaks. This issue only affects \iow_shipout:Nn, \iow_shipout_x:Nn
and direct uses of primitive operations.

\iow_newline: ?

188

2.1 Wrapping lines in output

\iow_wrap:nnnN {〈text〉} {〈run-on text〉} {〈set up〉} 〈function〉

This function will wrap the 〈text〉 to a fixed number of characters per line. At the start of
each line which is wrapped, the 〈run-on text〉 will be inserted. The line character count
targeted will be the value of \l_iow_line_count_int minus the number of characters in
the 〈run-on text〉 for all lines except the first, for which the target number of characters
is simply \l_iow_line_count_int since there is no run-on text. The 〈text〉 and 〈run-on
text〉 are exhaustively expanded by the function, with the following substitutions:

• \\ may be used to force a new line,

• \␣ may be used to represent a forced space (for example after a control sequence),

• \#, \%, \{, \}, \~ may be used to represent the corresponding character,

• \iow_indent:n may be used to indent a part of the 〈text〉 (not the 〈run-on text〉).

Additional functions may be added to the wrapping by using the 〈set up〉, which is
executed before the wrapping takes place: this may include overriding the substitutions
listed.

Any expandable material in the 〈text〉 which is not to be expanded on wrapping
should be converted to a string using \token_to_str:N, \tl_to_str:n, \tl_to_str:N,
etc.

The result of the wrapping operation is passed as a braced argument to the
〈function〉, which will typically be a wrapper around a write operation. The output
of \iow_wrap:nnnN (i.e. the argument passed to the 〈function〉) will consist of characters
of category “other” (category code 12), with the exception of spaces which will have cat-
egory “space” (category code 10). This means that the output will not expand further
when written to a file.

TEXhackers note: Internally, \iow_wrap:nnnN carries out an x-type expansion on the
〈text〉 to expand it. This is done in such a way that \exp_not:N or \exp_not:n could be used
to prevent expansion of material. However, this is less conceptually clear than conversion to a
string, which is therefore the supported method for handling expandable material in the 〈text〉.

\iow_wrap:nnnN

New: 2012-06-28

Updated: 2015-08-05

\iow_indent:n {〈text〉}

In the first argument of \iow_wrap:nnnN (for instance in messages), indents 〈text〉 by
four spaces. This function will not cause a line break, and only affects lines which start
within the scope of the 〈text〉. In case the indented 〈text〉 should appear on separate lines
from the surrounding text, use \\ to force line breaks.

\iow_indent:n

New: 2011-09-21

The maximum number of characters in a line to be written by the \iow_wrap:nnnN
function. This value depends on the TEX system in use: the standard value is 78, which
is typically correct for unmodified TEXlive and MiKTEX systems.

\l_iow_line_count_int

New: 2012-06-24

189

Token list containing one character with category code 12, (“other”), and character code
32 (space).

\c_catcode_other_space_tl

New: 2011-09-05

2.2 Constant input–output streams

Constant input stream for reading from the terminal. Reading from this stream using
\ior_get:NN or similar will result in a prompt from TEX of the form

<tl>=

\c_term_ior

Constant output streams for writing to the log and to the terminal (plus the log), respec-
tively.

\c_log_iow
\c_term_iow

2.3 Primitive conditionals

\if_eof:w 〈stream〉
〈true code〉

\else:
〈false code〉

\fi:

Tests if the 〈stream〉 returns “end of file”, which is true for non-existent files. The \else:
branch is optional.

TEXhackers note: This is the TEX primitive \ifeof.

\if_eof:w ?

2.4 Internal file functions and variables

Used to test for the existence of files when opening.\g__file_internal_ior

Used to return the full name of a file for internal use. This is set by \file_if_-
exist:n(TF) and __file_if_exist:nT, and the value may then be used to load a
file directly provided no further operations intervene.

\l__file_internal_name_tl

__file_name_sanitize:nn {〈name〉} {〈tokens〉}

Exhaustively-expands the 〈name〉 with the exception of any category 〈active〉 (catcode 13)
tokens, which are not expanded. The list of 〈active〉 tokens is taken from \l_char_-
active_seq. The 〈sanitized name〉 is then inserted (in braces) after the 〈tokens〉, which
should further process the file name. If any spaces are found in the name after expansion,
an error is raised.

__file_name_sanitize:nn

New: 2012-02-09

190

2.5 Internal input–output functions

__ior_open:Nn 〈stream〉 {〈file name〉}

This function has identical syntax to the public version. However, is does not take
precautions against active characters in the 〈file name〉, and it does not attempt to add
a 〈path〉 to the 〈file name〉: it is therefore intended to be used by higher-level functions
which have already fully expanded the 〈file name〉 and which need to perform multiple
open or close operations. See for example the implementation of \file_add_path:nN,

__ior_open:Nn
__ior_open:No

New: 2012-01-23

__iow_with:Nnn 〈integer〉 {〈value〉} {〈code〉}

If the 〈integer〉 is equal to the 〈value〉 then this function simply runs the 〈code〉. Oth-
erwise it saves the current value of the 〈integer〉, sets it to the 〈value〉, runs the
〈code〉, and restores the 〈integer〉 to its former value. This is used to ensure that the
\newlinechar is 10 when writing to a stream, which lets \iow_newline: work, and that
\errorcontextlines is −1 when displaying a message.

__iow_with:Nnn

New: 2014-08-23

191

Part XXII

The l3fp package: floating points
A decimal floating point number is one which is stored as a significand and a separate
exponent. The module implements expandably a wide set of arithmetic, trigonometric,
and other operations on decimal floating point numbers, to be used within floating point
expressions. Floating point expressions support the following operations with their usual
precedence.

• Basic arithmetic: addition x + y, subtraction x − y, multiplication x ∗ y, division
x/y, square root

√
x, and parentheses.

• Comparison operators: x<y, x<= y, x>? y, x ! = y etc.

• Boolean logic: negation !x, conjunction x&& y, disjunction x || y, ternary operator
x ? y : z.

• Exponentials: expx, ln x, xy.

• Trigonometry: sin x, cosx, tan x, cotx, secx, cscx expecting their arguments in
radians, and sindx, cosdx, tandx, cotdx, secdx, cscdx expecting their arguments
in degrees.

• Inverse trigonometric functions: asin x, acosx, atan x, acotx, asecx, acscx giving
a result in radians, and asindx, acosdx, atandx, acotdx, asecdx, acscdx giving a
result in degrees.

(not yet) Hyperbolic functions and their inverse functions: sinh x, cosh x, tanh x, coth x,
sech x, csch, and asinh x, acosh x, atanh x, acoth x, asech x, acsch x.

• Extrema: max(x, y, . . .), min(x, y, . . .), abs(x).

• Rounding functions (n = 0 by default, t = NaN by default): trunc(x, n) rounds
towards zero, floor(x, n) rounds towards −∞, ceil(x, n) rounds towards +∞,
round(x, n, t) rounds to the closest value, with ties rounded to an even value by
default, towards zero if t = 0, towards +∞ if t > 0 and towards −∞ if t < 0. And
(not yet) modulo, and “quantize”.

• Constants: pi, deg (one degree in radians).

• Dimensions, automatically expressed in points, e.g., pc is 12.

• Automatic conversion (no need for \〈type〉_use:N) of integer, dimension, and skip
variables to floating points, expressing dimensions in points and ignoring the stretch
and shrink components of skips.

Floating point numbers can be given either explicitly (in a form such as 1.234e-34, or
-.0001), or as a stored floating point variable, which is automatically replaced by its
current value. See section 9.1 for a description of what a floating point is, section 9.2

192

for details about how an expression is parsed, and section 9.3 to know what the various
operations do. Some operations may raise exceptions (error messages), described in
section 7.

An example of use could be the following.

\LaTeX{} can now compute: $ \frac{\sin (3.5)}{2} + 2\cdot 10^{-3}
= \ExplSyntaxOn \fp_to_decimal:n {sin 3.5 /2 + 2e-3} $.

But in all fairness, this module is mostly meant as an underlying tool for higher-level
commands. For example, one could provide a function to typeset nicely the result of
floating point computations.

\usepackage{xparse, siunitx}
\ExplSyntaxOn
\NewDocumentCommand { \calcnum } { m }
{ \num { \fp_to_scientific:n {#1} } }

\ExplSyntaxOff
\calcnum { 2 pi * sin (2.3 ^ 5) }

1 Creating and initialising floating point variables

\fp_new:N 〈fp var〉

Creates a new 〈fp var〉 or raises an error if the name is already taken. The declaration is
global. The 〈fp var〉 will initially be +0.

\fp_new:N
\fp_new:c

Updated: 2012-05-08

\fp_const:Nn 〈fp var〉 {〈floating point expression〉}

Creates a new constant 〈fp var〉 or raises an error if the name is already taken. The
〈fp var〉 will be set globally equal to the result of evaluating the 〈floating point expression〉.

\fp_const:Nn
\fp_const:cn

Updated: 2012-05-08

\fp_zero:N 〈fp var〉

Sets the 〈fp var〉 to +0.
\fp_zero:N
\fp_zero:c
\fp_gzero:N
\fp_gzero:c

Updated: 2012-05-08

\fp_zero_new:N 〈fp var〉

Ensures that the 〈fp var〉 exists globally by applying \fp_new:N if necessary, then applies
\fp_(g)zero:N to leave the 〈fp var〉 set to +0.

\fp_zero_new:N
\fp_zero_new:c
\fp_gzero_new:N
\fp_gzero_new:c

Updated: 2012-05-08

193

2 Setting floating point variables

\fp_set:Nn 〈fp var〉 {〈floating point expression〉}

Sets 〈fp var〉 equal to the result of computing the 〈floating point expression〉.
\fp_set:Nn
\fp_set:cn
\fp_gset:Nn
\fp_gset:cn

Updated: 2012-05-08

\fp_set_eq:NN 〈fp var1〉 〈fp var2〉

Sets the floating point variable 〈fp var1〉 equal to the current value of 〈fp var2〉.
\fp_set_eq:NN
\fp_set_eq:(cN|Nc|cc)
\fp_gset_eq:NN
\fp_gset_eq:(cN|Nc|cc)

Updated: 2012-05-08

\fp_add:Nn 〈fp var〉 {〈floating point expression〉}

Adds the result of computing the 〈floating point expression〉 to the 〈fp var〉.
\fp_add:Nn
\fp_add:cn
\fp_gadd:Nn
\fp_gadd:cn

Updated: 2012-05-08

\fp_sub:Nn 〈fp var〉 {〈floating point expression〉}

Subtracts the result of computing the 〈floating point expression〉 from the 〈fp var〉.
\fp_sub:Nn
\fp_sub:cn
\fp_gsub:Nn
\fp_gsub:cn

Updated: 2012-05-08

3 Using floating point numbers

\fp_eval:n {〈floating point expression〉}

Evaluates the 〈floating point expression〉 and expresses the result as a decimal number
with no exponent. Leading or trailing zeros may be inserted to compensate for the
exponent. Non-significant trailing zeros are trimmed, and integers are expressed without
a decimal separator. The values ±∞ and NaN trigger an “invalid operation” exception.
This function is identical to \fp_to_decimal:n.

\fp_eval:n ?

New: 2012-05-08

Updated: 2012-07-08

\fp_to_decimal:N 〈fp var〉
\fp_to_decimal:n {〈floating point expression〉}

Evaluates the 〈floating point expression〉 and expresses the result as a decimal number
with no exponent. Leading or trailing zeros may be inserted to compensate for the
exponent. Non-significant trailing zeros are trimmed, and integers are expressed without
a decimal separator. The values ±∞ and NaN trigger an “invalid operation” exception.

\fp_to_decimal:N ?
\fp_to_decimal:c ?
\fp_to_decimal:n ?

New: 2012-05-08

Updated: 2012-07-08

194

\fp_to_dim:N 〈fp var〉
\fp_to_dim:n {〈floating point expression〉}

Evaluates the 〈floating point expression〉 and expresses the result as a dimension (in pt)
suitable for use in dimension expressions. The output is identical to \fp_to_decimal:n,
with an additional trailing pt (both letter tokens). In particular, the result may be
outside the range [−214 + 2−17, 214 − 2−17] of valid TEX dimensions, leading to overflow
errors if used as a dimension. The values ±∞ and NaN trigger an “invalid operation”
exception.

\fp_to_dim:N ?
\fp_to_dim:c ?
\fp_to_dim:n ?

Updated: 2016-03-22

\fp_to_int:N 〈fp var〉
\fp_to_int:n {〈floating point expression〉}

Evaluates the 〈floating point expression〉, and rounds the result to the closest integer,
rounding exact ties to an even integer. The result may be outside the range [−231 +
1, 231−1] of valid TEX integers, leading to overflow errors if used in an integer expression.
The values ±∞ and NaN trigger an “invalid operation” exception.

\fp_to_int:N ?
\fp_to_int:c ?
\fp_to_int:n ?

Updated: 2012-07-08

\fp_to_scientific:N 〈fp var〉
\fp_to_scientific:n {〈floating point expression〉}

Evaluates the 〈floating point expression〉 and expresses the result in scientific notation:

〈optional -〉〈digit〉.〈15 digits〉e〈optional sign〉〈exponent〉

The leading 〈digit〉 is non-zero except in the case of ±0. The values ±∞ and NaN trigger
an “invalid operation” exception. Normal category codes apply: thus the e is category
code 11 (a letter).

\fp_to_scientific:N ?
\fp_to_scientific:c ?
\fp_to_scientific:n ?

New: 2012-05-08

Updated: 2016-03-22

\fp_to_tl:N 〈fp var〉
\fp_to_tl:n {〈floating point expression〉}

Evaluates the 〈floating point expression〉 and expresses the result in (almost) the shortest
possible form. Numbers in the ranges (0, 10−3) and [1016,∞) are expressed in scientific
notation with trailing zeros trimmed and no decimal separator when there is a single
significant digit (see \fp_to_scientific:n). Numbers in the range [10−3, 1016) are
expressed in a decimal notation without exponent, with trailing zeros trimmed, and no
decimal separator for integer values (see \fp_to_decimal:n. Negative numbers start
with -. The special values ±0, ±∞ and NaN are rendered as 0, -0, inf, -inf, and nan
respectively. Normal category codes apply and thus inf or nan, if produced, will be made
up of letters.

\fp_to_tl:N ?
\fp_to_tl:c ?
\fp_to_tl:n ?

Updated: 2016-03-22

\fp_use:N 〈fp var〉

Inserts the value of the 〈fp var〉 into the input stream as a decimal number with no
exponent. Leading or trailing zeros may be inserted to compensate for the exponent.
Non-significant trailing zeros are trimmed. Integers are expressed without a decimal sep-
arator. The values ±∞ and NaN trigger an “invalid operation” exception. This function
is identical to \fp_to_decimal:N.

\fp_use:N ?
\fp_use:c ?

Updated: 2012-07-08

195

4 Floating point conditionals

\fp_if_exist_p:N 〈fp var〉
\fp_if_exist:NTF 〈fp var〉 {〈true code〉} {〈false code〉}

Tests whether the 〈fp var〉 is currently defined. This does not check that the 〈fp var〉
really is a floating point variable.

\fp_if_exist_p:N ?
\fp_if_exist_p:c ?
\fp_if_exist:NTF ?
\fp_if_exist:cTF ?

Updated: 2012-05-08

\fp_compare_p:nNn {〈fpexpr1〉} 〈relation〉 {〈fpexpr2〉}
\fp_compare:nNnTF {〈fpexpr1〉} 〈relation〉 {〈fpexpr2〉} {〈true code〉} {〈false code〉}

Compares the 〈fpexpr1〉 and the 〈fpexpr2〉, and returns true if the 〈relation〉 is obeyed.
Two floating point numbers x and y may obey four mutually exclusive relations:
x〈y,x=y,x〉y, or x and y are not ordered. The latter case occurs exactly when either
operand is NaN, and this relation is denoted by the symbol ?. Note that a NaN is distinct
from any value, even another NaN, hence x = x is not true for a NaN. To test if a value
is NaN, compare it to an arbitrary number with the “not ordered” relation.

\fp_compare:nNnTF { <value> } ? { 0 }
{ } % <value> is nan
{ } % <value> is not nan

\fp_compare_p:nNn ?
\fp_compare:nNnTF ?

Updated: 2012-05-08

196

\fp_compare_p:n
{
〈fpexpr1〉 〈relation1〉
...
〈fpexprN 〉 〈relationN 〉
〈fpexprN+1〉

}
\fp_compare:nTF
{
〈fpexpr1〉 〈relation1〉
...
〈fpexprN 〉 〈relationN 〉
〈fpexprN+1〉

}
{〈true code〉} {〈false code〉}

Evaluates the 〈floating point expressions〉 as described for \fp_eval:n and compares
consecutive result using the corresponding 〈relation〉, namely it compares 〈intexpr1〉 and
〈intexpr2〉 using the 〈relation1〉, then 〈intexpr2〉 and 〈intexpr3〉 using the 〈relation2〉, until
finally comparing 〈intexprN 〉 and 〈intexprN+1〉 using the 〈relationN 〉. The test yields
true if all comparisons are true. Each 〈floating point expression〉 is evaluated only once.
Contrarily to \int_compare:nTF, all 〈floating point expressions〉 are computed, even if
one comparison is false. Two floating point numbers x and y may obey four mutually
exclusive relations: x〈y,x=y,x〉y, or x and y are not ordered. The latter case occurs
exactly when one of the operands is NaN, and this relation is denoted by the symbol ?.
Each 〈relation〉 can be any (non-empty) combination of <, =, >, and ?, plus an optional
leading ! (which negates the 〈relation〉), with the restriction that the 〈relation〉 may
not start with ?, as this symbol has a different meaning (in combination with :) within
floatin point expressions. The comparison x 〈relation〉 y is then true if the 〈relation〉
does not start with ! and the actual relation (<, =, >, or ?) between x and y appears
within the 〈relation〉, or on the contrary if the 〈relation〉 starts with ! and the relation
between x and y does not appear within the 〈relation〉. Common choices of 〈relation〉
include >= (greater or equal), != (not equal), !? or <=> (comparable).

\fp_compare_p:n ?
\fp_compare:nTF ?

Updated: 2012-12-14

5 Floating point expression loops

\fp_do_until:nNnn {〈fpexpr1〉} 〈relation〉 {〈fpexpr2〉} {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then evaluates the relation-
ship between the two 〈floating point expressions〉 as described for \fp_compare:nNnTF.
If the test is false then the 〈code〉 will be inserted into the input stream again and a
loop will occur until the 〈relation〉 is true.

\fp_do_until:nNnn I

New: 2012-08-16

197

\fp_do_while:nNnn {〈fpexpr1〉} 〈relation〉 {〈fpexpr2〉} {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then evaluates the relation-
ship between the two 〈floating point expressions〉 as described for \fp_compare:nNnTF.
If the test is true then the 〈code〉 will be inserted into the input stream again and a loop
will occur until the 〈relation〉 is false.

\fp_do_while:nNnn I

New: 2012-08-16

\fp_until_do:nNnn {〈fpexpr1〉} 〈relation〉 {〈fpexpr2〉} {〈code〉}

Evaluates the relationship between the two 〈floating point expressions〉 as described for
\fp_compare:nNnTF, and then places the 〈code〉 in the input stream if the 〈relation〉 is
false. After the 〈code〉 has been processed by TEX the test will be repeated, and a loop
will occur until the test is true.

\fp_until_do:nNnn I

New: 2012-08-16

\fp_while_do:nNnn {〈fpexpr1〉} 〈relation〉 {〈fpexpr2〉} {〈code〉}

Evaluates the relationship between the two 〈floating point expressions〉 as described for
\fp_compare:nNnTF, and then places the 〈code〉 in the input stream if the 〈relation〉 is
true. After the 〈code〉 has been processed by TEX the test will be repeated, and a loop
will occur until the test is false.

\fp_while_do:nNnn I

New: 2012-08-16

\fp_do_until:nn { 〈fpexpr1〉 〈relation〉 〈fpexpr2〉 } {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then evaluates the rela-
tionship between the two 〈floating point expressions〉 as described for \fp_compare:nTF.
If the test is false then the 〈code〉 will be inserted into the input stream again and a
loop will occur until the 〈relation〉 is true.

\fp_do_until:nn I

New: 2012-08-16

\fp_do_while:nn { 〈fpexpr1〉 〈relation〉 〈fpexpr2〉 } {〈code〉}

Places the 〈code〉 in the input stream for TEX to process, and then evaluates the rela-
tionship between the two 〈floating point expressions〉 as described for \fp_compare:nTF.
If the test is true then the 〈code〉 will be inserted into the input stream again and a loop
will occur until the 〈relation〉 is false.

\fp_do_while:nn I

New: 2012-08-16

\fp_until_do:nn { 〈fpexpr1〉 〈relation〉 〈fpexpr2〉 } {〈code〉}

Evaluates the relationship between the two 〈floating point expressions〉 as described for
\fp_compare:nTF, and then places the 〈code〉 in the input stream if the 〈relation〉 is
false. After the 〈code〉 has been processed by TEX the test will be repeated, and a loop
will occur until the test is true.

\fp_until_do:nn I

New: 2012-08-16

\fp_while_do:nn { 〈fpexpr1〉 〈relation〉 〈fpexpr2〉 } {〈code〉}

Evaluates the relationship between the two 〈floating point expressions〉 as described for
\fp_compare:nTF, and then places the 〈code〉 in the input stream if the 〈relation〉 is
true. After the 〈code〉 has been processed by TEX the test will be repeated, and a loop
will occur until the test is false.

\fp_while_do:nn I

New: 2012-08-16

198

6 Some useful constants, and scratch variables

Zero, with either sign.\c_zero_fp
\c_minus_zero_fp

New: 2012-05-08

One as an fp: useful for comparisons in some places.\c_one_fp

New: 2012-05-08

Infinity, with either sign. These can be input directly in a floating point expression as
inf and -inf.

\c_inf_fp
\c_minus_inf_fp

New: 2012-05-08

The value of the base of the natural logarithm, e = exp(1).\c_e_fp

Updated: 2012-05-08

The value of π. This can be input directly in a floating point expression as pi.\c_pi_fp

Updated: 2013-11-17

The value of 1◦ in radians. Multiply an angle given in degrees by this value to obtain a
result in radians. Note that trigonometric functions expecting an argument in radians or
in degrees are both available. Within floating point expressions, this can be accessed as
deg.

\c_one_degree_fp

New: 2012-05-08

Updated: 2013-11-17

Scratch floating points for local assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\l_tmpa_fp
\l_tmpb_fp

Scratch floating points for global assignment. These are never used by the kernel code,
and so are safe for use with any LATEX3-defined function. However, they may be over-
written by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_fp
\g_tmpb_fp

7 Floating point exceptions
The functions defined in this section are experimental, and their functionality may be
altered or removed altogether.

“Exceptions” may occur when performing some floating point operations, such as 0
/ 0, or 10 ** 1e9999. The IEEE standard defines 5 types of exceptions.

199

• Overflow occurs whenever the result of an operation is too large to be represented
as a normal floating point number. This results in ±∞.

• Underflow occurs whenever the result of an operation is too close to 0 to be repre-
sented as a normal floating point number. This results in ±0.

• Invalid operation occurs for operations with no defined outcome, for instance 0/0,
or sin(∞), and almost any operation involving a NaN. This normally results in a
NaN, except for conversion functions whose target type does not have a notion of
NaN (e.g., \fp_to_dim:n).

• Division by zero occurs when dividing a non-zero number by 0, or when evaluating
e.g., ln(0) or cot(0). This results in ±∞.

• Inexact occurs whenever the result of a computation is not exact, in other words,
almost always. At the moment, this exception is entirely ignored in LATEX3.

To each exception is associated a “flag”, which can be either on or off. By default, the
“invalid operation” exception triggers an (expandable) error, and raises the corresponding
flag. Other exceptions only raise the corresponding flag. The state of the flag can be
tested and modified. The behaviour when an exception occurs can be modified (using
\fp_trap:nn) to either produce an error and turn the flag on, or only turn the flag on,
or do nothing at all.

\fp_if_flag_on_p:n {〈exception〉}
\fp_if_flag_on:nTF {〈exception〉} {〈true code〉} {〈false code〉}

Tests if the flag for the 〈exception〉 is on, which normally means the given 〈exception〉
has occurred. This function is experimental, and may be altered or removed.

\fp_if_flag_on_p:n ?
\fp_if_flag_on:nTF ?

New: 2012-08-08

\fp_flag_off:n {〈exception〉}

Locally turns off the flag which indicates whether the 〈exception〉 has occurred. This
function is experimental, and may be altered or removed.

\fp_flag_off:n

New: 2012-08-08

\fp_flag_on:n {〈exception〉}

Locally turns on the flag to indicate (or pretend) that the 〈exception〉 has occurred. Note
that this function is expandable: it is used internally by l3fp to signal when exceptions
do occur. This function is experimental, and may be altered or removed.

\fp_flag_on:n ?

New: 2012-08-08

200

\fp_trap:nn {〈exception〉} {〈trap type〉}

All occurrences of the 〈exception〉 (invalid_operation, division_by_zero, overflow,
or underflow) within the current group are treated as 〈trap type〉, which can be

• none: the 〈exception〉 will be entirely ignored, and leave no trace;

• flag: the 〈exception〉 will turn the corresponding flag on when it occurs;

• error: additionally, the 〈exception〉 will halt the TEX run and display some infor-
mation about the current operation in the terminal.

This function is experimental, and may be altered or removed.

\fp_trap:nn

New: 2012-07-19

Updated: 2012-08-08

8 Viewing floating points

\fp_show:N 〈fp var〉
\fp_show:n {〈floating point expression〉}

Evaluates the 〈floating point expression〉 and displays the result in the terminal.

\fp_show:N
\fp_show:c
\fp_show:n

New: 2012-05-08

Updated: 2015-08-07

9 Floating point expressions
9.1 Input of floating point numbers
We support four types of floating point numbers:

• ±0.d1d2 . . . d16 · 10n, a normal floating point number, with di ∈ [0, 9], d1 6= 0, and
|n| ≤ 10000;

• ±0, zero, with a given sign;

• ±∞, infinity, with a given sign;

• NaN, is “not a number”, and can be either quiet or signalling (not yet: this distinc-
tion is currently unsupported);

(not yet) subnormal numbers ±0.d1d2 . . . d16 · 10−10000 with d1 = 0.

Normal floating point numbers are stored in base 10, with 16 significant figures.
On input, a normal floating point number consists of:

• 〈sign〉: a possibly empty string of + and - characters;

• 〈significand〉: a non-empty string of digits together with zero or one dot;

• 〈exponent〉 optionally: the character e, followed by a possibly empty string of
+ and - tokens, and a non-empty string of digits.

201

The sign of the resulting number is + if 〈sign〉 contains an even number of -, and -
otherwise, hence, an empty 〈sign〉 denotes a non-negative input. The stored significand
is obtained from 〈significand〉 by omitting the decimal separator and leading zeros, and
rounding to 16 significant digits, filling with trailing zeros if necessary. In particular, the
value stored is exact if the input 〈significand〉 has at most 16 digits. The stored 〈exponent〉
is obtained by combining the input 〈exponent〉 (0 if absent) with a shift depending on
the position of the significand and the number of leading zeros.

A special case arises if the resulting 〈exponent〉 is either too large or too small for the
floating point number to be represented. This results either in an overflow (the number
is then replaced by ±∞), or an underflow (resulting in ±0).

The result is thus ±0 if and only if 〈significand〉 contains no non-zero digit (i.e.,
consists only in 0 characters, and an optional . character), or if there is an underflow.
Note that a single dot is currently a valid floating point number, equal to +0, but that
is not guaranteed to remain true.

Special numbers are input as follows:

• inf represents +∞, and can be preceded by any 〈sign〉, yielding ±∞ as appropriate.

• nan represents a (quiet) non-number. It can be preceded by any sign, but that will
be ignored.

• Any unrecognizable string triggers an error, and produces a NaN.

Note that e-1 is not a representation of 10−1, because it could be mistaken with the
difference of “e” and 1. This is consistent with several other programming languages.
However, in order to avoid confusions, e-1 is not considered to be this difference either.
To input the base of natural logarithms, use exp(1) or \c_e_fp.

9.2 Precedence of operators
We list here all the operations supported in floating point expressions, in order of de-
creasing precedence: operations listed earlier bind more tightly than operations listed
below them.

• Function calls (sin, ln, etc).

• Binary ** and ^ (right associative).

• Unary +, -, !.

• Binary *, /, and implicit multiplication by juxtaposition (2pi, 3(4+5), etc).

• Binary + and -.

• Comparisons >=, !=, <?, etc.

• Logical and, denoted by &&.

• Logical or, denoted by ||.

• Ternary operator ?: (right associative).

202

The precedence of operations can be overridden using parentheses. In particular, those
precedences imply that

sin2pi = sin(2π) = 0,
2ˆ2max(3, 4) = 22 max(3,4) = 256.

Functions are called on the value of their argument, contrarily to TEX macros.

9.3 Operations
We now present the various operations allowed in floating point expressions, from the
lowest precedence to the highest. When used as a truth value, a floating point expression
is false if it is ±0, and true otherwise, including when it is NaN.

\fp_eval:n { 〈operand1〉 ? 〈operand2〉 : 〈operand3〉 }

The ternary operator ?: results in 〈operand2〉 if 〈operand1〉 is true, and 〈operand3〉 if it is
false (equal to ±0). All three 〈operands〉 are evaluated in all cases. The operator is right
associative, hence

\fp_eval:n
{
1 + 3 > 4 ? 1 :
2 + 4 > 5 ? 2 :
3 + 5 > 6 ? 3 : 4

}

first tests whether 1 + 3 > 4; since this isn’t true, the branch following : is taken, and
2+4 > 5 is compared; since this is true, the branch before : is taken, and everything else
is (evaluated then) ignored. That allows testing for various cases in a concise manner,
with the drawback that all computations are made in all cases.

?:

\fp_eval:n { 〈operand1〉 〈operand2〉 }

If 〈operand1〉 is true (non-zero), use that value, otherwise the value of 〈operand2〉. Both
〈operands〉 are evaluated in all cases.

||

\fp_eval:n { 〈operand1〉 && 〈operand2〉 }

If 〈operand1〉 is false (equal to ±0), use that value, otherwise the value of 〈operand2〉.
Both 〈operands〉 are evaluated in all cases.

&&

203

\fp_eval:n
{
〈operand1〉 〈relation1〉
...
〈operandN 〉 〈relationN 〉
〈operandN+1〉

}

Each 〈relation〉 consists of a non-empty string of <, =, >, and ?, optionally preceded by !,
and may not start with ?. This evaluates to +1 if all comparisons 〈operandi〉 〈relationj〉
〈operandi+1〉 are true, and +0 otherwise. All 〈operands〉 are evaluated in all cases. See
\fp_compare:nTF for details.

<
=
>
?

Updated: 2013-12-14

\fp_eval:n { 〈operand1〉 + 〈operand2〉 }
\fp_eval:n { 〈operand1〉 - 〈operand2〉 }

Computes the sum or the difference of its two 〈operands〉. The “invalid operation” ex-
ception occurs for ∞−∞. “Underflow” and “overflow” occur when appropriate.

+
-

\fp_eval:n { 〈operand1〉 * 〈operand2〉 }
\fp_eval:n { 〈operand1〉 / 〈operand2〉 }

Computes the product or the ratio of its two 〈operands〉. The “invalid operation” excep-
tion occurs for ∞/∞, 0/0, or 0 ∗ ∞. “Division by zero” occurs when dividing a finite
non-zero number by ±0. “Underflow” and “overflow” occur when appropriate.

*
/

\fp_eval:n { + 〈operand〉 }
\fp_eval:n { - 〈operand〉 }
\fp_eval:n { ! 〈operand〉 }

The unary + does nothing, the unary - changes the sign of the 〈operand〉, and ! 〈operand〉
evaluates to 1 if 〈operand〉 is false and 0 otherwise (this is the not boolean function).
Those operations never raise exceptions.

+
-
!

\fp_eval:n { 〈operand1〉 ** 〈operand2〉 }
\fp_eval:n { 〈operand1〉 ^ 〈operand2〉 }

Raises 〈operand1〉 to the power 〈operand2〉. This operation is right associative, hence 2
** 2 ** 3 equals 223 = 256. The “invalid operation” exception occurs if 〈operand1〉 is
negative or −0, and 〈operand2〉 is not an integer, unless the result is zero (in that case,
the sign is chosen arbitrarily to be +0). “Division by zero” occurs when raising ±0 to a
strictly negative power. “Underflow” and “overflow” occur when appropriate.

**
^

\fp_eval:n { abs(〈fpexpr〉) }

Computes the absolute value of the 〈fpexpr〉. This function does not raise any exception
beyond those raised when computing its operand 〈fpexpr〉. See also \fp_abs:n.

abs

\fp_eval:n { exp(〈fpexpr〉) }

Computes the exponential of the 〈fpexpr〉. “Underflow” and “overflow” occur when ap-
propriate.

exp

204

\fp_eval:n { ln(〈fpexpr〉) }

Computes the natural logarithm of the 〈fpexpr〉. Negative numbers have no (real) loga-
rithm, hence the “invalid operation” is raised in that case, including for ln(−0). “Division
by zero” occurs when evaluating ln(+0) = −∞. “Underflow” and “overflow” occur when
appropriate.

ln

\fp_eval:n { max(〈fpexpr1〉 , 〈fpexpr2〉 , ...) }
\fp_eval:n { min(〈fpexpr1〉 , 〈fpexpr2〉 , ...) }

Evaluates each 〈fpexpr〉 and computes the largest (smallest) of those. If any of the
〈fpexpr〉 is a NaN, the result is NaN. Those operations do not raise exceptions.

max
min

\fp_eval:n { round (〈fpexpr〉) }
\fp_eval:n { round (〈fpexpr1〉 , 〈fpexpr2〉) }
\fp_eval:n { round (〈fpexpr1〉 , 〈fpexpr2〉 , 〈fpexpr3〉) }

Only round accepts a third argument. Evaluates 〈fpexpr1〉 = x and 〈fpexpr2〉 = n and
〈fpexpr3〉 = t then rounds x to n places. If n is an integer, this rounds x to a multiple
of 10−n; if n = +∞, this always yields x; if n = −∞, this yields one of ±0, ±∞,
or NaN; if n is neither ±∞ nor an integer, then an “invalid operation” exception is raised.
When 〈fpexpr2〉 is omitted, n = 0, i.e., 〈fpexpr1〉 is rounded to an integer. The rounding
direction depends on the function.

• round yields the multiple of 10−n closest to x, with ties (x half-way between two
such multiples) rounded as follows. If t is nan or not given the even multiple is
chosen (“ties to even”), if t = ±0 the multiple closest to 0 is chosen (“ties to zero”),
if t is positive/negative the multiple closest to ∞/−∞ is chosen (“ties towards
positive/negative infinity”).

• floor, or the deprecated round-, yields the largest multiple of 10−n smaller or
equal to x (“round towards negative infinity”);

• ceil, or the deprecated round+, yields the smallest multiple of 10−n greater or
equal to x (“round towards positive infinity”);

• trunc, or the deprecated round0, yields a multiple of 10−n with the same sign as x
and with the largest absolute value less that that of x (“round towards zero”).

“Overflow” occurs if x is finite and the result is infinite (this can only happen if 〈fpexpr2〉 <
−9984).

round
trunc
ceil
floor

New: 2013-12-14

Updated: 2015-08-08

205

\fp_eval:n { sin(〈fpexpr〉) }
\fp_eval:n { cos(〈fpexpr〉) }
\fp_eval:n { tan(〈fpexpr〉) }
\fp_eval:n { cot(〈fpexpr〉) }
\fp_eval:n { csc(〈fpexpr〉) }
\fp_eval:n { sec(〈fpexpr〉) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the 〈fpexpr〉 given
in radians. For arguments given in degrees, see sind, cosd, etc. Note that since π is
irrational, sin(8pi) is not quite zero, while its analog sind(8 × 180) is exactly zero. The
trigonometric functions are undefined for an argument of ±∞, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate.

sin
cos
tan
cot
csc
sec

Updated: 2013-11-17

\fp_eval:n { sind(〈fpexpr〉) }
\fp_eval:n { cosd(〈fpexpr〉) }
\fp_eval:n { tand(〈fpexpr〉) }
\fp_eval:n { cotd(〈fpexpr〉) }
\fp_eval:n { cscd(〈fpexpr〉) }
\fp_eval:n { secd(〈fpexpr〉) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the 〈fpexpr〉 given
in degrees. For arguments given in radians, see sin, cos, etc. Note that since π is
irrational, sin(8pi) is not quite zero, while its analog sind(8 × 180) is exactly zero. The
trigonometric functions are undefined for an argument of ±∞, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate.

sind
cosd
tand
cotd
cscd
secd

New: 2013-11-02

\fp_eval:n { asin(〈fpexpr〉) }
\fp_eval:n { acos(〈fpexpr〉) }
\fp_eval:n { acsc(〈fpexpr〉) }
\fp_eval:n { asec(〈fpexpr〉) }

Computes the arcsine, arccosine, arccosecant, or arcsecant of the 〈fpexpr〉 and returns
the result in radians, in the range [−π/2, π/2] for asin and acsc and [0, π] for acos and
asec. For a result in degrees, use asind, etc. If the argument of asin or acos lies outside
the range [−1, 1], or the argument of acsc or asec inside the range (−1, 1), an “invalid
operation” exception is raised. “Underflow” and “overflow” occur when appropriate.

asin
acos
acsc
asec

New: 2013-11-02

206

\fp_eval:n { asind(〈fpexpr〉) }
\fp_eval:n { acosd(〈fpexpr〉) }
\fp_eval:n { acscd(〈fpexpr〉) }
\fp_eval:n { asecd(〈fpexpr〉) }

Computes the arcsine, arccosine, arccosecant, or arcsecant of the 〈fpexpr〉 and returns
the result in degrees, in the range [−90, 90] for asin and acsc and [0, 180] for acos and
asec. For a result in radians, use asin, etc. If the argument of asin or acos lies outside
the range [−1, 1], or the argument of acsc or asec inside the range (−1, 1), an “invalid
operation” exception is raised. “Underflow” and “overflow” occur when appropriate.

asind
acosd
acscd
asecd

New: 2013-11-02

\fp_eval:n { atan(〈fpexpr〉) }
\fp_eval:n { atan(〈fpexpr1〉 , 〈fpexpr2〉) }
\fp_eval:n { acot(〈fpexpr〉) }
\fp_eval:n { acot(〈fpexpr1〉 , 〈fpexpr2〉) }

Those functions yield an angle in radians: atand and acotd are their analogs in degrees.
The one-argument versions compute the arctangent or arccotangent of the 〈fpexpr〉: arc-
tangent takes values in the range [−π/2, π/2], and arccotangent in the range [0, π]. The
two-argument arctangent computes the angle in polar coordinates of the point with Carte-
sian coordinates (〈fpexpr2〉, 〈fpexpr1〉): this is the arctangent of 〈fpexpr1〉/〈fpexpr2〉, pos-
sibly shifted by π depending on the signs of 〈fpexpr1〉 and 〈fpexpr2〉. The two-argument
arccotangent computes the angle in polar coordinates of the point (〈fpexpr1〉, 〈fpexpr2〉),
equal to the arccotangent of 〈fpexpr1〉/〈fpexpr2〉, possibly shifted by π. Both two-
argument functions take values in the wider range [−π, π]. The ratio 〈fpexpr1〉/〈fpexpr2〉
need not be defined for the two-argument arctangent: when both expressions yield ±0,
or when both yield ±∞, the resulting angle is one of {±π/4,±3π/4} depending on signs.
Only the “underflow” exception can occur.

atan
acot

New: 2013-11-02

\fp_eval:n { atand(〈fpexpr〉) }
\fp_eval:n { atand(〈fpexpr1〉 , 〈fpexpr2〉) }
\fp_eval:n { acotd(〈fpexpr〉) }
\fp_eval:n { acotd(〈fpexpr1〉 , 〈fpexpr2〉) }

Those functions yield an angle in degrees: atand and acotd are their analogs in ra-
dians. The one-argument versions compute the arctangent or arccotangent of the
〈fpexpr〉: arctangent takes values in the range [−90, 90], and arccotangent in the range
[0, 180]. The two-argument arctangent computes the angle in polar coordinates of
the point with Cartesian coordinates (〈fpexpr2〉, 〈fpexpr1〉): this is the arctangent of
〈fpexpr1〉/〈fpexpr2〉, possibly shifted by 180 depending on the signs of 〈fpexpr1〉 and
〈fpexpr2〉. The two-argument arccotangent computes the angle in polar coordinates of
the point (〈fpexpr1〉, 〈fpexpr2〉), equal to the arccotangent of 〈fpexpr1〉/〈fpexpr2〉, possibly
shifted by 180. Both two-argument functions take values in the wider range [−180, 180].
The ratio 〈fpexpr1〉/〈fpexpr2〉 need not be defined for the two-argument arctangent:
when both expressions yield ±0, or when both yield ±∞, the resulting angle is one
of {±45,±135} depending on signs. Only the “underflow” exception can occur.

atand
acotd

New: 2013-11-02

207

\fp_eval:n { sqrt(〈fpexpr〉) }

Computes the square root of the 〈fpexpr〉. The “invalid operation” is raised when the
〈fpexpr〉 is negative; no other exception can occur. Special values yield

√
−0 = −0,√

+0 = +0,
√

+∞ = +∞ and
√
NaN = NaN.

sqrt

New: 2013-12-14

The special values +∞, −∞, and NaN are represented as inf, -inf and nan (see \c_-
inf_fp, \c_minus_inf_fp and \c_nan_fp).

inf
nan

The value of π (see \c_pi_fp).pi

The value of 1◦ in radians (see \c_one_degree_fp).deg

Those units of measurement are equal to their values in pt, namely

1in = 72.27pt
1pt = 1pt
1pc = 12pt

1cm = 1
2.54in = 28.45275590551181pt

1mm = 1
25.4in = 2.845275590551181pt

1dd = 0.376065mm = 1.07000856496063pt
1cc = 12dd = 12.84010277952756pt
1nd = 0.375mm = 1.066978346456693pt
1nc = 12nd = 12.80374015748031pt

1bp = 1
72in = 1.00375pt

1sp = 2−16pt = 1.52587890625e− 5pt.

The values of the (font-dependent) units em and ex are gathered from TEX when the
surrounding floating point expression is evaluated.

em
ex
in
pt
pc
cm
mm
dd
cc
nd
nc
bp
sp

Other names for 1 and +0.true
false

\fp_abs:n {〈floating point expression〉}

Evaluates the 〈floating point expression〉 as described for \fp_eval:n and leaves the
absolute value of the result in the input stream. This function does not raise any exception
beyond those raised when evaluating its argument. Within floating point expressions,
abs() can be used.

\fp_abs:n ?

New: 2012-05-14

Updated: 2012-07-08

208

\fp_max:nn {〈fp expression 1〉} {〈fp expression 2〉}

Evaluates the 〈floating point expressions〉 as described for \fp_eval:n and leaves the
resulting larger (max) or smaller (min) value in the input stream. This function does not
raise any exception beyond those raised when evaluating its argument. Within floating
point expressions, max() and min() can be used.

\fp_max:nn ?
\fp_min:nn ?

New: 2012-09-26

10 Disclaimer and roadmap
The package may break down if the escape character is among 0123456789_+; if it receives
a TEX primitive conditional affected by \exp_not:N.

The following need to be done. I’ll try to time-order the items.

• Decide what exponent range to consider.

• Support signalling nan.

• Modulo and remainder, and rounding functions quantize, quantize0, quantize+,
quantize-, quantize=, round=. Should the modulo also be provided as (catcode
12) %?

• \fp_format:nn {〈fpexpr〉} {〈format〉}, but what should 〈format〉 be? More general
pretty printing?

• Add and, or, xor? Perhaps under the names all, any, and xor?

• Add log(x, b) for logarithm of x in base b.

• hypot (Euclidean length). Cartesian-to-polar transform.

• Hyperbolic functions cosh, sinh, tanh.

• Inverse hyperbolics.

• Base conversion, input such as 0xAB.CDEF.

• Random numbers (pgfmath provides rnd, rand, random), with seed reset at every
\fp_set:Nn.

• Factorial (not with !), gamma function.

• Improve coefficients of the sin and tan series.

• Treat upper and lower case letters identically in identifiers, and ignore underscores.

• Add an array(1,2,3) and i=complex(0,1).

• Provide an experimental map function? Perhaps easier to implement if it is a single
character, @sin(1,2)?

• Provide \fp_if_nan:nTF, and an isnan function?

209

• Support keyword arguments?

Pgfmath also provides box-measurements (depth, height, width), but boxes are not pos-
sible expandably.

Bugs. (Exclamation points mark important bugs.)

• Check that functions are monotonic when they should.

• Add exceptions to ?:, !<=>?, &&, ||, and !.

• Logarithms of numbers very close to 1 are inaccurate.

• When rounding towards −∞, \dim_to_fp:n {0pt} should return −0, not +0.

• The result of (±0) + (±0), of x + (−x), and of (−x) + x should depend on the
rounding mode.

• 0e9999999999 gives a TEX “number too large” error.

• Subnormals are not implemented.

• The overflow trap receives the wrong argument in l3fp-expo (see exp(1e5678) in
m3fp-traps001).

Possible optimizations/improvements.

• Document that l3trial/l3fp-types introduces tools for adding new types.

• In subsection 9.1, write a grammar.

• Fix the TWO BARS business with the index.

• It would be nice if the parse auxiliaries for each operation were set up in the
corresponding module, rather than centralizing in l3fp-parse.

• Some functions should get an _o ending to indicate that they expand after their
result.

• More care should be given to distinguish expandable/restricted expandable (auxil-
iary and internal) functions.

• The code for the ternary set of functions is ugly.

• There are many ~ missing in the doc to avoid bad line-breaks.

• The algorithm for computing the logarithm of the significand could be made to use
a 5 terms Taylor series instead of 10 terms by taking c = 2000/(b200xc+1) ∈ [10, 95]
instead of c ∈ [1, 10]. Also, it would then be possible to simplify the computation
of t. However, we would then have to hard-code the logarithms of 44 small integers
instead of 9.

• Improve notations in the explanations of the division algorithm (l3fp-basics).

210

• Understand and document __fp_basics_pack_weird_low:NNNNw and __fp_-
basics_pack_weird_high:NNNNNNNNw better. Move the other basics_pack auxil-
iaries to l3fp-aux under a better name.

• Find out if underflow can really occur for trigonometric functions, and redoc as
appropriate.

• Add bibliography. Some of Kahan’s articles, some previous TEX fp packages, the
international standards,. . .

• Also take into account the “inexact” exception?

• Support multi-character prefix operators (e.g., @/ or whatever)? Perhaps for in-
cluding comments inside the computation itself??

211

Part XXIII

The l3candidates package
Experimental additions to l3kernel
1 Important notice
This module provides a space in which functions can be added to l3kernel (expl3) while
still being experimental.

As such, the functions here may not remain in their current form,
or indeed at all, in l3kernel in the future.

In contrast to the material in l3experimental, the functions here are all small additions to
the kernel. We encourage programmers to test them out and report back on the LaTeX-L
mailing list.

Thus, if you intend to use any of these functions from the candidate module in a
public package offered to others for productive use (e.g., being placed on CTAN) please
consider the following points carefully:

• Be prepared that your public packages might require updating when such functions
are being finalized.

• Consider informing us that you use a particular function in your public package,
e.g., by discussing this on the LaTeX-L mailing list. This way it becomes easier to
coordinate any updates necessary without issues for the users of your package.

• Discussing and understanding use cases for a particular addition or concept also
helps to ensure that we provide the right interfaces in the final version so please
give us feedback if you consider a certain candidate function useful (or not).

We only add functions in this space if we consider them being serious candidates for
a final inclusion into the kernel. However, real use sometimes leads to better ideas, so
functions from this module are not necessarily stable and we may have to adjust them!

2 Additions to l3basics

\cs_log:N 〈control sequence〉

Writes the definition of the 〈control sequence〉 in the log file. See also \cs_show:N which
displays the result in the terminal.

\cs_log:N
\cs_log:c

New: 2014-08-22

Updated: 2015-08-03

__kernel_register_log:N 〈register〉

Used to write the contents of a TEX register to the log file in a form similar to __-
kernel_register_show:N.

__kernel_register_log:N
__kernel_register_log:c

Updated: 2015-08-03

212

3 Additions to l3box
3.1 Affine transformations
Affine transformations are changes which (informally) preserve straight lines. Simple
translations are affine transformations, but are better handled in TEX by doing the trans-
lation first, then inserting an unmodified box. On the other hand, rotation and resizing
of boxed material can best be handled by modifying boxes. These transformations are
described here.

\box_resize:Nnn 〈box〉 {〈x-size〉} {〈y-size〉}

Resize the 〈box〉 to 〈x-size〉 horizontally and 〈y-size〉 vertically (both of the sizes are
dimension expressions). The 〈y-size〉 is the vertical size (height plus depth) of the box.
The updated 〈box〉 will be an hbox, irrespective of the nature of the 〈box〉 before the
resizing is applied. Negative sizes will cause the material in the 〈box〉 to be reversed in
direction, but the reference point of the 〈box〉 will be unchanged. Thus negative y-sizes
will result in a box a depth dependent on the height of the original box a height dependent
on the depth. The resizing applies within the current TEX group level.

\box_resize:Nnn
\box_resize:cnn

\box_resize_to_ht_plus_dp:Nn 〈box〉 {〈y-size〉}\box_resize_to_ht_plus_dp:Nn
\box_resize_to_ht_plus_dp:cn

Resize the 〈box〉 to 〈y-size〉 vertically, scaling the horizontal size by the same amount
(〈y-size〉 is a dimension expression). The 〈y-size〉 is the vertical size (height plus depth)
of the box. The updated 〈box〉 will be an hbox, irrespective of the nature of the 〈box〉
before the resizing is applied. A negative size will cause the material in the 〈box〉 to
be reversed in direction, but the reference point of the 〈box〉 will be unchanged. Thus
negative y-sizes will result in a box with depth dependent on the height of the original
box and height dependent on the depth of the original. The resizing applies within the
current TEX group level.

\box_resize_to_ht:Nn 〈box〉 {〈y-size〉}

Resize the 〈box〉 to 〈y-size〉 vertically, scaling the horizontal size by the same amount
(〈y-size〉 is a dimension expression). The 〈y-size〉 is the height only, not including depth,
of the box. The updated 〈box〉 will be an hbox, irrespective of the nature of the 〈box〉
before the resizing is applied. A negative size will cause the material in the 〈box〉 to
be reversed in direction, but the reference point of the 〈box〉 will be unchanged. Thus
negative y-sizes will result in a box with depth dependent on the height of the original
box and height dependent on the depth of the original. The resizing applies within the
current TEX group level.

\box_resize_to_ht:Nn
\box_resize_to_ht:cn

213

\box_resize_to_wd:Nn 〈box〉 {〈x-size〉}

Resize the 〈box〉 to 〈x-size〉 horizontally, scaling the vertical size by the same amount
(〈x-size〉 is a dimension expression). The updated 〈box〉 will be an hbox, irrespective
of the nature of the 〈box〉 before the resizing is applied. A negative size will cause the
material in the 〈box〉 to be reversed in direction, but the reference point of the 〈box〉
will be unchanged. Thus negative y-sizes will result in a box a depth dependent on the
height of the original box a height dependent on the depth. The resizing applies within
the current TEX group level.

\box_resize_to_wd:Nn
\box_resize_to_wd:cn

\box_resize_to_wd_and_ht:Nnn 〈box〉 {〈x-size〉} {〈y-size〉}\box_resize_to_wd_and_ht:Nnn
\box_resize_to_wd_and_ht:cnn

New: 2014-07-03

Resize the 〈box〉 to a height of 〈x-size〉 horizontally and 〈y-size〉 vertically (both of the
sizes are dimension expressions). The 〈y-size〉 is the height of the box, ignoring any
depth. The updated 〈box〉 will be an hbox, irrespective of the nature of the 〈box〉 before
the resizing is applied. Negative sizes will cause the material in the 〈box〉 to be reversed
in direction, but the reference point of the 〈box〉 will be unchanged.

\box_rotate:Nn 〈box〉 {〈angle〉}

Rotates the 〈box〉 by 〈angle〉 (in degrees) anti-clockwise about its reference point. The
reference point of the updated box will be moved horizontally such that it is at the left
side of the smallest rectangle enclosing the rotated material. The updated 〈box〉 will
be an hbox, irrespective of the nature of the 〈box〉 before the rotation is applied. The
rotation applies within the current TEX group level.

\box_rotate:Nn
\box_rotate:cn

\box_scale:Nnn 〈box〉 {〈x-scale〉} {〈y-scale〉}

Scales the 〈box〉 by factors 〈x-scale〉 and 〈y-scale〉 in the horizontal and vertical directions,
respectively (both scales are integer expressions). The updated 〈box〉 will be an hbox,
irrespective of the nature of the 〈box〉 before the scaling is applied. Negative scalings will
cause the material in the 〈box〉 to be reversed in direction, but the reference point of the
〈box〉 will be unchanged. Thus negative y-scales will result in a box a depth dependent
on the height of the original box a height dependent on the depth. The resizing applies
within the current TEX group level.

\box_scale:Nnn
\box_scale:cnn

214

3.2 Viewing part of a box

\box_clip:N 〈box〉

Clips the 〈box〉 in the output so that only material inside the bounding box is displayed
in the output. The updated 〈box〉 will be an hbox, irrespective of the nature of the 〈box〉
before the clipping is applied. The clipping applies within the current TEX group level.

These functions require the LATEX3 native drivers: they will not work
with the LATEX2ε graphics drivers!

TEXhackers note: Clipping is implemented by the driver, and as such the full content of
the box is placed in the output file. Thus clipping does not remove any information from the
raw output, and hidden material can therefore be viewed by direct examination of the file.

\box_clip:N
\box_clip:c

\box_trim:Nnnnn 〈box〉 {〈left〉} {〈bottom〉} {〈right〉} {〈top〉}

Adjusts the bounding box of the 〈box〉 〈left〉 is removed from the left-hand edge of the
bounding box, 〈right〉 from the right-hand edge and so fourth. All adjustments are
〈dimension expressions〉. Material output of the bounding box will still be displayed in
the output unless \box_clip:N is subsequently applied. The updated 〈box〉 will be an
hbox, irrespective of the nature of the 〈box〉 before the trim operation is applied. The
adjustment applies within the current TEX group level. The behavior of the operation
where the trims requested is greater than the size of the box is undefined.

\box_trim:Nnnnn
\box_trim:cnnnn

\box_viewport:Nnnnn 〈box〉 {〈llx〉} {〈lly〉} {〈urx〉} {〈ury〉}

Adjusts the bounding box of the 〈box〉 such that it has lower-left co-ordinates (〈l lx〉,
〈l ly〉) and upper-right co-ordinates (〈urx〉, 〈ury〉). All four co-ordinate positions are
〈dimension expressions〉. Material output of the bounding box will still be displayed in
the output unless \box_clip:N is subsequently applied. The updated 〈box〉 will be an
hbox, irrespective of the nature of the 〈box〉 before the viewport operation is applied.
The adjustment applies within the current TEX group level.

\box_viewport:Nnnnn
\box_viewport:cnnnn

3.3 Internal variables

The angle through which a box is rotated by \box_rotate:Nn, given in degrees counter-
clockwise. This value is required by the underlying driver code in l3driver to carry out
the driver-dependent part of box rotation.

\l__box_angle_fp

The sine and cosine of the angle through which a box is rotated by \box_rotate:Nn: the
values refer to the angle counter-clockwise. These values are required by the underlying
driver code in l3driver to carry out the driver-dependent part of box rotation.

\l__box_cos_fp
\l__box_sin_fp

215

The scaling factors by which a box is scaled by \box_scale:Nnn or \box_resize:Nnn.
These values are required by the underlying driver code in l3driver to carry out the
driver-dependent part of box rotation.

\l__box_scale_x_fp
\l__box_scale_y_fp

Box used for affine transformations, which is used to contain rotated material when ap-
plying \box_rotate:Nn. This box must be correctly constructed for the driver-dependent
code in l3driver to function correctly.

\l__box_internal_box

4 Additions to l3clist

\clist_log:N 〈comma list〉

Writes the entries in the 〈comma list〉 in the log file. See also \clist_show:N which
displays the result in the terminal.

\clist_log:N
\clist_log:c

New: 2014-08-22

\clist_log:n {〈tokens〉}

Writes the entries in the comma list in the log file. See also \clist_show:n which displays
the result in the terminal.

\clist_log:n

New: 2014-08-22

5 Additions to l3coffins

\coffin_resize:Nnn 〈coffin〉 {〈width〉} {〈total-height〉}

Resized the 〈coffin〉 to 〈width〉 and 〈total-height〉, both of which should be given as di-
mension expressions.

\coffin_resize:Nnn
\coffin_resize:cnn

\coffin_rotate:Nn 〈coffin〉 {〈angle〉}

Rotates the 〈coffin〉 by the given 〈angle〉 (given in degrees counter-clockwise). This
process will rotate both the coffin content and poles. Multiple rotations will not result
in the bounding box of the coffin growing unnecessarily.

\coffin_rotate:Nn
\coffin_rotate:cn

\coffin_scale:Nnn 〈coffin〉 {〈x-scale〉} {〈y-scale〉}

Scales the 〈coffin〉 by a factors 〈x-scale〉 and 〈y-scale〉 in the horizontal and vertical
directions, respectively. The two scale factors should be given as real numbers.

\coffin_scale:Nnn
\coffin_scale:cnn

\coffin_log_structure:N 〈coffin〉

This function writes the structural information about the 〈coffin〉 in the log file. The
width, height and depth of the typeset material are given, along with the location of all
of the poles of the coffin. See also \coffin_show_structure:N which displays the result
in the terminal.

\coffin_log_structure:N
\coffin_log_structure:c

New: 2014-08-22

216

6 Additions to l3file

\file_if_exist_input:n {〈file name〉}
\file_if_exist_input:nTF {〈file name〉} {〈true code〉} {〈false code〉}

Searches for 〈file name〉 using the current TEX search path and the additional paths
controlled by \file_path_include:n). If found, inserts the 〈true code〉 then reads in
the file as additional LATEX source as described for \file_input:n. Note that \file_-
if_exist_input:n does not raise an error if the file is not found, in contrast to \file_-
input:n.

\file_if_exist_input:nTF

New: 2014-07-02

\ior_map_inline:Nn 〈stream〉 {〈inline function〉}

Applies the 〈inline function〉 to 〈lines〉 obtained by reading one or more lines (until an
equal number of left and right braces are found) from the 〈stream〉. The 〈inline function〉
should consist of code which will receive the 〈line〉 as #1. Note that TEX removes trailing
space and tab characters (character codes 32 and 9) from every line upon input. TEX
also ignores any trailing new-line marker from the file it reads.

\ior_map_inline:Nn

New: 2012-02-11

\ior_str_map_inline:Nn {〈stream〉} {〈inline function〉}

Applies the 〈inline function〉 to every 〈line〉 in the 〈stream〉. The material is read from
the 〈stream〉 as a series of tokens with category code 12 (other), with the exception of
space characters which are given category code 10 (space). The 〈inline function〉 should
consist of code which will receive the 〈line〉 as #1. Note that TEX removes trailing space
and tab characters (character codes 32 and 9) from every line upon input. TEX also
ignores any trailing new-line marker from the file it reads.

\ior_str_map_inline:Nn

New: 2012-02-11

\ior_map_break:

Used to terminate a \ior_map_... function before all lines from the 〈stream〉 have been
processed. This will normally take place within a conditional statement, for example

\ior_map_inline:Nn \l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break: }
{
% Do something useful

}
}

Use outside of a \ior_map_... scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before further items are taken from the input stream.
This will depend on the design of the mapping function.

\ior_map_break:

New: 2012-06-29

217

\ior_map_break:n {〈tokens〉}

Used to terminate a \ior_map_... function before all lines in the 〈stream〉 have been
processed, inserting the 〈tokens〉 after the mapping has ended. This will normally take
place within a conditional statement, for example

\ior_map_inline:Nn \l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break:n { <tokens> } }
{
% Do something useful

}
}

Use outside of a \ior_map_... scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the 〈tokens〉 are inserted into the input stream.
This will depend on the design of the mapping function.

\ior_map_break:n

New: 2012-06-29

\ior_log_streams:
\iow_log_streams:

Writes in the log file a list of the file names associated with each open stream: intended
for tracking down problems.

\ior_log_streams:
\iow_log_streams:

New: 2014-08-22

7 Additions to l3fp

\fp_log:N 〈fp var〉
\fp_log:n {〈floating point expression〉}

Evaluates the 〈floating point expression〉 and writes the result in the log file.

\fp_log:N
\fp_log:c
\fp_log:n

New: 2014-08-22

Updated: 2015-08-07

8 Additions to l3int

\int_log:N 〈integer〉

Writes the value of the 〈integer〉 in the log file.
\int_log:N
\int_log:c

New: 2014-08-22

Updated: 2015-08-03

218

\int_log:n {〈integer expression〉}

Writes the result of evaluating the 〈integer expression〉 in the log file.
\int_log:n

New: 2014-08-22

Updated: 2015-08-07

9 Additions to l3keys

\keys_log:nn {〈module〉} {〈key〉}

Writes in the log file the function which is used to actually implement a 〈key〉 for a
〈module〉.

\keys_log:nn

New: 2014-08-22

10 Additions to l3msg
In very rare cases it may be necessary to produce errors in an expansion-only context.
The functions in this section should only be used if there is no alternative approach
using \msg_error:nnnnnn or other non-expandable commands from the previous section.
Despite having a similar interface as non-expandable messages, expandable errors must
be handled internally very differently from normal error messages, as none of the tools
to print to the terminal or the log file are expandable. As a result, the message text and
arguments are not expanded, and messages must be very short (with default settings,
they are truncated after approximately 50 characters). It is advisable to ensure that the
message is understandable even when truncated. Another particularity of expandable
messages is that they cannot be redirected or turned off by the user.

\msg_expandable_error:nnnnnn {〈module〉} {〈message〉} {〈arg one〉} {〈arg
two〉} {〈arg three〉} {〈arg four〉}

\msg_expandable_error:nnnnnn ?
\msg_expandable_error:nnffff ?
\msg_expandable_error:nnnnn ?
\msg_expandable_error:nnfff ?
\msg_expandable_error:nnnn ?
\msg_expandable_error:nnff ?
\msg_expandable_error:nnn ?
\msg_expandable_error:nnf ?
\msg_expandable_error:nn ?

New: 2015-08-06

Issues an “Undefined error” message from TEX itself using the undefined control sequence
\::error then prints “! 〈module〉: ”〈error message〉, which should be short. With default
settings, anything beyond approximately 60 characters long (or bytes in some engines) is
cropped. A leading space might be removed as well.

11 Additions to l3prg
Minimal (lazy) evaluation can be obtained using the conditionals \bool_lazy_all:nTF,
\bool_lazy_and:nnTF, \bool_lazy_any:nTF, or \bool_lazy_or:nnTF, which only eval-

219

uate their boolean expression arguments when they are needed to determine the resulting
truth value. For example, when evaluating the boolean expression

\bool_lazy_and_p:nn
{
\bool_lazy_any_p:n
{
{ \int_compare_p:n { 2 = 3 } }
{ \int_compare_p:n { 4 <= 4 } }
{ \int_compare_p:n { 1 = \error } } % is skipped

}
}
{ ! \int_compare_p:n { 2 = 4 } }

the line marked with is skipped is not expanded because the result of \bool_lazy_-
any_p:n is known once the second boolean expression is found to be logically true. On
the other hand, the last line is expanded because its logical value is needed to determine
the result of \bool_lazy_and_p:nn.

\bool_lazy_all_p:n { {〈boolexpr1〉} {〈boolexpr2〉} · · · {〈boolexprN 〉} }
\bool_lazy_all:nTF { {〈boolexpr1〉} {〈boolexpr2〉} · · · {〈boolexprN 〉} } {〈true code〉}
{〈false code〉}

Implements the “And” operation on the 〈boolean expressions〉, hence is true if all of them
are true and false if any of them is false. Contrarily to the infix operator &&, only the
〈boolean expressions〉 which are needed to determine the result of \bool_lazy_all:nTF
will be evaluated. See also \bool_lazy_and:nnTF when there are only two 〈boolean
expressions〉.

\bool_lazy_all_p:n ?
\bool_lazy_all:nTF ?

New: 2015-11-15

\bool_lazy_and_p:nn {〈boolexpr1〉} {〈boolexpr2〉}
\bool_lazy_and:nnTF {〈boolexpr1〉} {〈boolexpr2〉} {〈true code〉} {〈false code〉}
Implements the “And” operation between two boolean expressions, hence is true if both
are true. Contrarily to the infix operator &&, the 〈boolexpr2〉 will only be evaluated if it is
needed to determine the result of \bool_lazy_and:nnTF. See also \bool_lazy_all:nTF
when there are more than two 〈boolean expressions〉.

\bool_lazy_and_p:nn ?
\bool_lazy_and:nnTF ?

New: 2015-11-15

\bool_lazy_any_p:n { {〈boolexpr1〉} {〈boolexpr2〉} · · · {〈boolexprN 〉} }
\bool_lazy_any:nTF { {〈boolexpr1〉} {〈boolexpr2〉} · · · {〈boolexprN 〉} } {〈true code〉}
{〈false code〉}

Implements the “Or” operation on the 〈boolean expressions〉, hence is true if any of
them is true and false if all of them are false. Contrarily to the infix operator
||, only the 〈boolean expressions〉 which are needed to determine the result of \bool_-
lazy_any:nTF will be evaluated. See also \bool_lazy_or:nnTF when there are only two
〈boolean expressions〉.

\bool_lazy_any_p:n ?
\bool_lazy_any:nTF ?

New: 2015-11-15

220

\bool_lazy_or_p:nn {〈boolexpr1〉} {〈boolexpr2〉}
\bool_lazy_or:nnTF {〈boolexpr1〉} {〈boolexpr2〉} {〈true code〉} {〈false code〉}
Implements the “Or” operation between two boolean expressions, hence is true if either
one is true. Contrarily to the infix operator ||, the 〈boolexpr2〉 will only be evaluated if it
is needed to determine the result of \bool_lazy_or:nnTF. See also \bool_lazy_any:nTF
when there are more than two 〈boolean expressions〉.

\bool_lazy_or_p:nn ?
\bool_lazy_or:nnTF ?

New: 2015-11-15

\bool_log:N 〈boolean〉

Writes the logical truth of the 〈boolean〉 in the log file.
\bool_log:N
\bool_log:c

New: 2014-08-22

Updated: 2015-08-03

\bool_log:n {〈boolean expression〉}

Writes the logical truth of the 〈boolean expression〉 in the log file.
\bool_log:n

New: 2014-08-22

Updated: 2015-08-07

12 Additions to l3prop

\prop_map_tokens:Nn 〈property list〉 {〈code〉}

Analogue of \prop_map_function:NN which maps several tokens instead of a single func-
tion. The 〈code〉 receives each key–value pair in the 〈property list〉 as two trailing brace
groups. For instance,

\prop_map_tokens:Nn \l_my_prop { \str_if_eq:nnT { mykey } }

will expand to the value corresponding to mykey: for each pair in \l_my_prop the function
\str_if_eq:nnT receives mykey, the 〈key〉 and the 〈value〉 as its three arguments. For
that specific task, \prop_item:Nn is faster.

\prop_map_tokens:Nn I

\prop_map_tokens:cn I

\prop_log:N 〈property list〉

Writes the entries in the 〈property list〉 in the log file.
\prop_log:N
\prop_log:c

New: 2014-08-12

13 Additions to l3seq

\seq_mapthread_function:NNN 〈seq1〉 〈seq2〉 〈function〉\seq_mapthread_function:NNN I

\seq_mapthread_function:(NcN|cNN|ccN) I

Applies 〈function〉 to every pair of items 〈seq1-item〉–〈seq2-item〉 from the two sequences,
returning items from both sequences from left to right. The 〈function〉 will receive two
n-type arguments for each iteration. The mapping will terminate when the end of ei-
ther sequence is reached (i.e. whichever sequence has fewer items determines how many
iterations occur).

221

\seq_set_filter:NNn 〈sequence1〉 〈sequence2〉 {〈inline boolexpr〉}

Evaluates the 〈inline boolexpr〉 for every 〈item〉 stored within the 〈sequence2〉. The 〈inline
boolexpr〉 will receive the 〈item〉 as #1. The sequence of all 〈items〉 for which the 〈inline
boolexpr〉 evaluated to true is assigned to 〈sequence1〉.

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and will lead to low-level TEX errors.

\seq_set_filter:NNn
\seq_gset_filter:NNn

\seq_set_map:NNn 〈sequence1〉 〈sequence2〉 {〈inline function〉}

Applies 〈inline function〉 to every 〈item〉 stored within the 〈sequence2〉. The 〈inline
function〉 should consist of code which will receive the 〈item〉 as #1. The sequence result-
ing from x-expanding 〈inline function〉 applied to each 〈item〉 is assigned to 〈sequence1〉.
As such, the code in 〈inline function〉 should be expandable.

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and will lead to low-level TEX errors.

\seq_set_map:NNn
\seq_gset_map:NNn

New: 2011-12-22

\seq_log:N 〈sequence〉

Writes the entries in the 〈sequence〉 in the log file.
\seq_log:N
\seq_log:c

New: 2014-08-12

14 Additions to l3skip

\skip_split_finite_else_action:nnNN {〈skipexpr〉} {〈action〉}
〈dimen1〉 〈dimen2〉

\skip_split_finite_else_action:nnNN

Checks if the 〈skipexpr〉 contains finite glue. If it does then it assigns 〈dimen1〉 the stretch
component and 〈dimen2〉 the shrink component. If it contains infinite glue set 〈dimen1〉
and 〈dimen2〉 to 0 pt and place #2 into the input stream: this is usually an error or
warning message of some sort.

\dim_log:N 〈dimension〉

Writes the value of the 〈dimension〉 in the log file.
\dim_log:N
\dim_log:c

New: 2014-08-22

Updated: 2015-08-03

\dim_log:n {〈dimension expression〉}

Writes the result of evaluating the 〈dimension expression〉 in the log file.
\dim_log:n

New: 2014-08-22

Updated: 2015-08-07

222

\skip_log:N 〈skip〉

Writes the value of the 〈skip〉 in the log file.
\skip_log:N
\skip_log:c

New: 2014-08-22

Updated: 2015-08-03

\skip_log:n {〈skip expression〉}

Writes the result of evaluating the 〈skip expression〉 in the log file.
\skip_log:n

New: 2014-08-22

Updated: 2015-08-07

\muskip_log:N 〈muskip〉

Writes the value of the 〈muskip〉 in the log file.
\muskip_log:N
\muskip_log:c

New: 2014-08-22

Updated: 2015-08-03

\muskip_log:n {〈muskip expression〉}

Writes the result of evaluating the 〈muskip expression〉 in the log file.
\muskip_log:n

New: 2014-08-22

Updated: 2015-08-07

15 Additions to l3tl

\tl_if_single_token_p:n {〈token list〉}
\tl_if_single_token:nTF {〈token list〉} {〈true code〉} {〈false code〉}
Tests if the token list consists of exactly one token, i.e. is either a single space character
or a single “normal” token. Token groups ({. . . }) are not single tokens.

\tl_if_single_token_p:n ?
\tl_if_single_token:nTF ?

\tl_reverse_tokens:n {〈tokens〉}

This function, which works directly on TEX tokens, reverses the order of the 〈tokens〉:
the first will be the last and the last will become first. Spaces are preserved. The reversal
also operates within brace groups, but the braces themselves are not exchanged, as this
would lead to an unbalanced token list. For instance, \tl_reverse_tokens:n {a~{b()}}
leaves {)(b}~a in the input stream. This function requires two steps of expansion.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the token list will not expand further when appearing in an x-type argument
expansion.

\tl_reverse_tokens:n ?

\tl_count_tokens:n {〈tokens〉}

Counts the number of TEX tokens in the 〈tokens〉 and leaves this information in the input
stream. Every token, including spaces and braces, contributes one to the total; thus for
instance, the token count of a~{bc} is 6. This function requires three expansions, giving
an 〈integer denotation〉.

\tl_count_tokens:n ?

223

\tl_upper_case:n {〈tokens〉}
\tl_upper_case:nn {〈language〉} {〈tokens〉}
These functions are intended to be applied to input which may be regarded broadly
as “text”. They traverse the 〈tokens〉 and change the case of characters as discussed
below. The character code of the characters replaced may be arbitrary: the replacement
characters will have standard document-level category codes (11 for letters, 12 for letter-
like characters which can also be case-changed). Begin-group and end-group characters
in the 〈tokens〉 are normalized and become { and }, respectively.

Importantly, notice that these functions are intended for working with user text for
typesetting. For case changing programmatic data see the l3str module and discussion
there of \str_lower_case:n, \str_upper_case:n and \str_fold_case:n.

\tl_lower_case:n ?
\tl_lower_case:nn ?
\tl_upper_case:n ?
\tl_upper_case:nn ?
\tl_mixed_case:n ?
\tl_mixed_case:nn ?

New: 2014-06-30

Updated: 2016-01-12

The functions perform expansion on the input in most cases. In particular, input
in the form of token lists or expandable functions will be expanded unless it falls within
one of the special handling classes described below. This expansion approach means that
in general the result of case changing will match the “natural” outcome expected from a
“functional” approach to case modification. For example

\tl_set:Nn \l_tmpa_tl { hello }
\tl_upper_case:n { \l_tmpa_tl \c_space_tl world }

will produce

HELLO WORLD

The expansion approach taken means that in package mode any LATEX2ε “robust” com-
mands which may appear in the input should be converted to engine-protected versions
using for example the \robustify command from the etoolbox package.

Case changing will not take place within math mode material so for example

\tl_upper_case:n { Some~text~$y = mx + c$~with~{Braces} }

will become

SOME TEXT $y = mx + c$ WITH {BRACES}

Material inside math mode is left entirely unchanged: in particular, no expansion is
undertaken.

Detection of math mode is controlled by the list of tokens in \l_tl_case_change_-
math_tl, which should be in open–close pairs. In package mode the standard settings
is

$ $ \(\)

Note that while expansion occurs when searching the text it does not apply to math
mode material (which should be unaffected by case changing). As such, whilst the opening
token for math mode may be “hidden” inside a command/macro, the closing one cannot
be as this is being searched for in math mode. Typically, in the types of “text” the case
changing functions are intended to apply to this should not be an issue.

\l_tl_case_change_math_tl

224

\l_tl_case_change_exclude_tl

Case changing can be prevented by using any command on the list \l_tl_case_change_-
exclude_tl. Each entry should be a function to be followed by one argument: the latter
will be preserved as-is with no expansion. Thus for example following

\tl_put_right:Nn \l_tl_case_change_exclude_tl { \NoChangeCase }

the input

\tl_upper_case:n
{ Some~text~$y = mx + c$~with~\NoChangeCase {Protection} }

will result in

SOME TEXT $y = mx + c$ WITH \NoChangeCase {Protection}

Notice that the case changing mapping preserves the inclusion of the escape functions:
it is left to other code to provide suitable definitions (typically equivalent to \use:n). In
particular, the result of case changing is returned protected by \exp_not:n.

When used with LATEX2ε the commands \cite, \ensuremath, \label and \ref are
automatically included in the list for exclusion from case changing.

\l_tl_case_change_accents_tl

This list specifies accent commands which should be left unexpanded in the output. This
allows for example

\tl_upper_case:n { \" { a } }

to yield

\" { A }

irrespective of the expandability of \".
The standard contents of this variable is \", \’, \., \^, \‘, \~, \c, \H, \k, \r, \t,

\u and \v.
“Mixed” case conversion may be regarded informally as converting the first character

of the 〈tokens〉 to upper case and the rest to lower case. However, the process is more
complex than this as there are some situations where a single lower case character maps
to a special form, for example ij in Dutch which becomes IJ. As such, \tl_mixed_-
case:n(n) implement a more sophisticated mapping which accounts for this and for
modifying accents on the first letter. Spaces at the start of the 〈tokens〉 are ignored when
finding the first “letter” for conversion.

\tl_mixed_case:n { hello~WORLD } % => "Hello world"
\tl_mixed_case:n { ~hello~WORLD } % => " Hello world"
\tl_mixed_case:n { {hello}~WORLD } % => "{Hello} world"

When finding the first “letter” for this process, any content in math mode or covered by
\l_tl_case_change_exclude_tl is ignored.

225

(Note that the Unicode Consortium describe this as “title case”, but that in English
title case applies on a word-by-word basis. The “mixed” case implemented here is a lower
level concept needed for both “title” and “sentence” casing of text.)

The list of characters to ignore when searching for the first “letter” in mixed-casing is
determined by \l_tl_mixed_change_ignore_tl. This has the standard setting

([{ ‘ -

where comparisons are made on a character basis.

\l_tl_mixed_case_ignore_tl

As is generally true for expl3, these functions are designed to work with Unicode
input only. As such, UTF-8 input is assumed for all engines. When used with X ETEX or
LuaTEX a full range of Unicode transformations are enabled. Specifically, the standard
mappings here follow those defined by the Unicode Consortium in UnicodeData.txt and
SpecialCasing.txt. In the case of 8-bit engines, mappings are provided for characters
which can be represented in output typeset using the T1 font encoding. Thus for example
Ãď can be case-changed using pdfTEX. For pTEX only the ASCII range is covered as the
engine treats input outside of this range as east Asian.

Context-sensitive mappings are enabled: language-dependent cases are discussed be-
low. Context detection will expand input but treats any unexpandable control sequences
as “failures” to match a context.

Language-sensitive conversions are enabled using the 〈language〉 argument, and fol-
low Unicode Consortium guidelines. Currently, the languages recognised for special han-
dling are as follows.

• Azeri and Turkish (az and tr). The case pairs I/i-dotless and I-dot/i are activated
for these languages. The combining dot mark is removed when lower casing I-dot
and introduced when upper casing i-dotless.

• German (de-alt). An alternative mapping for German in which the lower case
Eszett maps to a großes Eszett.

• Lithuanian (lt). The lower case letters i and j should retain a dot above when the
accents grave, acute or tilde are present. This is implemented for lower casing of
the relevant upper case letters both when input as single Unicode codepoints and
when using combining accents. The combining dot is removed when upper casing
in these cases. Note that only the accents used in Lithuanian are covered: the
behaviour of other accents are not modified.

• Dutch (nl). Capitalisation of ij at the beginning of mixed cased input produces IJ
rather than Ij. The output retains two separate letters, thus this transformation
is available using pdfTEX.

Creating additional context-sensitive mappings requires knowledge of the underlying
mapping implementation used here. The team are happy to add these to the kernel
where they are well-documented (e.g. in Unicode Consortium or relevant government
publications).

226

http://www.unicode.org

\tl_set_from_file:Nnn 〈tl〉 {〈setup〉} {〈filename〉}

Defines 〈tl〉 to the contents of 〈filename〉. Category codes may need to be set appropri-
ately via the 〈setup〉 argument.

\tl_set_from_file:Nnn
\tl_set_from_file:cnn
\tl_gset_from_file:Nnn
\tl_gset_from_file:cnn

New: 2014-06-25

\tl_set_from_file_x:Nnn 〈tl〉 {〈setup〉} {〈filename〉}

Defines 〈tl〉 to the contents of 〈filename〉, expanding the contents of the file as it is read.
Category codes and other definitions may need to be set appropriately via the 〈setup〉
argument.

\tl_set_from_file_x:Nnn
\tl_set_from_file_x:cnn
\tl_gset_from_file_x:Nnn
\tl_gset_from_file_x:cnn

New: 2014-06-25

\tl_log:N 〈tl var〉

Writes the content of the 〈tl var〉 in the log file. See also \tl_show:N which displays the
result in the terminal.

\tl_log:N
\tl_log:c

New: 2014-08-22

Updated: 2015-08-01

\tl_log:n 〈token list〉

Writes the 〈token list〉 in the log file. See also \tl_show:n which displays the result in
the terminal.

\tl_log:n

New: 2014-08-22

16 Additions to l3tokens

\peek_N_type:TF {〈true code〉} {〈false code〉}

Tests if the next 〈token〉 in the input stream can be safely grabbed as an N-type argument.
The test will be 〈false〉 if the next 〈token〉 is either an explicit or implicit begin-group
or end-group token (with any character code), or an explicit or implicit space character
(with character code 32 and category code 10), or an outer token (never used in LATEX3)
and 〈true〉 in all other cases. Note that a 〈true〉 result ensures that the next 〈token〉 is a
valid N-type argument. However, if the next 〈token〉 is for instance \c_space_token, the
test will take the 〈false〉 branch, even though the next 〈token〉 is in fact a valid N-type
argument. The 〈token〉 will be left in the input stream after the 〈true code〉 or 〈false
code〉 (as appropriate to the result of the test).

\peek_N_type:TF

Updated: 2012-12-20

227

Part XXIV

The l3sys package
System/runtime functions
1 The name of the job

Constant that gets the “job name” assigned when TEX starts.

TEXhackers note: This copies the contents of the primitive \jobname. It is a constant
that is set by TEX and should not be overwritten by the package.

\c_sys_jobname_str

New: 2015-09-19

2 Date and time

The date and time at which the current job was started: these are all reported as integers.

TEXhackers note: Whilst the underlying primitives can be altered by the user, this
interface to the time and date is intended to be the “real” values.

\c_sys_minute_int
\c_sys_hour_int
\c_sys_day_int
\c_sys_month_int
\c_sys_year_int

New: 2015-09-22

2.1 Engine

\sys_if_engine_pdftex:TF {〈true code〉} {〈false code〉}

Conditionals which allow engine-specific code to be used. The names follow naturally
from those of the engine binaries: note that the (u)ptex tests are for ε-pTEX and ε-upTEX
as expl3 requires the ε-TEX extensions. Each conditional is true for exactly one supported
engine. In particular, \sys_if_engine_ptex_p: is true for ε-pTEX but false for ε-upTEX.

\sys_if_engine_luatex_p: ?
\sys_if_engine_luatex:TF ?
\sys_if_engine_pdftex_p: ?
\sys_if_engine_pdftex:TF ?
\sys_if_engine_ptex_p: ?
\sys_if_engine_ptex:TF ?
\sys_if_engine_uptex_p: ?
\sys_if_engine_uptex:TF ?
\sys_if_engine_xetex_p: ?
\sys_if_engine_xetex:TF ?

New: 2015-09-07

The current engine given as a lower case string: will be one of luatex, pdftex, ptex,
uptex or xetex.

\c_sys_engine_str

New: 2015-09-19

228

2.2 Output format

\sys_if_output_dvi:TF {〈true code〉} {〈false code〉}

Conditionals which give the current output mode the TEX run is operating in. This will
always be one of two outcomes, DVI mode or PDF mode. The two sets of conditionals
are thus complementary and are both provided to allow the programmer to emphasise
the most appropriate case.

\sys_if_output_dvi_p: ?
\sys_if_output_dvi:TF ?
\sys_if_output_pdf_p: ?
\sys_if_output_pdf:TF ?

New: 2015-09-19

The current output mode given as a lower case string: will be one of dvi or pdf.\c_sys_output_str

New: 2015-09-19

229

Part XXV

The l3luatex package
LuaTeX-specific functions
1 Breaking out to Lua
The LuaTEX engine provides access to the Lua programming language, and with it access
to the “internals” of TEX. In order to use this within the framework provided here, a
family of functions is available. When used with pdfTEX or X ETEX these will raise an
error: use \sys_if_engine_luatex:T to avoid this. Details of coding the LuaTEX engine
are detailed in the LuaTEX manual.

1.1 TEX code interfaces

\lua_now:n {〈token list〉}

The 〈token list〉 is first tokenized by TEX, which will include converting line ends to
spaces in the usual TEX manner and which respects currently-applicable TEX category
codes. The resulting 〈Lua input〉 is passed to the Lua interpreter for processing. Each
\lua_now:n block is treated by Lua as a separate chunk. The Lua interpreter will execute
the 〈Lua input〉 immediately, and in an expandable manner.

In the case of the \lua_now_x:n version the input is fully expanded by TEX in an
x-type manner but the function remains fully expandable.

TEXhackers note: \lua_now_x:n is a macro wrapper around \directlua: when LuaTEX
is in use two expansions will be required to yield the result of the Lua code.

\lua_now_x:n ?
\lua_now:n ?

New: 2015-06-29

\lua_shipout:n {〈token list〉}

The 〈token list〉 is first tokenized by TEX, which will include converting line ends to
spaces in the usual TEX manner and which respects currently-applicable TEX category
codes. The resulting 〈Lua input〉 is passed to the Lua interpreter when the current page
is finalised (i.e. at shipout). Each \lua_shipout:n block is treated by Lua as a separate
chunk. The Lua interpreter will execute the 〈Lua input〉 during the page-building routine:
no TEX expansion of the 〈Lua input〉 will occur at this stage.

In the case of the \lua_shipout_x:n version the input is fully expanded by TEX in
an x-type manner during the shipout operation.

TEXhackers note: At a TEX level, the 〈Lua input〉 is stored as a “whatsit”.

\lua_shipout_x:n
\lua_shipout:n

New: 2015-06-30

230

\lua_escape:n {〈token list〉}

Converts the 〈token list〉 such that it can safely be passed to Lua: embedded backslashes,
double and single quotes, and newlines and carriage returns are escaped. This is done by
prepending an extra token consisting of a backslash with category code 12, and for the
line endings, converting them to \n and \r, respectively.

In the case of the \lua_escape_x:n version the input is fully expanded by TEX in
an x-type manner but the function remains fully expandable.

TEXhackers note: \lua_escape_x:n is a macro wrapper around \luaescapestring:
when LuaTEX is in use two expansions will be required to yield the result of the Lua code.

\lua_escape_x:n ?
\lua_escape:n ?

New: 2015-06-29

1.2 Lua interfaces
As well as interfaces for TEX, there are a small number of Lua functions provided here.
Currently these are intended for internal use only.

\l3kernel.strcmp(〈str one〉, 〈str two〉)

Compares the two strings and returns 0 to TEX if the two are identical.
l3kernel.strcmp

\l3kernel.charcat(〈charcode〉, 〈catcode〉)

Constructs a character of 〈charcode〉 and 〈catcode〉 and returns the result to TEX.
l3kernel.charcat

231

Part XXVI

The l3drivers package
Drivers
TEX relies on drivers in order to carry out a number of tasks, such as using color, including
graphics and setting up hyper-links. The nature of the code required depends on the exact
driver in use. Currently, LATEX3 is aware of the following drivers:

• pdfmode: The “driver” for direct PDF output by both pdfTEX and LuaTEX (no
separate driver is used in this case: the engine deals with PDF creation itself).

• dvips: The dvips program, which works in conjugation with pdfTEX or LuaTEX
in DVI mode.

• dvipdfmx: The dvipdfmx program, which works in conjugation with pdfTEX or
LuaTEX in DVI mode.

• xdvipdfmx: The driver used by X ETEX.

The code here is all very low-level, and should not in general be used outside of the
kernel. It is also important to note that many of the functions here are closely tied to
the immediate level “up”: several variable values must be in the correct locations for the
driver code to function.

1 Box clipping

__driver_box_use_clip:N 〈box〉

Inserts the content of the 〈box〉 at the current insertion point such that any material
outside of the bounding box will not be displayed by the driver. The material in the
〈box〉 is still placed in the output stream: the clipping takes place at a driver level.

This function should only be used within a surrounding horizontal box construct.

__driver_box_use_clip:N

New: 2011-11-11

232

2 Box rotation and scaling

__driver_box_rotate_begin:
\box_use:N \l__box_internal_box
__driver_box_rotate_end:

__driver_box_rotate_begin:
__driver_box_rotate_end:

New: 2011-09-01

Updated: 2013-12-27

Rotates the 〈box material〉 anti-clockwise around the current insertion point. The angle
of rotation (in degrees counter-clockwise) and the sine and cosine of this angle should
be stored in \l__box_angle_fp, \l__box_sin_fp and \l__box_cos_fp, respectively.
Typically, the box material inserted between the beginning and end markers will be
stored in \l__box_internal_box: this fact is required by some drivers to obtain the
correct output.

__driver_box_scale_begin:
〈box material〉
__driver_box_scale_end:

Scales the 〈box material〉 (which should be either a \box_use:N or \hbox:n construct).
The 〈box material〉 is scaled by the values stored in \l__box_scale_x_fp and \l__-
box_scale_y_fp in the horizontal and vertical directions, respectively. This function is
also reused when resizing boxes: at a driver level, only scalings are supported and so the
higher-level code must convert the absolute sizes to scale factors.

__driver_box_scale_begin:
__driver_box_scale_end:

New: 2011-09-02

Updated: 2013-12-27

3 Color support

__driver_color_ensure_current:__driver_color_ensure_current:

New: 2011-09-03

Updated: 2012-05-18

Ensures that the color used to typeset material is that which was set when the material
was placed in a box. This function is therefore required inside any “color safe” box to
ensure that the box may be inserted in a location where the foreground color has been
altered, while preserving the color used in the box.

Part XXVII

Implementation
1 l3bootstrap implementation

1 〈*initex | package〉
2 〈@@=expl〉

233

1.1 Format-specific code
The very first thing to do is to bootstrap the iniTEX system so that everything else will
actually work. TEX does not start with some pretty basic character codes set up.

3 〈*initex〉
4 \catcode ‘\{ = 1 %
5 \catcode ‘\} = 2 %
6 \catcode ‘\# = 6 %
7 \catcode ‘\^ = 7 %
8 〈/initex〉
Tab characters should not show up in the code, but to be on the safe side.

9 〈*initex〉
10 \catcode ‘\^^I = 10 %
11 〈/initex〉
For LuaTEX, the extra primitives need to be enabled. This is not needed in package

mode: common formats have the primitives enabled.
12 〈*initex〉
13 \begingroup\expandafter\expandafter\expandafter\endgroup
14 \expandafter\ifx\csname directlua\endcsname\relax
15 \else
16 \directlua{tex.enableprimitives("", tex.extraprimitives())}%
17 \fi
18 〈/initex〉
Depending on the versions available, the LATEX format may not have the raw \Umath

primitive names available. We fix that globally: it should cause no issues. Older LuaTEX
versions do not have a pre-built table of the primitive names here so sort one out ourselves.
These end up globally-defined but at that is true with a newer format anyway and as
they all start \U this should be reasonably safe.

19 〈*package〉
20 \begingroup
21 \expandafter\ifx\csname directlua\endcsname\relax
22 \else
23 \directlua{%
24 local i
25 local t = { }
26 for _,i in pairs(tex.extraprimitives("luatex")) do
27 if string.match(i,"^U") then
28 if not string.match(i,"^Uchar$") then
29 table.insert(t,i)
30 end
31 end
32 end
33 tex.enableprimitives("", t)
34 }%
35 \fi
36 \endgroup
37 〈/package〉

234

1.2 The \pdfstrcmp primitive in X ETEX
Only pdfTEX has a primitive called \pdfstrcmp. The X ETEX version is just \strcmp, so
there is some shuffling to do. As this is still a real primitive, using the pdfTEX name is
“safe”.

38 \begingroup\expandafter\expandafter\expandafter\endgroup
39 \expandafter\ifx\csname pdfstrcmp\endcsname\relax
40 \let\pdfstrcmp\strcmp
41 \fi

1.3 Loading support Lua code
When LuaTEX is used there are various pieces of Lua code which need to be loaded. The
code itself is defined in l3luatex and is extracted into a separate file. Thus here the task
is to load the Lua code both now and (if required) at the start of each job.

42 \begingroup\expandafter\expandafter\expandafter\endgroup
43 \expandafter\ifx\csname directlua\endcsname\relax
44 \else
45 \ifnum\luatexversion<70 %
46 \else

In package mode a category code table is needed: either use a pre-loaded allocator or
provide one using the LATEX2ε-based generic code. In format mode the table used here
can be hard-coded into the Lua.

47 〈*package〉
48 \begingroup\expandafter\expandafter\expandafter\endgroup
49 \expandafter\ifx\csname newcatcodetable\endcsname\relax
50 \input{ltluatex}%
51 \fi
52 \newcatcodetable\ucharcat@table
53 \directlua{
54 l3kernel = l3kernel or { }
55 local charcat_table = \number\ucharcat@table\space
56 l3kernel.charcat_table = charcat_table
57 }%
58 〈/package〉
59 \directlua{require("expl3")}%

As the user might be making a custom format, no assumption is made about matching
package mode with only loading the Lua code once. Instead, a query to Lua will reveal
what mode is in operation.

60 \ifnum 0%
61 \directlua{
62 if status.ini_version then
63 tex.write("1")
64 end
65 }>0 %
66 \everyjob\expandafter{%
67 \the\expandafter\everyjob

235

68 \csname\detokenize{lua_now_x:n}\endcsname{require("expl3")}%
69 }%
70 \fi
71 \fi
72 \fi

1.4 Engine requirements
The code currently requires ε-TEX and functionality equivalent to \pdfstrcmp, and also
driver and Unicode character support. This is available in a reasonably-wide range of
engines.

73 \begingroup
74 \def\next{\endgroup}%
75 \def\ShortText{Required primitives not found}%
76 \def\LongText%
77 {%
78 LaTeX3 requires the e-TeX primitives and additional functionality as
79 described in the README file.
80 \LineBreak
81 These are available in the engines\LineBreak
82 - pdfTeX v1.40\LineBreak
83 - XeTeX v0.9994\LineBreak
84 - LuaTeX v0.70\LineBreak
85 - e-(u)pTeX mid-2012\LineBreak
86 or later.\LineBreak
87 \LineBreak
88 }%
89 \ifnum0%
90 \expandafter\ifx\csname pdfstrcmp\endcsname\relax
91 \else
92 \expandafter\ifx\csname pdftexversion\endcsname\relax
93 1%
94 \else
95 \ifnum\pdftexversion<140 \else 1\fi
96 \fi
97 \fi
98 \expandafter\ifx\csname directlua\endcsname\relax
99 \else

100 \ifnum\luatexversion<40 \else 1\fi
101 \fi
102 =0 %
103 \newlinechar‘\^^J %
104 〈*initex〉
105 \def\LineBreak{^^J}%
106 \edef\next
107 {%
108 \errhelp
109 {%
110 \LongText

236

111 For pdfTeX and XeTeX the ’-etex’ command-line switch is also
112 needed.\LineBreak
113 \LineBreak
114 Format building will abort!\LineBreak
115 }%
116 \errmessage{\ShortText}%
117 \endgroup
118 \noexpand\end
119 }%
120 〈/initex〉
121 〈*package〉
122 \def\LineBreak{\noexpand\MessageBreak}%
123 \expandafter\ifx\csname PackageError\endcsname\relax
124 \def\LineBreak{^^J}%
125 \def\PackageError#1#2#3%
126 {%
127 \errhelp{#3}%
128 \errmessage{#1 Error: #2}%
129 }%
130 \fi
131 \edef\next
132 {%
133 \noexpand\PackageError{expl3}{\ShortText}
134 {\LongText Loading of expl3 will abort!}%
135 \endgroup
136 \noexpand\endinput
137 }%
138 〈/package〉
139 \fi
140 \next

1.5 Extending allocators
In format mode, allocating registers is handled by l3alloc. However, in package mode
it’s much safer to rely on more general code. For example, the ability to extend TEX’s
allocation routine to allow for ε-TEX has been around since 1997 in the etex package.

Loading this support is delayed until here as we are now sure that the ε-TEX ex-
tensions and \pdfstrcmp or equivalent are available. Thus there is no danger of an
“uncontrolled” error if the engine requirements are not met.

For LATEX2ε we need to make sure that the extended pool is being used: expl3
uses a lot of registers. For formats from 2015 onward there is nothing to do as this is
automatic. For older formats, the etex package needs to be loaded to do the job. In that
case, some inserts are reserved also as these have to be from the standard pool. Note
that \reserveinserts is \outer and so is accessed here by csname. In earlier versions,
loading etex was done directly and so \reserveinserts appeared in the code: this then
required a \relax after \RequirePackage to prevent an error with “unsafe” definitions
as seen for example with capoptions. The optional loading here is done using a group

237

and \ifx test as we are not quite in the position to have a single name for \pdfstrcmp
just yet.

141 〈*package〉
142 \begingroup
143 \def\@tempa{LaTeX2e}%
144 \def\next{}%
145 \ifx\fmtname\@tempa
146 \expandafter\ifx\csname extrafloats\endcsname\relax
147 \def\next
148 {%
149 \RequirePackage{etex}%
150 \csname reserveinserts\endcsname{32}%
151 }%
152 \fi
153 \fi
154 \expandafter\endgroup
155 \next
156 〈/package〉

1.6 Character data
TEX needs various pieces of data to be set about characters, in particular which ones to
treat as letters and which \lccode values apply as these affect hyphenation. It makes
most sense to set this and related information up in one place. Whilst for LuaTEX
hyphenation patterns can be read anywhere, other engines have to build them into the
format and so we must do this set up before reading the patterns. For the Unicode
engines, there are shared loaders available to obtain the relevant information directly
from the Unicode Consortium data files. These need standard (Ini)TEX category codes
and primitive availability and must therefore loaded very early. This has a knock-on
effect on the 8-bit set up: it makes sense to do the definitions for those here as well so it
is all in one place.

For X ETEX and LuaTEX, which are natively Unicode engines, simply load the Uni-
code data.

157 〈*initex〉
158 \ifdefined\Umathcode
159 \input load-unicode-data %
160 \input load-unicode-math-classes %
161 \else

For the 8-bit engines a font encoding scheme must be chosen. At present, this is the EC
(T1) scheme, with the assumption that languages for which this is not appropriate will
be used with one of the Unicode engines.

162 \begingroup

Lower case chars: map to themselves when lower casing and down by "20 when upper
casing. (The characters a–z are set up correctly by IniTEX.)

163 \def\temp{%
164 \ifnum\count0>\count2 %

238

165 \else
166 \global\lccode\count0 = \count0 %
167 \global\uccode\count0 = \numexpr\count0 - "20\relax
168 \advance\count0 by 1 %
169 \expandafter\temp
170 \fi
171 }
172 \count0 = "A0 %
173 \count2 = "BC %
174 \temp
175 \count0 = "E0 %
176 \count2 = "FF %
177 \temp

Upper case chars: map up by "20 when lower casing, to themselves when upper casing
and require an \sfcode of 999. (The characters A–Z are set up correctly by IniTEX.)

178 \def\temp{%
179 \ifnum\count0>\count2 %
180 \else
181 \global\lccode\count0 = \numexpr\count0 + "20\relax
182 \global\uccode\count0 = \count0 %
183 \global\sfcode\count0 = 999 %
184 \advance\count0 by 1 %
185 \expandafter\temp
186 \fi
187 }
188 \count0 = "80 %
189 \count2 = "9C %
190 \temp
191 \count0 = "C0 %
192 \count2 = "DF %
193 \temp

A few special cases where things are not as one might expect using the above pattern:
dotless-I, dotless-J, dotted-I and d-bar.

194 \global\lccode‘\^^Y = ‘\^^Y %
195 \global\uccode‘\^^Y = ‘\I %
196 \global\lccode‘\^^Z = ‘\^^Z %
197 \global\uccode‘\^^Y = ‘\J %
198 \global\lccode"9D = ‘\i %
199 \global\uccode"9D = "9D %
200 \global\lccode"9E = "9E %
201 \global\uccode"9E = "D0 %

Allow hyphenation at a zero-width glyph (used to break up ligatures or to place accents
between characters).

202 \global\lccode23 = 23 %
203 \endgroup
204 \fi

239

In all cases it makes sense to set up - to map to itself: this allows hyphenation of the
rest of a word following it (suggested by Lars Helström).

205 \global\lccode‘\- = ‘\- %
206 〈/initex〉

1.7 The LATEX3 code environment
The code environment is now set up.

\ExplSyntaxOff Before changing any category codes, in package mode we need to save the situation before
loading. Note the set up here means that once applied \ExplSyntaxOff will be a “do
nothing” command until \ExplSyntaxOn is used. For format mode, there is no need to
save category codes so that step is skipped.

207 \protected\def\ExplSyntaxOff{}%
208 〈*package〉
209 \protected\edef\ExplSyntaxOff
210 {%
211 \protected\def\ExplSyntaxOff{}%
212 \catcode 9 = \the\catcode 9\relax
213 \catcode 32 = \the\catcode 32\relax
214 \catcode 34 = \the\catcode 34\relax
215 \catcode 38 = \the\catcode 38\relax
216 \catcode 58 = \the\catcode 58\relax
217 \catcode 94 = \the\catcode 94\relax
218 \catcode 95 = \the\catcode 95\relax
219 \catcode 124 = \the\catcode 124\relax
220 \catcode 126 = \the\catcode 126\relax
221 \endlinechar = \the\endlinechar\relax
222 \chardef\csname\detokenize{l__kernel_expl_bool}\endcsname = 0\relax
223 }%
224 〈/package〉

(End definition for \ExplSyntaxOff. This function is documented on page 7.)
The code environment is now set up.

225 \catcode 9 = 9\relax
226 \catcode 32 = 9\relax
227 \catcode 34 = 12\relax
228 \catcode 38 = 4\relax
229 \catcode 58 = 11\relax
230 \catcode 94 = 7\relax
231 \catcode 95 = 11\relax
232 \catcode 124 = 12\relax
233 \catcode 126 = 10\relax
234 \endlinechar = 32\relax

\l__kernel_expl_bool The status for experimental code syntax: this is on at present.
235 \chardef\l__kernel_expl_bool = 1\relax

(End definition for \l__kernel_expl_bool. This variable is documented on page 8.)

240

\ExplSyntaxOn The idea here is that multiple \ExplSyntaxOn calls are not going to mess up category
codes, and that multiple calls to \ExplSyntaxOff are also not wasting time. Applying
\ExplSyntaxOn will alter the definition of \ExplSyntaxOff and so in package mode this
function should not be used until after the end of the loading process!

236 \protected \def \ExplSyntaxOn
237 {
238 \bool_if:NF \l__kernel_expl_bool
239 {
240 \cs_set_protected_nopar:Npx \ExplSyntaxOff
241 {
242 \char_set_catcode:nn { 9 } { \char_value_catcode:n { 9 } }
243 \char_set_catcode:nn { 32 } { \char_value_catcode:n { 32 } }
244 \char_set_catcode:nn { 34 } { \char_value_catcode:n { 34 } }
245 \char_set_catcode:nn { 38 } { \char_value_catcode:n { 38 } }
246 \char_set_catcode:nn { 58 } { \char_value_catcode:n { 58 } }
247 \char_set_catcode:nn { 94 } { \char_value_catcode:n { 94 } }
248 \char_set_catcode:nn { 95 } { \char_value_catcode:n { 95 } }
249 \char_set_catcode:nn { 124 } { \char_value_catcode:n { 124 } }
250 \char_set_catcode:nn { 126 } { \char_value_catcode:n { 126 } }
251 \tex_endlinechar:D =
252 \tex_the:D \tex_endlinechar:D \scan_stop:
253 \bool_set_false:N \l__kernel_expl_bool
254 \cs_set_protected_nopar:Npn \ExplSyntaxOff { }
255 }
256 }
257 \char_set_catcode_ignore:n { 9 } % tab
258 \char_set_catcode_ignore:n { 32 } % space
259 \char_set_catcode_other:n { 34 } % double quote
260 \char_set_catcode_alignment:n { 38 } % ampersand
261 \char_set_catcode_letter:n { 58 } % colon
262 \char_set_catcode_math_superscript:n { 94 } % circumflex
263 \char_set_catcode_letter:n { 95 } % underscore
264 \char_set_catcode_other:n { 124 } % pipe
265 \char_set_catcode_space:n { 126 } % tilde
266 \tex_endlinechar:D = 32 \scan_stop:
267 \bool_set_true:N \l__kernel_expl_bool
268 }

(End definition for \ExplSyntaxOn. This function is documented on page 7.)

269 〈/initex | package〉

2 l3names implementation
270 〈*initex | package〉

No prefix substitution here.
271 〈@@=〉

The code here simply renames all of the primitives to new, internal, names. In format
mode, it also deletes all of the existing names (although some do come back later).

241

\tex_undefined:D This function does not exist at all, but is the name used by the plain TEX format for an
undefined function. So it should be marked here as “taken”.

(End definition for \tex_undefined:D. This function is documented on page ??.)
The \let primitive is renamed by hand first as it is essential for the entire process

to follow. This also uses \global, as that way we avoid leaving an unneeded csname in
the hash table.

272 \let \tex_global:D \global
273 \let \tex_let:D \let

Everything is inside a (rather long) group, which keeps __kernel_primitive:NN
trapped.

274 \begingroup

__kernel_primitive:NN A temporary function to actually do the renaming. This also allows the original names
to be removed in format mode.

275 \long \def __kernel_primitive:NN #1#2
276 {
277 \tex_global:D \tex_let:D #2 #1
278 〈*initex〉
279 \tex_global:D \tex_let:D #1 \tex_undefined:D
280 〈/initex〉
281 }

(End definition for __kernel_primitive:NN.)
To allow extracting “just the names”, a bit of DocStrip fiddling.

282 〈/initex | package〉
283 〈*initex | names | package〉

In the current incarnation of this package, all TEX primitives are given a new name
of the form \tex_oldname:D. But first three special cases which have symbolic original
names. These are given modified new names, so that they may be entered without
catcode tricks.

284 __kernel_primitive:NN \ \tex_space:D
285 __kernel_primitive:NN \/ \tex_italiccorrection:D
286 __kernel_primitive:NN \- \tex_hyphen:D

Now all the other primitives.
287 __kernel_primitive:NN \above \tex_above:D
288 __kernel_primitive:NN \abovedisplayshortskip \tex_abovedisplayshortskip:D
289 __kernel_primitive:NN \abovedisplayskip \tex_abovedisplayskip:D
290 __kernel_primitive:NN \abovewithdelims \tex_abovewithdelims:D
291 __kernel_primitive:NN \accent \tex_accent:D
292 __kernel_primitive:NN \adjdemerits \tex_adjdemerits:D
293 __kernel_primitive:NN \advance \tex_advance:D
294 __kernel_primitive:NN \afterassignment \tex_afterassignment:D
295 __kernel_primitive:NN \aftergroup \tex_aftergroup:D
296 __kernel_primitive:NN \atop \tex_atop:D
297 __kernel_primitive:NN \atopwithdelims \tex_atopwithdelims:D
298 __kernel_primitive:NN \badness \tex_badness:D

242

299 __kernel_primitive:NN \baselineskip \tex_baselineskip:D
300 __kernel_primitive:NN \batchmode \tex_batchmode:D
301 __kernel_primitive:NN \begingroup \tex_begingroup:D
302 __kernel_primitive:NN \belowdisplayshortskip \tex_belowdisplayshortskip:D
303 __kernel_primitive:NN \belowdisplayskip \tex_belowdisplayskip:D
304 __kernel_primitive:NN \binoppenalty \tex_binoppenalty:D
305 __kernel_primitive:NN \botmark \tex_botmark:D
306 __kernel_primitive:NN \box \tex_box:D
307 __kernel_primitive:NN \boxmaxdepth \tex_boxmaxdepth:D
308 __kernel_primitive:NN \brokenpenalty \tex_brokenpenalty:D
309 __kernel_primitive:NN \catcode \tex_catcode:D
310 __kernel_primitive:NN \char \tex_char:D
311 __kernel_primitive:NN \chardef \tex_chardef:D
312 __kernel_primitive:NN \cleaders \tex_cleaders:D
313 __kernel_primitive:NN \closein \tex_closein:D
314 __kernel_primitive:NN \closeout \tex_closeout:D
315 __kernel_primitive:NN \clubpenalty \tex_clubpenalty:D
316 __kernel_primitive:NN \copy \tex_copy:D
317 __kernel_primitive:NN \count \tex_count:D
318 __kernel_primitive:NN \countdef \tex_countdef:D
319 __kernel_primitive:NN \cr \tex_cr:D
320 __kernel_primitive:NN \crcr \tex_crcr:D
321 __kernel_primitive:NN \csname \tex_csname:D
322 __kernel_primitive:NN \day \tex_day:D
323 __kernel_primitive:NN \deadcycles \tex_deadcycles:D
324 __kernel_primitive:NN \def \tex_def:D
325 __kernel_primitive:NN \defaulthyphenchar \tex_defaulthyphenchar:D
326 __kernel_primitive:NN \defaultskewchar \tex_defaultskewchar:D
327 __kernel_primitive:NN \delcode \tex_delcode:D
328 __kernel_primitive:NN \delimiter \tex_delimiter:D
329 __kernel_primitive:NN \delimiterfactor \tex_delimiterfactor:D
330 __kernel_primitive:NN \delimitershortfall \tex_delimitershortfall:D
331 __kernel_primitive:NN \dimen \tex_dimen:D
332 __kernel_primitive:NN \dimendef \tex_dimendef:D
333 __kernel_primitive:NN \discretionary \tex_discretionary:D
334 __kernel_primitive:NN \displayindent \tex_displayindent:D
335 __kernel_primitive:NN \displaylimits \tex_displaylimits:D
336 __kernel_primitive:NN \displaystyle \tex_displaystyle:D
337 __kernel_primitive:NN \displaywidowpenalty \tex_displaywidowpenalty:D
338 __kernel_primitive:NN \displaywidth \tex_displaywidth:D
339 __kernel_primitive:NN \divide \tex_divide:D
340 __kernel_primitive:NN \doublehyphendemerits \tex_doublehyphendemerits:D
341 __kernel_primitive:NN \dp \tex_dp:D
342 __kernel_primitive:NN \dump \tex_dump:D
343 __kernel_primitive:NN \edef \tex_edef:D
344 __kernel_primitive:NN \else \tex_else:D
345 __kernel_primitive:NN \emergencystretch \tex_emergencystretch:D
346 __kernel_primitive:NN \end \tex_end:D
347 __kernel_primitive:NN \endcsname \tex_endcsname:D
348 __kernel_primitive:NN \endgroup \tex_endgroup:D

243

349 __kernel_primitive:NN \endinput \tex_endinput:D
350 __kernel_primitive:NN \endlinechar \tex_endlinechar:D
351 __kernel_primitive:NN \eqno \tex_eqno:D
352 __kernel_primitive:NN \errhelp \tex_errhelp:D
353 __kernel_primitive:NN \errmessage \tex_errmessage:D
354 __kernel_primitive:NN \errorcontextlines \tex_errorcontextlines:D
355 __kernel_primitive:NN \errorstopmode \tex_errorstopmode:D
356 __kernel_primitive:NN \escapechar \tex_escapechar:D
357 __kernel_primitive:NN \everycr \tex_everycr:D
358 __kernel_primitive:NN \everydisplay \tex_everydisplay:D
359 __kernel_primitive:NN \everyhbox \tex_everyhbox:D
360 __kernel_primitive:NN \everyjob \tex_everyjob:D
361 __kernel_primitive:NN \everymath \tex_everymath:D
362 __kernel_primitive:NN \everypar \tex_everypar:D
363 __kernel_primitive:NN \everyvbox \tex_everyvbox:D
364 __kernel_primitive:NN \exhyphenpenalty \tex_exhyphenpenalty:D
365 __kernel_primitive:NN \expandafter \tex_expandafter:D
366 __kernel_primitive:NN \fam \tex_fam:D
367 __kernel_primitive:NN \fi \tex_fi:D
368 __kernel_primitive:NN \finalhyphendemerits \tex_finalhyphendemerits:D
369 __kernel_primitive:NN \firstmark \tex_firstmark:D
370 __kernel_primitive:NN \floatingpenalty \tex_floatingpenalty:D
371 __kernel_primitive:NN \font \tex_font:D
372 __kernel_primitive:NN \fontdimen \tex_fontdimen:D
373 __kernel_primitive:NN \fontname \tex_fontname:D
374 __kernel_primitive:NN \futurelet \tex_futurelet:D
375 __kernel_primitive:NN \gdef \tex_gdef:D
376 __kernel_primitive:NN \global \tex_global:D
377 __kernel_primitive:NN \globaldefs \tex_globaldefs:D
378 __kernel_primitive:NN \halign \tex_halign:D
379 __kernel_primitive:NN \hangafter \tex_hangafter:D
380 __kernel_primitive:NN \hangindent \tex_hangindent:D
381 __kernel_primitive:NN \hbadness \tex_hbadness:D
382 __kernel_primitive:NN \hbox \tex_hbox:D
383 __kernel_primitive:NN \hfil \tex_hfil:D
384 __kernel_primitive:NN \hfill \tex_hfill:D
385 __kernel_primitive:NN \hfilneg \tex_hfilneg:D
386 __kernel_primitive:NN \hfuzz \tex_hfuzz:D
387 __kernel_primitive:NN \hoffset \tex_hoffset:D
388 __kernel_primitive:NN \holdinginserts \tex_holdinginserts:D
389 __kernel_primitive:NN \hrule \tex_hrule:D
390 __kernel_primitive:NN \hsize \tex_hsize:D
391 __kernel_primitive:NN \hskip \tex_hskip:D
392 __kernel_primitive:NN \hss \tex_hss:D
393 __kernel_primitive:NN \ht \tex_ht:D
394 __kernel_primitive:NN \hyphenation \tex_hyphenation:D
395 __kernel_primitive:NN \hyphenchar \tex_hyphenchar:D
396 __kernel_primitive:NN \hyphenpenalty \tex_hyphenpenalty:D
397 __kernel_primitive:NN \if \tex_if:D
398 __kernel_primitive:NN \ifcase \tex_ifcase:D

244

399 __kernel_primitive:NN \ifcat \tex_ifcat:D
400 __kernel_primitive:NN \ifdim \tex_ifdim:D
401 __kernel_primitive:NN \ifeof \tex_ifeof:D
402 __kernel_primitive:NN \iffalse \tex_iffalse:D
403 __kernel_primitive:NN \ifhbox \tex_ifhbox:D
404 __kernel_primitive:NN \ifhmode \tex_ifhmode:D
405 __kernel_primitive:NN \ifinner \tex_ifinner:D
406 __kernel_primitive:NN \ifmmode \tex_ifmmode:D
407 __kernel_primitive:NN \ifnum \tex_ifnum:D
408 __kernel_primitive:NN \ifodd \tex_ifodd:D
409 __kernel_primitive:NN \iftrue \tex_iftrue:D
410 __kernel_primitive:NN \ifvbox \tex_ifvbox:D
411 __kernel_primitive:NN \ifvmode \tex_ifvmode:D
412 __kernel_primitive:NN \ifvoid \tex_ifvoid:D
413 __kernel_primitive:NN \ifx \tex_ifx:D
414 __kernel_primitive:NN \ignorespaces \tex_ignorespaces:D
415 __kernel_primitive:NN \immediate \tex_immediate:D
416 __kernel_primitive:NN \indent \tex_indent:D
417 __kernel_primitive:NN \input \tex_input:D
418 __kernel_primitive:NN \inputlineno \tex_inputlineno:D
419 __kernel_primitive:NN \insert \tex_insert:D
420 __kernel_primitive:NN \insertpenalties \tex_insertpenalties:D
421 __kernel_primitive:NN \interlinepenalty \tex_interlinepenalty:D
422 __kernel_primitive:NN \jobname \tex_jobname:D
423 __kernel_primitive:NN \kern \tex_kern:D
424 __kernel_primitive:NN \language \tex_language:D
425 __kernel_primitive:NN \lastbox \tex_lastbox:D
426 __kernel_primitive:NN \lastkern \tex_lastkern:D
427 __kernel_primitive:NN \lastpenalty \tex_lastpenalty:D
428 __kernel_primitive:NN \lastskip \tex_lastskip:D
429 __kernel_primitive:NN \lccode \tex_lccode:D
430 __kernel_primitive:NN \leaders \tex_leaders:D
431 __kernel_primitive:NN \left \tex_left:D
432 __kernel_primitive:NN \lefthyphenmin \tex_lefthyphenmin:D
433 __kernel_primitive:NN \leftskip \tex_leftskip:D
434 __kernel_primitive:NN \leqno \tex_leqno:D
435 __kernel_primitive:NN \let \tex_let:D
436 __kernel_primitive:NN \limits \tex_limits:D
437 __kernel_primitive:NN \linepenalty \tex_linepenalty:D
438 __kernel_primitive:NN \lineskip \tex_lineskip:D
439 __kernel_primitive:NN \lineskiplimit \tex_lineskiplimit:D
440 __kernel_primitive:NN \long \tex_long:D
441 __kernel_primitive:NN \looseness \tex_looseness:D
442 __kernel_primitive:NN \lower \tex_lower:D
443 __kernel_primitive:NN \lowercase \tex_lowercase:D
444 __kernel_primitive:NN \mag \tex_mag:D
445 __kernel_primitive:NN \mark \tex_mark:D
446 __kernel_primitive:NN \mathaccent \tex_mathaccent:D
447 __kernel_primitive:NN \mathbin \tex_mathbin:D
448 __kernel_primitive:NN \mathchar \tex_mathchar:D

245

449 __kernel_primitive:NN \mathchardef \tex_mathchardef:D
450 __kernel_primitive:NN \mathchoice \tex_mathchoice:D
451 __kernel_primitive:NN \mathclose \tex_mathclose:D
452 __kernel_primitive:NN \mathcode \tex_mathcode:D
453 __kernel_primitive:NN \mathinner \tex_mathinner:D
454 __kernel_primitive:NN \mathop \tex_mathop:D
455 __kernel_primitive:NN \mathopen \tex_mathopen:D
456 __kernel_primitive:NN \mathord \tex_mathord:D
457 __kernel_primitive:NN \mathpunct \tex_mathpunct:D
458 __kernel_primitive:NN \mathrel \tex_mathrel:D
459 __kernel_primitive:NN \mathsurround \tex_mathsurround:D
460 __kernel_primitive:NN \maxdeadcycles \tex_maxdeadcycles:D
461 __kernel_primitive:NN \maxdepth \tex_maxdepth:D
462 __kernel_primitive:NN \meaning \tex_meaning:D
463 __kernel_primitive:NN \medmuskip \tex_medmuskip:D
464 __kernel_primitive:NN \message \tex_message:D
465 __kernel_primitive:NN \mkern \tex_mkern:D
466 __kernel_primitive:NN \month \tex_month:D
467 __kernel_primitive:NN \moveleft \tex_moveleft:D
468 __kernel_primitive:NN \moveright \tex_moveright:D
469 __kernel_primitive:NN \mskip \tex_mskip:D
470 __kernel_primitive:NN \multiply \tex_multiply:D
471 __kernel_primitive:NN \muskip \tex_muskip:D
472 __kernel_primitive:NN \muskipdef \tex_muskipdef:D
473 __kernel_primitive:NN \newlinechar \tex_newlinechar:D
474 __kernel_primitive:NN \noalign \tex_noalign:D
475 __kernel_primitive:NN \noboundary \tex_noboundary:D
476 __kernel_primitive:NN \noexpand \tex_noexpand:D
477 __kernel_primitive:NN \noindent \tex_noindent:D
478 __kernel_primitive:NN \nolimits \tex_nolimits:D
479 __kernel_primitive:NN \nonscript \tex_nonscript:D
480 __kernel_primitive:NN \nonstopmode \tex_nonstopmode:D
481 __kernel_primitive:NN \nulldelimiterspace \tex_nulldelimiterspace:D
482 __kernel_primitive:NN \nullfont \tex_nullfont:D
483 __kernel_primitive:NN \number \tex_number:D
484 __kernel_primitive:NN \omit \tex_omit:D
485 __kernel_primitive:NN \openin \tex_openin:D
486 __kernel_primitive:NN \openout \tex_openout:D
487 __kernel_primitive:NN \or \tex_or:D
488 __kernel_primitive:NN \outer \tex_outer:D
489 __kernel_primitive:NN \output \tex_output:D
490 __kernel_primitive:NN \outputpenalty \tex_outputpenalty:D
491 __kernel_primitive:NN \over \tex_over:D
492 __kernel_primitive:NN \overfullrule \tex_overfullrule:D
493 __kernel_primitive:NN \overline \tex_overline:D
494 __kernel_primitive:NN \overwithdelims \tex_overwithdelims:D
495 __kernel_primitive:NN \pagedepth \tex_pagedepth:D
496 __kernel_primitive:NN \pagefilllstretch \tex_pagefilllstretch:D
497 __kernel_primitive:NN \pagefillstretch \tex_pagefillstretch:D
498 __kernel_primitive:NN \pagefilstretch \tex_pagefilstretch:D

246

499 __kernel_primitive:NN \pagegoal \tex_pagegoal:D
500 __kernel_primitive:NN \pageshrink \tex_pageshrink:D
501 __kernel_primitive:NN \pagestretch \tex_pagestretch:D
502 __kernel_primitive:NN \pagetotal \tex_pagetotal:D
503 __kernel_primitive:NN \par \tex_par:D
504 __kernel_primitive:NN \parfillskip \tex_parfillskip:D
505 __kernel_primitive:NN \parindent \tex_parindent:D
506 __kernel_primitive:NN \parshape \tex_parshape:D
507 __kernel_primitive:NN \parskip \tex_parskip:D
508 __kernel_primitive:NN \patterns \tex_patterns:D
509 __kernel_primitive:NN \pausing \tex_pausing:D
510 __kernel_primitive:NN \penalty \tex_penalty:D
511 __kernel_primitive:NN \postdisplaypenalty \tex_postdisplaypenalty:D
512 __kernel_primitive:NN \predisplaypenalty \tex_predisplaypenalty:D
513 __kernel_primitive:NN \predisplaysize \tex_predisplaysize:D
514 __kernel_primitive:NN \pretolerance \tex_pretolerance:D
515 __kernel_primitive:NN \prevdepth \tex_prevdepth:D
516 __kernel_primitive:NN \prevgraf \tex_prevgraf:D
517 __kernel_primitive:NN \radical \tex_radical:D
518 __kernel_primitive:NN \raise \tex_raise:D
519 __kernel_primitive:NN \read \tex_read:D
520 __kernel_primitive:NN \relax \tex_relax:D
521 __kernel_primitive:NN \relpenalty \tex_relpenalty:D
522 __kernel_primitive:NN \right \tex_right:D
523 __kernel_primitive:NN \righthyphenmin \tex_righthyphenmin:D
524 __kernel_primitive:NN \rightskip \tex_rightskip:D
525 __kernel_primitive:NN \romannumeral \tex_romannumeral:D
526 __kernel_primitive:NN \scriptfont \tex_scriptfont:D
527 __kernel_primitive:NN \scriptscriptfont \tex_scriptscriptfont:D
528 __kernel_primitive:NN \scriptscriptstyle \tex_scriptscriptstyle:D
529 __kernel_primitive:NN \scriptspace \tex_scriptspace:D
530 __kernel_primitive:NN \scriptstyle \tex_scriptstyle:D
531 __kernel_primitive:NN \scrollmode \tex_scrollmode:D
532 __kernel_primitive:NN \setbox \tex_setbox:D
533 __kernel_primitive:NN \setlanguage \tex_setlanguage:D
534 __kernel_primitive:NN \sfcode \tex_sfcode:D
535 __kernel_primitive:NN \shipout \tex_shipout:D
536 __kernel_primitive:NN \show \tex_show:D
537 __kernel_primitive:NN \showbox \tex_showbox:D
538 __kernel_primitive:NN \showboxbreadth \tex_showboxbreadth:D
539 __kernel_primitive:NN \showboxdepth \tex_showboxdepth:D
540 __kernel_primitive:NN \showlists \tex_showlists:D
541 __kernel_primitive:NN \showthe \tex_showthe:D
542 __kernel_primitive:NN \skewchar \tex_skewchar:D
543 __kernel_primitive:NN \skip \tex_skip:D
544 __kernel_primitive:NN \skipdef \tex_skipdef:D
545 __kernel_primitive:NN \spacefactor \tex_spacefactor:D
546 __kernel_primitive:NN \spaceskip \tex_spaceskip:D
547 __kernel_primitive:NN \span \tex_span:D
548 __kernel_primitive:NN \special \tex_special:D

247

549 __kernel_primitive:NN \splitbotmark \tex_splitbotmark:D
550 __kernel_primitive:NN \splitfirstmark \tex_splitfirstmark:D
551 __kernel_primitive:NN \splitmaxdepth \tex_splitmaxdepth:D
552 __kernel_primitive:NN \splittopskip \tex_splittopskip:D
553 __kernel_primitive:NN \string \tex_string:D
554 __kernel_primitive:NN \tabskip \tex_tabskip:D
555 __kernel_primitive:NN \textfont \tex_textfont:D
556 __kernel_primitive:NN \textstyle \tex_textstyle:D
557 __kernel_primitive:NN \the \tex_the:D
558 __kernel_primitive:NN \thickmuskip \tex_thickmuskip:D
559 __kernel_primitive:NN \thinmuskip \tex_thinmuskip:D
560 __kernel_primitive:NN \time \tex_time:D
561 __kernel_primitive:NN \toks \tex_toks:D
562 __kernel_primitive:NN \toksdef \tex_toksdef:D
563 __kernel_primitive:NN \tolerance \tex_tolerance:D
564 __kernel_primitive:NN \topmark \tex_topmark:D
565 __kernel_primitive:NN \topskip \tex_topskip:D
566 __kernel_primitive:NN \tracingcommands \tex_tracingcommands:D
567 __kernel_primitive:NN \tracinglostchars \tex_tracinglostchars:D
568 __kernel_primitive:NN \tracingmacros \tex_tracingmacros:D
569 __kernel_primitive:NN \tracingonline \tex_tracingonline:D
570 __kernel_primitive:NN \tracingoutput \tex_tracingoutput:D
571 __kernel_primitive:NN \tracingpages \tex_tracingpages:D
572 __kernel_primitive:NN \tracingparagraphs \tex_tracingparagraphs:D
573 __kernel_primitive:NN \tracingrestores \tex_tracingrestores:D
574 __kernel_primitive:NN \tracingstats \tex_tracingstats:D
575 __kernel_primitive:NN \uccode \tex_uccode:D
576 __kernel_primitive:NN \uchyph \tex_uchyph:D
577 __kernel_primitive:NN \underline \tex_underline:D
578 __kernel_primitive:NN \unhbox \tex_unhbox:D
579 __kernel_primitive:NN \unhcopy \tex_unhcopy:D
580 __kernel_primitive:NN \unkern \tex_unkern:D
581 __kernel_primitive:NN \unpenalty \tex_unpenalty:D
582 __kernel_primitive:NN \unskip \tex_unskip:D
583 __kernel_primitive:NN \unvbox \tex_unvbox:D
584 __kernel_primitive:NN \unvcopy \tex_unvcopy:D
585 __kernel_primitive:NN \uppercase \tex_uppercase:D
586 __kernel_primitive:NN \vadjust \tex_vadjust:D
587 __kernel_primitive:NN \valign \tex_valign:D
588 __kernel_primitive:NN \vbadness \tex_vbadness:D
589 __kernel_primitive:NN \vbox \tex_vbox:D
590 __kernel_primitive:NN \vcenter \tex_vcenter:D
591 __kernel_primitive:NN \vfil \tex_vfil:D
592 __kernel_primitive:NN \vfill \tex_vfill:D
593 __kernel_primitive:NN \vfilneg \tex_vfilneg:D
594 __kernel_primitive:NN \vfuzz \tex_vfuzz:D
595 __kernel_primitive:NN \voffset \tex_voffset:D
596 __kernel_primitive:NN \vrule \tex_vrule:D
597 __kernel_primitive:NN \vsize \tex_vsize:D
598 __kernel_primitive:NN \vskip \tex_vskip:D

248

599 __kernel_primitive:NN \vsplit \tex_vsplit:D
600 __kernel_primitive:NN \vss \tex_vss:D
601 __kernel_primitive:NN \vtop \tex_vtop:D
602 __kernel_primitive:NN \wd \tex_wd:D
603 __kernel_primitive:NN \widowpenalty \tex_widowpenalty:D
604 __kernel_primitive:NN \write \tex_write:D
605 __kernel_primitive:NN \xdef \tex_xdef:D
606 __kernel_primitive:NN \xleaders \tex_xleaders:D
607 __kernel_primitive:NN \xspaceskip \tex_xspaceskip:D
608 __kernel_primitive:NN \year \tex_year:D

Since LATEX3 requires at least the ε-TEX extensions, we also rename the additional prim-
itives. These are all given the prefix \etex_.

609 __kernel_primitive:NN \beginL \etex_beginL:D
610 __kernel_primitive:NN \beginR \etex_beginR:D
611 __kernel_primitive:NN \botmarks \etex_botmarks:D
612 __kernel_primitive:NN \clubpenalties \etex_clubpenalties:D
613 __kernel_primitive:NN \currentgrouplevel \etex_currentgrouplevel:D
614 __kernel_primitive:NN \currentgrouptype \etex_currentgrouptype:D
615 __kernel_primitive:NN \currentifbranch \etex_currentifbranch:D
616 __kernel_primitive:NN \currentiflevel \etex_currentiflevel:D
617 __kernel_primitive:NN \currentiftype \etex_currentiftype:D
618 __kernel_primitive:NN \detokenize \etex_detokenize:D
619 __kernel_primitive:NN \dimexpr \etex_dimexpr:D
620 __kernel_primitive:NN \displaywidowpenalties \etex_displaywidowpenalties:D
621 __kernel_primitive:NN \endL \etex_endL:D
622 __kernel_primitive:NN \endR \etex_endR:D
623 __kernel_primitive:NN \eTeXrevision \etex_eTeXrevision:D
624 __kernel_primitive:NN \eTeXversion \etex_eTeXversion:D
625 __kernel_primitive:NN \everyeof \etex_everyeof:D
626 __kernel_primitive:NN \firstmarks \etex_firstmarks:D
627 __kernel_primitive:NN \fontchardp \etex_fontchardp:D
628 __kernel_primitive:NN \fontcharht \etex_fontcharht:D
629 __kernel_primitive:NN \fontcharic \etex_fontcharic:D
630 __kernel_primitive:NN \fontcharwd \etex_fontcharwd:D
631 __kernel_primitive:NN \glueexpr \etex_glueexpr:D
632 __kernel_primitive:NN \glueshrink \etex_glueshrink:D
633 __kernel_primitive:NN \glueshrinkorder \etex_glueshrinkorder:D
634 __kernel_primitive:NN \gluestretch \etex_gluestretch:D
635 __kernel_primitive:NN \gluestretchorder \etex_gluestretchorder:D
636 __kernel_primitive:NN \gluetomu \etex_gluetomu:D
637 __kernel_primitive:NN \ifcsname \etex_ifcsname:D
638 __kernel_primitive:NN \ifdefined \etex_ifdefined:D
639 __kernel_primitive:NN \iffontchar \etex_iffontchar:D
640 __kernel_primitive:NN \interactionmode \etex_interactionmode:D
641 __kernel_primitive:NN \interlinepenalties \etex_interlinepenalties:D
642 __kernel_primitive:NN \lastlinefit \etex_lastlinefit:D
643 __kernel_primitive:NN \lastnodetype \etex_lastnodetype:D
644 __kernel_primitive:NN \marks \etex_marks:D
645 __kernel_primitive:NN \middle \etex_middle:D

249

646 __kernel_primitive:NN \muexpr \etex_muexpr:D
647 __kernel_primitive:NN \mutoglue \etex_mutoglue:D
648 __kernel_primitive:NN \numexpr \etex_numexpr:D
649 __kernel_primitive:NN \pagediscards \etex_pagediscards:D
650 __kernel_primitive:NN \parshapedimen \etex_parshapedimen:D
651 __kernel_primitive:NN \parshapeindent \etex_parshapeindent:D
652 __kernel_primitive:NN \parshapelength \etex_parshapelength:D
653 __kernel_primitive:NN \predisplaydirection \etex_predisplaydirection:D
654 __kernel_primitive:NN \protected \etex_protected:D
655 __kernel_primitive:NN \readline \etex_readline:D
656 __kernel_primitive:NN \savinghyphcodes \etex_savinghyphcodes:D
657 __kernel_primitive:NN \savingvdiscards \etex_savingvdiscards:D
658 __kernel_primitive:NN \scantokens \etex_scantokens:D
659 __kernel_primitive:NN \showgroups \etex_showgroups:D
660 __kernel_primitive:NN \showifs \etex_showifs:D
661 __kernel_primitive:NN \showtokens \etex_showtokens:D
662 __kernel_primitive:NN \splitbotmarks \etex_splitbotmarks:D
663 __kernel_primitive:NN \splitdiscards \etex_splitdiscards:D
664 __kernel_primitive:NN \splitfirstmarks \etex_splitfirstmarks:D
665 __kernel_primitive:NN \TeXXeTstate \etex_TeXXeTstate:D
666 __kernel_primitive:NN \topmarks \etex_topmarks:D
667 __kernel_primitive:NN \tracingassigns \etex_tracingassigns:D
668 __kernel_primitive:NN \tracinggroups \etex_tracinggroups:D
669 __kernel_primitive:NN \tracingifs \etex_tracingifs:D
670 __kernel_primitive:NN \tracingnesting \etex_tracingnesting:D
671 __kernel_primitive:NN \tracingscantokens \etex_tracingscantokens:D
672 __kernel_primitive:NN \unexpanded \etex_unexpanded:D
673 __kernel_primitive:NN \unless \etex_unless:D
674 __kernel_primitive:NN \widowpenalties \etex_widowpenalties:D

The newer primitives are more complex: there are an awful lot of them, and we don’t
use them all at the moment. So the following is selective, based on those also available
in LuaTEX or used in expl3. In the case of the pdfTEX primitives, we retain pdf at the
start of the names only for directly PDF-related primitives, as there are a lot of pdfTEX
primitives that start \pdf... but are not related to PDF output. These ones related to
PDF output or only work in PDF mode.

675 __kernel_primitive:NN \pdfannot \pdftex_pdfannot:D
676 __kernel_primitive:NN \pdfcatalog \pdftex_pdfcatalog:D
677 __kernel_primitive:NN \pdfcompresslevel \pdftex_pdfcompresslevel:D
678 __kernel_primitive:NN \pdfcolorstack \pdftex_pdfcolorstack:D
679 __kernel_primitive:NN \pdfcolorstackinit \pdftex_pdfcolorstackinit:D
680 __kernel_primitive:NN \pdfcreationdate \pdftex_pdfcreationdate:D
681 __kernel_primitive:NN \pdfdecimaldigits \pdftex_pdfdecimaldigits:D
682 __kernel_primitive:NN \pdfdest \pdftex_pdfdest:D
683 __kernel_primitive:NN \pdfdestmargin \pdftex_pdfdestmargin:D
684 __kernel_primitive:NN \pdfendlink \pdftex_pdfendlink:D
685 __kernel_primitive:NN \pdfendthread \pdftex_pdfendthread:D
686 __kernel_primitive:NN \pdffontattr \pdftex_pdffontattr:D
687 __kernel_primitive:NN \pdffontname \pdftex_pdffontname:D
688 __kernel_primitive:NN \pdffontobjnum \pdftex_pdffontobjnum:D

250

689 __kernel_primitive:NN \pdfgamma \pdftex_pdfgamma:D
690 __kernel_primitive:NN \pdfimageapplygamma \pdftex_pdfimageapplygamma:D
691 __kernel_primitive:NN \pdfimagegamma \pdftex_pdfimagegamma:D
692 __kernel_primitive:NN \pdfgentounicode \pdftex_pdfgentounicode:D
693 __kernel_primitive:NN \pdfglyphtounicode \pdftex_pdfglyphtounicode:D
694 __kernel_primitive:NN \pdfhorigin \pdftex_pdfhorigin:D
695 __kernel_primitive:NN \pdfimagehicolor \pdftex_pdfimagehicolor:D
696 __kernel_primitive:NN \pdfimageresolution \pdftex_pdfimageresolution:D
697 __kernel_primitive:NN \pdfincludechars \pdftex_pdfincludechars:D
698 __kernel_primitive:NN \pdfinclusioncopyfonts \pdftex_pdfinclusioncopyfonts:D
699 __kernel_primitive:NN \pdfinclusionerrorlevel \pdftex_pdfinclusionerrorlevel:D
700 __kernel_primitive:NN \pdfinfo \pdftex_pdfinfo:D
701 __kernel_primitive:NN \pdflastannot \pdftex_pdflastannot:D
702 __kernel_primitive:NN \pdflastlink \pdftex_pdflastlink:D
703 __kernel_primitive:NN \pdflastobj \pdftex_pdflastobj:D
704 __kernel_primitive:NN \pdflastxform \pdftex_pdflastxform:D
705 __kernel_primitive:NN \pdflastximage \pdftex_pdflastximage:D
706 __kernel_primitive:NN \pdflastximagecolordepth \pdftex_pdflastximagecolordepth:D
707 __kernel_primitive:NN \pdflastximagepages \pdftex_pdflastximagepages:D
708 __kernel_primitive:NN \pdflinkmargin \pdftex_pdflinkmargin:D
709 __kernel_primitive:NN \pdfliteral \pdftex_pdfliteral:D
710 __kernel_primitive:NN \pdfminorversion \pdftex_pdfminorversion:D
711 __kernel_primitive:NN \pdfnames \pdftex_pdfnames:D
712 __kernel_primitive:NN \pdfobj \pdftex_pdfobj:D
713 __kernel_primitive:NN \pdfobjcompresslevel \pdftex_pdfobjcompresslevel:D
714 __kernel_primitive:NN \pdfoutline \pdftex_pdfoutline:D
715 __kernel_primitive:NN \pdfoutput \pdftex_pdfoutput:D
716 __kernel_primitive:NN \pdfpageattr \pdftex_pdfpageattr:D
717 __kernel_primitive:NN \pdfpagebox \pdftex_pdfpagebox:D
718 __kernel_primitive:NN \pdfpageref \pdftex_pdfpageref:D
719 __kernel_primitive:NN \pdfpageresources \pdftex_pdfpageresources:D
720 __kernel_primitive:NN \pdfpagesattr \pdftex_pdfpagesattr:D
721 __kernel_primitive:NN \pdfrefobj \pdftex_pdfrefobj:D
722 __kernel_primitive:NN \pdfrefxform \pdftex_pdfrefxform:D
723 __kernel_primitive:NN \pdfrefximage \pdftex_pdfrefximage:D
724 __kernel_primitive:NN \pdfrestore \pdftex_pdfrestore:D
725 __kernel_primitive:NN \pdfretval \pdftex_pdfretval:D
726 __kernel_primitive:NN \pdfsave \pdftex_pdfsave:D
727 __kernel_primitive:NN \pdfsetmatrix \pdftex_pdfsetmatrix:D
728 __kernel_primitive:NN \pdfstartlink \pdftex_pdfstartlink:D
729 __kernel_primitive:NN \pdfstartthread \pdftex_pdfstartthread:D
730 __kernel_primitive:NN \pdfsuppressptexinfo \pdftex_pdfsuppressptexinfo:D
731 __kernel_primitive:NN \pdfthread \pdftex_pdfthread:D
732 __kernel_primitive:NN \pdfthreadmargin \pdftex_pdfthreadmargin:D
733 __kernel_primitive:NN \pdftrailer \pdftex_pdftrailer:D
734 __kernel_primitive:NN \pdfuniqueresname \pdftex_pdfuniqueresname:D
735 __kernel_primitive:NN \pdfvorigin \pdftex_pdfvorigin:D
736 __kernel_primitive:NN \pdfxform \pdftex_pdfxform:D
737 __kernel_primitive:NN \pdfxformattr \pdftex_pdfxformattr:D
738 __kernel_primitive:NN \pdfxformname \pdftex_pdfxformname:D

251

739 __kernel_primitive:NN \pdfxformresources \pdftex_pdfxformresources:D
740 __kernel_primitive:NN \pdfximage \pdftex_pdfximage:D
741 __kernel_primitive:NN \pdfximagebbox \pdftex_pdfximagebbox:D

While these are not.
742 __kernel_primitive:NN \ifpdfabsdim \pdftex_ifabsdim:D
743 __kernel_primitive:NN \ifpdfabsnum \pdftex_ifabsnum:D
744 __kernel_primitive:NN \ifpdfprimitive \pdftex_ifprimitive:D
745 __kernel_primitive:NN \pdfadjustspacing \pdftex_adjustspacing:D
746 __kernel_primitive:NN \pdfcopyfont \pdftex_copyfont:D
747 __kernel_primitive:NN \pdfdraftmode \pdftex_draftmode:D
748 __kernel_primitive:NN \pdfeachlinedepth \pdftex_eachlinedepth:D
749 __kernel_primitive:NN \pdfeachlineheight \pdftex_eachlineheight:D
750 __kernel_primitive:NN \pdffirstlineheight \pdftex_firstlineheight:D
751 __kernel_primitive:NN \pdffontexpand \pdftex_fontexpand:D
752 __kernel_primitive:NN \pdffontsize \pdftex_fontsize:D
753 __kernel_primitive:NN \pdfignoreddimen \pdftex_ignoreddimen:D
754 __kernel_primitive:NN \pdfinsertht \pdftex_insertht:D
755 __kernel_primitive:NN \pdflastlinedepth \pdftex_lastlinedepth:D
756 __kernel_primitive:NN \pdflastxpos \pdftex_lastxpos:D
757 __kernel_primitive:NN \pdflastypos \pdftex_lastypos:D
758 __kernel_primitive:NN \pdfmapfile \pdftex_mapfile:D
759 __kernel_primitive:NN \pdfmapline \pdftex_mapline:D
760 __kernel_primitive:NN \pdfnoligatures \pdftex_noligatures:D
761 __kernel_primitive:NN \pdfnormaldeviate \pdftex_normaldeviate:D
762 __kernel_primitive:NN \pdfpageheight \pdftex_pageheight:D
763 __kernel_primitive:NN \pdfpagewidth \pdftex_pagewidth:D
764 __kernel_primitive:NN \pdfpkmode \pdftex_pkmode:D
765 __kernel_primitive:NN \pdfpkresolution \pdftex_pkresolution:D
766 __kernel_primitive:NN \pdfprimitive \pdftex_primitive:D
767 __kernel_primitive:NN \pdfprotrudechars \pdftex_protrudechars:D
768 __kernel_primitive:NN \pdfpxdimen \pdftex_pxdimen:D
769 __kernel_primitive:NN \pdfrandomseed \pdftex_randomseed:D
770 __kernel_primitive:NN \pdfsavepos \pdftex_savepos:D
771 __kernel_primitive:NN \pdfstrcmp \pdftex_strcmp:D
772 __kernel_primitive:NN \pdfsetrandomseed \pdftex_setrandomseed:D
773 __kernel_primitive:NN \pdfshellescape \pdftex_shellescape:D
774 __kernel_primitive:NN \pdftracingfonts \pdftex_tracingfonts:D
775 __kernel_primitive:NN \pdfuniformdeviate \pdftex_uniformdeviate:D

The version primitives are not related to PDF mode but are related to pdfTEX so retain
the full prefix.

776 __kernel_primitive:NN \pdftexbanner \pdftex_pdftexbanner:D
777 __kernel_primitive:NN \pdftexrevision \pdftex_pdftexrevision:D
778 __kernel_primitive:NN \pdftexversion \pdftex_pdftexversion:D

These ones appear in pdfTEX but don’t have pdf in the name at all. (\synctex is odd
as it’s really not from pdfTEX but from SyncTeX!)

779 __kernel_primitive:NN \efcode \pdftex_efcode:D
780 __kernel_primitive:NN \ifincsname \pdftex_ifincsname:D
781 __kernel_primitive:NN \leftmarginkern \pdftex_leftmarginkern:D

252

782 __kernel_primitive:NN \letterspacefont \pdftex_letterspacefont:D
783 __kernel_primitive:NN \lpcode \pdftex_lpcode:D
784 __kernel_primitive:NN \quitvmode \pdftex_quitvmode:D
785 __kernel_primitive:NN \rightmarginkern \pdftex_rightmarginkern:D
786 __kernel_primitive:NN \rpcode \pdftex_rpcode:D
787 __kernel_primitive:NN \synctex \pdftex_synctex:D
788 __kernel_primitive:NN \tagcode \pdftex_tagcode:D

Post pdfTEX primitive availability gets more complex. Both X ETEX and LuaTEX have
varying names for some primitives from pdfTEX. Particularly for LuaTEX tracking all of
that would be hard. Instead, we now check that we only save primitives if they actually
exist.

789 〈/initex | names | package〉
790 〈*initex | package〉
791 \tex_long:D \tex_def:D \use_ii:nn #1#2 {#2}
792 \tex_long:D \tex_def:D \use_none:n #1 { }
793 \tex_long:D \tex_def:D __kernel_primitive:NN #1#2
794 {
795 \etex_ifdefined:D #1
796 \tex_expandafter:D \use_ii:nn
797 \tex_fi:D
798 \use_none:n { \tex_global:D \tex_let:D #2 #1 }
799 〈*initex〉
800 \tex_global:D \tex_let:D #1 \tex_undefined:D
801 〈/initex〉
802 }
803 〈/initex | package〉
804 〈*initex | names | package〉

X ETEX-specific primitives. Note that X ETEX’s \strcmp is handled earlier and is “rolled
up” into \pdfstrcmp. With the exception of the version primitives these don’t carry
XeTeX through into the “base” name. A few cross-compatibility names which lack the
pdf of the original are handled later.

805 __kernel_primitive:NN \suppressfontnotfounderror \xetex_suppressfontnotfounderror:D
806 __kernel_primitive:NN \XeTeXcharclass \xetex_charclass:D
807 __kernel_primitive:NN \XeTeXcharglyph \xetex_charglyph:D
808 __kernel_primitive:NN \XeTeXcountfeatures \xetex_countfeatures:D
809 __kernel_primitive:NN \XeTeXcountglyphs \xetex_countglyphs:D
810 __kernel_primitive:NN \XeTeXcountselectors \xetex_countselectors:D
811 __kernel_primitive:NN \XeTeXcountvariations \xetex_countvariations:D
812 __kernel_primitive:NN \XeTeXdefaultencoding \xetex_defaultencoding:D
813 __kernel_primitive:NN \XeTeXdashbreakstate \xetex_dashbreakstate:D
814 __kernel_primitive:NN \XeTeXfeaturecode \xetex_featurecode:D
815 __kernel_primitive:NN \XeTeXfeaturename \xetex_featurename:D
816 __kernel_primitive:NN \XeTeXfindfeaturebyname \xetex_findfeaturebyname:D
817 __kernel_primitive:NN \XeTeXfindselectorbyname \xetex_findselectorbyname:D
818 __kernel_primitive:NN \XeTeXfindvariationbyname \xetex_findvariationbyname:D
819 __kernel_primitive:NN \XeTeXfirstfontchar \xetex_firstfontchar:D
820 __kernel_primitive:NN \XeTeXfonttype \xetex_fonttype:D
821 __kernel_primitive:NN \XeTeXgenerateactualtext \xetex_generateactualtext:D

253

822 __kernel_primitive:NN \XeTeXglyph \xetex_glyph:D
823 __kernel_primitive:NN \XeTeXglyphbounds \xetex_glyphbounds:D
824 __kernel_primitive:NN \XeTeXglyphindex \xetex_glyphindex:D
825 __kernel_primitive:NN \XeTeXglyphname \xetex_glyphname:D
826 __kernel_primitive:NN \XeTeXinputencoding \xetex_inputencoding:D
827 __kernel_primitive:NN \XeTeXinputnormalization \xetex_inputnormalization:D
828 __kernel_primitive:NN \XeTeXinterchartokenstate \xetex_interchartokenstate:D
829 __kernel_primitive:NN \XeTeXinterchartoks \xetex_interchartoks:D
830 __kernel_primitive:NN \XeTeXisdefaultselector \xetex_isdefaultselector:D
831 __kernel_primitive:NN \XeTeXisexclusivefeature \xetex_isexclusivefeature:D
832 __kernel_primitive:NN \XeTeXlastfontchar \xetex_lastfontchar:D
833 __kernel_primitive:NN \XeTeXlinebreakskip \xetex_linebreakskip:D
834 __kernel_primitive:NN \XeTeXlinebreaklocale \xetex_linebreaklocale:D
835 __kernel_primitive:NN \XeTeXlinebreakpenalty \xetex_linebreakpenalty:D
836 __kernel_primitive:NN \XeTeXOTcountfeatures \xetex_OTcountfeatures:D
837 __kernel_primitive:NN \XeTeXOTcountlanguages \xetex_OTcountlanguages:D
838 __kernel_primitive:NN \XeTeXOTcountscripts \xetex_OTcountscripts:D
839 __kernel_primitive:NN \XeTeXOTfeaturetag \xetex_OTfeaturetag:D
840 __kernel_primitive:NN \XeTeXOTlanguagetag \xetex_OTlanguagetag:D
841 __kernel_primitive:NN \XeTeXOTscripttag \xetex_OTscripttag:D
842 __kernel_primitive:NN \XeTeXpdffile \xetex_pdffile:D
843 __kernel_primitive:NN \XeTeXpdfpagecount \xetex_pdfpagecount:D
844 __kernel_primitive:NN \XeTeXpicfile \xetex_picfile:D
845 __kernel_primitive:NN \XeTeXselectorname \xetex_selectorname:D
846 __kernel_primitive:NN \XeTeXtracingfonts \xetex_tracingfonts:D
847 __kernel_primitive:NN \XeTeXupwardsmode \xetex_upwardsmode:D
848 __kernel_primitive:NN \XeTeXuseglyphmetrics \xetex_useglyphmetrics:D
849 __kernel_primitive:NN \XeTeXvariation \xetex_variation:D
850 __kernel_primitive:NN \XeTeXvariationdefault \xetex_variationdefault:D
851 __kernel_primitive:NN \XeTeXvariationmax \xetex_variationmax:D
852 __kernel_primitive:NN \XeTeXvariationmin \xetex_variationmin:D
853 __kernel_primitive:NN \XeTeXvariationname \xetex_variationname:D

The version primitives retain XeTeX.
854 __kernel_primitive:NN \XeTeXrevision \xetex_XeTeXrevision:D
855 __kernel_primitive:NN \XeTeXversion \xetex_XeTeXversion:D

Primitives from pdfTEX that X ETEX renames: also helps with LuaTEX.
856 __kernel_primitive:NN \ifprimitive \pdftex_primitive:D
857 __kernel_primitive:NN \primitive \pdftex_primitive:D
858 __kernel_primitive:NN \shellescape \pdftex_shellescape:D

Primitives from LuaTEX, some of which have been ported back to X ETEX. Notice that
\expanded was intended for pdfTEX 1.50 but as that was not released we call this a
LuaTEX primitive.

859 __kernel_primitive:NN \alignmark \luatex_alignmark:D
860 __kernel_primitive:NN \aligntab \luatex_aligntab:D
861 __kernel_primitive:NN \attribute \luatex_attribute:D
862 __kernel_primitive:NN \attributedef \luatex_attributedef:D
863 __kernel_primitive:NN \begincsname \luatex_begincsname:D
864 __kernel_primitive:NN \catcodetable \luatex_catcodetable:D

254

865 __kernel_primitive:NN \clearmarks \luatex_clearmarks:D
866 __kernel_primitive:NN \crampeddisplaystyle \luatex_crampeddisplaystyle:D
867 __kernel_primitive:NN \crampedscriptscriptstyle \luatex_crampedscriptscriptstyle:D
868 __kernel_primitive:NN \crampedscriptstyle \luatex_crampedscriptstyle:D
869 __kernel_primitive:NN \crampedtextstyle \luatex_crampedtextstyle:D
870 __kernel_primitive:NN \directlua \luatex_directlua:D
871 __kernel_primitive:NN \dviextension \luatex_dviextension:D
872 __kernel_primitive:NN \dvifeedback \luatex_dvifeedback:D
873 __kernel_primitive:NN \dvivariable \luatex_dvivariable:D
874 __kernel_primitive:NN \etoksapp \luatex_etoksapp:D
875 __kernel_primitive:NN \etokspre \luatex_etokspre:D
876 __kernel_primitive:NN \expanded \luatex_expanded:D
877 __kernel_primitive:NN \firstvalidlanguage \luatex_firstvalidlanguage:D
878 __kernel_primitive:NN \fontid \luatex_fontid:D
879 __kernel_primitive:NN \formatname \luatex_formatname:D
880 __kernel_primitive:NN \hjcode \luatex_hjcode:D
881 __kernel_primitive:NN \hpack \luatex_hpack:D
882 __kernel_primitive:NN \hyphenationmin \luatex_hypenationmin:D
883 __kernel_primitive:NN \gleaders \luatex_gleaders:D
884 __kernel_primitive:NN \initcatcodetable \luatex_initcatcodetable:D
885 __kernel_primitive:NN \lastnamedcs \luatex_lastnamedcs:D
886 __kernel_primitive:NN \latelua \luatex_latelua:D
887 __kernel_primitive:NN \letcharcode \luatex_letcharcode:D
888 __kernel_primitive:NN \luaescapestring \luatex_luaescapestring:D
889 __kernel_primitive:NN \luafunction \luatex_luafunction:D
890 __kernel_primitive:NN \luatexdatestamp \luatex_luatexdatestamp:D
891 __kernel_primitive:NN \luatexrevision \luatex_luatexrevision:D
892 __kernel_primitive:NN \luatexversion \luatex_luatexversion:D
893 __kernel_primitive:NN \mathdisplayskipmode \luatex_mathdisplayskipmode:D
894 __kernel_primitive:NN \matheqnogapstep \luatex_matheqnogapstep:D
895 __kernel_primitive:NN \mathoption \luatex_mathoption:D
896 __kernel_primitive:NN \mathscriptsmode \luatex_mathscriptsmode:D
897 __kernel_primitive:NN \mathstyle \luatex_mathstyle:D
898 __kernel_primitive:NN \mathsurroundskip \luatex_mathsurroundskip:D
899 __kernel_primitive:NN \nohrule \luatex_nohrule:D
900 __kernel_primitive:NN \nokerns \luatex_nokerns:D
901 __kernel_primitive:NN \noligs \luatex_noligs:D
902 __kernel_primitive:NN \nospaces \luatex_nospaces:D
903 __kernel_primitive:NN \novrule \luatex_novrule:D
904 __kernel_primitive:NN \outputbox \luatex_outputbox:D
905 __kernel_primitive:NN \pageleftoffset \luatex_pageleftoffset:D
906 __kernel_primitive:NN \pagetopoffset \luatex_pagetopoffset:D
907 __kernel_primitive:NN \pdfextension \luatex_pdfextension:D
908 __kernel_primitive:NN \pdffeedback \luatex_pdffeedback:D
909 __kernel_primitive:NN \pdfvariable \luatex_pdfvariable:D
910 __kernel_primitive:NN \postexhyphenchar \luatex_postexhyphenchar:D
911 __kernel_primitive:NN \posthyphenchar \luatex_posthyphenchar:D
912 __kernel_primitive:NN \preexhyphenchar \luatex_preexhyphenchar:D
913 __kernel_primitive:NN \prehyphenchar \luatex_prehyphenchar:D
914 __kernel_primitive:NN \savecatcodetable \luatex_savecatcodetable:D

255

915 __kernel_primitive:NN \scantextokens \luatex_scantextokens:D
916 __kernel_primitive:NN \setfontid \luatex_setfontid:D
917 __kernel_primitive:NN \suppressifcsnameerror \luatex_suppressifcsnameerror:D
918 __kernel_primitive:NN \suppresslongerror \luatex_suppresslongerror:D
919 __kernel_primitive:NN \suppressmathparerror \luatex_suppressmathparerror:D
920 __kernel_primitive:NN \suppressoutererror \luatex_suppressoutererror:D
921 __kernel_primitive:NN \toksapp \luatex_toksapp:D
922 __kernel_primitive:NN \tokspre \luatex_tokspre:D
923 __kernel_primitive:NN \tpack \luatex_tpack:D
924 __kernel_primitive:NN \vpack \luatex_vpack:D

Slightly more awkward are the directional primitives in LuaTEX. These come from
Omega/Aleph, but we do not support those engines and so it seems most sensible to
treat them as LuaTEX primitives for prefix purposes.

925 __kernel_primitive:NN \bodydir \luatex_bodydir:D
926 __kernel_primitive:NN \boxdir \luatex_boxdir:D
927 __kernel_primitive:NN \leftghost \luatex_leftghost:D
928 __kernel_primitive:NN \localbrokenpenalty \luatex_localbrokenpenalty:D
929 __kernel_primitive:NN \localinterlinepenalty \luatex_localinterlinepenalty:D
930 __kernel_primitive:NN \localleftbox \luatex_localleftbox:D
931 __kernel_primitive:NN \localrightbox \luatex_localrightbox:D
932 __kernel_primitive:NN \mathdir \luatex_mathdir:D
933 __kernel_primitive:NN \pagebottomoffset \luatex_pagebottomoffset:D
934 __kernel_primitive:NN \pagedir \luatex_pagedir:D
935 __kernel_primitive:NN \pagerightoffset \luatex_pagerightoffset:D
936 __kernel_primitive:NN \pardir \luatex_pardir:D
937 __kernel_primitive:NN \rightghost \luatex_rightghost:D
938 __kernel_primitive:NN \textdir \luatex_textdir:D

Primitives from pdfTEX that LuaTEX renames.
939 __kernel_primitive:NN \adjustspacing \pdftex_adjustspacing:D
940 __kernel_primitive:NN \copyfont \pdftex_copyfont:D
941 __kernel_primitive:NN \draftmode \pdftex_draftmode:D
942 __kernel_primitive:NN \expandglyphsinfont \pdftex_fontexpand:D
943 __kernel_primitive:NN \ifabsdim \pdftex_ifabsdim:D
944 __kernel_primitive:NN \ifabsnum \pdftex_ifabsnum:D
945 __kernel_primitive:NN \ignoreligaturesinfont \pdftex_ignoreligaturesinfont:D
946 __kernel_primitive:NN \insertht \pdftex_insertht:D
947 __kernel_primitive:NN \lastsavedboxresourceindex \pdftex_pdflastxform:D
948 __kernel_primitive:NN \lastsavedimageresourceindex \pdftex_pdflastximage:D
949 __kernel_primitive:NN \lastsavedimageresourcepages \pdftex_pdflastximagepages:D
950 __kernel_primitive:NN \lastxpos \pdftex_lastxpos:D
951 __kernel_primitive:NN \lastypos \pdftex_lastypos:D
952 __kernel_primitive:NN \normaldeviate \pdftex_normaldeviate:D
953 __kernel_primitive:NN \outputmode \pdftex_pdfoutput:D
954 __kernel_primitive:NN \pageheight \pdftex_pageheight:D
955 __kernel_primitive:NN \pagewidth \pdftex_pagewith:D
956 __kernel_primitive:NN \protrudechars \pdftex_protrudechars:D
957 __kernel_primitive:NN \pxdimen \pdftex_pxdimen:D
958 __kernel_primitive:NN \randomseed \pdftex_randomseed:D

256

959 __kernel_primitive:NN \useboxresource \pdftex_pdfrefxform:D
960 __kernel_primitive:NN \useimageresource \pdftex_pdfrefximage:D
961 __kernel_primitive:NN \savepos \pdftex_savepos:D
962 __kernel_primitive:NN \saveboxresource \pdftex_pdfxform:D
963 __kernel_primitive:NN \saveimageresource \pdftex_pdfximage:D
964 __kernel_primitive:NN \setrandomseed \pdftex_setrandomseed:D
965 __kernel_primitive:NN \tracingfonts \pdftex_tracingfonts:D
966 __kernel_primitive:NN \uniformdeviate \pdftex_uniformdeviate:D

The set of Unicode math primitives were introduced by X ETEX and LuaTEX in a some-
what complex fashion: a few first as \XeTeX... which were then renamed with LuaTEX
having a lot more. These names now all start \U... and mainly \Umath.... To keep
things somewhat clear we therefore prefix all of these as \utex... (introduced by a Uni-
code TEX engine) and drop \U(math) from the names. Where there is a related TEX90
primitive or where it really seems required we keep the math part of the name.

967 __kernel_primitive:NN \Uchar \utex_char:D
968 __kernel_primitive:NN \Ucharcat \utex_charcat:D
969 __kernel_primitive:NN \Udelcode \utex_delcode:D
970 __kernel_primitive:NN \Udelcodenum \utex_delcodenum:D
971 __kernel_primitive:NN \Udelimiter \utex_delimiter:D
972 __kernel_primitive:NN \Udelimiterover \utex_delimiterover:D
973 __kernel_primitive:NN \Udelimiterunder \utex_delimiterunder:D
974 __kernel_primitive:NN \Uhextensible \utex_hextensible:D
975 __kernel_primitive:NN \Umathaccent \utex_mathaccent:D
976 __kernel_primitive:NN \Umathaxis \utex_mathaxis:D
977 __kernel_primitive:NN \Umathbinbinspacing \utex_binbinspacing:D
978 __kernel_primitive:NN \Umathbinclosespacing \utex_binclosespacing:D
979 __kernel_primitive:NN \Umathbininnerspacing \utex_bininnerspacing:D
980 __kernel_primitive:NN \Umathbinopenspacing \utex_binopenspacing:D
981 __kernel_primitive:NN \Umathbinopspacing \utex_binopspacing:D
982 __kernel_primitive:NN \Umathbinordspacing \utex_binordspacing:D
983 __kernel_primitive:NN \Umathbinpunctspacing \utex_binpunctspacing:D
984 __kernel_primitive:NN \Umathbinrelspacing \utex_binrelspacing:D
985 __kernel_primitive:NN \Umathchar \utex_mathchar:D
986 __kernel_primitive:NN \Umathcharclass \utex_mathcharclass:D
987 __kernel_primitive:NN \Umathchardef \utex_mathchardef:D
988 __kernel_primitive:NN \Umathcharfam \utex_mathcharfam:D
989 __kernel_primitive:NN \Umathcharnum \utex_mathcharnum:D
990 __kernel_primitive:NN \Umathcharnumdef \utex_mathcharnumdef:D
991 __kernel_primitive:NN \Umathcharslot \utex_mathcharslot:D
992 __kernel_primitive:NN \Umathclosebinspacing \utex_closebinspacing:D
993 __kernel_primitive:NN \Umathcloseclosespacing \utex_closeclosespacing:D
994 __kernel_primitive:NN \Umathcloseinnerspacing \utex_closeinnerspacing:D
995 __kernel_primitive:NN \Umathcloseopenspacing \utex_closeopenspacing:D
996 __kernel_primitive:NN \Umathcloseopspacing \utex_closeopspacing:D
997 __kernel_primitive:NN \Umathcloseordspacing \utex_closeordspacing:D
998 __kernel_primitive:NN \Umathclosepunctspacing \utex_closepunctspacing:D
999 __kernel_primitive:NN \Umathcloserelspacing \utex_closerelspacing:D

1000 __kernel_primitive:NN \Umathcode \utex_mathcode:D
1001 __kernel_primitive:NN \Umathcodenum \utex_mathcodenum:D

257

1002 __kernel_primitive:NN \Umathconnectoroverlapmin \utex_connectoroverlapmin:D
1003 __kernel_primitive:NN \Umathfractiondelsize \utex_fractiondelsize:D
1004 __kernel_primitive:NN \Umathfractiondenomdown \utex_fractiondenomdown:D
1005 __kernel_primitive:NN \Umathfractiondenomvgap \utex_fractiondenomvgap:D
1006 __kernel_primitive:NN \Umathfractionnumup \utex_fractionnumup:D
1007 __kernel_primitive:NN \Umathfractionnumvgap \utex_fractionnumvgap:D
1008 __kernel_primitive:NN \Umathfractionrule \utex_fractionrule:D
1009 __kernel_primitive:NN \Umathinnerbinspacing \utex_innerbinspacing:D
1010 __kernel_primitive:NN \Umathinnerclosespacing \utex_innerclosespacing:D
1011 __kernel_primitive:NN \Umathinnerinnerspacing \utex_innerinnerspacing:D
1012 __kernel_primitive:NN \Umathinneropenspacing \utex_inneropenspacing:D
1013 __kernel_primitive:NN \Umathinneropspacing \utex_inneropspacing:D
1014 __kernel_primitive:NN \Umathinnerordspacing \utex_innerordspacing:D
1015 __kernel_primitive:NN \Umathinnerpunctspacing \utex_innerpunctspacing:D
1016 __kernel_primitive:NN \Umathinnerrelspacing \utex_innerrelspacing:D
1017 __kernel_primitive:NN \Umathlimitabovebgap \utex_limitabovebgap:D
1018 __kernel_primitive:NN \Umathlimitabovekern \utex_limitabovekern:D
1019 __kernel_primitive:NN \Umathlimitabovevgap \utex_limitabovevgap:D
1020 __kernel_primitive:NN \Umathlimitbelowbgap \utex_limitbelowbgap:D
1021 __kernel_primitive:NN \Umathlimitbelowkern \utex_limitbelowkern:D
1022 __kernel_primitive:NN \Umathlimitbelowvgap \utex_limitbelowvgap:D
1023 __kernel_primitive:NN \Umathopbinspacing \utex_opbinspacing:D
1024 __kernel_primitive:NN \Umathopclosespacing \utex_opclosespacing:D
1025 __kernel_primitive:NN \Umathopenbinspacing \utex_openbinspacing:D
1026 __kernel_primitive:NN \Umathopenclosespacing \utex_openclosespacing:D
1027 __kernel_primitive:NN \Umathopeninnerspacing \utex_openinnerspacing:D
1028 __kernel_primitive:NN \Umathopenopenspacing \utex_openopenspacing:D
1029 __kernel_primitive:NN \Umathopenopspacing \utex_openopspacing:D
1030 __kernel_primitive:NN \Umathopenordspacing \utex_openordspacing:D
1031 __kernel_primitive:NN \Umathopenpunctspacing \utex_openpunctspacing:D
1032 __kernel_primitive:NN \Umathopenrelspacing \utex_openrelspacing:D
1033 __kernel_primitive:NN \Umathoperatorsize \utex_operatorsize:D
1034 __kernel_primitive:NN \Umathopinnerspacing \utex_opinnerspacing:D
1035 __kernel_primitive:NN \Umathopopenspacing \utex_opopenspacing:D
1036 __kernel_primitive:NN \Umathopopspacing \utex_opopspacing:D
1037 __kernel_primitive:NN \Umathopordspacing \utex_opordspacing:D
1038 __kernel_primitive:NN \Umathoppunctspacing \utex_oppunctspacing:D
1039 __kernel_primitive:NN \Umathoprelspacing \utex_oprelspacing:D
1040 __kernel_primitive:NN \Umathordbinspacing \utex_ordbinspacing:D
1041 __kernel_primitive:NN \Umathordclosespacing \utex_ordclosespacing:D
1042 __kernel_primitive:NN \Umathordinnerspacing \utex_ordinnerspacing:D
1043 __kernel_primitive:NN \Umathordopenspacing \utex_ordopenspacing:D
1044 __kernel_primitive:NN \Umathordopspacing \utex_ordopspacing:D
1045 __kernel_primitive:NN \Umathordordspacing \utex_ordordspacing:D
1046 __kernel_primitive:NN \Umathordpunctspacing \utex_ordpunctspacing:D
1047 __kernel_primitive:NN \Umathordrelspacing \utex_ordrelspacing:D
1048 __kernel_primitive:NN \Umathoverbarkern \utex_overbarkern:D
1049 __kernel_primitive:NN \Umathoverbarrule \utex_overbarrule:D
1050 __kernel_primitive:NN \Umathoverbarvgap \utex_overbarvgap:D
1051 __kernel_primitive:NN \Umathoverdelimiterbgap \utex_overdelimiterbgap:D

258

1052 __kernel_primitive:NN \Umathoverdelimitervgap \utex_overdelimitervgap:D
1053 __kernel_primitive:NN \Umathpunctbinspacing \utex_punctbinspacing:D
1054 __kernel_primitive:NN \Umathpunctclosespacing \utex_punctclosespacing:D
1055 __kernel_primitive:NN \Umathpunctinnerspacing \utex_punctinnerspacing:D
1056 __kernel_primitive:NN \Umathpunctopenspacing \utex_punctopenspacing:D
1057 __kernel_primitive:NN \Umathpunctopspacing \utex_punctopspacing:D
1058 __kernel_primitive:NN \Umathpunctordspacing \utex_punctordspacing:D
1059 __kernel_primitive:NN \Umathpunctpunctspacing \utex_punctpunctspacing:D
1060 __kernel_primitive:NN \Umathpunctrelspacing \utex_punctrelspacing:D
1061 __kernel_primitive:NN \Umathquad \utex_quad:D
1062 __kernel_primitive:NN \Umathradicaldegreeafter \utex_radicaldegreeafter:D
1063 __kernel_primitive:NN \Umathradicaldegreebefore \utex_radicaldegreebefore:D
1064 __kernel_primitive:NN \Umathradicaldegreeraise \utex_radicaldegreeraise:D
1065 __kernel_primitive:NN \Umathradicalkern \utex_radicalkern:D
1066 __kernel_primitive:NN \Umathradicalrule \utex_radicalrule:D
1067 __kernel_primitive:NN \Umathradicalvgap \utex_radicalvgap:D
1068 __kernel_primitive:NN \Umathrelbinspacing \utex_relbinspacing:D
1069 __kernel_primitive:NN \Umathrelclosespacing \utex_relclosespacing:D
1070 __kernel_primitive:NN \Umathrelinnerspacing \utex_relinnerspacing:D
1071 __kernel_primitive:NN \Umathrelopenspacing \utex_relopenspacing:D
1072 __kernel_primitive:NN \Umathrelopspacing \utex_relopspacing:D
1073 __kernel_primitive:NN \Umathrelordspacing \utex_relordspacing:D
1074 __kernel_primitive:NN \Umathrelpunctspacing \utex_relpunctspacing:D
1075 __kernel_primitive:NN \Umathrelrelspacing \utex_relrelspacing:D
1076 __kernel_primitive:NN \Umathskewedfractionhgap \utex_skewedfractionhgap:D
1077 __kernel_primitive:NN \Umathskewedfractionvgap \utex_skewedfractionvgap:D
1078 __kernel_primitive:NN \Umathspaceafterscript \utex_spaceafterscript:D
1079 __kernel_primitive:NN \Umathstackdenomdown \utex_stackdenomdown:D
1080 __kernel_primitive:NN \Umathstacknumup \utex_stacknumup:D
1081 __kernel_primitive:NN \Umathstackvgap \utex_stackvgap:D
1082 __kernel_primitive:NN \Umathsubshiftdown \utex_subshiftdown:D
1083 __kernel_primitive:NN \Umathsubshiftdrop \utex_subshiftdrop:D
1084 __kernel_primitive:NN \Umathsubsupshiftdown \utex_subsupshiftdown:D
1085 __kernel_primitive:NN \Umathsubsupvgap \utex_subsupvgap:D
1086 __kernel_primitive:NN \Umathsubtopmax \utex_subtopmax:D
1087 __kernel_primitive:NN \Umathsupbottommin \utex_supbottommin:D
1088 __kernel_primitive:NN \Umathsupshiftdrop \utex_supshiftdrop:D
1089 __kernel_primitive:NN \Umathsupshiftup \utex_supshiftup:D
1090 __kernel_primitive:NN \Umathsupsubbottommax \utex_supsubbottommax:D
1091 __kernel_primitive:NN \Umathunderbarkern \utex_underbarkern:D
1092 __kernel_primitive:NN \Umathunderbarrule \utex_underbarrule:D
1093 __kernel_primitive:NN \Umathunderbarvgap \utex_underbarvgap:D
1094 __kernel_primitive:NN \Umathunderdelimiterbgap \utex_underdelimiterbgap:D
1095 __kernel_primitive:NN \Umathunderdelimitervgap \utex_underdelimitervgap:D
1096 __kernel_primitive:NN \Uoverdelimiter \utex_overdelimiter:D
1097 __kernel_primitive:NN \Uradical \utex_radical:D
1098 __kernel_primitive:NN \Uroot \utex_root:D
1099 __kernel_primitive:NN \Uskewed \utex_skewed:D
1100 __kernel_primitive:NN \Uskewedwithdelims \utex_skewedwithdelims:D
1101 __kernel_primitive:NN \Ustack \utex_stack:D

259

1102 __kernel_primitive:NN \Ustartdisplaymath \utex_startdisplaymath:D
1103 __kernel_primitive:NN \Ustartmath \utex_startmath:D
1104 __kernel_primitive:NN \Ustopdisplaymath \utex_stopdisplaymath:D
1105 __kernel_primitive:NN \Ustopmath \utex_stopmath:D
1106 __kernel_primitive:NN \Usubscript \utex_subscript:D
1107 __kernel_primitive:NN \Usuperscript \utex_superscript:D
1108 __kernel_primitive:NN \Uunderdelimiter \utex_underdelimiter:D
1109 __kernel_primitive:NN \Uvextensible \utex_vextensible:D

Primitives from pTEX.
1110 __kernel_primitive:NN \autospacing \ptex_autospacing:D
1111 __kernel_primitive:NN \autoxspacing \ptex_autoxspacing:D
1112 __kernel_primitive:NN \dtou \ptex_dtou:D
1113 __kernel_primitive:NN \euc \ptex_euc:D
1114 __kernel_primitive:NN \ifdbox \ptex_ifdbox:D
1115 __kernel_primitive:NN \ifddir \ptex_ifddir:D
1116 __kernel_primitive:NN \ifmdir \ptex_ifmdir:D
1117 __kernel_primitive:NN \iftbox \ptex_iftbox:D
1118 __kernel_primitive:NN \iftdir \ptex_iftdir:D
1119 __kernel_primitive:NN \ifybox \ptex_ifybox:D
1120 __kernel_primitive:NN \ifydir \ptex_ifydir:D
1121 __kernel_primitive:NN \inhibitglue \ptex_inhibitglue:D
1122 __kernel_primitive:NN \inhibitxspcode \ptex_inhibitxspcode:D
1123 __kernel_primitive:NN \jcharwidowpenalty \ptex_jcharwidowpenalty:D
1124 __kernel_primitive:NN \jfam \ptex_jfam:D
1125 __kernel_primitive:NN \jfont \ptex_jfont:D
1126 __kernel_primitive:NN \jis \ptex_jis:D
1127 __kernel_primitive:NN \kanjiskip \ptex_kanjiskip:D
1128 __kernel_primitive:NN \kansuji \ptex_kansuji:D
1129 __kernel_primitive:NN \kansujichar \ptex_kansujichar:D
1130 __kernel_primitive:NN \kcatcode \ptex_kcatcode:D
1131 __kernel_primitive:NN \kuten \ptex_kuten:D
1132 __kernel_primitive:NN \noautospacing \ptex_noautospacing:D
1133 __kernel_primitive:NN \noautoxspacing \ptex_noautoxspacing:D
1134 __kernel_primitive:NN \postbreakpenalty \ptex_postbreakpenalty:D
1135 __kernel_primitive:NN \prebreakpenalty \ptex_prebreakpenalty:D
1136 __kernel_primitive:NN \showmode \ptex_showmode:D
1137 __kernel_primitive:NN \sjis \ptex_sjis:D
1138 __kernel_primitive:NN \tate \ptex_tate:D
1139 __kernel_primitive:NN \tbaselineshift \ptex_tbaselineshift:D
1140 __kernel_primitive:NN \tfont \ptex_tfont:D
1141 __kernel_primitive:NN \xkanjiskip \ptex_xkanjiskip:D
1142 __kernel_primitive:NN \xspcode \ptex_xspcode:D
1143 __kernel_primitive:NN \ybaselineshift \ptex_ybaselineshift:D
1144 __kernel_primitive:NN \yoko \ptex_yoko:D

Primitives from upTEX.
1145 __kernel_primitive:NN \disablecjktoken \uptex_disablecjktoken:D
1146 __kernel_primitive:NN \enablecjktoken \uptex_enablecjktoken:D
1147 __kernel_primitive:NN \forcecjktoken \uptex_forcecjktoken:D
1148 __kernel_primitive:NN \kchar \uptex_kchar:D

260

1149 __kernel_primitive:NN \kchardef \uptex_kchardef:D
1150 __kernel_primitive:NN \kuten \uptex_kuten:D
1151 __kernel_primitive:NN \ucs \uptex_ucs:D

End of the “just the names” part of the source.
1152 〈/initex | names | package〉
1153 〈*initex | package〉

The job is done: close the group (using the primitive renamed!).
1154 \tex_endgroup:D

LATEX2ε will have moved a few primitives, so these are sorted out. A convenient
test for LATEX2ε is the \@@end saved primitive.

1155 〈*package〉
1156 \etex_ifdefined:D \@@end
1157 \tex_let:D \tex_end:D \@@end
1158 \tex_let:D \tex_everydisplay:D \frozen@everydisplay
1159 \tex_let:D \tex_everymath:D \frozen@everymath
1160 \tex_let:D \tex_hyphen:D \@@hyph
1161 \tex_let:D \tex_input:D \@@input
1162 \tex_let:D \tex_italiccorrection:D \@@italiccorr
1163 \tex_let:D \tex_underline:D \@@underline

Some tidying up is needed for \(pdf)tracingfonts. Newer LuaTEX has this simply
as \tracingfonts, but that will have been overwritten by the LATEX2ε kernel. So any
spurious definition has to be removed, then the real version saved either from the pdfTEX
name or from LuaTEX. In the latter case, we leave \@@tracingfonts available: this might
be useful and almost all LATEX2ε users will have expl3 loaded by fontspec. (We follow
the usual kernel convention that @@ is used for saved primitives.)

1164 \tex_let:D \pdftex_tracingfonts:D \tex_undefined:D
1165 \etex_ifdefined:D \pdftracingfonts
1166 \tex_let:D \pdftex_tracingfonts:D \pdftracingfonts
1167 \tex_else:D
1168 \etex_ifdefined:D \luatex_directlua:D
1169 \luatex_directlua:D { tex.enableprimitives("@@", {"tracingfonts"}) }
1170 \tex_let:D \pdftex_tracingfonts:D \luatextracingfonts
1171 \tex_fi:D
1172 \tex_fi:D
1173 \tex_fi:D

That is also true for the LuaTEX primitives under LATEX2ε (depending on the format-
building date). There are a few primitives that get the right names anyway so are missing
here!

1174 \etex_ifdefined:D \luatexsuppressfontnotfounderror
1175 \tex_let:D \luatex_alignmark:D \luatexalignmark
1176 \tex_let:D \luatex_aligntab:D \luatexaligntab
1177 \tex_let:D \luatex_attribute:D \luatexattribute
1178 \tex_let:D \luatex_attributedef:D \luatexattributedef
1179 \tex_let:D \luatex_catcodetable:D \luatexcatcodetable
1180 \tex_let:D \luatex_clearmarks:D \luatexclearmarks
1181 \tex_let:D \luatex_crampeddisplaystyle:D \luatexcrampeddisplaystyle

261

1182 \tex_let:D \luatex_crampedscriptscriptstyle:D \luatexcrampedscriptscriptstyle
1183 \tex_let:D \luatex_crampedscriptstyle:D \luatexcrampedscriptstyle
1184 \tex_let:D \luatex_crampedtextstyle:D \luatexcrampedtextstyle
1185 \tex_let:D \luatex_fontid:D \luatexfontid
1186 \tex_let:D \luatex_formatname:D \luatexformatname
1187 \tex_let:D \luatex_gleaders:D \luatexgleaders
1188 \tex_let:D \luatex_initcatcodetable:D \luatexinitcatcodetable
1189 \tex_let:D \luatex_latelua:D \luatexlatelua
1190 \tex_let:D \luatex_luaescapestring:D \luatexluaescapestring
1191 \tex_let:D \luatex_luafunction:D \luatexluafunction
1192 \tex_let:D \luatex_mathstyle:D \luatexmathstyle
1193 \tex_let:D \luatex_nokerns:D \luatexnokerns
1194 \tex_let:D \luatex_noligs:D \luatexnoligs
1195 \tex_let:D \luatex_outputbox:D \luatexoutputbox
1196 \tex_let:D \luatex_pageleftoffset:D \luatexpageleftoffset
1197 \tex_let:D \luatex_pagetopoffset:D \luatexpagetopoffset
1198 \tex_let:D \luatex_postexhyphenchar:D \luatexpostexhyphenchar
1199 \tex_let:D \luatex_posthyphenchar:D \luatexposthyphenchar
1200 \tex_let:D \luatex_preexhyphenchar:D \luatexpreexhyphenchar
1201 \tex_let:D \luatex_prehyphenchar:D \luatexprehyphenchar
1202 \tex_let:D \luatex_savecatcodetable:D \luatexsavecatcodetable
1203 \tex_let:D \luatex_scantextokens:D \luatexscantextokens
1204 \tex_let:D \luatex_suppressifcsnameerror:D \luatexsuppressifcsnameerror
1205 \tex_let:D \luatex_suppresslongerror:D \luatexsuppresslongerror
1206 \tex_let:D \luatex_suppressmathparerror:D \luatexsuppressmathparerror
1207 \tex_let:D \luatex_suppressoutererror:D \luatexsuppressoutererror
1208 \tex_let:D \utex_char:D \luatexUchar
1209 \tex_let:D \xetex_suppressfontnotfounderror:D \luatexsuppressfontnotfounderror

Which also covers those slightly odd ones.
1210 \tex_let:D \luatex_bodydir:D \luatexbodydir
1211 \tex_let:D \luatex_boxdir:D \luatexboxdir
1212 \tex_let:D \luatex_leftghost:D \luatexleftghost
1213 \tex_let:D \luatex_localbrokenpenalty:D \luatexlocalbrokenpenalty
1214 \tex_let:D \luatex_localinterlinepenalty:D \luatexlocalinterlinepenalty
1215 \tex_let:D \luatex_localleftbox:D \luatexlocalleftbox
1216 \tex_let:D \luatex_localrightbox:D \luatexlocalrightbox
1217 \tex_let:D \luatex_mathdir:D \luatexmathdir
1218 \tex_let:D \luatex_pagebottomoffset:D \luatexpagebottomoffset
1219 \tex_let:D \luatex_pagedir:D \luatexpagedir
1220 \tex_let:D \pdftex_pageheight:D \luatexpageheight
1221 \tex_let:D \luatex_pagerightoffset:D \luatexpagerightoffset
1222 \tex_let:D \pdftex_pagewidth:D \luatexpagewidth
1223 \tex_let:D \luatex_pardir:D \luatexpardir
1224 \tex_let:D \luatex_rightghost:D \luatexrightghost
1225 \tex_let:D \luatex_textdir:D \luatextextdir
1226 \tex_fi:D

Only pdfTEX and LuaTEX define \pdfmapfile and \pdfmapline: Tidy up the fact that
some format-building processes leave a couple of questionable decisions about that!

262

1227 \tex_ifnum:D 0
1228 \etex_ifdefined:D \pdftex_pdftexversion:D 1 \tex_fi:D
1229 \etex_ifdefined:D \luatex_luatexversion:D 1 \tex_fi:D
1230 = 0 %
1231 \tex_let:D \pdftex_mapfile:D \tex_undefined:D
1232 \tex_let:D \pdftex_mapline:D \tex_undefined:D
1233 \tex_fi:D
1234 〈/package〉

Older X ETEX versions use \XeTeX as the prefix for the Unicode math primitives it knows.
That is tided up here (we support X ETEX versions from 0.9994 but this change was in
0.9999).

1235 〈*initex | package〉
1236 \etex_ifdefined:D \XeTeXdelcode
1237 \tex_let:D \utex_delcode:D \XeTeXdelcode
1238 \tex_let:D \utex_delcodenum:D \XeTeXdelcodenum
1239 \tex_let:D \utex_delimiter:D \XeTeXdelimiter
1240 \tex_let:D \utex_mathaccent:D \XeTeXmathaccent
1241 \tex_let:D \utex_mathchar:D \XeTeXmathchar
1242 \tex_let:D \utex_mathchardef:D \XeTeXmathchardef
1243 \tex_let:D \utex_mathcharnum:D \XeTeXmathcharnum
1244 \tex_let:D \utex_mathcharnumdef:D \XeTeXmathcharnumdef
1245 \tex_let:D \utex_mathcode:D \XeTeXmathcode
1246 \tex_let:D \utex_mathcodenum:D \XeTeXmathcodenum
1247 \tex_fi:D

Up to v0.80, LuaTEX defines the pdfTEX version data: rather confusing. Removing
them means that \pdftex_pdftexversion:D is a marker for pdfTEX alone: useful in
engine-dependent code later.

1248 \etex_ifdefined:D \luatex_luatexversion:D
1249 \tex_let:D \pdftex_pdftexbanner:D \tex_undefined:D
1250 \tex_let:D \pdftex_pdftexrevision:D \tex_undefined:D
1251 \tex_let:D \pdftex_pdftexversion:D \tex_undefined:D
1252 \tex_fi:D
1253 〈/initex | package〉

For ConTEXt, two tests are needed. Both Mark II and Mark IV move several primi-
tives: these are all covered by the first test, again using \end as a marker. For Mark IV,
a few more primitives are moved: they are implemented using some Lua code in the
current ConTEXt.

1254 〈*package〉
1255 \etex_ifdefined:D \normalend
1256 \tex_let:D \tex_end:D \normalend
1257 \tex_let:D \tex_everyjob:D \normaleveryjob
1258 \tex_let:D \tex_input:D \normalinput
1259 \tex_let:D \tex_language:D \normallanguage
1260 \tex_let:D \tex_mathop:D \normalmathop
1261 \tex_let:D \tex_month:D \normalmonth
1262 \tex_let:D \tex_outer:D \normalouter
1263 \tex_let:D \tex_over:D \normalover

263

1264 \tex_let:D \tex_vcenter:D \normalvcenter
1265 \tex_let:D \etex_unexpanded:D \normalunexpanded
1266 \tex_let:D \luatex_expanded:D \normalexpanded
1267 \tex_fi:D
1268 \etex_ifdefined:D \normalitaliccorrection
1269 \tex_let:D \tex_hoffset:D \normalhoffset
1270 \tex_let:D \tex_italiccorrection:D \normalitaliccorrection
1271 \tex_let:D \tex_voffset:D \normalvoffset
1272 \tex_let:D \etex_showtokens:D \normalshowtokens
1273 \tex_let:D \luatex_bodydir:D \spac_directions_normal_body_dir
1274 \tex_let:D \luatex_pagedir:D \spac_directions_normal_page_dir
1275 \tex_fi:D
1276 \etex_ifdefined:D \normalleft
1277 \tex_let:D \tex_left:D \normalleft
1278 \tex_let:D \tex_middle:D \normalmiddle
1279 \tex_let:D \tex_right:D \normalright
1280 \tex_fi:D
1281 〈/package〉

1282 〈/initex | package〉

3 l3basics implementation
1283 〈*initex | package〉

3.1 Renaming some TEX primitives (again)
Having given all the TEX primitives a consistent name, we need to give sensible names
to the ones we actually want to use. These will be defined as needed in the appropriate
modules, but do a few now, just to get started.4

\if_true:
\if_false:

\or:
\else:
\fi:

\reverse_if:N
\if:w

\if_charcode:w
\if_catcode:w
\if_meaning:w

Then some conditionals.
1284 \tex_let:D \if_true: \tex_iftrue:D
1285 \tex_let:D \if_false: \tex_iffalse:D
1286 \tex_let:D \or: \tex_or:D
1287 \tex_let:D \else: \tex_else:D
1288 \tex_let:D \fi: \tex_fi:D
1289 \tex_let:D \reverse_if:N \etex_unless:D
1290 \tex_let:D \if:w \tex_if:D
1291 \tex_let:D \if_charcode:w \tex_if:D
1292 \tex_let:D \if_catcode:w \tex_ifcat:D
1293 \tex_let:D \if_meaning:w \tex_ifx:D

(End definition for \if_true: and others. These functions are documented on page 23.)

\if_mode_math:
\if_mode_horizontal:
\if_mode_vertical:

\if_mode_inner:

TEX lets us detect some if its modes.
1294 \tex_let:D \if_mode_math: \tex_ifmmode:D

4This renaming gets expensive in terms of csname usage, an alternative scheme would be to just use
the \tex...:D name in the cases where no good alternative exists.

264

1295 \tex_let:D \if_mode_horizontal: \tex_ifhmode:D
1296 \tex_let:D \if_mode_vertical: \tex_ifvmode:D
1297 \tex_let:D \if_mode_inner: \tex_ifinner:D

(End definition for \if_mode_math: and others. These functions are documented on page 24.)

\if_cs_exist:N
\if_cs_exist:w

\cs:w
\cs_end:

Building csnames and testing if control sequences exist.
1298 \tex_let:D \if_cs_exist:N \etex_ifdefined:D
1299 \tex_let:D \if_cs_exist:w \etex_ifcsname:D
1300 \tex_let:D \cs:w \tex_csname:D
1301 \tex_let:D \cs_end: \tex_endcsname:D

(End definition for \if_cs_exist:N and others. These functions are documented on page 24.)

\exp_after:wN
\exp_not:N
\exp_not:n

The five \exp_ functions are used in the l3expan module where they are described.
1302 \tex_let:D \exp_after:wN \tex_expandafter:D
1303 \tex_let:D \exp_not:N \tex_noexpand:D
1304 \tex_let:D \exp_not:n \etex_unexpanded:D
1305 \tex_let:D \exp:w \tex_romannumeral:D
1306 \tex_chardef:D \exp_end: = 0 ~

(End definition for \exp_after:wN , \exp_not:N , and \exp_not:n. These functions are documented on
page 32.)

\token_to_meaning:N
\cs_meaning:N

Examining a control sequence or token.
1307 \tex_let:D \token_to_meaning:N \tex_meaning:D
1308 \tex_let:D \cs_meaning:N \tex_meaning:D

(End definition for \token_to_meaning:N and \cs_meaning:N. These functions are documented on page
57.)

\tl_to_str:n
\token_to_str:N

Making strings.
1309 \tex_let:D \tl_to_str:n \etex_detokenize:D
1310 \tex_let:D \token_to_str:N \tex_string:D

(End definition for \tl_to_str:n and \token_to_str:N. These functions are documented on page 103.)

\scan_stop:
\group_begin:

\group_end:

The next three are basic functions for which there also exist versions that are safe inside
alignments. These safe versions are defined in the l3prg module.

1311 \tex_let:D \scan_stop: \tex_relax:D
1312 \tex_let:D \group_begin: \tex_begingroup:D
1313 \tex_let:D \group_end: \tex_endgroup:D

(End definition for \scan_stop: , \group_begin: , and \group_end:. These functions are documented
on page 10.)

\if_int_compare:w
__int_to_roman:w

For integers.
1314 \tex_let:D \if_int_compare:w \tex_ifnum:D
1315 \tex_let:D __int_to_roman:w \tex_romannumeral:D

(End definition for \if_int_compare:w and __int_to_roman:w. These functions are documented on
page 78.)

265

\group_insert_after:N Adding material after the end of a group.
1316 \tex_let:D \group_insert_after:N \tex_aftergroup:D

(End definition for \group_insert_after:N. This function is documented on page 10.)

\exp_args:Nc
\exp_args:cc

Discussed in l3expan, but needed much earlier.
1317 \tex_long:D \tex_def:D \exp_args:Nc #1#2
1318 { \exp_after:wN #1 \cs:w #2 \cs_end: }
1319 \tex_long:D \tex_def:D \exp_args:cc #1#2
1320 { \cs:w #1 \exp_after:wN \cs_end: \cs:w #2 \cs_end: }

(End definition for \exp_args:Nc and \exp_args:cc. These functions are documented on page 29.)

\token_to_meaning:c
\token_to_str:c

\cs_meaning:c

A small number of variants defined by hand. Some of the necessary functions (\use_-
i:nn, \use_ii:nn, and \exp_args:NNc) are not defined at that point yet, but will be
defined before those variants are used. The \cs_meaning:c command must check for an
undefined control sequence to avoid defining it mistakenly.

1321 \tex_def:D \token_to_str:c { \exp_args:Nc \token_to_str:N }
1322 \tex_long:D \tex_def:D \cs_meaning:c #1
1323 {
1324 \if_cs_exist:w #1 \cs_end:
1325 \exp_after:wN \use_i:nn
1326 \else:
1327 \exp_after:wN \use_ii:nn
1328 \fi:
1329 { \exp_args:Nc \cs_meaning:N {#1} }
1330 { \tl_to_str:n {undefined} }
1331 }
1332 \tex_let:D \token_to_meaning:c = \cs_meaning:c

(End definition for \token_to_meaning:c , \token_to_str:c , and \cs_meaning:c. These functions are
documented on page ??.)

3.2 Defining some constants
\c_minus_one

\c_zero
\c_sixteen

We need the constants \c_minus_one and \c_sixteen now for writing information to
the log and the terminal and \c_zero which is used by some functions in the l3alloc
module. The rest are defined in the l3int module – at least for the ones that can be
defined with \tex_chardef:D or \tex_mathchardef:D. For other constants the l3int
module is required but it can’t be used until the allocation has been set up properly!
The actual allocation mechanism is in l3alloc, and works such that the first available
count register is 10.

1333 〈*package〉
1334 \tex_let:D \c_minus_one \m@ne
1335 〈/package〉
1336 〈*initex〉
1337 \tex_countdef:D \c_minus_one = 10 ~
1338 \c_minus_one = -1 ~
1339 〈/initex〉

266

1340 \tex_chardef:D \c_sixteen = 16 ~
1341 \tex_chardef:D \c_zero = 0 ~

(End definition for \c_minus_one , \c_zero , and \c_sixteen. These variables are documented on page
77.)

\c_max_register_int This is here as this particular integer is needed both in package mode and to bootstrap
l3alloc, and is documented in l3int.

1342 \etex_ifdefined:D \luatex_luatexversion:D
1343 \tex_chardef:D \c_max_register_int = 65 535 ~
1344 \tex_else:D
1345 \tex_mathchardef:D \c_max_register_int = 32 767 ~
1346 \tex_fi:D

(End definition for \c_max_register_int. This variable is documented on page 77.)

3.3 Defining functions
We start by providing functions for the typical definition functions. First the local ones.

\cs_set_nopar:Npn
\cs_set_nopar:Npx

\cs_set:Npn
\cs_set:Npx

\cs_set_protected_nopar:Npn
\cs_set_protected_nopar:Npx

\cs_set_protected:Npn
\cs_set_protected:Npx

All assignment functions in LATEX3 should be naturally protected; after all, the TEX
primitives for assignments are and it can be a cause of problems if others aren’t.

1347 \tex_let:D \cs_set_nopar:Npn \tex_def:D
1348 \tex_let:D \cs_set_nopar:Npx \tex_edef:D
1349 \etex_protected:D \cs_set_nopar:Npn \cs_set:Npn
1350 { \tex_long:D \cs_set_nopar:Npn }
1351 \etex_protected:D \cs_set_nopar:Npn \cs_set:Npx
1352 { \tex_long:D \cs_set_nopar:Npx }
1353 \etex_protected:D \cs_set_nopar:Npn \cs_set_protected_nopar:Npn
1354 { \etex_protected:D \cs_set_nopar:Npn }
1355 \etex_protected:D \cs_set_nopar:Npn \cs_set_protected_nopar:Npx
1356 { \etex_protected:D \cs_set_nopar:Npx }
1357 \cs_set_protected_nopar:Npn \cs_set_protected:Npn
1358 { \etex_protected:D \tex_long:D \cs_set_nopar:Npn }
1359 \cs_set_protected_nopar:Npn \cs_set_protected:Npx
1360 { \etex_protected:D \tex_long:D \cs_set_nopar:Npx }

(End definition for \cs_set_nopar:Npn and others. These functions are documented on page 13.)

\cs_gset_nopar:Npn
\cs_gset_nopar:Npx

\cs_gset:Npn
\cs_gset:Npx

\cs_gset_protected_nopar:Npn
\cs_gset_protected_nopar:Npx

\cs_gset_protected:Npn
\cs_gset_protected:Npx

Global versions of the above functions.
1361 \tex_let:D \cs_gset_nopar:Npn \tex_gdef:D
1362 \tex_let:D \cs_gset_nopar:Npx \tex_xdef:D
1363 \cs_set_protected_nopar:Npn \cs_gset:Npn
1364 { \tex_long:D \cs_gset_nopar:Npn }
1365 \cs_set_protected_nopar:Npn \cs_gset:Npx
1366 { \tex_long:D \cs_gset_nopar:Npx }
1367 \cs_set_protected_nopar:Npn \cs_gset_protected_nopar:Npn
1368 { \etex_protected:D \cs_gset_nopar:Npn }
1369 \cs_set_protected_nopar:Npn \cs_gset_protected_nopar:Npx
1370 { \etex_protected:D \cs_gset_nopar:Npx }

267

1371 \cs_set_protected_nopar:Npn \cs_gset_protected:Npn
1372 { \etex_protected:D \tex_long:D \cs_gset_nopar:Npn }
1373 \cs_set_protected_nopar:Npn \cs_gset_protected:Npx
1374 { \etex_protected:D \tex_long:D \cs_gset_nopar:Npx }

(End definition for \cs_gset_nopar:Npn and others. These functions are documented on page 13.)

3.4 Selecting tokens
\l__exp_internal_tl Scratch token list variable for l3expan, used by \use:x, used in defining conditionals. We

don’t use tl methods because l3basics is loaded earlier.
1375 \cs_set_nopar:Npn \l__exp_internal_tl { }

(End definition for \l__exp_internal_tl. This variable is documented on page 35.)

\use:c This macro grabs its argument and returns a csname from it.
1376 \cs_set:Npn \use:c #1 { \cs:w #1 \cs_end: }

(End definition for \use:c. This function is documented on page 18.)

\use:x Fully expands its argument and passes it to the input stream. Uses the reserved \l__-
exp_internal_tl which will be set up in l3expan.

1377 \cs_set_protected:Npn \use:x #1
1378 {
1379 \cs_set_nopar:Npx \l__exp_internal_tl {#1}
1380 \l__exp_internal_tl
1381 }

(End definition for \use:x. This function is documented on page 21.)

\use:n
\use:nn
\use:nnn
\use:nnnn

These macros grab their arguments and returns them back to the input (with outer braces
removed).

1382 \cs_set:Npn \use:n #1 {#1}
1383 \cs_set:Npn \use:nn #1#2 {#1#2}
1384 \cs_set:Npn \use:nnn #1#2#3 {#1#2#3}
1385 \cs_set:Npn \use:nnnn #1#2#3#4 {#1#2#3#4}

(End definition for \use:n and others. These functions are documented on page 19.)

\use_i:nn
\use_ii:nn

The equivalent to LATEX2ε’s \@firstoftwo and \@secondoftwo.
1386 \cs_set:Npn \use_i:nn #1#2 {#1}
1387 \cs_set:Npn \use_ii:nn #1#2 {#2}

(End definition for \use_i:nn and \use_ii:nn. These functions are documented on page 20.)

268

\use_i:nnn
\use_ii:nnn

\use_iii:nnn
\use_i_ii:nnn

\use_i:nnnn
\use_ii:nnnn
\use_iii:nnnn
\use_iv:nnnn

We also need something for picking up arguments from a longer list.
1388 \cs_set:Npn \use_i:nnn #1#2#3 {#1}
1389 \cs_set:Npn \use_ii:nnn #1#2#3 {#2}
1390 \cs_set:Npn \use_iii:nnn #1#2#3 {#3}
1391 \cs_set:Npn \use_i_ii:nnn #1#2#3 {#1#2}
1392 \cs_set:Npn \use_i:nnnn #1#2#3#4 {#1}
1393 \cs_set:Npn \use_ii:nnnn #1#2#3#4 {#2}
1394 \cs_set:Npn \use_iii:nnnn #1#2#3#4 {#3}
1395 \cs_set:Npn \use_iv:nnnn #1#2#3#4 {#4}

(End definition for \use_i:nnn and others. These functions are documented on page 20.)

\use_none_delimit_by_q_nil:w
\use_none_delimit_by_q_stop:w

\use_none_delimit_by_q_recursion_stop:w

Functions that gobble everything until they see either \q_nil, \q_stop, or \q_-
recursion_stop, respectively.

1396 \cs_set:Npn \use_none_delimit_by_q_nil:w #1 \q_nil { }
1397 \cs_set:Npn \use_none_delimit_by_q_stop:w #1 \q_stop { }
1398 \cs_set:Npn \use_none_delimit_by_q_recursion_stop:w #1 \q_recursion_stop { }

(End definition for \use_none_delimit_by_q_nil:w , \use_none_delimit_by_q_stop:w , and \use_-
none_delimit_by_q_recursion_stop:w. These functions are documented on page 21.)

\use_i_delimit_by_q_nil:nw
\use_i_delimit_by_q_stop:nw

\use_i_delimit_by_q_recursion_stop:nw

Same as above but execute first argument after gobbling. Very useful when you need to
skip the rest of a mapping sequence but want an easy way to control what should be
expanded next.

1399 \cs_set:Npn \use_i_delimit_by_q_nil:nw #1#2 \q_nil {#1}
1400 \cs_set:Npn \use_i_delimit_by_q_stop:nw #1#2 \q_stop {#1}
1401 \cs_set:Npn \use_i_delimit_by_q_recursion_stop:nw #1#2 \q_recursion_stop {#1}

(End definition for \use_i_delimit_by_q_nil:nw , \use_i_delimit_by_q_stop:nw , and \use_i_delimit_-
by_q_recursion_stop:nw. These functions are documented on page 21.)

3.5 Gobbling tokens from input
\use_none:n

\use_none:nn
\use_none:nnn
\use_none:nnnn

\use_none:nnnnn
\use_none:nnnnnn
\use_none:nnnnnnn

\use_none:nnnnnnnn
\use_none:nnnnnnnnn

To gobble tokens from the input we use a standard naming convention: the number of
tokens gobbled is given by the number of n’s following the : in the name. Although we
could define functions to remove ten arguments or more using separate calls of \use_-
none:nnnnn, this is very non-intuitive to the programmer who will assume that expanding
such a function once will take care of gobbling all the tokens in one go.

1402 \cs_set:Npn \use_none:n #1 { }
1403 \cs_set:Npn \use_none:nn #1#2 { }
1404 \cs_set:Npn \use_none:nnn #1#2#3 { }
1405 \cs_set:Npn \use_none:nnnn #1#2#3#4 { }
1406 \cs_set:Npn \use_none:nnnnn #1#2#3#4#5 { }
1407 \cs_set:Npn \use_none:nnnnnn #1#2#3#4#5#6 { }
1408 \cs_set:Npn \use_none:nnnnnnn #1#2#3#4#5#6#7 { }
1409 \cs_set:Npn \use_none:nnnnnnnn #1#2#3#4#5#6#7#8 { }
1410 \cs_set:Npn \use_none:nnnnnnnnn #1#2#3#4#5#6#7#8#9 { }

(End definition for \use_none:n and others. These functions are documented on page 21.)

269

3.6 Conditional processing and definitions
Underneath any predicate function (_p) or other conditional forms (TF, etc.) is a built-in
logic saying that it after all of the testing and processing must return the 〈state〉 this
leaves TEX in. Therefore, a simple user interface could be something like

\if_meaning:w #1#2
\prg_return_true:

\else:
\if_meaning:w #1#3
\prg_return_true:

\else:
\prg_return_false:

\fi:
\fi:

Usually, a TEX programmer would have to insert a number of \exp_after:wNs to ensure
the state value is returned at exactly the point where the last conditional is finished.
However, that obscures the code and forces the TEX programmer to prove that he/she
knows the 2n − 1 table. We therefore provide the simpler interface.

\prg_return_true:
\prg_return_false:

The idea here is that \exp:w will expand fully any \else: and the \fi: that are waiting
to be discarded, before reaching the \exp_end: which will leave the expansion null. The
code can then leave either the first or second argument in the input stream. This means
that all of the branching code has to contain at least two tokens: see how the logical tests
are actually implemented to see this.

1411 \cs_set_nopar:Npn \prg_return_true:
1412 { \exp_after:wN \use_i:nn \exp:w }
1413 \cs_set_nopar:Npn \prg_return_false:
1414 { \exp_after:wN \use_ii:nn \exp:w}

An extended state space could be implemented by including a more elaborate function
in place of \use_i:nn/\use_ii:nn. Provided two arguments are absorbed then the code
will work.

(End definition for \prg_return_true: and \prg_return_false:. These functions are documented on
page 39.)

\prg_set_conditional:Npnn
\prg_new_conditional:Npnn

\prg_set_protected_conditional:Npnn
\prg_new_protected_conditional:Npnn

__prg_generate_conditional_parm:nnNpnn

The user functions for the types using parameter text from the programmer. The various
functions only differ by which function is used for the assignment. For those Npnn type
functions, we must grab the parameter text, reading everything up to a left brace before
continuing. Then split the base function into name and signature, and feed {〈name〉}
{〈signature〉} 〈boolean〉 {〈set or new〉} {〈maybe protected〉} {〈parameters〉} {TF,...}
{〈code〉} to the auxiliary function responsible for defining all conditionals.

1415 \cs_set_protected_nopar:Npn \prg_set_conditional:Npnn
1416 { __prg_generate_conditional_parm:nnNpnn { set } { } }
1417 \cs_set_protected_nopar:Npn \prg_new_conditional:Npnn
1418 { __prg_generate_conditional_parm:nnNpnn { new } { } }
1419 \cs_set_protected_nopar:Npn \prg_set_protected_conditional:Npnn

270

1420 { __prg_generate_conditional_parm:nnNpnn { set } { _protected } }
1421 \cs_set_protected_nopar:Npn \prg_new_protected_conditional:Npnn
1422 { __prg_generate_conditional_parm:nnNpnn { new } { _protected } }
1423 \cs_set_protected:Npn __prg_generate_conditional_parm:nnNpnn #1#2#3#4#
1424 {
1425 __cs_split_function:NN #3 __prg_generate_conditional:nnNnnnnn
1426 {#1} {#2} {#4}
1427 }

(End definition for \prg_set_conditional:Npnn and others. These functions are documented on page
37.)

\prg_set_conditional:Nnn
\prg_new_conditional:Nnn

\prg_set_protected_conditional:Nnn
\prg_new_protected_conditional:Nnn

__prg_generate_conditional_count:nnNnn
__prg_generate_conditional_count:nnNnnnn

The user functions for the types automatically inserting the correct parameter text based
on the signature. The various functions only differ by which function is used for the
assignment. Split the base function into name and signature. The second auxiliary
generates the parameter text from the number of letters in the signature. Then feed
{〈name〉} {〈signature〉} 〈boolean〉 {〈set or new〉} {〈maybe protected〉} {〈parameters〉}
{TF,...} {〈code〉} to the auxiliary function responsible for defining all conditionals. If
the 〈signature〉 has more than 9 letters, the definition is aborted since TEX macros have
at most 9 arguments. The erroneous case where the function name contains no colon is
captured later.

1428 \cs_set_protected_nopar:Npn \prg_set_conditional:Nnn
1429 { __prg_generate_conditional_count:nnNnn { set } { } }
1430 \cs_set_protected_nopar:Npn \prg_new_conditional:Nnn
1431 { __prg_generate_conditional_count:nnNnn { new } { } }
1432 \cs_set_protected_nopar:Npn \prg_set_protected_conditional:Nnn
1433 { __prg_generate_conditional_count:nnNnn { set } { _protected } }
1434 \cs_set_protected_nopar:Npn \prg_new_protected_conditional:Nnn
1435 { __prg_generate_conditional_count:nnNnn { new } { _protected } }
1436 \cs_set_protected:Npn __prg_generate_conditional_count:nnNnn #1#2#3
1437 {
1438 __cs_split_function:NN #3 __prg_generate_conditional_count:nnNnnnn
1439 {#1} {#2}
1440 }
1441 \cs_set_protected:Npn __prg_generate_conditional_count:nnNnnnn #1#2#3#4#5
1442 {
1443 __cs_parm_from_arg_count:nnF
1444 { __prg_generate_conditional:nnNnnnnn {#1} {#2} #3 {#4} {#5} }
1445 { \tl_count:n {#2} }
1446 {
1447 __msg_kernel_error:nnxx { kernel } { bad-number-of-arguments }
1448 { \token_to_str:c { #1 : #2 } }
1449 { \tl_count:n {#2} }
1450 \use_none:nn
1451 }
1452 }

(End definition for \prg_set_conditional:Nnn and others. These functions are documented on page
37.)

271

__prg_generate_conditional:nnNnnnnn
__prg_generate_conditional:nnnnnnw

The workhorse here is going through a list of desired forms, i.e., p, TF, T and F. The first
three arguments come from splitting up the base form of the conditional, which gives the
name, signature and a boolean to signal whether or not there was a colon in the name.
In the absence of a colon, we throw an error and don’t define any conditional. The fourth
and fifth arguments build up the defining function. The sixth is the parameters to use
(possibly empty), the seventh is the list of forms to define, the eighth is the replacement
text which we will augment when defining the forms. The use of \tl_to_str:n makes
the later loop more robust.

1453 \cs_set_protected:Npn __prg_generate_conditional:nnNnnnnn #1#2#3#4#5#6#7#8
1454 {
1455 \if_meaning:w \c_false_bool #3
1456 __msg_kernel_error:nnx { kernel } { missing-colon }
1457 { \token_to_str:c {#1} }
1458 \exp_after:wN \use_none:nn
1459 \fi:
1460 \use:x
1461 {
1462 \exp_not:N __prg_generate_conditional:nnnnnnw
1463 \exp_not:n { {#4} {#5} {#1} {#2} {#6} {#8} }
1464 \tl_to_str:n {#7}
1465 \exp_not:n { , \q_recursion_tail , \q_recursion_stop }
1466 }
1467 }

Looping through the list of desired forms. First are six arguments and seventh is the
form. Use the form to call the correct type. If the form does not exist, the \use:c
construction results in \relax, and the error message is displayed (unless the form is
empty, to allow for {T, , F}), then \use_none:nnnnnnn cleans up. Otherwise, the error
message is removed by the variant form.

1468 \cs_set_protected:Npn __prg_generate_conditional:nnnnnnw #1#2#3#4#5#6#7 ,
1469 {
1470 \if_meaning:w \q_recursion_tail #7
1471 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
1472 \fi:
1473 \use:c { __prg_generate_ #7 _form:wnnnnnn }
1474 \tl_if_empty:nF {#7}
1475 {
1476 __msg_kernel_error:nnxx
1477 { kernel } { conditional-form-unknown }
1478 {#7} { \token_to_str:c { #3 : #4 } }
1479 }
1480 \use_none:nnnnnnn
1481 \q_stop
1482 {#1} {#2} {#3} {#4} {#5} {#6}
1483 __prg_generate_conditional:nnnnnnw {#1} {#2} {#3} {#4} {#5} {#6}
1484 }

(End definition for __prg_generate_conditional:nnNnnnnn and __prg_generate_conditional:nnnnnnw.)

272

__prg_generate_p_form:wnnnnnn
__prg_generate_TF_form:wnnnnnn
__prg_generate_T_form:wnnnnnn
__prg_generate_F_form:wnnnnnn

How to generate the various forms. Those functions take the following arguments: 1:
set or new, 2: empty or _protected, 3: function name 4: signature, 5: parameter
text (or empty), 6: replacement. Remember that the logic-returning functions expect
two arguments to be present after \exp_end:: notice the construction of the different
variants relies on this, and that the TF variant will be slightly faster than the T version.
The p form is only valid for expandable tests, we check for that by making sure that the
second argument is empty.

1485 \cs_set_protected:Npn __prg_generate_p_form:wnnnnnn
1486 #1 \q_stop #2#3#4#5#6#7
1487 {
1488 \if_meaning:w \scan_stop: #3 \scan_stop:
1489 \exp_after:wN \use_i:nn
1490 \else:
1491 \exp_after:wN \use_ii:nn
1492 \fi:
1493 {
1494 \exp_args:cc { cs_ #2 #3 :Npn } { #4 _p: #5 } #6
1495 { #7 \exp_end: \c_true_bool \c_false_bool }
1496 }
1497 {
1498 __msg_kernel_error:nnx { kernel } { protected-predicate }
1499 { \token_to_str:c { #4 _p: #5 } }
1500 }
1501 }
1502 \cs_set_protected:Npn __prg_generate_T_form:wnnnnnn
1503 #1 \q_stop #2#3#4#5#6#7
1504 {
1505 \exp_args:cc { cs_ #2 #3 :Npn } { #4 : #5 T } #6
1506 { #7 \exp_end: \use:n \use_none:n }
1507 }
1508 \cs_set_protected:Npn __prg_generate_F_form:wnnnnnn
1509 #1 \q_stop #2#3#4#5#6#7
1510 {
1511 \exp_args:cc { cs_ #2 #3 :Npn } { #4 : #5 F } #6
1512 { #7 \exp_end: { } }
1513 }
1514 \cs_set_protected:Npn __prg_generate_TF_form:wnnnnnn
1515 #1 \q_stop #2#3#4#5#6#7
1516 {
1517 \exp_args:cc { cs_ #2 #3 :Npn } { #4 : #5 TF } #6
1518 { #7 \exp_end: }
1519 }

(End definition for __prg_generate_p_form:wnnnnnn and others.)

\prg_set_eq_conditional:NNn
\prg_new_eq_conditional:NNn

__prg_set_eq_conditional:NNNn

The setting-equal functions. Split both functions and feed {〈name1〉} {〈signature1〉}
〈boolean1〉 {〈name2〉} {〈signature2〉} 〈boolean2〉 〈copying function〉 〈conditions〉 , \q_-
recursion_tail , \q_recursion_stop to a first auxiliary.

1520 \cs_set_protected_nopar:Npn \prg_set_eq_conditional:NNn

273

1521 { __prg_set_eq_conditional:NNNn \cs_set_eq:cc }
1522 \cs_set_protected_nopar:Npn \prg_new_eq_conditional:NNn
1523 { __prg_set_eq_conditional:NNNn \cs_new_eq:cc }
1524 \cs_set_protected:Npn __prg_set_eq_conditional:NNNn #1#2#3#4
1525 {
1526 \use:x
1527 {
1528 \exp_not:N __prg_set_eq_conditional:nnNnnNNw
1529 __cs_split_function:NN #2 \prg_do_nothing:
1530 __cs_split_function:NN #3 \prg_do_nothing:
1531 \exp_not:N #1
1532 \tl_to_str:n {#4}
1533 \exp_not:n { , \q_recursion_tail , \q_recursion_stop }
1534 }
1535 }

(End definition for \prg_set_eq_conditional:NNn and \prg_new_eq_conditional:NNn. These functions
are documented on page 39.)

__prg_set_eq_conditional:nnNnnNNw
__prg_set_eq_conditional_loop:nnnnNw
__prg_set_eq_conditional_p_form:nnn

__prg_set_eq_conditional_TF_form:nnn
__prg_set_eq_conditional_T_form:nnn
__prg_set_eq_conditional_F_form:nnn

Split the function to be defined, and setup a manual clist loop over argument #6 of the
first auxiliary. The second auxiliary receives twice three arguments coming from splitting
the function to be defined and the function to copy. Make sure that both functions
contained a colon, otherwise we don’t know how to build conditionals, hence abort. Call
the looping macro, with arguments {〈name1〉} {〈signature1〉} {〈name2〉} {〈signature2〉}
〈copying function〉 and followed by the comma list. At each step in the loop, make sure
that the conditional form we copy is defined, and copy it, otherwise abort.

1536 \cs_set_protected:Npn __prg_set_eq_conditional:nnNnnNNw #1#2#3#4#5#6
1537 {
1538 \if_meaning:w \c_false_bool #3
1539 __msg_kernel_error:nnx { kernel } { missing-colon }
1540 { \token_to_str:c {#1} }
1541 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
1542 \fi:
1543 \if_meaning:w \c_false_bool #6
1544 __msg_kernel_error:nnx { kernel } { missing-colon }
1545 { \token_to_str:c {#4} }
1546 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
1547 \fi:
1548 __prg_set_eq_conditional_loop:nnnnNw {#1} {#2} {#4} {#5}
1549 }
1550 \cs_set_protected:Npn __prg_set_eq_conditional_loop:nnnnNw #1#2#3#4#5#6 ,
1551 {
1552 \if_meaning:w \q_recursion_tail #6
1553 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
1554 \fi:
1555 \use:c { __prg_set_eq_conditional_ #6 _form:wNnnnn }
1556 \tl_if_empty:nF {#6}
1557 {
1558 __msg_kernel_error:nnxx
1559 { kernel } { conditional-form-unknown }

274

1560 {#6} { \token_to_str:c { #1 : #2 } }
1561 }
1562 \use_none:nnnnnn
1563 \q_stop
1564 #5 {#1} {#2} {#3} {#4}
1565 __prg_set_eq_conditional_loop:nnnnNw {#1} {#2} {#3} {#4} #5
1566 }
1567 \cs_set:Npn __prg_set_eq_conditional_p_form:wNnnnn #1 \q_stop #2#3#4#5#6
1568 {
1569 __chk_if_exist_cs:c { #5 _p : #6 }
1570 #2 { #3 _p : #4 } { #5 _p : #6 }
1571 }
1572 \cs_set:Npn __prg_set_eq_conditional_TF_form:wNnnnn #1 \q_stop #2#3#4#5#6
1573 {
1574 __chk_if_exist_cs:c { #5 : #6 TF }
1575 #2 { #3 : #4 TF } { #5 : #6 TF }
1576 }
1577 \cs_set:Npn __prg_set_eq_conditional_T_form:wNnnnn #1 \q_stop #2#3#4#5#6
1578 {
1579 __chk_if_exist_cs:c { #5 : #6 T }
1580 #2 { #3 : #4 T } { #5 : #6 T }
1581 }
1582 \cs_set:Npn __prg_set_eq_conditional_F_form:wNnnnn #1 \q_stop #2#3#4#5#6
1583 {
1584 __chk_if_exist_cs:c { #5 : #6 F }
1585 #2 { #3 : #4 F } { #5 : #6 F }
1586 }

(End definition for __prg_set_eq_conditional:nnNnnNNw and __prg_set_eq_conditional_loop:nnnnNw.)
All that is left is to define the canonical boolean true and false. I think Michael

originated the idea of expandable boolean tests. At first these were supposed to expand
into either TT or TF to be tested using \if:w but this was later changed to 00 and 01,
so they could be used in logical operations. Later again they were changed to being
numerical constants with values of 1 for true and 0 for false. We need this from the
get-go.

\c_true_bool
\c_false_bool

Here are the canonical boolean values.
1587 \tex_chardef:D \c_true_bool = 1 ~
1588 \tex_chardef:D \c_false_bool = 0 ~

(End definition for \c_true_bool and \c_false_bool. These variables are documented on page 22.)

3.7 Dissecting a control sequence
\cs_to_str:N

__cs_to_str:N
__cs_to_str:w

This converts a control sequence into the character string of its name, removing the
leading escape character. This turns out to be a non-trivial matter as there a different
cases:

• The usual case of a printable escape character;

275

• the case of a non-printable escape characters, e.g., when the value of the
\escapechar is negative;

• when the escape character is a space.

One approach to solve this is to test how many tokens result from \token_to_str:N \a.
If there are two tokens, then the escape character is printable, while if it is non-printable
then only one is present.

However, there is an additional complication: the control sequence itself may start
with a space. Clearly that should not be lost in the process of converting to a string. So
the approach adopted is a little more intricate still. When the escape character is print-
able, \token_to_str:N␣\␣ yields the escape character itself and a space. The character
codes are different, thus the \if:w test is false, and TEX reads __cs_to_str:N after turn-
ing the following control sequence into a string; this auxiliary removes the escape char-
acter, and stops the expansion of the initial \tex_romannumeral:D. The second case is
that the escape character is not printable. Then the \if:w test is unfinished after reading
a the space from \token_to_str:N␣\␣, and the auxiliary __cs_to_str:w is expanded,
feeding - as a second character for the test; the test is false, and TEX skips to \fi:, then
performs \token_to_str:N, and stops the \tex_romannumeral:D with \c_zero. The
last case is that the escape character is itself a space. In this case, the \if:w test is true,
and the auxiliary __cs_to_str:w comes into play, inserting -__int_value:w, which
expands \c_zero to the character 0. The initial \tex_romannumeral:D then sees 0, which
is not a terminated number, followed by the escape character, a space, which is removed,
terminating the expansion of \tex_romannumeral:D. In all three cases, \cs_to_str:N
takes two expansion steps to be fully expanded.

1589 \cs_set_nopar:Npn \cs_to_str:N
1590 {

We implement the expansion scheme using \tex_romannumeral:D terminating it with
\c_zero rather than using \exp:w and \exp_end: as we normally do. The reason is that
the code heavily depends on terminating the expansion with \c_zero so we make this
dependency explicit.

1591 \tex_romannumeral:D
1592 \if:w \token_to_str:N \ __cs_to_str:w \fi:
1593 \exp_after:wN __cs_to_str:N \token_to_str:N
1594 }
1595 \cs_set:Npn __cs_to_str:N #1 { \c_zero }
1596 \cs_set:Npn __cs_to_str:w #1 __cs_to_str:N
1597 { - __int_value:w \fi: \exp_after:wN \c_zero }

(End definition for \cs_to_str:N. This function is documented on page 19.)

__cs_split_function:NN
__cs_split_function_auxi:w
__cs_split_function_auxii:w

This function takes a function name and splits it into name with the escape char removed
and argument specification. In addition to this, a third argument, a boolean 〈true〉 or
〈false〉 is returned with 〈true〉 for when there is a colon in the function and 〈false〉 if there
is not. Lastly, the second argument of __cs_split_function:NN is supposed to be a
function taking three variables, one for name, one for signature, and one for the boolean.

276

For example, __cs_split_function:NN \foo_bar:cnx \use_i:nnn as input becomes
\use_i:nnn {foo_bar} {cnx} \c_true_bool.

We cannot use : directly as it has the wrong category code so an x-type expansion
is used to force the conversion.

First ensure that we actually get a properly evaluated string by expanding \cs_-
to_str:N twice. If the function contained a colon, the auxiliary takes as #1 the function
name, delimited by the first colon, then the signature #2, delimited by \q_mark, then
\c_true_bool as #3, and #4 cleans up until \q_stop. Otherwise, the #1 contains the
function name and \q_mark \c_true_bool, #2 is empty, #3 is \c_false_bool, and #4
cleans up. In both cases, #5 is the 〈processor〉. The second auxiliary trims the trailing
\q_mark from the function name if present (that is, if the original function had no colon).

1598 \cs_set:Npx __cs_split_function:NN #1
1599 {
1600 \exp_not:N \exp_after:wN \exp_not:N \exp_after:wN
1601 \exp_not:N \exp_after:wN \exp_not:N __cs_split_function_auxi:w
1602 \exp_not:N \cs_to_str:N #1 \exp_not:N \q_mark \c_true_bool
1603 \token_to_str:N : \exp_not:N \q_mark \c_false_bool
1604 \exp_not:N \q_stop
1605 }
1606 \use:x
1607 {
1608 \cs_set:Npn \exp_not:N __cs_split_function_auxi:w
1609 ##1 \token_to_str:N : ##2 \exp_not:N \q_mark ##3##4 \exp_not:N \q_stop ##5
1610 }
1611 { __cs_split_function_auxii:w #5 #1 \q_mark \q_stop {#2} #3 }
1612 \cs_set:Npn __cs_split_function_auxii:w #1#2 \q_mark #3 \q_stop
1613 { #1 {#2} }

(End definition for __cs_split_function:NN.)

__cs_get_function_name:N
__cs_get_function_signature:N

Simple wrappers.
1614 \cs_set:Npn __cs_get_function_name:N #1
1615 { __cs_split_function:NN #1 \use_i:nnn }
1616 \cs_set:Npn __cs_get_function_signature:N #1
1617 { __cs_split_function:NN #1 \use_ii:nnn }

(End definition for __cs_get_function_name:N and __cs_get_function_signature:N.)

3.8 Exist or free
A control sequence is said to exist (to be used) if has an entry in the hash table and its
meaning is different from the primitive \relax token. A control sequence is said to be
free (to be defined) if it does not already exist.

\cs_if_exist_p:N
\cs_if_exist_p:c
\cs_if_exist:NTF
\cs_if_exist:cTF

Two versions for checking existence. For the N form we firstly check for \scan_stop: and
then if it is in the hash table. There is no problem when inputting something like \else:
or \fi: as TEX will only ever skip input in case the token tested against is \scan_stop:.

1618 \prg_set_conditional:Npnn \cs_if_exist:N #1 { p , T , F , TF }

277

1619 {
1620 \if_meaning:w #1 \scan_stop:
1621 \prg_return_false:
1622 \else:
1623 \if_cs_exist:N #1
1624 \prg_return_true:
1625 \else:
1626 \prg_return_false:
1627 \fi:
1628 \fi:
1629 }

For the c form we firstly check if it is in the hash table and then for \scan_stop: so
that we do not add it to the hash table unless it was already there. Here we have to be
careful as the text to be skipped if the first test is false may contain tokens that disturb
the scanner. Therefore, we ensure that the second test is performed after the first one
has concluded completely.

1630 \prg_set_conditional:Npnn \cs_if_exist:c #1 { p , T , F , TF }
1631 {
1632 \if_cs_exist:w #1 \cs_end:
1633 \exp_after:wN \use_i:nn
1634 \else:
1635 \exp_after:wN \use_ii:nn
1636 \fi:
1637 {
1638 \exp_after:wN \if_meaning:w \cs:w #1 \cs_end: \scan_stop:
1639 \prg_return_false:
1640 \else:
1641 \prg_return_true:
1642 \fi:
1643 }
1644 \prg_return_false:
1645 }

(End definition for \cs_if_exist:NTF and \cs_if_exist:cTF. These functions are documented on page
23.)

\cs_if_free_p:N
\cs_if_free_p:c
\cs_if_free:NTF
\cs_if_free:cTF

The logical reversal of the above.
1646 \prg_set_conditional:Npnn \cs_if_free:N #1 { p , T , F , TF }
1647 {
1648 \if_meaning:w #1 \scan_stop:
1649 \prg_return_true:
1650 \else:
1651 \if_cs_exist:N #1
1652 \prg_return_false:
1653 \else:
1654 \prg_return_true:
1655 \fi:
1656 \fi:
1657 }

278

1658 \prg_set_conditional:Npnn \cs_if_free:c #1 { p , T , F , TF }
1659 {
1660 \if_cs_exist:w #1 \cs_end:
1661 \exp_after:wN \use_i:nn
1662 \else:
1663 \exp_after:wN \use_ii:nn
1664 \fi:
1665 {
1666 \exp_after:wN \if_meaning:w \cs:w #1 \cs_end: \scan_stop:
1667 \prg_return_true:
1668 \else:
1669 \prg_return_false:
1670 \fi:
1671 }
1672 { \prg_return_true: }
1673 }

(End definition for \cs_if_free:NTF and \cs_if_free:cTF. These functions are documented on page
23.)

\cs_if_exist_use:NTF
\cs_if_exist_use:cTF

\cs_if_exist_use:N
\cs_if_exist_use:c

The \cs_if_exist_use:... functions cannot be implemented as conditionals because
the true branch must leave both the control sequence itself and the true code in the input
stream. For the c variants, we are careful not to put the control sequence in the hash
table if it does not exist.

1674 \cs_set:Npn \cs_if_exist_use:NTF #1#2
1675 { \cs_if_exist:NTF #1 { #1 #2 } }
1676 \cs_set:Npn \cs_if_exist_use:NF #1
1677 { \cs_if_exist:NTF #1 { #1 } }
1678 \cs_set:Npn \cs_if_exist_use:NT #1 #2
1679 { \cs_if_exist:NTF #1 { #1 #2 } { } }
1680 \cs_set:Npn \cs_if_exist_use:N #1
1681 { \cs_if_exist:NTF #1 { #1 } { } }
1682 \cs_set:Npn \cs_if_exist_use:cTF #1#2
1683 { \cs_if_exist:cTF {#1} { \use:c {#1} #2 } }
1684 \cs_set:Npn \cs_if_exist_use:cF #1
1685 { \cs_if_exist:cTF {#1} { \use:c {#1} } }
1686 \cs_set:Npn \cs_if_exist_use:cT #1#2
1687 { \cs_if_exist:cTF {#1} { \use:c {#1} #2 } { } }
1688 \cs_set:Npn \cs_if_exist_use:c #1
1689 { \cs_if_exist:cTF {#1} { \use:c {#1} } { } }

(End definition for \cs_if_exist_use:NTF and \cs_if_exist_use:cTF. These functions are documented
on page 18.)

3.9 Defining and checking (new) functions
We provide two kinds of functions that can be used to define control sequences. On the
one hand we have functions that check if their argument doesn’t already exist, they are
called \..._new. The second type of defining functions doesn’t check if the argument is
already defined.

279

Before we can define them, we need some auxiliary macros that allow us to generate
error messages. The definitions here are only temporary, they will be redefined later on.

\iow_log:x
\iow_term:x

We define a routine to write only to the log file. And a similar one for writing to both
the log file and the terminal. These will be redefined later by l3io.

1690 \cs_set_protected_nopar:Npn \iow_log:x
1691 { \tex_immediate:D \tex_write:D \c_minus_one }
1692 \cs_set_protected_nopar:Npn \iow_term:x
1693 { \tex_immediate:D \tex_write:D \c_sixteen }

(End definition for \iow_log:x and \iow_term:x. These functions are documented on page ??.)

__chk_log:x
__chk_suspend_log:
__chk_resume_log:

This function is used to write some information to the log file in case the log-function
option is set. Otherwise its argument is ignored. Using this function rather than di-
rectly using \iow_log:x allows for __chk_suspend_log: which disables such messages
until the matching __chk_resume_log:. These two commands are used to improve the
logging for complicated datatypes. They should come in pairs, which can be nested.
The function \exp_not:o is defined in l3expan later on but __chk_suspend_log: and
__chk_resume_log: are not used before that point.

1694 〈*initex〉
1695 \cs_set_protected_nopar:Npn __chk_log:x { \use_none:n }
1696 \cs_set_protected_nopar:Npn __chk_suspend_log: { }
1697 \cs_set_protected_nopar:Npn __chk_resume_log: { }
1698 〈/initex〉
1699 〈*package〉
1700 \tex_ifodd:D \l@expl@log@functions@bool
1701 \cs_set_protected_nopar:Npn __chk_log:x { \iow_log:x }
1702 \cs_set_protected_nopar:Npn __chk_suspend_log:
1703 {
1704 \cs_set_protected_nopar:Npx __chk_resume_log:
1705 {
1706 \cs_set_protected_nopar:Npn __chk_resume_log:
1707 { \exp_not:o { __chk_resume_log: } }
1708 \cs_set_protected_nopar:Npn __chk_log:x
1709 { \exp_not:o { __chk_log:x } }
1710 }
1711 \cs_set_protected_nopar:Npn __chk_log:x { \use_none:n }
1712 }
1713 \cs_set_protected_nopar:Npn __chk_resume_log: { }
1714 \else:
1715 \cs_set_protected_nopar:Npn __chk_log:x { \use_none:n }
1716 \cs_set_protected_nopar:Npn __chk_suspend_log: { }
1717 \cs_set_protected_nopar:Npn __chk_resume_log: { }
1718 \fi:
1719 〈/package〉

(End definition for __chk_log:x , __chk_suspend_log: , and __chk_resume_log:.)

280

__msg_kernel_error:nnxx
__msg_kernel_error:nnx
__msg_kernel_error:nn

If an internal error occurs before LATEX3 has loaded l3msg then the code should issue a
usable if terse error message and halt. This can only happen if a coding error is made by
the team, so this is a reasonable response. Setting the \newlinechar is needed, to turn
^^J into a proper line break in plain TEX.

1720 \cs_set_protected:Npn __msg_kernel_error:nnxx #1#2#3#4
1721 {
1722 \tex_newlinechar:D = ‘\^^J \tex_relax:D
1723 \tex_errmessage:D
1724 {
1725 !!!~! ^^J
1726 Argh,~internal~LaTeX3~error! ^^J ^^J
1727 Module ~ #1 , ~ message~name~"#2": ^^J
1728 Arguments~’#3’~and~’#4’ ^^J ^^J
1729 This~is~one~for~The~LaTeX3~Project:~bailing~out
1730 }
1731 \tex_end:D
1732 }
1733 \cs_set_protected:Npn __msg_kernel_error:nnx #1#2#3
1734 { __msg_kernel_error:nnxx {#1} {#2} {#3} { } }
1735 \cs_set_protected:Npn __msg_kernel_error:nn #1#2
1736 { __msg_kernel_error:nnxx {#1} {#2} { } { } }

(End definition for __msg_kernel_error:nnxx , __msg_kernel_error:nnx , and __msg_kernel_error:nn.)

\msg_line_context: Another one from l3msg which will be altered later.
1737 \cs_set_nopar:Npn \msg_line_context:
1738 { on~line~ \tex_the:D \tex_inputlineno:D }

(End definition for \msg_line_context:. This function is documented on page 161.)

__chk_if_free_cs:N
__chk_if_free_cs:c

This command is called by \cs_new_nopar:Npn and \cs_new_eq:NN etc. to make sure
that the argument sequence is not already in use. If it is, an error is signalled. It checks
if 〈csname〉 is undefined or \scan_stop:. Otherwise an error message is issued. We have
to make sure we don’t put the argument into the conditional processing since it may be
an \if... type function!

1739 \cs_set_protected:Npn __chk_if_free_cs:N #1
1740 {
1741 \cs_if_free:NF #1
1742 {
1743 __msg_kernel_error:nnxx { kernel } { command-already-defined }
1744 { \token_to_str:N #1 } { \token_to_meaning:N #1 }
1745 }
1746 }
1747 〈*package〉
1748 \tex_ifodd:D \l@expl@log@functions@bool
1749 \cs_set_protected:Npn __chk_if_free_cs:N #1
1750 {
1751 \cs_if_free:NF #1
1752 {

281

1753 __msg_kernel_error:nnxx { kernel } { command-already-defined }
1754 { \token_to_str:N #1 } { \token_to_meaning:N #1 }
1755 }
1756 __chk_log:x { Defining~\token_to_str:N #1~ \msg_line_context: }
1757 }
1758 \fi:
1759 〈/package〉
1760 \cs_set_protected_nopar:Npn __chk_if_free_cs:c
1761 { \exp_args:Nc __chk_if_free_cs:N }

(End definition for __chk_if_free_cs:N and __chk_if_free_cs:c.)

__chk_if_exist_var:N Create the checking function for variable definitions when the option is set.
1762 〈*package〉
1763 \tex_ifodd:D \l@expl@check@declarations@bool
1764 \cs_set_protected:Npn __chk_if_exist_var:N #1
1765 {
1766 \cs_if_exist:NF #1
1767 {
1768 __msg_kernel_error:nnx { check } { non-declared-variable }
1769 { \token_to_str:N #1 }
1770 }
1771 }
1772 \fi:
1773 〈/package〉

(End definition for __chk_if_exist_var:N.)

__chk_if_exist_cs:N
__chk_if_exist_cs:c

This function issues an error message when the control sequence in its argument does
not exist.

1774 \cs_set_protected:Npn __chk_if_exist_cs:N #1
1775 {
1776 \cs_if_exist:NF #1
1777 {
1778 __msg_kernel_error:nnx { kernel } { command-not-defined }
1779 { \token_to_str:N #1 }
1780 }
1781 }
1782 \cs_set_protected_nopar:Npn __chk_if_exist_cs:c
1783 { \exp_args:Nc __chk_if_exist_cs:N }

(End definition for __chk_if_exist_cs:N and __chk_if_exist_cs:c.)

3.10 More new definitions
\cs_new_nopar:Npn
\cs_new_nopar:Npx

\cs_new:Npn
\cs_new:Npx

\cs_new_protected_nopar:Npn
\cs_new_protected_nopar:Npx

\cs_new_protected:Npn
\cs_new_protected:Npx

__cs_tmp:w

Function which check that the control sequence is free before defining it.
1784 \cs_set:Npn __cs_tmp:w #1#2
1785 {
1786 \cs_set_protected:Npn #1 ##1
1787 {

282

1788 __chk_if_free_cs:N ##1
1789 #2 ##1
1790 }
1791 }
1792 __cs_tmp:w \cs_new_nopar:Npn \cs_gset_nopar:Npn
1793 __cs_tmp:w \cs_new_nopar:Npx \cs_gset_nopar:Npx
1794 __cs_tmp:w \cs_new:Npn \cs_gset:Npn
1795 __cs_tmp:w \cs_new:Npx \cs_gset:Npx
1796 __cs_tmp:w \cs_new_protected_nopar:Npn \cs_gset_protected_nopar:Npn
1797 __cs_tmp:w \cs_new_protected_nopar:Npx \cs_gset_protected_nopar:Npx
1798 __cs_tmp:w \cs_new_protected:Npn \cs_gset_protected:Npn
1799 __cs_tmp:w \cs_new_protected:Npx \cs_gset_protected:Npx

(End definition for \cs_new_nopar:Npn and others. These functions are documented on page 12.)

\cs_set_nopar:cpn
\cs_set_nopar:cpx
\cs_gset_nopar:cpn
\cs_gset_nopar:cpx
\cs_new_nopar:cpn
\cs_new_nopar:cpx

Like \cs_set_nopar:Npn and \cs_new_nopar:Npn, except that the first argument con-
sists of the sequence of characters that should be used to form the name of the desired
control sequence (the c stands for csname argument, see the expansion module). Global
versions are also provided.

\cs_set_nopar:cpn〈string〉〈rep-text〉 will turn 〈string〉 into a csname and then as-
sign 〈rep-text〉 to it by using \cs_set_nopar:Npn. This means that there might be a
parameter string between the two arguments.

1800 \cs_set:Npn __cs_tmp:w #1#2
1801 { \cs_new_protected_nopar:Npn #1 { \exp_args:Nc #2 } }
1802 __cs_tmp:w \cs_set_nopar:cpn \cs_set_nopar:Npn
1803 __cs_tmp:w \cs_set_nopar:cpx \cs_set_nopar:Npx
1804 __cs_tmp:w \cs_gset_nopar:cpn \cs_gset_nopar:Npn
1805 __cs_tmp:w \cs_gset_nopar:cpx \cs_gset_nopar:Npx
1806 __cs_tmp:w \cs_new_nopar:cpn \cs_new_nopar:Npn
1807 __cs_tmp:w \cs_new_nopar:cpx \cs_new_nopar:Npx

(End definition for \cs_set_nopar:cpn and others. These functions are documented on page ??.)

\cs_set:cpn
\cs_set:cpx
\cs_gset:cpn
\cs_gset:cpx
\cs_new:cpn
\cs_new:cpx

Variants of the \cs_set:Npn versions which make a csname out of the first arguments.
We may also do this globally.

1808 __cs_tmp:w \cs_set:cpn \cs_set:Npn
1809 __cs_tmp:w \cs_set:cpx \cs_set:Npx
1810 __cs_tmp:w \cs_gset:cpn \cs_gset:Npn
1811 __cs_tmp:w \cs_gset:cpx \cs_gset:Npx
1812 __cs_tmp:w \cs_new:cpn \cs_new:Npn
1813 __cs_tmp:w \cs_new:cpx \cs_new:Npx

(End definition for \cs_set:cpn and others. These functions are documented on page ??.)

\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:cpx
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:cpx
\cs_new_protected_nopar:cpn
\cs_new_protected_nopar:cpx

Variants of the \cs_set_protected_nopar:Npn versions which make a csname out of
the first arguments. We may also do this globally.

1814 __cs_tmp:w \cs_set_protected_nopar:cpn \cs_set_protected_nopar:Npn
1815 __cs_tmp:w \cs_set_protected_nopar:cpx \cs_set_protected_nopar:Npx
1816 __cs_tmp:w \cs_gset_protected_nopar:cpn \cs_gset_protected_nopar:Npn
1817 __cs_tmp:w \cs_gset_protected_nopar:cpx \cs_gset_protected_nopar:Npx

283

1818 __cs_tmp:w \cs_new_protected_nopar:cpn \cs_new_protected_nopar:Npn
1819 __cs_tmp:w \cs_new_protected_nopar:cpx \cs_new_protected_nopar:Npx

(End definition for \cs_set_protected_nopar:cpn and others. These functions are documented on page
??.)

\cs_set_protected:cpn
\cs_set_protected:cpx
\cs_gset_protected:cpn
\cs_gset_protected:cpx
\cs_new_protected:cpn
\cs_new_protected:cpx

Variants of the \cs_set_protected:Npn versions which make a csname out of the first
arguments. We may also do this globally.

1820 __cs_tmp:w \cs_set_protected:cpn \cs_set_protected:Npn
1821 __cs_tmp:w \cs_set_protected:cpx \cs_set_protected:Npx
1822 __cs_tmp:w \cs_gset_protected:cpn \cs_gset_protected:Npn
1823 __cs_tmp:w \cs_gset_protected:cpx \cs_gset_protected:Npx
1824 __cs_tmp:w \cs_new_protected:cpn \cs_new_protected:Npn
1825 __cs_tmp:w \cs_new_protected:cpx \cs_new_protected:Npx

(End definition for \cs_set_protected:cpn and others. These functions are documented on page ??.)

3.11 Copying definitions
\cs_set_eq:NN
\cs_set_eq:cN
\cs_set_eq:Nc
\cs_set_eq:cc
\cs_gset_eq:NN
\cs_gset_eq:cN
\cs_gset_eq:Nc
\cs_gset_eq:cc
\cs_new_eq:NN
\cs_new_eq:cN
\cs_new_eq:Nc
\cs_new_eq:cc

These macros allow us to copy the definition of a control sequence to another control
sequence.

The = sign allows us to define funny char tokens like = itself or ␣ with this function.
For the definition of \c_space_char{~} to work we need the ~ after the =.

\cs_set_eq:NN is long to avoid problems with a literal argument of \par. While
\cs_new_eq:NN will probably never be correct with a first argument of \par, define it
long in order to throw an “already defined” error rather than “runaway argument”.

1826 \cs_new_protected:Npn \cs_set_eq:NN #1 { \tex_let:D #1 =~ }
1827 \cs_new_protected_nopar:Npn \cs_set_eq:cN { \exp_args:Nc \cs_set_eq:NN }
1828 \cs_new_protected_nopar:Npn \cs_set_eq:Nc { \exp_args:NNc \cs_set_eq:NN }
1829 \cs_new_protected_nopar:Npn \cs_set_eq:cc { \exp_args:Ncc \cs_set_eq:NN }
1830 \cs_new_protected_nopar:Npn \cs_gset_eq:NN { \tex_global:D \cs_set_eq:NN }
1831 \cs_new_protected_nopar:Npn \cs_gset_eq:Nc { \exp_args:NNc \cs_gset_eq:NN }
1832 \cs_new_protected_nopar:Npn \cs_gset_eq:cN { \exp_args:Nc \cs_gset_eq:NN }
1833 \cs_new_protected_nopar:Npn \cs_gset_eq:cc { \exp_args:Ncc \cs_gset_eq:NN }
1834 \cs_new_protected:Npn \cs_new_eq:NN #1
1835 {
1836 __chk_if_free_cs:N #1
1837 \tex_global:D \cs_set_eq:NN #1
1838 }
1839 \cs_new_protected_nopar:Npn \cs_new_eq:cN { \exp_args:Nc \cs_new_eq:NN }
1840 \cs_new_protected_nopar:Npn \cs_new_eq:Nc { \exp_args:NNc \cs_new_eq:NN }
1841 \cs_new_protected_nopar:Npn \cs_new_eq:cc { \exp_args:Ncc \cs_new_eq:NN }

(End definition for \cs_set_eq:NN and others. These functions are documented on page 17.)

284

3.12 Undefining functions
\cs_undefine:N
\cs_undefine:c

The following function is used to free the main memory from the definition of some
function that isn’t in use any longer. The c variant is careful not to add the control
sequence to the hash table if it isn’t there yet, and it also avoids nesting TEX conditionals
in case #1 is unbalanced in this matter.

1842 \cs_new_protected:Npn \cs_undefine:N #1
1843 { \cs_gset_eq:NN #1 \tex_undefined:D }
1844 \cs_new_protected:Npn \cs_undefine:c #1
1845 {
1846 \if_cs_exist:w #1 \cs_end:
1847 \exp_after:wN \use:n
1848 \else:
1849 \exp_after:wN \use_none:n
1850 \fi:
1851 { \cs_gset_eq:cN {#1} \tex_undefined:D }
1852 }

(End definition for \cs_undefine:N and \cs_undefine:c. These functions are documented on page 17.)

3.13 Generating parameter text from argument count
__cs_parm_from_arg_count:nnF

__cs_parm_from_arg_count_test:nnF
LATEX3 provides shorthands to define control sequences and conditionals with a simple
parameter text, derived directly from the signature, or more generally from knowing the
number of arguments, between 0 and 9. This function expands to its first argument,
untouched, followed by a brace group containing the parameter text {#1. . . #n}, where
n is the result of evaluating the second argument (as described in \int_eval:n). If the
second argument gives a result outside the range [0, 9], the third argument is returned
instead, normally an error message. Some of the functions use here are not defined yet,
but will be defined before this function is called.

1853 \cs_set_protected:Npn __cs_parm_from_arg_count:nnF #1#2
1854 {
1855 \exp_args:Nx __cs_parm_from_arg_count_test:nnF
1856 {
1857 \exp_after:wN \exp_not:n
1858 \if_case:w __int_eval:w #2 __int_eval_end:
1859 { }
1860 \or: { ##1 }
1861 \or: { ##1##2 }
1862 \or: { ##1##2##3 }
1863 \or: { ##1##2##3##4 }
1864 \or: { ##1##2##3##4##5 }
1865 \or: { ##1##2##3##4##5##6 }
1866 \or: { ##1##2##3##4##5##6##7 }
1867 \or: { ##1##2##3##4##5##6##7##8 }
1868 \or: { ##1##2##3##4##5##6##7##8##9 }
1869 \else: { \c_false_bool }
1870 \fi:
1871 }

285

1872 {#1}
1873 }
1874 \cs_set_protected:Npn __cs_parm_from_arg_count_test:nnF #1#2
1875 {
1876 \if_meaning:w \c_false_bool #1
1877 \exp_after:wN \use_ii:nn
1878 \else:
1879 \exp_after:wN \use_i:nn
1880 \fi:
1881 { #2 {#1} }
1882 }

(End definition for __cs_parm_from_arg_count:nnF.)

3.14 Defining functions from a given number of arguments
__cs_count_signature:N
__cs_count_signature:c

__cs_count_signature:nnN

Counting the number of tokens in the signature, i.e., the number of arguments the func-
tion should take. Since this is not used in any time-critical function, we simply use
\tl_count:n if there is a signature, otherwise −1 arguments to signal an error. We need
a variant form right away.

1883 \cs_new:Npn __cs_count_signature:N #1
1884 { \int_eval:n { __cs_split_function:NN #1 __cs_count_signature:nnN } }
1885 \cs_new:Npn __cs_count_signature:nnN #1#2#3
1886 {
1887 \if_meaning:w \c_true_bool #3
1888 \tl_count:n {#2}
1889 \else:
1890 \c_minus_one
1891 \fi:
1892 }
1893 \cs_new_nopar:Npn __cs_count_signature:c
1894 { \exp_args:Nc __cs_count_signature:N }

(End definition for __cs_count_signature:N and __cs_count_signature:c.)

\cs_generate_from_arg_count:NNnn
\cs_generate_from_arg_count:cNnn
\cs_generate_from_arg_count:Ncnn

We provide a constructor function for defining functions with a given number of argu-
ments. For this we need to choose the correct parameter text and then use that when
defining. Since TEX supports from zero to nine arguments, we use a simple switch to
choose the correct parameter text, ensuring the result is returned after finishing the
conditional. If it is not between zero and nine, we throw an error.

1: function to define, 2: with what to define it, 3: the number of args it requires and
4: the replacement text

1895 \cs_new_protected:Npn \cs_generate_from_arg_count:NNnn #1#2#3#4
1896 {
1897 __cs_parm_from_arg_count:nnF { \use:nnn #2 #1 } {#3}
1898 {
1899 __msg_kernel_error:nnxx { kernel } { bad-number-of-arguments }
1900 { \token_to_str:N #1 } { \int_eval:n {#3} }
1901 \use_none:n

286

1902 }
1903 {#4}
1904 }

A variant form we need right away, plus one which is used elsewhere but which is most
logically created here.

1905 \cs_new_protected_nopar:Npn \cs_generate_from_arg_count:cNnn
1906 { \exp_args:Nc \cs_generate_from_arg_count:NNnn }
1907 \cs_new_protected_nopar:Npn \cs_generate_from_arg_count:Ncnn
1908 { \exp_args:NNc \cs_generate_from_arg_count:NNnn }

(End definition for \cs_generate_from_arg_count:NNnn , \cs_generate_from_arg_count:cNnn , and
\cs_generate_from_arg_count:Ncnn. These functions are documented on page 16.)

3.15 Using the signature to define functions
We can now combine some of the tools we have to provide a simple interface for defining
functions, where the number of arguments is read from the signature. For instance,
\cs_set:Nn \foo_bar:nn {#1,#2}.

\cs_set:Nn
\cs_set:Nx

\cs_set_nopar:Nn
\cs_set_nopar:Nx

\cs_set_protected:Nn
\cs_set_protected:Nx

\cs_set_protected_nopar:Nn
\cs_set_protected_nopar:Nx

\cs_gset:Nn
\cs_gset:Nx

\cs_gset_nopar:Nn
\cs_gset_nopar:Nx

\cs_gset_protected:Nn
\cs_gset_protected:Nx

\cs_gset_protected_nopar:Nn
\cs_gset_protected_nopar:Nx

\cs_new:Nn
\cs_new:Nx

\cs_new_nopar:Nn
\cs_new_nopar:Nx

\cs_new_protected:Nn
\cs_new_protected:Nx

\cs_new_protected_nopar:Nn
\cs_new_protected_nopar:Nx

We want to define \cs_set:Nn as

\cs_set_protected:Npn \cs_set:Nn #1#2
{
\cs_generate_from_arg_count:NNnn #1 \cs_set:Npn
{ __cs_count_signature:N #1 } {#2}

}

In short, to define \cs_set:Nn we need just use \cs_set:Npn, everything else is the same
for each variant. Therefore, we can make it simpler by temporarily defining a function
to do this for us.

1909 \cs_set:Npn __cs_tmp:w #1#2#3
1910 {
1911 \cs_new_protected_nopar:cpx { cs_ #1 : #2 }
1912 {
1913 \exp_not:N __cs_generate_from_signature:NNn
1914 \exp_after:wN \exp_not:N \cs:w cs_ #1 : #3 \cs_end:
1915 }
1916 }
1917 \cs_new_protected:Npn __cs_generate_from_signature:NNn #1#2
1918 {
1919 __cs_split_function:NN #2 __cs_generate_from_signature:nnNNNn
1920 #1 #2
1921 }
1922 \cs_new_protected:Npn __cs_generate_from_signature:nnNNNn #1#2#3#4#5#6
1923 {
1924 \bool_if:NTF #3
1925 {
1926 \cs_generate_from_arg_count:NNnn
1927 #5 #4 { \tl_count:n {#2} } {#6}

287

1928 }
1929 {
1930 __msg_kernel_error:nnx { kernel } { missing-colon }
1931 { \token_to_str:N #5 }
1932 }
1933 }

Then we define the 24 variants beginning with N.
1934 __cs_tmp:w { set } { Nn } { Npn }
1935 __cs_tmp:w { set } { Nx } { Npx }
1936 __cs_tmp:w { set_nopar } { Nn } { Npn }
1937 __cs_tmp:w { set_nopar } { Nx } { Npx }
1938 __cs_tmp:w { set_protected } { Nn } { Npn }
1939 __cs_tmp:w { set_protected } { Nx } { Npx }
1940 __cs_tmp:w { set_protected_nopar } { Nn } { Npn }
1941 __cs_tmp:w { set_protected_nopar } { Nx } { Npx }
1942 __cs_tmp:w { gset } { Nn } { Npn }
1943 __cs_tmp:w { gset } { Nx } { Npx }
1944 __cs_tmp:w { gset_nopar } { Nn } { Npn }
1945 __cs_tmp:w { gset_nopar } { Nx } { Npx }
1946 __cs_tmp:w { gset_protected } { Nn } { Npn }
1947 __cs_tmp:w { gset_protected } { Nx } { Npx }
1948 __cs_tmp:w { gset_protected_nopar } { Nn } { Npn }
1949 __cs_tmp:w { gset_protected_nopar } { Nx } { Npx }
1950 __cs_tmp:w { new } { Nn } { Npn }
1951 __cs_tmp:w { new } { Nx } { Npx }
1952 __cs_tmp:w { new_nopar } { Nn } { Npn }
1953 __cs_tmp:w { new_nopar } { Nx } { Npx }
1954 __cs_tmp:w { new_protected } { Nn } { Npn }
1955 __cs_tmp:w { new_protected } { Nx } { Npx }
1956 __cs_tmp:w { new_protected_nopar } { Nn } { Npn }
1957 __cs_tmp:w { new_protected_nopar } { Nx } { Npx }

(End definition for \cs_set:Nn and others. These functions are documented on page 15.)

\cs_set:cn
\cs_set:cx

\cs_set_nopar:cn
\cs_set_nopar:cx

\cs_set_protected:cn
\cs_set_protected:cx

\cs_set_protected_nopar:cn
\cs_set_protected_nopar:cx

\cs_gset:cn
\cs_gset:cx

\cs_gset_nopar:cn
\cs_gset_nopar:cx

\cs_gset_protected:cn
\cs_gset_protected:cx

\cs_gset_protected_nopar:cn
\cs_gset_protected_nopar:cx

\cs_new:cn
\cs_new:cx

\cs_new_nopar:cn
\cs_new_nopar:cx

\cs_new_protected:cn
\cs_new_protected:cx

\cs_new_protected_nopar:cn
\cs_new_protected_nopar:cx

The 24 c variants simply use \exp_args:Nc.
1958 \cs_set:Npn __cs_tmp:w #1#2
1959 {
1960 \cs_new_protected_nopar:cpx { cs_ #1 : c #2 }
1961 {
1962 \exp_not:N \exp_args:Nc
1963 \exp_after:wN \exp_not:N \cs:w cs_ #1 : N #2 \cs_end:
1964 }
1965 }
1966 __cs_tmp:w { set } { n }
1967 __cs_tmp:w { set } { x }
1968 __cs_tmp:w { set_nopar } { n }
1969 __cs_tmp:w { set_nopar } { x }
1970 __cs_tmp:w { set_protected } { n }
1971 __cs_tmp:w { set_protected } { x }

288

1972 __cs_tmp:w { set_protected_nopar } { n }
1973 __cs_tmp:w { set_protected_nopar } { x }
1974 __cs_tmp:w { gset } { n }
1975 __cs_tmp:w { gset } { x }
1976 __cs_tmp:w { gset_nopar } { n }
1977 __cs_tmp:w { gset_nopar } { x }
1978 __cs_tmp:w { gset_protected } { n }
1979 __cs_tmp:w { gset_protected } { x }
1980 __cs_tmp:w { gset_protected_nopar } { n }
1981 __cs_tmp:w { gset_protected_nopar } { x }
1982 __cs_tmp:w { new } { n }
1983 __cs_tmp:w { new } { x }
1984 __cs_tmp:w { new_nopar } { n }
1985 __cs_tmp:w { new_nopar } { x }
1986 __cs_tmp:w { new_protected } { n }
1987 __cs_tmp:w { new_protected } { x }
1988 __cs_tmp:w { new_protected_nopar } { n }
1989 __cs_tmp:w { new_protected_nopar } { x }

(End definition for \cs_set:cn and others. These functions are documented on page ??.)

3.16 Checking control sequence equality
\cs_if_eq_p:NN
\cs_if_eq_p:cN
\cs_if_eq_p:Nc
\cs_if_eq_p:cc
\cs_if_eq:NNTF
\cs_if_eq:cNTF
\cs_if_eq:NcTF
\cs_if_eq:ccTF

Check if two control sequences are identical.
1990 \prg_new_conditional:Npnn \cs_if_eq:NN #1#2 { p , T , F , TF }
1991 {
1992 \if_meaning:w #1#2
1993 \prg_return_true: \else: \prg_return_false: \fi:
1994 }
1995 \cs_new_nopar:Npn \cs_if_eq_p:cN { \exp_args:Nc \cs_if_eq_p:NN }
1996 \cs_new_nopar:Npn \cs_if_eq:cNTF { \exp_args:Nc \cs_if_eq:NNTF }
1997 \cs_new_nopar:Npn \cs_if_eq:cNT { \exp_args:Nc \cs_if_eq:NNT }
1998 \cs_new_nopar:Npn \cs_if_eq:cNF { \exp_args:Nc \cs_if_eq:NNF }
1999 \cs_new_nopar:Npn \cs_if_eq_p:Nc { \exp_args:NNc \cs_if_eq_p:NN }
2000 \cs_new_nopar:Npn \cs_if_eq:NcTF { \exp_args:NNc \cs_if_eq:NNTF }
2001 \cs_new_nopar:Npn \cs_if_eq:NcT { \exp_args:NNc \cs_if_eq:NNT }
2002 \cs_new_nopar:Npn \cs_if_eq:NcF { \exp_args:NNc \cs_if_eq:NNF }
2003 \cs_new_nopar:Npn \cs_if_eq_p:cc { \exp_args:Ncc \cs_if_eq_p:NN }
2004 \cs_new_nopar:Npn \cs_if_eq:ccTF { \exp_args:Ncc \cs_if_eq:NNTF }
2005 \cs_new_nopar:Npn \cs_if_eq:ccT { \exp_args:Ncc \cs_if_eq:NNT }
2006 \cs_new_nopar:Npn \cs_if_eq:ccF { \exp_args:Ncc \cs_if_eq:NNF }

(End definition for \cs_if_eq:NNTF and others. These functions are documented on page 23.)

3.17 Diagnostic functions
__kernel_register_show:N
__kernel_register_show:c

Simply using the \showthe primitive does not allow for line-wrapping, so instead use __-
msg_show_variable:NNNnn (defined in l3msg). This checks that the variable exists (using
\cs_if_exist:NTF), then displays the third argument, namely >~〈variable〉=〈value〉.

289

2007 \cs_new_protected:Npn __kernel_register_show:N #1
2008 {
2009 __msg_show_variable:NNNnn #1 \cs_if_exist:NTF ? { }
2010 { > ~ \token_to_str:N #1 = \tex_the:D #1 }
2011 }
2012 \cs_new_protected_nopar:Npn __kernel_register_show:c
2013 { \exp_args:Nc __kernel_register_show:N }

(End definition for __kernel_register_show:N and __kernel_register_show:c.)

\cs_show:N
\cs_show:c

Some control sequences have a very long name or meaning. Thus, simply using TEX’s
primitive \show could lead to overlong lines. The output of this primitive is mimicked
to some extent, then the re-built string is given to \iow_wrap:nnnN for line-wrapping.
The \cs_show:c command converts its argument to a control sequence within a group
to avoid showing \relax for undefined control sequences.

2014 \cs_new_protected:Npn \cs_show:N #1
2015 { __msg_show_wrap:n { > ~ \token_to_str:N #1 = \cs_meaning:N #1 } }
2016 \cs_new_protected_nopar:Npn \cs_show:c
2017 { \group_begin: \exp_args:NNc \group_end: \cs_show:N }

(End definition for \cs_show:N and \cs_show:c. These functions are documented on page 17.)

3.18 Doing nothing functions
\prg_do_nothing: This does not fit anywhere else!

2018 \cs_new_nopar:Npn \prg_do_nothing: { }

(End definition for \prg_do_nothing:. This function is documented on page 10.)

3.19 Breaking out of mapping functions
__prg_break_point:Nn

__prg_map_break:Nn
In inline mappings, the nesting level must be reset at the end of the mapping, even when
the user decides to break out. This is done by putting the code that must be performed
as an argument of __prg_break_point:Nn. The breaking functions are then defined to
jump to that point and perform the argument of __prg_break_point:Nn, before the
user’s code (if any). There is a check that we close the correct loop, otherwise we continue
breaking.

2019 \cs_new_eq:NN __prg_break_point:Nn \use_ii:nn
2020 \cs_new:Npn __prg_map_break:Nn #1#2#3 __prg_break_point:Nn #4#5
2021 {
2022 #5
2023 \if_meaning:w #1 #4
2024 \exp_after:wN \use_iii:nnn
2025 \fi:
2026 __prg_map_break:Nn #1 {#2}
2027 }

(End definition for __prg_break_point:Nn and __prg_map_break:Nn. These functions are documented
on page 44.)

290

__prg_break_point:
__prg_break:
__prg_break:n

Very simple analogues of __prg_break_point:Nn and __prg_map_break:Nn, for use
in fast short-term recursions which are not mappings, do not need to support nesting,
and in which nothing has to be done at the end of the loop.

2028 \cs_new_eq:NN __prg_break_point: \prg_do_nothing:
2029 \cs_new:Npn __prg_break: #1 __prg_break_point: { }
2030 \cs_new:Npn __prg_break:n #1#2 __prg_break_point: {#1}

(End definition for __prg_break_point:. This function is documented on page 45.)

2031 〈/initex | package〉

4 l3expan implementation
2032 〈*initex | package〉

2033 〈@@=exp〉

\exp_after:wN
\exp_not:N
\exp_not:n

These are defined in l3basics.

(End definition for \exp_after:wN. This function is documented on page 32.)

4.1 General expansion
In this section a general mechanism for defining functions to handle argument handling is
defined. These general expansion functions are expandable unless x is used. (Any version
of x is going to have to use one of the LATEX3 names for \cs_set_nopar:Npx at some
point, and so is never going to be expandable.)

The definition of expansion functions with this technique happens in section 4.3. In
section 4.2 some common cases are coded by a more direct method for efficiency, typically
using calls to \exp_after:wN.

\l__exp_internal_tl This scratch token list variable is defined in l3basics, as it is needed “early”. This is just
a reminder that is the case!

(End definition for \l__exp_internal_tl. This variable is documented on page 35.)
This code uses internal functions with names that start with \:: to perform the

expansions. All macros are long as this turned out to be desirable since the tokens
undergoing expansion may be arbitrary user input.

An argument manipulator \::〈Z 〉 always has signature #1\:::#2#3 where #1 holds
the remaining argument manipulations to be performed, \::: serves as an end marker
for the list of manipulations, #2 is the carried over result of the previous expansion steps
and #3 is the argument about to be processed. One exception to this rule is \::p, which
has to grab an argument delimited by a left brace.

__exp_arg_next:nnn
__exp_arg_next:Nnn

#1 is the result of an expansion step, #2 is the remaining argument manipulations and #3
is the current result of the expansion chain. This auxiliary function moves #1 back after
#3 in the input stream and checks if any expansion is left to be done by calling #2. In
by far the most cases we will require to add a set of braces to the result of an argument

291

manipulation so it is more effective to do it directly here. Actually, so far only the c of
the final argument manipulation variants does not require a set of braces.

2034 \cs_new:Npn __exp_arg_next:nnn #1#2#3 { #2 \::: { #3 {#1} } }
2035 \cs_new:Npn __exp_arg_next:Nnn #1#2#3 { #2 \::: { #3 #1 } }

(End definition for __exp_arg_next:nnn.)

\::: The end marker is just another name for the identity function.
2036 \cs_new:Npn \::: #1 {#1}

(End definition for \:::.)

\::n This function is used to skip an argument that doesn’t need to be expanded.
2037 \cs_new:Npn \::n #1 \::: #2#3 { #1 \::: { #2 {#3} } }

(End definition for \::n.)

\::N This function is used to skip an argument that consists of a single token and doesn’t need
to be expanded.

2038 \cs_new:Npn \::N #1 \::: #2#3 { #1 \::: {#2#3} }

(End definition for \::N.)

\::p This function is used to skip an argument that is delimited by a left brace and doesn’t
need to be expanded. It should not be wrapped in braces in the result.

2039 \cs_new:Npn \::p #1 \::: #2#3# { #1 \::: {#2#3} }

(End definition for \::p.)

\::c This function is used to skip an argument that is turned into a control sequence without
expansion.

2040 \cs_new:Npn \::c #1 \::: #2#3
2041 { \exp_after:wN __exp_arg_next:Nnn \cs:w #3 \cs_end: {#1} {#2} }

(End definition for \::c.)

\::o This function is used to expand an argument once.
2042 \cs_new:Npn \::o #1 \::: #2#3
2043 { \exp_after:wN __exp_arg_next:nnn \exp_after:wN {#3} {#1} {#2} }

(End definition for \::o.)

\::f
\exp_stop_f:

This function is used to expand a token list until the first unexpandable token is
found. This is achieved through \exp:w \exp_end_continue_f:w that expands ev-
erything in its way following it. This scanning procedure is terminated once the ex-
pansion hits something non-expandable or a space. We introduce \exp_stop_f: to
mark such an end of expansion marker. In the example shown earlier the scanning was
stopped once TEX had fully expanded \cs_set_eq:Nc \aaa { b \l_tmpa_tl b } into
\cs_set_eq:NN \aaa = \blurb which then turned out to contain the non-expandable
token \cs_set_eq:NN. Since the expansion of \exp:w \exp_end_continue_f:w is 〈null〉,

292

we wind up with a fully expanded list, only TEX has not tried to execute any of the non-
expandable tokens. This is what differentiates this function from the x argument type.

2044 \cs_new:Npn \::f #1 \::: #2#3
2045 {
2046 \exp_after:wN __exp_arg_next:nnn
2047 \exp_after:wN { \exp:w \exp_end_continue_f:w #3 }
2048 {#1} {#2}
2049 }
2050 \use:nn { \cs_new_eq:NN \exp_stop_f: } { ~ }

(End definition for \::f.)

\::x This function is used to expand an argument fully.
2051 \cs_new_protected:Npn \::x #1 \::: #2#3
2052 {
2053 \cs_set_nopar:Npx \l__exp_internal_tl { {#3} }
2054 \exp_after:wN __exp_arg_next:nnn \l__exp_internal_tl {#1} {#2}
2055 }

(End definition for \::x.)

\::v
\::V

These functions return the value of a register, i.e., one of tl, clist, int, skip, dim and
muskip. The V version expects a single token whereas v like c creates a csname from its
argument given in braces and then evaluates it as if it was a V. The \exp:w sets off an
expansion similar to an f type expansion, which we will terminate using \exp_end:. The
argument is returned in braces.

2056 \cs_new:Npn \::V #1 \::: #2#3
2057 {
2058 \exp_after:wN __exp_arg_next:nnn
2059 \exp_after:wN { \exp:w __exp_eval_register:N #3 }
2060 {#1} {#2}
2061 }
2062 \cs_new:Npn \::v # 1\::: #2#3
2063 {
2064 \exp_after:wN __exp_arg_next:nnn
2065 \exp_after:wN { \exp:w __exp_eval_register:c {#3} }
2066 {#1} {#2}
2067 }

(End definition for \::v.)

__exp_eval_register:N
__exp_eval_register:c

__exp_eval_error_msg:w

This function evaluates a register. Now a register might exist as one of two things: A
parameter-less macro or a built-in TEX register such as \count. For the TEX registers we
have to utilize a \the whereas for the macros we merely have to expand them once. The
trick is to find out when to use \the and when not to. What we do here is try to find
out whether the token will expand to something else when hit with \exp_after:wN. The
technique is to compare the meaning of the register in question when it has been prefixed
with \exp_not:N and the register itself. If it is a macro, the prefixed \exp_not:N will
temporarily turn it into the primitive \scan_stop:.

293

2068 \cs_new:Npn __exp_eval_register:N #1
2069 {
2070 \exp_after:wN \if_meaning:w \exp_not:N #1 #1

If the token was not a macro it may be a malformed variable from a c expansion in which
case it is equal to the primitive \scan_stop:. In that case we throw an error. We could
let TEX do it for us but that would result in the rather obscure

! You can’t use ‘\relax’ after \the.

which while quite true doesn’t give many hints as to what actually went wrong. We
provide something more sensible.

2071 \if_meaning:w \scan_stop: #1
2072 __exp_eval_error_msg:w
2073 \fi:

The next bit requires some explanation. The function must be initiated by \exp:w and
we want to terminate this expansion chain by inserting the \exp_end: token. However,
we have to expand the register #1 before we do that. If it is a TEX register, we need
to execute the sequence \exp_after:wN \exp_end: \tex_the:D #1 and if it is a macro
we need to execute \exp_after:wN \exp_end: #1. We therefore issue the longer of the
two sequences and if the register is a macro, we remove the \tex_the:D.

2074 \else:
2075 \exp_after:wN \use_i_ii:nnn
2076 \fi:
2077 \exp_after:wN \exp_end: \tex_the:D #1
2078 }
2079 \cs_new:Npn __exp_eval_register:c #1
2080 { \exp_after:wN __exp_eval_register:N \cs:w #1 \cs_end: }

Clean up nicely, then call the undefined control sequence. The result is an error message
looking like this:

! Undefined control sequence.
<argument> \LaTeX3 error:

Erroneous variable used!
l.55 \tl_set:Nv \l_tmpa_tl {undefined_tl}

2081 \cs_new:Npn __exp_eval_error_msg:w #1 \tex_the:D #2
2082 {
2083 \fi:
2084 \fi:
2085 __msg_kernel_expandable_error:nnn { kernel } { bad-variable } {#2}
2086 \exp_end:
2087 }

(End definition for __exp_eval_register:N and __exp_eval_register:c.)

294

4.2 Hand-tuned definitions
One of the most important features of these functions is that they are fully expandable
and therefore allow to prefix them with \tex_global:D for example.

\exp_args:No
\exp_args:NNo
\exp_args:NNNo

Those lovely runs of expansion!
2088 \cs_new:Npn \exp_args:No #1#2 { \exp_after:wN #1 \exp_after:wN {#2} }
2089 \cs_new:Npn \exp_args:NNo #1#2#3
2090 { \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN {#3} }
2091 \cs_new:Npn \exp_args:NNNo #1#2#3#4
2092 { \exp_after:wN #1 \exp_after:wN#2 \exp_after:wN #3 \exp_after:wN {#4} }

(End definition for \exp_args:No. This function is documented on page 29.)

\exp_args:Nc
\exp_args:cc

In l3basics.

(End definition for \exp_args:Nc and \exp_args:cc. These functions are documented on page 29.)

\exp_args:NNc
\exp_args:Ncc
\exp_args:Nccc

Here are the functions that turn their argument into csnames but are expandable.
2093 \cs_new:Npn \exp_args:NNc #1#2#3
2094 { \exp_after:wN #1 \exp_after:wN #2 \cs:w # 3\cs_end: }
2095 \cs_new:Npn \exp_args:Ncc #1#2#3
2096 { \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: \cs:w #3 \cs_end: }
2097 \cs_new:Npn \exp_args:Nccc #1#2#3#4
2098 {
2099 \exp_after:wN #1
2100 \cs:w #2 \exp_after:wN \cs_end:
2101 \cs:w #3 \exp_after:wN \cs_end:
2102 \cs:w #4 \cs_end:
2103 }

(End definition for \exp_args:NNc , \exp_args:Ncc , and \exp_args:Nccc. These functions are docu-
mented on page 30.)

\exp_args:Nf
\exp_args:NV
\exp_args:Nv

2104 \cs_new:Npn \exp_args:Nf #1#2
2105 { \exp_after:wN #1 \exp_after:wN { \exp:w \exp_end_continue_f:w #2 } }
2106 \cs_new:Npn \exp_args:Nv #1#2
2107 {
2108 \exp_after:wN #1 \exp_after:wN
2109 { \exp:w __exp_eval_register:c {#2} }
2110 }
2111 \cs_new:Npn \exp_args:NV #1#2
2112 {
2113 \exp_after:wN #1 \exp_after:wN
2114 { \exp:w __exp_eval_register:N #2 }
2115 }

(End definition for \exp_args:Nf , \exp_args:NV , and \exp_args:Nv. These functions are documented
on page 29.)

295

\exp_args:NNV
\exp_args:NNv
\exp_args:NNf
\exp_args:NVV
\exp_args:Ncf
\exp_args:Nco

Some more hand-tuned function with three arguments. If we forced that an o argument
always has braces, we could implement \exp_args:Nco with less tokens and only two
arguments.

2116 \cs_new:Npn \exp_args:NNf #1#2#3
2117 {
2118 \exp_after:wN #1
2119 \exp_after:wN #2
2120 \exp_after:wN { \exp:w \exp_end_continue_f:w #3 }
2121 }
2122 \cs_new:Npn \exp_args:NNv #1#2#3
2123 {
2124 \exp_after:wN #1
2125 \exp_after:wN #2
2126 \exp_after:wN { \exp:w __exp_eval_register:c {#3} }
2127 }
2128 \cs_new:Npn \exp_args:NNV #1#2#3
2129 {
2130 \exp_after:wN #1
2131 \exp_after:wN #2
2132 \exp_after:wN { \exp:w __exp_eval_register:N #3 }
2133 }
2134 \cs_new:Npn \exp_args:Nco #1#2#3
2135 {
2136 \exp_after:wN #1
2137 \cs:w #2 \exp_after:wN \cs_end:
2138 \exp_after:wN {#3}
2139 }
2140 \cs_new:Npn \exp_args:Ncf #1#2#3
2141 {
2142 \exp_after:wN #1
2143 \cs:w #2 \exp_after:wN \cs_end:
2144 \exp_after:wN { \exp:w \exp_end_continue_f:w #3 }
2145 }
2146 \cs_new:Npn \exp_args:NVV #1#2#3
2147 {
2148 \exp_after:wN #1
2149 \exp_after:wN { \exp:w \exp_after:wN
2150 __exp_eval_register:N \exp_after:wN #2 \exp_after:wN }
2151 \exp_after:wN { \exp:w __exp_eval_register:N #3 }
2152 }

(End definition for \exp_args:NNV and others. These functions are documented on page ??.)

\exp_args:Ncco
\exp_args:NcNc
\exp_args:NcNo
\exp_args:NNNV

A few more that we can hand-tune.
2153 \cs_new:Npn \exp_args:NNNV #1#2#3#4
2154 {
2155 \exp_after:wN #1
2156 \exp_after:wN #2
2157 \exp_after:wN #3
2158 \exp_after:wN { \exp:w __exp_eval_register:N #4 }

296

2159 }
2160 \cs_new:Npn \exp_args:NcNc #1#2#3#4
2161 {
2162 \exp_after:wN #1
2163 \cs:w #2 \exp_after:wN \cs_end:
2164 \exp_after:wN #3
2165 \cs:w #4 \cs_end:
2166 }
2167 \cs_new:Npn \exp_args:NcNo #1#2#3#4
2168 {
2169 \exp_after:wN #1
2170 \cs:w #2 \exp_after:wN \cs_end:
2171 \exp_after:wN #3
2172 \exp_after:wN {#4}
2173 }
2174 \cs_new:Npn \exp_args:Ncco #1#2#3#4
2175 {
2176 \exp_after:wN #1
2177 \cs:w #2 \exp_after:wN \cs_end:
2178 \cs:w #3 \exp_after:wN \cs_end:
2179 \exp_after:wN {#4}
2180 }

(End definition for \exp_args:Ncco and others. These functions are documented on page ??.)

4.3 Definitions with the automated technique
Some of these could be done more efficiently, but the complexity of coding then becomes
an issue. Notice that the auto-generated functions are all not long: they don’t actually
take any arguments themselves.

\exp_args:Nx

2181 \cs_new_protected_nopar:Npn \exp_args:Nx { \::x \::: }

(End definition for \exp_args:Nx. This function is documented on page 30.)

\exp_args:Nnc
\exp_args:Nfo
\exp_args:Nff
\exp_args:Nnf
\exp_args:Nno
\exp_args:NnV
\exp_args:Noo
\exp_args:Nof
\exp_args:Noc
\exp_args:NNx
\exp_args:Ncx
\exp_args:Nnx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

Here are the actual function definitions, using the helper functions above.
2182 \cs_new_nopar:Npn \exp_args:Nnc { \::n \::c \::: }
2183 \cs_new_nopar:Npn \exp_args:Nfo { \::f \::o \::: }
2184 \cs_new_nopar:Npn \exp_args:Nff { \::f \::f \::: }
2185 \cs_new_nopar:Npn \exp_args:Nnf { \::n \::f \::: }
2186 \cs_new_nopar:Npn \exp_args:Nno { \::n \::o \::: }
2187 \cs_new_nopar:Npn \exp_args:NnV { \::n \::V \::: }
2188 \cs_new_nopar:Npn \exp_args:Noo { \::o \::o \::: }
2189 \cs_new_nopar:Npn \exp_args:Nof { \::o \::f \::: }
2190 \cs_new_nopar:Npn \exp_args:Noc { \::o \::c \::: }
2191 \cs_new_protected_nopar:Npn \exp_args:NNx { \::N \::x \::: }
2192 \cs_new_protected_nopar:Npn \exp_args:Ncx { \::c \::x \::: }
2193 \cs_new_protected_nopar:Npn \exp_args:Nnx { \::n \::x \::: }
2194 \cs_new_protected_nopar:Npn \exp_args:Nox { \::o \::x \::: }

297

2195 \cs_new_protected_nopar:Npn \exp_args:Nxo { \::x \::o \::: }
2196 \cs_new_protected_nopar:Npn \exp_args:Nxx { \::x \::x \::: }

(End definition for \exp_args:Nnc and others. These functions are documented on page ??.)

\exp_args:NNno
\exp_args:NNoo
\exp_args:Nnnc
\exp_args:Nnno
\exp_args:Nooo
\exp_args:NNNx
\exp_args:NNnx
\exp_args:NNox
\exp_args:Nnnx
\exp_args:Nnox
\exp_args:Nccx
\exp_args:Ncnx
\exp_args:Noox

2197 \cs_new_nopar:Npn \exp_args:NNno { \::N \::n \::o \::: }
2198 \cs_new_nopar:Npn \exp_args:NNoo { \::N \::o \::o \::: }
2199 \cs_new_nopar:Npn \exp_args:Nnnc { \::n \::n \::c \::: }
2200 \cs_new_nopar:Npn \exp_args:Nnno { \::n \::n \::o \::: }
2201 \cs_new_nopar:Npn \exp_args:Nooo { \::o \::o \::o \::: }
2202 \cs_new_protected_nopar:Npn \exp_args:NNNx { \::N \::N \::x \::: }
2203 \cs_new_protected_nopar:Npn \exp_args:NNnx { \::N \::n \::x \::: }
2204 \cs_new_protected_nopar:Npn \exp_args:NNox { \::N \::o \::x \::: }
2205 \cs_new_protected_nopar:Npn \exp_args:Nnnx { \::n \::n \::x \::: }
2206 \cs_new_protected_nopar:Npn \exp_args:Nnox { \::n \::o \::x \::: }
2207 \cs_new_protected_nopar:Npn \exp_args:Nccx { \::c \::c \::x \::: }
2208 \cs_new_protected_nopar:Npn \exp_args:Ncnx { \::c \::n \::x \::: }
2209 \cs_new_protected_nopar:Npn \exp_args:Noox { \::o \::o \::x \::: }

(End definition for \exp_args:NNno and others. These functions are documented on page ??.)

4.4 Last-unbraced versions
__exp_arg_last_unbraced:nn

\::f_unbraced
\::o_unbraced
\::V_unbraced
\::v_unbraced
\::x_unbraced

There are a few places where the last argument needs to be available unbraced. First
some helper macros.

2210 \cs_new:Npn __exp_arg_last_unbraced:nn #1#2 { #2#1 }
2211 \cs_new:Npn \::f_unbraced \::: #1#2
2212 {
2213 \exp_after:wN __exp_arg_last_unbraced:nn
2214 \exp_after:wN { \exp:w \exp_end_continue_f:w #2 } {#1}
2215 }
2216 \cs_new:Npn \::o_unbraced \::: #1#2
2217 { \exp_after:wN __exp_arg_last_unbraced:nn \exp_after:wN {#2} {#1} }
2218 \cs_new:Npn \::V_unbraced \::: #1#2
2219 {
2220 \exp_after:wN __exp_arg_last_unbraced:nn
2221 \exp_after:wN { \exp:w __exp_eval_register:N #2 } {#1}
2222 }
2223 \cs_new:Npn \::v_unbraced \::: #1#2
2224 {
2225 \exp_after:wN __exp_arg_last_unbraced:nn
2226 \exp_after:wN { \exp:w __exp_eval_register:c {#2} } {#1}
2227 }
2228 \cs_new_protected:Npn \::x_unbraced \::: #1#2
2229 {
2230 \cs_set_nopar:Npx \l__exp_internal_tl { \exp_not:n {#1} #2 }
2231 \l__exp_internal_tl
2232 }

298

(End definition for __exp_arg_last_unbraced:nn.)

\exp_last_unbraced:NV
\exp_last_unbraced:Nv
\exp_last_unbraced:Nf
\exp_last_unbraced:No
\exp_last_unbraced:Nco
\exp_last_unbraced:NcV
\exp_last_unbraced:NNV
\exp_last_unbraced:NNo
\exp_last_unbraced:NNNV
\exp_last_unbraced:NNNo
\exp_last_unbraced:Nno
\exp_last_unbraced:Noo
\exp_last_unbraced:Nfo
\exp_last_unbraced:NnNo
\exp_last_unbraced:Nx

Now the business end: most of these are hand-tuned for speed, but the general system is
in place.

2233 \cs_new:Npn \exp_last_unbraced:NV #1#2
2234 { \exp_after:wN #1 \exp:w __exp_eval_register:N #2 }
2235 \cs_new:Npn \exp_last_unbraced:Nv #1#2
2236 { \exp_after:wN #1 \exp:w __exp_eval_register:c {#2} }
2237 \cs_new:Npn \exp_last_unbraced:No #1#2 { \exp_after:wN #1 #2 }
2238 \cs_new:Npn \exp_last_unbraced:Nf #1#2
2239 { \exp_after:wN #1 \exp:w \exp_end_continue_f:w #2 }
2240 \cs_new:Npn \exp_last_unbraced:Nco #1#2#3
2241 { \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: #3 }
2242 \cs_new:Npn \exp_last_unbraced:NcV #1#2#3
2243 {
2244 \exp_after:wN #1
2245 \cs:w #2 \exp_after:wN \cs_end:
2246 \exp:w __exp_eval_register:N #3
2247 }
2248 \cs_new:Npn \exp_last_unbraced:NNV #1#2#3
2249 {
2250 \exp_after:wN #1
2251 \exp_after:wN #2
2252 \exp:w __exp_eval_register:N #3
2253 }
2254 \cs_new:Npn \exp_last_unbraced:NNo #1#2#3
2255 { \exp_after:wN #1 \exp_after:wN #2 #3 }
2256 \cs_new:Npn \exp_last_unbraced:NNNV #1#2#3#4
2257 {
2258 \exp_after:wN #1
2259 \exp_after:wN #2
2260 \exp_after:wN #3
2261 \exp:w __exp_eval_register:N #4
2262 }
2263 \cs_new:Npn \exp_last_unbraced:NNNo #1#2#3#4
2264 { \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN #3 #4 }
2265 \cs_new_nopar:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }
2266 \cs_new_nopar:Npn \exp_last_unbraced:Noo { \::o \::o_unbraced \::: }
2267 \cs_new_nopar:Npn \exp_last_unbraced:Nfo { \::f \::o_unbraced \::: }
2268 \cs_new_nopar:Npn \exp_last_unbraced:NnNo { \::n \::N \::o_unbraced \::: }
2269 \cs_new_protected_nopar:Npn \exp_last_unbraced:Nx { \::x_unbraced \::: }

(End definition for \exp_last_unbraced:NV. This function is documented on page ??.)

\exp_last_two_unbraced:Noo
__exp_last_two_unbraced:noN

If #2 is a single token then this can be implemented as

\cs_new:Npn \exp_last_two_unbraced:Noo #1 #2 #3
{ \exp_after:wN \exp_after:wN \exp_after:wN #1 \exp_after:wN #2 #3 }

299

However, for robustness this is not suitable. Instead, a bit of a shuffle is used to ensure
that #2 can be multiple tokens.

2270 \cs_new:Npn \exp_last_two_unbraced:Noo #1#2#3
2271 { \exp_after:wN __exp_last_two_unbraced:noN \exp_after:wN {#3} {#2} #1 }
2272 \cs_new:Npn __exp_last_two_unbraced:noN #1#2#3
2273 { \exp_after:wN #3 #2 #1 }

(End definition for \exp_last_two_unbraced:Noo. This function is documented on page 32.)

4.5 Preventing expansion
\exp_not:o
\exp_not:c
\exp_not:f
\exp_not:V
\exp_not:v

2274 \cs_new:Npn \exp_not:o #1 { \etex_unexpanded:D \exp_after:wN {#1} }
2275 \cs_new:Npn \exp_not:c #1 { \exp_after:wN \exp_not:N \cs:w #1 \cs_end: }
2276 \cs_new:Npn \exp_not:f #1
2277 { \etex_unexpanded:D \exp_after:wN { \exp:w \exp_end_continue_f:w #1 } }
2278 \cs_new:Npn \exp_not:V #1
2279 {
2280 \etex_unexpanded:D \exp_after:wN
2281 { \exp:w __exp_eval_register:N #1 }
2282 }
2283 \cs_new:Npn \exp_not:v #1
2284 {
2285 \etex_unexpanded:D \exp_after:wN
2286 { \exp:w __exp_eval_register:c {#1} }
2287 }

(End definition for \exp_not:o. This function is documented on page 33.)

4.6 Controlled expansion
\exp:w

\exp_end:
\exp_end_continue_f:w
\exp_end_continue_f:nw

To trigger a sequence of “arbitrary” many expansions we need a method to invoke TEX’s
expansion mechanism in such a way that a) we are able to stop it in a controlled manner
and b) that the result of what triggered the expansion in the first place is null, i.e., that
we do not get any unwanted side effects. There aren’t that many possibilities in TEX;
in fact the one explained below might well be the only one (as normally the result of
expansion is not null).

The trick here is to make use of the fact that \tex_romannumeral:D expands the
tokens following it when looking for a number and that its expansion is null if that number
turns out to be zero or negative. So we use that to start the expansion sequence.

2288 %\cs_new_eq:NN \exp:w \tex_romannumeral:D

So to stop the expansion sequence in a controlled way all we need to provide is \c_-
zero as part of expanded tokens. As this is an integer constant it will immediately stop
\tex_romannumerl:D’s search for a number.

2289 %\cs_new_eq:NN \exp_end: \c_zero

300

(Note that according to our specification all tokens we expand initiated by \exp:w are
supposed to be expandable (as well as their replacement text in the expansion) so we will
not encounter a “number” that actually result in a roman numeral being generated. Or
if we do then the programmer made a mistake.)

If on the other hand we want to stop the initial expansion sequence but continue
with an f-type expansion we provide the alphabetic constant ‘^^@ that also represents 0
but this time TEX’s syntax for a 〈number〉 will continue searching for an optional space
(and it will continue expansion doing that) — see TEXbook page 269 for details.

2290 \tex_catcode:D ‘\^^@=13
2291 \cs_new_protected:Npn \exp_end_continue_f:w {‘^^@}

If the above definition ever appears outside its proper context the active character ^^@
will be executed so we turn this into an error.5

2292 \cs_new:Npn ^^@{\expansionERROR}

2293 \cs_new:Npn \exp_end_continue_f:nw #1 { ‘^^@ #1 }
2294 \tex_catcode:D ‘\^^@=15

(End definition for \exp:w. This function is documented on page 35.)

4.7 Defining function variants
2295 〈@@=cs〉

\cs_generate_variant:Nn #1 : Base form of a function; e.g., \tl_set:Nn
#2 : One or more variant argument specifiers; e.g., {Nx,c,cx}

After making sure that the base form exists, test whether it is protected or not and
define __cs_tmp:w as either \cs_new_nopar:Npx or \cs_new_protected_nopar:Npx,
which is then used to define all the variants (except those involving x-expansion, always
protected). Split up the original base function only once, to grab its name and signature.
Then we wish to iterate through the comma list of variant argument specifiers, which we
first convert to a string: the reason is explained later.

2296 \cs_new_protected:Npn \cs_generate_variant:Nn #1#2
2297 {
2298 __chk_if_exist_cs:N #1
2299 __cs_generate_variant:N #1
2300 \exp_after:wN __cs_split_function:NN
2301 \exp_after:wN #1
2302 \exp_after:wN __cs_generate_variant:nnNN
2303 \exp_after:wN #1
2304 \tl_to_str:n {#2} , \scan_stop: , \q_recursion_stop
2305 }

(End definition for \cs_generate_variant:Nn. This function is documented on page 27.)

__cs_generate_variant:N
__cs_generate_variant:ww

__cs_generate_variant:wwNw

The goal here is to pick up protected parent functions. There are four cases: the parent
function can be a primitive or a macro, and can be expandable or not. For non-expandable

5Need to get a real error message.

301

primitives, all variants should be protected; skipping the \else: branch is safe because
all primitive TEX conditionals are expandable.

The other case where variants should be protected is when the parent function is a
protected macro: then protected appears in the meaning before the fist occurrence of
macro. The ww auxiliary removes everything in the meaning string after the first ma. We
use ma rather than the full macro because the meaning of the \firstmark primitive (and
four others) can contain an arbitrary string after a leading firstmark:. Then, look for
pr in the part we extracted: no need to look for anything longer: the only strings we
can have are an empty string, \long␣, \protected␣, \protected\long␣, \first, \top,
\bot, \splittop, or \splitbot, with \ replaced by the appropriate escape character. If
pr appears in the part before ma, the first \q_mark is taken as an argument of the wwNw
auxiliary, and #3 is \cs_new_protected_nopar:Npx, otherwise it is \cs_new_nopar:Npx.

2306 \cs_new_protected:Npx __cs_generate_variant:N #1
2307 {
2308 \exp_not:N \exp_after:wN \exp_not:N \if_meaning:w
2309 \exp_not:N \exp_not:N #1 #1
2310 \cs_set_eq:NN \exp_not:N __cs_tmp:w \cs_new_protected_nopar:Npx
2311 \exp_not:N \else:
2312 \exp_not:N \exp_after:wN \exp_not:N __cs_generate_variant:ww
2313 \exp_not:N \token_to_meaning:N #1 \tl_to_str:n { ma }
2314 \exp_not:N \q_mark
2315 \exp_not:N \q_mark \cs_new_protected_nopar:Npx
2316 \tl_to_str:n { pr }
2317 \exp_not:N \q_mark \cs_new_nopar:Npx
2318 \exp_not:N \q_stop
2319 \exp_not:N \fi:
2320 }
2321 \use:x
2322 {
2323 \cs_new_protected:Npn \exp_not:N __cs_generate_variant:ww
2324 ##1 \tl_to_str:n { ma } ##2 \exp_not:N \q_mark
2325 }
2326 { __cs_generate_variant:wwNw #1 }
2327 \use:x
2328 {
2329 \cs_new_protected:Npn \exp_not:N __cs_generate_variant:wwNw
2330 ##1 \tl_to_str:n { pr } ##2 \exp_not:N \q_mark
2331 ##3 ##4 \exp_not:N \q_stop
2332 }
2333 { \cs_set_eq:NN __cs_tmp:w #3 }

(End definition for __cs_generate_variant:N.)

__cs_generate_variant:nnNN #1 : Base name.
#2 : Base signature.
#3 : Boolean.
#4 : Base function.

302

If the boolean is \c_false_bool, the base function has no colon and we abort with
an error; otherwise, set off a loop through the desired variant forms. The original function
is retained as #4 for efficiency.

2334 \cs_new_protected:Npn __cs_generate_variant:nnNN #1#2#3#4
2335 {
2336 \if_meaning:w \c_false_bool #3
2337 __msg_kernel_error:nnx { kernel } { missing-colon }
2338 { \token_to_str:c {#1} }
2339 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
2340 \fi:
2341 __cs_generate_variant:Nnnw #4 {#1}{#2}
2342 }

(End definition for __cs_generate_variant:nnNN.)

__cs_generate_variant:Nnnw #1 : Base function.
#2 : Base name.
#3 : Base signature.
#4 : Beginning of variant signature.

First check whether to terminate the loop over variant forms. Then, for each variant
form, construct a new function name using the original base name, the variant signature
consisting of l letters and the last k − l letters of the base signature (of length k). For
example, for a base function \prop_put:Nnn which needs a cV variant form, we want the
new signature to be cVn.

There are further subtleties:

• In \cs_generate_variant:Nn \foo:nnTF {xxTF}, it would be better to define
\foo:xxTF using \exp_args:Nxx, rather than a hypothetical \exp_args:NxxTF.
Thus, we wish to trim a common trailing part from the base signature and the
variant signature.

• In \cs_generate_variant:Nn \foo:on {ox}, the function \foo:ox should be de-
fined using \exp_args:Nnx, not \exp_args:Nox, to avoid double o expansion.

• Lastly, \cs_generate_variant:Nn \foo:on {xn} should trigger an error, because
we do not have a means to replace o-expansion by x-expansion.

All this boils down to a few rules. Only n and N-type arguments can be replaced by
\cs_generate_variant:Nn. Other argument types are allowed to be passed unchanged
from the base form to the variant: in the process they are changed to n (except for two
cases: N and p-type arguments). A common trailing part is ignored.

We compare the base and variant signatures one character at a time within x-
expansion. The result is given to __cs_generate_variant:wwNN in the form 〈processed
variant signature〉 \q_mark 〈errors〉 \q_stop 〈base function〉 〈new function〉. If all went
well, 〈errors〉 is empty; otherwise, it is a kernel error message, followed by some clean-up
code (\use_none:nnnn).

Note the space after #3 and after the following brace group. Those are ignored by
TEX when fetching the last argument for __cs_generate_variant_loop:nNwN, but can
be used as a delimiter for __cs_generate_variant_loop_end:nwwwNNnn.

303

2343 \cs_new_protected:Npn __cs_generate_variant:Nnnw #1#2#3#4 ,
2344 {
2345 \if_meaning:w \scan_stop: #4
2346 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
2347 \fi:
2348 \use:x
2349 {
2350 \exp_not:N __cs_generate_variant:wwNN
2351 __cs_generate_variant_loop:nNwN { }
2352 #4
2353 __cs_generate_variant_loop_end:nwwwNNnn
2354 \q_mark
2355 #3 ~
2356 { ~ { } \fi: __cs_generate_variant_loop_long:wNNnn } ~
2357 { }
2358 \q_stop
2359 \exp_not:N #1 {#2} {#4}
2360 }
2361 __cs_generate_variant:Nnnw #1 {#2} {#3}
2362 }

(End definition for __cs_generate_variant:Nnnw.)

__cs_generate_variant_loop:nNwN
__cs_generate_variant_loop_same:w

__cs_generate_variant_loop_end:nwwwNNnn
__cs_generate_variant_loop_long:wNNnn

__cs_generate_variant_loop_invalid:NNwNNnn

#1 : Last few (consecutive) letters common between the base and variant (in fact, __-
cs_generate_variant_same:N 〈letter〉 for each letter).

#2 : Next variant letter.
#3 : Remainder of variant form.
#4 : Next base letter.

The first argument is populated by __cs_generate_variant_loop_same:w when
a variant letter and a base letter match. It is flushed into the input stream whenever the
two letters are different: if the loop ends before, the argument is dropped, which means
that trailing common letters are ignored.

The case where the two letters are different is only allowed with a base letter of N
or n. Otherwise, call __cs_generate_variant_loop_invalid:NNwNNnn to remove the
end of the loop, get arguments at the end of the loop, and place an appropriate error
message as a second argument of __cs_generate_variant:wwNN. If the letters are
distinct and the base letter is indeed n or N, leave in the input stream whatever argument
was collected, and the next variant letter #2, then loop by calling __cs_generate_-
variant_loop:nNwN.

The loop can stop in three ways.

• If the end of the variant form is encountered first, #2 is __cs_generate_variant_-
loop_end:nwwwNNnn (expanded by the conditional \if:w), which inserts some to-
kens to end the conditional; grabs the 〈base name〉 as #7, the 〈variant signature〉
#8, the 〈next base letter〉 #1 and the part #3 of the base signature that wasn’t read
yet; and combines those into the 〈new function〉 to be defined.

304

• If the end of the base form is encountered first, #4 is ~{}\fi: which ends the condi-
tional (with an empty expansion), followed by __cs_generate_variant_loop_-
long:wNNnn, which places an error as the second argument of __cs_generate_-
variant:wwNN.

• The loop can be interrupted early if the requested expansion is unavailable, namely
when the variant and base letters differ and the base is neither n nor N. Again, an
error is placed as the second argument of __cs_generate_variant:wwNN.

Note that if the variant form has the same length as the base form, #2 is as described in
the first point, and #4 as described in the second point above. The __cs_generate_-
variant_loop_end:nwwwNNnn breaking function takes the empty brace group in #4 as
its first argument: this empty brace group produces the correct signature for the full
variant.

2363 \cs_new:Npn __cs_generate_variant_loop:nNwN #1#2#3 \q_mark #4
2364 {
2365 \if:w #2 #4
2366 \exp_after:wN __cs_generate_variant_loop_same:w
2367 \else:
2368 \if:w N #4 \else:
2369 \if:w n #4 \else:
2370 __cs_generate_variant_loop_invalid:NNwNNnn #4#2
2371 \fi:
2372 \fi:
2373 \fi:
2374 #1
2375 \prg_do_nothing:
2376 #2
2377 __cs_generate_variant_loop:nNwN { } #3 \q_mark
2378 }
2379 \cs_new:Npn __cs_generate_variant_loop_same:w
2380 #1 \prg_do_nothing: #2#3#4
2381 {
2382 #3 { #1 __cs_generate_variant_same:N #2 }
2383 }
2384 \cs_new:Npn __cs_generate_variant_loop_end:nwwwNNnn
2385 #1#2 \q_mark #3 ~ #4 \q_stop #5#6#7#8
2386 {
2387 \scan_stop: \scan_stop: \fi:
2388 \exp_not:N \q_mark
2389 \exp_not:N \q_stop
2390 \exp_not:N #6
2391 \exp_not:c { #7 : #8 #1 #3 }
2392 }
2393 \cs_new:Npn __cs_generate_variant_loop_long:wNNnn #1 \q_stop #2#3#4#5
2394 {
2395 \exp_not:n
2396 {
2397 \q_mark

305

2398 __msg_kernel_error:nnxx { kernel } { variant-too-long }
2399 {#5} { \token_to_str:N #3 }
2400 \use_none:nnnn
2401 \q_stop
2402 #3
2403 #3
2404 }
2405 }
2406 \cs_new:Npn __cs_generate_variant_loop_invalid:NNwNNnn
2407 #1#2 \fi: \fi: \fi: #3 \q_stop #4#5#6#7
2408 {
2409 \fi: \fi: \fi:
2410 \exp_not:n
2411 {
2412 \q_mark
2413 __msg_kernel_error:nnxxxx { kernel } { invalid-variant }
2414 {#7} { \token_to_str:N #5 } {#1} {#2}
2415 \use_none:nnnn
2416 \q_stop
2417 #5
2418 #5
2419 }
2420 }

(End definition for __cs_generate_variant_loop:nNwN and others.)

__cs_generate_variant_same:N When the base and variant letters are identical, don’t do any expansion. For most
argument types, we can use the n-type no-expansion, but the N and p types require a
slightly different behaviour with respect to braces.

2421 \cs_new:Npn __cs_generate_variant_same:N #1
2422 {
2423 \if:w N #1
2424 N
2425 \else:
2426 \if:w p #1
2427 p
2428 \else:
2429 n
2430 \fi:
2431 \fi:
2432 }

(End definition for __cs_generate_variant_same:N.)

__cs_generate_variant:wwNN If the variant form has already been defined, log its existence. Otherwise, make sure
that the \exp_args:N #3 form is defined, and if it contains x, change __cs_tmp:w
locally to \cs_new_protected_nopar:Npx. Then define the variant by combining the
\exp_args:N #3 variant and the base function.

2433 \cs_new_protected:Npn __cs_generate_variant:wwNN
2434 #1 \q_mark #2 \q_stop #3#4

306

2435 {
2436 #2
2437 \cs_if_free:NTF #4
2438 {
2439 \group_begin:
2440 __cs_generate_internal_variant:n {#1}
2441 __cs_tmp:w #4 { \exp_not:c { exp_args:N #1 } \exp_not:N #3 }
2442 \group_end:
2443 }
2444 {
2445 __chk_log:x
2446 {
2447 Variant~\token_to_str:N #4~%
2448 already~defined;~ not~ changing~ it~ \msg_line_context:
2449 }
2450 }
2451 }

(End definition for __cs_generate_variant:wwNN.)

__cs_generate_internal_variant:n
__cs_generate_internal_variant:wwnw

__cs_generate_internal_variant_loop:n

Test if \exp_args:N #1 is already defined and if not define it via the \:: commands using
the chars in #1. If #1 contains an x (this is the place where having converted the original
comma-list argument to a string is very important), the result should be protected, and
the next variant to be defined using that internal variant should be protected.

2452 \cs_new_protected:Npx __cs_generate_internal_variant:n #1
2453 {
2454 \exp_not:N __cs_generate_internal_variant:wwnNwnn
2455 #1 \exp_not:N \q_mark
2456 { \cs_set_eq:NN \exp_not:N __cs_tmp:w \cs_new_protected_nopar:Npx }
2457 \cs_new_protected_nopar:cpx
2458 \token_to_str:N x \exp_not:N \q_mark
2459 { }
2460 \cs_new_nopar:cpx
2461 \exp_not:N \q_stop
2462 { exp_args:N #1 }
2463 {
2464 \exp_not:N __cs_generate_internal_variant_loop:n #1
2465 { : \exp_not:N \use_i:nn }
2466 }
2467 }
2468 \use:x
2469 {
2470 \cs_new_protected:Npn \exp_not:N __cs_generate_internal_variant:wwnNwnn
2471 ##1 \token_to_str:N x ##2 \exp_not:N \q_mark
2472 ##3 ##4 ##5 \exp_not:N \q_stop ##6 ##7
2473 }
2474 {
2475 #3
2476 \cs_if_free:cT {#6} { #4 {#6} {#7} }
2477 }

307

This command grabs char by char outputting \::#1 (not expanded further). We avoid
tests by putting a trailing : \use_i:nn, which leaves \cs_end: and removes the looping
macro. The colon is in fact also turned into \::: so that the required structure for
\exp_args:N... commands is correctly terminated.

2478 \cs_new:Npn __cs_generate_internal_variant_loop:n #1
2479 {
2480 \exp_after:wN \exp_not:N \cs:w :: #1 \cs_end:
2481 __cs_generate_internal_variant_loop:n
2482 }

(End definition for __cs_generate_internal_variant:n.)

2483 〈/initex | package〉

5 l3prg implementation
The following test files are used for this code: m3prg001.lvt,m3prg002.lvt,m3prg003.lvt.

2484 〈*initex | package〉

5.1 Primitive conditionals
\if_bool:N

\if_predicate:w
Those two primitive TEX conditionals are synonyms.

2485 \cs_new_eq:NN \if_bool:N \tex_ifodd:D
2486 \cs_new_eq:NN \if_predicate:w \tex_ifodd:D

(End definition for \if_bool:N. This function is documented on page 44.)

5.2 Defining a set of conditional functions
\prg_set_conditional:Npnn
\prg_new_conditional:Npnn

\prg_set_protected_conditional:Npnn
\prg_new_protected_conditional:Npnn
\prg_set_conditional:Nnn
\prg_new_conditional:Nnn

\prg_set_protected_conditional:Nnn
\prg_new_protected_conditional:Nnn

\prg_set_eq_conditional:NNn
\prg_new_eq_conditional:NNn

\prg_return_true:
\prg_return_false:

These are all defined in l3basics, as they are needed “early”. This is just a reminder!

(End definition for \prg_set_conditional:Npnn and others. These functions are documented on page
37.)

5.3 The boolean data type
2487 〈@@=bool〉

\bool_new:N
\bool_new:c

Boolean variables have to be initiated when they are created. Other than that there is
not much to say here.

2488 \cs_new_protected:Npn \bool_new:N #1 { \cs_new_eq:NN #1 \c_false_bool }
2489 \cs_generate_variant:Nn \bool_new:N { c }

(End definition for \bool_new:N and \bool_new:c. These functions are documented on page 40.)

308

\bool_set_true:N
\bool_set_true:c
\bool_gset_true:N
\bool_gset_true:c
\bool_set_false:N
\bool_set_false:c
\bool_gset_false:N
\bool_gset_false:c

Setting is already pretty easy.
2490 \cs_new_protected:Npn \bool_set_true:N #1
2491 { \cs_set_eq:NN #1 \c_true_bool }
2492 \cs_new_protected:Npn \bool_set_false:N #1
2493 { \cs_set_eq:NN #1 \c_false_bool }
2494 \cs_new_protected:Npn \bool_gset_true:N #1
2495 { \cs_gset_eq:NN #1 \c_true_bool }
2496 \cs_new_protected:Npn \bool_gset_false:N #1
2497 { \cs_gset_eq:NN #1 \c_false_bool }
2498 \cs_generate_variant:Nn \bool_set_true:N { c }
2499 \cs_generate_variant:Nn \bool_set_false:N { c }
2500 \cs_generate_variant:Nn \bool_gset_true:N { c }
2501 \cs_generate_variant:Nn \bool_gset_false:N { c }

(End definition for \bool_set_true:N and others. These functions are documented on page 40.)

\bool_set_eq:NN
\bool_set_eq:cN
\bool_set_eq:Nc
\bool_set_eq:cc
\bool_gset_eq:NN
\bool_gset_eq:cN
\bool_gset_eq:Nc
\bool_gset_eq:cc

The usual copy code.
2502 \cs_new_eq:NN \bool_set_eq:NN \cs_set_eq:NN
2503 \cs_new_eq:NN \bool_set_eq:Nc \cs_set_eq:Nc
2504 \cs_new_eq:NN \bool_set_eq:cN \cs_set_eq:cN
2505 \cs_new_eq:NN \bool_set_eq:cc \cs_set_eq:cc
2506 \cs_new_eq:NN \bool_gset_eq:NN \cs_gset_eq:NN
2507 \cs_new_eq:NN \bool_gset_eq:Nc \cs_gset_eq:Nc
2508 \cs_new_eq:NN \bool_gset_eq:cN \cs_gset_eq:cN
2509 \cs_new_eq:NN \bool_gset_eq:cc \cs_gset_eq:cc

(End definition for \bool_set_eq:NN and others. These functions are documented on page 40.)

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn

This function evaluates a boolean expression and assigns the first argument the meaning
\c_true_bool or \c_false_bool.

2510 \cs_new_protected:Npn \bool_set:Nn #1#2
2511 { \tex_chardef:D #1 = \bool_if_p:n {#2} }
2512 \cs_new_protected:Npn \bool_gset:Nn #1#2
2513 { \tex_global:D \tex_chardef:D #1 = \bool_if_p:n {#2} }
2514 \cs_generate_variant:Nn \bool_set:Nn { c }
2515 \cs_generate_variant:Nn \bool_gset:Nn { c }

(End definition for \bool_set:Nn and \bool_set:cn. These functions are documented on page 40.)
Booleans are not based on token lists but do need checking: this code complements

similar material in l3tl.
2516 〈*package〉
2517 \if_bool:N \l@expl@check@declarations@bool
2518 \cs_set_protected:Npn \bool_set_true:N #1
2519 {
2520 __chk_if_exist_var:N #1
2521 \cs_set_eq:NN #1 \c_true_bool
2522 }
2523 \cs_set_protected:Npn \bool_set_false:N #1
2524 {
2525 __chk_if_exist_var:N #1

309

2526 \cs_set_eq:NN #1 \c_false_bool
2527 }
2528 \cs_set_protected:Npn \bool_gset_true:N #1
2529 {
2530 __chk_if_exist_var:N #1
2531 \cs_gset_eq:NN #1 \c_true_bool
2532 }
2533 \cs_set_protected:Npn \bool_gset_false:N #1
2534 {
2535 __chk_if_exist_var:N #1
2536 \cs_gset_eq:NN #1 \c_false_bool
2537 }
2538 \cs_set_protected:Npn \bool_set_eq:NN #1
2539 {
2540 __chk_if_exist_var:N #1
2541 \cs_set_eq:NN #1
2542 }
2543 \cs_set_protected:Npn \bool_gset_eq:NN #1
2544 {
2545 __chk_if_exist_var:N #1
2546 \cs_gset_eq:NN #1
2547 }
2548 \cs_set_protected:Npn \bool_set:Nn #1#2
2549 {
2550 __chk_if_exist_var:N #1
2551 \tex_chardef:D #1 = \bool_if_p:n {#2}
2552 }
2553 \cs_set_protected:Npn \bool_gset:Nn #1#2
2554 {
2555 __chk_if_exist_var:N #1
2556 \tex_global:D \tex_chardef:D #1 = \bool_if_p:n {#2}
2557 }
2558 \fi:
2559 〈/package〉

\bool_if_p:N
\bool_if_p:c
\bool_if:NTF
\bool_if:cTF

Straight forward here. We could optimize here if we wanted to as the boolean can just
be input directly.

2560 \prg_new_conditional:Npnn \bool_if:N #1 { p , T , F , TF }
2561 {
2562 \if_meaning:w \c_true_bool #1
2563 \prg_return_true:
2564 \else:
2565 \prg_return_false:
2566 \fi:
2567 }
2568 \cs_generate_variant:Nn \bool_if_p:N { c }
2569 \cs_generate_variant:Nn \bool_if:NT { c }
2570 \cs_generate_variant:Nn \bool_if:NF { c }
2571 \cs_generate_variant:Nn \bool_if:NTF { c }

310

(End definition for \bool_if:NTF and \bool_if:cTF. These functions are documented on page 40.)

\bool_show:N
\bool_show:c
\bool_show:n

__bool_to_str:n

Show the truth value of the boolean, as true or false.
2572 \cs_new_protected:Npn \bool_show:N #1
2573 {
2574 __msg_show_variable:NNNnn #1 \bool_if_exist:NTF ? { }
2575 { > ~ \token_to_str:N #1 = __bool_to_str:n {#1} }
2576 }
2577 \cs_new_protected_nopar:Npn \bool_show:n
2578 { __msg_show_wrap:Nn __bool_to_str:n }
2579 \cs_new:Npn __bool_to_str:n #1
2580 { \bool_if:nTF {#1} { true } { false } }
2581 \cs_generate_variant:Nn \bool_show:N { c }

(End definition for \bool_show:N , \bool_show:c , and \bool_show:n. These functions are documented
on page 40.)

\l_tmpa_bool
\l_tmpb_bool
\g_tmpa_bool
\g_tmpb_bool

A few booleans just if you need them.
2582 \bool_new:N \l_tmpa_bool
2583 \bool_new:N \l_tmpb_bool
2584 \bool_new:N \g_tmpa_bool
2585 \bool_new:N \g_tmpb_bool

(End definition for \l_tmpa_bool and others. These variables are documented on page 41.)

\bool_if_exist_p:N
\bool_if_exist_p:c
\bool_if_exist:NTF
\bool_if_exist:cTF

Copies of the cs functions defined in l3basics.
2586 \prg_new_eq_conditional:NNn \bool_if_exist:N \cs_if_exist:N
2587 { TF , T , F , p }
2588 \prg_new_eq_conditional:NNn \bool_if_exist:c \cs_if_exist:c
2589 { TF , T , F , p }

(End definition for \bool_if_exist:NTF and \bool_if_exist:cTF. These functions are documented on
page 41.)

5.4 Boolean expressions
\bool_if_p:n
\bool_if:nTF

Evaluating the truth value of a list of predicates is done using an input syntax somewhat
similar to the one found in other programming languages with (and) for grouping, !
for logical “Not”, && for logical “And” and || for logical “Or”. We shall use the terms
Not, And, Or, Open and Close for these operations.

Any expression is terminated by a Close operation. Evaluation happens from left to
right in the following manner using a GetNext function:

• If an Open is seen, start evaluating a new expression using the Eval function and
call GetNext again.

• If a Not is seen, remove the ! and call a GetNotNext function, which eventually
reverses the logic compared to GetNext.

311

• If none of the above, reinsert the token found (this is supposed to be a predicate
function) in front of an Eval function, which evaluates it to the boolean value 〈true〉
or 〈false〉.

The Eval function then contains a post-processing operation which grabs the instruction
following the predicate. This is either And, Or or Close. In each case the truth value is
used to determine where to go next. The following situations can arise:

〈true〉And Current truth value is true, logical And seen, continue with GetNext to
examine truth value of next boolean (sub-)expression.

〈false〉And Current truth value is false, logical And seen, stop evaluating the predicates
within this sub-expression and break to the nearest Close. Then return 〈false〉.

〈true〉Or Current truth value is true, logical Or seen, stop evaluating the predicates
within this sub-expression and break to the nearest Close. Then return 〈true〉.

〈false〉Or Current truth value is false, logical Or seen, continue with GetNext to examine
truth value of next boolean (sub-)expression.

〈true〉Close Current truth value is true, Close seen, return 〈true〉.

〈false〉Close Current truth value is false, Close seen, return 〈false〉.

We introduce an additional Stop operation with the same semantics as the Close opera-
tion.

〈true〉Stop Current truth value is true, return 〈true〉.

〈false〉Stop Current truth value is false, return 〈false〉.

The reasons for this follow below.
2590 \prg_new_conditional:Npnn \bool_if:n #1 { T , F , TF }
2591 {
2592 \if_predicate:w \bool_if_p:n {#1}
2593 \prg_return_true:
2594 \else:
2595 \prg_return_false:
2596 \fi:
2597 }

(End definition for \bool_if:nTF. This function is documented on page 41.)

\bool_if_p:n
__bool_if_left_parentheses:wwwn

__bool_if_right_parentheses:wwwn
__bool_if_or:wwwn

First issue a \group_align_safe_begin: as we are using && as syntax shorthand for the
And operation and we need to hide it for TEX. This will be closed at the end of the
expression parsing (see S below).

Minimal (“short-circuit”) evaluation of boolean expressions requires skipping to the
end of the current parenthesized group when 〈true〉|| is seen, but to the next || or
closing parenthesis when 〈false〉&& is seen. To avoid having separate functions for the
two cases, we transform the boolean expression by doubling each parenthesis and adding
parenthesis around each ||. This ensures that && will bind tighter than ||.

312

The replacement is done in three passes, for left and right parentheses and for ||.
At each pass, the part of the expression that has been transformed is stored before \q_-
nil, the rest lies until the first \q_mark, followed by an empty brace group. A trailing
marker ensures that the auxiliaries’ delimited arguments will not run-away. As long as
the delimiter matches inside the expression, material is moved before \q_nil and we
continue. Afterwards, the trailing marker is taken as a delimiter, #4 is the next auxiliary,
immediately followed by a new \q_nil delimiter, which indicates that nothing has been
treated at this pass. The last step calls __bool_if_parse:NNNww which cleans up and
triggers the evaluation of the expression itself.

2598 \cs_new:Npn \bool_if_p:n #1
2599 {
2600 \group_align_safe_begin:
2601 __bool_if_left_parentheses:wwwn \q_nil
2602 #1 \q_mark { }
2603 (\q_mark { __bool_if_right_parentheses:wwwn \q_nil }
2604) \q_mark { __bool_if_or:wwwn \q_nil }
2605 || \q_mark __bool_if_parse:NNNww
2606 \q_stop
2607 }
2608 \cs_new:Npn __bool_if_left_parentheses:wwwn #1 \q_nil #2 (#3 \q_mark #4
2609 { #4 __bool_if_left_parentheses:wwwn #1 #2 ((\q_nil #3 \q_mark {#4} }
2610 \cs_new:Npn __bool_if_right_parentheses:wwwn #1 \q_nil #2) #3 \q_mark #4
2611 { #4 __bool_if_right_parentheses:wwwn #1 #2)) \q_nil #3 \q_mark {#4} }
2612 \cs_new:Npn __bool_if_or:wwwn #1 \q_nil #2 || #3 \q_mark #4
2613 { #4 __bool_if_or:wwwn #1 #2)||(\q_nil #3 \q_mark {#4} }

(End definition for \bool_if_p:n. This function is documented on page ??.)

__bool_if_parse:NNNww After removing extra tokens from the transformation phase, start evaluating. At the end,
we will need to finish the special align_safe group before finally returning a \c_true_-
bool or \c_false_bool as there might otherwise be something left in front in the input
stream. For this we call the Stop operation, denoted simply by a S following the last
Close operation.

2614 \cs_new:Npn __bool_if_parse:NNNww #1#2#3#4 \q_mark #5 \q_stop
2615 {
2616 __bool_get_next:NN \use_i:nn ((#4)) S
2617 }

(End definition for __bool_if_parse:NNNww.)

__bool_get_next:NN The GetNext operation. This is a switch: if what follows is neither ! nor (, we assume it
is a predicate. The first argument is \use_ii:nn if the logic must eventually be reversed
(after a !), otherwise it is \use_i:nn. This function eventually expand to the truth
value \c_true_bool or \c_false_bool of the expression which follows until the next
unmatched closing parenthesis.

2618 \cs_new:Npn __bool_get_next:NN #1#2
2619 {
2620 \use:c

313

2621 {
2622 __bool_
2623 \if_meaning:w !#2 ! \else: \if_meaning:w (#2 (\else: p \fi: \fi:
2624 :Nw
2625 }
2626 #1 #2
2627 }

(End definition for __bool_get_next:NN.)

__bool_!:Nw The Not operation reverses the logic: discard the ! token and call the GetNext operation
with its first argument reversed.

2628 \cs_new:cpn { __bool_!:Nw } #1#2
2629 { \exp_after:wN __bool_get_next:NN #1 \use_ii:nn \use_i:nn }

(End definition for __bool_!:Nw.)

__bool_(:Nw The Open operation starts a sub-expression after discarding the token. This is done by
calling GetNext, with a post-processing step which looks for And, Or or Close afterwards.

2630 \cs_new:cpn { __bool_(:Nw } #1#2
2631 {
2632 \exp_after:wN __bool_choose:NNN \exp_after:wN #1
2633 __int_value:w __bool_get_next:NN \use_i:nn
2634 }

(End definition for __bool_(:Nw.)

__bool_p:Nw If what follows GetNext is neither ! nor (, evaluate the predicate using the primitive
__int_value:w. The canonical true and false values have numerical values 1 and 0
respectively. Look for And, Or or Close afterwards.

2635 \cs_new:cpn { __bool_p:Nw } #1
2636 { \exp_after:wN __bool_choose:NNN \exp_after:wN #1 __int_value:w }

(End definition for __bool_p:Nw.)

__bool_choose:NNN Branching the eight-way switch. The arguments are 1: \use_i:nn or \use_ii:nn, 2: 0
or 1 encoding the current truth value, 3: the next operation, And, Or, Close or Stop. If
#1 is \use_ii:nn, the logic of #2 must be reversed.

2637 \cs_new:Npn __bool_choose:NNN #1#2#3
2638 {
2639 \use:c
2640 {
2641 __bool_ #3 _
2642 #1 #2 { \if_meaning:w 0 #2 1 \else: 0 \fi: }
2643 :w
2644 }
2645 }

(End definition for __bool_choose:NNN.)

314

__bool_)_0:w
__bool_)_1:w
__bool_S_0:w
__bool_S_1:w

Closing a group is just about returning the result. The Stop operation is similar except
it closes the special alignment group before returning the boolean.

2646 \cs_new_nopar:cpn { __bool_)_0:w } { \c_false_bool }
2647 \cs_new_nopar:cpn { __bool_)_1:w } { \c_true_bool }
2648 \cs_new_nopar:cpn { __bool_S_0:w } { \group_align_safe_end: \c_false_bool }
2649 \cs_new_nopar:cpn { __bool_S_1:w } { \group_align_safe_end: \c_true_bool }

(End definition for __bool_)_0:w and others.)

__bool_&_1:w
__bool_|_0:w

Two cases where we simply continue scanning. We must remove the second & or |.
2650 \cs_new_nopar:cpn { __bool_&_1:w } & { __bool_get_next:NN \use_i:nn }
2651 \cs_new_nopar:cpn { __bool_|_0:w } | { __bool_get_next:NN \use_i:nn }

(End definition for __bool_&_1:w.)

__bool_&_0:w
__bool_|_1:w

__bool_eval_skip_to_end_auxi:Nw
__bool_eval_skip_to_end_auxii:Nw

__bool_eval_skip_to_end_auxiii:Nw

When the truth value has already been decided, we have to throw away the remainder
of the current group as we are doing minimal evaluation. This is slightly tricky as there
are no braces so we have to play match the () manually.

2652 \cs_new_nopar:cpn { __bool_&_0:w } &
2653 { __bool_eval_skip_to_end_auxi:Nw \c_false_bool }
2654 \cs_new_nopar:cpn { __bool_|_1:w } |
2655 { __bool_eval_skip_to_end_auxi:Nw \c_true_bool }

There is always at least one) waiting, namely the outer one. However, we are facing the
problem that there may be more than one that need to be finished off and we have to
detect the correct number of them. Here is a complicated example showing how this is
done. After evaluating the following, we realize we must skip everything after the first
And. Note the extra Close at the end.

\c_false_bool && ((abc) && xyz) && ((xyz) && (def)))

First read up to the first Close. This gives us the list we first read up until the first right
parenthesis so we are looking at the token list

((abc

This contains two Open markers so we must remove two groups. Since no evaluation of
the contents is to be carried out, it doesn’t matter how we remove the groups as long as
we wind up with the correct result. We therefore first remove a () pair and what preceded
the Open – but leave the contents as it may contain Open tokens itself – leaving

(abc && xyz) && ((xyz) && (def)))

Another round of this gives us

(abc && xyz

which still contains an Open so we remove another () pair, giving us

abc && xyz && ((xyz) && (def)))

Again we read up to a Close and again find Open tokens:

315

abc && xyz && ((xyz

Further reduction gives us

(xyz && (def)))

and then

(xyz && (def

with reduction to

xyz && (def))

and ultimately we arrive at no Open tokens being skipped and we can finally close the
group nicely.

2656 %% (
2657 \cs_new:Npn __bool_eval_skip_to_end_auxi:Nw #1#2)
2658 {
2659 __bool_eval_skip_to_end_auxii:Nw #1#2 (%)
2660 \q_no_value \q_stop
2661 {#2}
2662 }

If no right parenthesis, then #3 is no_value and we are done, return the boolean #1. If
there is, we need to grab a () pair and then recurse

2663 \cs_new:Npn __bool_eval_skip_to_end_auxii:Nw #1#2 (#3#4 \q_stop #5 %)
2664 {
2665 \quark_if_no_value:NTF #3
2666 {#1}
2667 { __bool_eval_skip_to_end_auxiii:Nw #1 #5 }
2668 }

Keep the boolean, throw away anything up to the (as it is irrelevant, remove a () pair
but remember to reinsert #3 as it may contain (tokens!

2669 \cs_new:Npn __bool_eval_skip_to_end_auxiii:Nw #1#2 (#3)
2670 { % (
2671 __bool_eval_skip_to_end_auxi:Nw #1#3)
2672 }

(End definition for __bool_&_0:w.)

\bool_not_p:n The Not variant just reverses the outcome of \bool_if_p:n. Can be optimized but this
is nice and simple and according to the implementation plan. Not even particularly useful
to have it when the infix notation is easier to use.

2673 \cs_new:Npn \bool_not_p:n #1 { \bool_if_p:n { ! (#1) } }

(End definition for \bool_not_p:n. This function is documented on page 41.)

316

\bool_xor_p:nn Exclusive or. If the boolean expressions have same truth value, return false, otherwise
return true.

2674 \cs_new:Npn \bool_xor_p:nn #1#2
2675 {
2676 \int_compare:nNnTF { \bool_if_p:n {#1} } = { \bool_if_p:n {#2} }
2677 \c_false_bool
2678 \c_true_bool
2679 }

(End definition for \bool_xor_p:nn. This function is documented on page 42.)

5.5 Logical loops
\bool_while_do:Nn
\bool_while_do:cn
\bool_until_do:Nn
\bool_until_do:cn

A while loop where the boolean is tested before executing the statement. The “while”
version executes the code as long as the boolean is true; the “until” version executes the
code as long as the boolean is false.

2680 \cs_new:Npn \bool_while_do:Nn #1#2
2681 { \bool_if:NT #1 { #2 \bool_while_do:Nn #1 {#2} } }
2682 \cs_new:Npn \bool_until_do:Nn #1#2
2683 { \bool_if:NF #1 { #2 \bool_until_do:Nn #1 {#2} } }
2684 \cs_generate_variant:Nn \bool_while_do:Nn { c }
2685 \cs_generate_variant:Nn \bool_until_do:Nn { c }

(End definition for \bool_while_do:Nn and \bool_while_do:cn. These functions are documented on
page 42.)

\bool_do_while:Nn
\bool_do_while:cn
\bool_do_until:Nn
\bool_do_until:cn

A do-while loop where the body is performed at least once and the boolean is tested
after executing the body. Otherwise identical to the above functions.

2686 \cs_new:Npn \bool_do_while:Nn #1#2
2687 { #2 \bool_if:NT #1 { \bool_do_while:Nn #1 {#2} } }
2688 \cs_new:Npn \bool_do_until:Nn #1#2
2689 { #2 \bool_if:NF #1 { \bool_do_until:Nn #1 {#2} } }
2690 \cs_generate_variant:Nn \bool_do_while:Nn { c }
2691 \cs_generate_variant:Nn \bool_do_until:Nn { c }

(End definition for \bool_do_while:Nn and \bool_do_while:cn. These functions are documented on
page 42.)

\bool_while_do:nn
\bool_do_while:nn
\bool_until_do:nn
\bool_do_until:nn

Loop functions with the test either before or after the first body expansion.
2692 \cs_new:Npn \bool_while_do:nn #1#2
2693 {
2694 \bool_if:nT {#1}
2695 {
2696 #2
2697 \bool_while_do:nn {#1} {#2}
2698 }
2699 }
2700 \cs_new:Npn \bool_do_while:nn #1#2
2701 {
2702 #2

317

2703 \bool_if:nT {#1} { \bool_do_while:nn {#1} {#2} }
2704 }
2705 \cs_new:Npn \bool_until_do:nn #1#2
2706 {
2707 \bool_if:nF {#1}
2708 {
2709 #2
2710 \bool_until_do:nn {#1} {#2}
2711 }
2712 }
2713 \cs_new:Npn \bool_do_until:nn #1#2
2714 {
2715 #2
2716 \bool_if:nF {#1} { \bool_do_until:nn {#1} {#2} }
2717 }

(End definition for \bool_while_do:nn and others. These functions are documented on page 43.)

5.6 Producing multiple copies
2718 〈@@=prg〉

\prg_replicate:nn
__prg_replicate:N

__prg_replicate_first:N
__prg_replicate_

__prg_replicate_0:n
__prg_replicate_1:n
__prg_replicate_2:n
__prg_replicate_3:n
__prg_replicate_4:n
__prg_replicate_5:n
__prg_replicate_6:n
__prg_replicate_7:n
__prg_replicate_8:n
__prg_replicate_9:n

__prg_replicate_first_-:n
__prg_replicate_first_0:n
__prg_replicate_first_1:n
__prg_replicate_first_2:n
__prg_replicate_first_3:n
__prg_replicate_first_4:n
__prg_replicate_first_5:n
__prg_replicate_first_6:n
__prg_replicate_first_7:n
__prg_replicate_first_8:n
__prg_replicate_first_9:n

This function uses a cascading csname technique by David Kastrup (who else :-)
The idea is to make the input 25 result in first adding five, and then 20 copies

of the code to be replicated. The technique uses cascading csnames which means that
we start building several csnames so we end up with a list of functions to be called in
reverse order. This is important here (and other places) because it means that we can for
instance make the function that inserts five copies of something to also hand down ten
to the next function in line. This is exactly what happens here: in the example with 25
then the next function is the one that inserts two copies but it sees the ten copies handed
down by the previous function. In order to avoid the last function to insert say, 100
copies of the original argument just to gobble them again we define separate functions to
be inserted first. These functions also close the expansion of \exp:w, which ensures that
\prg_replicate:nn only requires two steps of expansion.

This function has one flaw though: Since it constantly passes down ten copies of
its previous argument it will severely affect the main memory once you start demanding
hundreds of thousands of copies. Now I don’t think this is a real limitation for any
ordinary use, and if necessary, it is possible to write \prg_replicate:nn {1000} { \prg_-
replicate:nn {1000} {〈code〉} }. An alternative approach is to create a string of m’s
with \exp:w which can be done with just four macros but that method has its own
problems since it can exhaust the string pool. Also, it is considerably slower than what
we use here so the few extra csnames are well spent I would say.

2719 \cs_new:Npn \prg_replicate:nn #1
2720 {
2721 \exp:w
2722 \exp_after:wN __prg_replicate_first:N
2723 __int_value:w __int_eval:w #1 __int_eval_end:
2724 \cs_end:

318

2725 }
2726 \cs_new:Npn __prg_replicate:N #1
2727 { \cs:w __prg_replicate_#1 :n __prg_replicate:N }
2728 \cs_new:Npn __prg_replicate_first:N #1
2729 { \cs:w __prg_replicate_first_ #1 :n __prg_replicate:N }

Then comes all the functions that do the hard work of inserting all the copies. The first
function takes :n as a parameter.

2730 \cs_new:Npn __prg_replicate_ :n #1 { \cs_end: }
2731 \cs_new:cpn { __prg_replicate_0:n } #1
2732 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} }
2733 \cs_new:cpn { __prg_replicate_1:n } #1
2734 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1 }
2735 \cs_new:cpn { __prg_replicate_2:n } #1
2736 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1 }
2737 \cs_new:cpn { __prg_replicate_3:n } #1
2738 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1 }
2739 \cs_new:cpn { __prg_replicate_4:n } #1
2740 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1 }
2741 \cs_new:cpn { __prg_replicate_5:n } #1
2742 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1 }
2743 \cs_new:cpn { __prg_replicate_6:n } #1
2744 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1#1 }
2745 \cs_new:cpn { __prg_replicate_7:n } #1
2746 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1#1#1 }
2747 \cs_new:cpn { __prg_replicate_8:n } #1
2748 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1#1#1#1 }
2749 \cs_new:cpn { __prg_replicate_9:n } #1
2750 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1#1#1#1#1 }

Users shouldn’t ask for something to be replicated once or even not at all but. . .
2751 \cs_new:cpn { __prg_replicate_first_-:n } #1
2752 {
2753 \exp_end:
2754 __msg_kernel_expandable_error:nn { kernel } { negative-replication }
2755 }
2756 \cs_new:cpn { __prg_replicate_first_0:n } #1 { \exp_end: }
2757 \cs_new:cpn { __prg_replicate_first_1:n } #1 { \exp_end: #1 }
2758 \cs_new:cpn { __prg_replicate_first_2:n } #1 { \exp_end: #1#1 }
2759 \cs_new:cpn { __prg_replicate_first_3:n } #1 { \exp_end: #1#1#1 }
2760 \cs_new:cpn { __prg_replicate_first_4:n } #1 { \exp_end: #1#1#1#1 }
2761 \cs_new:cpn { __prg_replicate_first_5:n } #1 { \exp_end: #1#1#1#1#1 }
2762 \cs_new:cpn { __prg_replicate_first_6:n } #1 { \exp_end: #1#1#1#1#1#1 }
2763 \cs_new:cpn { __prg_replicate_first_7:n } #1 { \exp_end: #1#1#1#1#1#1#1 }
2764 \cs_new:cpn { __prg_replicate_first_8:n } #1 { \exp_end: #1#1#1#1#1#1#1#1 }
2765 \cs_new:cpn { __prg_replicate_first_9:n } #1 { \exp_end: #1#1#1#1#1#1#1#1#1 }

(End definition for \prg_replicate:nn. This function is documented on page 43.)

319

5.7 Detecting TEX’s mode
\mode_if_vertical_p:
\mode_if_vertical:TF

For testing vertical mode. Strikes me here on the bus with David, that as long as we
are just talking about returning true and false states, we can just use the primitive
conditionals for this and gobbling the \exp_end: in the input stream. However this
requires knowledge of the implementation so we keep things nice and clean and use the
return statements.

2766 \prg_new_conditional:Npnn \mode_if_vertical: { p , T , F , TF }
2767 { \if_mode_vertical: \prg_return_true: \else: \prg_return_false: \fi: }

(End definition for \mode_if_vertical:TF. This function is documented on page 43.)

\mode_if_horizontal_p:
\mode_if_horizontal:TF

For testing horizontal mode.
2768 \prg_new_conditional:Npnn \mode_if_horizontal: { p , T , F , TF }
2769 { \if_mode_horizontal: \prg_return_true: \else: \prg_return_false: \fi: }

(End definition for \mode_if_horizontal:TF. This function is documented on page 43.)

\mode_if_inner_p:
\mode_if_inner:TF

For testing inner mode.
2770 \prg_new_conditional:Npnn \mode_if_inner: { p , T , F , TF }
2771 { \if_mode_inner: \prg_return_true: \else: \prg_return_false: \fi: }

(End definition for \mode_if_inner:TF. This function is documented on page 43.)

\mode_if_math_p:
\mode_if_math:TF

For testing math mode. At the beginning of an alignment cell, this should be used only
inside a non-expandable function.

2772 \prg_new_conditional:Npnn \mode_if_math: { p , T , F , TF }
2773 { \if_mode_math: \prg_return_true: \else: \prg_return_false: \fi: }

(End definition for \mode_if_math:TF. This function is documented on page 43.)

5.8 Internal programming functions
\group_align_safe_begin:

\group_align_safe_end:
TEX’s alignment structures present many problems. As Knuth says himself in TEX:
The Program: “It’s sort of a miracle whenever \halign or \valign work, [. . .]” One
problem relates to commands that internally issues a \cr but also peek ahead for the
next character for use in, say, an optional argument. If the next token happens to be a &
with category code 4 we will get some sort of weird error message because the underlying
\futurelet will store the token at the end of the alignment template. This could be a &4
giving a message like ! Misplaced \cr. or even worse: it could be the \endtemplate
token causing even more trouble! To solve this we have to open a special group so that
TEX still thinks it’s on safe ground but at the same time we don’t want to introduce
any brace group that may find its way to the output. The following functions help with
this by using code documented only in Appendix D of The TEXbook. . .We place the
\if_false: { \fi: part at that place so that the successive expansions of \group_-
align_safe_begin/end: are always brace balanced.

2774 \cs_new_nopar:Npn \group_align_safe_begin:
2775 { \if_int_compare:w \if_false: { \fi: ‘} = \c_zero \fi: }
2776 \cs_new_nopar:Npn \group_align_safe_end:
2777 { \if_int_compare:w ‘{ = \c_zero } \fi: }

320

(End definition for \group_align_safe_begin: and \group_align_safe_end:.)

2778 〈@@=prg〉

\g__prg_map_int A nesting counter for mapping.
2779 \int_new:N \g__prg_map_int

(End definition for \g__prg_map_int. This variable is documented on page 44.)

__prg_break_point:Nn
__prg_map_break:Nn

These are defined in l3basics, as they are needed “early”. This is just a reminder that is
the case!

(End definition for __prg_break_point:Nn. This function is documented on page 44.)

__prg_break_point:
__prg_break:
__prg_break:n

Also done in l3basics as in format mode these are needed within l3alloc.

(End definition for __prg_break_point:. This function is documented on page 45.)

5.9 Deprecated functions
\scan_align_safe_stop: Deprecated 2015-08-01 for removal after 2016-12-31.

2780 \cs_new_protected_nopar:Npn \scan_align_safe_stop: { }

(End definition for \scan_align_safe_stop:.)

2781 〈/initex | package〉

6 l3quark implementation
The following test files are used for this code: m3quark001.lvt.

2782 〈*initex | package〉

6.1 Quarks
2783 〈@@=quark〉

\quark_new:N Allocate a new quark.
2784 \cs_new_protected:Npn \quark_new:N #1 { \tl_const:Nn #1 {#1} }

(End definition for \quark_new:N. This function is documented on page 47.)

\q_nil
\q_mark

\q_no_value
\q_stop

Some “public” quarks. \q_stop is an “end of argument” marker, \q_nil is a empty value
and \q_no_value marks an empty argument.

2785 \quark_new:N \q_nil
2786 \quark_new:N \q_mark
2787 \quark_new:N \q_no_value
2788 \quark_new:N \q_stop

(End definition for \q_nil and others. These variables are documented on page 47.)

321

\q_recursion_tail
\q_recursion_stop

Quarks for ending recursions. Only ever used there! \q_recursion_tail is appended to
whatever list structure we are doing recursion on, meaning it is added as a proper list
item with whatever list separator is in use. \q_recursion_stop is placed directly after
the list.

2789 \quark_new:N \q_recursion_tail
2790 \quark_new:N \q_recursion_stop

(End definition for \q_recursion_tail and \q_recursion_stop. These variables are documented on
page 48.)

\quark_if_recursion_tail_stop:N
\quark_if_recursion_tail_stop_do:Nn

When doing recursions, it is easy to spend a lot of time testing if the end marker has
been found. To avoid this, a dedicated end marker is used each time a recursion is set up.
Thus if the marker is found everything can be wrapper up and finished off. The simple
case is when the test can guarantee that only a single token is being tested. In this case,
there is just a dedicated copy of the standard quark test. Both a gobbling version and
one inserting end code are provided.

2791 \cs_new:Npn \quark_if_recursion_tail_stop:N #1
2792 {
2793 \if_meaning:w \q_recursion_tail #1
2794 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
2795 \fi:
2796 }
2797 \cs_new:Npn \quark_if_recursion_tail_stop_do:Nn #1
2798 {
2799 \if_meaning:w \q_recursion_tail #1
2800 \exp_after:wN \use_i_delimit_by_q_recursion_stop:nw
2801 \else:
2802 \exp_after:wN \use_none:n
2803 \fi:
2804 }

(End definition for \quark_if_recursion_tail_stop:N. This function is documented on page 48.)

\quark_if_recursion_tail_stop:n
\quark_if_recursion_tail_stop:o

\quark_if_recursion_tail_stop_do:nn
\quark_if_recursion_tail_stop_do:on

__quark_if_recursion_tail:w

See \quark_if_nil:nTF for the details. Expanding __quark_if_recursion_tail:w
once in front of the tokens chosen here gives an empty result if and only if #1 is exactly
\q_recursion_tail.

2805 \cs_new:Npn \quark_if_recursion_tail_stop:n #1
2806 {
2807 \tl_if_empty:oTF
2808 { __quark_if_recursion_tail:w {} #1 {} ?! \q_recursion_tail ??! }
2809 { \use_none_delimit_by_q_recursion_stop:w }
2810 { }
2811 }
2812 \cs_new:Npn \quark_if_recursion_tail_stop_do:nn #1
2813 {
2814 \tl_if_empty:oTF
2815 { __quark_if_recursion_tail:w {} #1 {} ?! \q_recursion_tail ??! }
2816 { \use_i_delimit_by_q_recursion_stop:nw }
2817 { \use_none:n }

322

2818 }
2819 \cs_new:Npn __quark_if_recursion_tail:w
2820 #1 \q_recursion_tail #2 ? #3 ?! { #1 #2 }
2821 \cs_generate_variant:Nn \quark_if_recursion_tail_stop:n { o }
2822 \cs_generate_variant:Nn \quark_if_recursion_tail_stop_do:nn { o }

(End definition for \quark_if_recursion_tail_stop:n and \quark_if_recursion_tail_stop:o. These
functions are documented on page 48.)

__quark_if_recursion_tail_break:NN
__quark_if_recursion_tail_break:nN

Analogs of the \quark_if_recursion_tail_stop... functions. Break the mapping us-
ing #2.

2823 \cs_new:Npn __quark_if_recursion_tail_break:NN #1#2
2824 {
2825 \if_meaning:w \q_recursion_tail #1
2826 \exp_after:wN #2
2827 \fi:
2828 }
2829 \cs_new:Npn __quark_if_recursion_tail_break:nN #1#2
2830 {
2831 \tl_if_empty:oTF
2832 { __quark_if_recursion_tail:w {} #1 {} ?! \q_recursion_tail ??! }
2833 {#2}
2834 { }
2835 }

(End definition for __quark_if_recursion_tail_break:NN. This function is documented on page 49.)

\quark_if_nil_p:N
\quark_if_nil:NTF

\quark_if_no_value_p:N
\quark_if_no_value_p:c
\quark_if_no_value:NTF
\quark_if_no_value:cTF

Here we test if we found a special quark as the first argument. We better start with
\q_no_value as the first argument since the whole thing may otherwise loop if #1 is
wrongly given a string like aabc instead of a single token.6

2836 \prg_new_conditional:Nnn \quark_if_nil:N { p, T , F , TF }
2837 {
2838 \if_meaning:w \q_nil #1
2839 \prg_return_true:
2840 \else:
2841 \prg_return_false:
2842 \fi:
2843 }
2844 \prg_new_conditional:Nnn \quark_if_no_value:N { p, T , F , TF }
2845 {
2846 \if_meaning:w \q_no_value #1
2847 \prg_return_true:
2848 \else:
2849 \prg_return_false:
2850 \fi:
2851 }
2852 \cs_generate_variant:Nn \quark_if_no_value_p:N { c }
2853 \cs_generate_variant:Nn \quark_if_no_value:NT { c }

6It may still loop in special circumstances however!

323

2854 \cs_generate_variant:Nn \quark_if_no_value:NF { c }
2855 \cs_generate_variant:Nn \quark_if_no_value:NTF { c }

(End definition for \quark_if_nil:NTF. This function is documented on page 47.)

\quark_if_nil_p:n
\quark_if_nil_p:V
\quark_if_nil_p:o
\quark_if_nil:nTF
\quark_if_nil:VTF
\quark_if_nil:oTF

\quark_if_no_value_p:n
\quark_if_no_value:nTF

__quark_if_nil:w
__quark_if_no_value:w

Let us explain \quark_if_nil:n(TF). Expanding __quark_if_nil:w once is safe
thanks to the trailing \q_nil ??!. The result of expanding once is empty if and only
if both delimited arguments #1 and #2 are empty and #3 is delimited by the last to-
kens ?!. Thanks to the leading {}, the argument #1 is empty if and only if the argument
of \quark_if_nil:n starts with \q_nil. The argument #2 is empty if and only if this
\q_nil is followed immediately by ? or by {}?, coming either from the trailing tokens in
the definition of \quark_if_nil:n, or from its argument. In the first case, __quark_-
if_nil:w is followed by {}\q_nil {}? !\q_nil ??!, hence #3 is delimited by the final ?!,
and the test returns true as wanted. In the second case, the result is not empty since
the first ?! in the definition of \quark_if_nil:n stop #3.

2856 \prg_new_conditional:Nnn \quark_if_nil:n { p, T , F , TF }
2857 {
2858 __tl_if_empty_return:o
2859 { __quark_if_nil:w {} #1 {} ? ! \q_nil ? ? ! }
2860 }
2861 \cs_new:Npn __quark_if_nil:w #1 \q_nil #2 ? #3 ? ! { #1 #2 }
2862 \prg_new_conditional:Nnn \quark_if_no_value:n { p, T , F , TF }
2863 {
2864 __tl_if_empty_return:o
2865 { __quark_if_no_value:w {} #1 {} ? ! \q_no_value ? ? ! }
2866 }
2867 \cs_new:Npn __quark_if_no_value:w #1 \q_no_value #2 ? #3 ? ! { #1 #2 }
2868 \cs_generate_variant:Nn \quark_if_nil_p:n { V , o }
2869 \cs_generate_variant:Nn \quark_if_nil:nTF { V , o }
2870 \cs_generate_variant:Nn \quark_if_nil:nT { V , o }
2871 \cs_generate_variant:Nn \quark_if_nil:nF { V , o }

(End definition for \quark_if_nil:nTF , \quark_if_nil:VTF , and \quark_if_nil:oTF. These functions
are documented on page 47.)

\q__tl_act_mark
\q__tl_act_stop

These private quarks are needed by l3tl, but that is loaded before the quark module,
hence their definition is deferred.

2872 \quark_new:N \q__tl_act_mark
2873 \quark_new:N \q__tl_act_stop

(End definition for \q__tl_act_mark and \q__tl_act_stop. These variables are documented on page
??.)

6.2 Scan marks
2874 〈@@=scan〉

\g__scan_marks_tl The list of all scan marks currently declared.
2875 \tl_new:N \g__scan_marks_tl

324

(End definition for \g__scan_marks_tl. This variable is documented on page ??.)

__scan_new:N Check whether the variable is already a scan mark, then declare it to be equal to \scan_-
stop: globally.

2876 \cs_new_protected:Npn __scan_new:N #1
2877 {
2878 \tl_if_in:NnTF \g__scan_marks_tl { #1 }
2879 {
2880 __msg_kernel_error:nnx { kernel } { scanmark-already-defined }
2881 { \token_to_str:N #1 }
2882 }
2883 {
2884 \tl_gput_right:Nn \g__scan_marks_tl {#1}
2885 \cs_new_eq:NN #1 \scan_stop:
2886 }
2887 }

(End definition for __scan_new:N.)

\s__stop We only declare one scan mark here, more can be defined by specific modules.
2888 __scan_new:N \s__stop

(End definition for \s__stop. This variable is documented on page 50.)

__use_none_delimit_by_s__stop:w Similar to \use_none_delimit_by_q_stop:w.
2889 \cs_new:Npn __use_none_delimit_by_s__stop:w #1 \s__stop { }

(End definition for __use_none_delimit_by_s__stop:w.)

\s__seq This private scan mark is needed by l3seq, but that is loaded before the quark module,
hence its definition is deferred.

2890 __scan_new:N \s__seq

(End definition for \s__seq. This variable is documented on page 130.)

2891 〈/initex | package〉

7 l3token implementation
2892 〈*initex | package〉

2893 〈@@=char〉

8 Manipulating and interrogating character tokens
\char_set_catcode:nn

\char_value_catcode:n
\char_show_value_catcode:n

Simple wrappers around the primitives.
2894 \cs_new_protected:Npn \char_set_catcode:nn #1#2
2895 {
2896 \tex_catcode:D __int_eval:w #1 __int_eval_end:
2897 = __int_eval:w #2 __int_eval_end:

325

2898 }
2899 \cs_new:Npn \char_value_catcode:n #1
2900 { \tex_the:D \tex_catcode:D __int_eval:w #1__int_eval_end: }
2901 \cs_new_protected:Npn \char_show_value_catcode:n #1
2902 { __msg_show_wrap:n { > ~ \char_value_catcode:n {#1} } }

(End definition for \char_set_catcode:nn. This function is documented on page 54.)

\char_set_catcode_escape:N
\char_set_catcode_group_begin:N

\char_set_catcode_group_end:N
\char_set_catcode_math_toggle:N

\char_set_catcode_alignment:N
\char_set_catcode_end_line:N

\char_set_catcode_parameter:N
\char_set_catcode_math_superscript:N

\char_set_catcode_math_subscript:N
\char_set_catcode_ignore:N
\char_set_catcode_space:N
\char_set_catcode_letter:N
\char_set_catcode_other:N
\char_set_catcode_active:N

\char_set_catcode_comment:N
\char_set_catcode_invalid:N

2903 \cs_new_protected:Npn \char_set_catcode_escape:N #1
2904 { \char_set_catcode:nn { ‘#1 } \c_zero }
2905 \cs_new_protected:Npn \char_set_catcode_group_begin:N #1
2906 { \char_set_catcode:nn { ‘#1 } \c_one }
2907 \cs_new_protected:Npn \char_set_catcode_group_end:N #1
2908 { \char_set_catcode:nn { ‘#1 } \c_two }
2909 \cs_new_protected:Npn \char_set_catcode_math_toggle:N #1
2910 { \char_set_catcode:nn { ‘#1 } \c_three }
2911 \cs_new_protected:Npn \char_set_catcode_alignment:N #1
2912 { \char_set_catcode:nn { ‘#1 } \c_four }
2913 \cs_new_protected:Npn \char_set_catcode_end_line:N #1
2914 { \char_set_catcode:nn { ‘#1 } \c_five }
2915 \cs_new_protected:Npn \char_set_catcode_parameter:N #1
2916 { \char_set_catcode:nn { ‘#1 } \c_six }
2917 \cs_new_protected:Npn \char_set_catcode_math_superscript:N #1
2918 { \char_set_catcode:nn { ‘#1 } \c_seven }
2919 \cs_new_protected:Npn \char_set_catcode_math_subscript:N #1
2920 { \char_set_catcode:nn { ‘#1 } \c_eight }
2921 \cs_new_protected:Npn \char_set_catcode_ignore:N #1
2922 { \char_set_catcode:nn { ‘#1 } \c_nine }
2923 \cs_new_protected:Npn \char_set_catcode_space:N #1
2924 { \char_set_catcode:nn { ‘#1 } \c_ten }
2925 \cs_new_protected:Npn \char_set_catcode_letter:N #1
2926 { \char_set_catcode:nn { ‘#1 } \c_eleven }
2927 \cs_new_protected:Npn \char_set_catcode_other:N #1
2928 { \char_set_catcode:nn { ‘#1 } \c_twelve }
2929 \cs_new_protected:Npn \char_set_catcode_active:N #1
2930 { \char_set_catcode:nn { ‘#1 } \c_thirteen }
2931 \cs_new_protected:Npn \char_set_catcode_comment:N #1
2932 { \char_set_catcode:nn { ‘#1 } \c_fourteen }
2933 \cs_new_protected:Npn \char_set_catcode_invalid:N #1
2934 { \char_set_catcode:nn { ‘#1 } \c_fifteen }

(End definition for \char_set_catcode_escape:N and others. These functions are documented on page
53.)

\char_set_catcode_escape:n
\char_set_catcode_group_begin:n

\char_set_catcode_group_end:n
\char_set_catcode_math_toggle:n

\char_set_catcode_alignment:n
\char_set_catcode_end_line:n

\char_set_catcode_parameter:n
\char_set_catcode_math_superscript:n

\char_set_catcode_math_subscript:n
\char_set_catcode_ignore:n
\char_set_catcode_space:n
\char_set_catcode_letter:n
\char_set_catcode_other:n
\char_set_catcode_active:n

\char_set_catcode_comment:n
\char_set_catcode_invalid:n

2935 \cs_new_protected:Npn \char_set_catcode_escape:n #1
2936 { \char_set_catcode:nn {#1} \c_zero }
2937 \cs_new_protected:Npn \char_set_catcode_group_begin:n #1
2938 { \char_set_catcode:nn {#1} \c_one }

326

2939 \cs_new_protected:Npn \char_set_catcode_group_end:n #1
2940 { \char_set_catcode:nn {#1} \c_two }
2941 \cs_new_protected:Npn \char_set_catcode_math_toggle:n #1
2942 { \char_set_catcode:nn {#1} \c_three }
2943 \cs_new_protected:Npn \char_set_catcode_alignment:n #1
2944 { \char_set_catcode:nn {#1} \c_four }
2945 \cs_new_protected:Npn \char_set_catcode_end_line:n #1
2946 { \char_set_catcode:nn {#1} \c_five }
2947 \cs_new_protected:Npn \char_set_catcode_parameter:n #1
2948 { \char_set_catcode:nn {#1} \c_six }
2949 \cs_new_protected:Npn \char_set_catcode_math_superscript:n #1
2950 { \char_set_catcode:nn {#1} \c_seven }
2951 \cs_new_protected:Npn \char_set_catcode_math_subscript:n #1
2952 { \char_set_catcode:nn {#1} \c_eight }
2953 \cs_new_protected:Npn \char_set_catcode_ignore:n #1
2954 { \char_set_catcode:nn {#1} \c_nine }
2955 \cs_new_protected:Npn \char_set_catcode_space:n #1
2956 { \char_set_catcode:nn {#1} \c_ten }
2957 \cs_new_protected:Npn \char_set_catcode_letter:n #1
2958 { \char_set_catcode:nn {#1} \c_eleven }
2959 \cs_new_protected:Npn \char_set_catcode_other:n #1
2960 { \char_set_catcode:nn {#1} \c_twelve }
2961 \cs_new_protected:Npn \char_set_catcode_active:n #1
2962 { \char_set_catcode:nn {#1} \c_thirteen }
2963 \cs_new_protected:Npn \char_set_catcode_comment:n #1
2964 { \char_set_catcode:nn {#1} \c_fourteen }
2965 \cs_new_protected:Npn \char_set_catcode_invalid:n #1
2966 { \char_set_catcode:nn {#1} \c_fifteen }

(End definition for \char_set_catcode_escape:n and others. These functions are documented on page
53.)

\char_set_mathcode:nn
\char_value_mathcode:n

\char_show_value_mathcode:n
\char_set_lccode:nn
\char_value_lccode:n

\char_show_value_lccode:n
\char_set_uccode:nn
\char_value_uccode:n

\char_show_value_uccode:n
\char_set_sfcode:nn
\char_value_sfcode:n

\char_show_value_sfcode:n

Pretty repetitive, but necessary!
2967 \cs_new_protected:Npn \char_set_mathcode:nn #1#2
2968 {
2969 \tex_mathcode:D __int_eval:w #1 __int_eval_end:
2970 = __int_eval:w #2 __int_eval_end:
2971 }
2972 \cs_new:Npn \char_value_mathcode:n #1
2973 { \tex_the:D \tex_mathcode:D __int_eval:w #1__int_eval_end: }
2974 \cs_new_protected:Npn \char_show_value_mathcode:n #1
2975 { __msg_show_wrap:n { > ~ \char_value_mathcode:n {#1} } }
2976 \cs_new_protected:Npn \char_set_lccode:nn #1#2
2977 {
2978 \tex_lccode:D __int_eval:w #1 __int_eval_end:
2979 = __int_eval:w #2 __int_eval_end:
2980 }
2981 \cs_new:Npn \char_value_lccode:n #1
2982 { \tex_the:D \tex_lccode:D __int_eval:w #1__int_eval_end: }
2983 \cs_new_protected:Npn \char_show_value_lccode:n #1

327

2984 { __msg_show_wrap:n { > ~ \char_value_lccode:n {#1} } }
2985 \cs_new_protected:Npn \char_set_uccode:nn #1#2
2986 {
2987 \tex_uccode:D __int_eval:w #1 __int_eval_end:
2988 = __int_eval:w #2 __int_eval_end:
2989 }
2990 \cs_new:Npn \char_value_uccode:n #1
2991 { \tex_the:D \tex_uccode:D __int_eval:w #1__int_eval_end: }
2992 \cs_new_protected:Npn \char_show_value_uccode:n #1
2993 { __msg_show_wrap:n { > ~ \char_value_uccode:n {#1} } }
2994 \cs_new_protected:Npn \char_set_sfcode:nn #1#2
2995 {
2996 \tex_sfcode:D __int_eval:w #1 __int_eval_end:
2997 = __int_eval:w #2 __int_eval_end:
2998 }
2999 \cs_new:Npn \char_value_sfcode:n #1
3000 { \tex_the:D \tex_sfcode:D __int_eval:w #1__int_eval_end: }
3001 \cs_new_protected:Npn \char_show_value_sfcode:n #1
3002 { __msg_show_wrap:n { > ~ \char_value_sfcode:n {#1} } }

(End definition for \char_set_mathcode:nn. This function is documented on page 55.)

\l_char_active_seq
\l_char_special_seq

Two sequences for dealing with special characters. The first is characters which may be
active, the second longer list is for “special” characters more generally. Both lists are
escaped so that for example bulk code assignments can be carried out. In both cases, the
order is by ascii character code (as is done in for example \ExplSyntaxOn).

3003 \seq_new:N \l_char_special_seq
3004 \seq_set_split:Nnn \l_char_special_seq { }
3005 { \ \" \# \$ \% \& \\ \^ _ \{ \} \~ }
3006 \seq_new:N \l_char_active_seq
3007 \seq_set_split:Nnn \l_char_special_seq { }
3008 { \" \$ \& \^ _ \~ }

(End definition for \l_char_active_seq and \l_char_special_seq. These variables are documented on
page 56.)

9 Creating character tokens
\char_set_active_eq:NN
\char_gset_active_eq:NN
\char_set_active_eq:Nc

\char_gset_active_eq:Nc
\char_set_active_eq:nN

\char_gset_active_eq:nN
\char_set_active_eq:nc
\char_gset_active_eq:nc

Four simple functions with very similar definitions, so set up using an auxiliary.
3009 \group_begin:
3010 \char_set_catcode_active:N \^^@
3011 \cs_set_protected:Npn __char_tmp:nN #1#2
3012 {
3013 \cs_new_protected:cpn { #1 :nN } ##1
3014 {
3015 \group_begin:
3016 \char_set_catcode_active:n { ##1 }
3017 \char_set_lccode:nn { ‘\^^@ } { ##1 }
3018 \tex_lowercase:D { \group_end: #2 ^^@ }

328

3019 }
3020 \cs_new_protected:cpx { #1 :NN } ##1
3021 { \exp_not:c { #1 : nN } { ‘##1 } }
3022 }
3023 __char_tmp:nN { char_set_active_eq } \cs_set_eq:NN
3024 __char_tmp:nN { char_gset_active_eq } \cs_gset_eq:NN
3025 \group_end:
3026 \cs_generate_variant:Nn \char_set_active_eq:NN { Nc }
3027 \cs_generate_variant:Nn \char_gset_active_eq:NN { Nc }
3028 \cs_generate_variant:Nn \char_set_active_eq:nN { nc }
3029 \cs_generate_variant:Nn \char_gset_active_eq:nN { nc }

(End definition for \char_set_active_eq:NN and others. These functions are documented on page 51.)

\char_generate:nn
__char_generate:nn

__char_generate_aux:nn
__char_generate_aux:nnw

\l__char_tmp_tl
\c__char_max_int

__char_generate_invalid_catcode:

The aim here is to generate characters of (broadly) arbitrary category code. Where
possible, that is done using engine support (X ETEX, LuaTEX). There are though various
issues which are covered below. At the interface layer, turn the two arguments into
integers up-front so this is only done once.

3030 \cs_new:Npn \char_generate:nn #1#2
3031 {
3032 \exp:w \exp_after:wN __char_generate_aux:w
3033 __int_value:w __int_eval:w #1 \exp_after:wN ;
3034 __int_value:w __int_eval:w #2 ;
3035 }
3036 \cs_new:Npn __char_generate:nn #1#2
3037 {
3038 \exp:w \exp_after:wN
3039 __char_generate_aux:nnw \exp_after:wN
3040 { __int_value:w __int_eval:w #1 \exp_after:wN }
3041 {#2} \exp_end:
3042 }

Before doing any actual conversion, first some special case filtering. The \Ucharcat
primitive cannot make active chars, so that is turned off here: if the primitive gets
altered then the code is already in place for 8-bit engines and will kick in for LuaTEX too.
Spaces are also banned here as LuaTEX emulation only makes normal (charcode 32 spaces.
However, ^^@ is filtered out separately as that can’t be done with macro emulation either,
so is flagged up separately. That done, hand off to the engine-dependent part.

3043 \cs_new:Npn __char_generate_aux:w #1 ; #2 ;
3044 {
3045 \if_int_compare:w #2 = \c_thirteen
3046 __msg_kernel_expandable_error:nn { kernel } { char-active }
3047 \else:
3048 \if_int_compare:w #2 = \c_ten
3049 \if_int_compare:w #1 = \c_zero
3050 __msg_kernel_expandable_error:nn { kernel } { char-null-space }
3051 \else:
3052 __msg_kernel_expandable_error:nn { kernel } { char-space }
3053 \fi:
3054 \else:

329

3055 \if_int_odd:w 0
3056 \if_int_compare:w #2 < \c_one 1 \fi:
3057 \if_int_compare:w #2 = \c_five 1 \fi:
3058 \if_int_compare:w #2 = \c_nine 1 \fi:
3059 \if_int_compare:w #2 > \c_thirteen 1 \fi: \exp_stop_f:
3060 __msg_kernel_expandable_error:nn { kernel }
3061 { char-invalid-catcode }
3062 \else:
3063 \if_int_odd:w 0
3064 \if_int_compare:w #1 < \c_zero 1 \fi:
3065 \if_int_compare:w #1 > \c__char_max_int 1 \fi: \exp_stop_f:
3066 __msg_kernel_expandable_error:nn { kernel }
3067 { char-out-of-range }
3068 \else:
3069 __char_generate_aux:nnw {#1} {#2}
3070 \fi:
3071 \fi:
3072 \fi:
3073 \fi:
3074 \exp_end:
3075 }
3076 \tl_new:N \l__char_tmp_tl

Engine-dependent definitions are now needed for the implementation. For LuaTEX and
recent X ETEX releases there is engine-level support. They can do cases that macro emu-
lation can’t. All of those are filtered out here using a primitive-based boolean expression
for speed. The final level is the basic definition at the engine level: the arguments here
are integers so there is no need to worry about them too much.

3077 \group_begin:
3078 〈*package〉
3079 \char_set_catcode_active:N \^^L
3080 \cs_set_nopar:Npn ^^L { }
3081 〈/package〉
3082 \char_set_catcode_other:n { 0 }
3083 \if_int_odd:w 0
3084 \cs_if_exist:NT \luatex_directlua:D { 1 }
3085 \cs_if_exist:NT \utex_charcat:D { 1 } \exp_stop_f:
3086 \int_const:Nn \c__char_max_int { 1114111 }
3087 \cs_if_exist:NTF \luatex_directlua:D
3088 {
3089 \cs_new:Npn __char_generate_aux:nnw #1#2#3 \exp_end:
3090 {
3091 #3
3092 \exp_after:wN \exp_end:
3093 \luatex_directlua:D { l3kernel.charcat(#1, #2) }
3094 }
3095 }
3096 {
3097 \cs_new:Npn __char_generate_aux:nnw #1#2#3 \exp_end:
3098 {

330

3099 #3
3100 \exp_after:wN \exp_end:
3101 \utex_charcat:D #1 ~ #2 ~
3102 }
3103 }
3104 \else:

For engines where \Ucharcat isn’t available (or emulated) then we have to work in
macros, and cover only the 8-bit range. The first stage is to build up a tl containing
^^@ with each category code that can be accessed in this way, with an error set up for
the other cases. This is all done such that it can be quickly accessed using a \if_case:w
low-level conditional. There are a few things to notice here. As ^^L is \outer we need to
locally set it to avoid a problem. To get open/close braces into the list, they are set up
using \if_false: pairing here and will later be x-type expanded into the desired form.
For making spaces, there needs to be an o-type expansion of a \use:n (or some other
tokenization) to avoid dropping the space. We also set up active tokens although they
are (currently) filtered out by the interface layer (\Ucharcat cannot make active tokens).

3105 \int_const:Nn \c__char_max_int { 255 }
3106 \tl_set:Nn \l__char_tmp_tl { \exp_not:N \or: }
3107 \char_set_catcode_group_begin:n { 0 } % {
3108 \tl_put_right:Nn \l__char_tmp_tl { ^^@ \if_false: } }
3109 \char_set_catcode_group_end:n { 0 }
3110 \tl_put_right:Nn \l__char_tmp_tl { { \fi: \exp_not:N \or: ^^@ } % }
3111 \tl_set:Nx \l__char_tmp_tl { \l__char_tmp_tl }
3112 \char_set_catcode_math_toggle:n { 0 }
3113 \tl_put_right:Nn \l__char_tmp_tl { \or: ^^@ }
3114 \char_set_catcode_alignment:n { 0 }
3115 \tl_put_right:Nn \l__char_tmp_tl { \or: ^^@ }
3116 \tl_put_right:Nn \l__char_tmp_tl { \or: }
3117 \char_set_catcode_parameter:n { 0 }
3118 \tl_put_right:Nn \l__char_tmp_tl { \or: ^^@ }
3119 \char_set_catcode_math_superscript:n { 0 }
3120 \tl_put_right:Nn \l__char_tmp_tl { \or: ^^@ }
3121 \char_set_catcode_math_subscript:n { 0 }
3122 \tl_put_right:Nn \l__char_tmp_tl { \or: ^^@ }
3123 \tl_put_right:Nn \l__char_tmp_tl { \or: }
3124 \char_set_catcode_space:n { 0 }
3125 \tl_put_right:No \l__char_tmp_tl { \use:n { \or: } ^^@ }
3126 \char_set_catcode_letter:n { 0 }
3127 \tl_put_right:Nn \l__char_tmp_tl { \or: ^^@ }
3128 \char_set_catcode_other:n { 0 }
3129 \tl_put_right:Nn \l__char_tmp_tl { \or: ^^@ }
3130 \char_set_catcode_active:n { 0 }
3131 \tl_put_right:Nn \l__char_tmp_tl { \or: ^^@ }

Convert the above temporary list into a series of constant token lists, one for each char-
acter code, using \tex_lowercase:D to convert ^^@ in each case. The x-type expansion
deals with the \if_false: stuff introduced earlier. This is done in three parts as ^^L is
awkward. Notice that at this stage ^^@ is active. In format mode this is not needed.

331

3132 \cs_set_protected:Npn __char_tmp:n #1
3133 {
3134 \char_set_lccode:nn { 0 } {#1}
3135 \char_set_lccode:nn { 32 } {#1}
3136 \exp_args:Nx \tex_lowercase:D
3137 {
3138 \tl_const:Nn
3139 \exp_not:c { c__char_ __int_to_roman:w #1 _tl }
3140 { \exp_not:o \l__char_tmp_tl }
3141 }
3142 }
3143 〈*package〉
3144 \int_step_function:nnnN { 0 } { 1 } { 11 } __char_tmp:n
3145 \group_begin:
3146 \tl_replace_once:Nnn \l__char_tmp_tl { ^^@ } { \ERROR }
3147 __char_tmp:n { 12 }
3148 \group_end:
3149 \int_step_function:nnnN { 13 } { 1 } { 255 } __char_tmp:n
3150 〈/package〉
3151 〈*initex〉
3152 \int_step_function:nnnN { 0 } { 1 } { 255 } __char_tmp:n
3153 〈/initex〉
3154 \cs_new:Npn __char_generate_aux:nnw #1#2#3 \exp_end:
3155 {
3156 #3
3157 \exp_after:wN \exp_after:wN
3158 \exp_after:wN \exp_end:
3159 \exp_after:wN \exp_after:wN
3160 \if_case:w #2
3161 \exp_last_unbraced:Nv \exp_stop_f:
3162 { c__char_ __int_to_roman:w #1 _tl }
3163 \fi:
3164 }
3165 \fi:
3166 \group_end:

(End definition for \char_generate:nn. This function is documented on page 52.)

9.1 Generic tokens
3167 〈@@=token〉

\token_to_meaning:N
\token_to_meaning:c

\token_to_str:N
\token_to_str:c

These are all defined in l3basics, as they are needed “early”. This is just a reminder!

(End definition for \token_to_meaning:N and \token_to_meaning:c. These functions are documented
on page 57.)

\token_new:Nn Creates a new token.
3168 \cs_new_protected:Npn \token_new:Nn #1#2 { \cs_new_eq:NN #1 #2 }

(End definition for \token_new:Nn. This function is documented on page 56.)

332

\c_group_begin_token
\c_group_end_token

\c_math_toggle_token
\c_alignment_token
\c_parameter_token

\c_math_superscript_token
\c_math_subscript_token

\c_space_token
\c_catcode_letter_token
\c_catcode_other_token

We define these useful tokens. For the brace and space tokens things have to be done
by hand: the formal argument spec. for \cs_new_eq:NN does not cover them so we do
things by hand. (As currently coded it would work with \cs_new_eq:NN but that’s not
really a great idea to show off: we want people to stick to the defined interfaces and that
includes us.) So that these few odd names go into the log when appropriate there is a
need to hand-apply the __chk_if_free_cs:N check.

3169 \group_begin:
3170 __chk_if_free_cs:N \c_group_begin_token
3171 \tex_global:D \tex_let:D \c_group_begin_token {
3172 __chk_if_free_cs:N \c_group_end_token
3173 \tex_global:D \tex_let:D \c_group_end_token }
3174 \char_set_catcode_math_toggle:N *
3175 \cs_new_eq:NN \c_math_toggle_token *
3176 \char_set_catcode_alignment:N *
3177 \cs_new_eq:NN \c_alignment_token *
3178 \cs_new_eq:NN \c_parameter_token #
3179 \cs_new_eq:NN \c_math_superscript_token ^
3180 \char_set_catcode_math_subscript:N *
3181 \cs_new_eq:NN \c_math_subscript_token *
3182 __chk_if_free_cs:N \c_space_token
3183 \use:n { \tex_global:D \tex_let:D \c_space_token = ~ } ~
3184 \cs_new_eq:NN \c_catcode_letter_token a
3185 \cs_new_eq:NN \c_catcode_other_token 1
3186 \group_end:

(End definition for \c_group_begin_token and others. These functions are documented on page 56.)

\c_catcode_active_tl Not an implicit token!
3187 \group_begin:
3188 \char_set_catcode_active:N *
3189 \tl_const:Nn \c_catcode_active_tl { \exp_not:N * }
3190 \group_end:

(End definition for \c_catcode_active_tl. This variable is documented on page 56.)

9.2 Token conditionals
\token_if_group_begin_p:N
\token_if_group_begin:NTF

Check if token is a begin group token. We use the constant \c_group_begin_token for
this.

3191 \prg_new_conditional:Npnn \token_if_group_begin:N #1 { p , T , F , TF }
3192 {
3193 \if_catcode:w \exp_not:N #1 \c_group_begin_token
3194 \prg_return_true: \else: \prg_return_false: \fi:
3195 }

(End definition for \token_if_group_begin:NTF. This function is documented on page 57.)

333

\token_if_group_end_p:N
\token_if_group_end:NTF

Check if token is a end group token. We use the constant \c_group_end_token for this.
3196 \prg_new_conditional:Npnn \token_if_group_end:N #1 { p , T , F , TF }
3197 {
3198 \if_catcode:w \exp_not:N #1 \c_group_end_token
3199 \prg_return_true: \else: \prg_return_false: \fi:
3200 }

(End definition for \token_if_group_end:NTF. This function is documented on page 57.)

\token_if_math_toggle_p:N
\token_if_math_toggle:NTF

Check if token is a math shift token. We use the constant \c_math_toggle_token for
this.

3201 \prg_new_conditional:Npnn \token_if_math_toggle:N #1 { p , T , F , TF }
3202 {
3203 \if_catcode:w \exp_not:N #1 \c_math_toggle_token
3204 \prg_return_true: \else: \prg_return_false: \fi:
3205 }

(End definition for \token_if_math_toggle:NTF. This function is documented on page 57.)

\token_if_alignment_p:N
\token_if_alignment:NTF

Check if token is an alignment tab token. We use the constant \c_alignment_token for
this.

3206 \prg_new_conditional:Npnn \token_if_alignment:N #1 { p , T , F , TF }
3207 {
3208 \if_catcode:w \exp_not:N #1 \c_alignment_token
3209 \prg_return_true: \else: \prg_return_false: \fi:
3210 }

(End definition for \token_if_alignment:NTF. This function is documented on page 57.)

\token_if_parameter_p:N
\token_if_parameter:NTF

Check if token is a parameter token. We use the constant \c_parameter_token for this.
We have to trick TEX a bit to avoid an error message: within a group we prevent \c_-
parameter_token from behaving like a macro parameter character. The definitions of
\prg_new_conditional:Npnn are global, so they will remain after the group.

3211 \group_begin:
3212 \cs_set_eq:NN \c_parameter_token \scan_stop:
3213 \prg_new_conditional:Npnn \token_if_parameter:N #1 { p , T , F , TF }
3214 {
3215 \if_catcode:w \exp_not:N #1 \c_parameter_token
3216 \prg_return_true: \else: \prg_return_false: \fi:
3217 }
3218 \group_end:

(End definition for \token_if_parameter:NTF. This function is documented on page 58.)

\token_if_math_superscript_p:N
\token_if_math_superscript:NTF

Check if token is a math superscript token. We use the constant \c_math_superscript_-
token for this.

3219 \prg_new_conditional:Npnn \token_if_math_superscript:N #1
3220 { p , T , F , TF }
3221 {
3222 \if_catcode:w \exp_not:N #1 \c_math_superscript_token

334

3223 \prg_return_true: \else: \prg_return_false: \fi:
3224 }

(End definition for \token_if_math_superscript:NTF. This function is documented on page 58.)

\token_if_math_subscript_p:N
\token_if_math_subscript:NTF

Check if token is a math subscript token. We use the constant \c_math_subscript_-
token for this.

3225 \prg_new_conditional:Npnn \token_if_math_subscript:N #1 { p , T , F , TF }
3226 {
3227 \if_catcode:w \exp_not:N #1 \c_math_subscript_token
3228 \prg_return_true: \else: \prg_return_false: \fi:
3229 }

(End definition for \token_if_math_subscript:NTF. This function is documented on page 58.)

\token_if_space_p:N
\token_if_space:NTF

Check if token is a space token. We use the constant \c_space_token for this.
3230 \prg_new_conditional:Npnn \token_if_space:N #1 { p , T , F , TF }
3231 {
3232 \if_catcode:w \exp_not:N #1 \c_space_token
3233 \prg_return_true: \else: \prg_return_false: \fi:
3234 }

(End definition for \token_if_space:NTF. This function is documented on page 58.)

\token_if_letter_p:N
\token_if_letter:NTF

Check if token is a letter token. We use the constant \c_catcode_letter_token for this.
3235 \prg_new_conditional:Npnn \token_if_letter:N #1 { p , T , F , TF }
3236 {
3237 \if_catcode:w \exp_not:N #1 \c_catcode_letter_token
3238 \prg_return_true: \else: \prg_return_false: \fi:
3239 }

(End definition for \token_if_letter:NTF. This function is documented on page 58.)

\token_if_other_p:N
\token_if_other:NTF

Check if token is an other char token. We use the constant \c_catcode_other_token
for this.

3240 \prg_new_conditional:Npnn \token_if_other:N #1 { p , T , F , TF }
3241 {
3242 \if_catcode:w \exp_not:N #1 \c_catcode_other_token
3243 \prg_return_true: \else: \prg_return_false: \fi:
3244 }

(End definition for \token_if_other:NTF. This function is documented on page 58.)

\token_if_active_p:N
\token_if_active:NTF

Check if token is an active char token. We use the constant \c_catcode_active_tl for
this. A technical point is that \c_catcode_active_tl is in fact a macro expanding to
\exp_not:N *, where * is active.

3245 \prg_new_conditional:Npnn \token_if_active:N #1 { p , T , F , TF }
3246 {
3247 \if_catcode:w \exp_not:N #1 \c_catcode_active_tl
3248 \prg_return_true: \else: \prg_return_false: \fi:
3249 }

335

(End definition for \token_if_active:NTF. This function is documented on page 58.)

\token_if_eq_meaning_p:NN
\token_if_eq_meaning:NNTF

Check if the tokens #1 and #2 have same meaning.
3250 \prg_new_conditional:Npnn \token_if_eq_meaning:NN #1#2 { p , T , F , TF }
3251 {
3252 \if_meaning:w #1 #2
3253 \prg_return_true: \else: \prg_return_false: \fi:
3254 }

(End definition for \token_if_eq_meaning:NNTF. This function is documented on page 59.)

\token_if_eq_catcode_p:NN
\token_if_eq_catcode:NNTF

Check if the tokens #1 and #2 have same category code.
3255 \prg_new_conditional:Npnn \token_if_eq_catcode:NN #1#2 { p , T , F , TF }
3256 {
3257 \if_catcode:w \exp_not:N #1 \exp_not:N #2
3258 \prg_return_true: \else: \prg_return_false: \fi:
3259 }

(End definition for \token_if_eq_catcode:NNTF. This function is documented on page 58.)

\token_if_eq_charcode_p:NN
\token_if_eq_charcode:NNTF

Check if the tokens #1 and #2 have same character code.
3260 \prg_new_conditional:Npnn \token_if_eq_charcode:NN #1#2 { p , T , F , TF }
3261 {
3262 \if_charcode:w \exp_not:N #1 \exp_not:N #2
3263 \prg_return_true: \else: \prg_return_false: \fi:
3264 }

(End definition for \token_if_eq_charcode:NNTF. This function is documented on page 58.)

\token_if_macro_p:N
\token_if_macro:NTF

__token_if_macro_p:w

When a token is a macro, \token_to_meaning:N will always output something like
\long macro:#1->#1 so we could naively check to see if the meaning contains ->.
However, this can fail the five \...mark primitives, whose meaning has the form
...mark:〈user material〉. The problem is that the 〈user material〉 can contain ->.

However, only characters, macros, and marks can contain the colon character. The
idea is thus to grab until the first :, and analyse what is left. However, macros can have
any combination of \long, \protected or \outer (not used in LATEX3) before the string
macro:. We thus only select the part of the meaning between the first ma and the first
following :. If this string is cro, then we have a macro. If the string is rk, then we have
a mark. The string can also be cro parameter character for a colon with a weird
category code (namely the usual category code of #). Otherwise, it is empty.

This relies on the fact that \long, \protected, \outer cannot contain ma, regardless
of the escape character, even if the escape character is m. . .

Both ma and : must be of category code 12 (other), so are detokenized.
3265 \use:x
3266 {
3267 \prg_new_conditional:Npnn \exp_not:N \token_if_macro:N ##1
3268 { p , T , F , TF }
3269 {
3270 \exp_not:N \exp_after:wN \exp_not:N __token_if_macro_p:w

336

3271 \exp_not:N \token_to_meaning:N ##1 \tl_to_str:n { ma : }
3272 \exp_not:N \q_stop
3273 }
3274 \cs_new:Npn \exp_not:N __token_if_macro_p:w
3275 ##1 \tl_to_str:n { ma } ##2 \c_colon_str ##3 \exp_not:N \q_stop
3276 }
3277 {
3278 \if_int_compare:w __str_if_eq_x:nn { #2 } { cro } = \c_zero
3279 \prg_return_true:
3280 \else:
3281 \prg_return_false:
3282 \fi:
3283 }

(End definition for \token_if_macro:NTF. This function is documented on page 59.)

\token_if_cs_p:N
\token_if_cs:NTF

Check if token has same catcode as a control sequence. This follows the same pattern as
for \token_if_letter:N etc. We use \scan_stop: for this.

3284 \prg_new_conditional:Npnn \token_if_cs:N #1 { p , T , F , TF }
3285 {
3286 \if_catcode:w \exp_not:N #1 \scan_stop:
3287 \prg_return_true: \else: \prg_return_false: \fi:
3288 }

(End definition for \token_if_cs:NTF. This function is documented on page 59.)

\token_if_expandable_p:N
\token_if_expandable:NTF

Check if token is expandable. We use the fact that TEX will temporarily convert \exp_-
not:N 〈token〉 into \scan_stop: if 〈token〉 is expandable. An undefined token is not
considered as expandable. No problem nesting the conditionals, since the third #1 is only
skipped if it is non-expandable (hence not part of TEX’s conditional apparatus).

3289 \prg_new_conditional:Npnn \token_if_expandable:N #1 { p , T , F , TF }
3290 {
3291 \exp_after:wN \if_meaning:w \exp_not:N #1 #1
3292 \prg_return_false:
3293 \else:
3294 \if_cs_exist:N #1
3295 \prg_return_true:
3296 \else:
3297 \prg_return_false:
3298 \fi:
3299 \fi:
3300 }

(End definition for \token_if_expandable:NTF. This function is documented on page 59.)

__token_delimit_by_char":w
__token_delimit_by_count:w
__token_delimit_by_dimen:w
__token_delimit_by_macro:w
__token_delimit_by_muskip:w
__token_delimit_by_skip:w
__token_delimit_by_toks:w

These auxiliary functions are used below to define some conditionals which detect whether
the \meaning of their argument begins with a particular string. Each auxiliary takes an
argument delimited by a string, a second one delimited by \q_stop, and returns the first
one and its delimiter. This result will eventually be compared to another string.

3301 \group_begin:

337

3302 \cs_set_protected:Npn __token_tmp:w #1
3303 {
3304 \use:x
3305 {
3306 \cs_new:Npn \exp_not:c { __token_delimit_by_ #1 :w }
3307 ####1 \tl_to_str:n {#1} ####2 \exp_not:N \q_stop
3308 { ####1 \tl_to_str:n {#1} }
3309 }
3310 }
3311 __token_tmp:w { char" }
3312 __token_tmp:w { count }
3313 __token_tmp:w { dimen }
3314 __token_tmp:w { macro }
3315 __token_tmp:w { muskip }
3316 __token_tmp:w { skip }
3317 __token_tmp:w { toks }
3318 \group_end:

(End definition for __token_delimit_by_char":w and others.)

\token_if_chardef_p:N
\token_if_mathchardef_p:N
\token_if_long_macro_p:N

\token_if_protected_macro_p:N
\token_if_protected_long_macro_p:N

\token_if_dim_register_p:N
\token_if_int_register_p:N

\token_if_muskip_register_p:N
\token_if_skip_register_p:N
\token_if_toks_register_p:N

\token_if_chardef:NTF
\token_if_mathchardef:NTF
\token_if_long_macro:NTF

\token_if_protected_macro:NTF
\token_if_protected_long_macro:NTF

\token_if_dim_register:NTF
\token_if_int_register:NTF

\token_if_muskip_register:NTF
\token_if_skip_register:NTF
\token_if_toks_register:NTF

Each of these conditionals tests whether its argument’s \meaning starts with a given
string. This is essentially done by having an auxiliary grab an argument delimited by
the string and testing whether the argument was empty. Of course, a copy of this string
must first be added to the end of the \meaning to avoid a runaway argument in case it
does not contain the string. Two complications arise. First, the escape character is not
fixed, and cannot be included in the delimiter of the auxiliary function (this function
cannot be defined on the fly because tests must remain expandable): instead the first
argument of the auxiliary (plus the delimiter to avoid complications with trailing spaces)
is compared using __str_if_eq_x_return:nn to the result of applying \token_to_-
str:N to a control sequence. Second, the \meaning of primitives such as \dimen or
\dimendef starts in the same way as registers such as \dimen123, so they must be tested
for.

Characters used as delimiters must have catcode 12 and are obtained through \tl_-
to_str:n. This requires doing all definitions within x-expansion. The temporary function
__token_tmp:w used to define each conditional receives three arguments: the name of
the conditional, the auxiliary’s delimiter (also used to name the auxiliary), and the string
to which one compares the auxiliary’s result. Note that the \meaning of a protected long
macro starts with \protected\long macro, with no space after \protected but a space
after \long, hence the mixture of \token_to_str:N and \tl_to_str:n.

For the first five conditionals, \cs_if_exist:cT turns out to be false, and the code
boils down to a string comparison between the result of the auxiliary on the \meaning
of the conditional’s argument ####1, and #3. Both are evaluated at run-time, as this is
important to get the correct escape character.

The other five conditionals have additional code that compares the argument ####1
to two TEX primitives which would wrongly be recognized as registers otherwise. Despite
using TEX’s primitive conditional construction, this does not break when ####1 is itself
a conditional, because branches of the conditionals are only skipped if ####1 is one of
the two primitives that are tested for (which are not TEX conditionals).

338

3319 \group_begin:
3320 \cs_set_protected:Npn __token_tmp:w #1#2#3
3321 {
3322 \use:x
3323 {
3324 \prg_new_conditional:Npnn \exp_not:c { token_if_ #1 :N } ####1
3325 { p , T , F , TF }
3326 {
3327 \cs_if_exist:cT { tex_ #2 :D }
3328 {
3329 \exp_not:N \if_meaning:w ####1 \exp_not:c { tex_ #2 :D }
3330 \exp_not:N \prg_return_false:
3331 \exp_not:N \else:
3332 \exp_not:N \if_meaning:w ####1 \exp_not:c { tex_ #2 def:D }
3333 \exp_not:N \prg_return_false:
3334 \exp_not:N \else:
3335 }
3336 \exp_not:N __str_if_eq_x_return:nn
3337 {
3338 \exp_not:N \exp_after:wN
3339 \exp_not:c { __token_delimit_by_ #2 :w }
3340 \exp_not:N \token_to_meaning:N ####1
3341 ? \tl_to_str:n {#2} \exp_not:N \q_stop
3342 }
3343 { \exp_not:n {#3} }
3344 \cs_if_exist:cT { tex_ #2 :D }
3345 {
3346 \exp_not:N \fi:
3347 \exp_not:N \fi:
3348 }
3349 }
3350 }
3351 }
3352 __token_tmp:w { chardef } { char" } { \token_to_str:N \char" }
3353 __token_tmp:w { mathchardef } { char" } { \token_to_str:N \mathchar" }
3354 __token_tmp:w { long_macro } { macro } { \tl_to_str:n { \long } macro }
3355 __token_tmp:w { protected_macro } { macro }
3356 { \tl_to_str:n { \protected } macro }
3357 __token_tmp:w { protected_long_macro } { macro }
3358 { \token_to_str:N \protected \tl_to_str:n { \long } macro }
3359 __token_tmp:w { dim_register } { dimen } { \token_to_str:N \dimen }
3360 __token_tmp:w { int_register } { count } { \token_to_str:N \count }
3361 __token_tmp:w { muskip_register } { muskip } { \token_to_str:N \muskip }
3362 __token_tmp:w { skip_register } { skip } { \token_to_str:N \skip }
3363 __token_tmp:w { toks_register } { toks } { \token_to_str:N \toks }
3364 \group_end:

(End definition for \token_if_chardef:NTF and others. These functions are documented on page 59.)

\token_if_primitive_p:N
\token_if_primitive:NTF

__token_if_primitive:NNw
__token_if_primitive_space:w

__token_if_primitive_nullfont:N
__token_if_primitive_loop:N

__token_if_primitive:Nw
__token_if_primitive_undefined:N

We filter out macros first, because they cause endless trouble later otherwise.

339

Primitives are almost distinguished by the fact that the result of \token_to_-
meaning:N is formed from letters only. Every other token has either a space (e.g.,
the letter A), a digit (e.g., \count123) or a double quote (e.g., \char"A).

Ten exceptions: on the one hand, \tex_undefined:D is not a primitive, but its
meaning is undefined, only letters; on the other hand, \space, \italiccorr, \hyphen,
\firstmark, \topmark, \botmark, \splitfirstmark, \splitbotmark, and \nullfont
are primitives, but have non-letters in their meaning.

We start by removing the two first (non-space) characters from the meaning. This
removes the escape character (which may be inexistent depending on \endlinechar), and
takes care of three of the exceptions: \space, \italiccorr and \hyphen, whose meaning
is at most two characters. This leaves a string terminated by some :, and \q_stop.

The meaning of each one of the five \...mark primitives has the form 〈letters〉:〈user
material〉. In other words, the first non-letter is a colon. We remove everything after the
first colon.

We are now left with a string, which we must analyze. For primitives, it contains
only letters. For non-primitives, it contains either ", or a space, or a digit. Two excep-
tions remain: \tex_undefined:D, which is not a primitive, and \nullfont, which is a
primitive.

Spaces cannot be grabbed in an undelimited way, so we check them separately. If
there is a space, we test for \nullfont. Otherwise, we go through characters one by one,
and stop at the first character less than ‘A (this is not quite a test for “only letters”,
but is close enough to work in this context). If this first character is : then we have a
primitive, or \tex_undefined:D, and if it is " or a digit, then the token is not a primitive.

3365 \tex_chardef:D \c__token_A_int = ‘A ~ %
3366 \use:x
3367 {
3368 \prg_new_conditional:Npnn \exp_not:N \token_if_primitive:N ##1
3369 { p , T , F , TF }
3370 {
3371 \exp_not:N \token_if_macro:NTF ##1
3372 \exp_not:N \prg_return_false:
3373 {
3374 \exp_not:N \exp_after:wN \exp_not:N __token_if_primitive:NNw
3375 \exp_not:N \token_to_meaning:N ##1
3376 \tl_to_str:n { : : : } \exp_not:N \q_stop ##1
3377 }
3378 }
3379 \cs_new:Npn \exp_not:N __token_if_primitive:NNw
3380 ##1##2 ##3 \c_colon_str ##4 \exp_not:N \q_stop
3381 {
3382 \exp_not:N \tl_if_empty:oTF
3383 { \exp_not:N __token_if_primitive_space:w ##3 ~ }
3384 {
3385 \exp_not:N __token_if_primitive_loop:N ##3
3386 \c_colon_str \exp_not:N \q_stop
3387 }
3388 { \exp_not:N __token_if_primitive_nullfont:N }

340

3389 }
3390 }
3391 \cs_new:Npn __token_if_primitive_space:w #1 ~ { }
3392 \cs_new:Npn __token_if_primitive_nullfont:N #1
3393 {
3394 \if_meaning:w \tex_nullfont:D #1
3395 \prg_return_true:
3396 \else:
3397 \prg_return_false:
3398 \fi:
3399 }
3400 \cs_new:Npn __token_if_primitive_loop:N #1
3401 {
3402 \if_int_compare:w ‘#1 < \c__token_A_int %
3403 \exp_after:wN __token_if_primitive:Nw
3404 \exp_after:wN #1
3405 \else:
3406 \exp_after:wN __token_if_primitive_loop:N
3407 \fi:
3408 }
3409 \cs_new:Npn __token_if_primitive:Nw #1 #2 \q_stop
3410 {
3411 \if:w : #1
3412 \exp_after:wN __token_if_primitive_undefined:N
3413 \else:
3414 \prg_return_false:
3415 \exp_after:wN \use_none:n
3416 \fi:
3417 }
3418 \cs_new:Npn __token_if_primitive_undefined:N #1
3419 {
3420 \if_cs_exist:N #1
3421 \prg_return_true:
3422 \else:
3423 \prg_return_false:
3424 \fi:
3425 }

(End definition for \token_if_primitive:NTF. This function is documented on page 60.)

9.3 Peeking ahead at the next token
3426 〈@@=peek〉

Peeking ahead is implemented using a two part mechanism. The outer level provides
a defined interface to the lower level material. This allows a large amount of code to be
shared. There are four cases:

1. peek at the next token;

2. peek at the next non-space token;

341

3. peek at the next token and remove it;

4. peek at the next non-space token and remove it.

\l_peek_token
\g_peek_token

Storage tokens which are publicly documented: the token peeked.
3427 \cs_new_eq:NN \l_peek_token ?
3428 \cs_new_eq:NN \g_peek_token ?

(End definition for \l_peek_token. This variable is documented on page 61.)

\l__peek_search_token The token to search for as an implicit token: cf. \l__peek_search_tl.
3429 \cs_new_eq:NN \l__peek_search_token ?

(End definition for \l__peek_search_token. This variable is documented on page ??.)

\l__peek_search_tl The token to search for as an explicit token: cf. \l__peek_search_token.
3430 \tl_new:N \l__peek_search_tl

(End definition for \l__peek_search_tl. This variable is documented on page ??.)

__peek_true:w
__peek_true_aux:w

__peek_false:w
__peek_tmp:w

Functions used by the branching and space-stripping code.
3431 \cs_new_nopar:Npn __peek_true:w { }
3432 \cs_new_nopar:Npn __peek_true_aux:w { }
3433 \cs_new_nopar:Npn __peek_false:w { }
3434 \cs_new:Npn __peek_tmp:w { }

(End definition for __peek_true:w and others.)

\peek_after:Nw
\peek_gafter:Nw

Simple wrappers for \futurelet: no arguments absorbed here.
3435 \cs_new_protected_nopar:Npn \peek_after:Nw
3436 { \tex_futurelet:D \l_peek_token }
3437 \cs_new_protected_nopar:Npn \peek_gafter:Nw
3438 { \tex_global:D \tex_futurelet:D \g_peek_token }

(End definition for \peek_after:Nw. This function is documented on page 61.)

__peek_true_remove:w A function to remove the next token and then regain control.
3439 \cs_new_protected:Npn __peek_true_remove:w
3440 {
3441 \group_align_safe_end:
3442 \tex_afterassignment:D __peek_true_aux:w
3443 \cs_set_eq:NN __peek_tmp:w
3444 }

(End definition for __peek_true_remove:w.)

342

__peek_token_generic:NNTF The generic function stores the test token in both implicit and explicit modes, and the
true and false code as token lists, more or less. The two branches have to be absorbed
here as the input stream needs to be cleared for the peek function itself.

3445 \cs_new_protected:Npn __peek_token_generic:NNTF #1#2#3#4
3446 {
3447 \cs_set_eq:NN \l__peek_search_token #2
3448 \tl_set:Nn \l__peek_search_tl {#2}
3449 \cs_set_nopar:Npx __peek_true:w
3450 {
3451 \exp_not:N \group_align_safe_end:
3452 \exp_not:n {#3}
3453 }
3454 \cs_set_nopar:Npx __peek_false:w
3455 {
3456 \exp_not:N \group_align_safe_end:
3457 \exp_not:n {#4}
3458 }
3459 \group_align_safe_begin:
3460 \peek_after:Nw #1
3461 }
3462 \cs_new_protected:Npn __peek_token_generic:NNT #1#2#3
3463 { __peek_token_generic:NNTF #1 #2 {#3} { } }
3464 \cs_new_protected:Npn __peek_token_generic:NNF #1#2#3
3465 { __peek_token_generic:NNTF #1 #2 { } {#3} }

(End definition for __peek_token_generic:NNTF. This function is documented on page ??.)

__peek_token_remove_generic:NNTF For token removal there needs to be a call to the auxiliary function which does the work.
3466 \cs_new_protected:Npn __peek_token_remove_generic:NNTF #1#2#3#4
3467 {
3468 \cs_set_eq:NN \l__peek_search_token #2
3469 \tl_set:Nn \l__peek_search_tl {#2}
3470 \cs_set_eq:NN __peek_true:w __peek_true_remove:w
3471 \cs_set_nopar:Npx __peek_true_aux:w { \exp_not:n {#3} }
3472 \cs_set_nopar:Npx __peek_false:w
3473 {
3474 \exp_not:N \group_align_safe_end:
3475 \exp_not:n {#4}
3476 }
3477 \group_align_safe_begin:
3478 \peek_after:Nw #1
3479 }
3480 \cs_new_protected:Npn __peek_token_remove_generic:NNT #1#2#3
3481 { __peek_token_remove_generic:NNTF #1 #2 {#3} { } }
3482 \cs_new_protected:Npn __peek_token_remove_generic:NNF #1#2#3
3483 { __peek_token_remove_generic:NNTF #1 #2 { } {#3} }

(End definition for __peek_token_remove_generic:NNTF. This function is documented on page ??.)

343

__peek_execute_branches_meaning: The meaning test is straight forward.
3484 \cs_new_nopar:Npn __peek_execute_branches_meaning:
3485 {
3486 \if_meaning:w \l_peek_token \l__peek_search_token
3487 \exp_after:wN __peek_true:w
3488 \else:
3489 \exp_after:wN __peek_false:w
3490 \fi:
3491 }

(End definition for __peek_execute_branches_meaning:. This function is documented on page ??.)

__peek_execute_branches_catcode:
__peek_execute_branches_charcode:

__peek_execute_branches_catcode_aux:
__peek_execute_branches_catcode_auxii:N
__peek_execute_branches_catcode_auxiii:

The catcode and charcode tests are very similar, and in order to use the same auxiliaries
we do something a little bit odd, firing \if_catcode:w and \if_charcode:w before
finding the operands for those tests, which will only be given in the auxii:N and auxiii:
auxiliaries. For our purposes, three kinds of tokens may follow the peeking function:

• control sequences which are not equal to a non-active character token (e.g., macro,
primitive);

• active characters which are not equal to a non-active character token (e.g., macro,
primitive);

• explicit non-active character tokens, or control sequences or active characters set
equal to a non-active character token.

The first two cases are not distinguishable simply using TEX’s \futurelet, because we
can only access the \meaning of tokens in that way. In those cases, detected thanks to
a comparison with \scan_stop:, we grab the following token, and compare it explicitly
with the explicit search token stored in \l__peek_search_tl. The \exp_not:N prevents
outer macros (coming from non-LATEX3 code) from blowing up. In the third case, \l_-
peek_token is good enough for the test, and we compare it again with the explicit search
token. Just like the peek token, the search token may be of any of the three types above,
hence the need to use the explicit token that was given to the peek function.

3492 \cs_new_nopar:Npn __peek_execute_branches_catcode:
3493 { \if_catcode:w __peek_execute_branches_catcode_aux: }
3494 \cs_new_nopar:Npn __peek_execute_branches_charcode:
3495 { \if_charcode:w __peek_execute_branches_catcode_aux: }
3496 \cs_new_nopar:Npn __peek_execute_branches_catcode_aux:
3497 {
3498 \if_catcode:w \exp_not:N \l_peek_token \scan_stop:
3499 \exp_after:wN \exp_after:wN
3500 \exp_after:wN __peek_execute_branches_catcode_auxii:N
3501 \exp_after:wN \exp_not:N
3502 \else:
3503 \exp_after:wN __peek_execute_branches_catcode_auxiii:
3504 \fi:
3505 }
3506 \cs_new:Npn __peek_execute_branches_catcode_auxii:N #1

344

3507 {
3508 \exp_not:N #1
3509 \exp_after:wN \exp_not:N \l__peek_search_tl
3510 \exp_after:wN __peek_true:w
3511 \else:
3512 \exp_after:wN __peek_false:w
3513 \fi:
3514 #1
3515 }
3516 \cs_new_nopar:Npn __peek_execute_branches_catcode_auxiii:
3517 {
3518 \exp_not:N \l_peek_token
3519 \exp_after:wN \exp_not:N \l__peek_search_tl
3520 \exp_after:wN __peek_true:w
3521 \else:
3522 \exp_after:wN __peek_false:w
3523 \fi:
3524 }

(End definition for __peek_execute_branches_catcode: and __peek_execute_branches_charcode:.
These functions are documented on page ??.)

__peek_ignore_spaces_execute_branches: This function removes one space token at a time, and calls __peek_execute_branches:
when encountering the first non-space token. We directly use the primitive meaning
test rather than \token_if_eq_meaning:NNTF because \l_peek_token may be an outer
macro (coming from non-LATEX3 packages). Spaces are removed using a side-effect of
f-expansion: \exp:w \exp_end_continue_f:w removes one space.

3525 \cs_new_protected_nopar:Npn __peek_ignore_spaces_execute_branches:
3526 {
3527 \if_meaning:w \l_peek_token \c_space_token
3528 \exp_after:wN \peek_after:Nw
3529 \exp_after:wN __peek_ignore_spaces_execute_branches:
3530 \exp:w \exp_end_continue_f:w
3531 \else:
3532 \exp_after:wN __peek_execute_branches:
3533 \fi:
3534 }

(End definition for __peek_ignore_spaces_execute_branches:. This function is documented on page
??.)

__peek_def:nnnn
__peek_def:nnnnn

The public functions themselves cannot be defined using \prg_new_conditional:Npnn
and so a couple of auxiliary functions are used. As a result, everything is done inside a
group. As a result things are a bit complicated.

3535 \group_begin:
3536 \cs_set:Npn __peek_def:nnnn #1#2#3#4
3537 {
3538 __peek_def:nnnnn {#1} {#2} {#3} {#4} { TF }
3539 __peek_def:nnnnn {#1} {#2} {#3} {#4} { T }
3540 __peek_def:nnnnn {#1} {#2} {#3} {#4} { F }

345

3541 }
3542 \cs_set:Npn __peek_def:nnnnn #1#2#3#4#5
3543 {
3544 \cs_new_protected_nopar:cpx { #1 #5 }
3545 {
3546 \tl_if_empty:nF {#2}
3547 { \exp_not:n { \cs_set_eq:NN __peek_execute_branches: #2 } }
3548 \exp_not:c { #3 #5 }
3549 \exp_not:n {#4}
3550 }
3551 }

(End definition for __peek_def:nnnn.)

\peek_catcode:NTF
\peek_catcode_ignore_spaces:NTF

\peek_catcode_remove:NTF
\peek_catcode_remove_ignore_spaces:NTF

With everything in place the definitions can take place. First for category codes.
3552 __peek_def:nnnn { peek_catcode:N }
3553 { }
3554 { __peek_token_generic:NN }
3555 { __peek_execute_branches_catcode: }
3556 __peek_def:nnnn { peek_catcode_ignore_spaces:N }
3557 { __peek_execute_branches_catcode: }
3558 { __peek_token_generic:NN }
3559 { __peek_ignore_spaces_execute_branches: }
3560 __peek_def:nnnn { peek_catcode_remove:N }
3561 { }
3562 { __peek_token_remove_generic:NN }
3563 { __peek_execute_branches_catcode: }
3564 __peek_def:nnnn { peek_catcode_remove_ignore_spaces:N }
3565 { __peek_execute_branches_catcode: }
3566 { __peek_token_remove_generic:NN }
3567 { __peek_ignore_spaces_execute_branches: }

(End definition for \peek_catcode:NTF and others. These functions are documented on page 61.)

\peek_charcode:NTF
\peek_charcode_ignore_spaces:NTF

\peek_charcode_remove:NTF
\peek_charcode_remove_ignore_spaces:NTF

Then for character codes.
3568 __peek_def:nnnn { peek_charcode:N }
3569 { }
3570 { __peek_token_generic:NN }
3571 { __peek_execute_branches_charcode: }
3572 __peek_def:nnnn { peek_charcode_ignore_spaces:N }
3573 { __peek_execute_branches_charcode: }
3574 { __peek_token_generic:NN }
3575 { __peek_ignore_spaces_execute_branches: }
3576 __peek_def:nnnn { peek_charcode_remove:N }
3577 { }
3578 { __peek_token_remove_generic:NN }
3579 { __peek_execute_branches_charcode: }
3580 __peek_def:nnnn { peek_charcode_remove_ignore_spaces:N }
3581 { __peek_execute_branches_charcode: }
3582 { __peek_token_remove_generic:NN }
3583 { __peek_ignore_spaces_execute_branches: }

346

(End definition for \peek_charcode:NTF and others. These functions are documented on page 62.)

\peek_meaning:NTF
\peek_meaning_ignore_spaces:NTF

\peek_meaning_remove:NTF
\peek_meaning_remove_ignore_spaces:NTF

Finally for meaning, with the group closed to remove the temporary definition functions.
3584 __peek_def:nnnn { peek_meaning:N }
3585 { }
3586 { __peek_token_generic:NN }
3587 { __peek_execute_branches_meaning: }
3588 __peek_def:nnnn { peek_meaning_ignore_spaces:N }
3589 { __peek_execute_branches_meaning: }
3590 { __peek_token_generic:NN }
3591 { __peek_ignore_spaces_execute_branches: }
3592 __peek_def:nnnn { peek_meaning_remove:N }
3593 { }
3594 { __peek_token_remove_generic:NN }
3595 { __peek_execute_branches_meaning: }
3596 __peek_def:nnnn { peek_meaning_remove_ignore_spaces:N }
3597 { __peek_execute_branches_meaning: }
3598 { __peek_token_remove_generic:NN }
3599 { __peek_ignore_spaces_execute_branches: }
3600 \group_end:

(End definition for \peek_meaning:NTF and others. These functions are documented on page 63.)

9.4 Decomposing a macro definition
\token_get_prefix_spec:N

\token_get_arg_spec:N
\token_get_replacement_spec:N

__peek_get_prefix_arg_replacement:wN

We sometimes want to test if a control sequence can be expanded to reveal a hidden value.
However, we cannot just expand the macro blindly as it may have arguments and none
might be present. Therefore we define these functions to pick either the prefix(es), the
argument specification, or the replacement text from a macro. All of this information is
returned as characters with catcode 12. If the token in question isn’t a macro, the token
\scan_stop: is returned instead.

3601 \exp_args:Nno \use:nn
3602 { \cs_new:Npn __peek_get_prefix_arg_replacement:wN #1 }
3603 { \tl_to_str:n { macro : } #2 -> #3 \q_stop #4 }
3604 { #4 {#1} {#2} {#3} }
3605 \cs_new:Npn \token_get_prefix_spec:N #1
3606 {
3607 \token_if_macro:NTF #1
3608 {
3609 \exp_after:wN __peek_get_prefix_arg_replacement:wN
3610 \token_to_meaning:N #1 \q_stop \use_i:nnn
3611 }
3612 { \scan_stop: }
3613 }
3614 \cs_new:Npn \token_get_arg_spec:N #1
3615 {
3616 \token_if_macro:NTF #1
3617 {
3618 \exp_after:wN __peek_get_prefix_arg_replacement:wN

347

3619 \token_to_meaning:N #1 \q_stop \use_ii:nnn
3620 }
3621 { \scan_stop: }
3622 }
3623 \cs_new:Npn \token_get_replacement_spec:N #1
3624 {
3625 \token_if_macro:NTF #1
3626 {
3627 \exp_after:wN __peek_get_prefix_arg_replacement:wN
3628 \token_to_meaning:N #1 \q_stop \use_iii:nnn
3629 }
3630 { \scan_stop: }
3631 }

(End definition for \token_get_prefix_spec:N. This function is documented on page 64.)

3632 〈/initex | package〉

10 l3int implementation
3633 〈*initex | package〉

3634 〈@@=int〉

The following test files are used for this code: m3int001,m3int002,m3int03.
\c_max_register_int Done in l3basics.

(End definition for \c_max_register_int. This variable is documented on page 77.)

__int_to_roman:w
\if_int_compare:w

Done in l3basics.

(End definition for __int_to_roman:w. This function is documented on page 78.)

\or: Done in l3basics.

(End definition for \or:. This function is documented on page 78.)

__int_value:w
__int_eval:w

__int_eval_end:
\if_int_odd:w

\if_case:w

Here are the remaining primitives for number comparisons and expressions.
3635 \cs_new_eq:NN __int_value:w \tex_number:D
3636 \cs_new_eq:NN __int_eval:w \etex_numexpr:D
3637 \cs_new_eq:NN __int_eval_end: \tex_relax:D
3638 \cs_new_eq:NN \if_int_odd:w \tex_ifodd:D
3639 \cs_new_eq:NN \if_case:w \tex_ifcase:D

(End definition for __int_value:w. This function is documented on page 79.)

348

10.1 Integer expressions
\int_eval:n Wrapper for __int_eval:w. Can be used in an integer expression or directly in the

input stream. In format mode, there is already a definition in l3alloc for bootstrapping,
which is therefore corrected to the “real” version here.

3640 〈*initex〉
3641 \cs_set:Npn \int_eval:n #1
3642 { __int_value:w __int_eval:w #1 __int_eval_end: }
3643 〈/initex〉
3644 〈*package〉
3645 \cs_new:Npn \int_eval:n #1
3646 { __int_value:w __int_eval:w #1 __int_eval_end: }
3647 〈/package〉

(End definition for \int_eval:n. This function is documented on page 66.)

\int_abs:n
__int_abs:N
\int_max:nn
\int_min:nn

__int_maxmin:wwN

Functions for min, max, and absolute value with only one evaluation. The absolute value
is obtained by removing a leading sign if any. All three functions expand in two steps.

3648 \cs_new:Npn \int_abs:n #1
3649 {
3650 __int_value:w \exp_after:wN __int_abs:N
3651 __int_value:w __int_eval:w #1 __int_eval_end:
3652 \exp_stop_f:
3653 }
3654 \cs_new:Npn __int_abs:N #1
3655 { \if_meaning:w - #1 \else: \exp_after:wN #1 \fi: }
3656 \cs_set:Npn \int_max:nn #1#2
3657 {
3658 __int_value:w \exp_after:wN __int_maxmin:wwN
3659 __int_value:w __int_eval:w #1 \exp_after:wN ;
3660 __int_value:w __int_eval:w #2 ;
3661 >
3662 \exp_stop_f:
3663 }
3664 \cs_set:Npn \int_min:nn #1#2
3665 {
3666 __int_value:w \exp_after:wN __int_maxmin:wwN
3667 __int_value:w __int_eval:w #1 \exp_after:wN ;
3668 __int_value:w __int_eval:w #2 ;
3669 <
3670 \exp_stop_f:
3671 }
3672 \cs_new:Npn __int_maxmin:wwN #1 ; #2 ; #3
3673 {
3674 \if_int_compare:w #1 #3 #2 ~
3675 #1
3676 \else:
3677 #2
3678 \fi:
3679 }

349

(End definition for \int_abs:n. This function is documented on page 66.)

\int_div_truncate:nn
\int_div_round:nn

\int_mod:nn
__int_div_truncate:NwNw

__int_mod:ww

As __int_eval:w rounds the result of a division we also provide a version that truncates
the result. We use an auxiliary to make sure numerator and denominator are only
evaluated once: this comes in handy when those are more expressions are expensive
to evaluate (e.g., \tl_count:n). If the numerator #1#2 is 0, then we divide 0 by the
denominator (this ensures that 0/0 is correctly reported as an error). Otherwise, shift
the numerator #1#2 towards 0 by (|#3#4|−1)/2, which we round away from zero. It turns
out that this quantity exactly compensates the difference between ε-TEX’s rounding and
the truncating behaviour that we want. The details are thanks to Heiko Oberdiek: getting
things right in all cases is not so easy.

3680 \cs_new:Npn \int_div_truncate:nn #1#2
3681 {
3682 __int_value:w __int_eval:w
3683 \exp_after:wN __int_div_truncate:NwNw
3684 __int_value:w __int_eval:w #1 \exp_after:wN ;
3685 __int_value:w __int_eval:w #2 ;
3686 __int_eval_end:
3687 }
3688 \cs_new:Npn __int_div_truncate:NwNw #1#2; #3#4;
3689 {
3690 \if_meaning:w 0 #1
3691 \c_zero
3692 \else:
3693 (
3694 #1#2
3695 \if_meaning:w - #1 + \else: - \fi:
3696 (\if_meaning:w - #3 - \fi: #3#4 - \c_one) / \c_two
3697)
3698 \fi:
3699 / #3#4
3700 }

For the sake of completeness:
3701 \cs_new:Npn \int_div_round:nn #1#2
3702 { __int_value:w __int_eval:w (#1) / (#2) __int_eval_end: }

Finally there’s the modulus operation.
3703 \cs_new:Npn \int_mod:nn #1#2
3704 {
3705 __int_value:w __int_eval:w \exp_after:wN __int_mod:ww
3706 __int_value:w __int_eval:w #1 \exp_after:wN ;
3707 __int_value:w __int_eval:w #2 ;
3708 __int_eval_end:
3709 }
3710 \cs_new:Npn __int_mod:ww #1; #2;
3711 { #1 - (__int_div_truncate:NwNw #1 ; #2 ;) * #2 }

(End definition for \int_div_truncate:nn. This function is documented on page 67.)

350

10.2 Creating and initialising integers
\int_new:N
\int_new:c

Two ways to do this: one for the format and one for the LATEX2ε package. In plain TEX,
\newcount (and other allocators) are \outer: to allow the code here to work in “generic”
mode this is therefore accessed by name. (The same applies to \newbox, \newdimen and
so on.)

3712 〈*package〉
3713 \cs_new_protected:Npn \int_new:N #1
3714 {
3715 __chk_if_free_cs:N #1
3716 \cs:w newcount \cs_end: #1
3717 }
3718 〈/package〉
3719 \cs_generate_variant:Nn \int_new:N { c }

(End definition for \int_new:N and \int_new:c. These functions are documented on page 67.)

\int_const:Nn
\int_const:cn

__int_constdef:Nw
\c__max_constdef_int

As stated, most constants can be defined as \chardef or \mathchardef but that’s engine
dependent. As a result, there is some set up code to determine what can be done. No
full engine testing just yet so everything is a little awkward.

3720 \cs_new_protected:Npn \int_const:Nn #1#2
3721 {
3722 \int_compare:nNnTF {#2} > \c_minus_one
3723 {
3724 \int_compare:nNnTF {#2} > \c__max_constdef_int
3725 {
3726 \int_new:N #1
3727 \int_gset:Nn #1 {#2}
3728 }
3729 {
3730 __chk_if_free_cs:N #1
3731 \tex_global:D __int_constdef:Nw #1 =
3732 __int_eval:w #2 __int_eval_end:
3733 }
3734 }
3735 {
3736 \int_new:N #1
3737 \int_gset:Nn #1 {#2}
3738 }
3739 }
3740 \cs_generate_variant:Nn \int_const:Nn { c }
3741 \if_int_odd:w 0
3742 \cs_if_exist:NT \luatex_luatexversion:D { 1 }
3743 \cs_if_exist:NT \uptex_disablecjktoken:D
3744 { \if_int_compare:w \ptex_jis:D "2121 = "3000 ~ 1 \fi: }
3745 \cs_if_exist:NT \xetex_XeTeXversion:D { 1 } ~
3746 \cs_if_exist:NTF \uptex_disablecjktoken:D
3747 { \cs_new_eq:NN __int_constdef:Nw \uptex_kchardef:D }
3748 { \cs_new_eq:NN __int_constdef:Nw \tex_chardef:D }
3749 __int_constdef:Nw \c__max_constdef_int 1114111 ~

351

3750 \else:
3751 \cs_new_eq:NN __int_constdef:Nw \tex_mathchardef:D
3752 \tex_mathchardef:D \c__max_constdef_int 32767 ~
3753 \fi:

(End definition for \int_const:Nn and \int_const:cn. These functions are documented on page 67.)

\int_zero:N
\int_zero:c
\int_gzero:N
\int_gzero:c

Functions that reset an 〈integer〉 register to zero.
3754 \cs_new_protected:Npn \int_zero:N #1 { #1 = \c_zero }
3755 \cs_new_protected:Npn \int_gzero:N #1 { \tex_global:D #1 = \c_zero }
3756 \cs_generate_variant:Nn \int_zero:N { c }
3757 \cs_generate_variant:Nn \int_gzero:N { c }

(End definition for \int_zero:N and \int_zero:c. These functions are documented on page 67.)

\int_zero_new:N
\int_zero_new:c
\int_gzero_new:N
\int_gzero_new:c

Create a register if needed, otherwise clear it.
3758 \cs_new_protected:Npn \int_zero_new:N #1
3759 { \int_if_exist:NTF #1 { \int_zero:N #1 } { \int_new:N #1 } }
3760 \cs_new_protected:Npn \int_gzero_new:N #1
3761 { \int_if_exist:NTF #1 { \int_gzero:N #1 } { \int_new:N #1 } }
3762 \cs_generate_variant:Nn \int_zero_new:N { c }
3763 \cs_generate_variant:Nn \int_gzero_new:N { c }

(End definition for \int_zero_new:N and others. These functions are documented on page 68.)

\int_set_eq:NN
\int_set_eq:cN
\int_set_eq:Nc
\int_set_eq:cc
\int_gset_eq:NN
\int_gset_eq:cN
\int_gset_eq:Nc
\int_gset_eq:cc

Setting equal means using one integer inside the set function of another.
3764 \cs_new_protected:Npn \int_set_eq:NN #1#2 { #1 = #2 }
3765 \cs_generate_variant:Nn \int_set_eq:NN { c }
3766 \cs_generate_variant:Nn \int_set_eq:NN { Nc , cc }
3767 \cs_new_protected:Npn \int_gset_eq:NN #1#2 { \tex_global:D #1 = #2 }
3768 \cs_generate_variant:Nn \int_gset_eq:NN { c }
3769 \cs_generate_variant:Nn \int_gset_eq:NN { Nc , cc }

(End definition for \int_set_eq:NN and others. These functions are documented on page 68.)

\int_if_exist_p:N
\int_if_exist_p:c
\int_if_exist:NTF
\int_if_exist:cTF

Copies of the cs functions defined in l3basics.
3770 \prg_new_eq_conditional:NNn \int_if_exist:N \cs_if_exist:N
3771 { TF , T , F , p }
3772 \prg_new_eq_conditional:NNn \int_if_exist:c \cs_if_exist:c
3773 { TF , T , F , p }

(End definition for \int_if_exist:NTF and \int_if_exist:cTF. These functions are documented on
page 68.)

352

10.3 Setting and incrementing integers
\int_add:Nn
\int_add:cn
\int_gadd:Nn
\int_gadd:cn
\int_sub:Nn
\int_sub:cn
\int_gsub:Nn
\int_gsub:cn

Adding and subtracting to and from a counter . . .
3774 \cs_new_protected:Npn \int_add:Nn #1#2
3775 { \tex_advance:D #1 by __int_eval:w #2 __int_eval_end: }
3776 \cs_new_protected:Npn \int_sub:Nn #1#2
3777 { \tex_advance:D #1 by - __int_eval:w #2 __int_eval_end: }
3778 \cs_new_protected_nopar:Npn \int_gadd:Nn
3779 { \tex_global:D \int_add:Nn }
3780 \cs_new_protected_nopar:Npn \int_gsub:Nn
3781 { \tex_global:D \int_sub:Nn }
3782 \cs_generate_variant:Nn \int_add:Nn { c }
3783 \cs_generate_variant:Nn \int_gadd:Nn { c }
3784 \cs_generate_variant:Nn \int_sub:Nn { c }
3785 \cs_generate_variant:Nn \int_gsub:Nn { c }

(End definition for \int_add:Nn and \int_add:cn. These functions are documented on page 68.)

\int_incr:N
\int_incr:c
\int_gincr:N
\int_gincr:c
\int_decr:N
\int_decr:c
\int_gdecr:N
\int_gdecr:c

Incrementing and decrementing of integer registers is done with the following functions.
3786 \cs_new_protected:Npn \int_incr:N #1
3787 { \tex_advance:D #1 \c_one }
3788 \cs_new_protected:Npn \int_decr:N #1
3789 { \tex_advance:D #1 \c_minus_one }
3790 \cs_new_protected_nopar:Npn \int_gincr:N
3791 { \tex_global:D \int_incr:N }
3792 \cs_new_protected_nopar:Npn \int_gdecr:N
3793 { \tex_global:D \int_decr:N }
3794 \cs_generate_variant:Nn \int_incr:N { c }
3795 \cs_generate_variant:Nn \int_decr:N { c }
3796 \cs_generate_variant:Nn \int_gincr:N { c }
3797 \cs_generate_variant:Nn \int_gdecr:N { c }

(End definition for \int_incr:N and \int_incr:c. These functions are documented on page 68.)

\int_set:Nn
\int_set:cn
\int_gset:Nn
\int_gset:cn

As integers are register-based TEX will issue an error if they are not defined. Thus there
is no need for the checking code seen with token list variables.

3798 \cs_new_protected:Npn \int_set:Nn #1#2
3799 { #1 ~ __int_eval:w #2__int_eval_end: }
3800 \cs_new_protected_nopar:Npn \int_gset:Nn { \tex_global:D \int_set:Nn }
3801 \cs_generate_variant:Nn \int_set:Nn { c }
3802 \cs_generate_variant:Nn \int_gset:Nn { c }

(End definition for \int_set:Nn and \int_set:cn. These functions are documented on page 68.)

10.4 Using integers
\int_use:N
\int_use:c

Here is how counters are accessed:
3803 \cs_new_eq:NN \int_use:N \tex_the:D

353

We hand-code this for some speed gain:
3804 %\cs_generate_variant:Nn \int_use:N { c }
3805 \cs_new:Npn \int_use:c #1 { \tex_the:D \cs:w #1 \cs_end: }

(End definition for \int_use:N and \int_use:c. These functions are documented on page 69.)

10.5 Integer expression conditionals
__prg_compare_error:

__prg_compare_error:Nw
Those functions are used for comparison tests which use a simple syntax where only
one set of braces is required and additional operators such as != and >= are supported.
The tests first evaluate their left-hand side, with a trailing __prg_compare_error:.
This marker is normally not expanded, but if the relation symbol is missing from the
test’s argument, then the marker inserts = (and itself) after triggering the relevant TEX
error. If the first token which appears after evaluating and removing the left-hand side is
not a known relation symbol, then a judiciously placed __prg_compare_error:Nw gets
expanded, cleaning up the end of the test and telling the user what the problem was.

3806 \cs_new_protected_nopar:Npn __prg_compare_error:
3807 {
3808 \if_int_compare:w \c_zero \c_zero \fi:
3809 =
3810 __prg_compare_error:
3811 }
3812 \cs_new:Npn __prg_compare_error:Nw
3813 #1#2 \q_stop
3814 {
3815 { }
3816 \c_zero \fi:
3817 __msg_kernel_expandable_error:nnn
3818 { kernel } { unknown-comparison } {#1}
3819 \prg_return_false:
3820 }

(End definition for __prg_compare_error: and __prg_compare_error:Nw.)

\int_compare_p:n
\int_compare:nTF
__int_compare:w

__int_compare:Nw
__int_compare:NNw
__int_compare:nnN

__int_compare_end_=:NNw
__int_compare_=:NNw
__int_compare_<:NNw
__int_compare_>:NNw
__int_compare_==:NNw
__int_compare_!=:NNw
__int_compare_<=:NNw
__int_compare_>=:NNw

Comparison tests using a simple syntax where only one set of braces is required, additional
operators such as != and >= are supported, and multiple comparisons can be performed
at once, for instance 0 < 5 <= 1. The idea is to loop through the argument, finding one
operand at a time, and comparing it to the previous one. The looping auxiliary __-
int_compare:Nw reads one 〈operand〉 and one 〈comparison〉 symbol, and leaves roughly

〈operand〉 \prg_return_false: \fi:
\reverse_if:N \if_int_compare:w 〈operand〉 〈comparison〉
__int_compare:Nw

in the input stream. Each call to this auxiliary provides the second operand of the last
call’s \if_int_compare:w. If one of the 〈comparisons〉 is false, the true branch of the
TEX conditional is taken (because of \reverse_if:N), immediately returning false as
the result of the test. There is no TEX conditional waiting the first operand, so we add an

354

\if_false: and expand by hand with __int_value:w, thus skipping \prg_return_-
false: on the first iteration.

Before starting the loop, the first step is to make sure that there is at least one
relation symbol. We first let TEX evaluate this left hand side of the (in)equality using
__int_eval:w. Since the relation symbols <, >, = and ! are not allowed in integer
expressions, they will terminate it. If the argument contains no relation symbol, _-
_prg_compare_error: is expanded, inserting = and itself after an error. In all cases,
__int_compare:w receives as its argument an integer, a relation symbol, and some
more tokens. We then setup the loop, which will be ended by the two odd-looking items
e and {=nd_}, with a trailing \q_stop used to grab the entire argument when necessary.

3821 \prg_new_conditional:Npnn \int_compare:n #1 { p , T , F , TF }
3822 {
3823 \exp_after:wN __int_compare:w
3824 __int_value:w __int_eval:w #1 __prg_compare_error:
3825 }
3826 \cs_new:Npn __int_compare:w #1 __prg_compare_error:
3827 {
3828 \exp_after:wN \if_false: __int_value:w
3829 __int_compare:Nw #1 e { = nd_ } \q_stop
3830 }

The goal here is to find an 〈operand〉 and a 〈comparison〉. The 〈operand〉 is already
evaluated, but we cannot yet grab it as an argument. To access the following relation
symbol, we remove the number by applying __int_to_roman:w, after making sure that
the argument becomes non-positive: its roman numeral representation is then empty.
Then probe the first two tokens with __int_compare:NNw to determine the relation
symbol, building a control sequence from it (\token_to_str:N gives better errors if #1
is not a character). All the extended forms have an extra = hence the test for that as a
second token. If the relation symbol is unknown, then the control sequence is turned by
TEX into \scan_stop:, ignored thanks to \unexpanded, and __prg_compare_error:Nw
raises an error.

3831 \cs_new:Npn __int_compare:Nw #1#2 \q_stop
3832 {
3833 \exp_after:wN __int_compare:NNw
3834 __int_to_roman:w - 0 #2 \q_mark
3835 #1#2 \q_stop
3836 }
3837 \cs_new:Npn __int_compare:NNw #1#2#3 \q_mark
3838 {
3839 \etex_unexpanded:D
3840 \use:c
3841 {
3842 __int_compare_ \token_to_str:N #1
3843 \if_meaning:w = #2 = \fi:
3844 :NNw
3845 }
3846 __prg_compare_error:Nw #1
3847 }

355

When the last 〈operand〉 is seen, __int_compare:NNw receives e and =nd_ as arguments,
hence calling __int_compare_end_=:NNw to end the loop: return the result of the last
comparison (involving the operand that we just found). When a normal relation is found,
the appropriate auxiliary calls __int_compare:nnN where #1 is \if_int_compare:w or
\reverse_if:N \if_int_compare:w, #2 is the 〈operand〉, and #3 is one of <, =, or >.
As announced earlier, we leave the 〈operand〉 for the previous conditional. If this condi-
tional is true the result of the test is known, so we remove all tokens and return false.
Otherwise, we apply the conditional #1 to the 〈operand〉 #2 and the comparison #3, and
call __int_compare:Nw to look for additional operands, after evaluating the following
expression.

3848 \cs_new:cpn { __int_compare_end_=:NNw } #1#2#3 e #4 \q_stop
3849 {
3850 {#3} \exp_stop_f:
3851 \prg_return_false: \else: \prg_return_true: \fi:
3852 }
3853 \cs_new:Npn __int_compare:nnN #1#2#3
3854 {
3855 {#2} \exp_stop_f:
3856 \prg_return_false: \exp_after:wN \use_none_delimit_by_q_stop:w
3857 \fi:
3858 #1 #2 #3 \exp_after:wN __int_compare:Nw __int_value:w __int_eval:w
3859 }

The actual comparisons are then simple function calls, using the relation as delimiter for
a delimited argument and discarding __prg_compare_error:Nw 〈token〉 responsible for
error detection.

3860 \cs_new:cpn { __int_compare_=:NNw } #1#2#3 =
3861 { __int_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} = }
3862 \cs_new:cpn { __int_compare_<:NNw } #1#2#3 <
3863 { __int_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} < }
3864 \cs_new:cpn { __int_compare_>:NNw } #1#2#3 >
3865 { __int_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} > }
3866 \cs_new:cpn { __int_compare_==:NNw } #1#2#3 ==
3867 { __int_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} = }
3868 \cs_new:cpn { __int_compare_!=:NNw } #1#2#3 !=
3869 { __int_compare:nnN { \if_int_compare:w } {#3} = }
3870 \cs_new:cpn { __int_compare_<=:NNw } #1#2#3 <=
3871 { __int_compare:nnN { \if_int_compare:w } {#3} > }
3872 \cs_new:cpn { __int_compare_>=:NNw } #1#2#3 >=
3873 { __int_compare:nnN { \if_int_compare:w } {#3} < }

(End definition for \int_compare:nTF. This function is documented on page 70.)

\int_compare_p:nNn
\int_compare:nNnTF

More efficient but less natural in typing.
3874 \prg_new_conditional:Npnn \int_compare:nNn #1#2#3 { p , T , F , TF }
3875 {
3876 \if_int_compare:w __int_eval:w #1 #2 __int_eval:w #3 __int_eval_end:
3877 \prg_return_true:
3878 \else:

356

3879 \prg_return_false:
3880 \fi:
3881 }

(End definition for \int_compare:nNnTF. This function is documented on page 69.)

\int_case:nn
\int_case:nnTF

__int_case:nnTF
__int_case:nw

__int_case_end:nw

For integer cases, the first task to fully expand the check condition. The over all idea is
then much the same as for \str_case:nn(TF) as described in l3basics.

3882 \cs_new:Npn \int_case:nnTF #1
3883 {
3884 \exp:w
3885 \exp_args:Nf __int_case:nnTF { \int_eval:n {#1} }
3886 }
3887 \cs_new:Npn \int_case:nnT #1#2#3
3888 {
3889 \exp:w
3890 \exp_args:Nf __int_case:nnTF { \int_eval:n {#1} } {#2} {#3} { }
3891 }
3892 \cs_new:Npn \int_case:nnF #1#2
3893 {
3894 \exp:w
3895 \exp_args:Nf __int_case:nnTF { \int_eval:n {#1} } {#2} { }
3896 }
3897 \cs_new:Npn \int_case:nn #1#2
3898 {
3899 \exp:w
3900 \exp_args:Nf __int_case:nnTF { \int_eval:n {#1} } {#2} { } { }
3901 }
3902 \cs_new:Npn __int_case:nnTF #1#2#3#4
3903 { __int_case:nw {#1} #2 {#1} { } \q_mark {#3} \q_mark {#4} \q_stop }
3904 \cs_new:Npn __int_case:nw #1#2#3
3905 {
3906 \int_compare:nNnTF {#1} = {#2}
3907 { __int_case_end:nw {#3} }
3908 { __int_case:nw {#1} }
3909 }
3910 \cs_new_eq:NN __int_case_end:nw __prg_case_end:nw

(End definition for \int_case:nn. This function is documented on page ??.)

\int_if_odd_p:n
\int_if_odd:nTF

\int_if_even_p:n
\int_if_even:nTF

A predicate function.
3911 \prg_new_conditional:Npnn \int_if_odd:n #1 { p , T , F , TF}
3912 {
3913 \if_int_odd:w __int_eval:w #1 __int_eval_end:
3914 \prg_return_true:
3915 \else:
3916 \prg_return_false:
3917 \fi:
3918 }
3919 \prg_new_conditional:Npnn \int_if_even:n #1 { p , T , F , TF}

357

3920 {
3921 \if_int_odd:w __int_eval:w #1 __int_eval_end:
3922 \prg_return_false:
3923 \else:
3924 \prg_return_true:
3925 \fi:
3926 }

(End definition for \int_if_odd:nTF. This function is documented on page 71.)

10.6 Integer expression loops
\int_while_do:nn
\int_until_do:nn
\int_do_while:nn
\int_do_until:nn

These are quite easy given the above functions. The while versions test first and then
execute the body. The do_while does it the other way round.

3927 \cs_new:Npn \int_while_do:nn #1#2
3928 {
3929 \int_compare:nT {#1}
3930 {
3931 #2
3932 \int_while_do:nn {#1} {#2}
3933 }
3934 }
3935 \cs_new:Npn \int_until_do:nn #1#2
3936 {
3937 \int_compare:nF {#1}
3938 {
3939 #2
3940 \int_until_do:nn {#1} {#2}
3941 }
3942 }
3943 \cs_new:Npn \int_do_while:nn #1#2
3944 {
3945 #2
3946 \int_compare:nT {#1}
3947 { \int_do_while:nn {#1} {#2} }
3948 }
3949 \cs_new:Npn \int_do_until:nn #1#2
3950 {
3951 #2
3952 \int_compare:nF {#1}
3953 { \int_do_until:nn {#1} {#2} }
3954 }

(End definition for \int_while_do:nn. This function is documented on page 72.)

\int_while_do:nNnn
\int_until_do:nNnn
\int_do_while:nNnn
\int_do_until:nNnn

As above but not using the more natural syntax.
3955 \cs_new:Npn \int_while_do:nNnn #1#2#3#4
3956 {
3957 \int_compare:nNnT {#1} #2 {#3}
3958 {

358

3959 #4
3960 \int_while_do:nNnn {#1} #2 {#3} {#4}
3961 }
3962 }
3963 \cs_new:Npn \int_until_do:nNnn #1#2#3#4
3964 {
3965 \int_compare:nNnF {#1} #2 {#3}
3966 {
3967 #4
3968 \int_until_do:nNnn {#1} #2 {#3} {#4}
3969 }
3970 }
3971 \cs_new:Npn \int_do_while:nNnn #1#2#3#4
3972 {
3973 #4
3974 \int_compare:nNnT {#1} #2 {#3}
3975 { \int_do_while:nNnn {#1} #2 {#3} {#4} }
3976 }
3977 \cs_new:Npn \int_do_until:nNnn #1#2#3#4
3978 {
3979 #4
3980 \int_compare:nNnF {#1} #2 {#3}
3981 { \int_do_until:nNnn {#1} #2 {#3} {#4} }
3982 }

(End definition for \int_while_do:nNnn. This function is documented on page 72.)

10.7 Integer step functions
\int_step_function:nnnN

__int_step:wwwN
__int_step:NnnnN

Before all else, evaluate the initial value, step, and final value. Repeating a function by
steps first needs a check on the direction of the steps. After that, do the function for the
start value then step and loop around. It would be more symmetrical to test for a step
size of zero before checking the sign, but we optimize for the most frequent case (positive
step).

3983 \cs_new:Npn \int_step_function:nnnN #1#2#3
3984 {
3985 \exp_after:wN __int_step:wwwN
3986 __int_value:w __int_eval:w #1 \exp_after:wN ;
3987 __int_value:w __int_eval:w #2 \exp_after:wN ;
3988 __int_value:w __int_eval:w #3 ;
3989 }
3990 \cs_new:Npn __int_step:wwwN #1; #2; #3; #4
3991 {
3992 \int_compare:nNnTF {#2} > \c_zero
3993 { __int_step:NnnnN > }
3994 {
3995 \int_compare:nNnTF {#2} = \c_zero
3996 {
3997 __msg_kernel_expandable_error:nnn { kernel } { zero-step } {#4}

359

3998 \use_none:nnnn
3999 }
4000 { __int_step:NnnnN < }
4001 }
4002 {#1} {#2} {#3} #4
4003 }
4004 \cs_new:Npn __int_step:NnnnN #1#2#3#4#5
4005 {
4006 \int_compare:nNnF {#2} #1 {#4}
4007 {
4008 #5 {#2}
4009 \exp_args:NNf __int_step:NnnnN
4010 #1 { \int_eval:n { #2 + #3 } } {#3} {#4} #5
4011 }
4012 }

(End definition for \int_step_function:nnnN. This function is documented on page 73.)

\int_step_inline:nnnn
\int_step_variable:nnnNn

__int_step:NNnnnn

The approach here is to build a function, with a global integer required to make the
nesting safe (as seen in other in line functions), and map that function using \int_-
step_function:nnnN. We put a __prg_break_point:Nn so that map_break functions
from other modules correctly decrement \g__prg_map_int before looking for their own
break point. The first argument is \scan_stop:, so no breaking function will recognize
this break point as its own.

4013 \cs_new_protected_nopar:Npn \int_step_inline:nnnn
4014 {
4015 \int_gincr:N \g__prg_map_int
4016 \exp_args:NNc __int_step:NNnnnn
4017 \cs_gset_nopar:Npn
4018 { __prg_map_ \int_use:N \g__prg_map_int :w }
4019 }
4020 \cs_new_protected:Npn \int_step_variable:nnnNn #1#2#3#4#5
4021 {
4022 \int_gincr:N \g__prg_map_int
4023 \exp_args:NNc __int_step:NNnnnn
4024 \cs_gset_nopar:Npx
4025 { __prg_map_ \int_use:N \g__prg_map_int :w }
4026 {#1}{#2}{#3}
4027 {
4028 \tl_set:Nn \exp_not:N #4 {##1}
4029 \exp_not:n {#5}
4030 }
4031 }
4032 \cs_new_protected:Npn __int_step:NNnnnn #1#2#3#4#5#6
4033 {
4034 #1 #2 ##1 {#6}
4035 \int_step_function:nnnN {#3} {#4} {#5} #2
4036 __prg_break_point:Nn \scan_stop: { \int_gdecr:N \g__prg_map_int }
4037 }

(End definition for \int_step_inline:nnnn. This function is documented on page 73.)

360

10.8 Formatting integers
\int_to_arabic:n Nothing exciting here.

4038 \cs_new_eq:NN \int_to_arabic:n \int_eval:n

(End definition for \int_to_arabic:n. This function is documented on page 73.)

\int_to_symbols:nnn
__int_to_symbols:nnnn

For conversion of integers to arbitrary symbols the method is in general as follows. The
input number (#1) is compared to the total number of symbols available at each place
(#2). If the input is larger than the total number of symbols available then the modulus
is needed, with one added so that the positions don’t have to number from zero. Using
an f-type expansion, this is done so that the system is recursive. The actual conversion
function therefore gets a ‘nice’ number at each stage. Of course, if the initial input was
small enough then there is no problem and everything is easy.

4039 \cs_new:Npn \int_to_symbols:nnn #1#2#3
4040 {
4041 \int_compare:nNnTF {#1} > {#2}
4042 {
4043 \exp_args:NNo \exp_args:No __int_to_symbols:nnnn
4044 {
4045 \int_case:nn
4046 { 1 + \int_mod:nn { #1 - 1 } {#2} }
4047 {#3}
4048 }
4049 {#1} {#2} {#3}
4050 }
4051 { \int_case:nn {#1} {#3} }
4052 }
4053 \cs_new:Npn __int_to_symbols:nnnn #1#2#3#4
4054 {
4055 \exp_args:Nf \int_to_symbols:nnn
4056 { \int_div_truncate:nn { #2 - 1 } {#3} } {#3} {#4}
4057 #1
4058 }

(End definition for \int_to_symbols:nnn. This function is documented on page 74.)

\int_to_alph:n
\int_to_Alph:n

These both use the above function with input functions that make sense for the alphabet
in English.

4059 \cs_new:Npn \int_to_alph:n #1
4060 {
4061 \int_to_symbols:nnn {#1} { 26 }
4062 {
4063 { 1 } { a }
4064 { 2 } { b }
4065 { 3 } { c }
4066 { 4 } { d }
4067 { 5 } { e }
4068 { 6 } { f }
4069 { 7 } { g }

361

4070 { 8 } { h }
4071 { 9 } { i }
4072 { 10 } { j }
4073 { 11 } { k }
4074 { 12 } { l }
4075 { 13 } { m }
4076 { 14 } { n }
4077 { 15 } { o }
4078 { 16 } { p }
4079 { 17 } { q }
4080 { 18 } { r }
4081 { 19 } { s }
4082 { 20 } { t }
4083 { 21 } { u }
4084 { 22 } { v }
4085 { 23 } { w }
4086 { 24 } { x }
4087 { 25 } { y }
4088 { 26 } { z }
4089 }
4090 }
4091 \cs_new:Npn \int_to_Alph:n #1
4092 {
4093 \int_to_symbols:nnn {#1} { 26 }
4094 {
4095 { 1 } { A }
4096 { 2 } { B }
4097 { 3 } { C }
4098 { 4 } { D }
4099 { 5 } { E }
4100 { 6 } { F }
4101 { 7 } { G }
4102 { 8 } { H }
4103 { 9 } { I }
4104 { 10 } { J }
4105 { 11 } { K }
4106 { 12 } { L }
4107 { 13 } { M }
4108 { 14 } { N }
4109 { 15 } { O }
4110 { 16 } { P }
4111 { 17 } { Q }
4112 { 18 } { R }
4113 { 19 } { S }
4114 { 20 } { T }
4115 { 21 } { U }
4116 { 22 } { V }
4117 { 23 } { W }
4118 { 24 } { X }
4119 { 25 } { Y }

362

4120 { 26 } { Z }
4121 }
4122 }

(End definition for \int_to_alph:n and \int_to_Alph:n. These functions are documented on page 74.)

\int_to_base:nn
\int_to_Base:nn

__int_to_base:nn
__int_to_Base:nn
__int_to_base:nnN
__int_to_Base:nnN
__int_to_base:nnnN
__int_to_Base:nnnN
__int_to_letter:n
__int_to_Letter:n

Converting from base ten (#1) to a second base (#2) starts with computing #1: if it is
a complicated calculation, we shouldn’t perform it twice. Then check the sign, store it,
either - or \c_empty_tl, and feed the absolute value to the next auxiliary function.

4123 \cs_new:Npn \int_to_base:nn #1
4124 { \exp_args:Nf __int_to_base:nn { \int_eval:n {#1} } }
4125 \cs_new:Npn \int_to_Base:nn #1
4126 { \exp_args:Nf __int_to_Base:nn { \int_eval:n {#1} } }
4127 \cs_new:Npn __int_to_base:nn #1#2
4128 {
4129 \int_compare:nNnTF {#1} < \c_zero
4130 { \exp_args:No __int_to_base:nnN { \use_none:n #1 } {#2} - }
4131 { __int_to_base:nnN {#1} {#2} \c_empty_tl }
4132 }
4133 \cs_new:Npn __int_to_Base:nn #1#2
4134 {
4135 \int_compare:nNnTF {#1} < \c_zero
4136 { \exp_args:No __int_to_Base:nnN { \use_none:n #1 } {#2} - }
4137 { __int_to_Base:nnN {#1} {#2} \c_empty_tl }
4138 }

Here, the idea is to provide a recursive system to deal with the input. The output is built
up after the end of the function. At each pass, the value in #1 is checked to see if it is
less than the new base (#2). If it is, then it is converted directly, putting the sign back
in front. On the other hand, if the value to convert is greater than or equal to the new
base then the modulus and remainder values are found. The modulus is converted to a
symbol and put on the right, and the remainder is carried forward to the next round.

4139 \cs_new:Npn __int_to_base:nnN #1#2#3
4140 {
4141 \int_compare:nNnTF {#1} < {#2}
4142 { \exp_last_unbraced:Nf #3 { __int_to_letter:n {#1} } }
4143 {
4144 \exp_args:Nf __int_to_base:nnnN
4145 { __int_to_letter:n { \int_mod:nn {#1} {#2} } }
4146 {#1}
4147 {#2}
4148 #3
4149 }
4150 }
4151 \cs_new:Npn __int_to_base:nnnN #1#2#3#4
4152 {
4153 \exp_args:Nf __int_to_base:nnN
4154 { \int_div_truncate:nn {#2} {#3} }
4155 {#3}
4156 #4

363

4157 #1
4158 }
4159 \cs_new:Npn __int_to_Base:nnN #1#2#3
4160 {
4161 \int_compare:nNnTF {#1} < {#2}
4162 { \exp_last_unbraced:Nf #3 { __int_to_Letter:n {#1} } }
4163 {
4164 \exp_args:Nf __int_to_Base:nnnN
4165 { __int_to_Letter:n { \int_mod:nn {#1} {#2} } }
4166 {#1}
4167 {#2}
4168 #3
4169 }
4170 }
4171 \cs_new:Npn __int_to_Base:nnnN #1#2#3#4
4172 {
4173 \exp_args:Nf __int_to_Base:nnN
4174 { \int_div_truncate:nn {#2} {#3} }
4175 {#3}
4176 #4
4177 #1
4178 }

Convert to a letter only if necessary, otherwise simply return the value unchanged. It
would be cleaner to use \int_case:nn, but in our case, the cases are contiguous, so it
is forty times faster to use the \if_case:w primitive. The first \exp_after:wN expands
the conditional, jumping to the correct case, the second one expands after the resulting
character to close the conditional. Since #1 might be an expression, and not directly a
single digit, we need to evaluate it properly, and expand the trailing \fi:.

4179 \cs_new:Npn __int_to_letter:n #1
4180 {
4181 \exp_after:wN \exp_after:wN
4182 \if_case:w __int_eval:w #1 - \c_ten __int_eval_end:
4183 a
4184 \or: b
4185 \or: c
4186 \or: d
4187 \or: e
4188 \or: f
4189 \or: g
4190 \or: h
4191 \or: i
4192 \or: j
4193 \or: k
4194 \or: l
4195 \or: m
4196 \or: n
4197 \or: o
4198 \or: p
4199 \or: q

364

4200 \or: r
4201 \or: s
4202 \or: t
4203 \or: u
4204 \or: v
4205 \or: w
4206 \or: x
4207 \or: y
4208 \or: z
4209 \else: __int_value:w __int_eval:w #1 \exp_after:wN __int_eval_end:
4210 \fi:
4211 }
4212 \cs_new:Npn __int_to_Letter:n #1
4213 {
4214 \exp_after:wN \exp_after:wN
4215 \if_case:w __int_eval:w #1 - \c_ten __int_eval_end:
4216 A
4217 \or: B
4218 \or: C
4219 \or: D
4220 \or: E
4221 \or: F
4222 \or: G
4223 \or: H
4224 \or: I
4225 \or: J
4226 \or: K
4227 \or: L
4228 \or: M
4229 \or: N
4230 \or: O
4231 \or: P
4232 \or: Q
4233 \or: R
4234 \or: S
4235 \or: T
4236 \or: U
4237 \or: V
4238 \or: W
4239 \or: X
4240 \or: Y
4241 \or: Z
4242 \else: __int_value:w __int_eval:w #1 \exp_after:wN __int_eval_end:
4243 \fi:
4244 }

(End definition for \int_to_base:nn and \int_to_Base:nn. These functions are documented on page
75.)

\int_to_bin:n
\int_to_hex:n
\int_to_Hex:n
\int_to_oct:n

Wrappers around the generic function.

365

4245 \cs_new:Npn \int_to_bin:n #1
4246 { \int_to_base:nn {#1} { 2 } }
4247 \cs_new:Npn \int_to_hex:n #1
4248 { \int_to_base:nn {#1} { 16 } }
4249 \cs_new:Npn \int_to_Hex:n #1
4250 { \int_to_Base:nn {#1} { 16 } }
4251 \cs_new:Npn \int_to_oct:n #1
4252 { \int_to_base:nn {#1} { 8 } }

(End definition for \int_to_bin:n and others. These functions are documented on page 74.)

\int_to_roman:n
\int_to_Roman:n

__int_to_roman:N
__int_to_roman:N

__int_to_roman_i:w
__int_to_roman_v:w
__int_to_roman_x:w
__int_to_roman_l:w
__int_to_roman_c:w
__int_to_roman_d:w
__int_to_roman_m:w
__int_to_roman_Q:w
__int_to_Roman_i:w
__int_to_Roman_v:w
__int_to_Roman_x:w
__int_to_Roman_l:w
__int_to_Roman_c:w
__int_to_Roman_d:w
__int_to_Roman_m:w
__int_to_Roman_Q:w

The __int_to_roman:w primitive creates tokens of category code 12 (other). Usually,
what is actually wanted is letters. The approach here is to convert the output of the
primitive into letters using appropriate control sequence names. That keeps everything
expandable. The loop will be terminated by the conversion of the Q.

4253 \cs_new:Npn \int_to_roman:n #1
4254 {
4255 \exp_after:wN __int_to_roman:N
4256 __int_to_roman:w \int_eval:n {#1} Q
4257 }
4258 \cs_new:Npn __int_to_roman:N #1
4259 {
4260 \use:c { __int_to_roman_ #1 :w }
4261 __int_to_roman:N
4262 }
4263 \cs_new:Npn \int_to_Roman:n #1
4264 {
4265 \exp_after:wN __int_to_Roman_aux:N
4266 __int_to_roman:w \int_eval:n {#1} Q
4267 }
4268 \cs_new:Npn __int_to_Roman_aux:N #1
4269 {
4270 \use:c { __int_to_Roman_ #1 :w }
4271 __int_to_Roman_aux:N
4272 }
4273 \cs_new_nopar:Npn __int_to_roman_i:w { i }
4274 \cs_new_nopar:Npn __int_to_roman_v:w { v }
4275 \cs_new_nopar:Npn __int_to_roman_x:w { x }
4276 \cs_new_nopar:Npn __int_to_roman_l:w { l }
4277 \cs_new_nopar:Npn __int_to_roman_c:w { c }
4278 \cs_new_nopar:Npn __int_to_roman_d:w { d }
4279 \cs_new_nopar:Npn __int_to_roman_m:w { m }
4280 \cs_new_nopar:Npn __int_to_roman_Q:w #1 { }
4281 \cs_new_nopar:Npn __int_to_Roman_i:w { I }
4282 \cs_new_nopar:Npn __int_to_Roman_v:w { V }
4283 \cs_new_nopar:Npn __int_to_Roman_x:w { X }
4284 \cs_new_nopar:Npn __int_to_Roman_l:w { L }
4285 \cs_new_nopar:Npn __int_to_Roman_c:w { C }
4286 \cs_new_nopar:Npn __int_to_Roman_d:w { D }
4287 \cs_new_nopar:Npn __int_to_Roman_m:w { M }

366

4288 \cs_new:Npn __int_to_Roman_Q:w #1 { }

(End definition for \int_to_roman:n and \int_to_Roman:n. These functions are documented on page
75.)

10.9 Converting from other formats to integers
__int_pass_signs:wn

__int_pass_signs_end:wn
Called as __int_pass_signs:wn 〈signs and digits〉 \q_stop {〈code〉}, this function
leaves in the input stream any sign it finds, then inserts the 〈code〉 before the first non-
sign token (and removes \q_stop). More precisely, it deletes any + and passes any - to
the input stream, hence should be called in an integer expression.

4289 \cs_new:Npn __int_pass_signs:wn #1
4290 {
4291 \if:w + \if:w - \exp_not:N #1 + \fi: \exp_not:N #1
4292 \exp_after:wN __int_pass_signs:wn
4293 \else:
4294 \exp_after:wN __int_pass_signs_end:wn
4295 \exp_after:wN #1
4296 \fi:
4297 }
4298 \cs_new:Npn __int_pass_signs_end:wn #1 \q_stop #2 { #2 #1 }

(End definition for __int_pass_signs:wn and __int_pass_signs_end:wn.)

\int_from_alph:n
__int_from_alph:nN
__int_from_alph:N

First take care of signs then loop through the input using the recursion quarks. The _-
_int_from_alph:nN auxiliary collects in its first argument the value obtained so far, and
the auxiliary __int_from_alph:N converts one letter to an expression which evaluates
to the correct number.

4299 \cs_new:Npn \int_from_alph:n #1
4300 {
4301 \int_eval:n
4302 {
4303 \exp_after:wN __int_pass_signs:wn \tl_to_str:n {#1}
4304 \q_stop { __int_from_alph:nN { 0 } }
4305 \q_recursion_tail \q_recursion_stop
4306 }
4307 }
4308 \cs_new:Npn __int_from_alph:nN #1#2
4309 {
4310 \quark_if_recursion_tail_stop_do:Nn #2 {#1}
4311 \exp_args:Nf __int_from_alph:nN
4312 { \int_eval:n { #1 * 26 + __int_from_alph:N #2 } }
4313 }
4314 \cs_new:Npn __int_from_alph:N #1
4315 { ‘#1 - \int_compare:nNnTF { ‘#1 } < { 91 } { 64 } { 96 } }

(End definition for \int_from_alph:n. This function is documented on page 75.)

367

\int_from_base:nn
__int_from_base:nnN

__int_from_base:N

Leave the signs into the integer expression, then loop through characters, collecting the
value found so far in the first argument of __int_from_base:nnN. To convert a single
character, __int_from_base:N checks first for digits, then distinguishes lower from
upper case letters, turning them into the appropriate number. Note that this auxiliary
does not use \int_eval:n, hence is not safe for general use.

4316 \cs_new:Npn \int_from_base:nn #1#2
4317 {
4318 \int_eval:n
4319 {
4320 \exp_after:wN __int_pass_signs:wn \tl_to_str:n {#1}
4321 \q_stop { __int_from_base:nnN { 0 } {#2} }
4322 \q_recursion_tail \q_recursion_stop
4323 }
4324 }
4325 \cs_new:Npn __int_from_base:nnN #1#2#3
4326 {
4327 \quark_if_recursion_tail_stop_do:Nn #3 {#1}
4328 \exp_args:Nf __int_from_base:nnN
4329 { \int_eval:n { #1 * #2 + __int_from_base:N #3 } }
4330 {#2}
4331 }
4332 \cs_new:Npn __int_from_base:N #1
4333 {
4334 \int_compare:nNnTF { ‘#1 } < { 58 }
4335 {#1}
4336 { ‘#1 - \int_compare:nNnTF { ‘#1 } < { 91 } { 55 } { 87 } }
4337 }

(End definition for \int_from_base:nn. This function is documented on page 76.)

\int_from_bin:n
\int_from_hex:n
\int_from_oct:n

Wrappers around the generic function.
4338 \cs_new:Npn \int_from_bin:n #1
4339 { \int_from_base:nn {#1} \c_two }
4340 \cs_new:Npn \int_from_hex:n #1
4341 { \int_from_base:nn {#1} \c_sixteen }
4342 \cs_new:Npn \int_from_oct:n #1
4343 { \int_from_base:nn {#1} \c_eight }

(End definition for \int_from_bin:n , \int_from_hex:n , and \int_from_oct:n. These functions are
documented on page 75.)

\c__int_from_roman_i_int
\c__int_from_roman_v_int
\c__int_from_roman_x_int
\c__int_from_roman_l_int
\c__int_from_roman_c_int
\c__int_from_roman_d_int
\c__int_from_roman_m_int
\c__int_from_roman_I_int
\c__int_from_roman_V_int
\c__int_from_roman_X_int
\c__int_from_roman_L_int
\c__int_from_roman_C_int
\c__int_from_roman_D_int
\c__int_from_roman_M_int

Constants used to convert from Roman numerals to integers.
4344 \int_const:cn { c__int_from_roman_i_int } { 1 }
4345 \int_const:cn { c__int_from_roman_v_int } { 5 }
4346 \int_const:cn { c__int_from_roman_x_int } { 10 }
4347 \int_const:cn { c__int_from_roman_l_int } { 50 }
4348 \int_const:cn { c__int_from_roman_c_int } { 100 }
4349 \int_const:cn { c__int_from_roman_d_int } { 500 }
4350 \int_const:cn { c__int_from_roman_m_int } { 1000 }
4351 \int_const:cn { c__int_from_roman_I_int } { 1 }

368

4352 \int_const:cn { c__int_from_roman_V_int } { 5 }
4353 \int_const:cn { c__int_from_roman_X_int } { 10 }
4354 \int_const:cn { c__int_from_roman_L_int } { 50 }
4355 \int_const:cn { c__int_from_roman_C_int } { 100 }
4356 \int_const:cn { c__int_from_roman_D_int } { 500 }
4357 \int_const:cn { c__int_from_roman_M_int } { 1000 }

(End definition for \c__int_from_roman_i_int and others. These variables are documented on page
??.)

\int_from_roman:n
__int_from_roman:NN

__int_from_roman_error:w

The method here is to iterate through the input, finding the appropriate value for each
letter and building up a sum. This is then evaluated by TEX. If any unknown letter is
found, skip to the closing parenthesis and insert *0-1 afterwards, to replace the value by
−1.

4358 \cs_new:Npn \int_from_roman:n #1
4359 {
4360 \int_eval:n
4361 {
4362 (
4363 \c_zero
4364 \exp_after:wN __int_from_roman:NN \tl_to_str:n {#1}
4365 \q_recursion_tail \q_recursion_tail \q_recursion_stop
4366)
4367 }
4368 }
4369 \cs_new:Npn __int_from_roman:NN #1#2
4370 {
4371 \quark_if_recursion_tail_stop:N #1
4372 \int_if_exist:cF { c__int_from_roman_ #1 _int }
4373 { __int_from_roman_error:w }
4374 \quark_if_recursion_tail_stop_do:Nn #2
4375 { + \use:c { c__int_from_roman_ #1 _int } }
4376 \int_if_exist:cF { c__int_from_roman_ #2 _int }
4377 { __int_from_roman_error:w }
4378 \int_compare:nNnTF
4379 { \use:c { c__int_from_roman_ #1 _int } }
4380 <
4381 { \use:c { c__int_from_roman_ #2 _int } }
4382 {
4383 + \use:c { c__int_from_roman_ #2 _int }
4384 - \use:c { c__int_from_roman_ #1 _int }
4385 __int_from_roman:NN
4386 }
4387 {
4388 + \use:c { c__int_from_roman_ #1 _int }
4389 __int_from_roman:NN #2
4390 }
4391 }
4392 \cs_new:Npn __int_from_roman_error:w #1 \q_recursion_stop #2
4393 { #2 * \c_zero - \c_one }

369

(End definition for \int_from_roman:n. This function is documented on page 76.)

10.10 Viewing integer
\int_show:N
\int_show:c

This is very similar to other registers done using __kernel_register_show:N, but
differs because the variable #1 may be \currentgrouplevel or \currentgrouptype, in
which case the value must be expanded in the current scope rather than when processing
\iow_wrap:nnnN.

4394 \cs_new_protected:Npn \int_show:N #1
4395 {
4396 \use:x
4397 {
4398 \exp_not:n
4399 { __msg_show_variable:NNNnn #1 \cs_if_exist:NTF ? { } }
4400 { > ~ \token_to_str:N #1 = \tex_the:D #1 }
4401 }
4402 }
4403 \cs_generate_variant:Nn \int_show:N { c }

(End definition for \int_show:N and \int_show:c. These functions are documented on page 76.)

\int_show:n We don’t use the TEX primitive \showthe to show integer expressions: this gives a more
unified output.

4404 \cs_new_protected_nopar:Npn \int_show:n
4405 { __msg_show_wrap:Nn \int_eval:n }

(End definition for \int_show:n. This function is documented on page 76.)

10.11 Constant integers
\c_minus_one This is needed early, and so is in l3basics

(End definition for \c_minus_one. This variable is documented on page 77.)

\c_zero
\c_sixteen

Again, in l3basics

(End definition for \c_zero and \c_sixteen. These variables are documented on page 77.)

\c_one
\c_two

\c_three
\c_four
\c_five
\c_six

\c_seven
\c_eight
\c_nine
\c_ten

\c_eleven
\c_twelve

\c_thirteen
\c_fourteen
\c_fifteen

Low-number values not previously defined.
4406 \int_const:Nn \c_one { 1 }
4407 \int_const:Nn \c_two { 2 }
4408 \int_const:Nn \c_three { 3 }
4409 \int_const:Nn \c_four { 4 }
4410 \int_const:Nn \c_five { 5 }
4411 \int_const:Nn \c_six { 6 }
4412 \int_const:Nn \c_seven { 7 }
4413 \int_const:Nn \c_eight { 8 }
4414 \int_const:Nn \c_nine { 9 }
4415 \int_const:Nn \c_ten { 10 }
4416 \int_const:Nn \c_eleven { 11 }

370

4417 \int_const:Nn \c_twelve { 12 }
4418 \int_const:Nn \c_thirteen { 13 }
4419 \int_const:Nn \c_fourteen { 14 }
4420 \int_const:Nn \c_fifteen { 15 }

(End definition for \c_one and others. These variables are documented on page 77.)

\c_thirty_two One middling value.
4421 \int_const:Nn \c_thirty_two { 32 }

(End definition for \c_thirty_two. This variable is documented on page 77.)

\c_two_hundred_fifty_five
\c_two_hundred_fifty_six

Two classic mid-range integer constants.
4422 \int_const:Nn \c_two_hundred_fifty_five { 255 }
4423 \int_const:Nn \c_two_hundred_fifty_six { 256 }

(End definition for \c_two_hundred_fifty_five and \c_two_hundred_fifty_six. These variables are
documented on page 77.)

\c_one_hundred
\c_one_thousand
\c_ten_thousand

Simple runs of powers of ten.
4424 \int_const:Nn \c_one_hundred { 100 }
4425 \int_const:Nn \c_one_thousand { 1000 }
4426 \int_const:Nn \c_ten_thousand { 10000 }

(End definition for \c_one_hundred , \c_one_thousand , and \c_ten_thousand. These variables are doc-
umented on page 77.)

\c_max_int The largest number allowed is 231 − 1
4427 \int_const:Nn \c_max_int { 2 147 483 647 }

(End definition for \c_max_int. This variable is documented on page 77.)

10.12 Scratch integers
\l_tmpa_int
\l_tmpb_int
\g_tmpa_int
\g_tmpb_int

We provide two local and two global scratch counters, maybe we need more or less.
4428 \int_new:N \l_tmpa_int
4429 \int_new:N \l_tmpb_int
4430 \int_new:N \g_tmpa_int
4431 \int_new:N \g_tmpb_int

(End definition for \l_tmpa_int and \l_tmpb_int. These variables are documented on page 77.)

4432 〈/initex | package〉

371

11 l3skip implementation
4433 〈*initex | package〉

4434 〈@@=dim〉

11.1 Length primitives renamed
\if_dim:w

__dim_eval:w
__dim_eval_end:

Primitives renamed.
4435 \cs_new_eq:NN \if_dim:w \tex_ifdim:D
4436 \cs_new_eq:NN __dim_eval:w \etex_dimexpr:D
4437 \cs_new_eq:NN __dim_eval_end: \tex_relax:D

(End definition for \if_dim:w. This function is documented on page 94.)

11.2 Creating and initialising dim variables
\dim_new:N
\dim_new:c

Allocating 〈dim〉 registers . . .
4438 〈*package〉
4439 \cs_new_protected:Npn \dim_new:N #1
4440 {
4441 __chk_if_free_cs:N #1
4442 \cs:w newdimen \cs_end: #1
4443 }
4444 〈/package〉
4445 \cs_generate_variant:Nn \dim_new:N { c }

(End definition for \dim_new:N and \dim_new:c. These functions are documented on page 80.)

\dim_const:Nn
\dim_const:cn

Contrarily to integer constants, we cannot avoid using a register, even for constants.
4446 \cs_new_protected:Npn \dim_const:Nn #1
4447 {
4448 \dim_new:N #1
4449 \dim_gset:Nn #1
4450 }
4451 \cs_generate_variant:Nn \dim_const:Nn { c }

(End definition for \dim_const:Nn and \dim_const:cn. These functions are documented on page 80.)

\dim_zero:N
\dim_zero:c
\dim_gzero:N
\dim_gzero:c

Reset the register to zero.
4452 \cs_new_protected:Npn \dim_zero:N #1 { #1 \c_zero_dim }
4453 \cs_new_protected:Npn \dim_gzero:N { \tex_global:D \dim_zero:N }
4454 \cs_generate_variant:Nn \dim_zero:N { c }
4455 \cs_generate_variant:Nn \dim_gzero:N { c }

(End definition for \dim_zero:N and \dim_zero:c. These functions are documented on page 80.)

372

\dim_zero_new:N
\dim_zero_new:c
\dim_gzero_new:N
\dim_gzero_new:c

Create a register if needed, otherwise clear it.
4456 \cs_new_protected:Npn \dim_zero_new:N #1
4457 { \dim_if_exist:NTF #1 { \dim_zero:N #1 } { \dim_new:N #1 } }
4458 \cs_new_protected:Npn \dim_gzero_new:N #1
4459 { \dim_if_exist:NTF #1 { \dim_gzero:N #1 } { \dim_new:N #1 } }
4460 \cs_generate_variant:Nn \dim_zero_new:N { c }
4461 \cs_generate_variant:Nn \dim_gzero_new:N { c }

(End definition for \dim_zero_new:N and others. These functions are documented on page 80.)

\dim_if_exist_p:N
\dim_if_exist_p:c
\dim_if_exist:NTF
\dim_if_exist:cTF

Copies of the cs functions defined in l3basics.
4462 \prg_new_eq_conditional:NNn \dim_if_exist:N \cs_if_exist:N
4463 { TF , T , F , p }
4464 \prg_new_eq_conditional:NNn \dim_if_exist:c \cs_if_exist:c
4465 { TF , T , F , p }

(End definition for \dim_if_exist:NTF and \dim_if_exist:cTF. These functions are documented on
page 80.)

11.3 Setting dim variables
\dim_set:Nn
\dim_set:cn
\dim_gset:Nn
\dim_gset:cn

Setting dimensions is easy enough.
4466 \cs_new_protected:Npn \dim_set:Nn #1#2
4467 { #1 ~ __dim_eval:w #2 __dim_eval_end: }
4468 \cs_new_protected:Npn \dim_gset:Nn { \tex_global:D \dim_set:Nn }
4469 \cs_generate_variant:Nn \dim_set:Nn { c }
4470 \cs_generate_variant:Nn \dim_gset:Nn { c }

(End definition for \dim_set:Nn and \dim_set:cn. These functions are documented on page 81.)

\dim_set_eq:NN
\dim_set_eq:cN
\dim_set_eq:Nc
\dim_set_eq:cc
\dim_gset_eq:NN
\dim_gset_eq:cN
\dim_gset_eq:Nc
\dim_gset_eq:cc

All straightforward.
4471 \cs_new_protected:Npn \dim_set_eq:NN #1#2 { #1 = #2 }
4472 \cs_generate_variant:Nn \dim_set_eq:NN { c }
4473 \cs_generate_variant:Nn \dim_set_eq:NN { Nc , cc }
4474 \cs_new_protected:Npn \dim_gset_eq:NN #1#2 { \tex_global:D #1 = #2 }
4475 \cs_generate_variant:Nn \dim_gset_eq:NN { c }
4476 \cs_generate_variant:Nn \dim_gset_eq:NN { Nc , cc }

(End definition for \dim_set_eq:NN and others. These functions are documented on page 81.)

\dim_add:Nn
\dim_add:cn
\dim_gadd:Nn
\dim_gadd:cn
\dim_sub:Nn
\dim_sub:cn
\dim_gsub:Nn
\dim_gsub:cn

Using by here deals with the (incorrect) case \dimen123.
4477 \cs_new_protected:Npn \dim_add:Nn #1#2
4478 { \tex_advance:D #1 by __dim_eval:w #2 __dim_eval_end: }
4479 \cs_new_protected:Npn \dim_gadd:Nn { \tex_global:D \dim_add:Nn }
4480 \cs_generate_variant:Nn \dim_add:Nn { c }
4481 \cs_generate_variant:Nn \dim_gadd:Nn { c }
4482 \cs_new_protected:Npn \dim_sub:Nn #1#2
4483 { \tex_advance:D #1 by - __dim_eval:w #2 __dim_eval_end: }
4484 \cs_new_protected:Npn \dim_gsub:Nn { \tex_global:D \dim_sub:Nn }
4485 \cs_generate_variant:Nn \dim_sub:Nn { c }
4486 \cs_generate_variant:Nn \dim_gsub:Nn { c }

(End definition for \dim_add:Nn and \dim_add:cn. These functions are documented on page 81.)

373

11.4 Utilities for dimension calculations
\dim_abs:n

__dim_abs:N
\dim_max:nn
\dim_min:nn

__dim_maxmin:wwN

Functions for min, max, and absolute value with only one evaluation. The absolute value
is evaluated by removing a leading - if present.

4487 \cs_new:Npn \dim_abs:n #1
4488 {
4489 \exp_after:wN __dim_abs:N
4490 \dim_use:N __dim_eval:w #1 __dim_eval_end:
4491 }
4492 \cs_new:Npn __dim_abs:N #1
4493 { \if_meaning:w - #1 \else: \exp_after:wN #1 \fi: }
4494 \cs_set:Npn \dim_max:nn #1#2
4495 {
4496 \dim_use:N __dim_eval:w \exp_after:wN __dim_maxmin:wwN
4497 \dim_use:N __dim_eval:w #1 \exp_after:wN ;
4498 \dim_use:N __dim_eval:w #2 ;
4499 >
4500 __dim_eval_end:
4501 }
4502 \cs_set:Npn \dim_min:nn #1#2
4503 {
4504 \dim_use:N __dim_eval:w \exp_after:wN __dim_maxmin:wwN
4505 \dim_use:N __dim_eval:w #1 \exp_after:wN ;
4506 \dim_use:N __dim_eval:w #2 ;
4507 <
4508 __dim_eval_end:
4509 }
4510 \cs_new:Npn __dim_maxmin:wwN #1 ; #2 ; #3
4511 {
4512 \if_dim:w #1 #3 #2 ~
4513 #1
4514 \else:
4515 #2
4516 \fi:
4517 }

(End definition for \dim_abs:n. This function is documented on page 81.)

\dim_ratio:nn
__dim_ratio:n

With dimension expressions, something like 10 pt * (5 pt / 10 pt) will not work.
Instead, the ratio part needs to be converted to an integer expression. Using __int_-
value:w forces everything into sp, avoiding any decimal parts.

4518 \cs_new:Npn \dim_ratio:nn #1#2
4519 { __dim_ratio:n {#1} / __dim_ratio:n {#2} }
4520 \cs_new:Npn __dim_ratio:n #1
4521 { __int_value:w __dim_eval:w #1 __dim_eval_end: }

(End definition for \dim_ratio:nn. This function is documented on page 82.)

374

11.5 Dimension expression conditionals
\dim_compare_p:nNn
\dim_compare:nNnTF

Simple comparison.
4522 \prg_new_conditional:Npnn \dim_compare:nNn #1#2#3 { p , T , F , TF }
4523 {
4524 \if_dim:w __dim_eval:w #1 #2 __dim_eval:w #3 __dim_eval_end:
4525 \prg_return_true: \else: \prg_return_false: \fi:
4526 }

(End definition for \dim_compare:nNnTF. This function is documented on page 82.)

\dim_compare_p:n
\dim_compare:nTF
__dim_compare:w

__dim_compare:wNN
__dim_compare_=:w
__dim_compare_!:w
__dim_compare_<:w
__dim_compare_>:w

This code is adapted from the \int_compare:nTF function. First make sure that there is
at least one relation operator, by evaluating a dimension expression with a trailing __-
prg_compare_error:. Just like for integers, the looping auxiliary __dim_compare:wNN
closes a primitive conditional and opens a new one. It is actually easier to grab a di-
mension operand than an integer one, because once evaluated, dimensions all end with
pt (with category other). Thus we do not need specific auxiliaries for the three “simple”
relations <, =, and >.

4527 \prg_new_conditional:Npnn \dim_compare:n #1 { p , T , F , TF }
4528 {
4529 \exp_after:wN __dim_compare:w
4530 \dim_use:N __dim_eval:w #1 __prg_compare_error:
4531 }
4532 \cs_new:Npn __dim_compare:w #1 __prg_compare_error:
4533 {
4534 \exp_after:wN \if_false: \exp:w \exp_end_continue_f:w
4535 __dim_compare:wNN #1 ? { = __dim_compare_end:w \else: } \q_stop
4536 }
4537 \exp_args:Nno \use:nn
4538 { \cs_new:Npn __dim_compare:wNN #1 }
4539 { \tl_to_str:n {pt} }
4540 #2#3
4541 {
4542 \if_meaning:w = #3
4543 \use:c { __dim_compare_#2:w }
4544 \fi:
4545 #1 pt \exp_stop_f:
4546 \prg_return_false:
4547 \exp_after:wN \use_none_delimit_by_q_stop:w
4548 \fi:
4549 \reverse_if:N \if_dim:w #1 pt #2
4550 \exp_after:wN __dim_compare:wNN
4551 \dim_use:N __dim_eval:w #3
4552 }
4553 \cs_new:cpn { __dim_compare_ ! :w }
4554 #1 \reverse_if:N #2 ! #3 = { #1 #2 = #3 }
4555 \cs_new:cpn { __dim_compare_ = :w }
4556 #1 __dim_eval:w = { #1 __dim_eval:w }
4557 \cs_new:cpn { __dim_compare_ < :w }

375

4558 #1 \reverse_if:N #2 < #3 = { #1 #2 > #3 }
4559 \cs_new:cpn { __dim_compare_ > :w }
4560 #1 \reverse_if:N #2 > #3 = { #1 #2 < #3 }
4561 \cs_new:Npn __dim_compare_end:w #1 \prg_return_false: #2 \q_stop
4562 { #1 \prg_return_false: \else: \prg_return_true: \fi: }

(End definition for \dim_compare:nTF. This function is documented on page 83.)

\dim_case:nn
\dim_case:nnTF

__dim_case:nnTF
__dim_case:nw

__dim_case_end:nw

For dimension cases, the first task to fully expand the check condition. The over all idea
is then much the same as for \str_case:nn(TF) as described in l3basics.

4563 \cs_new:Npn \dim_case:nnTF #1
4564 {
4565 \exp:w
4566 \exp_args:Nf __dim_case:nnTF { \dim_eval:n {#1} }
4567 }
4568 \cs_new:Npn \dim_case:nnT #1#2#3
4569 {
4570 \exp:w
4571 \exp_args:Nf __dim_case:nnTF { \dim_eval:n {#1} } {#2} {#3} { }
4572 }
4573 \cs_new:Npn \dim_case:nnF #1#2
4574 {
4575 \exp:w
4576 \exp_args:Nf __dim_case:nnTF { \dim_eval:n {#1} } {#2} { }
4577 }
4578 \cs_new:Npn \dim_case:nn #1#2
4579 {
4580 \exp:w
4581 \exp_args:Nf __dim_case:nnTF { \dim_eval:n {#1} } {#2} { } { }
4582 }
4583 \cs_new:Npn __dim_case:nnTF #1#2#3#4
4584 { __dim_case:nw {#1} #2 {#1} { } \q_mark {#3} \q_mark {#4} \q_stop }
4585 \cs_new:Npn __dim_case:nw #1#2#3
4586 {
4587 \dim_compare:nNnTF {#1} = {#2}
4588 { __dim_case_end:nw {#3} }
4589 { __dim_case:nw {#1} }
4590 }
4591 \cs_new_eq:NN __dim_case_end:nw __prg_case_end:nw

(End definition for \dim_case:nn. This function is documented on page ??.)

11.6 Dimension expression loops
\dim_while_do:nn
\dim_until_do:nn
\dim_do_while:nn
\dim_do_until:nn

while_do and do_while functions for dimensions. Same as for the int type only the
names have changed.

4592 \cs_set:Npn \dim_while_do:nn #1#2
4593 {
4594 \dim_compare:nT {#1}
4595 {

376

4596 #2
4597 \dim_while_do:nn {#1} {#2}
4598 }
4599 }
4600 \cs_set:Npn \dim_until_do:nn #1#2
4601 {
4602 \dim_compare:nF {#1}
4603 {
4604 #2
4605 \dim_until_do:nn {#1} {#2}
4606 }
4607 }
4608 \cs_set:Npn \dim_do_while:nn #1#2
4609 {
4610 #2
4611 \dim_compare:nT {#1}
4612 { \dim_do_while:nn {#1} {#2} }
4613 }
4614 \cs_set:Npn \dim_do_until:nn #1#2
4615 {
4616 #2
4617 \dim_compare:nF {#1}
4618 { \dim_do_until:nn {#1} {#2} }
4619 }

(End definition for \dim_while_do:nn. This function is documented on page 85.)

\dim_while_do:nNnn
\dim_until_do:nNnn
\dim_do_while:nNnn
\dim_do_until:nNnn

while_do and do_while functions for dimensions. Same as for the int type only the
names have changed.

4620 \cs_set:Npn \dim_while_do:nNnn #1#2#3#4
4621 {
4622 \dim_compare:nNnT {#1} #2 {#3}
4623 {
4624 #4
4625 \dim_while_do:nNnn {#1} #2 {#3} {#4}
4626 }
4627 }
4628 \cs_set:Npn \dim_until_do:nNnn #1#2#3#4
4629 {
4630 \dim_compare:nNnF {#1} #2 {#3}
4631 {
4632 #4
4633 \dim_until_do:nNnn {#1} #2 {#3} {#4}
4634 }
4635 }
4636 \cs_set:Npn \dim_do_while:nNnn #1#2#3#4
4637 {
4638 #4
4639 \dim_compare:nNnT {#1} #2 {#3}
4640 { \dim_do_while:nNnn {#1} #2 {#3} {#4} }

377

4641 }
4642 \cs_set:Npn \dim_do_until:nNnn #1#2#3#4
4643 {
4644 #4
4645 \dim_compare:nNnF {#1} #2 {#3}
4646 { \dim_do_until:nNnn {#1} #2 {#3} {#4} }
4647 }

(End definition for \dim_while_do:nNnn. This function is documented on page 85.)

11.7 Using dim expressions and variables
\dim_eval:n Evaluating a dimension expression expandably.

4648 \cs_new:Npn \dim_eval:n #1
4649 { \dim_use:N __dim_eval:w #1 __dim_eval_end: }

(End definition for \dim_eval:n. This function is documented on page 85.)

\dim_use:N
\dim_use:c

Accessing a 〈dim〉.
4650 \cs_new_eq:NN \dim_use:N \tex_the:D

We hand-code this for some speed gain:
4651 %\cs_generate_variant:Nn \dim_use:N { c }
4652 \cs_new:Npn \dim_use:c #1 { \tex_the:D \cs:w #1 \cs_end: }

(End definition for \dim_use:N and \dim_use:c. These functions are documented on page 86.)

\dim_to_decimal:n
__dim_to_decimal:w

A function which comes up often enough to deserve a place in the kernel. Evaluate the
dimension expression #1 then remove the trailing pt. The argument is put in parentheses
as this prevents the dimension expression from terminating early and leaving extra tokens
lying around. This is used a lot by low-level manipulations.

4653 \cs_new:Npn \dim_to_decimal:n #1
4654 {
4655 \exp_after:wN
4656 __dim_to_decimal:w \dim_use:N __dim_eval:w (#1) __dim_eval_end:
4657 }
4658 \use:x
4659 {
4660 \cs_new:Npn \exp_not:N __dim_to_decimal:w
4661 ##1 . ##2 \tl_to_str:n { pt }
4662 }
4663 {
4664 \int_compare:nNnTF {#2} > \c_zero
4665 { #1 . #2 }
4666 { #1 }
4667 }

(End definition for \dim_to_decimal:n. This function is documented on page 86.)

378

\dim_to_decimal_in_bp:n Conversion to big points is done using a scaling inside __dim_eval:w as ε-TEX does
that using 64-bit precision. Here, 800/803 is the integer fraction for 72/72.27. This is a
common case so is hand-coded for accuracy (and speed).

4668 \cs_new:Npn \dim_to_decimal_in_bp:n #1
4669 { \dim_to_decimal:n { (#1) * 800 / 803 } }

(End definition for \dim_to_decimal_in_bp:n. This function is documented on page 86.)

\dim_to_decimal_in_sp:n Another hard-coded conversion: this one is necessary to avoid things going off-scale.
4670 \cs_new:Npn \dim_to_decimal_in_sp:n #1
4671 { \int_eval:n { __dim_eval:w #1 __dim_eval_end: } }

(End definition for \dim_to_decimal_in_sp:n. This function is documented on page 86.)

\dim_to_decimal_in_unit:nn An analogue of \dim_ratio:nn that produces a decimal number as its result, rather than
a rational fraction for use within dimension expressions.

4672 \cs_new:Npn \dim_to_decimal_in_unit:nn #1#2
4673 {
4674 \dim_to_decimal:n
4675 {
4676 1pt *
4677 \dim_ratio:nn {#1} {#2}
4678 }
4679 }

(End definition for \dim_to_decimal_in_unit:nn. This function is documented on page 87.)

\dim_to_fp:n Defined in l3fp-convert, documented here.

(End definition for \dim_to_fp:n. This function is documented on page 87.)

11.8 Viewing dim variables
\dim_show:N
\dim_show:c

Diagnostics.
4680 \cs_new_eq:NN \dim_show:N __kernel_register_show:N
4681 \cs_generate_variant:Nn \dim_show:N { c }

(End definition for \dim_show:N and \dim_show:c. These functions are documented on page 87.)

\dim_show:n Diagnostics. We don’t use the TEX primitive \showthe to show dimension expressions:
this gives a more unified output.

4682 \cs_new_protected_nopar:Npn \dim_show:n
4683 { __msg_show_wrap:Nn \dim_eval:n }

(End definition for \dim_show:n. This function is documented on page 87.)

379

11.9 Constant dimensions
\c_zero_dim
\c_max_dim

Constant dimensions: in package mode, a couple of registers can be saved.
4684 \dim_const:Nn \c_zero_dim { 0 pt }
4685 \dim_const:Nn \c_max_dim { 16383.99999 pt }

(End definition for \c_zero_dim and \c_max_dim. These variables are documented on page 87.)

11.10 Scratch dimensions
\l_tmpa_dim
\l_tmpb_dim
\g_tmpa_dim
\g_tmpb_dim

We provide two local and two global scratch registers, maybe we need more or less.
4686 \dim_new:N \l_tmpa_dim
4687 \dim_new:N \l_tmpb_dim
4688 \dim_new:N \g_tmpa_dim
4689 \dim_new:N \g_tmpb_dim

(End definition for \l_tmpa_dim and \l_tmpb_dim. These variables are documented on page 88.)

11.11 Creating and initialising skip variables
\skip_new:N
\skip_new:c

Allocation of a new internal registers.
4690 〈*package〉
4691 \cs_new_protected:Npn \skip_new:N #1
4692 {
4693 __chk_if_free_cs:N #1
4694 \cs:w newskip \cs_end: #1
4695 }
4696 〈/package〉
4697 \cs_generate_variant:Nn \skip_new:N { c }

(End definition for \skip_new:N and \skip_new:c. These functions are documented on page 88.)

\skip_const:Nn
\skip_const:cn

Contrarily to integer constants, we cannot avoid using a register, even for constants.
4698 \cs_new_protected:Npn \skip_const:Nn #1
4699 {
4700 \skip_new:N #1
4701 \skip_gset:Nn #1
4702 }
4703 \cs_generate_variant:Nn \skip_const:Nn { c }

(End definition for \skip_const:Nn and \skip_const:cn. These functions are documented on page 88.)

\skip_zero:N
\skip_zero:c
\skip_gzero:N
\skip_gzero:c

Reset the register to zero.
4704 \cs_new_protected:Npn \skip_zero:N #1 { #1 \c_zero_skip }
4705 \cs_new_protected:Npn \skip_gzero:N { \tex_global:D \skip_zero:N }
4706 \cs_generate_variant:Nn \skip_zero:N { c }
4707 \cs_generate_variant:Nn \skip_gzero:N { c }

(End definition for \skip_zero:N and \skip_zero:c. These functions are documented on page 88.)

380

\skip_zero_new:N
\skip_zero_new:c
\skip_gzero_new:N
\skip_gzero_new:c

Create a register if needed, otherwise clear it.
4708 \cs_new_protected:Npn \skip_zero_new:N #1
4709 { \skip_if_exist:NTF #1 { \skip_zero:N #1 } { \skip_new:N #1 } }
4710 \cs_new_protected:Npn \skip_gzero_new:N #1
4711 { \skip_if_exist:NTF #1 { \skip_gzero:N #1 } { \skip_new:N #1 } }
4712 \cs_generate_variant:Nn \skip_zero_new:N { c }
4713 \cs_generate_variant:Nn \skip_gzero_new:N { c }

(End definition for \skip_zero_new:N and others. These functions are documented on page 88.)

\skip_if_exist_p:N
\skip_if_exist_p:c
\skip_if_exist:NTF
\skip_if_exist:cTF

Copies of the cs functions defined in l3basics.
4714 \prg_new_eq_conditional:NNn \skip_if_exist:N \cs_if_exist:N
4715 { TF , T , F , p }
4716 \prg_new_eq_conditional:NNn \skip_if_exist:c \cs_if_exist:c
4717 { TF , T , F , p }

(End definition for \skip_if_exist:NTF and \skip_if_exist:cTF. These functions are documented on
page 88.)

11.12 Setting skip variables
\skip_set:Nn
\skip_set:cn
\skip_gset:Nn
\skip_gset:cn

Much the same as for dimensions.
4718 \cs_new_protected:Npn \skip_set:Nn #1#2
4719 { #1 ~ \etex_glueexpr:D #2 \scan_stop: }
4720 \cs_new_protected:Npn \skip_gset:Nn { \tex_global:D \skip_set:Nn }
4721 \cs_generate_variant:Nn \skip_set:Nn { c }
4722 \cs_generate_variant:Nn \skip_gset:Nn { c }

(End definition for \skip_set:Nn and \skip_set:cn. These functions are documented on page 89.)

\skip_set_eq:NN
\skip_set_eq:cN
\skip_set_eq:Nc
\skip_set_eq:cc
\skip_gset_eq:NN
\skip_gset_eq:cN
\skip_gset_eq:Nc
\skip_gset_eq:cc

All straightforward.
4723 \cs_new_protected:Npn \skip_set_eq:NN #1#2 { #1 = #2 }
4724 \cs_generate_variant:Nn \skip_set_eq:NN { c }
4725 \cs_generate_variant:Nn \skip_set_eq:NN { Nc , cc }
4726 \cs_new_protected:Npn \skip_gset_eq:NN #1#2 { \tex_global:D #1 = #2 }
4727 \cs_generate_variant:Nn \skip_gset_eq:NN { c }
4728 \cs_generate_variant:Nn \skip_gset_eq:NN { Nc , cc }

(End definition for \skip_set_eq:NN and others. These functions are documented on page 89.)

\skip_add:Nn
\skip_add:cn
\skip_gadd:Nn
\skip_gadd:cn
\skip_sub:Nn
\skip_sub:cn
\skip_gsub:Nn
\skip_gsub:cn

Using by here deals with the (incorrect) case \skip123.
4729 \cs_new_protected:Npn \skip_add:Nn #1#2
4730 { \tex_advance:D #1 by \etex_glueexpr:D #2 \scan_stop: }
4731 \cs_new_protected:Npn \skip_gadd:Nn { \tex_global:D \skip_add:Nn }
4732 \cs_generate_variant:Nn \skip_add:Nn { c }
4733 \cs_generate_variant:Nn \skip_gadd:Nn { c }
4734 \cs_new_protected:Npn \skip_sub:Nn #1#2
4735 { \tex_advance:D #1 by - \etex_glueexpr:D #2 \scan_stop: }
4736 \cs_new_protected:Npn \skip_gsub:Nn { \tex_global:D \skip_sub:Nn }
4737 \cs_generate_variant:Nn \skip_sub:Nn { c }
4738 \cs_generate_variant:Nn \skip_gsub:Nn { c }

(End definition for \skip_add:Nn and \skip_add:cn. These functions are documented on page 89.)

381

11.13 Skip expression conditionals
\skip_if_eq_p:nn
\skip_if_eq:nnTF

Comparing skips means doing two expansions to make strings, and then testing them.
As a result, only equality is tested.

4739 \prg_new_conditional:Npnn \skip_if_eq:nn #1#2 { p , T , F , TF }
4740 {
4741 \if_int_compare:w
4742 __str_if_eq_x:nn { \skip_eval:n { #1 } } { \skip_eval:n { #2 } }
4743 = \c_zero
4744 \prg_return_true:
4745 \else:
4746 \prg_return_false:
4747 \fi:
4748 }

(End definition for \skip_if_eq:nnTF. This function is documented on page 89.)

\skip_if_finite_p:n
\skip_if_finite:nTF

__skip_if_finite:wwNw

With ε-TEX, we have an easy access to the order of infinities of the stretch and shrink
components of a skip. However, to access both, we either need to evaluate the expression
twice, or evaluate it, then call an auxiliary to extract both pieces of information from the
result. Since we are going to need an auxiliary anyways, it is quicker to make it search
for the string fil which characterizes infinite glue.

4749 \cs_set_protected:Npn __cs_tmp:w #1
4750 {
4751 \prg_new_conditional:Npnn \skip_if_finite:n ##1 { p , T , F , TF }
4752 {
4753 \exp_after:wN __skip_if_finite:wwNw
4754 \skip_use:N \etex_glueexpr:D ##1 ; \prg_return_false:
4755 #1 ; \prg_return_true: \q_stop
4756 }
4757 \cs_new:Npn __skip_if_finite:wwNw ##1 #1 ##2 ; ##3 ##4 \q_stop {##3}
4758 }
4759 \exp_args:No __cs_tmp:w { \tl_to_str:n { fil } }

(End definition for \skip_if_finite:nTF. This function is documented on page 89.)

11.14 Using skip expressions and variables
\skip_eval:n Evaluating a skip expression expandably.

4760 \cs_new:Npn \skip_eval:n #1
4761 { \skip_use:N \etex_glueexpr:D #1 \scan_stop: }

(End definition for \skip_eval:n. This function is documented on page 90.)

\skip_use:N
\skip_use:c

Accessing a 〈skip〉.
4762 \cs_new_eq:NN \skip_use:N \tex_the:D
4763 %\cs_generate_variant:Nn \skip_use:N { c }
4764 \cs_new:Npn \skip_use:c #1 { \tex_the:D \cs:w #1 \cs_end: }

(End definition for \skip_use:N and \skip_use:c. These functions are documented on page 90.)

382

11.15 Inserting skips into the output
\skip_horizontal:N
\skip_horizontal:c
\skip_horizontal:n

\skip_vertical:N
\skip_vertical:c
\skip_vertical:n

Inserting skips.
4765 \cs_new_eq:NN \skip_horizontal:N \tex_hskip:D
4766 \cs_new:Npn \skip_horizontal:n #1
4767 { \skip_horizontal:N \etex_glueexpr:D #1 \scan_stop: }
4768 \cs_new_eq:NN \skip_vertical:N \tex_vskip:D
4769 \cs_new:Npn \skip_vertical:n #1
4770 { \skip_vertical:N \etex_glueexpr:D #1 \scan_stop: }
4771 \cs_generate_variant:Nn \skip_horizontal:N { c }
4772 \cs_generate_variant:Nn \skip_vertical:N { c }

(End definition for \skip_horizontal:N , \skip_horizontal:c , and \skip_horizontal:n. These func-
tions are documented on page 91.)

11.16 Viewing skip variables
\skip_show:N
\skip_show:c

Diagnostics.
4773 \cs_new_eq:NN \skip_show:N __kernel_register_show:N
4774 \cs_generate_variant:Nn \skip_show:N { c }

(End definition for \skip_show:N and \skip_show:c. These functions are documented on page 90.)

\skip_show:n Diagnostics. We don’t use the TEX primitive \showthe to show skip expressions: this
gives a more unified output.

4775 \cs_new_protected_nopar:Npn \skip_show:n
4776 { __msg_show_wrap:Nn \skip_eval:n }

(End definition for \skip_show:n. This function is documented on page 90.)

11.17 Constant skips
\c_zero_skip
\c_max_skip

Skips with no rubber component are just dimensions but need to terminate correctly.
4777 \skip_const:Nn \c_zero_skip { \c_zero_dim }
4778 \skip_const:Nn \c_max_skip { \c_max_dim }

(End definition for \c_zero_skip and \c_max_skip. These functions are documented on page 90.)

11.18 Scratch skips
\l_tmpa_skip
\l_tmpb_skip
\g_tmpa_skip
\g_tmpb_skip

We provide two local and two global scratch registers, maybe we need more or less.
4779 \skip_new:N \l_tmpa_skip
4780 \skip_new:N \l_tmpb_skip
4781 \skip_new:N \g_tmpa_skip
4782 \skip_new:N \g_tmpb_skip

(End definition for \l_tmpa_skip and \l_tmpb_skip. These variables are documented on page 91.)

383

11.19 Creating and initialising muskip variables
\muskip_new:N
\muskip_new:c

And then we add muskips.
4783 〈*package〉
4784 \cs_new_protected:Npn \muskip_new:N #1
4785 {
4786 __chk_if_free_cs:N #1
4787 \cs:w newmuskip \cs_end: #1
4788 }
4789 〈/package〉
4790 \cs_generate_variant:Nn \muskip_new:N { c }

(End definition for \muskip_new:N and \muskip_new:c. These functions are documented on page 91.)

\muskip_const:Nn
\muskip_const:cn

Contrarily to integer constants, we cannot avoid using a register, even for constants.
4791 \cs_new_protected:Npn \muskip_const:Nn #1
4792 {
4793 \muskip_new:N #1
4794 \muskip_gset:Nn #1
4795 }
4796 \cs_generate_variant:Nn \muskip_const:Nn { c }

(End definition for \muskip_const:Nn and \muskip_const:cn. These functions are documented on page
91.)

\muskip_zero:N
\muskip_zero:c
\muskip_gzero:N
\muskip_gzero:c

Reset the register to zero.
4797 \cs_new_protected:Npn \muskip_zero:N #1
4798 { #1 \c_zero_muskip }
4799 \cs_new_protected:Npn \muskip_gzero:N { \tex_global:D \muskip_zero:N }
4800 \cs_generate_variant:Nn \muskip_zero:N { c }
4801 \cs_generate_variant:Nn \muskip_gzero:N { c }

(End definition for \muskip_zero:N and \muskip_zero:c. These functions are documented on page 91.)

\muskip_zero_new:N
\muskip_zero_new:c
\muskip_gzero_new:N
\muskip_gzero_new:c

Create a register if needed, otherwise clear it.
4802 \cs_new_protected:Npn \muskip_zero_new:N #1
4803 { \muskip_if_exist:NTF #1 { \muskip_zero:N #1 } { \muskip_new:N #1 } }
4804 \cs_new_protected:Npn \muskip_gzero_new:N #1
4805 { \muskip_if_exist:NTF #1 { \muskip_gzero:N #1 } { \muskip_new:N #1 } }
4806 \cs_generate_variant:Nn \muskip_zero_new:N { c }
4807 \cs_generate_variant:Nn \muskip_gzero_new:N { c }

(End definition for \muskip_zero_new:N and others. These functions are documented on page 92.)

\muskip_if_exist_p:N
\muskip_if_exist_p:c
\muskip_if_exist:NTF
\muskip_if_exist:cTF

Copies of the cs functions defined in l3basics.
4808 \prg_new_eq_conditional:NNn \muskip_if_exist:N \cs_if_exist:N
4809 { TF , T , F , p }
4810 \prg_new_eq_conditional:NNn \muskip_if_exist:c \cs_if_exist:c
4811 { TF , T , F , p }

(End definition for \muskip_if_exist:NTF and \muskip_if_exist:cTF. These functions are documented
on page 92.)

384

11.20 Setting muskip variables
\muskip_set:Nn
\muskip_set:cn
\muskip_gset:Nn
\muskip_gset:cn

This should be pretty familiar.
4812 \cs_new_protected:Npn \muskip_set:Nn #1#2
4813 { #1 ~ \etex_muexpr:D #2 \scan_stop: }
4814 \cs_new_protected:Npn \muskip_gset:Nn { \tex_global:D \muskip_set:Nn }
4815 \cs_generate_variant:Nn \muskip_set:Nn { c }
4816 \cs_generate_variant:Nn \muskip_gset:Nn { c }

(End definition for \muskip_set:Nn and \muskip_set:cn. These functions are documented on page 92.)

\muskip_set_eq:NN
\muskip_set_eq:cN
\muskip_set_eq:Nc
\muskip_set_eq:cc
\muskip_gset_eq:NN
\muskip_gset_eq:cN
\muskip_gset_eq:Nc
\muskip_gset_eq:cc

All straightforward.
4817 \cs_new_protected:Npn \muskip_set_eq:NN #1#2 { #1 = #2 }
4818 \cs_generate_variant:Nn \muskip_set_eq:NN { c }
4819 \cs_generate_variant:Nn \muskip_set_eq:NN { Nc , cc }
4820 \cs_new_protected:Npn \muskip_gset_eq:NN #1#2 { \tex_global:D #1 = #2 }
4821 \cs_generate_variant:Nn \muskip_gset_eq:NN { c }
4822 \cs_generate_variant:Nn \muskip_gset_eq:NN { Nc , cc }

(End definition for \muskip_set_eq:NN and others. These functions are documented on page 92.)

\muskip_add:Nn
\muskip_add:cn
\muskip_gadd:Nn
\muskip_gadd:cn
\muskip_sub:Nn
\muskip_sub:cn
\muskip_gsub:Nn
\muskip_gsub:cn

Using by here deals with the (incorrect) case \muskip123.
4823 \cs_new_protected:Npn \muskip_add:Nn #1#2
4824 { \tex_advance:D #1 by \etex_muexpr:D #2 \scan_stop: }
4825 \cs_new_protected:Npn \muskip_gadd:Nn { \tex_global:D \muskip_add:Nn }
4826 \cs_generate_variant:Nn \muskip_add:Nn { c }
4827 \cs_generate_variant:Nn \muskip_gadd:Nn { c }
4828 \cs_new_protected:Npn \muskip_sub:Nn #1#2
4829 { \tex_advance:D #1 by - \etex_muexpr:D #2 \scan_stop: }
4830 \cs_new_protected:Npn \muskip_gsub:Nn { \tex_global:D \muskip_sub:Nn }
4831 \cs_generate_variant:Nn \muskip_sub:Nn { c }
4832 \cs_generate_variant:Nn \muskip_gsub:Nn { c }

(End definition for \muskip_add:Nn and \muskip_add:cn. These functions are documented on page 92.)

11.21 Using muskip expressions and variables
\muskip_eval:n Evaluating a muskip expression expandably.

4833 \cs_new:Npn \muskip_eval:n #1
4834 { \muskip_use:N \etex_muexpr:D #1 \scan_stop: }

(End definition for \muskip_eval:n. This function is documented on page 93.)

\muskip_use:N
\muskip_use:c

Accessing a 〈muskip〉.
4835 \cs_new_eq:NN \muskip_use:N \tex_the:D
4836 \cs_generate_variant:Nn \muskip_use:N { c }

(End definition for \muskip_use:N and \muskip_use:c. These functions are documented on page 93.)

385

11.22 Viewing muskip variables
\muskip_show:N
\muskip_show:c

Diagnostics.
4837 \cs_new_eq:NN \muskip_show:N __kernel_register_show:N
4838 \cs_generate_variant:Nn \muskip_show:N { c }

(End definition for \muskip_show:N and \muskip_show:c. These functions are documented on page 93.)

\muskip_show:n Diagnostics. We don’t use the TEX primitive \showthe to show muskip expressions: this
gives a more unified output.

4839 \cs_new_protected_nopar:Npn \muskip_show:n
4840 { __msg_show_wrap:Nn \muskip_eval:n }

(End definition for \muskip_show:n. This function is documented on page 93.)

11.23 Constant muskips
\c_zero_muskip
\c_max_muskip

Constant muskips given by their value.
4841 \muskip_const:Nn \c_zero_muskip { 0 mu }
4842 \muskip_const:Nn \c_max_muskip { 16383.99999 mu }

(End definition for \c_zero_muskip. This function is documented on page 93.)

11.24 Scratch muskips
\l_tmpa_muskip
\l_tmpb_muskip
\g_tmpa_muskip
\g_tmpb_muskip

We provide two local and two global scratch registers, maybe we need more or less.
4843 \muskip_new:N \l_tmpa_muskip
4844 \muskip_new:N \l_tmpb_muskip
4845 \muskip_new:N \g_tmpa_muskip
4846 \muskip_new:N \g_tmpb_muskip

(End definition for \l_tmpa_muskip and \l_tmpb_muskip. These variables are documented on page 94.)

4847 〈/initex | package〉

12 l3tl implementation
4848 〈*initex | package〉

4849 〈@@=tl〉

A token list variable is a TEX macro that holds tokens. By using the ε-TEX primitive
\unexpanded inside a TEX \edef it is possible to store any tokens, including #, in this
way.
12.1 Functions

\tl_new:N
\tl_new:c

Creating new token list variables is a case of checking for an existing definition and doing
the definition.

4850 \cs_new_protected:Npn \tl_new:N #1
4851 {

386

4852 __chk_if_free_cs:N #1
4853 \cs_gset_eq:NN #1 \c_empty_tl
4854 }
4855 \cs_generate_variant:Nn \tl_new:N { c }

(End definition for \tl_new:N and \tl_new:c. These functions are documented on page 96.)

\tl_const:Nn
\tl_const:Nx
\tl_const:cn
\tl_const:cx

Constants are also easy to generate.
4856 \cs_new_protected:Npn \tl_const:Nn #1#2
4857 {
4858 __chk_if_free_cs:N #1
4859 \cs_gset_nopar:Npx #1 { \exp_not:n {#2} }
4860 }
4861 \cs_new_protected:Npn \tl_const:Nx #1#2
4862 {
4863 __chk_if_free_cs:N #1
4864 \cs_gset_nopar:Npx #1 {#2}
4865 }
4866 \cs_generate_variant:Nn \tl_const:Nn { c }
4867 \cs_generate_variant:Nn \tl_const:Nx { c }

(End definition for \tl_const:Nn and others. These functions are documented on page 96.)

\tl_clear:N
\tl_clear:c
\tl_gclear:N
\tl_gclear:c

Clearing a token list variable means setting it to an empty value. Error checking will be
sorted out by the parent function.

4868 \cs_new_protected:Npn \tl_clear:N #1
4869 { \tl_set_eq:NN #1 \c_empty_tl }
4870 \cs_new_protected:Npn \tl_gclear:N #1
4871 { \tl_gset_eq:NN #1 \c_empty_tl }
4872 \cs_generate_variant:Nn \tl_clear:N { c }
4873 \cs_generate_variant:Nn \tl_gclear:N { c }

(End definition for \tl_clear:N and \tl_clear:c. These functions are documented on page 96.)

\tl_clear_new:N
\tl_clear_new:c
\tl_gclear_new:N
\tl_gclear_new:c

Clearing a token list variable means setting it to an empty value. Error checking will be
sorted out by the parent function.

4874 \cs_new_protected:Npn \tl_clear_new:N #1
4875 { \tl_if_exist:NTF #1 { \tl_clear:N #1 } { \tl_new:N #1 } }
4876 \cs_new_protected:Npn \tl_gclear_new:N #1
4877 { \tl_if_exist:NTF #1 { \tl_gclear:N #1 } { \tl_new:N #1 } }
4878 \cs_generate_variant:Nn \tl_clear_new:N { c }
4879 \cs_generate_variant:Nn \tl_gclear_new:N { c }

(End definition for \tl_clear_new:N and \tl_clear_new:c. These functions are documented on page
96.)

\tl_set_eq:NN
\tl_set_eq:Nc
\tl_set_eq:cN
\tl_set_eq:cc
\tl_gset_eq:NN
\tl_gset_eq:Nc
\tl_gset_eq:cN
\tl_gset_eq:cc

For setting token list variables equal to each other.
4880 \cs_new_eq:NN \tl_set_eq:NN \cs_set_eq:NN
4881 \cs_new_eq:NN \tl_set_eq:cN \cs_set_eq:cN
4882 \cs_new_eq:NN \tl_set_eq:Nc \cs_set_eq:Nc
4883 \cs_new_eq:NN \tl_set_eq:cc \cs_set_eq:cc

387

4884 \cs_new_eq:NN \tl_gset_eq:NN \cs_gset_eq:NN
4885 \cs_new_eq:NN \tl_gset_eq:cN \cs_gset_eq:cN
4886 \cs_new_eq:NN \tl_gset_eq:Nc \cs_gset_eq:Nc
4887 \cs_new_eq:NN \tl_gset_eq:cc \cs_gset_eq:cc

(End definition for \tl_set_eq:NN and others. These functions are documented on page 96.)

\tl_concat:NNN
\tl_concat:ccc
\tl_gconcat:NNN
\tl_gconcat:ccc

Concatenating token lists is easy.
4888 \cs_new_protected:Npn \tl_concat:NNN #1#2#3
4889 { \tl_set:Nx #1 { \exp_not:o {#2} \exp_not:o {#3} } }
4890 \cs_new_protected:Npn \tl_gconcat:NNN #1#2#3
4891 { \tl_gset:Nx #1 { \exp_not:o {#2} \exp_not:o {#3} } }
4892 \cs_generate_variant:Nn \tl_concat:NNN { ccc }
4893 \cs_generate_variant:Nn \tl_gconcat:NNN { ccc }

(End definition for \tl_concat:NNN and \tl_concat:ccc. These functions are documented on page 96.)

\tl_if_exist_p:N
\tl_if_exist_p:c
\tl_if_exist:NTF
\tl_if_exist:cTF

Copies of the cs functions defined in l3basics.
4894 \prg_new_eq_conditional:NNn \tl_if_exist:N \cs_if_exist:N { TF , T , F , p }
4895 \prg_new_eq_conditional:NNn \tl_if_exist:c \cs_if_exist:c { TF , T , F , p }

(End definition for \tl_if_exist:NTF and \tl_if_exist:cTF. These functions are documented on page
96.)

12.2 Constant token lists
\c_empty_tl Never full. We need to define that constant before using \tl_new:N.

4896 \tl_const:Nn \c_empty_tl { }

(End definition for \c_empty_tl. This variable is documented on page 108.)

\c_space_tl A space as a token list (as opposed to as a character).
4897 \tl_const:Nn \c_space_tl { ~ }

(End definition for \c_space_tl. This variable is documented on page 108.)

12.3 Adding to token list variables
\tl_set:Nn
\tl_set:NV
\tl_set:Nv
\tl_set:No
\tl_set:Nf
\tl_set:Nx
\tl_set:cn
\tl_set:cV
\tl_set:cv
\tl_set:co
\tl_set:cf
\tl_set:cx
\tl_gset:Nn
\tl_gset:NV
\tl_gset:Nv
\tl_gset:No
\tl_gset:Nf
\tl_gset:Nx
\tl_gset:cn
\tl_gset:cV
\tl_gset:cv
\tl_gset:co
\tl_gset:cf
\tl_gset:cx

By using \exp_not:n token list variables can contain # tokens, which makes the token
list registers provided by TEX more or less redundant. The \tl_set:No version is done
“by hand” as it is used quite a lot.

4898 \cs_new_protected:Npn \tl_set:Nn #1#2
4899 { \cs_set_nopar:Npx #1 { \exp_not:n {#2} } }
4900 \cs_new_protected:Npn \tl_set:No #1#2
4901 { \cs_set_nopar:Npx #1 { \exp_not:o {#2} } }
4902 \cs_new_protected:Npn \tl_set:Nx #1#2
4903 { \cs_set_nopar:Npx #1 {#2} }
4904 \cs_new_protected:Npn \tl_gset:Nn #1#2
4905 { \cs_gset_nopar:Npx #1 { \exp_not:n {#2} } }
4906 \cs_new_protected:Npn \tl_gset:No #1#2

388

4907 { \cs_gset_nopar:Npx #1 { \exp_not:o {#2} } }
4908 \cs_new_protected:Npn \tl_gset:Nx #1#2
4909 { \cs_gset_nopar:Npx #1 {#2} }
4910 \cs_generate_variant:Nn \tl_set:Nn { NV , Nv , Nf }
4911 \cs_generate_variant:Nn \tl_set:Nx { c }
4912 \cs_generate_variant:Nn \tl_set:Nn { c, co , cV , cv , cf }
4913 \cs_generate_variant:Nn \tl_gset:Nn { NV , Nv , Nf }
4914 \cs_generate_variant:Nn \tl_gset:Nx { c }
4915 \cs_generate_variant:Nn \tl_gset:Nn { c, co , cV , cv , cf }

(End definition for \tl_set:Nn and others. These functions are documented on page 97.)

\tl_put_left:Nn
\tl_put_left:NV
\tl_put_left:No
\tl_put_left:Nx
\tl_put_left:cn
\tl_put_left:cV
\tl_put_left:co
\tl_put_left:cx
\tl_gput_left:Nn
\tl_gput_left:NV
\tl_gput_left:No
\tl_gput_left:Nx
\tl_gput_left:cn
\tl_gput_left:cV
\tl_gput_left:co
\tl_gput_left:cx

Adding to the left is done directly to gain a little performance.
4916 \cs_new_protected:Npn \tl_put_left:Nn #1#2
4917 { \cs_set_nopar:Npx #1 { \exp_not:n {#2} \exp_not:o #1 } }
4918 \cs_new_protected:Npn \tl_put_left:NV #1#2
4919 { \cs_set_nopar:Npx #1 { \exp_not:V #2 \exp_not:o #1 } }
4920 \cs_new_protected:Npn \tl_put_left:No #1#2
4921 { \cs_set_nopar:Npx #1 { \exp_not:o {#2} \exp_not:o #1 } }
4922 \cs_new_protected:Npn \tl_put_left:Nx #1#2
4923 { \cs_set_nopar:Npx #1 { #2 \exp_not:o #1 } }
4924 \cs_new_protected:Npn \tl_gput_left:Nn #1#2
4925 { \cs_gset_nopar:Npx #1 { \exp_not:n {#2} \exp_not:o #1 } }
4926 \cs_new_protected:Npn \tl_gput_left:NV #1#2
4927 { \cs_gset_nopar:Npx #1 { \exp_not:V #2 \exp_not:o #1 } }
4928 \cs_new_protected:Npn \tl_gput_left:No #1#2
4929 { \cs_gset_nopar:Npx #1 { \exp_not:o {#2} \exp_not:o #1 } }
4930 \cs_new_protected:Npn \tl_gput_left:Nx #1#2
4931 { \cs_gset_nopar:Npx #1 { #2 \exp_not:o {#1} } }
4932 \cs_generate_variant:Nn \tl_put_left:Nn { c }
4933 \cs_generate_variant:Nn \tl_put_left:NV { c }
4934 \cs_generate_variant:Nn \tl_put_left:No { c }
4935 \cs_generate_variant:Nn \tl_put_left:Nx { c }
4936 \cs_generate_variant:Nn \tl_gput_left:Nn { c }
4937 \cs_generate_variant:Nn \tl_gput_left:NV { c }
4938 \cs_generate_variant:Nn \tl_gput_left:No { c }
4939 \cs_generate_variant:Nn \tl_gput_left:Nx { c }

(End definition for \tl_put_left:Nn and others. These functions are documented on page 97.)

\tl_put_right:Nn
\tl_put_right:NV
\tl_put_right:No
\tl_put_right:Nx
\tl_put_right:cn
\tl_put_right:cV
\tl_put_right:co
\tl_put_right:cx
\tl_gput_right:Nn
\tl_gput_right:NV
\tl_gput_right:No
\tl_gput_right:Nx
\tl_gput_right:cn
\tl_gput_right:cV
\tl_gput_right:co
\tl_gput_right:cx

The same on the right.
4940 \cs_new_protected:Npn \tl_put_right:Nn #1#2
4941 { \cs_set_nopar:Npx #1 { \exp_not:o #1 \exp_not:n {#2} } }
4942 \cs_new_protected:Npn \tl_put_right:NV #1#2
4943 { \cs_set_nopar:Npx #1 { \exp_not:o #1 \exp_not:V #2 } }
4944 \cs_new_protected:Npn \tl_put_right:No #1#2
4945 { \cs_set_nopar:Npx #1 { \exp_not:o #1 \exp_not:o {#2} } }
4946 \cs_new_protected:Npn \tl_put_right:Nx #1#2
4947 { \cs_set_nopar:Npx #1 { \exp_not:o #1 #2 } }
4948 \cs_new_protected:Npn \tl_gput_right:Nn #1#2

389

4949 { \cs_gset_nopar:Npx #1 { \exp_not:o #1 \exp_not:n {#2} } }
4950 \cs_new_protected:Npn \tl_gput_right:NV #1#2
4951 { \cs_gset_nopar:Npx #1 { \exp_not:o #1 \exp_not:V #2 } }
4952 \cs_new_protected:Npn \tl_gput_right:No #1#2
4953 { \cs_gset_nopar:Npx #1 { \exp_not:o #1 \exp_not:o {#2} } }
4954 \cs_new_protected:Npn \tl_gput_right:Nx #1#2
4955 { \cs_gset_nopar:Npx #1 { \exp_not:o {#1} #2 } }
4956 \cs_generate_variant:Nn \tl_put_right:Nn { c }
4957 \cs_generate_variant:Nn \tl_put_right:NV { c }
4958 \cs_generate_variant:Nn \tl_put_right:No { c }
4959 \cs_generate_variant:Nn \tl_put_right:Nx { c }
4960 \cs_generate_variant:Nn \tl_gput_right:Nn { c }
4961 \cs_generate_variant:Nn \tl_gput_right:NV { c }
4962 \cs_generate_variant:Nn \tl_gput_right:No { c }
4963 \cs_generate_variant:Nn \tl_gput_right:Nx { c }

(End definition for \tl_put_right:Nn and others. These functions are documented on page 97.)
When used as a package, there is an option to be picky and to check definitions exist.

This part of the process is done now, so that variable types based on tl (for example
clist, seq and prop) will inherit the appropriate definitions. No \tl_map_... yet as
the mechanisms are not fully in place. Thus instead do a more low level set up for a
mapping, as in l3basics.

4964 〈*package〉
4965 \tex_ifodd:D \l@expl@check@declarations@bool
4966 \cs_set_protected:Npn __cs_tmp:w #1
4967 {
4968 \if_meaning:w \q_recursion_tail #1
4969 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
4970 \fi:
4971 \use:x
4972 {
4973 \cs_set_protected:Npn #1 \exp_not:n { ##1 ##2 }
4974 {
4975 __chk_if_exist_var:N \exp_not:n {##1}
4976 \exp_not:o { #1 {##1} {##2} }
4977 }
4978 }
4979 __cs_tmp:w
4980 }
4981 __cs_tmp:w
4982 \tl_set:Nn \tl_set:No \tl_set:Nx
4983 \tl_gset:Nn \tl_gset:No \tl_gset:Nx
4984 \tl_put_left:Nn \tl_put_left:NV
4985 \tl_put_left:No \tl_put_left:Nx
4986 \tl_gput_left:Nn \tl_gput_left:NV
4987 \tl_gput_left:No \tl_gput_left:Nx
4988 \tl_put_right:Nn \tl_put_right:NV
4989 \tl_put_right:No \tl_put_right:Nx
4990 \tl_gput_right:Nn \tl_gput_right:NV

390

4991 \tl_gput_right:No \tl_gput_right:Nx
4992 \q_recursion_tail \q_recursion_stop
4993 〈/package〉

The two set_eq functions are done by hand as the internals there are a bit different.
4994 〈*package〉
4995 \cs_set_protected:Npn \tl_set_eq:NN #1#2
4996 {
4997 __chk_if_exist_var:N #1
4998 __chk_if_exist_var:N #2
4999 \cs_set_eq:NN #1 #2
5000 }
5001 \cs_set_protected:Npn \tl_gset_eq:NN #1#2
5002 {
5003 __chk_if_exist_var:N #1
5004 __chk_if_exist_var:N #2
5005 \cs_gset_eq:NN #1 #2
5006 }
5007 〈/package〉

There is also a need to check all three arguments of the concat functions: a token list
#2 or #3 equal to \scan_stop: would lead to problems later on.

5008 〈*package〉
5009 \cs_set_protected:Npn \tl_concat:NNN #1#2#3
5010 {
5011 __chk_if_exist_var:N #1
5012 __chk_if_exist_var:N #2
5013 __chk_if_exist_var:N #3
5014 \tl_set:Nx #1 { \exp_not:o {#2} \exp_not:o {#3} }
5015 }
5016 \cs_set_protected:Npn \tl_gconcat:NNN #1#2#3
5017 {
5018 __chk_if_exist_var:N #1
5019 __chk_if_exist_var:N #2
5020 __chk_if_exist_var:N #3
5021 \tl_gset:Nx #1 { \exp_not:o {#2} \exp_not:o {#3} }
5022 }
5023 \tex_fi:D
5024 〈/package〉

12.4 Reassigning token list category codes
\c__tl_rescan_marker_tl The rescanning code needs a special token list containing the same character (chosen here

to be a colon) with two different category codes: it cannot appear in the tokens being
rescanned since all colons have the same category code.

5025 \tl_const:Nx \c__tl_rescan_marker_tl { : \token_to_str:N : }

(End definition for \c__tl_rescan_marker_tl. This variable is documented on page ??.)

391

\tl_set_rescan:Nnn
\tl_set_rescan:Nno
\tl_set_rescan:Nnx
\tl_set_rescan:cnn
\tl_set_rescan:cno
\tl_set_rescan:cnx
\tl_gset_rescan:Nnn
\tl_gset_rescan:Nno
\tl_gset_rescan:Nnx
\tl_gset_rescan:cnn
\tl_gset_rescan:cno
\tl_gset_rescan:cnx

\tl_rescan:nn
__tl_set_rescan:NNnn

__tl_set_rescan_multi:n
__tl_rescan:w

These functions use a common auxiliary. After some initial setup explained below, and
the user setup #3 (followed by \scan_stop: to be safe), the tokens are rescanned by _-
_tl_set_rescan:n and stored into \l__tl_internal_a_tl, then passed to #1#2 outside
the group after expansion. The auxiliary __tl_set_rescan:n is defined later: in the
simplest case, this auxiliary calls __tl_set_rescan_multi:n, whose code is included
here to help understand the approach.

One difficulty when rescanning is that \scantokens treats the argument as a file,
and without the correct settings a TEX error occurs:

! File ended while scanning definition of ...

The standard solution is to use an x-expanding assignment and set \everyeof to \exp_-
not:N to suppress the error at the end of the file. Since the rescanned tokens should not
be expanded, they will be taken as a delimited argument of an auxiliary which wraps
them in \exp_not:n (in fact \exp_not:o, as there is a \prg_do_nothing: to avoid losing
braces). The delimiter cannot appear within the rescanned token list because it contains
twice the same character, with different catcodes.

The difference between single-line and multiple-line files complicates the story, as
explained below.

5026 \cs_new_protected_nopar:Npn \tl_set_rescan:Nnn
5027 { __tl_set_rescan:NNnn \tl_set:Nn }
5028 \cs_new_protected_nopar:Npn \tl_gset_rescan:Nnn
5029 { __tl_set_rescan:NNnn \tl_gset:Nn }
5030 \cs_new_protected_nopar:Npn \tl_rescan:nn
5031 { __tl_set_rescan:NNnn \prg_do_nothing: \use:n }
5032 \cs_new_protected:Npn __tl_set_rescan:NNnn #1#2#3#4
5033 {
5034 \tl_if_empty:nTF {#4}
5035 {
5036 \group_begin:
5037 #3
5038 \group_end:
5039 #1 #2 { }
5040 }
5041 {
5042 \group_begin:
5043 \exp_args:No \etex_everyeof:D { \c__tl_rescan_marker_tl \exp_not:N }
5044 \int_compare:nNnT \tex_endlinechar:D = { 32 }
5045 { \tex_endlinechar:D \c_minus_one }
5046 \tex_newlinechar:D \tex_endlinechar:D
5047 #3 \scan_stop:
5048 \exp_args:No __tl_set_rescan:n { \tl_to_str:n {#4} }
5049 \exp_args:NNNo
5050 \group_end:
5051 #1 #2 \l__tl_internal_a_tl
5052 }
5053 }
5054 \cs_new_protected:Npn __tl_set_rescan_multi:n #1
5055 {

392

5056 \tl_set:Nx \l__tl_internal_a_tl
5057 {
5058 \exp_after:wN __tl_rescan:w
5059 \exp_after:wN \prg_do_nothing:
5060 \etex_scantokens:D {#1}
5061 }
5062 }
5063 \exp_args:Nno \use:nn
5064 { \cs_new:Npn __tl_rescan:w #1 } \c__tl_rescan_marker_tl
5065 { \exp_not:o {#1} }
5066 \cs_generate_variant:Nn \tl_set_rescan:Nnn { Nno , Nnx }
5067 \cs_generate_variant:Nn \tl_set_rescan:Nnn { c , cno , cnx }
5068 \cs_generate_variant:Nn \tl_gset_rescan:Nnn { Nno , Nnx }
5069 \cs_generate_variant:Nn \tl_gset_rescan:Nnn { c , cno }

(End definition for \tl_set_rescan:Nnn and others. These functions are documented on page 98.)

__tl_set_rescan:n
__tl_set_rescan:NnTF

__tl_set_rescan_single:nn
__tl_set_rescan_single_aux:nn

This function calls __tl_set_rescan_multiple:n or __tl_set_rescan_single:nn
{ ’ } depending on whether its argument is a single-line fragment of code/data or
is made of multiple lines by testing for the presence of a \newlinechar character. If
\newlinechar is out of range, the argument is assumed to be a single line.

The case of multiple lines is a straightforward application of \scantokens as de-
scribed above. The only subtlety is that \newlinechar should be equal to \endlinechar
because \newlinechar characters become new lines and then become \endlinechar
characters when writing to an abstract file and reading back. This equality is ensured by
setting \newlinechar equal to \endlinechar. Prior to this, \endlinechar is set to −1
if it was 32 (in particular true after \ExplSyntaxOn) to avoid unreasonable line-breaks at
every space for instance in error messages triggered by the user setup. Another side effect
of reading back from the file is that spaces (catcode 10) are ignored at the beginning of
lines, and spaces and tabs (character code 32 and 9) are ignored at the end of lines.

For a single line, no \endlinechar should be added, so it will be set to −1, and
spaces should not be removed.

Trailing spaces and tabs are a difficult matter, as TEX removes these at a very low
level. The only way to preserve them is to rescan not the argument but the argument
followed by a character with a reasonable category code. Here, 11 (letter), 12 (other)
and 13 (active) are accepted, as these are suitable for delimiting an argument, and it
is very unlikely that none of the ASCII characters are in one of these categories. To
avoid selecting one particular character to put at the end, whose category code may have
been modified, there is a loop through characters from ’ (ASCII 39) to ~ (ASCII 127).
The choice of starting point was made because this is the start of a very long range
of characters whose standard category is letter or other, thus minimizing the number
of steps needed by the loop (most often just a single one). Once a valid character is
found, run some code very similar to __tl_set_rescan_multi:n, except that __tl_-
rescan:wmust be redefined to also remove the additional character (with the appropriate
catcode). Getting the delimiter with the right catcode requires using \scantokens inside
an x-expansion, hence using the previous definition of __tl_rescan:w as well. The odd
\exp_not:N \use:n ensures that the trailing \exp_not:N in \everyeof does not prevent

393

the expansion of \c__tl_rescan_marker_tl, but rather of a closing brace (this does
nothing). If no valid character is found, similar code is ran, and the only difference is
that trailing spaces are not preserved (bear in mind that this only happens if no character
between 39 and 127 has catcode letter, other or active).

There is also some work to preserve leading spaces: test whether the first character
(given by \str_head:n, with an extra space to circumvent a limitation of f-expansion)
has catcode 10 and add what TEX would add in the middle of a line for any sequence of
such characters: a single space with catcode 10 and character code 32.

5070 \group_begin:
5071 \tex_catcode:D ‘\^^@ = 12 \scan_stop:
5072 \cs_new_protected:Npn __tl_set_rescan:n #1
5073 {
5074 \int_compare:nNnTF \tex_newlinechar:D < \c_zero
5075 { \use_ii:nn }
5076 {
5077 \char_set_lccode:nn { 0 } { \tex_newlinechar:D }
5078 \tex_lowercase:D { __tl_set_rescan:NnTF ^^@ } {#1}
5079 }
5080 { __tl_set_rescan_multi:n }
5081 { __tl_set_rescan_single:nn { ’ } }
5082 {#1}
5083 }
5084 \cs_new_protected:Npn __tl_set_rescan:NnTF #1#2
5085 { \tl_if_in:nnTF {#2} {#1} }
5086 \cs_new_protected:Npn __tl_set_rescan_single:nn #1
5087 {
5088 \int_compare:nNnTF
5089 { \char_value_catcode:n { ‘#1 } / \c_three } = \c_four
5090 { __tl_set_rescan_single_aux:nn {#1} }
5091 {
5092 \int_compare:nNnTF { ‘#1 } < { ‘\~ }
5093 {
5094 \char_set_lccode:nn { 0 } { ‘#1 + 1 }
5095 \tex_lowercase:D { __tl_set_rescan_single:nn { ^^@ } }
5096 }
5097 { __tl_set_rescan_single_aux:nn { } }
5098 }
5099 }
5100 \cs_new_protected:Npn __tl_set_rescan_single_aux:nn #1#2
5101 {
5102 \tex_endlinechar:D \c_minus_one
5103 \use:x
5104 {
5105 \exp_not:N \use:n
5106 {
5107 \exp_not:n { \cs_set:Npn __tl_rescan:w ##1 }
5108 \exp_after:wN __tl_rescan:w
5109 \exp_after:wN \prg_do_nothing:
5110 \etex_scantokens:D {#1}

394

5111 }
5112 \c__tl_rescan_marker_tl
5113 }
5114 { \exp_not:o {##1} }
5115 \tl_set:Nx \l__tl_internal_a_tl
5116 {
5117 \int_compare:nNnT
5118 {
5119 \char_value_catcode:n
5120 { \exp_last_unbraced:Nf ‘ \str_head:n {#2} ~ }
5121 }
5122 = \c_ten { ~ }
5123 \exp_after:wN __tl_rescan:w
5124 \exp_after:wN \prg_do_nothing:
5125 \etex_scantokens:D { #2 #1 }
5126 }
5127 }
5128 \group_end:

(End definition for __tl_set_rescan:n and __tl_set_rescan:NnTF.)

12.5 Modifying token list variables
\tl_replace_all:Nnn
\tl_replace_all:cnn
\tl_greplace_all:Nnn
\tl_greplace_all:cnn
\tl_replace_once:Nnn
\tl_replace_once:cnn
\tl_greplace_once:Nnn
\tl_greplace_once:cnn

All of the replace functions call __tl_replace:NnNNNnn with appropriate arguments.
The first two arguments are explained later. The next controls whether the replacement
function calls itself (__tl_replace_next:w) or stops (__tl_replace_wrap:w) after
the first replacement. Next comes an x-type assignment function \tl_set:Nx or \tl_-
gset:Nx for local or global replacements. Finally, the three arguments 〈tl var〉 {〈pattern〉}
{〈replacement〉} provided by the user. When describing the auxiliary functions below,
we denote the contents of the 〈tl var〉 by 〈token list〉.

5129 \cs_new_protected_nopar:Npn \tl_replace_once:Nnn
5130 { __tl_replace:NnNNNnn \q_mark ? __tl_replace_wrap:w \tl_set:Nx }
5131 \cs_new_protected_nopar:Npn \tl_greplace_once:Nnn
5132 { __tl_replace:NnNNNnn \q_mark ? __tl_replace_wrap:w \tl_gset:Nx }
5133 \cs_new_protected_nopar:Npn \tl_replace_all:Nnn
5134 { __tl_replace:NnNNNnn \q_mark ? __tl_replace_next:w \tl_set:Nx }
5135 \cs_new_protected_nopar:Npn \tl_greplace_all:Nnn
5136 { __tl_replace:NnNNNnn \q_mark ? __tl_replace_next:w \tl_gset:Nx }
5137 \cs_generate_variant:Nn \tl_replace_once:Nnn { c }
5138 \cs_generate_variant:Nn \tl_greplace_once:Nnn { c }
5139 \cs_generate_variant:Nn \tl_replace_all:Nnn { c }
5140 \cs_generate_variant:Nn \tl_greplace_all:Nnn { c }

(End definition for \tl_replace_all:Nnn and \tl_replace_all:cnn. These functions are documented
on page 97.)

__tl_replace:NnNNNnn
__tl_replace_auxi:NnnNNNnn
__tl_replace_auxii:nNNNnn

__tl_replace_next:w
__tl_replace_wrap:w

To implement the actual replacement auxiliary __tl_replace_auxii:nNNNnn we will
need a 〈delimiter〉 with the following properties:

395

• all occurrences of the 〈pattern〉 #6 in “〈token list〉 〈delimiter〉” belong to the 〈token
list〉 and have no overlap with the 〈delimiter〉,

• the first occurrence of the 〈delimiter〉 in “〈token list〉 〈delimiter〉” is the trailing
〈delimiter〉.

We first find the building blocks for the 〈delimiter〉, namely two tokens 〈A〉 and 〈B〉 such
that 〈A〉 does not appear in #6 and #6 is not 〈B〉 (this condition is trivial if #6 has more
than one token). Then we consider the delimiters “〈A〉” and “〈A〉 〈A〉n 〈B〉 〈A〉n 〈B〉”,
for n ≥ 1, where 〈A〉n denotes n copies of 〈A〉, and we choose as our 〈delimiter〉 the first
one which is not in the 〈token list〉.

Every delimiter in the set obeys the first condition: #6 does not contain 〈A〉 hence
cannot be overlapping with the 〈token list〉 and the 〈delimiter〉, and it cannot be within
the 〈delimiter〉 since it would have to be in one of the two 〈B〉 hence be equal to this single
token (or empty, but this is an error case filtered separately). Given the particular form
of these delimiters, for which no prefix is also a suffix, the second condition is actually a
consequence of the weaker condition that the 〈delimiter〉 we choose does not appear in
the 〈token list〉. Additionally, the set of delimiters is such that a 〈token list〉 of n tokens
can contain at most O(n1/2) of them, hence we find a 〈delimiter〉 with at most O(n1/2)
tokens in a time at most O(n3/2). Bear in mind that these upper bounds are reached
only in very contrived scenarios: we include the case “〈A〉” in the list of delimiters to
try, so that the 〈delimiter〉 will simply be \q_mark in the most common situation where
neither the 〈token list〉 nor the 〈pattern〉 contains \q_mark.

Let us now ahead, optimizing for this most common case. First, two special cases:
an empty 〈pattern〉 #6 is an error, and if #1 is absent from both the 〈token list〉 #5 and the
〈pattern〉 #6 then we can use it as the 〈delimiter〉 through __tl_replace_auxii:nNNNnn
{#1}. Otherwise, we end up calling __tl_replace:NnNNNnn repeatedly with the first
two arguments \q_mark {?}, \? {??}, \?? {???}, and so on, until #6 does not contain
the control sequence #1, which we take as our 〈A〉. The argument #2 only serves to
collect ? characters for #1. Note that the order of the tests means that the first two are
done every time, which is wasteful (for instance, we repeatedly test for the emptyness
of #6). However, this is rare enough not to matter. Finally, choose 〈B〉 to be \q_nil
or \q_stop such that it is not equal to #6.

The __tl_replace_auxi:NnnNNNnn auxiliary receives {〈A〉} and {〈A〉n〈B〉} as its
arguments, initially with n = 1. If “〈A〉 〈A〉n〈B〉 〈A〉n〈B〉” is in the 〈token list〉 then
increase n and try again. Once it is not anymore in the 〈token list〉 we take it as our
〈delimiter〉 and pass this to the auxii auxiliary.

5141 \cs_new_protected:Npn __tl_replace:NnNNNnn #1#2#3#4#5#6#7
5142 {
5143 \tl_if_empty:nTF {#6}
5144 {
5145 __msg_kernel_error:nnx { kernel } { empty-search-pattern }
5146 { \tl_to_str:n {#7} }
5147 }
5148 {
5149 \tl_if_in:onTF { #5 #6 } {#1}
5150 {

396

5151 \tl_if_in:nnTF {#6} {#1}
5152 { \exp_args:Nc __tl_replace:NnNNNnn {#2} {#2?} }
5153 {
5154 \quark_if_nil:nTF {#6}
5155 { __tl_replace_auxi:NnnNNNnn #5 {#1} { #1 \q_stop } }
5156 { __tl_replace_auxi:NnnNNNnn #5 {#1} { #1 \q_nil } }
5157 }
5158 }
5159 { __tl_replace_auxii:nNNNnn {#1} }
5160 #3#4#5 {#6} {#7}
5161 }
5162 }
5163 \cs_new_protected:Npn __tl_replace_auxi:NnnNNNnn #1#2#3
5164 {
5165 \tl_if_in:NnTF #1 { #2 #3 #3 }
5166 { __tl_replace_auxi:NnnNNNnn #1 { #2 #3 } {#2} }
5167 { __tl_replace_auxii:nNNNnn { #2 #3 #3 } }
5168 }

The auxiliary __tl_replace_auxii:nNNNnn receives the following arguments: {〈delimiter〉}
〈function〉 〈assignment〉 〈tl var〉 {〈pattern〉} {〈replacement〉}. All of its work is done
between \group_align_safe_begin: and \group_align_safe_end: to avoid issues
in alignments. It does the actual replacement within #3 #4 {...}, an x-expanding
〈assignment〉 #3 to the 〈tl var〉 #4. The auxiliary __tl_replace_next:w is called,
followed by the 〈token list〉, some tokens including the 〈delimiter〉 #1, followed by the
〈pattern〉 #5. This auxiliary finds an argument delimited by #5 (the presence of a trail-
ing #5 avoids runaway arguments) and calls __tl_replace_wrap:w to test whether this
#5 is found within the 〈token list〉 or is the trailing one.

If on the one hand it is found within the 〈token list〉, then ##1 cannot contain
the 〈delimiter〉 #1 that we worked so hard to obtain, thus __tl_replace_wrap:w
gets ##1 as its own argument ##1, and protects it against the x-expanding assignment.
It also finds \exp_not:n as ##2 and does nothing to it, thus letting through \exp_not:n
{〈replacement〉} into the assignment. Note that __tl_replace_next:w and __tl_-
replace_wrap:w are always called followed by two empty brace groups. These are safe
because no delimiter can match them. They prevent losing braces when grabbing de-
limited arguments, but require the use of \exp_not:o and \use_none:nn, rather than
simply \exp_not:n. Afterwards, __tl_replace_next:w is called to repeat the replace-
ment, or __tl_replace_wrap:w if we only want a single replacement. In this second
case, ##1 is the 〈remaining tokens〉 in the 〈token list〉 and ##2 is some 〈ending code〉
which ends the assignment and removes the trailing tokens #5 using some \if_false: {
\fi: } trickery because #5 may contain any delimiter.

If on the other hand the argument ##1 of __tl_replace_next:w is delimited by
the trailing 〈pattern〉 #5, then ##1 is “{ } { } 〈token list〉 〈delimiter〉 {〈ending code〉}”,
hence __tl_replace_wrap:w finds “{ } { } 〈token list〉” as ##1 and the 〈ending code〉
as ##2. It leaves the 〈token list〉 into the assignment and unbraces the 〈ending code〉
which removes what remains (essentially the 〈delimiter〉 and 〈replacement〉).

5169 \cs_new_protected:Npn __tl_replace_auxii:nNNNnn #1#2#3#4#5#6
5170 {

397

5171 \group_align_safe_begin:
5172 \cs_set:Npn __tl_replace_wrap:w ##1 #1 ##2
5173 { \exp_not:o { \use_none:nn ##1 } ##2 }
5174 \cs_set:Npx __tl_replace_next:w ##1 #5
5175 {
5176 \exp_not:N __tl_replace_wrap:w ##1
5177 \exp_not:n { #1 }
5178 \exp_not:n { \exp_not:n {#6} }
5179 \exp_not:n { #2 { } { } }
5180 }
5181 #3 #4
5182 {
5183 \exp_after:wN __tl_replace_next:w
5184 \exp_after:wN { \exp_after:wN }
5185 \exp_after:wN { \exp_after:wN }
5186 #4
5187 #1
5188 {
5189 \if_false: { \fi: }
5190 \exp_after:wN \use_none:n \exp_after:wN { \if_false: } \fi:
5191 }
5192 #5
5193 }
5194 \group_align_safe_end:
5195 }
5196 \cs_new_eq:NN __tl_replace_wrap:w ?
5197 \cs_new_eq:NN __tl_replace_next:w ?

(End definition for __tl_replace:NnNNNnn and others.)

\tl_remove_once:Nn
\tl_remove_once:cn
\tl_gremove_once:Nn
\tl_gremove_once:cn

Removal is just a special case of replacement.
5198 \cs_new_protected:Npn \tl_remove_once:Nn #1#2
5199 { \tl_replace_once:Nnn #1 {#2} { } }
5200 \cs_new_protected:Npn \tl_gremove_once:Nn #1#2
5201 { \tl_greplace_once:Nnn #1 {#2} { } }
5202 \cs_generate_variant:Nn \tl_remove_once:Nn { c }
5203 \cs_generate_variant:Nn \tl_gremove_once:Nn { c }

(End definition for \tl_remove_once:Nn and \tl_remove_once:cn. These functions are documented on
page 97.)

\tl_remove_all:Nn
\tl_remove_all:cn
\tl_gremove_all:Nn
\tl_gremove_all:cn

Removal is just a special case of replacement.
5204 \cs_new_protected:Npn \tl_remove_all:Nn #1#2
5205 { \tl_replace_all:Nnn #1 {#2} { } }
5206 \cs_new_protected:Npn \tl_gremove_all:Nn #1#2
5207 { \tl_greplace_all:Nnn #1 {#2} { } }
5208 \cs_generate_variant:Nn \tl_remove_all:Nn { c }
5209 \cs_generate_variant:Nn \tl_gremove_all:Nn { c }

398

12.6 Token list conditionals

\tl_if_blank_p:n
\tl_if_blank_p:V
\tl_if_blank_p:o
\tl_if_blank:nTF
\tl_if_blank:VTF
\tl_if_blank:oTF

__tl_if_blank_p:NNw

TEX skips spaces when reading a non-delimited arguments. Thus, a 〈token list〉 is blank
if and only if \use_none:n 〈token list〉 ? is empty after one expansion. The auxiliary
__tl_if_empty_return:o is a fast emptyness test, converting its argument to a string
(after one expansion) and using the test \if_meaning:w \q_nil ... \q_nil.

5210 \prg_new_conditional:Npnn \tl_if_blank:n #1 { p , T , F , TF }
5211 { __tl_if_empty_return:o { \use_none:n #1 ? } }
5212 \cs_generate_variant:Nn \tl_if_blank_p:n { V }
5213 \cs_generate_variant:Nn \tl_if_blank:nT { V }
5214 \cs_generate_variant:Nn \tl_if_blank:nF { V }
5215 \cs_generate_variant:Nn \tl_if_blank:nTF { V }
5216 \cs_generate_variant:Nn \tl_if_blank_p:n { o }
5217 \cs_generate_variant:Nn \tl_if_blank:nT { o }
5218 \cs_generate_variant:Nn \tl_if_blank:nF { o }
5219 \cs_generate_variant:Nn \tl_if_blank:nTF { o }

(End definition for \tl_remove_all:Nn and \tl_remove_all:cn. These functions are documented on
page 98.)

\tl_if_empty_p:N
\tl_if_empty_p:c
\tl_if_empty:NTF
\tl_if_empty:cTF

These functions check whether the token list in the argument is empty and execute the
proper code from their argument(s).

5220 \prg_new_conditional:Npnn \tl_if_empty:N #1 { p , T , F , TF }
5221 {
5222 \if_meaning:w #1 \c_empty_tl
5223 \prg_return_true:
5224 \else:
5225 \prg_return_false:
5226 \fi:
5227 }
5228 \cs_generate_variant:Nn \tl_if_empty_p:N { c }
5229 \cs_generate_variant:Nn \tl_if_empty:NT { c }
5230 \cs_generate_variant:Nn \tl_if_empty:NF { c }
5231 \cs_generate_variant:Nn \tl_if_empty:NTF { c }

(End definition for \tl_if_empty:NTF and \tl_if_empty:cTF. These functions are documented on page
99.)

\tl_if_empty_p:n
\tl_if_empty_p:V
\tl_if_empty:nTF
\tl_if_empty:VTF

Convert the argument to a string: this will be empty if and only if the argument is. Then
\if_meaning:w \q_nil ... \q_nil is true if and only if the string ... is empty. It
could be tempting to use \if_meaning:w \q_nil #1 \q_nil directly. This fails on a
token list starting with \q_nil of course but more troubling is the case where argument
is a complete conditional such as \if_true: a \else: b \fi: because then \if_true:
is used by \if_meaning:w, the test turns out false, the \else: executes the false
branch, the \fi: ends it and the \q_nil at the end starts executing. . .

5232 \prg_new_conditional:Npnn \tl_if_empty:n #1 { p , TF , T , F }
5233 {
5234 \exp_after:wN \if_meaning:w \exp_after:wN \q_nil
5235 \tl_to_str:n {#1} \q_nil
5236 \prg_return_true:

399

5237 \else:
5238 \prg_return_false:
5239 \fi:
5240 }
5241 \cs_generate_variant:Nn \tl_if_empty_p:n { V }
5242 \cs_generate_variant:Nn \tl_if_empty:nTF { V }
5243 \cs_generate_variant:Nn \tl_if_empty:nT { V }
5244 \cs_generate_variant:Nn \tl_if_empty:nF { V }

(End definition for \tl_if_empty:nTF and \tl_if_empty:VTF. These functions are documented on page
99.)

\tl_if_empty_p:o
\tl_if_empty:oTF

__tl_if_empty_return:o

The auxiliary function __tl_if_empty_return:o is for use in various token list con-
ditionals which reduce to testing if a given token list is empty after applying a simple
function to it. The test for emptiness is based on \tl_if_empty:n(TF), but the expan-
sion is hard-coded for efficiency, as this auxiliary function is used in many places. Note
that this works because \etex_detokenize:D expands tokens that follow until reading
a catcode 1 (begin-group) token.

5245 \cs_new:Npn __tl_if_empty_return:o #1
5246 {
5247 \exp_after:wN \if_meaning:w \exp_after:wN \q_nil
5248 \etex_detokenize:D \exp_after:wN {#1} \q_nil
5249 \prg_return_true:
5250 \else:
5251 \prg_return_false:
5252 \fi:
5253 }
5254 \prg_new_conditional:Npnn \tl_if_empty:o #1 { p , TF , T , F }
5255 { __tl_if_empty_return:o {#1} }

(End definition for \tl_if_empty:oTF. This function is documented on page ??.)

\tl_if_eq_p:NN
\tl_if_eq_p:Nc
\tl_if_eq_p:cN
\tl_if_eq_p:cc
\tl_if_eq:NNTF
\tl_if_eq:NcTF
\tl_if_eq:cNTF
\tl_if_eq:ccTF

Returns \c_true_bool if and only if the two token list variables are equal.
5256 \prg_new_conditional:Npnn \tl_if_eq:NN #1#2 { p , T , F , TF }
5257 {
5258 \if_meaning:w #1 #2
5259 \prg_return_true:
5260 \else:
5261 \prg_return_false:
5262 \fi:
5263 }
5264 \cs_generate_variant:Nn \tl_if_eq_p:NN { Nc , c , cc }
5265 \cs_generate_variant:Nn \tl_if_eq:NNTF { Nc , c , cc }
5266 \cs_generate_variant:Nn \tl_if_eq:NNT { Nc , c , cc }
5267 \cs_generate_variant:Nn \tl_if_eq:NNF { Nc , c , cc }

(End definition for \tl_if_eq:NNTF and others. These functions are documented on page 100.)

\tl_if_eq:nnTF
\l__tl_internal_a_tl
\l__tl_internal_b_tl

A simple store and compare routine.
5268 \prg_new_protected_conditional:Npnn \tl_if_eq:nn #1#2 { T , F , TF }

400

5269 {
5270 \group_begin:
5271 \tl_set:Nn \l__tl_internal_a_tl {#1}
5272 \tl_set:Nn \l__tl_internal_b_tl {#2}
5273 \if_meaning:w \l__tl_internal_a_tl \l__tl_internal_b_tl
5274 \group_end:
5275 \prg_return_true:
5276 \else:
5277 \group_end:
5278 \prg_return_false:
5279 \fi:
5280 }
5281 \tl_new:N \l__tl_internal_a_tl
5282 \tl_new:N \l__tl_internal_b_tl

(End definition for \tl_if_eq:nnTF. This function is documented on page 100.)

\tl_if_in:NnTF
\tl_if_in:cnTF

See \tl_if_in:nn(TF) for further comments. Here we simply expand the token list
variable and pass it to \tl_if_in:nn(TF).

5283 \cs_new_protected_nopar:Npn \tl_if_in:NnT { \exp_args:No \tl_if_in:nnT }
5284 \cs_new_protected_nopar:Npn \tl_if_in:NnF { \exp_args:No \tl_if_in:nnF }
5285 \cs_new_protected_nopar:Npn \tl_if_in:NnTF { \exp_args:No \tl_if_in:nnTF }
5286 \cs_generate_variant:Nn \tl_if_in:NnT { c }
5287 \cs_generate_variant:Nn \tl_if_in:NnF { c }
5288 \cs_generate_variant:Nn \tl_if_in:NnTF { c }

(End definition for \tl_if_in:NnTF and \tl_if_in:cnTF. These functions are documented on page 100.)

\tl_if_in:nnTF
\tl_if_in:VnTF
\tl_if_in:onTF
\tl_if_in:noTF

Once more, the test relies on the emptiness test for robustness. The function __tl_-
tmp:w removes tokens until the first occurrence of #2. If this does not appear in #1, then
the final #2 is removed, leaving an empty token list. Otherwise some tokens remain, and
the test is false. See \tl_if_empty:n(TF) for details on the emptiness test.

Treating correctly cases like \tl_if_in:nnTF {a state}{states}, where #1#2 con-
tains #2 before the end, requires special care. To cater for this case, we insert {}{} be-
tween the two token lists. This marker may not appear in #2 because of TEX limitations
on what can delimit a parameter, hence we are safe. Using two brace groups makes the
test work also for empty arguments. The \if_false: constructions are a faster way to
do \group_align_safe_begin: and \group_align_safe_end:.

5289 \prg_new_protected_conditional:Npnn \tl_if_in:nn #1#2 { T , F , TF }
5290 {
5291 \if_false: { \fi:
5292 \cs_set:Npn __tl_tmp:w ##1 #2 { }
5293 \tl_if_empty:oTF { __tl_tmp:w #1 {} {} #2 }
5294 { \prg_return_false: } { \prg_return_true: }
5295 \if_false: } \fi:
5296 }
5297 \cs_generate_variant:Nn \tl_if_in:nnT { V , o , no }
5298 \cs_generate_variant:Nn \tl_if_in:nnF { V , o , no }
5299 \cs_generate_variant:Nn \tl_if_in:nnTF { V , o , no }

401

(End definition for \tl_if_in:nnTF and others. These functions are documented on page 100.)

\tl_if_single_p:N
\tl_if_single:NTF

Expand the token list and feed it to \tl_if_single:n.
5300 \cs_new:Npn \tl_if_single_p:N { \exp_args:No \tl_if_single_p:n }
5301 \cs_new:Npn \tl_if_single:NT { \exp_args:No \tl_if_single:nT }
5302 \cs_new:Npn \tl_if_single:NF { \exp_args:No \tl_if_single:nF }
5303 \cs_new:Npn \tl_if_single:NTF { \exp_args:No \tl_if_single:nTF }

(End definition for \tl_if_single:NTF. This function is documented on page 100.)

\tl_if_single_p:n
\tl_if_single:nTF

__tl_if_single_p:n
__tl_if_single:nTF

This test is similar to \tl_if_empty:nTF. Expanding \use_none:nn #1 ?? once yields
an empty result if #1 is blank, a single ? if #1 has a single item, and otherwise yields
some tokens ending with ??. Then, \tl_to_str:n makes sure there are no odd category
codes. An earlier version would compare the result to a single ? using string comparison,
but the Lua call is slow in LuaTEX. Instead, __tl_if_single:nnw picks the second
token in front of it. If #1 is empty, this token will be the trailing ? and the catcode test
yields false. If #1 has a single item, the token will be ^ and the catcode test yields
true. Otherwise, it will be one of the characters resulting from \tl_to_str:n, and the
catcode test yields false. Note that \if_catcode:w takes care of the expansions, and
that \tl_to_str:n (the \detokenize primitive) actually expands tokens until finding a
begin-group token.

5304 \prg_new_conditional:Npnn \tl_if_single:n #1 { p , T , F , TF }
5305 {
5306 \if_catcode:w ^ \exp_after:wN __tl_if_single:nnw
5307 \tl_to_str:n \exp_after:wN { \use_none:nn #1 ?? } ^ ? \q_stop
5308 \prg_return_true:
5309 \else:
5310 \prg_return_false:
5311 \fi:
5312 }
5313 \cs_new:Npn __tl_if_single:nnw #1#2#3 \q_stop {#2}

(End definition for \tl_if_single:nTF. This function is documented on page 100.)

\tl_case:Nn
\tl_case:cn

\tl_case:NnTF
\tl_case:cnTF

__tl_case:nnTF
__tl_case:Nw

__prg_case_end:nw
__tl_case_end:nw

The aim here is to allow the case statement to be evaluated using a known number of
expansion steps (two), and without needing to use an explicit “end of recursion” marker.
That is achieved by using the test input as the final case, as this will always be true. The
trick is then to tidy up the output such that the appropriate case code plus either the
true or false branch code is inserted.

5314 \cs_new:Npn \tl_case:Nn #1#2
5315 {
5316 \exp:w
5317 __tl_case:NnTF #1 {#2} { } { }
5318 }
5319 \cs_new:Npn \tl_case:NnT #1#2#3
5320 {
5321 \exp:w
5322 __tl_case:NnTF #1 {#2} {#3} { }
5323 }

402

5324 \cs_new:Npn \tl_case:NnF #1#2#3
5325 {
5326 \exp:w
5327 __tl_case:NnTF #1 {#2} { } {#3}
5328 }
5329 \cs_new:Npn \tl_case:NnTF #1#2
5330 {
5331 \exp:w
5332 __tl_case:NnTF #1 {#2}
5333 }
5334 \cs_new:Npn __tl_case:NnTF #1#2#3#4
5335 { __tl_case:Nw #1 #2 #1 { } \q_mark {#3} \q_mark {#4} \q_stop }
5336 \cs_new:Npn __tl_case:Nw #1#2#3
5337 {
5338 \tl_if_eq:NNTF #1 #2
5339 { __tl_case_end:nw {#3} }
5340 { __tl_case:Nw #1 }
5341 }
5342 \cs_generate_variant:Nn \tl_case:Nn { c }
5343 \cs_generate_variant:Nn \tl_case:NnT { c }
5344 \cs_generate_variant:Nn \tl_case:NnF { c }
5345 \cs_generate_variant:Nn \tl_case:NnTF { c }

To tidy up the recursion, there are two outcomes. If there was a hit to one of the cases
searched for, then #1 will be the code to insert, #2 will be the next case to check on and
#3 will be all of the rest of the cases code. That means that #4 will be the true branch
code, and #5 will be tidy up the spare \q_mark and the false branch. On the other
hand, if none of the cases matched then we arrive here using the “termination” case of
comparing the search with itself. That means that #1 will be empty, #2 will be the first
\q_mark and so #4 will be the false code (the true code is mopped up by #3).

5346 \cs_new:Npn __prg_case_end:nw #1#2#3 \q_mark #4#5 \q_stop
5347 { \exp_end: #1 #4 }
5348 \cs_new_eq:NN __tl_case_end:nw __prg_case_end:nw

(End definition for \tl_case:Nn and \tl_case:cn. These functions are documented on page ??.)

12.7 Mapping to token lists
\tl_map_function:nN
\tl_map_function:NN
\tl_map_function:cN

__tl_map_function:Nn

Expandable loop macro for token lists. These have the advantage of not needing to test
if the argument is empty, because if it is, the stop marker will be read immediately and
the loop terminated.

5349 \cs_new:Npn \tl_map_function:nN #1#2
5350 {
5351 __tl_map_function:Nn #2 #1
5352 \q_recursion_tail
5353 __prg_break_point:Nn \tl_map_break: { }
5354 }
5355 \cs_new_nopar:Npn \tl_map_function:NN
5356 { \exp_args:No \tl_map_function:nN }

403

5357 \cs_new:Npn __tl_map_function:Nn #1#2
5358 {
5359 __quark_if_recursion_tail_break:nN {#2} \tl_map_break:
5360 #1 {#2} __tl_map_function:Nn #1
5361 }
5362 \cs_generate_variant:Nn \tl_map_function:NN { c }

(End definition for \tl_map_function:nN. This function is documented on page 101.)

\tl_map_inline:nn
\tl_map_inline:Nn
\tl_map_inline:cn

The inline functions are straight forward by now. We use a little trick with the counter
\g__prg_map_int to make them nestable. We can also make use of __tl_map_-
function:Nn from before.

5363 \cs_new_protected:Npn \tl_map_inline:nn #1#2
5364 {
5365 \int_gincr:N \g__prg_map_int
5366 \cs_gset:cpn { __prg_map_ \int_use:N \g__prg_map_int :w } ##1 {#2}
5367 \exp_args:Nc __tl_map_function:Nn
5368 { __prg_map_ \int_use:N \g__prg_map_int :w }
5369 #1 \q_recursion_tail
5370 __prg_break_point:Nn \tl_map_break: { \int_gdecr:N \g__prg_map_int }
5371 }
5372 \cs_new_protected:Npn \tl_map_inline:Nn
5373 { \exp_args:No \tl_map_inline:nn }
5374 \cs_generate_variant:Nn \tl_map_inline:Nn { c }

(End definition for \tl_map_inline:nn. This function is documented on page 101.)

\tl_map_variable:nNn
\tl_map_variable:NNn
\tl_map_variable:cNn

__tl_map_variable:Nnn

\tl_map_variable:nNn 〈token list〉 〈temp〉 〈action〉 assigns 〈temp〉 to each element and
executes 〈action〉.

5375 \cs_new_protected:Npn \tl_map_variable:nNn #1#2#3
5376 {
5377 __tl_map_variable:Nnn #2 {#3} #1
5378 \q_recursion_tail
5379 __prg_break_point:Nn \tl_map_break: { }
5380 }
5381 \cs_new_protected_nopar:Npn \tl_map_variable:NNn
5382 { \exp_args:No \tl_map_variable:nNn }
5383 \cs_new_protected:Npn __tl_map_variable:Nnn #1#2#3
5384 {
5385 \tl_set:Nn #1 {#3}
5386 __quark_if_recursion_tail_break:NN #1 \tl_map_break:
5387 \use:n {#2}
5388 __tl_map_variable:Nnn #1 {#2}
5389 }
5390 \cs_generate_variant:Nn \tl_map_variable:NNn { c }

(End definition for \tl_map_variable:nNn. This function is documented on page 102.)

\tl_map_break:
\tl_map_break:n

The break statements use the general __prg_map_break:Nn.
5391 \cs_new_nopar:Npn \tl_map_break:

404

5392 { __prg_map_break:Nn \tl_map_break: { } }
5393 \cs_new_nopar:Npn \tl_map_break:n
5394 { __prg_map_break:Nn \tl_map_break: }

(End definition for \tl_map_break:. This function is documented on page 102.)

12.8 Using token lists
\tl_to_str:n Another name for a primitive: defined in l3basics.

(End definition for \tl_to_str:n. This function is documented on page 103.)

\tl_to_str:N
\tl_to_str:c

These functions return the replacement text of a token list as a string.
5395 \cs_new:Npn \tl_to_str:N #1 { \etex_detokenize:D \exp_after:wN {#1} }
5396 \cs_generate_variant:Nn \tl_to_str:N { c }

(End definition for \tl_to_str:N and \tl_to_str:c. These functions are documented on page 103.)

\tl_use:N
\tl_use:c

Token lists which are simply not defined will give a clear TEX error here. No such luck
for ones equal to \scan_stop: so instead a test is made and if there is an issue an error
is forced.

5397 \cs_new:Npn \tl_use:N #1
5398 {
5399 \tl_if_exist:NTF #1 {#1}
5400 {
5401 __msg_kernel_expandable_error:nnn
5402 { kernel } { bad-variable } {#1}
5403 }
5404 }
5405 \cs_generate_variant:Nn \tl_use:N { c }

(End definition for \tl_use:N and \tl_use:c. These functions are documented on page 103.)

12.9 Working with the contents of token lists
\tl_count:n
\tl_count:V
\tl_count:o
\tl_count:N
\tl_count:c

__tl_count:n

Count number of elements within a token list or token list variable. Brace groups within
the list are read as a single element. Spaces are ignored. __tl_count:n grabs the
element and replaces it by +1. The 0 ensures that it works on an empty list.

5406 \cs_new:Npn \tl_count:n #1
5407 {
5408 \int_eval:n
5409 { 0 \tl_map_function:nN {#1} __tl_count:n }
5410 }
5411 \cs_new:Npn \tl_count:N #1
5412 {
5413 \int_eval:n
5414 { 0 \tl_map_function:NN #1 __tl_count:n }
5415 }
5416 \cs_new:Npn __tl_count:n #1 { + \c_one }
5417 \cs_generate_variant:Nn \tl_count:n { V , o }
5418 \cs_generate_variant:Nn \tl_count:N { c }

405

(End definition for \tl_count:n , \tl_count:V , and \tl_count:o. These functions are documented on
page 103.)

\tl_reverse_items:n
__tl_reverse_items:nwNwn

__tl_reverse_items:wn

Reversal of a token list is done by taking one item at a time and putting it after \q_stop.
5419 \cs_new:Npn \tl_reverse_items:n #1
5420 {
5421 __tl_reverse_items:nwNwn #1 ?
5422 \q_mark __tl_reverse_items:nwNwn
5423 \q_mark __tl_reverse_items:wn
5424 \q_stop { }
5425 }
5426 \cs_new:Npn __tl_reverse_items:nwNwn #1 #2 \q_mark #3 #4 \q_stop #5
5427 {
5428 #3 #2
5429 \q_mark __tl_reverse_items:nwNwn
5430 \q_mark __tl_reverse_items:wn
5431 \q_stop { {#1} #5 }
5432 }
5433 \cs_new:Npn __tl_reverse_items:wn #1 \q_stop #2
5434 { \exp_not:o { \use_none:nn #2 } }

(End definition for \tl_reverse_items:n. This function is documented on page 104.)

\tl_trim_spaces:n
\tl_trim_spaces:N
\tl_trim_spaces:c
\tl_gtrim_spaces:N
\tl_gtrim_spaces:c

Trimming spaces from around the input is deferred to an internal function whose first
argument is the token list to trim, augmented by an initial \q_mark, and whose second
argument is a 〈continuation〉, which will receive as a braced argument \use_none:n \q_-
mark 〈trimmed token list〉. In the case at hand, we take \exp_not:o as our continuation,
so that space trimming will behave correctly within an x-type expansion.

5435 \cs_new:Npn \tl_trim_spaces:n #1
5436 { __tl_trim_spaces:nn { \q_mark #1 } \exp_not:o }
5437 \cs_new_protected:Npn \tl_trim_spaces:N #1
5438 { \tl_set:Nx #1 { \exp_args:No \tl_trim_spaces:n {#1} } }
5439 \cs_new_protected:Npn \tl_gtrim_spaces:N #1
5440 { \tl_gset:Nx #1 { \exp_args:No \tl_trim_spaces:n {#1} } }
5441 \cs_generate_variant:Nn \tl_trim_spaces:N { c }
5442 \cs_generate_variant:Nn \tl_gtrim_spaces:N { c }

(End definition for \tl_trim_spaces:n. This function is documented on page 104.)

__tl_trim_spaces:nn
__tl_trim_spaces_auxi:w
__tl_trim_spaces_auxii:w

__tl_trim_spaces_auxiii:w
__tl_trim_spaces_auxiv:w

Trimming spaces from around the input is done using delimited arguments and quarks,
and to get spaces at odd places in the definitions, we nest those in __tl_tmp:w, which
then receives a single space as its argument: #1 is ␣. Removing leading spaces is done
with __tl_trim_spaces_auxi:w, which loops until \q_mark␣ matches the end of the
token list: then ##1 is the token list and ##3 is __tl_trim_spaces_auxii:w. This
hands the relevant tokens to the loop __tl_trim_spaces_auxiii:w, responsible for
trimming trailing spaces. The end is reached when ␣ \q_nil matches the one present in
the definition of \tl_trim_spacs:n. Then __tl_trim_spaces_auxiv:w puts the token
list into a group, with \use_none:n placed there to gobble a lingering \q_mark, and feeds
this to the 〈continuation〉.

406

5443 \cs_set:Npn __tl_tmp:w #1
5444 {
5445 \cs_new:Npn __tl_trim_spaces:nn ##1
5446 {
5447 __tl_trim_spaces_auxi:w
5448 ##1
5449 \q_nil
5450 \q_mark #1 { }
5451 \q_mark __tl_trim_spaces_auxii:w
5452 __tl_trim_spaces_auxiii:w
5453 #1 \q_nil
5454 __tl_trim_spaces_auxiv:w
5455 \q_stop
5456 }
5457 \cs_new:Npn __tl_trim_spaces_auxi:w ##1 \q_mark #1 ##2 \q_mark ##3
5458 {
5459 ##3
5460 __tl_trim_spaces_auxi:w
5461 \q_mark
5462 ##2
5463 \q_mark #1 {##1}
5464 }
5465 \cs_new:Npn __tl_trim_spaces_auxii:w
5466 __tl_trim_spaces_auxi:w \q_mark \q_mark ##1
5467 {
5468 __tl_trim_spaces_auxiii:w
5469 ##1
5470 }
5471 \cs_new:Npn __tl_trim_spaces_auxiii:w ##1 #1 \q_nil ##2
5472 {
5473 ##2
5474 ##1 \q_nil
5475 __tl_trim_spaces_auxiii:w
5476 }
5477 \cs_new:Npn __tl_trim_spaces_auxiv:w ##1 \q_nil ##2 \q_stop ##3
5478 { ##3 { \use_none:n ##1 } }
5479 }
5480 __tl_tmp:w { ~ }

(End definition for __tl_trim_spaces:nn.)

12.10 Token by token changes
\q__tl_act_mark
\q__tl_act_stop

The \tl_act functions may be applied to any token list. Hence, we use two private
quarks, to allow any token, even quarks, in the token list.Only \q__tl_act_mark and
\q__tl_act_stop may not appear in the token lists manipulated by __tl_act:NNNnn
functions. The quarks are effectively defined in l3quark.

(End definition for \q__tl_act_mark and \q__tl_act_stop. These variables are documented on page
??.)

407

__tl_act:NNNnn
__tl_act_output:n

__tl_act_reverse_output:n
__tl_act_loop:w

__tl_act_normal:NwnNNN
__tl_act_group:nwnNNN
__tl_act_space:wwnNNN

__tl_act_end:w

To help control the expansion, __tl_act:NNNnn should always be proceeded by \exp:w
and ends by producing \exp_end: once the result has been obtained. Then loop over
tokens, groups, and spaces in #5. The marker \q__tl_act_mark is used both to avoid
losing outer braces and to detect the end of the token list more easily. The result is stored
as an argument for the dummy function __tl_act_result:n.

5481 \cs_new:Npn __tl_act:NNNnn #1#2#3#4#5
5482 {
5483 \group_align_safe_begin:
5484 __tl_act_loop:w #5 \q__tl_act_mark \q__tl_act_stop
5485 {#4} #1 #2 #3
5486 __tl_act_result:n { }
5487 }

In the loop, we check how the token list begins and act accordingly. In the “normal” case,
we may have reached \q__tl_act_mark, the end of the list. Then leave \exp_end: and
the result in the input stream, to terminate the expansion of \exp:w. Otherwise, apply
the relevant function to the “arguments”, #3 and to the head of the token list. Then
repeat the loop. The scheme is the same if the token list starts with a group or with a
space. Some extra work is needed to make __tl_act_space:wwnNNN gobble the space.

5488 \cs_new:Npn __tl_act_loop:w #1 \q__tl_act_stop
5489 {
5490 \tl_if_head_is_N_type:nTF {#1}
5491 { __tl_act_normal:NwnNNN }
5492 {
5493 \tl_if_head_is_group:nTF {#1}
5494 { __tl_act_group:nwnNNN }
5495 { __tl_act_space:wwnNNN }
5496 }
5497 #1 \q__tl_act_stop
5498 }
5499 \cs_new:Npn __tl_act_normal:NwnNNN #1 #2 \q__tl_act_stop #3#4
5500 {
5501 \if_meaning:w \q__tl_act_mark #1
5502 \exp_after:wN __tl_act_end:wn
5503 \fi:
5504 #4 {#3} #1
5505 __tl_act_loop:w #2 \q__tl_act_stop
5506 {#3} #4
5507 }
5508 \cs_new:Npn __tl_act_end:wn #1 __tl_act_result:n #2
5509 { \group_align_safe_end: \exp_end: #2 }
5510 \cs_new:Npn __tl_act_group:nwnNNN #1 #2 \q__tl_act_stop #3#4#5
5511 {
5512 #5 {#3} {#1}
5513 __tl_act_loop:w #2 \q__tl_act_stop
5514 {#3} #4 #5
5515 }
5516 \exp_last_unbraced:NNo
5517 \cs_new:Npn __tl_act_space:wwnNNN \c_space_tl #1 \q__tl_act_stop #2#3#4#5

408

5518 {
5519 #5 {#2}
5520 __tl_act_loop:w #1 \q__tl_act_stop
5521 {#2} #3 #4 #5
5522 }

Typically, the output is done to the right of what was already output, using __tl_-
act_output:n, but for the __tl_act_reverse functions, it should be done to the left.

5523 \cs_new:Npn __tl_act_output:n #1 #2 __tl_act_result:n #3
5524 { #2 __tl_act_result:n { #3 #1 } }
5525 \cs_new:Npn __tl_act_reverse_output:n #1 #2 __tl_act_result:n #3
5526 { #2 __tl_act_result:n { #1 #3 } }

(End definition for __tl_act:NNNnn.)

\tl_reverse:n
\tl_reverse:o
\tl_reverse:V

__tl_reverse_normal:nN
__tl_reverse_group_preserve:nn
__tl_reverse_space:n

The goal here is to reverse without losing spaces nor braces. This is done using the
general internal function __tl_act:NNNnn. Spaces and “normal” tokens are output on
the left of the current output. Grouped tokens are output to the left but without any
reversal within the group. All of the internal functions here drop one argument: this is
needed by __tl_act:NNNnn when changing case (to record which direction the change
is in), but not when reversing the tokens.

5527 \cs_new:Npn \tl_reverse:n #1
5528 {
5529 \etex_unexpanded:D \exp_after:wN
5530 {
5531 \exp:w
5532 __tl_act:NNNnn
5533 __tl_reverse_normal:nN
5534 __tl_reverse_group_preserve:nn
5535 __tl_reverse_space:n
5536 { }
5537 {#1}
5538 }
5539 }
5540 \cs_generate_variant:Nn \tl_reverse:n { o , V }
5541 \cs_new:Npn __tl_reverse_normal:nN #1#2
5542 { __tl_act_reverse_output:n {#2} }
5543 \cs_new:Npn __tl_reverse_group_preserve:nn #1#2
5544 { __tl_act_reverse_output:n { {#2} } }
5545 \cs_new:Npn __tl_reverse_space:n #1
5546 { __tl_act_reverse_output:n { ~ } }

(End definition for \tl_reverse:n , \tl_reverse:o , and \tl_reverse:V. These functions are docu-
mented on page 104.)

\tl_reverse:N
\tl_reverse:c
\tl_greverse:N
\tl_greverse:c

This reverses the list, leaving \exp_stop_f: in front, which stops the f-expansion.
5547 \cs_new_protected:Npn \tl_reverse:N #1
5548 { \tl_set:Nx #1 { \exp_args:No \tl_reverse:n { #1 } } }
5549 \cs_new_protected:Npn \tl_greverse:N #1
5550 { \tl_gset:Nx #1 { \exp_args:No \tl_reverse:n { #1 } } }

409

5551 \cs_generate_variant:Nn \tl_reverse:N { c }
5552 \cs_generate_variant:Nn \tl_greverse:N { c }

(End definition for \tl_reverse:N and others. These functions are documented on page 104.)

12.11 The first token from a token list
\tl_head:N
\tl_head:n
\tl_head:V
\tl_head:v
\tl_head:f

__tl_head_auxi:nw
__tl_head_auxii:n

\tl_head:w
\tl_tail:N
\tl_tail:n
\tl_tail:V
\tl_tail:v
\tl_tail:f

Finding the head of a token list expandably will always strip braces, which is fine as
this is consistent with for example mapping to a list. The empty brace groups in \tl_-
head:n ensure that a blank argument gives an empty result. The result is returned
within the \unexpanded primitive. The approach here is to use \if_false: to allow
us to use } as the closing delimiter: this is the only safe choice, as any other token
would not be able to parse it’s own code. Using a marker, we can see if what we are
grabbing is exactly the marker, or there is anything else to deal with. Is there is, there
is a loop. If not, tidy up and leave the item in the output stream. More detail in
http://tex.stackexchange.com/a/70168.

5553 \cs_new:Npn \tl_head:n #1
5554 {
5555 \etex_unexpanded:D
5556 \if_false: { \fi: __tl_head_auxi:nw #1 { } \q_stop }
5557 }
5558 \cs_new:Npn __tl_head_auxi:nw #1#2 \q_stop
5559 {
5560 \exp_after:wN __tl_head_auxii:n \exp_after:wN {
5561 \if_false: } \fi: {#1}
5562 }
5563 \cs_new:Npn __tl_head_auxii:n #1
5564 {
5565 \exp_after:wN \if_meaning:w \exp_after:wN \q_nil
5566 \tl_to_str:n \exp_after:wN { \use_none:n #1 } \q_nil
5567 \exp_after:wN \use_i:nn
5568 \else:
5569 \exp_after:wN \use_ii:nn
5570 \fi:
5571 {#1}
5572 { \if_false: { \fi: __tl_head_auxi:nw #1 } }
5573 }
5574 \cs_generate_variant:Nn \tl_head:n { V , v , f }
5575 \cs_new:Npn \tl_head:w #1#2 \q_stop {#1}
5576 \cs_new_nopar:Npn \tl_head:N { \exp_args:No \tl_head:n }

To corrected leave the tail of a token list, it’s important not to absorb any of the tail
part as an argument. For example, the simple definition

\cs_new:Npn \tl_tail:n #1 { \tl_tail:w #1 \q_stop }
\cs_new:Npn \tl_tail:w #1#2 \q_stop

will give the wrong result for \tl_tail:n { a { bc } } (the braces will be stripped).
Thus the only safe way to proceed is to first check that there is an item to grab (i.e. that
the argument is not blank) and assuming there is to dispose of the first item. As with

410

http://tex.stackexchange.com/a/70168

\tl_head:n, the result is protected from further expansion by \unexpanded. While we
could optimise the test here, this would leave some tokens “banned” in the input, which
we do not have with this definition.

5577 \cs_new:Npn \tl_tail:n #1
5578 {
5579 \etex_unexpanded:D
5580 \tl_if_blank:nTF {#1}
5581 { { } }
5582 { \exp_after:wN { \use_none:n #1 } }
5583 }
5584 \cs_generate_variant:Nn \tl_tail:n { V , v , f }
5585 \cs_new_nopar:Npn \tl_tail:N { \exp_args:No \tl_tail:n }

(End definition for \tl_head:N and others. These functions are documented on page 105.)

\tl_if_head_eq_meaning_p:nN
\tl_if_head_eq_meaning:nNTF

\tl_if_head_eq_charcode_p:nN
\tl_if_head_eq_charcode:nNTF
\tl_if_head_eq_charcode_p:fN
\tl_if_head_eq_charcode:fNTF
\tl_if_head_eq_catcode_p:nN
\tl_if_head_eq_catcode:nNTF

Accessing the first token of a token list is tricky in three cases: when it has category code
1 (begin-group token), when it is an explicit space, with category code 10 and character
code 32, or when the token list is empty (obviously).

Forgetting temporarily about this issue we would use the following test in \tl_if_-
head_eq_charcode:nN. Here, \tl_head:w yields the first token of the token list, then
passed to \exp_not:N.

\if_charcode:w
\exp_after:wN \exp_not:N \tl_head:w #1 \q_nil \q_stop
\exp_not:N #2

The two first special cases are detected by testing if the token list starts with an N-type
token (the extra ? sends empty token lists to the true branch of this test). In those cases,
the first token is a character, and since we only care about its character code, we can use
\str_head:n to access it (this works even if it is a space character). An empty argument
will result in \tl_head:w leaving two tokens: ? which is taken in the \if_charcode:w
test, and \use_none:nn, which ensures that \prg_return_false: is returned regardless
of whether the charcode test was true or false.

5586 \prg_new_conditional:Npnn \tl_if_head_eq_charcode:nN #1#2 { p , T , F , TF }
5587 {
5588 \if_charcode:w
5589 \exp_not:N #2
5590 \tl_if_head_is_N_type:nTF { #1 ? }
5591 {
5592 \exp_after:wN \exp_not:N
5593 \tl_head:w #1 { ? \use_none:nn } \q_stop
5594 }
5595 { \str_head:n {#1} }
5596 \prg_return_true:
5597 \else:
5598 \prg_return_false:
5599 \fi:
5600 }
5601 \cs_generate_variant:Nn \tl_if_head_eq_charcode_p:nN { f }

411

5602 \cs_generate_variant:Nn \tl_if_head_eq_charcode:nNTF { f }
5603 \cs_generate_variant:Nn \tl_if_head_eq_charcode:nNT { f }
5604 \cs_generate_variant:Nn \tl_if_head_eq_charcode:nNF { f }

For \tl_if_head_eq_catcode:nN, again we detect special cases with a \tl_if_head_-
is_N_type:n. Then we need to test if the first token is a begin-group token or an explicit
space token, and produce the relevant token, either \c_group_begin_token or \c_-
space_token. Again, for an empty argument, a hack is used, removing \prg_return_-
true: and \else: with \use_none:nn in case the catcode test with the (arbitrarily
chosen) ? is true.

5605 \prg_new_conditional:Npnn \tl_if_head_eq_catcode:nN #1 #2 { p , T , F , TF }
5606 {
5607 \if_catcode:w
5608 \exp_not:N #2
5609 \tl_if_head_is_N_type:nTF { #1 ? }
5610 {
5611 \exp_after:wN \exp_not:N
5612 \tl_head:w #1 { ? \use_none:nn } \q_stop
5613 }
5614 {
5615 \tl_if_head_is_group:nTF {#1}
5616 { \c_group_begin_token }
5617 { \c_space_token }
5618 }
5619 \prg_return_true:
5620 \else:
5621 \prg_return_false:
5622 \fi:
5623 }

For \tl_if_head_eq_meaning:nN, again, detect special cases. In the normal case, use
\tl_head:w, with no \exp_not:N this time, since \if_meaning:w causes no expansion.
With an empty argument, the test is true, and \use_none:nnn removes #2 and the usual
\prg_return_true: and \else:. In the special cases, we know that the first token is a
character, hence \if_charcode:w and \if_catcode:w together are enough. We combine
them in some order, hopefully faster than the reverse. Tests are not nested because the
arguments may contain unmatched primitive conditionals.

5624 \prg_new_conditional:Npnn \tl_if_head_eq_meaning:nN #1#2 { p , T , F , TF }
5625 {
5626 \tl_if_head_is_N_type:nTF { #1 ? }
5627 { __tl_if_head_eq_meaning_normal:nN }
5628 { __tl_if_head_eq_meaning_special:nN }
5629 {#1} #2
5630 }
5631 \cs_new:Npn __tl_if_head_eq_meaning_normal:nN #1 #2
5632 {
5633 \exp_after:wN \if_meaning:w
5634 \tl_head:w #1 { ?? \use_none:nnn } \q_stop #2
5635 \prg_return_true:
5636 \else:

412

5637 \prg_return_false:
5638 \fi:
5639 }
5640 \cs_new:Npn __tl_if_head_eq_meaning_special:nN #1 #2
5641 {
5642 \if_charcode:w \str_head:n {#1} \exp_not:N #2
5643 \exp_after:wN \use:n
5644 \else:
5645 \prg_return_false:
5646 \exp_after:wN \use_none:n
5647 \fi:
5648 {
5649 \if_catcode:w \exp_not:N #2
5650 \tl_if_head_is_group:nTF {#1}
5651 { \c_group_begin_token }
5652 { \c_space_token }
5653 \prg_return_true:
5654 \else:
5655 \prg_return_false:
5656 \fi:
5657 }
5658 }

(End definition for \tl_if_head_eq_meaning:nNTF. This function is documented on page 106.)

\tl_if_head_is_N_type_p:n
\tl_if_head_is_N_type:nTF
__tl_if_head_is_N_type:w

A token list can be empty, can start with an explicit space character (catcode 10 and
charcode 32), can start with a begin-group token (catcode 1), or start with an N-type
argument. In the first two cases, the line involving __tl_if_head_is_N_type:w pro-
duces ^ (and otherwise nothing). In the third case (begin-group token), the lines involving
\exp_after:wN produce a single closing brace. The category code test is thus true ex-
actly in the fourth case, which is what we want. One cannot optimize by moving one of
the * to the beginning: if #1 contains primitive conditionals, all of its occurrences must
be dealt with before the \if_catcode:w tries to skip the true branch of the conditional.

5659 \prg_new_conditional:Npnn \tl_if_head_is_N_type:n #1 { p , T , F , TF }
5660 {
5661 \if_catcode:w
5662 \if_false: { \fi: __tl_if_head_is_N_type:w ? #1 ~ }
5663 \exp_after:wN \use_none:n
5664 \exp_after:wN { \exp_after:wN { \token_to_str:N #1 ? } }
5665 * *
5666 \prg_return_true:
5667 \else:
5668 \prg_return_false:
5669 \fi:
5670 }
5671 \cs_new:Npn __tl_if_head_is_N_type:w #1 ~
5672 {
5673 \tl_if_empty:oTF { \use_none:n #1 } { ^ } { }
5674 \exp_after:wN \use_none:n \exp_after:wN { \if_false: } \fi:
5675 }

413

(End definition for \tl_if_head_is_N_type:nTF. This function is documented on page 107.)

\tl_if_head_is_group_p:n
\tl_if_head_is_group:nTF

Pass the first token of #1 through \token_to_str:N, then check for the brace balance.
The extra ? caters for an empty argument.7

5676 \prg_new_conditional:Npnn \tl_if_head_is_group:n #1 { p , T , F , TF }
5677 {
5678 \if_catcode:w
5679 \exp_after:wN \use_none:n
5680 \exp_after:wN { \exp_after:wN { \token_to_str:N #1 ? } }
5681 * *
5682 \prg_return_false:
5683 \else:
5684 \prg_return_true:
5685 \fi:
5686 }

(End definition for \tl_if_head_is_group:nTF. This function is documented on page 106.)

\tl_if_head_is_space_p:n
\tl_if_head_is_space:nTF
__tl_if_head_is_space:w

The auxiliary’s argument is all that is before the first explicit space in ?#1?~. If that
is a single ? the test yields true. Otherwise, that is more than one token, and the
test yields false. The work is done within braces (with an \if_false: { \fi: ... }
construction) both to hide potential alignment tab characters from TEX in a table, and
to allow for removing what remains of the token list after its first space. The \exp:w and
\exp_end: ensure that the result of a single step of expansion directly yields a balanced
token list (no trailing closing brace).

5687 \prg_new_conditional:Npnn \tl_if_head_is_space:n #1 { p , T , F , TF }
5688 {
5689 \exp:w \if_false: { \fi:
5690 __tl_if_head_is_space:w ? #1 ? ~ }
5691 }
5692 \cs_new:Npn __tl_if_head_is_space:w #1 ~
5693 {
5694 \tl_if_empty:oTF { \use_none:n #1 }
5695 { \exp_after:wN \exp_end: \exp_after:wN \prg_return_true: }
5696 { \exp_after:wN \exp_end: \exp_after:wN \prg_return_false: }
5697 \exp_after:wN \use_none:n \exp_after:wN { \if_false: } \fi:
5698 }

(End definition for \tl_if_head_is_space:nTF. This function is documented on page 107.)

12.12 Using a single item
\tl_item:nn
\tl_item:Nn
\tl_item:cn

__tl_item:nn

The idea here is to find the offset of the item from the left, then use a loop to grab
the correct item. If the resulting offset is too large, then \quark_if_recursion_tail_-
stop:n terminates the loop, and returns nothing at all.

7Bruno: this could be made faster, but we don’t: if we hope to ever have an e-type argument, we
need all brace “tricks” to happen in one step of expansion, keeping the token list brace balanced at all
times.

414

5699 \cs_new:Npn \tl_item:nn #1#2
5700 {
5701 \exp_args:Nf __tl_item:nn
5702 {
5703 \int_eval:n
5704 {
5705 \int_compare:nNnT {#2} < \c_zero
5706 { \tl_count:n {#1} + \c_one + }
5707 #2
5708 }
5709 }
5710 #1
5711 \q_recursion_tail
5712 __prg_break_point:
5713 }
5714 \cs_new:Npn __tl_item:nn #1#2
5715 {
5716 __quark_if_recursion_tail_break:nN {#2} __prg_break:
5717 \int_compare:nNnTF {#1} = \c_one
5718 { __prg_break:n { \exp_not:n {#2} } }
5719 { \exp_args:Nf __tl_item:nn { \int_eval:n { #1 - 1 } } }
5720 }
5721 \cs_new_nopar:Npn \tl_item:Nn { \exp_args:No \tl_item:nn }
5722 \cs_generate_variant:Nn \tl_item:Nn { c }

(End definition for \tl_item:nn , \tl_item:Nn , and \tl_item:cn. These functions are documented on
page 107.)

12.13 Viewing token lists
\tl_show:N
\tl_show:c

Showing token list variables is done after checking that the variable is defined (see __-
kernel_register_show:N).

5723 \cs_new_protected:Npn \tl_show:N #1
5724 {
5725 __msg_show_variable:NNNnn #1 \tl_if_exist:NTF ? { }
5726 { > ~ \token_to_str:N #1 = \tl_to_str:N #1 }
5727 }
5728 \cs_generate_variant:Nn \tl_show:N { c }

(End definition for \tl_show:N and \tl_show:c. These functions are documented on page 107.)

\tl_show:n The __msg_show_wrap:n internal function performs line-wrapping and shows the result
using the \etex_showtokens:D primitive. Since \tl_to_str:n is expanded within the
line-wrapping code, the escape character is always a backslash.

5729 \cs_new_protected:Npn \tl_show:n #1
5730 { __msg_show_wrap:n { > ~ \tl_to_str:n {#1} } }

(End definition for \tl_show:n. This function is documented on page 108.)

415

12.14 Scratch token lists
\g_tmpa_tl
\g_tmpb_tl

Global temporary token list variables. They are supposed to be set and used immediately,
with no delay between the definition and the use because you can’t count on other macros
not to redefine them from under you.

5731 \tl_new:N \g_tmpa_tl
5732 \tl_new:N \g_tmpb_tl

(End definition for \g_tmpa_tl and \g_tmpb_tl. These variables are documented on page 108.)

\l_tmpa_tl
\l_tmpb_tl

These are local temporary token list variables. Be sure not to assume that the value you
put into them will survive for long—see discussion above.

5733 \tl_new:N \l_tmpa_tl
5734 \tl_new:N \l_tmpb_tl

(End definition for \l_tmpa_tl and \l_tmpb_tl. These variables are documented on page 108.)

12.15 Deprecated functions
\tl_to_lowercase:n
\tl_to_uppercase:n

For removal after 2017-12-31.
5735 \cs_new_protected:Npn \tl_to_lowercase:n #1
5736 { \tex_lowercase:D {#1} }
5737 \cs_new_protected:Npn \tl_to_uppercase:n #1
5738 { \tex_uppercase:D {#1} }

(End definition for \tl_to_lowercase:n and \tl_to_uppercase:n. These functions are documented on
page ??.)

5739 〈/initex | package〉

13 l3str implementation
5740 〈*initex | package〉

5741 〈@@=str〉

13.1 Creating and setting string variables
\str_new:N
\str_new:c
\str_use:N
\str_use:c

\str_clear:N
\str_clear:c
\str_gclear:N
\str_gclear:c

\str_clear_new:N
\str_clear_new:c

\str_gclear_new:N
\str_gclear_new:c

\str_set_eq:NN
\str_set_eq:cN
\str_set_eq:Nc
\str_set_eq:cc
\str_gset_eq:NN
\str_gset_eq:cN
\str_gset_eq:Nc
\str_gset_eq:cc

A string is simply a token list. The full mapping system isn’t set up yet so do things by
hand.

5742 \group_begin:
5743 \cs_set_protected:Npn __str_tmp:n #1
5744 {
5745 \tl_if_blank:nF {#1}
5746 {
5747 \cs_new_eq:cc { str_ #1 :N } { tl_ #1 :N }
5748 \exp_args:Nc \cs_generate_variant:Nn { str_ #1 :N } { c }
5749 __str_tmp:n
5750 }
5751 }
5752 __str_tmp:n

416

5753 { new }
5754 { use }
5755 { clear }
5756 { gclear }
5757 { clear_new }
5758 { gclear_new }
5759 { }
5760 \group_end:
5761 \cs_new_eq:NN \str_set_eq:NN \tl_set_eq:NN
5762 \cs_new_eq:NN \str_gset_eq:NN \tl_gset_eq:NN
5763 \cs_generate_variant:Nn \str_set_eq:NN { c , Nc , cc }
5764 \cs_generate_variant:Nn \str_gset_eq:NN { c , Nc , cc }

(End definition for \str_new:N and others. These functions are documented on page 109.)

\str_set:Nn
\str_set:Nx
\str_set:cn
\str_set:cx
\str_gset:Nn
\str_gset:Nx
\str_gset:cn
\str_gset:cx
\str_const:Nn
\str_const:Nx
\str_const:cn
\str_const:cx

\str_put_left:Nn
\str_put_left:Nx
\str_put_left:cn
\str_put_left:cx
\str_gput_left:Nn
\str_gput_left:Nx
\str_gput_left:cn
\str_gput_left:cx
\str_put_right:Nn
\str_put_right:Nx
\str_put_right:cn
\str_put_right:cx
\str_gput_right:Nn
\str_gput_right:Nx
\str_gput_right:cn
\str_gput_right:cx

Simply convert the token list inputs to 〈strings〉.
5765 \group_begin:
5766 \cs_set_protected:Npn __str_tmp:n #1
5767 {
5768 \tl_if_blank:nF {#1}
5769 {
5770 \cs_new_protected:cpx { str_ #1 :Nn } ##1##2
5771 { \exp_not:c { tl_ #1 :Nx } ##1 { \exp_not:N \tl_to_str:n {##2} } }
5772 \exp_args:Nc \cs_generate_variant:Nn { str_ #1 :Nn } { Nx , cn , cx }
5773 __str_tmp:n
5774 }
5775 }
5776 __str_tmp:n
5777 { set }
5778 { gset }
5779 { const }
5780 { put_left }
5781 { gput_left }
5782 { put_right }
5783 { gput_right }
5784 { }
5785 \group_end:

(End definition for \str_set:Nn and others. These functions are documented on page 110.)

13.2 String comparisons
\str_if_empty_p:N
\str_if_empty_p:c
\str_if_exist_p:N
\str_if_exist_p:c
\str_if_empty:NTF
\str_if_empty:cTF
\str_if_exist:NTF
\str_if_exist:cTF

More copy-paste!
5786 \prg_new_eq_conditional:NNn \str_if_exist:N \tl_if_exist:N { p , T , F , TF }
5787 \prg_new_eq_conditional:NNn \str_if_exist:c \tl_if_exist:c { p , T , F , TF }
5788 \prg_new_eq_conditional:NNn \str_if_empty:N \tl_if_empty:N { p , T , F , TF }
5789 \prg_new_eq_conditional:NNn \str_if_empty:c \tl_if_empty:c { p , T , F , TF }

(End definition for \str_if_empty:NTF and others. These functions are documented on page 111.)

417

__str_if_eq_x:nn
__str_escape_x:n

String comparisons rely on the primitive \(pdf)strcmp if available: LuaTEX does not
have it, so emulation is required. As the net result is that we do not always use the
primitive, the correct approach is to wrap up in a function with defined behaviour.
That’s done by providing a wrapper and then redefining in the LuaTEX case. Note that
the necessary Lua code is covered in l3boostrap: long-term this may need to go into a
separate Lua file, but at present it’s somewhere that spaces are not skipped for ease-of-
input. The need to detokenize and force expansion of input arises from the case where
a # token is used in the input, e.g. __str_if_eq_x:nn {#} { \tl_to_str:n {#} },
which otherwise will fail as \luatex_luaescapestring:D does not double such tokens.

5790 \cs_new:Npn __str_if_eq_x:nn #1#2 { \pdftex_strcmp:D {#1} {#2} }
5791 \cs_if_exist:NT \luatex_luatexversion:D
5792 {
5793 \cs_set:Npn __str_if_eq_x:nn #1#2
5794 {
5795 \luatex_directlua:D
5796 {
5797 l3kernel.strcmp
5798 (
5799 " __str_escape_x:n {#1} " ,
5800 " __str_escape_x:n {#2} "
5801)
5802 }
5803 }
5804 \cs_new:Npn __str_escape_x:n #1
5805 {
5806 \luatex_luaescapestring:D
5807 {
5808 \etex_detokenize:D \exp_after:wN { \luatex_expanded:D {#1} }
5809 }
5810 }
5811 }

(End definition for __str_if_eq_x:nn.)

__str_if_eq_x_return:nn It turns out that we often need to compare a token list with the result of applying
some function to it, and return with \prg_return_true/false:. This test is similar to
\str_if_eq:nnTF (see l3str), but is hard-coded for speed.

5812 \cs_new:Npn __str_if_eq_x_return:nn #1 #2
5813 {
5814 \if_int_compare:w __str_if_eq_x:nn {#1} {#2} = \c_zero
5815 \prg_return_true:
5816 \else:
5817 \prg_return_false:
5818 \fi:
5819 }

(End definition for __str_if_eq_x_return:nn.)

418

\str_if_eq_p:nn
\str_if_eq_p:Vn
\str_if_eq_p:on
\str_if_eq_p:nV
\str_if_eq_p:no
\str_if_eq_p:VV

\str_if_eq_x_p:nn
\str_if_eq:nnTF
\str_if_eq:VnTF
\str_if_eq:onTF
\str_if_eq:nVTF
\str_if_eq:noTF
\str_if_eq:VVTF

\str_if_eq_x:nnTF

Modern engines provide a direct way of comparing two token lists, but returning a num-
ber. This set of conditionals therefore make life a bit clearer. The nn and xx versions are
created directly as this is most efficient.

5820 \prg_new_conditional:Npnn \str_if_eq:nn #1#2 { p , T , F , TF }
5821 {
5822 \if_int_compare:w
5823 __str_if_eq_x:nn { \exp_not:n {#1} } { \exp_not:n {#2} }
5824 = \c_zero
5825 \prg_return_true: \else: \prg_return_false: \fi:
5826 }
5827 \cs_generate_variant:Nn \str_if_eq_p:nn { V , o }
5828 \cs_generate_variant:Nn \str_if_eq_p:nn { nV , no , VV }
5829 \cs_generate_variant:Nn \str_if_eq:nnT { V , o }
5830 \cs_generate_variant:Nn \str_if_eq:nnT { nV , no , VV }
5831 \cs_generate_variant:Nn \str_if_eq:nnF { V , o }
5832 \cs_generate_variant:Nn \str_if_eq:nnF { nV , no , VV }
5833 \cs_generate_variant:Nn \str_if_eq:nnTF { V , o }
5834 \cs_generate_variant:Nn \str_if_eq:nnTF { nV , no , VV }
5835 \prg_new_conditional:Npnn \str_if_eq_x:nn #1#2 { p , T , F , TF }
5836 {
5837 \if_int_compare:w __str_if_eq_x:nn {#1} {#2} = \c_zero
5838 \prg_return_true: \else: \prg_return_false: \fi:
5839 }

(End definition for \str_if_eq:nnTF and others. These functions are documented on page 111.)

\str_if_eq_p:NN
\str_if_eq_p:Nc
\str_if_eq_p:cN
\str_if_eq_p:cc
\str_if_eq:NNTF
\str_if_eq:NcTF
\str_if_eq:cNTF
\str_if_eq:ccTF

Note that \str_if_eq:NN is different from \tl_if_eq:NN because it needs to ignore
category codes.

5840 \prg_new_conditional:Npnn \str_if_eq:NN #1#2 { p , TF , T , F }
5841 {
5842 \if_int_compare:w __str_if_eq_x:nn { \tl_to_str:N #1 } { \tl_to_str:N #2 }
5843 = \c_zero \prg_return_true: \else: \prg_return_false: \fi:
5844 }
5845 \cs_generate_variant:Nn \str_if_eq:NNT { c , Nc , cc }
5846 \cs_generate_variant:Nn \str_if_eq:NNF { c , Nc , cc }
5847 \cs_generate_variant:Nn \str_if_eq:NNTF { c , Nc , cc }
5848 \cs_generate_variant:Nn \str_if_eq_p:NN { c , Nc , cc }

(End definition for \str_if_eq:NNTF and others. These functions are documented on page 111.)

\str_case:nn
\str_case:on
\str_case:nV
\str_case:nv

\str_case_x:nn
\str_case:nnTF
\str_case:onTF
\str_case:nVTF
\str_case:nvTF

\str_case_x:nnTF
__str_case:nnTF

__str_case_x:nnTF
__str_case:nw

__str_case_x:nw
__str_case_end:nw

Much the same as \tl_case:nn(TF) here: just a change in the internal comparison.
5849 \cs_new:Npn \str_case:nn #1#2
5850 {
5851 \exp:w
5852 __str_case:nnTF {#1} {#2} { } { }
5853 }
5854 \cs_new:Npn \str_case:nnT #1#2#3
5855 {
5856 \exp:w
5857 __str_case:nnTF {#1} {#2} {#3} { }

419

5858 }
5859 \cs_new:Npn \str_case:nnF #1#2
5860 {
5861 \exp:w
5862 __str_case:nnTF {#1} {#2} { }
5863 }
5864 \cs_new:Npn \str_case:nnTF #1#2
5865 {
5866 \exp:w
5867 __str_case:nnTF {#1} {#2}
5868 }
5869 \cs_new:Npn __str_case:nnTF #1#2#3#4
5870 { __str_case:nw {#1} #2 {#1} { } \q_mark {#3} \q_mark {#4} \q_stop }
5871 \cs_generate_variant:Nn \str_case:nn { o , nV , nv }
5872 \cs_generate_variant:Nn \str_case:nnT { o , nV , nv }
5873 \cs_generate_variant:Nn \str_case:nnF { o , nV , nv }
5874 \cs_generate_variant:Nn \str_case:nnTF { o , nV , nv }
5875 \cs_new:Npn __str_case:nw #1#2#3
5876 {
5877 \str_if_eq:nnTF {#1} {#2}
5878 { __str_case_end:nw {#3} }
5879 { __str_case:nw {#1} }
5880 }
5881 \cs_new:Npn \str_case_x:nn #1#2
5882 {
5883 \exp:w
5884 __str_case_x:nnTF {#1} {#2} { } { }
5885 }
5886 \cs_new:Npn \str_case_x:nnT #1#2#3
5887 {
5888 \exp:w
5889 __str_case_x:nnTF {#1} {#2} {#3} { }
5890 }
5891 \cs_new:Npn \str_case_x:nnF #1#2
5892 {
5893 \exp:w
5894 __str_case_x:nnTF {#1} {#2} { }
5895 }
5896 \cs_new:Npn \str_case_x:nnTF #1#2
5897 {
5898 \exp:w
5899 __str_case_x:nnTF {#1} {#2}
5900 }
5901 \cs_new:Npn __str_case_x:nnTF #1#2#3#4
5902 { __str_case_x:nw {#1} #2 {#1} { } \q_mark {#3} \q_mark {#4} \q_stop }
5903 \cs_new:Npn __str_case_x:nw #1#2#3
5904 {
5905 \str_if_eq_x:nnTF {#1} {#2}
5906 { __str_case_end:nw {#3} }
5907 { __str_case_x:nw {#1} }

420

5908 }
5909 \cs_new_eq:NN __str_case_end:nw __prg_case_end:nw

(End definition for \str_case:nn and others. These functions are documented on page ??.)

13.3 Accessing specific characters in a string
__str_to_other:n

__str_to_other_loop:w
__str_to_other_end:w

First apply \tl_to_str:n, then replace all spaces by “other” spaces, 8 at a time, storing
the converted part of the string between the \q_mark and \q_stop markers. The end is
detected when __str_to_other_loop:w finds one of the trailing A, distinguished from
any contents of the initial token list by their category. Then __str_to_other_end:w is
called, and finds the result between \q_mark and the first A (well, there is also the need
to remove a space).

5910 \cs_new:Npn __str_to_other:n #1
5911 {
5912 \exp_after:wN __str_to_other_loop:w
5913 \tl_to_str:n {#1} ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ \q_mark \q_stop
5914 }
5915 \group_begin:
5916 \tex_lccode:D ‘* = ‘\ %
5917 \tex_lccode:D ‘\A = ‘\A
5918 \tex_lowercase:D
5919 {
5920 \group_end:
5921 \cs_new:Npn __str_to_other_loop:w
5922 #1 ~ #2 ~ #3 ~ #4 ~ #5 ~ #6 ~ #7 ~ #8 ~ #9 \q_stop
5923 {
5924 \if_meaning:w A #8
5925 __str_to_other_end:w
5926 \fi:
5927 __str_to_other_loop:w
5928 #9 #1 * #2 * #3 * #4 * #5 * #6 * #7 * #8 * \q_stop
5929 }
5930 \cs_new:Npn __str_to_other_end:w \fi: #1 \q_mark #2 * A #3 \q_stop
5931 { \fi: #2 }
5932 }

(End definition for __str_to_other:n.)

\str_item:Nn
\str_item:cn
\str_item:nn

\str_item_ignore_spaces:nn
__str_item:nn
__str_item:w

The \str_item:nn hands its argument with spaces escaped to __str_item:nn, and
makes sure to turn the result back into a proper string (with category code 10 spaces)
eventually. The \str_item_ignore_spaces:nn function does not escape spaces, which
are thus ignored by __str_item:nn since everything else is done with undelimited ar-
guments. Evaluate the 〈index〉 argument #2 and count characters in the string, passing
those two numbers to __str_item:w for further analysis. If the 〈index〉 is negative, shift
it by the 〈count〉 to know the how many character to discard, and if that is still negative
give an empty result. If the 〈index〉 is larger than the 〈count〉, give an empty result, and
otherwise discard 〈index〉 − 1 characters before returning the following one. The shift by

421

−1 is obtained by inserting an empty brace group before the string in that case: that
brace group also covers the case where the 〈index〉 is zero.

5933 \cs_new_nopar:Npn \str_item:Nn { \exp_args:No \str_item:nn }
5934 \cs_generate_variant:Nn \str_item:Nn { c }
5935 \cs_new:Npn \str_item:nn #1#2
5936 {
5937 \exp_args:Nf \tl_to_str:n
5938 {
5939 \exp_args:Nf __str_item:nn
5940 { __str_to_other:n {#1} } {#2}
5941 }
5942 }
5943 \cs_new:Npn \str_item_ignore_spaces:nn #1
5944 { \exp_args:No __str_item:nn { \tl_to_str:n {#1} } }
5945 \cs_new:Npn __str_item:nn #1#2
5946 {
5947 \exp_after:wN __str_item:w
5948 __int_value:w __int_eval:w #2 \exp_after:wN ;
5949 __int_value:w __str_count:n {#1} ;
5950 #1 \q_stop
5951 }
5952 \cs_new:Npn __str_item:w #1; #2;
5953 {
5954 \int_compare:nNnTF {#1} < \c_zero
5955 {
5956 \int_compare:nNnTF {#1} < {-#2}
5957 { \use_none_delimit_by_q_stop:w }
5958 {
5959 \exp_after:wN \use_i_delimit_by_q_stop:nw
5960 \exp:w \exp_after:wN __str_skip_exp_end:w
5961 __int_value:w __int_eval:w #1 + #2 ;
5962 }
5963 }
5964 {
5965 \int_compare:nNnTF {#1} > {#2}
5966 { \use_none_delimit_by_q_stop:w }
5967 {
5968 \exp_after:wN \use_i_delimit_by_q_stop:nw
5969 \exp:w __str_skip_exp_end:w #1 ; { }
5970 }
5971 }
5972 }

(End definition for \str_item:Nn and others. These functions are documented on page 114.)

__str_skip_exp_end:w
__str_skip_loop:wNNNNNNNN

__str_skip_end:w
__str_skip_end:NNNNNNNN

Removes max(#1,0) characters from the input stream, and then leaves \exp_end:. This
should be expanded using \exp:w. We remove characters 8 at a time until there are
at most 8 to remove. Then we do a dirty trick: the \if_case:w construction leaves
between 0 and 8 times the \or: control sequence, and those \or: become arguments of
__str_skip_end:NNNNNNNN. If the number of characters to remove is 6, say, then there

422

are two \or: left, and the 8 arguments of __str_skip_end:NNNNNNNN are the two \or:,
and 6 characters from the input stream, exactly what we wanted to remove. Then close
the \if_case:w conditional with \fi:, and stop the initial expansion with \exp_end:
(see places where __str_skip_exp_end:w is called).

5973 \cs_new:Npn __str_skip_exp_end:w #1;
5974 {
5975 \if_int_compare:w #1 > \c_eight
5976 \exp_after:wN __str_skip_loop:wNNNNNNNN
5977 \else:
5978 \exp_after:wN __str_skip_end:w
5979 __int_value:w __int_eval:w
5980 \fi:
5981 #1 ;
5982 }
5983 \cs_new:Npn __str_skip_loop:wNNNNNNNN #1; #2#3#4#5#6#7#8#9
5984 { \exp_after:wN __str_skip_exp_end:w __int_value:w __int_eval:w #1 - \c_eight ; }
5985 \cs_new:Npn __str_skip_end:w #1 ;
5986 {
5987 \exp_after:wN __str_skip_end:NNNNNNNN
5988 \if_case:w #1 \exp_stop_f: \or: \or: \or: \or: \or: \or: \or: \or:
5989 }
5990 \cs_new:Npn __str_skip_end:NNNNNNNN #1#2#3#4#5#6#7#8 { \fi: \exp_end: }

(End definition for __str_skip_exp_end:w.)

\str_range:Nnn
\str_range:nnn

\str_range_ignore_spaces:nnn
__str_range:nnn
__str_range:w

__str_range:nnw

Sanitize the string. Then evaluate the arguments. At this stage we also decrement the
〈start index〉, since our goal is to know how many characters should be removed. Then
limit the range to be non-negative and at most the length of the string (this avoids
needing to check for the end of the string when grabbing characters), shifting negative
numbers by the appropriate amount. Afterwards, skip characters, then keep some more,
and finally drop the end of the string.

5991 \cs_new_nopar:Npn \str_range:Nnn { \exp_args:No \str_range:nnn }
5992 \cs_generate_variant:Nn \str_range:Nnn { c }
5993 \cs_new:Npn \str_range:nnn #1#2#3
5994 {
5995 \exp_args:Nf \tl_to_str:n
5996 {
5997 \exp_args:Nf __str_range:nnn
5998 { __str_to_other:n {#1} } {#2} {#3}
5999 }
6000 }
6001 \cs_new:Npn \str_range_ignore_spaces:nnn #1
6002 { \exp_args:No __str_range:nnn { \tl_to_str:n {#1} } }
6003 \cs_new:Npn __str_range:nnn #1#2#3
6004 {
6005 \exp_after:wN __str_range:w
6006 __int_value:w __str_count:n {#1} \exp_after:wN ;
6007 __int_value:w __int_eval:w #2 - \c_one \exp_after:wN ;
6008 __int_value:w __int_eval:w #3 ;

423

6009 #1 \q_stop
6010 }
6011 \cs_new:Npn __str_range:w #1; #2; #3;
6012 {
6013 \exp_args:Nf __str_range:nnw
6014 { __str_range_normalize:nn {#2} {#1} }
6015 { __str_range_normalize:nn {#3} {#1} }
6016 }
6017 \cs_new:Npn __str_range:nnw #1#2
6018 {
6019 \exp_after:wN __str_collect_delimit_by_q_stop:w
6020 __int_value:w __int_eval:w #2 - #1 \exp_after:wN ;
6021 \exp:w __str_skip_exp_end:w #1 ;
6022 }

(End definition for \str_range:Nnn , \str_range:nnn , and \str_range_ignore_spaces:nnn. These func-
tions are documented on page 114.)

__str_range_normalize:nn This function converts an 〈index〉 argument into an explicit position in the string (a result
of 0 denoting “out of bounds”). Expects two explicit integer arguments: the 〈index〉 #1
and the string count #2. If #1 is negative, replace it by #1 + #2 + 1, then limit to the
range [0, #2].

6023 \cs_new:Npn __str_range_normalize:nn #1#2
6024 {
6025 \int_eval:n
6026 {
6027 \if_int_compare:w #1 < \c_zero
6028 \if_int_compare:w #1 < -#2 \exp_stop_f:
6029 \c_zero
6030 \else:
6031 #1 + #2 + \c_one
6032 \fi:
6033 \else:
6034 \if_int_compare:w #1 < #2 \exp_stop_f:
6035 #1
6036 \else:
6037 #2
6038 \fi:
6039 \fi:
6040 }
6041 }

(End definition for __str_range_normalize:nn.)

__str_collect_delimit_by_q_stop:w
__str_collect_loop:wn

__str_collect_loop:wnNNNNNNN
__str_collect_end:wn

__str_collect_end:nnnnnnnnw

Collects max(#1,0) characters, and removes everything else until \q_stop. This is some-
what similar to __str_skip_exp_end:w, but accepts integer expression arguments. This
time we can only grab 7 characters at a time. At the end, we use an \if_case:w trick
again, so that the 8 first arguments of __str_collect_end:nnnnnnnnw are some \or:,
followed by an \fi:, followed by #1 characters from the input stream. Simply leaving
this in the input stream will close the conditional properly and the \or: disappear.

424

6042 \cs_new:Npn __str_collect_delimit_by_q_stop:w #1;
6043 { __str_collect_loop:wn #1 ; { } }
6044 \cs_new:Npn __str_collect_loop:wn #1 ;
6045 {
6046 \if_int_compare:w #1 > \c_seven
6047 \exp_after:wN __str_collect_loop:wnNNNNNNN
6048 \else:
6049 \exp_after:wN __str_collect_end:wn
6050 \fi:
6051 #1 ;
6052 }
6053 \cs_new:Npn __str_collect_loop:wnNNNNNNN #1; #2 #3#4#5#6#7#8#9
6054 {
6055 \exp_after:wN __str_collect_loop:wn
6056 __int_value:w __int_eval:w #1 - \c_seven ;
6057 { #2 #3#4#5#6#7#8#9 }
6058 }
6059 \cs_new:Npn __str_collect_end:wn #1 ;
6060 {
6061 \exp_after:wN __str_collect_end:nnnnnnnnw
6062 \if_case:w \if_int_compare:w #1 > \c_zero #1 \else: 0 \fi: \exp_stop_f:
6063 \or: \or: \or: \or: \or: \or: \fi:
6064 }
6065 \cs_new:Npn __str_collect_end:nnnnnnnnw #1#2#3#4#5#6#7#8 #9 \q_stop
6066 { #1#2#3#4#5#6#7#8 }

(End definition for __str_collect_delimit_by_q_stop:w.)

13.4 Counting characters
\str_count_spaces:N
\str_count_spaces:c
\str_count_spaces:n

__str_count_spaces_loop:w

To speed up this function, we grab and discard 9 space-delimited arguments in each
iteration of the loop. The loop stops when the last argument is one of the trailing
X〈number〉, and that 〈number〉 is added to the sum of 9 that precedes, to adjust the
result.

6067 \cs_new_nopar:Npn \str_count_spaces:N
6068 { \exp_args:No \str_count_spaces:n }
6069 \cs_generate_variant:Nn \str_count_spaces:N { c }
6070 \cs_new:Npn \str_count_spaces:n #1
6071 {
6072 \int_eval:n
6073 {
6074 \exp_after:wN __str_count_spaces_loop:w
6075 \tl_to_str:n {#1} ~
6076 X 7 ~ X 6 ~ X 5 ~ X 4 ~ X 3 ~ X 2 ~ X 1 ~ X 0 ~ X -1 ~
6077 \q_stop
6078 }
6079 }
6080 \cs_new:Npn __str_count_spaces_loop:w #1~#2~#3~#4~#5~#6~#7~#8~#9~
6081 {

425

6082 \if_meaning:w X #9
6083 \use_i_delimit_by_q_stop:nw
6084 \fi:
6085 \c_nine + __str_count_spaces_loop:w
6086 }

(End definition for \str_count_spaces:N , \str_count_spaces:c , and \str_count_spaces:n. These
functions are documented on page 113.)

\str_count:N
\str_count:c
\str_count:n

\str_count_ignore_spaces:n
__str_count:n

__str_count_aux:n
__str_count_loop:NNNNNNNNN

To count characters in a string we could first escape all spaces using __str_to_other:n,
then pass the result to \tl_count:n. However, the escaping step would be quadratic in
the number of characters in the string, and we can do better. Namely, sum the number
of spaces (\str_count_spaces:n) and the result of \tl_count:n, which ignores spaces.
Since strings tend to be longer than token lists, we use specialized functions to count
characters ignoring spaces. Namely, loop, grabbing 9 non-space characters at each step,
and end as soon as we reach one of the 9 trailing items. The internal function __-
str_count:n, used in \str_item:nn and \str_range:nnn, is similar to \str_count_-
ignore_spaces:n but expects its argument to already be a string or a string with spaces
escaped.

6087 \cs_new_nopar:Npn \str_count:N { \exp_args:No \str_count:n }
6088 \cs_generate_variant:Nn \str_count:N { c }
6089 \cs_new:Npn \str_count:n #1
6090 {
6091 __str_count_aux:n
6092 {
6093 \str_count_spaces:n {#1}
6094 + \exp_after:wN __str_count_loop:NNNNNNNNN \tl_to_str:n {#1}
6095 }
6096 }
6097 \cs_new:Npn __str_count:n #1
6098 {
6099 __str_count_aux:n
6100 { __str_count_loop:NNNNNNNNN #1 }
6101 }
6102 \cs_new:Npn \str_count_ignore_spaces:n #1
6103 {
6104 __str_count_aux:n
6105 { \exp_after:wN __str_count_loop:NNNNNNNNN \tl_to_str:n {#1} }
6106 }
6107 \cs_new:Npn __str_count_aux:n #1
6108 {
6109 \int_eval:n
6110 {
6111 #1
6112 { X \c_eight } { X \c_seven } { X \c_six }
6113 { X \c_five } { X \c_four } { X \c_three }
6114 { X \c_two } { X \c_one } { X \c_zero }
6115 \q_stop
6116 }

426

6117 }
6118 \cs_new:Npn __str_count_loop:NNNNNNNNN #1#2#3#4#5#6#7#8#9
6119 {
6120 \if_meaning:w X #9
6121 \exp_after:wN \use_none_delimit_by_q_stop:w
6122 \fi:
6123 \c_nine + __str_count_loop:NNNNNNNNN
6124 }

(End definition for \str_count:N and others. These functions are documented on page 113.)

13.5 The first character in a string
\str_head:N
\str_head:c
\str_head:n

\str_head_ignore_spaces:n
__str_head:w

The _ignore_spaces variant applies \tl_to_str:n then grabs the first item, thus skip-
ping spaces. As usual, \str_head:N expands its argument and hands it to \str_head:n.
To circumvent the fact that TEX skips spaces when grabbing undelimited macro pa-
rameters, __str_head:w takes an argument delimited by a space. If #1 starts with a
non-space character, \use_i_delimit_by_q_stop:nw leaves that in the input stream.
On the other hand, if #1 starts with a space, the __str_head:w takes an empty argu-
ment, and the single (initially braced) space in the definition of __str_head:w makes
its way to the output. Finally, for an empty argument, the (braced) empty brace group
in the definition of \str_head:n gives an empty result after passing through \use_i_-
delimit_by_q_stop:nw.

6125 \cs_new_nopar:Npn \str_head:N { \exp_args:No \str_head:n }
6126 \cs_generate_variant:Nn \str_head:N { c }
6127 \cs_set:Npn \str_head:n #1
6128 {
6129 \exp_after:wN __str_head:w
6130 \tl_to_str:n {#1}
6131 { { } } ~ \q_stop
6132 }
6133 \cs_set:Npn __str_head:w #1 ~ %
6134 { \use_i_delimit_by_q_stop:nw #1 { ~ } }
6135 \cs_new:Npn \str_head_ignore_spaces:n #1
6136 {
6137 \exp_after:wN \use_i_delimit_by_q_stop:nw
6138 \tl_to_str:n {#1} { } \q_stop
6139 }

(End definition for \str_head:N and others. These functions are documented on page 113.)

\str_tail:N
\str_tail:c
\str_tail:n

\str_tail_ignore_spaces:n
__str_tail_auxi:w
__str_tail_auxii:w

Getting the tail is a little bit more convoluted than the head of a string. We hit the front
of the string with \reverse_if:N \if_charcode:w \scan_stop:. This removes the first
character, and necessarily makes the test true, since the character cannot match \scan_-
stop:. The auxiliary function then inserts the required \fi: to close the conditional, and
leaves the tail of the string in the input stream. The details are such that an empty string
has an empty tail (this requires in particular that the end-marker X be unexpandable and
not a control sequence). The _ignore_spaces is rather simpler: after converting the
input to a string, __str_tail_auxii:w removes one undelimited argument and leaves

427

everything else until an end-marker \q_mark. One can check that an empty (or blank)
string yields an empty tail.

6140 \cs_new_nopar:Npn \str_tail:N { \exp_args:No \str_tail:n }
6141 \cs_generate_variant:Nn \str_tail:N { c }
6142 \cs_set:Npn \str_tail:n #1
6143 {
6144 \exp_after:wN __str_tail_auxi:w
6145 \reverse_if:N \if_charcode:w
6146 \scan_stop: \tl_to_str:n {#1} X X \q_stop
6147 }
6148 \cs_set:Npn __str_tail_auxi:w #1 X #2 \q_stop { \fi: #1 }
6149 \cs_new:Npn \str_tail_ignore_spaces:n #1
6150 {
6151 \exp_after:wN __str_tail_auxii:w
6152 \tl_to_str:n {#1} \q_mark \q_mark \q_stop
6153 }
6154 \cs_new:Npn __str_tail_auxii:w #1 #2 \q_mark #3 \q_stop { #2 }

(End definition for \str_tail:N and others. These functions are documented on page 113.)

13.6 String manipulation
\str_fold_case:n
\str_fold_case:V
\str_lower_case:n
\str_lower_case:f
\str_upper_case:n
\str_upper_case:f

__str_change_case:nn
__str_change_case_aux:nn

__str_change_case_result:n
__str_change_case_output:nw
__str_change_case_output:fw

__str_change_case_end:nw
__str_change_case_loop:nw
__str_change_case_space:n
__str_change_case_char:nN

__str_lookup_lower:N
__str_lookup_upper:N
__str_lookup_fold:N

Case changing for programmatic reasons is done by first detokenizing input then doing
a simple loop that only has to worry about spaces and everything else. The output is
detokenized to allow data sharing with text-based case changing.

6155 \cs_new:Npn \str_fold_case:n #1 { __str_change_case:nn {#1} { fold } }
6156 \cs_new:Npn \str_lower_case:n #1 { __str_change_case:nn {#1} { lower } }
6157 \cs_new:Npn \str_upper_case:n #1 { __str_change_case:nn {#1} { upper } }
6158 \cs_generate_variant:Nn \str_fold_case:n { V }
6159 \cs_generate_variant:Nn \str_lower_case:n { f }
6160 \cs_generate_variant:Nn \str_upper_case:n { f }
6161 \cs_new:Npn __str_change_case:nn #1
6162 {
6163 \exp_after:wN __str_change_case_aux:nn \exp_after:wN
6164 { \tl_to_str:n {#1} }
6165 }
6166 \cs_new:Npn __str_change_case_aux:nn #1#2
6167 {
6168 __str_change_case_loop:nw {#2} #1 \q_recursion_tail \q_recursion_stop
6169 __str_change_case_result:n { }
6170 }
6171 \cs_new:Npn __str_change_case_output:nw #1#2 __str_change_case_result:n #3
6172 { #2 __str_change_case_result:n { #3 #1 } }
6173 \cs_generate_variant:Nn __str_change_case_output:nw { f }
6174 \cs_new:Npn __str_change_case_end:wn #1 __str_change_case_result:n #2 { #2 }
6175 \cs_new:Npn __str_change_case_loop:nw #1#2 \q_recursion_stop
6176 {
6177 \tl_if_head_is_space:nTF {#2}
6178 { __str_change_case_space:n }

428

6179 { __str_change_case_char:nN }
6180 {#1} #2 \q_recursion_stop
6181 }
6182 \use:x
6183 { \cs_new:Npn \exp_not:N __str_change_case_space:n ##1 \c_space_tl }
6184 {
6185 __str_change_case_output:nw { ~ }
6186 __str_change_case_loop:nw {#1}
6187 }
6188 \cs_new:Npn __str_change_case_char:nN #1#2
6189 {
6190 \quark_if_recursion_tail_stop_do:Nn #2
6191 { __str_change_case_end:wn }
6192 \cs_if_exist:cTF { c__unicode_ #1 _ #2 _tl }
6193 {
6194 __str_change_case_output:fw
6195 { \tl_to_str:c { c__unicode_ #1 _ #2 _tl } }
6196 }
6197 { __str_change_case_char_aux:nN {#1} #2 }
6198 __str_change_case_loop:nw {#1}
6199 }

For Unicode engines there’s a look up to see if the current character has a valid one-
to-one case change mapping. That’s not needed for 8-bit engines: as they don’t have
\utex_char:D all of the changes they can make are hard-coded and so already picked up
above.

6200 \cs_if_exist:NTF \utex_char:D
6201 {
6202 \cs_new:Npn __str_change_case_char_aux:nN #1#2
6203 {
6204 \int_compare:nNnTF { \use:c { __str_lookup_ #1 :N } #2 } = { 0 }
6205 { __str_change_case_output:nw {#2} }
6206 {
6207 __str_change_case_output:fw
6208 { \utex_char:D \use:c { __str_lookup_ #1 :N } #2 ~ }
6209 }
6210 }
6211 \cs_set_protected:Npn __str_lookup_lower:N #1 { \tex_lccode:D ‘#1 }
6212 \cs_set_protected:Npn __str_lookup_upper:N #1 { \tex_uccode:D ‘#1 }
6213 \cs_set_eq:NN __str_lookup_fold:N __str_lookup_lower:N
6214 }
6215 {
6216 \cs_new:Npn __str_change_case_char_aux:nN #1#2
6217 { __str_change_case_output:nw {#2} }
6218 }

(End definition for \str_fold_case:n and others. These functions are documented on page 116.)

\c_ampersand_str
\c_atsign_str

\c_backslash_str
\c_left_brace_str

\c_right_brace_str
\c_circumflex_str

\c_colon_str
\c_dollar_str

\c_hash_str
\c_percent_str
\c_tilde_str

\c_underscore_str

For all of those strings, use \cs_to_str:N to get characters with the correct category
code without worries

429

6219 \str_const:Nx \c_ampersand_str { \cs_to_str:N \& }
6220 \str_const:Nx \c_atsign_str { \cs_to_str:N \@ }
6221 \str_const:Nx \c_backslash_str { \cs_to_str:N \\ }
6222 \str_const:Nx \c_left_brace_str { \cs_to_str:N \{ }
6223 \str_const:Nx \c_right_brace_str { \cs_to_str:N \} }
6224 \str_const:Nx \c_circumflex_str { \cs_to_str:N \^ }
6225 \str_const:Nx \c_colon_str { \cs_to_str:N \: }
6226 \str_const:Nx \c_dollar_str { \cs_to_str:N \$ }
6227 \str_const:Nx \c_hash_str { \cs_to_str:N \# }
6228 \str_const:Nx \c_percent_str { \cs_to_str:N \% }
6229 \str_const:Nx \c_tilde_str { \cs_to_str:N \~ }
6230 \str_const:Nx \c_underscore_str { \cs_to_str:N _ }

(End definition for \c_ampersand_str and others. These variables are documented on page 117.)

\l_tmpa_str
\l_tmpb_str
\g_tmpa_str
\g_tmpb_str

Scratch strings.
6231 \str_new:N \l_tmpa_str
6232 \str_new:N \l_tmpb_str
6233 \str_new:N \g_tmpa_str
6234 \str_new:N \g_tmpb_str

(End definition for \l_tmpa_str and others. These variables are documented on page 117.)

13.7 Viewing strings
\str_show:n
\str_show:N
\str_show:c

Displays a string on the terminal.
6235 \cs_new_eq:NN \str_show:n \tl_show:n
6236 \cs_new_eq:NN \str_show:N \tl_show:N
6237 \cs_generate_variant:Nn \str_show:N { c }

(End definition for \str_show:n , \str_show:N , and \str_show:c. These functions are documented on
page 116.)

13.8 Unicode data for case changing
6238 〈@@=unicode〉

Case changing both for strings and “text” requires data from the Unicode Consor-
tium. Some of this is build in to the format (as \lccode and \uccode values) but this
covers only the simple one-to-one situations and does not fully handle for example case
folding.

The data required for cross-module manipulations is loaded here: currently this
means for str and tl functions. As such, the prefix used is not str but rather unicode.
For performance (as the entire data set must be read during each run) and as this code
comes somewhat early in the load process, there is quite a bit of low-level code here.

As only the data needs to remain at the end of this process, everything is set up
inside a group.

6239 \group_begin:

430

A read stream is needed. The I/O module is not yet in place and we do not want to use
up a stream. We therefore use a known free one in format mode or look for the next free
one in package mode (covers plain, LATEX2ε and ConTEXt MkII and MkIV).

6240 〈*initex〉
6241 \tex_chardef:D \g__unicode_data_ior \c_zero
6242 〈/initex〉
6243 〈*package〉
6244 \tex_chardef:D \g__unicode_data_ior
6245 \etex_numexpr:D
6246 \cs_if_exist:NTF \lastallocatedread
6247 { \lastallocatedread }
6248 {
6249 \cs_if_exist:NTF \c_syst_last_allocated_read
6250 { \c_syst_last_allocated_read }
6251 { \tex_count:D 16 ~ }
6252 }
6253 + 1
6254 \scan_stop:
6255 〈/package〉

Set up to read each file. As they use C-style comments, there is a need to deal with #. At
the same time, spaces are important so they need to be picked up as they are important.
Beyond that, the current category code scheme works fine. With no I/O loop available,
hard-code one that will work quickly.

6256 \cs_set_protected:Npn __unicode_map_inline:n #1
6257 {
6258 \group_begin:
6259 \tex_catcode:D ‘\# = 12 \scan_stop:
6260 \tex_catcode:D ‘\ = 10 \scan_stop:
6261 \tex_openin:D \g__unicode_data_ior = #1 \scan_stop:
6262 \cs_if_exist:NT \utex_char:D
6263 { __unicode_map_loop: }
6264 \tex_closein:D \g__unicode_data_ior
6265 \group_end:
6266 }
6267 \cs_set_protected:Npn __unicode_map_loop:
6268 {
6269 \tex_ifeof:D \g__unicode_data_ior
6270 \exp_after:wN \use_none:n
6271 \else:
6272 \exp_after:wN \use:n
6273 \fi:
6274 {
6275 \tex_read:D \g__unicode_data_ior to \l__unicode_tmp_tl
6276 \if_meaning:w \c_empty_tl \l__unicode_tmp_tl
6277 \else:
6278 \exp_after:wN __unicode_parse:w \l__unicode_tmp_tl \q_stop
6279 \fi:
6280 __unicode_map_loop:
6281 }

431

6282 }
6283 \cs_set_nopar:Npn \l__unicode_tmp_tl { }

The lead-off parser for each line is common for all of the files. If the line starts with a #
it’s a comment. There’s one special comment line to look out for in SpecialCasing.txt
as we want to ignore everything after it. As this line does not appear in any other sources
and the test is quite quick (there are relatively few comment lines), it can be present in
all of the passes.

6284 \cs_set_protected:Npn __unicode_parse:w #1#2 \q_stop
6285 {
6286 \reverse_if:N \if:w \c_hash_str #1
6287 __unicode_parse_auxi:w #1#2 \q_stop
6288 \else:
6289 \if_int_compare:w __str_if_eq_x:nn
6290 { \exp_not:n {#2} } { ~Conditional~Mappings~ } = \c_zero
6291 \cs_set_protected:Npn __unicode_parse:w ##1 \q_stop { }
6292 \fi:
6293 \fi:
6294 }

Storing each exception is always done in the same way: create a constant token list which
expands to exactly the mapping. These will have the category codes “now” (so should
be letters) but will be detokenized for string use.

6295 \cs_set_protected:Npn __unicode_store:nnnnn #1#2#3#4#5
6296 {
6297 \tl_const:cx { c__unicode_ #2 _ \utex_char:D "#1 _tl }
6298 {
6299 \utex_char:D "#3 ~
6300 \utex_char:D "#4 ~
6301 \tl_if_blank:nF {#5}
6302 { \utex_char:D "#5 }
6303 }
6304 }

Parse the main Unicode data file for title case exceptions (the one-to-one lower and upper
case mappings it contains will all be covered by the TEX data).

6305 \cs_set_protected:Npn __unicode_parse_auxi:w
6306 #1 ; #2 ; #3 ; #4 ; #5 ; #6 ; #7 ; #8 ; #9 ;
6307 { __unicode_parse_auxii:w #1 ; }
6308 \cs_set_protected:Npn __unicode_parse_auxii:w
6309 #1 ; #2 ; #3 ; #4 ; #5 ; #6 ; #7 \q_stop
6310 {
6311 \tl_if_blank:nF {#7}
6312 {
6313 \if_int_compare:w __str_if_eq_x:nn { #5 ~ } {#7} = \c_zero
6314 \else:
6315 \tl_const:cx
6316 { c__unicode_title_ \utex_char:D "#1 _tl }
6317 { \utex_char:D "#7 }
6318 \fi:
6319 }

432

6320 }
6321 __unicode_map_inline:n { UnicodeData.txt }

The set up for case folding is in two parts. For the basic (core) mappings, folding is
the same as lower casing in most positions so only store the differences. For the more
complex foldings, always store the result, splitting up the two or three code points in the
input as required.

6322 \cs_set_protected:Npn __unicode_parse_auxi:w #1 ;~ #2 ;~ #3 ; #4 \q_stop
6323 {
6324 \if_int_compare:w __str_if_eq_x:nn {#2} { C } = \c_zero
6325 \if_int_compare:w \tex_lccode:D "#1 = "#3 \scan_stop:
6326 \else:
6327 \tl_const:cx
6328 { c__unicode_fold_ \utex_char:D "#1 _tl }
6329 { \utex_char:D "#3 ~ }
6330 \fi:
6331 \else:
6332 \if_int_compare:w __str_if_eq_x:nn {#2} { F } = \c_zero
6333 __unicode_parse_auxii:w #1 ~ #3 ~ \q_stop
6334 \fi:
6335 \fi:
6336 }
6337 \cs_set_protected:Npn __unicode_parse_auxii:w #1 ~ #2 ~ #3 ~ #4 \q_stop
6338 { __unicode_store:nnnnn {#1} { fold } {#2} {#3} {#4} }
6339 __unicode_map_inline:n { CaseFolding.txt }

For upper and lower casing special situations, there is a bit more to do as we also have
title casing to consider.

6340 \cs_set_protected:Npn __unicode_parse_auxi:w #1 ;~ #2 ;~ #3 ;~ #4 ; #5 \q_stop
6341 {
6342 \use:n { __unicode_parse_auxii:w #1 ~ lower ~ #2 ~ } ~ \q_stop
6343 \use:n { __unicode_parse_auxii:w #1 ~ upper ~ #4 ~ } ~ \q_stop
6344 \if_int_compare:w __str_if_eq_x:nn {#3} {#4} = \c_zero
6345 \else:
6346 \use:n { __unicode_parse_auxii:w #1 ~ title ~ #3 ~ } ~ \q_stop
6347 \fi:
6348 }
6349 \cs_set_protected:Npn __unicode_parse_auxii:w #1 ~ #2 ~ #3 ~ #4 ~ #5 \q_stop
6350 {
6351 \tl_if_empty:nF {#4}
6352 { __unicode_store:nnnnn {#1} {#2} {#3} {#4} {#5} }
6353 }
6354 __unicode_map_inline:n { SpecialCasing.txt }

For the 8-bit engines, the above does nothing but there is some set up needed. There is
no expandable character generator primitive so some alternative is needed. As we’ve not
used up hash space for the above, we can go for the fast approach here of one name per
letter. Keeping folding and lower casing separate makes the use later a bit easier.

6355 \cs_if_exist:NF \utex_char:D
6356 {
6357 \cs_set_protected:Npn __unicode_tmp:NN #1#2

433

6358 {
6359 \if_meaning:w \q_recursion_tail #2
6360 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
6361 \fi:
6362 \tl_const:cn { c__unicode_fold_ #1 _tl } {#2}
6363 \tl_const:cn { c__unicode_lower_ #1 _tl } {#2}
6364 \tl_const:cn { c__unicode_upper_ #2 _tl } {#1}
6365 __unicode_tmp:NN
6366 }
6367 __unicode_tmp:NN
6368 AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz
6369 ? \q_recursion_tail \q_recursion_stop
6370 }

All done: tidy up.
6371 \group_end:

6372 〈/initex | package〉

14 l3seq implementation
The following test files are used for this code: m3seq002,m3seq003.

6373 〈*initex | package〉

6374 〈@@=seq〉

A sequence is a control sequence whose top-level expansion is of the form “\s__-
seq __seq_item:n {〈item1〉} . . . __seq_item:n {〈itemn〉}”, with a leading scan mark
followed by n items of the same form. An earlier implementation used the structure
“\seq_elt:w 〈item1〉 \seq_elt_end: . . . \seq_elt:w 〈itemn〉 \seq_elt_end:”. This al-
lowed rapid searching using a delimited function, but was not suitable for items containing
{, } and # tokens, and also lead to the loss of surrounding braces around items.

\s__seq The variable is defined in the l3quark module, loaded later.

(End definition for \s__seq. This variable is documented on page 130.)

__seq_item:n The delimiter is always defined, but when used incorrectly simply removes its argument
and hits an undefined control sequence to raise an error.

6375 \cs_new:Npn __seq_item:n
6376 {
6377 __msg_kernel_expandable_error:nn { kernel } { misused-sequence }
6378 \use_none:n
6379 }

(End definition for __seq_item:n.)

\l__seq_internal_a_tl
\l__seq_internal_b_tl

Scratch space for various internal uses.
6380 \tl_new:N \l__seq_internal_a_tl
6381 \tl_new:N \l__seq_internal_b_tl

434

(End definition for \l__seq_internal_a_tl and \l__seq_internal_b_tl. These variables are docu-
mented on page ??.)

__seq_tmp:w Scratch function for internal use.
6382 \cs_new_eq:NN __seq_tmp:w ?

(End definition for __seq_tmp:w.)

\c_empty_seq A sequence with no item, following the structure mentioned above.
6383 \tl_const:Nn \c_empty_seq { \s__seq }

(End definition for \c_empty_seq. This variable is documented on page 129.)

14.1 Allocation and initialisation
\seq_new:N
\seq_new:c

Sequences are initialized to \c_empty_seq.
6384 \cs_new_protected:Npn \seq_new:N #1
6385 {
6386 __chk_if_free_cs:N #1
6387 \cs_gset_eq:NN #1 \c_empty_seq
6388 }
6389 \cs_generate_variant:Nn \seq_new:N { c }

(End definition for \seq_new:N and \seq_new:c. These functions are documented on page 119.)

\seq_clear:N
\seq_clear:c
\seq_gclear:N
\seq_gclear:c

Clearing a sequence is similar to setting it equal to the empty one.
6390 \cs_new_protected:Npn \seq_clear:N #1
6391 { \seq_set_eq:NN #1 \c_empty_seq }
6392 \cs_generate_variant:Nn \seq_clear:N { c }
6393 \cs_new_protected:Npn \seq_gclear:N #1
6394 { \seq_gset_eq:NN #1 \c_empty_seq }
6395 \cs_generate_variant:Nn \seq_gclear:N { c }

(End definition for \seq_clear:N and \seq_clear:c. These functions are documented on page 119.)

\seq_clear_new:N
\seq_clear_new:c
\seq_gclear_new:N
\seq_gclear_new:c

Once again we copy code from the token list functions.
6396 \cs_new_protected:Npn \seq_clear_new:N #1
6397 { \seq_if_exist:NTF #1 { \seq_clear:N #1 } { \seq_new:N #1 } }
6398 \cs_generate_variant:Nn \seq_clear_new:N { c }
6399 \cs_new_protected:Npn \seq_gclear_new:N #1
6400 { \seq_if_exist:NTF #1 { \seq_gclear:N #1 } { \seq_new:N #1 } }
6401 \cs_generate_variant:Nn \seq_gclear_new:N { c }

(End definition for \seq_clear_new:N and \seq_clear_new:c. These functions are documented on page
119.)

435

\seq_set_eq:NN
\seq_set_eq:cN
\seq_set_eq:Nc
\seq_set_eq:cc
\seq_gset_eq:NN
\seq_gset_eq:cN
\seq_gset_eq:Nc
\seq_gset_eq:cc

Copying a sequence is the same as copying the underlying token list.
6402 \cs_new_eq:NN \seq_set_eq:NN \tl_set_eq:NN
6403 \cs_new_eq:NN \seq_set_eq:Nc \tl_set_eq:Nc
6404 \cs_new_eq:NN \seq_set_eq:cN \tl_set_eq:cN
6405 \cs_new_eq:NN \seq_set_eq:cc \tl_set_eq:cc
6406 \cs_new_eq:NN \seq_gset_eq:NN \tl_gset_eq:NN
6407 \cs_new_eq:NN \seq_gset_eq:Nc \tl_gset_eq:Nc
6408 \cs_new_eq:NN \seq_gset_eq:cN \tl_gset_eq:cN
6409 \cs_new_eq:NN \seq_gset_eq:cc \tl_gset_eq:cc

(End definition for \seq_set_eq:NN and others. These functions are documented on page 119.)

\seq_set_from_clist:NN
\seq_set_from_clist:cN
\seq_set_from_clist:Nc
\seq_set_from_clist:cc
\seq_set_from_clist:Nn
\seq_set_from_clist:cn
\seq_gset_from_clist:NN
\seq_gset_from_clist:cN
\seq_gset_from_clist:Nc
\seq_gset_from_clist:cc
\seq_gset_from_clist:Nn
\seq_gset_from_clist:cn

Setting a sequence from a comma-separated list is done using a simple mapping.
6410 \cs_new_protected:Npn \seq_set_from_clist:NN #1#2
6411 {
6412 \tl_set:Nx #1
6413 { \s__seq \clist_map_function:NN #2 __seq_wrap_item:n }
6414 }
6415 \cs_new_protected:Npn \seq_set_from_clist:Nn #1#2
6416 {
6417 \tl_set:Nx #1
6418 { \s__seq \clist_map_function:nN {#2} __seq_wrap_item:n }
6419 }
6420 \cs_new_protected:Npn \seq_gset_from_clist:NN #1#2
6421 {
6422 \tl_gset:Nx #1
6423 { \s__seq \clist_map_function:NN #2 __seq_wrap_item:n }
6424 }
6425 \cs_new_protected:Npn \seq_gset_from_clist:Nn #1#2
6426 {
6427 \tl_gset:Nx #1
6428 { \s__seq \clist_map_function:nN {#2} __seq_wrap_item:n }
6429 }
6430 \cs_generate_variant:Nn \seq_set_from_clist:NN { Nc }
6431 \cs_generate_variant:Nn \seq_set_from_clist:NN { c , cc }
6432 \cs_generate_variant:Nn \seq_set_from_clist:Nn { c }
6433 \cs_generate_variant:Nn \seq_gset_from_clist:NN { Nc }
6434 \cs_generate_variant:Nn \seq_gset_from_clist:NN { c , cc }
6435 \cs_generate_variant:Nn \seq_gset_from_clist:Nn { c }

(End definition for \seq_set_from_clist:NN and others. These functions are documented on page 119.)

\seq_set_split:Nnn
\seq_set_split:NnV
\seq_gset_split:Nnn
\seq_gset_split:NnV

__seq_set_split:NNnn
__seq_set_split_auxi:w
__seq_set_split_auxii:w

__seq_set_split_end:

When the separator is empty, everything is very simple, just map __seq_wrap_item:n
through the items of the last argument. For non-trivial separators, the goal is to split
a given token list at the marker, strip spaces from each item, and remove one set of
outer braces if after removing leading and trailing spaces the item is enclosed within
braces. After \tl_replace_all:Nnn, the token list \l__seq_internal_a_tl is a repe-
tition of the pattern __seq_set_split_auxi:w \prg_do_nothing: 〈item with spaces〉
__seq_set_split_end:. Then, x-expansion causes __seq_set_split_auxi:w to trim

436

spaces, and leaves its result as __seq_set_split_auxii:w 〈trimmed item〉 __seq_-
set_split_end:. This is then converted to the l3seq internal structure by another x-
expansion. In the first step, we insert \prg_do_nothing: to avoid losing braces too early:
that would cause space trimming to act within those lost braces. The second step is solely
there to strip braces which are outermost after space trimming.

6436 \cs_new_protected_nopar:Npn \seq_set_split:Nnn
6437 { __seq_set_split:NNnn \tl_set:Nx }
6438 \cs_new_protected_nopar:Npn \seq_gset_split:Nnn
6439 { __seq_set_split:NNnn \tl_gset:Nx }
6440 \cs_new_protected:Npn __seq_set_split:NNnn #1#2#3#4
6441 {
6442 \tl_if_empty:nTF {#3}
6443 {
6444 \tl_set:Nn \l__seq_internal_a_tl
6445 { \tl_map_function:nN {#4} __seq_wrap_item:n }
6446 }
6447 {
6448 \tl_set:Nn \l__seq_internal_a_tl
6449 {
6450 __seq_set_split_auxi:w \prg_do_nothing:
6451 #4
6452 __seq_set_split_end:
6453 }
6454 \tl_replace_all:Nnn \l__seq_internal_a_tl { #3 }
6455 {
6456 __seq_set_split_end:
6457 __seq_set_split_auxi:w \prg_do_nothing:
6458 }
6459 \tl_set:Nx \l__seq_internal_a_tl { \l__seq_internal_a_tl }
6460 }
6461 #1 #2 { \s__seq \l__seq_internal_a_tl }
6462 }
6463 \cs_new:Npn __seq_set_split_auxi:w #1 __seq_set_split_end:
6464 {
6465 \exp_not:N __seq_set_split_auxii:w
6466 \exp_args:No \tl_trim_spaces:n {#1}
6467 \exp_not:N __seq_set_split_end:
6468 }
6469 \cs_new:Npn __seq_set_split_auxii:w #1 __seq_set_split_end:
6470 { __seq_wrap_item:n {#1} }
6471 \cs_generate_variant:Nn \seq_set_split:Nnn { NnV }
6472 \cs_generate_variant:Nn \seq_gset_split:Nnn { NnV }

(End definition for \seq_set_split:Nnn and others. These functions are documented on page 120.)

\seq_concat:NNN
\seq_concat:ccc
\seq_gconcat:NNN
\seq_gconcat:ccc

When concatenating sequences, one must remove the leading \s__seq of the second
sequence. The result starts with \s__seq (of the first sequence), which stops f-expansion.

6473 \cs_new_protected:Npn \seq_concat:NNN #1#2#3
6474 { \tl_set:Nf #1 { \exp_after:wN \use_i:nn \exp_after:wN #2 #3 } }

437

6475 \cs_new_protected:Npn \seq_gconcat:NNN #1#2#3
6476 { \tl_gset:Nf #1 { \exp_after:wN \use_i:nn \exp_after:wN #2 #3 } }
6477 \cs_generate_variant:Nn \seq_concat:NNN { ccc }
6478 \cs_generate_variant:Nn \seq_gconcat:NNN { ccc }

(End definition for \seq_concat:NNN and \seq_concat:ccc. These functions are documented on page
120.)

\seq_if_exist_p:N
\seq_if_exist_p:c
\seq_if_exist:NTF
\seq_if_exist:cTF

Copies of the cs functions defined in l3basics.
6479 \prg_new_eq_conditional:NNn \seq_if_exist:N \cs_if_exist:N
6480 { TF , T , F , p }
6481 \prg_new_eq_conditional:NNn \seq_if_exist:c \cs_if_exist:c
6482 { TF , T , F , p }

(End definition for \seq_if_exist:NTF and \seq_if_exist:cTF. These functions are documented on
page 120.)

14.2 Appending data to either end
\seq_put_left:Nn
\seq_put_left:NV
\seq_put_left:Nv
\seq_put_left:No
\seq_put_left:Nx
\seq_put_left:cn
\seq_put_left:cV
\seq_put_left:cv
\seq_put_left:co
\seq_put_left:cx
\seq_gput_left:Nn
\seq_gput_left:NV
\seq_gput_left:Nv
\seq_gput_left:No
\seq_gput_left:Nx
\seq_gput_left:cn
\seq_gput_left:cV
\seq_gput_left:cv
\seq_gput_left:co
\seq_gput_left:cx

__seq_put_left_aux:w

When adding to the left of a sequence, remove \s__seq. This is done by __seq_put_-
left_aux:w, which also stops f-expansion.

6483 \cs_new_protected:Npn \seq_put_left:Nn #1#2
6484 {
6485 \tl_set:Nx #1
6486 {
6487 \exp_not:n { \s__seq __seq_item:n {#2} }
6488 \exp_not:f { \exp_after:wN __seq_put_left_aux:w #1 }
6489 }
6490 }
6491 \cs_new_protected:Npn \seq_gput_left:Nn #1#2
6492 {
6493 \tl_gset:Nx #1
6494 {
6495 \exp_not:n { \s__seq __seq_item:n {#2} }
6496 \exp_not:f { \exp_after:wN __seq_put_left_aux:w #1 }
6497 }
6498 }
6499 \cs_new:Npn __seq_put_left_aux:w \s__seq { \exp_stop_f: }
6500 \cs_generate_variant:Nn \seq_put_left:Nn { NV , Nv , No , Nx }
6501 \cs_generate_variant:Nn \seq_put_left:Nn { c , cV , cv , co , cx }
6502 \cs_generate_variant:Nn \seq_gput_left:Nn { NV , Nv , No , Nx }
6503 \cs_generate_variant:Nn \seq_gput_left:Nn { c , cV , cv , co , cx }

(End definition for \seq_put_left:Nn and others. These functions are documented on page 120.)

\seq_put_right:Nn
\seq_put_right:NV
\seq_put_right:Nv
\seq_put_right:No
\seq_put_right:Nx
\seq_put_right:cn
\seq_put_right:cV
\seq_put_right:cv
\seq_put_right:co
\seq_put_right:cx
\seq_gput_right:Nn
\seq_gput_right:NV
\seq_gput_right:Nv
\seq_gput_right:No
\seq_gput_right:Nx
\seq_gput_right:cn
\seq_gput_right:cV
\seq_gput_right:cv
\seq_gput_right:co
\seq_gput_right:cx

Since there is no trailing marker, adding an item to the right of a sequence simply means
wrapping it in __seq_item:n.

6504 \cs_new_protected:Npn \seq_put_right:Nn #1#2
6505 { \tl_put_right:Nn #1 { __seq_item:n {#2} } }
6506 \cs_new_protected:Npn \seq_gput_right:Nn #1#2

438

6507 { \tl_gput_right:Nn #1 { __seq_item:n {#2} } }
6508 \cs_generate_variant:Nn \seq_gput_right:Nn { NV , Nv , No , Nx }
6509 \cs_generate_variant:Nn \seq_gput_right:Nn { c , cV , cv , co , cx }
6510 \cs_generate_variant:Nn \seq_put_right:Nn { NV , Nv , No , Nx }
6511 \cs_generate_variant:Nn \seq_put_right:Nn { c , cV , cv , co , cx }

(End definition for \seq_put_right:Nn and others. These functions are documented on page 120.)

14.3 Modifying sequences
__seq_wrap_item:n This function converts its argument to a proper sequence item in an x-expansion context.

6512 \cs_new:Npn __seq_wrap_item:n #1 { \exp_not:n { __seq_item:n {#1} } }

(End definition for __seq_wrap_item:n.)

\l__seq_remove_seq An internal sequence for the removal routines.
6513 \seq_new:N \l__seq_remove_seq

(End definition for \l__seq_remove_seq. This variable is documented on page ??.)

\seq_remove_duplicates:N
\seq_remove_duplicates:c
\seq_gremove_duplicates:N
\seq_gremove_duplicates:c

__seq_remove_duplicates:NN

Removing duplicates means making a new list then copying it.
6514 \cs_new_protected:Npn \seq_remove_duplicates:N
6515 { __seq_remove_duplicates:NN \seq_set_eq:NN }
6516 \cs_new_protected:Npn \seq_gremove_duplicates:N
6517 { __seq_remove_duplicates:NN \seq_gset_eq:NN }
6518 \cs_new_protected:Npn __seq_remove_duplicates:NN #1#2
6519 {
6520 \seq_clear:N \l__seq_remove_seq
6521 \seq_map_inline:Nn #2
6522 {
6523 \seq_if_in:NnF \l__seq_remove_seq {##1}
6524 { \seq_put_right:Nn \l__seq_remove_seq {##1} }
6525 }
6526 #1 #2 \l__seq_remove_seq
6527 }
6528 \cs_generate_variant:Nn \seq_remove_duplicates:N { c }
6529 \cs_generate_variant:Nn \seq_gremove_duplicates:N { c }

(End definition for \seq_remove_duplicates:N and \seq_remove_duplicates:c. These functions are
documented on page 123.)

\seq_remove_all:Nn
\seq_remove_all:cn
\seq_gremove_all:Nn
\seq_gremove_all:cn

__seq_remove_all_aux:NNn

The idea of the code here is to avoid a relatively expensive addition of items one at
a time to an intermediate sequence. The approach taken is therefore similar to that
in __seq_pop_right:NNN, using a “flexible” x-type expansion to do most of the work.
As \tl_if_eq:nnT is not expandable, a two-part strategy is needed. First, the x-type
expansion uses \str_if_eq:nnT to find potential matches. If one is found, the expansion
is halted and the necessary set up takes place to use the \tl_if_eq:NNT test. The x-type
is started again, including all of the items copied already. This will happen repeatedly
until the entire sequence has been scanned. The code is set up to avoid needing and

439

intermediate scratch list: the lead-off x-type expansion (#1 #2 {#2}) will ensure that
nothing is lost.

6530 \cs_new_protected:Npn \seq_remove_all:Nn
6531 { __seq_remove_all_aux:NNn \tl_set:Nx }
6532 \cs_new_protected:Npn \seq_gremove_all:Nn
6533 { __seq_remove_all_aux:NNn \tl_gset:Nx }
6534 \cs_new_protected:Npn __seq_remove_all_aux:NNn #1#2#3
6535 {
6536 __seq_push_item_def:n
6537 {
6538 \str_if_eq:nnT {##1} {#3}
6539 {
6540 \if_false: { \fi: }
6541 \tl_set:Nn \l__seq_internal_b_tl {##1}
6542 #1 #2
6543 { \if_false: } \fi:
6544 \exp_not:o {#2}
6545 \tl_if_eq:NNT \l__seq_internal_a_tl \l__seq_internal_b_tl
6546 { \use_none:nn }
6547 }
6548 __seq_wrap_item:n {##1}
6549 }
6550 \tl_set:Nn \l__seq_internal_a_tl {#3}
6551 #1 #2 {#2}
6552 __seq_pop_item_def:
6553 }
6554 \cs_generate_variant:Nn \seq_remove_all:Nn { c }
6555 \cs_generate_variant:Nn \seq_gremove_all:Nn { c }

(End definition for \seq_remove_all:Nn and \seq_remove_all:cn. These functions are documented on
page 123.)

\seq_reverse:N
\seq_reverse:c
\seq_greverse:N
\seq_greverse:c

__seq_reverse:NN
__seq_reverse_item:nwn

Previously, \seq_reverse:N was coded by collecting the items in reverse order after an
\exp_stop_f: marker.

\cs_new_protected:Npn \seq_reverse:N #1
{
\cs_set_eq:NN \@@_item:n \@@_reverse_item:nw
\tl_set:Nf #2 { #2 \exp_stop_f: }

}
\cs_new:Npn \@@_reverse_item:nw #1 #2 \exp_stop_f:
{
#2 \exp_stop_f:
\@@_item:n {#1}

}

At first, this seems optimal, since we can forget about each item as soon as it is placed
after \exp_stop_f:. Unfortunately, TEX’s usual tail recursion does not take place in
this case: since the following __seq_reverse_item:nw only reads tokens until \exp_-
stop_f:, and never reads the \@@_item:n {#1} left by the previous call, TEX cannot

440

remove that previous call from the stack, and in particular must retain the various macro
parameters in memory, until the end of the replacement text is reached. The stack is thus
only flushed after all the __seq_reverse_item:nw are expanded. Keeping track of the
arguments of all those calls uses up a memory quadratic in the length of the sequence.
TEX can then not cope with more than a few thousand items.

Instead, we collect the items in the argument of \exp_not:n. The previous calls are
cleanly removed from the stack, and the memory consumption becomes linear.

6556 \cs_new_protected_nopar:Npn \seq_reverse:N
6557 { __seq_reverse:NN \tl_set:Nx }
6558 \cs_new_protected_nopar:Npn \seq_greverse:N
6559 { __seq_reverse:NN \tl_gset:Nx }
6560 \cs_new_protected:Npn __seq_reverse:NN #1 #2
6561 {
6562 \cs_set_eq:NN __seq_tmp:w __seq_item:n
6563 \cs_set_eq:NN __seq_item:n __seq_reverse_item:nwn
6564 #1 #2 { #2 \exp_not:n { } }
6565 \cs_set_eq:NN __seq_item:n __seq_tmp:w
6566 }
6567 \cs_new:Npn __seq_reverse_item:nwn #1 #2 \exp_not:n #3
6568 {
6569 #2
6570 \exp_not:n { __seq_item:n {#1} #3 }
6571 }
6572 \cs_generate_variant:Nn \seq_reverse:N { c }
6573 \cs_generate_variant:Nn \seq_greverse:N { c }

(End definition for \seq_reverse:N and others. These functions are documented on page 123.)

14.4 Sequence conditionals
\seq_if_empty_p:N
\seq_if_empty_p:c
\seq_if_empty:NTF
\seq_if_empty:cTF

Similar to token lists, we compare with the empty sequence.
6574 \prg_new_conditional:Npnn \seq_if_empty:N #1 { p , T , F , TF }
6575 {
6576 \if_meaning:w #1 \c_empty_seq
6577 \prg_return_true:
6578 \else:
6579 \prg_return_false:
6580 \fi:
6581 }
6582 \cs_generate_variant:Nn \seq_if_empty_p:N { c }
6583 \cs_generate_variant:Nn \seq_if_empty:NT { c }
6584 \cs_generate_variant:Nn \seq_if_empty:NF { c }
6585 \cs_generate_variant:Nn \seq_if_empty:NTF { c }

(End definition for \seq_if_empty:NTF and \seq_if_empty:cTF. These functions are documented on
page 124.)

\seq_if_in:NnTF
\seq_if_in:NVTF
\seq_if_in:NvTF
\seq_if_in:NoTF
\seq_if_in:NxTF
\seq_if_in:cnTF
\seq_if_in:cVTF
\seq_if_in:cvTF
\seq_if_in:coTF
\seq_if_in:cxTF

__seq_if_in:

The approach here is to define __seq_item:n to compare its argument with the test
sequence. If the two items are equal, the mapping is terminated and \group_end: \prg_-
return_true: is inserted after skipping over the rest of the recursion. On the other hand,

441

if there is no match then the loop will break returning \prg_return_false:. Everything
is inside a group so that __seq_item:n is preserved in nested situations.

6586 \prg_new_protected_conditional:Npnn \seq_if_in:Nn #1#2
6587 { T , F , TF }
6588 {
6589 \group_begin:
6590 \tl_set:Nn \l__seq_internal_a_tl {#2}
6591 \cs_set_protected:Npn __seq_item:n ##1
6592 {
6593 \tl_set:Nn \l__seq_internal_b_tl {##1}
6594 \if_meaning:w \l__seq_internal_a_tl \l__seq_internal_b_tl
6595 \exp_after:wN __seq_if_in:
6596 \fi:
6597 }
6598 #1
6599 \group_end:
6600 \prg_return_false:
6601 __prg_break_point:
6602 }
6603 \cs_new_nopar:Npn __seq_if_in:
6604 { __prg_break:n { \group_end: \prg_return_true: } }
6605 \cs_generate_variant:Nn \seq_if_in:NnT { NV , Nv , No , Nx }
6606 \cs_generate_variant:Nn \seq_if_in:NnT { c , cV , cv , co , cx }
6607 \cs_generate_variant:Nn \seq_if_in:NnF { NV , Nv , No , Nx }
6608 \cs_generate_variant:Nn \seq_if_in:NnF { c , cV , cv , co , cx }
6609 \cs_generate_variant:Nn \seq_if_in:NnTF { NV , Nv , No , Nx }
6610 \cs_generate_variant:Nn \seq_if_in:NnTF { c , cV , cv , co , cx }

(End definition for \seq_if_in:NnTF and others. These functions are documented on page 124.)

14.5 Recovering data from sequences
__seq_pop:NNNN

__seq_pop_TF:NNNN
The two pop functions share their emptiness tests. We also use a common emptiness test
for all branching get and pop functions.

6611 \cs_new_protected:Npn __seq_pop:NNNN #1#2#3#4
6612 {
6613 \if_meaning:w #3 \c_empty_seq
6614 \tl_set:Nn #4 { \q_no_value }
6615 \else:
6616 #1#2#3#4
6617 \fi:
6618 }
6619 \cs_new_protected:Npn __seq_pop_TF:NNNN #1#2#3#4
6620 {
6621 \if_meaning:w #3 \c_empty_seq
6622 % \tl_set:Nn #4 { \q_no_value }
6623 \prg_return_false:
6624 \else:
6625 #1#2#3#4

442

6626 \prg_return_true:
6627 \fi:
6628 }

(End definition for __seq_pop:NNNN and __seq_pop_TF:NNNN.)

\seq_get_left:NN
\seq_get_left:cN

__seq_get_left:wnw

Getting an item from the left of a sequence is pretty easy: just trim off the first item
after __seq_item:n at the start. We append a \q_no_value item to cover the case of
an empty sequence

6629 \cs_new_protected:Npn \seq_get_left:NN #1#2
6630 {
6631 \tl_set:Nx #2
6632 {
6633 \exp_after:wN __seq_get_left:wnw
6634 #1 __seq_item:n { \q_no_value } \q_stop
6635 }
6636 }
6637 \cs_new:Npn __seq_get_left:wnw #1 __seq_item:n #2#3 \q_stop
6638 { \exp_not:n {#2} }
6639 \cs_generate_variant:Nn \seq_get_left:NN { c }

(End definition for \seq_get_left:NN and \seq_get_left:cN. These functions are documented on page
121.)

\seq_pop_left:NN
\seq_pop_left:cN
\seq_gpop_left:NN
\seq_gpop_left:cN

__seq_pop_left:NNN
__seq_pop_left:wnwNNN

The approach to popping an item is pretty similar to that to get an item, with the only
difference being that the sequence itself has to be redefined. This makes it more sensible
to use an auxiliary function for the local and global cases.

6640 \cs_new_protected_nopar:Npn \seq_pop_left:NN
6641 { __seq_pop:NNNN __seq_pop_left:NNN \tl_set:Nn }
6642 \cs_new_protected_nopar:Npn \seq_gpop_left:NN
6643 { __seq_pop:NNNN __seq_pop_left:NNN \tl_gset:Nn }
6644 \cs_new_protected:Npn __seq_pop_left:NNN #1#2#3
6645 { \exp_after:wN __seq_pop_left:wnwNNN #2 \q_stop #1#2#3 }
6646 \cs_new_protected:Npn __seq_pop_left:wnwNNN
6647 #1 __seq_item:n #2#3 \q_stop #4#5#6
6648 {
6649 #4 #5 { #1 #3 }
6650 \tl_set:Nn #6 {#2}
6651 }
6652 \cs_generate_variant:Nn \seq_pop_left:NN { c }
6653 \cs_generate_variant:Nn \seq_gpop_left:NN { c }

(End definition for \seq_pop_left:NN and \seq_pop_left:cN. These functions are documented on page
121.)

\seq_get_right:NN
\seq_get_right:cN

__seq_get_right_loop:nn

First remove \s__seq and prepend \q_no_value, then take two arguments at a time.
Before the right-hand end of the sequence, this is a brace group followed by __seq_-
item:n, both removed by \use_none:nn. At the end of the sequence, the two question
marks are taken by \use_none:nn, and the assignment is placed before the right-most

443

item. In the next iteration, __seq_get_right_loop:nn receives two empty arguments,
and \use_none:nn stops the loop.

6654 \cs_new_protected:Npn \seq_get_right:NN #1#2
6655 {
6656 \exp_after:wN \use_i_ii:nnn
6657 \exp_after:wN __seq_get_right_loop:nn
6658 \exp_after:wN \q_no_value
6659 #1
6660 { ?? \tl_set:Nn #2 }
6661 { } { }
6662 }
6663 \cs_new_protected:Npn __seq_get_right_loop:nn #1#2
6664 {
6665 \use_none:nn #2 {#1}
6666 __seq_get_right_loop:nn
6667 }
6668 \cs_generate_variant:Nn \seq_get_right:NN { c }

(End definition for \seq_get_right:NN and \seq_get_right:cN. These functions are documented on
page 121.)

\seq_pop_right:NN
\seq_pop_right:cN
\seq_gpop_right:NN
\seq_gpop_right:cN

__seq_pop_right:NNN
__seq_pop_right_loop:nn

The approach to popping from the right is a bit more involved, but does use some
of the same ideas as getting from the right. What is needed is a “flexible length”
way to set a token list variable. This is supplied by the { \if_false: } \fi:
. . . \if_false: { \fi: } construct. Using an x-type expansion and a “non-expanding”
definition for __seq_item:n, the left-most n − 1 entries in a sequence of n items will
be stored back in the sequence. That needs a loop of unknown length, hence using the
strange \if_false: way of including braces. When the last item of the sequence is
reached, the closing brace for the assignment is inserted, and \tl_set:Nn #3 is inserted
in front of the final entry. This therefore does the pop assignment. One more iteration
is performed, with an empty argument and \use_none:nn, which finally stops the loop.

6669 \cs_new_protected_nopar:Npn \seq_pop_right:NN
6670 { __seq_pop:NNNN __seq_pop_right:NNN \tl_set:Nx }
6671 \cs_new_protected_nopar:Npn \seq_gpop_right:NN
6672 { __seq_pop:NNNN __seq_pop_right:NNN \tl_gset:Nx }
6673 \cs_new_protected:Npn __seq_pop_right:NNN #1#2#3
6674 {
6675 \cs_set_eq:NN __seq_tmp:w __seq_item:n
6676 \cs_set_eq:NN __seq_item:n \scan_stop:
6677 #1 #2
6678 { \if_false: } \fi: \s__seq
6679 \exp_after:wN \use_i:nnn
6680 \exp_after:wN __seq_pop_right_loop:nn
6681 #2
6682 {
6683 \if_false: { \fi: }
6684 \tl_set:Nx #3
6685 }
6686 { } \use_none:nn

444

6687 \cs_set_eq:NN __seq_item:n __seq_tmp:w
6688 }
6689 \cs_new:Npn __seq_pop_right_loop:nn #1#2
6690 {
6691 #2 { \exp_not:n {#1} }
6692 __seq_pop_right_loop:nn
6693 }
6694 \cs_generate_variant:Nn \seq_pop_right:NN { c }
6695 \cs_generate_variant:Nn \seq_gpop_right:NN { c }

(End definition for \seq_pop_right:NN and \seq_pop_right:cN. These functions are documented on
page 121.)

\seq_get_left:NNTF
\seq_get_left:cNTF
\seq_get_right:NNTF
\seq_get_right:cNTF

Getting from the left or right with a check on the results. The first argument to __-
seq_pop_TF:NNNN is left unused.

6696 \prg_new_protected_conditional:Npnn \seq_get_left:NN #1#2 { T , F , TF }
6697 { __seq_pop_TF:NNNN \prg_do_nothing: \seq_get_left:NN #1#2 }
6698 \prg_new_protected_conditional:Npnn \seq_get_right:NN #1#2 { T , F , TF }
6699 { __seq_pop_TF:NNNN \prg_do_nothing: \seq_get_right:NN #1#2 }
6700 \cs_generate_variant:Nn \seq_get_left:NNT { c }
6701 \cs_generate_variant:Nn \seq_get_left:NNF { c }
6702 \cs_generate_variant:Nn \seq_get_left:NNTF { c }
6703 \cs_generate_variant:Nn \seq_get_right:NNT { c }
6704 \cs_generate_variant:Nn \seq_get_right:NNF { c }
6705 \cs_generate_variant:Nn \seq_get_right:NNTF { c }

(End definition for \seq_get_left:NNTF and \seq_get_left:cNTF. These functions are documented on
page 122.)

\seq_pop_left:NNTF
\seq_pop_left:cNTF
\seq_gpop_left:NNTF
\seq_gpop_left:cNTF
\seq_pop_right:NNTF
\seq_pop_right:cNTF
\seq_gpop_right:NNTF
\seq_gpop_right:cNTF

More or less the same for popping.
6706 \prg_new_protected_conditional:Npnn \seq_pop_left:NN #1#2 { T , F , TF }
6707 { __seq_pop_TF:NNNN __seq_pop_left:NNN \tl_set:Nn #1 #2 }
6708 \prg_new_protected_conditional:Npnn \seq_gpop_left:NN #1#2 { T , F , TF }
6709 { __seq_pop_TF:NNNN __seq_pop_left:NNN \tl_gset:Nn #1 #2 }
6710 \prg_new_protected_conditional:Npnn \seq_pop_right:NN #1#2 { T , F , TF }
6711 { __seq_pop_TF:NNNN __seq_pop_right:NNN \tl_set:Nx #1 #2 }
6712 \prg_new_protected_conditional:Npnn \seq_gpop_right:NN #1#2 { T , F , TF }
6713 { __seq_pop_TF:NNNN __seq_pop_right:NNN \tl_gset:Nx #1 #2 }
6714 \cs_generate_variant:Nn \seq_pop_left:NNT { c }
6715 \cs_generate_variant:Nn \seq_pop_left:NNF { c }
6716 \cs_generate_variant:Nn \seq_pop_left:NNTF { c }
6717 \cs_generate_variant:Nn \seq_gpop_left:NNT { c }
6718 \cs_generate_variant:Nn \seq_gpop_left:NNF { c }
6719 \cs_generate_variant:Nn \seq_gpop_left:NNTF { c }
6720 \cs_generate_variant:Nn \seq_pop_right:NNT { c }
6721 \cs_generate_variant:Nn \seq_pop_right:NNF { c }
6722 \cs_generate_variant:Nn \seq_pop_right:NNTF { c }
6723 \cs_generate_variant:Nn \seq_gpop_right:NNT { c }
6724 \cs_generate_variant:Nn \seq_gpop_right:NNF { c }
6725 \cs_generate_variant:Nn \seq_gpop_right:NNTF { c }

445

(End definition for \seq_pop_left:NNTF and \seq_pop_left:cNTF. These functions are documented on
page 122.)

\seq_item:Nn
\seq_item:cn

__seq_item:wNn
__seq_item:nnn

The idea here is to find the offset of the item from the left, then use a loop
to grab the correct item. If the resulting offset is too large, then the stop code
{ ? __prg_break: } { } will be used by the auxiliary, terminating the loop and re-
turning nothing at all.

6726 \cs_new:Npn \seq_item:Nn #1
6727 { \exp_after:wN __seq_item:wNn #1 \q_stop #1 }
6728 \cs_new:Npn __seq_item:wNn \s__seq #1 \q_stop #2#3
6729 {
6730 \exp_args:Nf __seq_item:nnn
6731 {
6732 \int_eval:n
6733 {
6734 \int_compare:nNnT {#3} < \c_zero
6735 { \seq_count:N #2 + \c_one + }
6736 #3
6737 }
6738 }
6739 #1
6740 { ? __prg_break: } { }
6741 __prg_break_point:
6742 }
6743 \cs_new:Npn __seq_item:nnn #1#2#3
6744 {
6745 \use_none:n #2
6746 \int_compare:nNnTF {#1} = \c_one
6747 { __prg_break:n { \exp_not:n {#3} } }
6748 { \exp_args:Nf __seq_item:nnn { \int_eval:n { #1 - 1 } } }
6749 }
6750 \cs_generate_variant:Nn \seq_item:Nn { c }

(End definition for \seq_item:Nn and \seq_item:cn. These functions are documented on page 122.)

14.6 Mapping to sequences
\seq_map_break:

\seq_map_break:n
To break a function, the special token __prg_break_point:Nn is used to find the end of
the code. Any ending code is then inserted before the return value of \seq_map_break:n
is inserted.

6751 \cs_new_nopar:Npn \seq_map_break:
6752 { __prg_map_break:Nn \seq_map_break: { } }
6753 \cs_new_nopar:Npn \seq_map_break:n
6754 { __prg_map_break:Nn \seq_map_break: }

(End definition for \seq_map_break:. This function is documented on page 125.)

\seq_map_function:NN
\seq_map_function:cN

__seq_map_function:NNn

The idea here is to apply the code of #2 to each item in the sequence without altering
the definition of __seq_item:n. This is done as by noting that every odd token in the

446

sequence must be __seq_item:n, which can be gobbled by \use_none:n. At the end
of the loop, #2 is instead ? \seq_map_break:, which therefore breaks the loop without
needing to do a (relatively-expensive) quark test.

6755 \cs_new:Npn \seq_map_function:NN #1#2
6756 {
6757 \exp_after:wN \use_i_ii:nnn
6758 \exp_after:wN __seq_map_function:NNn
6759 \exp_after:wN #2
6760 #1
6761 { ? \seq_map_break: } { }
6762 __prg_break_point:Nn \seq_map_break: { }
6763 }
6764 \cs_new:Npn __seq_map_function:NNn #1#2#3
6765 {
6766 \use_none:n #2
6767 #1 {#3}
6768 __seq_map_function:NNn #1
6769 }
6770 \cs_generate_variant:Nn \seq_map_function:NN { c }

(End definition for \seq_map_function:NN and \seq_map_function:cN. These functions are documented
on page 124.)

__seq_push_item_def:n
__seq_push_item_def:x
__seq_push_item_def:
__seq_pop_item_def:

The definition of __seq_item:n needs to be saved and restored at various points within
the mapping and manipulation code. That is handled here: as always, this approach uses
global assignments.

6771 \cs_new_protected:Npn __seq_push_item_def:n
6772 {
6773 __seq_push_item_def:
6774 \cs_gset:Npn __seq_item:n ##1
6775 }
6776 \cs_new_protected:Npn __seq_push_item_def:x
6777 {
6778 __seq_push_item_def:
6779 \cs_gset:Npx __seq_item:n ##1
6780 }
6781 \cs_new_protected:Npn __seq_push_item_def:
6782 {
6783 \int_gincr:N \g__prg_map_int
6784 \cs_gset_eq:cN { __prg_map_ \int_use:N \g__prg_map_int :w }
6785 __seq_item:n
6786 }
6787 \cs_new_protected_nopar:Npn __seq_pop_item_def:
6788 {
6789 \cs_gset_eq:Nc __seq_item:n
6790 { __prg_map_ \int_use:N \g__prg_map_int :w }
6791 \int_gdecr:N \g__prg_map_int
6792 }

(End definition for __seq_push_item_def:n and __seq_push_item_def:x.)

447

\seq_map_inline:Nn
\seq_map_inline:cn

The idea here is that __seq_item:n is already “applied” to each item in a sequence,
and so an in-line mapping is just a case of redefining __seq_item:n.

6793 \cs_new_protected:Npn \seq_map_inline:Nn #1#2
6794 {
6795 __seq_push_item_def:n {#2}
6796 #1
6797 __prg_break_point:Nn \seq_map_break: { __seq_pop_item_def: }
6798 }
6799 \cs_generate_variant:Nn \seq_map_inline:Nn { c }

(End definition for \seq_map_inline:Nn and \seq_map_inline:cn. These functions are documented on
page 124.)

\seq_map_variable:NNn
\seq_map_variable:Ncn
\seq_map_variable:cNn
\seq_map_variable:ccn

This is just a specialised version of the in-line mapping function, using an x-type expan-
sion for the code set up so that the number of # tokens required is as expected.

6800 \cs_new_protected:Npn \seq_map_variable:NNn #1#2#3
6801 {
6802 __seq_push_item_def:x
6803 {
6804 \tl_set:Nn \exp_not:N #2 {##1}
6805 \exp_not:n {#3}
6806 }
6807 #1
6808 __prg_break_point:Nn \seq_map_break: { __seq_pop_item_def: }
6809 }
6810 \cs_generate_variant:Nn \seq_map_variable:NNn { Nc }
6811 \cs_generate_variant:Nn \seq_map_variable:NNn { c , cc }

(End definition for \seq_map_variable:NNn and others. These functions are documented on page 124.)

\seq_count:N
\seq_count:c

__seq_count:n

Counting the items in a sequence is done using the same approach as for other count
functions: turn each entry into a +1 then use integer evaluation to actually do the math-
ematics.

6812 \cs_new:Npn \seq_count:N #1
6813 {
6814 \int_eval:n
6815 {
6816 0
6817 \seq_map_function:NN #1 __seq_count:n
6818 }
6819 }
6820 \cs_new:Npn __seq_count:n #1 { + \c_one }
6821 \cs_generate_variant:Nn \seq_count:N { c }

(End definition for \seq_count:N and \seq_count:c. These functions are documented on page 125.)

448

14.7 Using sequences
\seq_use:Nnnn
\seq_use:cnnn

__seq_use:NNnNnn
__seq_use_setup:w
__seq_use:nwwwwnwn

__seq_use:nwwn
\seq_use:Nn
\seq_use:cn

See \clist_use:Nnnn for a general explanation. The main difference is that we use _-
_seq_item:n as a delimiter rather than commas. We also need to add __seq_item:n
at various places, and \s__seq.

6822 \cs_new:Npn \seq_use:Nnnn #1#2#3#4
6823 {
6824 \seq_if_exist:NTF #1
6825 {
6826 \int_case:nnF { \seq_count:N #1 }
6827 {
6828 { 0 } { }
6829 { 1 } { \exp_after:wN __seq_use:NNnNnn #1 ? { } { } }
6830 { 2 } { \exp_after:wN __seq_use:NNnNnn #1 {#2} }
6831 }
6832 {
6833 \exp_after:wN __seq_use_setup:w #1 __seq_item:n
6834 \q_mark { __seq_use:nwwwwnwn {#3} }
6835 \q_mark { __seq_use:nwwn {#4} }
6836 \q_stop { }
6837 }
6838 }
6839 {
6840 __msg_kernel_expandable_error:nnn
6841 { kernel } { bad-variable } {#1}
6842 }
6843 }
6844 \cs_generate_variant:Nn \seq_use:Nnnn { c }
6845 \cs_new:Npn __seq_use:NNnNnn #1#2#3#4#5#6 { \exp_not:n { #3 #6 #5 } }
6846 \cs_new:Npn __seq_use_setup:w \s__seq { __seq_use:nwwwwnwn { } }
6847 \cs_new:Npn __seq_use:nwwwwnwn
6848 #1 __seq_item:n #2 __seq_item:n #3 __seq_item:n #4#5
6849 \q_mark #6#7 \q_stop #8
6850 {
6851 #6 __seq_item:n {#3} __seq_item:n {#4} #5
6852 \q_mark {#6} #7 \q_stop { #8 #1 #2 }
6853 }
6854 \cs_new:Npn __seq_use:nwwn #1 __seq_item:n #2 #3 \q_stop #4
6855 { \exp_not:n { #4 #1 #2 } }
6856 \cs_new:Npn \seq_use:Nn #1#2
6857 { \seq_use:Nnnn #1 {#2} {#2} {#2} }
6858 \cs_generate_variant:Nn \seq_use:Nn { c }

(End definition for \seq_use:Nnnn and \seq_use:cnnn. These functions are documented on page 126.)

14.8 Sequence stacks
The same functions as for sequences, but with the correct naming.

\seq_push:Nn
\seq_push:NV
\seq_push:Nv
\seq_push:No
\seq_push:Nx
\seq_push:cn
\seq_push:cV
\seq_push:cV
\seq_push:co
\seq_push:cx
\seq_gpush:Nn
\seq_gpush:NV
\seq_gpush:Nv
\seq_gpush:No
\seq_gpush:Nx
\seq_gpush:cn
\seq_gpush:cV
\seq_gpush:cv
\seq_gpush:co
\seq_gpush:cx

Pushing to a sequence is the same as adding on the left.

449

6859 \cs_new_eq:NN \seq_push:Nn \seq_put_left:Nn
6860 \cs_new_eq:NN \seq_push:NV \seq_put_left:NV
6861 \cs_new_eq:NN \seq_push:Nv \seq_put_left:Nv
6862 \cs_new_eq:NN \seq_push:No \seq_put_left:No
6863 \cs_new_eq:NN \seq_push:Nx \seq_put_left:Nx
6864 \cs_new_eq:NN \seq_push:cn \seq_put_left:cn
6865 \cs_new_eq:NN \seq_push:cV \seq_put_left:cV
6866 \cs_new_eq:NN \seq_push:cv \seq_put_left:cv
6867 \cs_new_eq:NN \seq_push:co \seq_put_left:co
6868 \cs_new_eq:NN \seq_push:cx \seq_put_left:cx
6869 \cs_new_eq:NN \seq_gpush:Nn \seq_gput_left:Nn
6870 \cs_new_eq:NN \seq_gpush:NV \seq_gput_left:NV
6871 \cs_new_eq:NN \seq_gpush:Nv \seq_gput_left:Nv
6872 \cs_new_eq:NN \seq_gpush:No \seq_gput_left:No
6873 \cs_new_eq:NN \seq_gpush:Nx \seq_gput_left:Nx
6874 \cs_new_eq:NN \seq_gpush:cn \seq_gput_left:cn
6875 \cs_new_eq:NN \seq_gpush:cV \seq_gput_left:cV
6876 \cs_new_eq:NN \seq_gpush:cv \seq_gput_left:cv
6877 \cs_new_eq:NN \seq_gpush:co \seq_gput_left:co
6878 \cs_new_eq:NN \seq_gpush:cx \seq_gput_left:cx

(End definition for \seq_push:Nn and others. These functions are documented on page 127.)

\seq_get:NN
\seq_get:cN
\seq_pop:NN
\seq_pop:cN
\seq_gpop:NN
\seq_gpop:cN

In most cases, getting items from the stack does not need to specify that this is from the
left. So alias are provided.

6879 \cs_new_eq:NN \seq_get:NN \seq_get_left:NN
6880 \cs_new_eq:NN \seq_get:cN \seq_get_left:cN
6881 \cs_new_eq:NN \seq_pop:NN \seq_pop_left:NN
6882 \cs_new_eq:NN \seq_pop:cN \seq_pop_left:cN
6883 \cs_new_eq:NN \seq_gpop:NN \seq_gpop_left:NN
6884 \cs_new_eq:NN \seq_gpop:cN \seq_gpop_left:cN

(End definition for \seq_get:NN and \seq_get:cN. These functions are documented on page 127.)

\seq_get:NNTF
\seq_get:cNTF
\seq_pop:NNTF
\seq_pop:cNTF
\seq_gpop:NNTF
\seq_gpop:cNTF

More copies.
6885 \prg_new_eq_conditional:NNn \seq_get:NN \seq_get_left:NN { T , F , TF }
6886 \prg_new_eq_conditional:NNn \seq_get:cN \seq_get_left:cN { T , F , TF }
6887 \prg_new_eq_conditional:NNn \seq_pop:NN \seq_pop_left:NN { T , F , TF }
6888 \prg_new_eq_conditional:NNn \seq_pop:cN \seq_pop_left:cN { T , F , TF }
6889 \prg_new_eq_conditional:NNn \seq_gpop:NN \seq_gpop_left:NN { T , F , TF }
6890 \prg_new_eq_conditional:NNn \seq_gpop:cN \seq_gpop_left:cN { T , F , TF }

(End definition for \seq_get:NNTF and \seq_get:cNTF. These functions are documented on page 127.)

14.9 Viewing sequences
\seq_show:N
\seq_show:c

Apply the general __msg_show_variable:NNNnn.
6891 \cs_new_protected:Npn \seq_show:N #1
6892 {
6893 __msg_show_variable:NNNnn #1

450

6894 \seq_if_exist:NTF \seq_if_empty:NTF { seq }
6895 { \seq_map_function:NN #1 __msg_show_item:n }
6896 }
6897 \cs_generate_variant:Nn \seq_show:N { c }

(End definition for \seq_show:N and \seq_show:c. These functions are documented on page 130.)

14.10 Scratch sequences
\l_tmpa_seq
\l_tmpb_seq
\g_tmpa_seq
\g_tmpb_seq

Temporary comma list variables.
6898 \seq_new:N \l_tmpa_seq
6899 \seq_new:N \l_tmpb_seq
6900 \seq_new:N \g_tmpa_seq
6901 \seq_new:N \g_tmpb_seq

(End definition for \l_tmpa_seq and others. These variables are documented on page 129.)

6902 〈/initex | package〉

15 l3clist implementation
The following test files are used for this code: m3clist002.

6903 〈*initex | package〉

6904 〈@@=clist〉

\c_empty_clist An empty comma list is simply an empty token list.
6905 \cs_new_eq:NN \c_empty_clist \c_empty_tl

(End definition for \c_empty_clist. This variable is documented on page 139.)

\l__clist_internal_clist Scratch space for various internal uses. This comma list variable cannot be declared as
such because it comes before \clist_new:N

6906 \tl_new:N \l__clist_internal_clist

(End definition for \l__clist_internal_clist. This variable is documented on page ??.)

__clist_tmp:w A temporary function for various purposes.
6907 \cs_new_protected:Npn __clist_tmp:w { }

(End definition for __clist_tmp:w.)

451

15.1 Allocation and initialisation
\clist_new:N
\clist_new:c

Internally, comma lists are just token lists.
6908 \cs_new_eq:NN \clist_new:N \tl_new:N
6909 \cs_new_eq:NN \clist_new:c \tl_new:c

(End definition for \clist_new:N and \clist_new:c. These functions are documented on page 131.)

\clist_const:Nn
\clist_const:cn
\clist_const:Nx
\clist_const:cx

Creating and initializing a constant comma list is done in a way similar to \clist_set:Nn
and \clist_gset:Nn, being careful to strip spaces.

6910 \cs_new_protected:Npn \clist_const:Nn #1#2
6911 { \tl_const:Nx #1 { __clist_trim_spaces:n {#2} } }
6912 \cs_generate_variant:Nn \clist_const:Nn { c , Nx , cx }

(End definition for \clist_const:Nn and others. These functions are documented on page 131.)

\clist_clear:N
\clist_clear:c
\clist_gclear:N
\clist_gclear:c

Clearing comma lists is just the same as clearing token lists.
6913 \cs_new_eq:NN \clist_clear:N \tl_clear:N
6914 \cs_new_eq:NN \clist_clear:c \tl_clear:c
6915 \cs_new_eq:NN \clist_gclear:N \tl_gclear:N
6916 \cs_new_eq:NN \clist_gclear:c \tl_gclear:c

(End definition for \clist_clear:N and \clist_clear:c. These functions are documented on page 131.)

\clist_clear_new:N
\clist_clear_new:c
\clist_gclear_new:N
\clist_gclear_new:c

Once again a copy from the token list functions.
6917 \cs_new_eq:NN \clist_clear_new:N \tl_clear_new:N
6918 \cs_new_eq:NN \clist_clear_new:c \tl_clear_new:c
6919 \cs_new_eq:NN \clist_gclear_new:N \tl_gclear_new:N
6920 \cs_new_eq:NN \clist_gclear_new:c \tl_gclear_new:c

(End definition for \clist_clear_new:N and \clist_clear_new:c. These functions are documented on
page 132.)

\clist_set_eq:NN
\clist_set_eq:cN
\clist_set_eq:Nc
\clist_set_eq:cc
\clist_gset_eq:NN
\clist_gset_eq:cN
\clist_gset_eq:Nc
\clist_gset_eq:cc

Once again, these are simple copies from the token list functions.
6921 \cs_new_eq:NN \clist_set_eq:NN \tl_set_eq:NN
6922 \cs_new_eq:NN \clist_set_eq:Nc \tl_set_eq:Nc
6923 \cs_new_eq:NN \clist_set_eq:cN \tl_set_eq:cN
6924 \cs_new_eq:NN \clist_set_eq:cc \tl_set_eq:cc
6925 \cs_new_eq:NN \clist_gset_eq:NN \tl_gset_eq:NN
6926 \cs_new_eq:NN \clist_gset_eq:Nc \tl_gset_eq:Nc
6927 \cs_new_eq:NN \clist_gset_eq:cN \tl_gset_eq:cN
6928 \cs_new_eq:NN \clist_gset_eq:cc \tl_gset_eq:cc

(End definition for \clist_set_eq:NN and others. These functions are documented on page 132.)

\clist_set_from_seq:NN
\clist_set_from_seq:cN
\clist_set_from_seq:Nc
\clist_set_from_seq:cc
\clist_gset_from_seq:NN
\clist_gset_from_seq:cN
\clist_gset_from_seq:Nc
\clist_gset_from_seq:cc

__clist_set_from_seq:NNNN
__clist_wrap_item:n

__clist_set_from_seq:w

Setting a comma list from a comma-separated list is done using a simple mapping. We
wrap most items with \exp_not:n, and a comma. Items which contain a comma or a
space are surrounded by an extra set of braces. The first comma must be removed, except
in the case of an empty comma-list.

6929 \cs_new_protected:Npn \clist_set_from_seq:NN
6930 { __clist_set_from_seq:NNNN \clist_clear:N \tl_set:Nx }

452

6931 \cs_new_protected:Npn \clist_gset_from_seq:NN
6932 { __clist_set_from_seq:NNNN \clist_gclear:N \tl_gset:Nx }
6933 \cs_new_protected:Npn __clist_set_from_seq:NNNN #1#2#3#4
6934 {
6935 \seq_if_empty:NTF #4
6936 { #1 #3 }
6937 {
6938 #2 #3
6939 {
6940 \exp_last_unbraced:Nf \use_none:n
6941 { \seq_map_function:NN #4 __clist_wrap_item:n }
6942 }
6943 }
6944 }
6945 \cs_new:Npn __clist_wrap_item:n #1
6946 {
6947 ,
6948 \tl_if_empty:oTF { __clist_set_from_seq:w #1 ~ , #1 ~ }
6949 { \exp_not:n {#1} }
6950 { \exp_not:n { {#1} } }
6951 }
6952 \cs_new:Npn __clist_set_from_seq:w #1 , #2 ~ { }
6953 \cs_generate_variant:Nn \clist_set_from_seq:NN { Nc }
6954 \cs_generate_variant:Nn \clist_set_from_seq:NN { c , cc }
6955 \cs_generate_variant:Nn \clist_gset_from_seq:NN { Nc }
6956 \cs_generate_variant:Nn \clist_gset_from_seq:NN { c , cc }

(End definition for \clist_set_from_seq:NN and others. These functions are documented on page 132.)

\clist_concat:NNN
\clist_concat:ccc
\clist_gconcat:NNN
\clist_gconcat:ccc

__clist_concat:NNNN

Concatenating comma lists is not quite as easy as it seems, as there needs to be the
correct addition of a comma to the output. So a little work to do.

6957 \cs_new_protected_nopar:Npn \clist_concat:NNN
6958 { __clist_concat:NNNN \tl_set:Nx }
6959 \cs_new_protected_nopar:Npn \clist_gconcat:NNN
6960 { __clist_concat:NNNN \tl_gset:Nx }
6961 \cs_new_protected:Npn __clist_concat:NNNN #1#2#3#4
6962 {
6963 #1 #2
6964 {
6965 \exp_not:o #3
6966 \clist_if_empty:NF #3 { \clist_if_empty:NF #4 { , } }
6967 \exp_not:o #4
6968 }
6969 }
6970 \cs_generate_variant:Nn \clist_concat:NNN { ccc }
6971 \cs_generate_variant:Nn \clist_gconcat:NNN { ccc }

(End definition for \clist_concat:NNN and \clist_concat:ccc. These functions are documented on
page 132.)

453

\clist_if_exist_p:N
\clist_if_exist_p:c
\clist_if_exist:NTF
\clist_if_exist:cTF

Copies of the cs functions defined in l3basics.
6972 \prg_new_eq_conditional:NNn \clist_if_exist:N \cs_if_exist:N
6973 { TF , T , F , p }
6974 \prg_new_eq_conditional:NNn \clist_if_exist:c \cs_if_exist:c
6975 { TF , T , F , p }

(End definition for \clist_if_exist:NTF and \clist_if_exist:cTF. These functions are documented
on page 132.)

15.2 Removing spaces around items
__clist_trim_spaces_generic:nw
__clist_trim_spaces_generic:nn

This expands to the 〈code〉, followed by a brace group containing the 〈item〉, with leading
and trailing spaces removed. The calling function is responsible for inserting \q_mark
in front of the 〈item〉, as well as testing for the end of the list. We reuse a l3tl internal
function, whose first argument must start with \q_mark. That trims the item #2, then
feeds the result (after having to do an o-type expansion) to __clist_trim_spaces_-
generic:nn which places the 〈code〉 in front of the 〈trimmed item〉.

6976 \cs_new:Npn __clist_trim_spaces_generic:nw #1#2 ,
6977 {
6978 __tl_trim_spaces:nn {#2}
6979 { \exp_args:No __clist_trim_spaces_generic:nn } {#1}
6980 }
6981 \cs_new:Npn __clist_trim_spaces_generic:nn #1#2 { #2 {#1} }

(End definition for __clist_trim_spaces_generic:nw.)

__clist_trim_spaces:n
__clist_trim_spaces:nn

The first argument of __clist_trim_spaces:nn is initially empty, and later a comma,
namely, as soon as we have added an item to the resulting list. The auxiliary tests for
the end of the list, and also prevents empty arguments from finding their way into the
output.

6982 \cs_new:Npn __clist_trim_spaces:n #1
6983 {
6984 __clist_trim_spaces_generic:nw
6985 { __clist_trim_spaces:nn { } }
6986 \q_mark #1 ,
6987 \q_recursion_tail, \q_recursion_stop
6988 }
6989 \cs_new:Npn __clist_trim_spaces:nn #1 #2
6990 {
6991 \quark_if_recursion_tail_stop:n {#2}
6992 \tl_if_empty:nTF {#2}
6993 {
6994 __clist_trim_spaces_generic:nw
6995 { __clist_trim_spaces:nn {#1} } \q_mark
6996 }
6997 {
6998 #1 \exp_not:n {#2}
6999 __clist_trim_spaces_generic:nw
7000 { __clist_trim_spaces:nn { , } } \q_mark

454

7001 }
7002 }

(End definition for __clist_trim_spaces:n.)

15.3 Adding data to comma lists
\clist_set:Nn
\clist_set:NV
\clist_set:No
\clist_set:Nx
\clist_set:cn
\clist_set:cV
\clist_set:co
\clist_set:cx
\clist_gset:Nn
\clist_gset:NV
\clist_gset:No
\clist_gset:Nx
\clist_gset:cn
\clist_gset:cV
\clist_gset:co
\clist_gset:cx

7003 \cs_new_protected:Npn \clist_set:Nn #1#2
7004 { \tl_set:Nx #1 { __clist_trim_spaces:n {#2} } }
7005 \cs_new_protected:Npn \clist_gset:Nn #1#2
7006 { \tl_gset:Nx #1 { __clist_trim_spaces:n {#2} } }
7007 \cs_generate_variant:Nn \clist_set:Nn { NV , No , Nx , c , cV , co , cx }
7008 \cs_generate_variant:Nn \clist_gset:Nn { NV , No , Nx , c , cV , co , cx }

(End definition for \clist_set:Nn and others. These functions are documented on page 132.)

\clist_put_left:Nn
\clist_put_left:NV
\clist_put_left:No
\clist_put_left:Nx
\clist_put_left:cn
\clist_put_left:cV
\clist_put_left:co
\clist_put_left:cx
\clist_gput_left:Nn
\clist_gput_left:NV
\clist_gput_left:No
\clist_gput_left:Nx
\clist_gput_left:cn
\clist_gput_left:cV
\clist_gput_left:co
\clist_gput_left:cx

__clist_put_left:NNNn

Comma lists cannot hold empty values: there are therefore a couple of sanity checks to
avoid accumulating commas.

7009 \cs_new_protected_nopar:Npn \clist_put_left:Nn
7010 { __clist_put_left:NNNn \clist_concat:NNN \clist_set:Nn }
7011 \cs_new_protected_nopar:Npn \clist_gput_left:Nn
7012 { __clist_put_left:NNNn \clist_gconcat:NNN \clist_set:Nn }
7013 \cs_new_protected:Npn __clist_put_left:NNNn #1#2#3#4
7014 {
7015 #2 \l__clist_internal_clist {#4}
7016 #1 #3 \l__clist_internal_clist #3
7017 }
7018 \cs_generate_variant:Nn \clist_put_left:Nn { NV , No , Nx }
7019 \cs_generate_variant:Nn \clist_put_left:Nn { c , cV , co , cx }
7020 \cs_generate_variant:Nn \clist_gput_left:Nn { NV , No , Nx }
7021 \cs_generate_variant:Nn \clist_gput_left:Nn { c , cV , co , cx }

(End definition for \clist_put_left:Nn and others. These functions are documented on page 133.)

\clist_put_right:Nn
\clist_put_right:NV
\clist_put_right:No
\clist_put_right:Nx
\clist_put_right:cn
\clist_put_right:cV
\clist_put_right:co
\clist_put_right:cx
\clist_gput_right:Nn
\clist_gput_right:NV
\clist_gput_right:No
\clist_gput_right:Nx
\clist_gput_right:cn
\clist_gput_right:cV
\clist_gput_right:co
\clist_gput_right:cx

__clist_put_right:NNNn

7022 \cs_new_protected_nopar:Npn \clist_put_right:Nn
7023 { __clist_put_right:NNNn \clist_concat:NNN \clist_set:Nn }
7024 \cs_new_protected_nopar:Npn \clist_gput_right:Nn
7025 { __clist_put_right:NNNn \clist_gconcat:NNN \clist_set:Nn }
7026 \cs_new_protected:Npn __clist_put_right:NNNn #1#2#3#4
7027 {
7028 #2 \l__clist_internal_clist {#4}
7029 #1 #3 #3 \l__clist_internal_clist
7030 }
7031 \cs_generate_variant:Nn \clist_put_right:Nn { NV , No , Nx }
7032 \cs_generate_variant:Nn \clist_put_right:Nn { c , cV , co , cx }
7033 \cs_generate_variant:Nn \clist_gput_right:Nn { NV , No , Nx }
7034 \cs_generate_variant:Nn \clist_gput_right:Nn { c , cV , co , cx }

(End definition for \clist_put_right:Nn and others. These functions are documented on page 133.)

455

15.4 Comma lists as stacks
\clist_get:NN
\clist_get:cN

__clist_get:wN

Getting an item from the left of a comma list is pretty easy: just trim off the first item
using the comma.

7035 \cs_new_protected:Npn \clist_get:NN #1#2
7036 {
7037 \if_meaning:w #1 \c_empty_clist
7038 \tl_set:Nn #2 { \q_no_value }
7039 \else:
7040 \exp_after:wN __clist_get:wN #1 , \q_stop #2
7041 \fi:
7042 }
7043 \cs_new_protected:Npn __clist_get:wN #1 , #2 \q_stop #3
7044 { \tl_set:Nn #3 {#1} }
7045 \cs_generate_variant:Nn \clist_get:NN { c }

(End definition for \clist_get:NN and \clist_get:cN. These functions are documented on page 138.)

\clist_pop:NN
\clist_pop:cN
\clist_gpop:NN
\clist_gpop:cN

__clist_pop:NNN
__clist_pop:wwNNN

__clist_pop:wN

An empty clist leads to \q_no_value, otherwise grab until the first comma and assign
to the variable. The second argument of __clist_pop:wwNNN is a comma list ending
in a comma and \q_mark, unless the original clist contained exactly one item: then the
argument is just \q_mark. The next auxiliary picks either \exp_not:n or \use_none:n
as #2, ensuring that the result can safely be an empty comma list.

7046 \cs_new_protected_nopar:Npn \clist_pop:NN
7047 { __clist_pop:NNN \tl_set:Nx }
7048 \cs_new_protected_nopar:Npn \clist_gpop:NN
7049 { __clist_pop:NNN \tl_gset:Nx }
7050 \cs_new_protected:Npn __clist_pop:NNN #1#2#3
7051 {
7052 \if_meaning:w #2 \c_empty_clist
7053 \tl_set:Nn #3 { \q_no_value }
7054 \else:
7055 \exp_after:wN __clist_pop:wwNNN #2 , \q_mark \q_stop #1#2#3
7056 \fi:
7057 }
7058 \cs_new_protected:Npn __clist_pop:wwNNN #1 , #2 \q_stop #3#4#5
7059 {
7060 \tl_set:Nn #5 {#1}
7061 #3 #4
7062 {
7063 __clist_pop:wN \prg_do_nothing:
7064 #2 \exp_not:o
7065 , \q_mark \use_none:n
7066 \q_stop
7067 }
7068 }
7069 \cs_new:Npn __clist_pop:wN #1 , \q_mark #2 #3 \q_stop { #2 {#1} }
7070 \cs_generate_variant:Nn \clist_pop:NN { c }
7071 \cs_generate_variant:Nn \clist_gpop:NN { c }

456

(End definition for \clist_pop:NN and \clist_pop:cN. These functions are documented on page 138.)

\clist_get:NNTF
\clist_get:cNTF
\clist_pop:NNTF
\clist_pop:cNTF
\clist_gpop:NNTF
\clist_gpop:cNTF

__clist_pop_TF:NNN

The same, as branching code: very similar to the above.
7072 \prg_new_protected_conditional:Npnn \clist_get:NN #1#2 { T , F , TF }
7073 {
7074 \if_meaning:w #1 \c_empty_clist
7075 \prg_return_false:
7076 \else:
7077 \exp_after:wN __clist_get:wN #1 , \q_stop #2
7078 \prg_return_true:
7079 \fi:
7080 }
7081 \cs_generate_variant:Nn \clist_get:NNT { c }
7082 \cs_generate_variant:Nn \clist_get:NNF { c }
7083 \cs_generate_variant:Nn \clist_get:NNTF { c }
7084 \prg_new_protected_conditional:Npnn \clist_pop:NN #1#2 { T , F , TF }
7085 { __clist_pop_TF:NNN \tl_set:Nx #1 #2 }
7086 \prg_new_protected_conditional:Npnn \clist_gpop:NN #1#2 { T , F , TF }
7087 { __clist_pop_TF:NNN \tl_gset:Nx #1 #2 }
7088 \cs_new_protected:Npn __clist_pop_TF:NNN #1#2#3
7089 {
7090 \if_meaning:w #2 \c_empty_clist
7091 \prg_return_false:
7092 \else:
7093 \exp_after:wN __clist_pop:wwNNN #2 , \q_mark \q_stop #1#2#3
7094 \prg_return_true:
7095 \fi:
7096 }
7097 \cs_generate_variant:Nn \clist_pop:NNT { c }
7098 \cs_generate_variant:Nn \clist_pop:NNF { c }
7099 \cs_generate_variant:Nn \clist_pop:NNTF { c }
7100 \cs_generate_variant:Nn \clist_gpop:NNT { c }
7101 \cs_generate_variant:Nn \clist_gpop:NNF { c }
7102 \cs_generate_variant:Nn \clist_gpop:NNTF { c }

(End definition for \clist_get:NNTF and \clist_get:cNTF. These functions are documented on page
138.)

\clist_push:Nn
\clist_push:NV
\clist_push:No
\clist_push:Nx
\clist_push:cn
\clist_push:cV
\clist_push:co
\clist_push:cx
\clist_gpush:Nn
\clist_gpush:NV
\clist_gpush:No
\clist_gpush:Nx
\clist_gpush:cn
\clist_gpush:cV
\clist_gpush:co
\clist_gpush:cx

Pushing to a comma list is the same as adding on the left.
7103 \cs_new_eq:NN \clist_push:Nn \clist_put_left:Nn
7104 \cs_new_eq:NN \clist_push:NV \clist_put_left:NV
7105 \cs_new_eq:NN \clist_push:No \clist_put_left:No
7106 \cs_new_eq:NN \clist_push:Nx \clist_put_left:Nx
7107 \cs_new_eq:NN \clist_push:cn \clist_put_left:cn
7108 \cs_new_eq:NN \clist_push:cV \clist_put_left:cV
7109 \cs_new_eq:NN \clist_push:co \clist_put_left:co
7110 \cs_new_eq:NN \clist_push:cx \clist_put_left:cx
7111 \cs_new_eq:NN \clist_gpush:Nn \clist_gput_left:Nn
7112 \cs_new_eq:NN \clist_gpush:NV \clist_gput_left:NV
7113 \cs_new_eq:NN \clist_gpush:No \clist_gput_left:No

457

7114 \cs_new_eq:NN \clist_gpush:Nx \clist_gput_left:Nx
7115 \cs_new_eq:NN \clist_gpush:cn \clist_gput_left:cn
7116 \cs_new_eq:NN \clist_gpush:cV \clist_gput_left:cV
7117 \cs_new_eq:NN \clist_gpush:co \clist_gput_left:co
7118 \cs_new_eq:NN \clist_gpush:cx \clist_gput_left:cx

(End definition for \clist_push:Nn and others. These functions are documented on page 139.)

15.5 Modifying comma lists
\l__clist_internal_remove_clist An internal comma list for the removal routines.

7119 \clist_new:N \l__clist_internal_remove_clist

(End definition for \l__clist_internal_remove_clist. This variable is documented on page ??.)

\clist_remove_duplicates:N
\clist_remove_duplicates:c
\clist_gremove_duplicates:N
\clist_gremove_duplicates:c

__clist_remove_duplicates:NN

Removing duplicates means making a new list then copying it.
7120 \cs_new_protected:Npn \clist_remove_duplicates:N
7121 { __clist_remove_duplicates:NN \clist_set_eq:NN }
7122 \cs_new_protected:Npn \clist_gremove_duplicates:N
7123 { __clist_remove_duplicates:NN \clist_gset_eq:NN }
7124 \cs_new_protected:Npn __clist_remove_duplicates:NN #1#2
7125 {
7126 \clist_clear:N \l__clist_internal_remove_clist
7127 \clist_map_inline:Nn #2
7128 {
7129 \clist_if_in:NnF \l__clist_internal_remove_clist {##1}
7130 { \clist_put_right:Nn \l__clist_internal_remove_clist {##1} }
7131 }
7132 #1 #2 \l__clist_internal_remove_clist
7133 }
7134 \cs_generate_variant:Nn \clist_remove_duplicates:N { c }
7135 \cs_generate_variant:Nn \clist_gremove_duplicates:N { c }

(End definition for \clist_remove_duplicates:N and \clist_remove_duplicates:c. These functions
are documented on page 133.)

\clist_remove_all:Nn
\clist_remove_all:cn
\clist_gremove_all:Nn
\clist_gremove_all:cn

__clist_remove_all:NNn
__clist_remove_all:w
__clist_remove_all:

The method used here is very similar to \tl_replace_all:Nnn. Build a function de-
limited by the 〈item〉 that should be removed, surrounded with commas, and call that
function followed by the expanded comma list, and another copy of the 〈item〉. The loop
is controlled by the argument grabbed by __clist_remove_all:w: when the item was
found, the \q_mark delimiter used is the one inserted by __clist_tmp:w, and \use_-
none_delimit_by_q_stop:w is deleted. At the end, the final 〈item〉 is grabbed, and
the argument of __clist_tmp:w contains \q_mark: in that case, __clist_remove_-
all:w removes the second \q_mark (inserted by __clist_tmp:w), and lets \use_none_-
delimit_by_q_stop:w act.

No brace is lost because items are always grabbed with a leading comma. The
result of the first assignment has an extra leading comma, which we remove in a second
assignment. Two exceptions: if the clist lost all of its elements, the result is empty, and

458

we shouldn’t remove anything; if the clist started up empty, the first step happens to
turn it into a single comma, and the second step removes it.

7136 \cs_new_protected:Npn \clist_remove_all:Nn
7137 { __clist_remove_all:NNn \tl_set:Nx }
7138 \cs_new_protected:Npn \clist_gremove_all:Nn
7139 { __clist_remove_all:NNn \tl_gset:Nx }
7140 \cs_new_protected:Npn __clist_remove_all:NNn #1#2#3
7141 {
7142 \cs_set:Npn __clist_tmp:w ##1 , #3 ,
7143 {
7144 ##1
7145 , \q_mark , \use_none_delimit_by_q_stop:w ,
7146 __clist_remove_all:
7147 }
7148 #1 #2
7149 {
7150 \exp_after:wN __clist_remove_all:
7151 #2 , \q_mark , #3 , \q_stop
7152 }
7153 \clist_if_empty:NF #2
7154 {
7155 #1 #2
7156 {
7157 \exp_args:No \exp_not:o
7158 { \exp_after:wN \use_none:n #2 }
7159 }
7160 }
7161 }
7162 \cs_new:Npn __clist_remove_all:
7163 { \exp_after:wN __clist_remove_all:w __clist_tmp:w , }
7164 \cs_new:Npn __clist_remove_all:w #1 , \q_mark , #2 , { \exp_not:n {#1} }
7165 \cs_generate_variant:Nn \clist_remove_all:Nn { c }
7166 \cs_generate_variant:Nn \clist_gremove_all:Nn { c }

(End definition for \clist_remove_all:Nn and \clist_remove_all:cn. These functions are documented
on page 133.)

\clist_reverse:N
\clist_reverse:c
\clist_greverse:N
\clist_greverse:c

Use \clist_reverse:n in an x-expanding assignment. The extra work that \clist_-
reverse:n does to preserve braces and spaces would not be needed for the well-controlled
case of N-type comma lists, but the slow-down is not too bad.

7167 \cs_new_protected:Npn \clist_reverse:N #1
7168 { \tl_set:Nx #1 { \exp_args:No \clist_reverse:n {#1} } }
7169 \cs_new_protected:Npn \clist_greverse:N #1
7170 { \tl_gset:Nx #1 { \exp_args:No \clist_reverse:n {#1} } }
7171 \cs_generate_variant:Nn \clist_reverse:N { c }
7172 \cs_generate_variant:Nn \clist_greverse:N { c }

(End definition for \clist_reverse:N and others. These functions are documented on page 134.)

459

\clist_reverse:n
__clist_reverse:wwNww

__clist_reverse_end:ww

The reversed token list is built one item at a time, and stored between \q_stop and
\q_mark, in the form of ? followed by zero or more instances of “〈item〉,”. We start
from a comma list “〈item1〉,. . . ,〈itemn〉”. During the loop, the auxiliary __clist_-
reverse:wwNww receives “?〈itemi〉” as #1, “〈itemi+1〉,. . . ,〈itemn〉” as #2, __clist_-
reverse:wwNww as #3, what remains until \q_stop as #4, and “〈itemi−1〉,. . . ,〈item1〉,”
as #5. The auxiliary moves #1 just before #5, with a comma, and calls itself (#3).
After the last item is moved, __clist_reverse:wwNww receives “\q_mark __clist_-
reverse:wwNww !” as its argument #1, thus __clist_reverse_end:ww as its argument
#3. This second auxiliary cleans up until the marker !, removes the trailing comma
(introduced when the first item was moved after \q_stop), and leaves its argument #1
within \exp_not:n. There is also a need to remove a leading comma, hence \exp_not:o
and \use_none:n.

7173 \cs_new:Npn \clist_reverse:n #1
7174 {
7175 __clist_reverse:wwNww ? #1 ,
7176 \q_mark __clist_reverse:wwNww ! ,
7177 \q_mark __clist_reverse_end:ww
7178 \q_stop ? \q_mark
7179 }
7180 \cs_new:Npn __clist_reverse:wwNww
7181 #1 , #2 \q_mark #3 #4 \q_stop ? #5 \q_mark
7182 { #3 ? #2 \q_mark #3 #4 \q_stop #1 , #5 \q_mark }
7183 \cs_new:Npn __clist_reverse_end:ww #1 ! #2 , \q_mark
7184 { \exp_not:o { \use_none:n #2 } }

(End definition for \clist_reverse:n. This function is documented on page 134.)

15.6 Comma list conditionals
\clist_if_empty_p:N
\clist_if_empty_p:c
\clist_if_empty:NTF
\clist_if_empty:cTF

Simple copies from the token list variable material.
7185 \prg_new_eq_conditional:NNn \clist_if_empty:N \tl_if_empty:N
7186 { p , T , F , TF }
7187 \prg_new_eq_conditional:NNn \clist_if_empty:c \tl_if_empty:c
7188 { p , T , F , TF }

(End definition for \clist_if_empty:NTF and \clist_if_empty:cTF. These functions are documented
on page 134.)

\clist_if_empty_p:n
\clist_if_empty:nTF

__clist_if_empty_n:w
__clist_if_empty_n:wNw

As usual, we insert a token (here ?) before grabbing any argument: this avoids losing
braces. The argument of \tl_if_empty:oTF is empty if #1 is ? followed by blank spaces
(besides, this particular variant of the emptiness test is optimized). If the item of the
comma list is blank, grab the next one. As soon as one item is non-blank, exit: the second
auxiliary will grab \prg_return_false: as #2, unless every item in the comma list was
blank and the loop actually got broken by the trailing \q_mark \prg_return_false:
item.

7189 \prg_new_conditional:Npnn \clist_if_empty:n #1 { p , T , F , TF }
7190 {
7191 __clist_if_empty_n:w ? #1

460

7192 , \q_mark \prg_return_false:
7193 , \q_mark \prg_return_true:
7194 \q_stop
7195 }
7196 \cs_new:Npn __clist_if_empty_n:w #1 ,
7197 {
7198 \tl_if_empty:oTF { \use_none:nn #1 ? }
7199 { __clist_if_empty_n:w ? }
7200 { __clist_if_empty_n:wNw }
7201 }
7202 \cs_new:Npn __clist_if_empty_n:wNw #1 \q_mark #2#3 \q_stop {#2}

(End definition for \clist_if_empty:nTF. This function is documented on page 134.)

\clist_if_in:NnTF
\clist_if_in:NVTF
\clist_if_in:NoTF
\clist_if_in:cnTF
\clist_if_in:cVTF
\clist_if_in:coTF
\clist_if_in:nnTF
\clist_if_in:nVTF
\clist_if_in:noTF

__clist_if_in_return:nn

See description of the \tl_if_in:Nn function for details. We simply surround the comma
list, and the item, with commas.

7203 \prg_new_protected_conditional:Npnn \clist_if_in:Nn #1#2 { T , F , TF }
7204 {
7205 \exp_args:No __clist_if_in_return:nn #1 {#2}
7206 }
7207 \prg_new_protected_conditional:Npnn \clist_if_in:nn #1#2 { T , F , TF }
7208 {
7209 \clist_set:Nn \l__clist_internal_clist {#1}
7210 \exp_args:No __clist_if_in_return:nn \l__clist_internal_clist {#2}
7211 }
7212 \cs_new_protected:Npn __clist_if_in_return:nn #1#2
7213 {
7214 \cs_set:Npn __clist_tmp:w ##1 ,#2, { }
7215 \tl_if_empty:oTF
7216 { __clist_tmp:w ,#1, {} {} ,#2, }
7217 { \prg_return_false: } { \prg_return_true: }
7218 }
7219 \cs_generate_variant:Nn \clist_if_in:NnT { NV , No }
7220 \cs_generate_variant:Nn \clist_if_in:NnT { c , cV , co }
7221 \cs_generate_variant:Nn \clist_if_in:NnF { NV , No }
7222 \cs_generate_variant:Nn \clist_if_in:NnF { c , cV , co }
7223 \cs_generate_variant:Nn \clist_if_in:NnTF { NV , No }
7224 \cs_generate_variant:Nn \clist_if_in:NnTF { c , cV , co }
7225 \cs_generate_variant:Nn \clist_if_in:nnT { nV , no }
7226 \cs_generate_variant:Nn \clist_if_in:nnF { nV , no }
7227 \cs_generate_variant:Nn \clist_if_in:nnTF { nV , no }

(End definition for \clist_if_in:NnTF and others. These functions are documented on page 134.)

15.7 Mapping to comma lists
\clist_map_function:NN
\clist_map_function:cN

__clist_map_function:Nw

If the variable is empty, the mapping is skipped (otherwise, that comma-list would be
seen as consisting of one empty item). Then loop over the comma-list, grabbing one

461

comma-delimited item at a time. The end is marked by \q_recursion_tail. The aux-
iliary function __clist_map_function:Nw is used directly in \clist_map_inline:Nn.
Change with care.

7228 \cs_new:Npn \clist_map_function:NN #1#2
7229 {
7230 \clist_if_empty:NF #1
7231 {
7232 \exp_last_unbraced:NNo __clist_map_function:Nw #2 #1
7233 , \q_recursion_tail ,
7234 __prg_break_point:Nn \clist_map_break: { }
7235 }
7236 }
7237 \cs_new:Npn __clist_map_function:Nw #1#2 ,
7238 {
7239 __quark_if_recursion_tail_break:nN {#2} \clist_map_break:
7240 #1 {#2}
7241 __clist_map_function:Nw #1
7242 }
7243 \cs_generate_variant:Nn \clist_map_function:NN { c }

(End definition for \clist_map_function:NN and \clist_map_function:cN. These functions are docu-
mented on page 135.)

\clist_map_function:nN
__clist_map_function_n:Nn

__clist_map_unbrace:Nw

The n-type mapping function is a bit more awkward, since spaces must be trimmed
from each item. Space trimming is again based on __clist_trim_spaces_generic:nw.
The auxiliary __clist_map_function_n:Nn receives as arguments the function, and
the result of removing leading and trailing spaces from the item which lies until the next
comma. Empty items are ignored, then one level of braces is removed by __clist_-
map_unbrace:Nw.

7244 \cs_new:Npn \clist_map_function:nN #1#2
7245 {
7246 __clist_trim_spaces_generic:nw { __clist_map_function_n:Nn #2 }
7247 \q_mark #1, \q_recursion_tail,
7248 __prg_break_point:Nn \clist_map_break: { }
7249 }
7250 \cs_new:Npn __clist_map_function_n:Nn #1 #2
7251 {
7252 __quark_if_recursion_tail_break:nN {#2} \clist_map_break:
7253 \tl_if_empty:nF {#2} { __clist_map_unbrace:Nw #1 #2, }
7254 __clist_trim_spaces_generic:nw { __clist_map_function_n:Nn #1 }
7255 \q_mark
7256 }
7257 \cs_new:Npn __clist_map_unbrace:Nw #1 #2, { #1 {#2} }

(End definition for \clist_map_function:nN. This function is documented on page 135.)

\clist_map_inline:Nn
\clist_map_inline:cn
\clist_map_inline:nn

Inline mapping is done by creating a suitable function “on the fly”: this is done globally
to avoid any issues with TEX’s groups. We use a different function for each level of
nesting.

462

Since the mapping is non-expandable, we can perform the space-trimming needed
by the n version simply by storing the comma-list in a variable. We don’t need a different
comma-list for each nesting level: the comma-list is expanded before the mapping starts.

7258 \cs_new_protected:Npn \clist_map_inline:Nn #1#2
7259 {
7260 \clist_if_empty:NF #1
7261 {
7262 \int_gincr:N \g__prg_map_int
7263 \cs_gset:cpn { __prg_map_ \int_use:N \g__prg_map_int :w } ##1 {#2}
7264 \exp_last_unbraced:Nco __clist_map_function:Nw
7265 { __prg_map_ \int_use:N \g__prg_map_int :w }
7266 #1 , \q_recursion_tail ,
7267 __prg_break_point:Nn \clist_map_break:
7268 { \int_gdecr:N \g__prg_map_int }
7269 }
7270 }
7271 \cs_new_protected:Npn \clist_map_inline:nn #1
7272 {
7273 \clist_set:Nn \l__clist_internal_clist {#1}
7274 \clist_map_inline:Nn \l__clist_internal_clist
7275 }
7276 \cs_generate_variant:Nn \clist_map_inline:Nn { c }

(End definition for \clist_map_inline:Nn and \clist_map_inline:cn. These functions are documented
on page 135.)

\clist_map_variable:NNn
\clist_map_variable:cNn
\clist_map_variable:nNn

__clist_map_variable:Nnw

As for other comma-list mappings, filter out the case of an empty list. Same approach
as \clist_map_function:Nn, additionally we store each item in the given variable. As
for inline mappings, space trimming for the n variant is done by storing the comma list
in a variable.

7277 \cs_new_protected:Npn \clist_map_variable:NNn #1#2#3
7278 {
7279 \clist_if_empty:NF #1
7280 {
7281 \exp_args:Nno \use:nn
7282 { __clist_map_variable:Nnw #2 {#3} }
7283 #1
7284 , \q_recursion_tail , \q_recursion_stop
7285 __prg_break_point:Nn \clist_map_break: { }
7286 }
7287 }
7288 \cs_new_protected:Npn \clist_map_variable:nNn #1
7289 {
7290 \clist_set:Nn \l__clist_internal_clist {#1}
7291 \clist_map_variable:NNn \l__clist_internal_clist
7292 }
7293 \cs_new_protected:Npn __clist_map_variable:Nnw #1#2#3,
7294 {
7295 \tl_set:Nn #1 {#3}

463

7296 \quark_if_recursion_tail_stop:N #1
7297 \use:n {#2}
7298 __clist_map_variable:Nnw #1 {#2}
7299 }
7300 \cs_generate_variant:Nn \clist_map_variable:NNn { c }

(End definition for \clist_map_variable:NNn and \clist_map_variable:cNn. These functions are doc-
umented on page 135.)

\clist_map_break:
\clist_map_break:n

The break statements use the general __prg_map_break:Nn mechanism.
7301 \cs_new_nopar:Npn \clist_map_break:
7302 { __prg_map_break:Nn \clist_map_break: { } }
7303 \cs_new_nopar:Npn \clist_map_break:n
7304 { __prg_map_break:Nn \clist_map_break: }

(End definition for \clist_map_break: and \clist_map_break:n. These functions are documented on
page 136.)

\clist_count:N
\clist_count:c
\clist_count:n

__clist_count:n
__clist_count:w

Counting the items in a comma list is done using the same approach as for other token
count functions: turn each entry into a +1 then use integer evaluation to actually do the
mathematics. In the case of an n-type comma-list, we could of course use \clist_map_-
function:nN, but that is very slow, because it carefully removes spaces. Instead, we loop
manually, and skip blank items (but not {}, hence the extra spaces).

7305 \cs_new:Npn \clist_count:N #1
7306 {
7307 \int_eval:n
7308 {
7309 0
7310 \clist_map_function:NN #1 __clist_count:n
7311 }
7312 }
7313 \cs_generate_variant:Nn \clist_count:N { c }
7314 \cs_new:Npx \clist_count:n #1
7315 {
7316 \exp_not:N \int_eval:n
7317 {
7318 0
7319 \exp_not:N __clist_count:w \c_space_tl
7320 #1 \exp_not:n { , \q_recursion_tail , \q_recursion_stop }
7321 }
7322 }
7323 \cs_new:Npn __clist_count:n #1 { + \c_one }
7324 \cs_new:Npx __clist_count:w #1 ,
7325 {
7326 \exp_not:n { \exp_args:Nf \quark_if_recursion_tail_stop:n } {#1}
7327 \exp_not:N \tl_if_blank:nF {#1} { + \c_one }
7328 \exp_not:N __clist_count:w \c_space_tl
7329 }

(End definition for \clist_count:N , \clist_count:c , and \clist_count:n. These functions are docu-
mented on page 136.)

464

15.8 Using comma lists
\clist_use:Nnnn
\clist_use:cnnn
__clist_use:wwn

__clist_use:nwwwwnwn
__clist_use:nwwn

\clist_use:Nn
\clist_use:cn

First check that the variable exists. Then count the items in the comma list. If it has
none, output nothing. If it has one item, output that item, brace stripped (note that
space-trimming has already been done when the comma list was assigned). If it has two,
place the 〈separator between two〉 in the middle.

Otherwise, __clist_use:nwwwwnwn takes the following arguments; 1: a 〈separator〉,
2, 3, 4: three items from the comma list (or quarks), 5: the rest of the comma list, 6:
a 〈continuation〉 function (use_ii or use_iii with its 〈separator〉 argument), 7: junk,
and 8: the temporary result, which is built in a brace group following \q_stop. The
〈separator〉 and the first of the three items are placed in the result, then we use the
〈continuation〉, placing the remaining two items after it. When we begin this loop, the
three items really belong to the comma list, the first \q_mark is taken as a delimiter to
the use_ii function, and the continuation is use_ii itself. When we reach the last two
items of the original token list, \q_mark is taken as a third item, and now the second
\q_mark serves as a delimiter to use_ii, switching to the other 〈continuation〉, use_iii,
which uses the 〈separator between final two〉.

7330 \cs_new:Npn \clist_use:Nnnn #1#2#3#4
7331 {
7332 \clist_if_exist:NTF #1
7333 {
7334 \int_case:nnF { \clist_count:N #1 }
7335 {
7336 { 0 } { }
7337 { 1 } { \exp_after:wN __clist_use:wwn #1 , , { } }
7338 { 2 } { \exp_after:wN __clist_use:wwn #1 , {#2} }
7339 }
7340 {
7341 \exp_after:wN __clist_use:nwwwwnwn
7342 \exp_after:wN { \exp_after:wN } #1 ,
7343 \q_mark , { __clist_use:nwwwwnwn {#3} }
7344 \q_mark , { __clist_use:nwwn {#4} }
7345 \q_stop { }
7346 }
7347 }
7348 {
7349 __msg_kernel_expandable_error:nnn
7350 { kernel } { bad-variable } {#1}
7351 }
7352 }
7353 \cs_generate_variant:Nn \clist_use:Nnnn { c }
7354 \cs_new:Npn __clist_use:wwn #1 , #2 , #3 { \exp_not:n { #1 #3 #2 } }
7355 \cs_new:Npn __clist_use:nwwwwnwn
7356 #1#2 , #3 , #4 , #5 \q_mark , #6#7 \q_stop #8
7357 { #6 {#3} , {#4} , #5 \q_mark , {#6} #7 \q_stop { #8 #1 #2 } }
7358 \cs_new:Npn __clist_use:nwwn #1#2 , #3 \q_stop #4
7359 { \exp_not:n { #4 #1 #2 } }
7360 \cs_new:Npn \clist_use:Nn #1#2

465

7361 { \clist_use:Nnnn #1 {#2} {#2} {#2} }
7362 \cs_generate_variant:Nn \clist_use:Nn { c }

(End definition for \clist_use:Nnnn and \clist_use:cnnn. These functions are documented on page
137.)

15.9 Using a single item
\clist_item:Nn
\clist_item:cn

__clist_item:nnNn
__clist_item_N_loop:nw

To avoid needing to test the end of the list at each step, we first compute the 〈length〉 of
the list. If the item number is 0, less than −〈length〉, or more than 〈length〉, the result is
empty. If it is negative, but not less than −〈length〉, add 〈length〉+ 1 to the item number
before performing the loop. The loop itself is very simple, return the item if the counter
reached 1, otherwise, decrease the counter and repeat.

7363 \cs_new:Npn \clist_item:Nn #1#2
7364 {
7365 \exp_args:Nfo __clist_item:nnNn
7366 { \clist_count:N #1 }
7367 #1
7368 __clist_item_N_loop:nw
7369 {#2}
7370 }
7371 \cs_new:Npn __clist_item:nnNn #1#2#3#4
7372 {
7373 \int_compare:nNnTF {#4} < \c_zero
7374 {
7375 \int_compare:nNnTF {#4} < { - #1 }
7376 { \use_none_delimit_by_q_stop:w }
7377 { \exp_args:Nf #3 { \int_eval:n { #4 + \c_one + #1 } } }
7378 }
7379 {
7380 \int_compare:nNnTF {#4} > {#1}
7381 { \use_none_delimit_by_q_stop:w }
7382 { #3 {#4} }
7383 }
7384 { } , #2 , \q_stop
7385 }
7386 \cs_new:Npn __clist_item_N_loop:nw #1 #2,
7387 {
7388 \int_compare:nNnTF {#1} = \c_zero
7389 { \use_i_delimit_by_q_stop:nw { \exp_not:n {#2} } }
7390 { \exp_args:Nf __clist_item_N_loop:nw { \int_eval:n { #1 - 1 } } }
7391 }
7392 \cs_generate_variant:Nn \clist_item:Nn { c }

(End definition for \clist_item:Nn and \clist_item:cn. These functions are documented on page 139.)

\clist_item:nn
__clist_item_n:nw

__clist_item_n_loop:nw
__clist_item_n_end:n

__clist_item_n_strip:w

This starts in the same way as \clist_item:Nn by counting the items of the comma list.
The final item should be space-trimmed before being brace-stripped, hence we insert a
couple of odd-looking \prg_do_nothing: to avoid losing braces. Blank items are ignored.

466

7393 \cs_new:Npn \clist_item:nn #1#2
7394 {
7395 \exp_args:Nf __clist_item:nnNn
7396 { \clist_count:n {#1} }
7397 {#1}
7398 __clist_item_n:nw
7399 {#2}
7400 }
7401 \cs_new:Npn __clist_item_n:nw #1
7402 { __clist_item_n_loop:nw {#1} \prg_do_nothing: }
7403 \cs_new:Npn __clist_item_n_loop:nw #1 #2,
7404 {
7405 \exp_args:No \tl_if_blank:nTF {#2}
7406 { __clist_item_n_loop:nw {#1} \prg_do_nothing: }
7407 {
7408 \int_compare:nNnTF {#1} = \c_zero
7409 { \exp_args:No __clist_item_n_end:n {#2} }
7410 {
7411 \exp_args:Nf __clist_item_n_loop:nw
7412 { \int_eval:n { #1 - 1 } }
7413 \prg_do_nothing:
7414 }
7415 }
7416 }
7417 \cs_new:Npn __clist_item_n_end:n #1 #2 \q_stop
7418 {
7419 __tl_trim_spaces:nn { \q_mark #1 }
7420 { \exp_last_unbraced:No __clist_item_n_strip:w } ,
7421 }
7422 \cs_new:Npn __clist_item_n_strip:w #1 , { \exp_not:n {#1} }

(End definition for \clist_item:nn. This function is documented on page 139.)

15.10 Viewing comma lists
\clist_show:N
\clist_show:c
\clist_show:n

Apply the general __msg_show_variable:NNNnn. In the case of an n-type comma-list,
we must do things by hand, using the same message show-clist as for an N-type comma-
list but with an empty name (first argument).

7423 \cs_new_protected:Npn \clist_show:N #1
7424 {
7425 __msg_show_variable:NNNnn #1
7426 \clist_if_exist:NTF \clist_if_empty:NTF { clist }
7427 { \clist_map_function:NN #1 __msg_show_item:n }
7428 }
7429 \cs_new_protected:Npn \clist_show:n #1
7430 {
7431 __msg_show_pre:nnxxxx { LaTeX / kernel } { show-clist }
7432 { } { \clist_if_empty:nF {#1} { ? } } { } { }
7433 __msg_show_wrap:n

467

7434 { \clist_map_function:nN {#1} __msg_show_item:n }
7435 }
7436 \cs_generate_variant:Nn \clist_show:N { c }

(End definition for \clist_show:N and \clist_show:c. These functions are documented on page 139.)

15.11 Scratch comma lists
\l_tmpa_clist
\l_tmpb_clist
\g_tmpa_clist
\g_tmpb_clist

Temporary comma list variables.
7437 \clist_new:N \l_tmpa_clist
7438 \clist_new:N \l_tmpb_clist
7439 \clist_new:N \g_tmpa_clist
7440 \clist_new:N \g_tmpb_clist

(End definition for \l_tmpa_clist and \l_tmpb_clist. These variables are documented on page 139.)

7441 〈/initex | package〉

16 l3prop implementation
The following test files are used for this code: m3prop001, m3prop002, m3prop003,
m3prop004, m3show001.

7442 〈*initex | package〉
7443 〈@@=prop〉

A property list is a macro whose top-level expansion is of the form

\s__prop __prop_pair:wn 〈key1〉 \s__prop {〈value1〉}
. . .
__prop_pair:wn 〈keyn〉 \s__prop {〈valuen〉}

where \s__prop is a scan mark (equal to \scan_stop:), and __prop_pair:wn can be
used to map through the property list.

\s__prop A private scan mark is used as a marker after each key, and at the very beginning of the
property list.

7444 __scan_new:N \s__prop

(End definition for \s__prop.)

__prop_pair:wn The delimiter is always defined, but when misused simply triggers an error and removes
its argument.

7445 \cs_new:Npn __prop_pair:wn #1 \s__prop #2
7446 { __msg_kernel_expandable_error:nn { kernel } { misused-prop } }

(End definition for __prop_pair:wn.)

\l__prop_internal_tl Token list used to store the new key–value pair inserted by \prop_put:Nnn and friends.
7447 \tl_new:N \l__prop_internal_tl

468

(End definition for \l__prop_internal_tl. This variable is documented on page 146.)

\c_empty_prop An empty prop.
7448 \tl_const:Nn \c_empty_prop { \s__prop }

(End definition for \c_empty_prop. This variable is documented on page 146.)

16.1 Allocation and initialisation
\prop_new:N
\prop_new:c

Property lists are initialized with the value \c_empty_prop.
7449 \cs_new_protected:Npn \prop_new:N #1
7450 {
7451 __chk_if_free_cs:N #1
7452 \cs_gset_eq:NN #1 \c_empty_prop
7453 }
7454 \cs_generate_variant:Nn \prop_new:N { c }

(End definition for \prop_new:N and \prop_new:c. These functions are documented on page 141.)

\prop_clear:N
\prop_clear:c
\prop_gclear:N
\prop_gclear:c

The same idea for clearing.
7455 \cs_new_protected:Npn \prop_clear:N #1
7456 { \prop_set_eq:NN #1 \c_empty_prop }
7457 \cs_generate_variant:Nn \prop_clear:N { c }
7458 \cs_new_protected:Npn \prop_gclear:N #1
7459 { \prop_gset_eq:NN #1 \c_empty_prop }
7460 \cs_generate_variant:Nn \prop_gclear:N { c }

(End definition for \prop_clear:N and \prop_clear:c. These functions are documented on page 141.)

\prop_clear_new:N
\prop_clear_new:c
\prop_gclear_new:N
\prop_gclear_new:c

Once again a simple variation of the token list functions.
7461 \cs_new_protected:Npn \prop_clear_new:N #1
7462 { \prop_if_exist:NTF #1 { \prop_clear:N #1 } { \prop_new:N #1 } }
7463 \cs_generate_variant:Nn \prop_clear_new:N { c }
7464 \cs_new_protected:Npn \prop_gclear_new:N #1
7465 { \prop_if_exist:NTF #1 { \prop_gclear:N #1 } { \prop_new:N #1 } }
7466 \cs_generate_variant:Nn \prop_gclear_new:N { c }

(End definition for \prop_clear_new:N and \prop_clear_new:c. These functions are documented on
page 141.)

\prop_set_eq:NN
\prop_set_eq:cN
\prop_set_eq:Nc
\prop_set_eq:cc
\prop_gset_eq:NN
\prop_gset_eq:cN
\prop_gset_eq:Nc
\prop_gset_eq:cc

These are simply copies from the token list functions.
7467 \cs_new_eq:NN \prop_set_eq:NN \tl_set_eq:NN
7468 \cs_new_eq:NN \prop_set_eq:Nc \tl_set_eq:Nc
7469 \cs_new_eq:NN \prop_set_eq:cN \tl_set_eq:cN
7470 \cs_new_eq:NN \prop_set_eq:cc \tl_set_eq:cc
7471 \cs_new_eq:NN \prop_gset_eq:NN \tl_gset_eq:NN
7472 \cs_new_eq:NN \prop_gset_eq:Nc \tl_gset_eq:Nc
7473 \cs_new_eq:NN \prop_gset_eq:cN \tl_gset_eq:cN
7474 \cs_new_eq:NN \prop_gset_eq:cc \tl_gset_eq:cc

(End definition for \prop_set_eq:NN and others. These functions are documented on page 141.)

469

\l_tmpa_prop
\l_tmpb_prop
\g_tmpa_prop
\g_tmpb_prop

We can now initialize the scratch variables.
7475 \prop_new:N \l_tmpa_prop
7476 \prop_new:N \l_tmpb_prop
7477 \prop_new:N \g_tmpa_prop
7478 \prop_new:N \g_tmpb_prop

(End definition for \l_tmpa_prop and \l_tmpb_prop. These variables are documented on page 146.)

16.2 Accessing data in property lists
__prop_split:NnTF

__prop_split_aux:NnTF
__prop_split_aux:w

This function is used by most of the module, and hence must be fast. It receives a
〈property list〉, a 〈key〉, a 〈true code〉 and a 〈false code〉. The aim is to split the 〈property
list〉 at the given 〈key〉 into the 〈extract1〉 before the key–value pair, the 〈value〉 associated
with the 〈key〉 and the 〈extract2〉 after the key–value pair. This is done using a delimited
function, whose definition is as follows, where the 〈key〉 is turned into a string.

\cs_set:Npn __prop_split_aux:w #1
__prop_pair:wn 〈key〉 \s__prop #2
#3 \q_mark #4 #5 \q_stop
{ #4 {〈true code〉} {〈false code〉} }

If the 〈key〉 is present in the property list, __prop_split_aux:w’s #1 is the part
before the 〈key〉, #2 is the 〈value〉, #3 is the part after the 〈key〉, #4 is \use_i:nn, and
#5 is additional tokens that we do not care about. The 〈true code〉 is left in the input
stream, and can use the parameters #1, #2, #3 for the three parts of the property list
as desired. Namely, the original property list is in this case #1 __prop_pair:wn 〈key〉
\s__prop {#2} #3.

If the 〈key〉 is not there, then the 〈function〉 is \use_ii:nn, which keeps the 〈false
code〉.

7479 \cs_new_protected:Npn __prop_split:NnTF #1#2
7480 { \exp_args:NNo __prop_split_aux:NnTF #1 { \tl_to_str:n {#2} } }
7481 \cs_new_protected:Npn __prop_split_aux:NnTF #1#2#3#4
7482 {
7483 \cs_set:Npn __prop_split_aux:w ##1
7484 __prop_pair:wn #2 \s__prop ##2 ##3 \q_mark ##4 ##5 \q_stop
7485 { ##4 {#3} {#4} }
7486 \exp_after:wN __prop_split_aux:w #1 \q_mark \use_i:nn
7487 __prop_pair:wn #2 \s__prop { } \q_mark \use_ii:nn \q_stop
7488 }
7489 \cs_new:Npn __prop_split_aux:w { }

(End definition for __prop_split:NnTF.)

\prop_remove:Nn
\prop_remove:NV
\prop_remove:cn
\prop_remove:cV
\prop_gremove:Nn
\prop_gremove:NV
\prop_gremove:cn
\prop_gremove:cV

Deleting from a property starts by splitting the list. If the key is present in the property
list, the returned value is ignored. If the key is missing, nothing happens.

7490 \cs_new_protected:Npn \prop_remove:Nn #1#2
7491 {
7492 __prop_split:NnTF #1 {#2}
7493 { \tl_set:Nn #1 { ##1 ##3 } }

470

7494 { }
7495 }
7496 \cs_new_protected:Npn \prop_gremove:Nn #1#2
7497 {
7498 __prop_split:NnTF #1 {#2}
7499 { \tl_gset:Nn #1 { ##1 ##3 } }
7500 { }
7501 }
7502 \cs_generate_variant:Nn \prop_remove:Nn { NV }
7503 \cs_generate_variant:Nn \prop_remove:Nn { c , cV }
7504 \cs_generate_variant:Nn \prop_gremove:Nn { NV }
7505 \cs_generate_variant:Nn \prop_gremove:Nn { c , cV }

(End definition for \prop_remove:Nn and others. These functions are documented on page 143.)

\prop_get:NnN
\prop_get:NVN
\prop_get:NoN
\prop_get:cnN
\prop_get:cVN
\prop_get:coN

Getting an item from a list is very easy: after splitting, if the key is in the property list,
just set the token list variable to the return value, otherwise to \q_no_value.

7506 \cs_new_protected:Npn \prop_get:NnN #1#2#3
7507 {
7508 __prop_split:NnTF #1 {#2}
7509 { \tl_set:Nn #3 {##2} }
7510 { \tl_set:Nn #3 { \q_no_value } }
7511 }
7512 \cs_generate_variant:Nn \prop_get:NnN { NV , No }
7513 \cs_generate_variant:Nn \prop_get:NnN { c , cV , co }

(End definition for \prop_get:NnN and others. These functions are documented on page 142.)

\prop_pop:NnN
\prop_pop:NoN
\prop_pop:cnN
\prop_pop:coN
\prop_gpop:NnN
\prop_gpop:NoN
\prop_gpop:cnN
\prop_gpop:coN

Popping a value also starts by doing the split. If the key is present, save the value in
the token list and update the property list as when deleting. If the key is missing, save
\q_no_value in the token list.

7514 \cs_new_protected:Npn \prop_pop:NnN #1#2#3
7515 {
7516 __prop_split:NnTF #1 {#2}
7517 {
7518 \tl_set:Nn #3 {##2}
7519 \tl_set:Nn #1 { ##1 ##3 }
7520 }
7521 { \tl_set:Nn #3 { \q_no_value } }
7522 }
7523 \cs_new_protected:Npn \prop_gpop:NnN #1#2#3
7524 {
7525 __prop_split:NnTF #1 {#2}
7526 {
7527 \tl_set:Nn #3 {##2}
7528 \tl_gset:Nn #1 { ##1 ##3 }
7529 }
7530 { \tl_set:Nn #3 { \q_no_value } }
7531 }
7532 \cs_generate_variant:Nn \prop_pop:NnN { No }

471

7533 \cs_generate_variant:Nn \prop_pop:NnN { c , co }
7534 \cs_generate_variant:Nn \prop_gpop:NnN { No }
7535 \cs_generate_variant:Nn \prop_gpop:NnN { c , co }

(End definition for \prop_pop:NnN and others. These functions are documented on page 142.)

\prop_item:Nn
\prop_item:cn

__prop_item_Nn:nwwn

Getting the value corresponding to a key in a property list in an expandable fashion is
similar to mapping some tokens. Go through the property list one 〈key〉–〈value〉 pair at
a time: the arguments of __prop_item_Nn:nwn are the 〈key〉 we are looking for, a 〈key〉
of the property list, and its associated value. The 〈keys〉 are compared (as strings). If
they match, the 〈value〉 is returned, within \exp_not:n. The loop terminates even if the
〈key〉 is missing, and yields an empty value, because we have appended the appropriate
〈key〉–〈empty value〉 pair to the property list.

7536 \cs_new:Npn \prop_item:Nn #1#2
7537 {
7538 \exp_last_unbraced:Noo __prop_item_Nn:nwwn { \tl_to_str:n {#2} } #1
7539 __prop_pair:wn \tl_to_str:n {#2} \s__prop { }
7540 __prg_break_point:
7541 }
7542 \cs_new:Npn __prop_item_Nn:nwwn #1#2 __prop_pair:wn #3 \s__prop #4
7543 {
7544 \str_if_eq_x:nnTF {#1} {#3}
7545 { __prg_break:n { \exp_not:n {#4} } }
7546 { __prop_item_Nn:nwwn {#1} }
7547 }
7548 \cs_generate_variant:Nn \prop_item:Nn { c }

(End definition for \prop_item:Nn and \prop_item:cn. These functions are documented on page 143.)

\prop_pop:NnNTF
\prop_pop:cnNTF
\prop_gpop:NnNTF
\prop_gpop:cnNTF

Popping an item from a property list, keeping track of whether the key was present or
not, is implemented as a conditional. If the key was missing, neither the property list, nor
the token list are altered. Otherwise, \prg_return_true: is used after the assignments.

7549 \prg_new_protected_conditional:Npnn \prop_pop:NnN #1#2#3 { T , F , TF }
7550 {
7551 __prop_split:NnTF #1 {#2}
7552 {
7553 \tl_set:Nn #3 {##2}
7554 \tl_set:Nn #1 { ##1 ##3 }
7555 \prg_return_true:
7556 }
7557 { \prg_return_false: }
7558 }
7559 \prg_new_protected_conditional:Npnn \prop_gpop:NnN #1#2#3 { T , F , TF }
7560 {
7561 __prop_split:NnTF #1 {#2}
7562 {
7563 \tl_set:Nn #3 {##2}
7564 \tl_gset:Nn #1 { ##1 ##3 }
7565 \prg_return_true:

472

7566 }
7567 { \prg_return_false: }
7568 }
7569 \cs_generate_variant:Nn \prop_pop:NnNT { c }
7570 \cs_generate_variant:Nn \prop_pop:NnNF { c }
7571 \cs_generate_variant:Nn \prop_pop:NnNTF { c }
7572 \cs_generate_variant:Nn \prop_gpop:NnNT { c }
7573 \cs_generate_variant:Nn \prop_gpop:NnNF { c }
7574 \cs_generate_variant:Nn \prop_gpop:NnNTF { c }

(End definition for \prop_pop:NnNTF and others. These functions are documented on page 144.)

\prop_put:Nnn
\prop_put:NnV
\prop_put:Nno
\prop_put:Nnx
\prop_put:NVn
\prop_put:NVV
\prop_put:Non
\prop_put:Noo
\prop_put:cnn
\prop_put:cnV
\prop_put:cno
\prop_put:cnx
\prop_put:cVn
\prop_put:cVV
\prop_put:con
\prop_put:coo
\prop_gput:Nnn
\prop_gput:NnV
\prop_gput:Nno
\prop_gput:Nnx
\prop_gput:NVn
\prop_gput:NVV
\prop_gput:Non
\prop_gput:Noo
\prop_gput:cnn
\prop_gput:cnV
\prop_gput:cno
\prop_gput:cnx
\prop_gput:cVn
\prop_gput:cVV
\prop_gput:con
\prop_gput:coo

__prop_put:NNnn

Since the branches of __prop_split:NnTF are used as the replacement text of an internal
macro, and since the 〈key〉 and new 〈value〉 may contain arbitrary tokens, it is not safe to
include them in the argument of __prop_split:NnTF. We thus start by storing in \l_-
_prop_internal_tl tokens which (after x-expansion) encode the key–value pair. This
variable can safely be used in __prop_split:NnTF. If the 〈key〉 was absent, append the
new key–value to the list. Otherwise concatenate the extracts ##1 and ##3 with the new
key–value pair \l__prop_internal_tl. The updated entry is placed at the same spot
as the original 〈key〉 in the property list, preserving the order of entries.

7575 \cs_new_protected_nopar:Npn \prop_put:Nnn { __prop_put:NNnn \tl_set:Nx }
7576 \cs_new_protected_nopar:Npn \prop_gput:Nnn { __prop_put:NNnn \tl_gset:Nx }
7577 \cs_new_protected:Npn __prop_put:NNnn #1#2#3#4
7578 {
7579 \tl_set:Nn \l__prop_internal_tl
7580 {
7581 \exp_not:N __prop_pair:wn \tl_to_str:n {#3}
7582 \s__prop { \exp_not:n {#4} }
7583 }
7584 __prop_split:NnTF #2 {#3}
7585 { #1 #2 { \exp_not:n {##1} \l__prop_internal_tl \exp_not:n {##3} } }
7586 { #1 #2 { \exp_not:o {#2} \l__prop_internal_tl } }
7587 }
7588 \cs_generate_variant:Nn \prop_put:Nnn
7589 { NnV , Nno , Nnx , NV , NVV , No , Noo }
7590 \cs_generate_variant:Nn \prop_put:Nnn
7591 { c , cnV , cno , cnx , cV , cVV , co , coo }
7592 \cs_generate_variant:Nn \prop_gput:Nnn
7593 { NnV , Nno , Nnx , NV , NVV , No , Noo }
7594 \cs_generate_variant:Nn \prop_gput:Nnn
7595 { c , cnV , cno , cnx , cV , cVV , co , coo }

(End definition for \prop_put:Nnn and others. These functions are documented on page 142.)

\prop_put_if_new:Nnn
\prop_put_if_new:cnn
\prop_gput_if_new:Nnn
\prop_gput_if_new:cnn

__prop_put_if_new:NNnn

Adding conditionally also splits. If the key is already present, the three brace groups
given by __prop_split:NnTF are removed. If the key is new, then the value is added,
being careful to convert the key to a string using \tl_to_str:n.

7596 \cs_new_protected_nopar:Npn \prop_put_if_new:Nnn
7597 { __prop_put_if_new:NNnn \tl_set:Nx }

473

7598 \cs_new_protected_nopar:Npn \prop_gput_if_new:Nnn
7599 { __prop_put_if_new:NNnn \tl_gset:Nx }
7600 \cs_new_protected:Npn __prop_put_if_new:NNnn #1#2#3#4
7601 {
7602 \tl_set:Nn \l__prop_internal_tl
7603 {
7604 \exp_not:N __prop_pair:wn \tl_to_str:n {#3}
7605 \s__prop \exp_not:n { {#4} }
7606 }
7607 __prop_split:NnTF #2 {#3}
7608 { }
7609 { #1 #2 { \exp_not:o {#2} \l__prop_internal_tl } }
7610 }
7611 \cs_generate_variant:Nn \prop_put_if_new:Nnn { c }
7612 \cs_generate_variant:Nn \prop_gput_if_new:Nnn { c }

(End definition for \prop_put_if_new:Nnn and \prop_put_if_new:cnn. These functions are documented
on page 142.)

16.3 Property list conditionals
\prop_if_exist_p:N
\prop_if_exist_p:c
\prop_if_exist:NTF
\prop_if_exist:cTF

Copies of the cs functions defined in l3basics.
7613 \prg_new_eq_conditional:NNn \prop_if_exist:N \cs_if_exist:N
7614 { TF , T , F , p }
7615 \prg_new_eq_conditional:NNn \prop_if_exist:c \cs_if_exist:c
7616 { TF , T , F , p }

(End definition for \prop_if_exist:NTF and \prop_if_exist:cTF. These functions are documented on
page 143.)

\prop_if_empty_p:N
\prop_if_empty_p:c
\prop_if_empty:NTF
\prop_if_empty:cTF

Same test as for token lists.
7617 \prg_new_conditional:Npnn \prop_if_empty:N #1 { p , T , F , TF }
7618 {
7619 \tl_if_eq:NNTF #1 \c_empty_prop
7620 \prg_return_true: \prg_return_false:
7621 }
7622 \cs_generate_variant:Nn \prop_if_empty_p:N { c }
7623 \cs_generate_variant:Nn \prop_if_empty:NT { c }
7624 \cs_generate_variant:Nn \prop_if_empty:NF { c }
7625 \cs_generate_variant:Nn \prop_if_empty:NTF { c }

(End definition for \prop_if_empty:NTF and \prop_if_empty:cTF. These functions are documented on
page 143.)

\prop_if_in_p:Nn
\prop_if_in_p:NV
\prop_if_in_p:No
\prop_if_in_p:cn
\prop_if_in_p:cV
\prop_if_in_p:co
\prop_if_in:NnTF
\prop_if_in:NVTF
\prop_if_in:NoTF
\prop_if_in:cnTF
\prop_if_in:cVTF
\prop_if_in:coTF

__prop_if_in:nwwn
__prop_if_in:N

Testing expandably if a key is in a property list requires to go through the key–value
pairs one by one. This is rather slow, and a faster test would be

\prg_new_protected_conditional:Npnn \prop_if_in:Nn #1 #2
{
\@@_split:NnTF #1 {#2}
{ \prg_return_true: }

474

{ \prg_return_false: }
}

but __prop_split:NnTF is non-expandable.
Instead, the key is compared to each key in turn using \str_if_eq_x:nn, which is

expandable. To terminate the mapping, we append to the property list the key that is
searched for. This second \tl_to_str:n is not expanded at the start, but only when in-
cluded in the \str_if_eq_x:nn. It cannot make the breaking mechanism choke, because
the arbitrary token list material is enclosed in braces. The second argument of __prop_-
if_in:nwwn is most often empty. When the 〈key〉 is found in the list, __prop_if_in:N
receives __prop_pair:wn, and if it is found as the extra item, the function receives
\q_recursion_tail, easily recognizable.

Here, \prop_map_function:NN is not sufficient for the mapping, since it can only
map a single token, and cannot carry the key that is searched for.

7626 \prg_new_conditional:Npnn \prop_if_in:Nn #1#2 { p , T , F , TF }
7627 {
7628 \exp_last_unbraced:Noo __prop_if_in:nwwn { \tl_to_str:n {#2} } #1
7629 __prop_pair:wn \tl_to_str:n {#2} \s__prop { }
7630 \q_recursion_tail
7631 __prg_break_point:
7632 }
7633 \cs_new:Npn __prop_if_in:nwwn #1#2 __prop_pair:wn #3 \s__prop #4
7634 {
7635 \str_if_eq_x:nnTF {#1} {#3}
7636 { __prop_if_in:N }
7637 { __prop_if_in:nwwn {#1} }
7638 }
7639 \cs_new:Npn __prop_if_in:N #1
7640 {
7641 \if_meaning:w \q_recursion_tail #1
7642 \prg_return_false:
7643 \else:
7644 \prg_return_true:
7645 \fi:
7646 __prg_break:
7647 }
7648 \cs_generate_variant:Nn \prop_if_in_p:Nn { NV , No }
7649 \cs_generate_variant:Nn \prop_if_in_p:Nn { c , cV , co }
7650 \cs_generate_variant:Nn \prop_if_in:NnT { NV , No }
7651 \cs_generate_variant:Nn \prop_if_in:NnT { c , cV , co }
7652 \cs_generate_variant:Nn \prop_if_in:NnF { NV , No }
7653 \cs_generate_variant:Nn \prop_if_in:NnF { c , cV , co }
7654 \cs_generate_variant:Nn \prop_if_in:NnTF { NV , No }
7655 \cs_generate_variant:Nn \prop_if_in:NnTF { c , cV , co }

(End definition for \prop_if_in:NnTF and others. These functions are documented on page 143.)

475

16.4 Recovering values from property lists with branching
\prop_get:NnNTF
\prop_get:NVNTF
\prop_get:NoNTF
\prop_get:cnNTF
\prop_get:cVNTF
\prop_get:coNTF

Getting the value corresponding to a key, keeping track of whether the key was present
or not, is implemented as a conditional (with side effects). If the key was absent, the
token list is not altered.

7656 \prg_new_protected_conditional:Npnn \prop_get:NnN #1#2#3 { T , F , TF }
7657 {
7658 __prop_split:NnTF #1 {#2}
7659 {
7660 \tl_set:Nn #3 {##2}
7661 \prg_return_true:
7662 }
7663 { \prg_return_false: }
7664 }
7665 \cs_generate_variant:Nn \prop_get:NnNT { NV , No }
7666 \cs_generate_variant:Nn \prop_get:NnNF { NV , No }
7667 \cs_generate_variant:Nn \prop_get:NnNTF { NV , No }
7668 \cs_generate_variant:Nn \prop_get:NnNT { c , cV , co }
7669 \cs_generate_variant:Nn \prop_get:NnNF { c , cV , co }
7670 \cs_generate_variant:Nn \prop_get:NnNTF { c , cV , co }

(End definition for \prop_get:NnNTF and others. These functions are documented on page 144.)

16.5 Mapping to property lists
\prop_map_function:NN
\prop_map_function:Nc
\prop_map_function:cN
\prop_map_function:cc

__prop_map_function:Nwwn

The fastest way to do a recursion here is to use an \if_meaning:w test: the keys are
strings, and thus cannot match the marker \q_recursion_tail. A special case to note
is when the key #3 is empty: then \q_recursion_tail is compared to \exp_after:wN,
also different. Note that #2 is empty, except at the first iteration, where it is \s__prop.

7671 \cs_new:Npn \prop_map_function:NN #1#2
7672 {
7673 \exp_last_unbraced:NNo __prop_map_function:Nwwn #2 #1
7674 __prop_pair:wn \q_recursion_tail \s__prop { }
7675 __prg_break_point:Nn \prop_map_break: { }
7676 }
7677 \cs_new:Npn __prop_map_function:Nwwn #1#2 __prop_pair:wn #3 \s__prop #4
7678 {
7679 \if_meaning:w \q_recursion_tail #3
7680 \exp_after:wN \prop_map_break:
7681 \fi:
7682 #1 {#3} {#4}
7683 __prop_map_function:Nwwn #1
7684 }
7685 \cs_generate_variant:Nn \prop_map_function:NN { Nc }
7686 \cs_generate_variant:Nn \prop_map_function:NN { c , cc }

(End definition for \prop_map_function:NN and others. These functions are documented on page 144.)

\prop_map_inline:Nn
\prop_map_inline:cn

Mapping in line requires a nesting level counter. Store the current definition of __prop_-
pair:wn, and define it anew. At the end of the loop, revert to the earlier definition. Note

476

that besides pairs of the form __prop_pair:wn 〈key〉 \s__prop {〈value〉}, there are a
leading and a trailing tokens, but both are equal to \scan_stop:, hence have no effect
in such inline mapping.

7687 \cs_new_protected:Npn \prop_map_inline:Nn #1#2
7688 {
7689 \cs_gset_eq:cN
7690 { __prg_map_ \int_use:N \g__prg_map_int :wn } __prop_pair:wn
7691 \int_gincr:N \g__prg_map_int
7692 \cs_gset:Npn __prop_pair:wn ##1 \s__prop ##2 {#2}
7693 #1
7694 __prg_break_point:Nn \prop_map_break:
7695 {
7696 \int_gdecr:N \g__prg_map_int
7697 \cs_gset_eq:Nc __prop_pair:wn
7698 { __prg_map_ \int_use:N \g__prg_map_int :wn }
7699 }
7700 }
7701 \cs_generate_variant:Nn \prop_map_inline:Nn { c }

(End definition for \prop_map_inline:Nn and \prop_map_inline:cn. These functions are documented
on page 145.)

\prop_map_break:
\prop_map_break:n

The break statements are based on the general __prg_map_break:Nn.
7702 \cs_new_nopar:Npn \prop_map_break:
7703 { __prg_map_break:Nn \prop_map_break: { } }
7704 \cs_new_nopar:Npn \prop_map_break:n
7705 { __prg_map_break:Nn \prop_map_break: }

(End definition for \prop_map_break:. This function is documented on page 145.)

16.6 Viewing property lists
\prop_show:N
\prop_show:c

Apply the general __msg_show_variable:NNNnn. Contrarily to sequences and comma
lists, we use __msg_show_item:nn to format both the key and the value for each pair.

7706 \cs_new_protected:Npn \prop_show:N #1
7707 {
7708 __msg_show_variable:NNNnn #1
7709 \prop_if_exist:NTF \prop_if_empty:NTF { prop }
7710 { \prop_map_function:NN #1 __msg_show_item:nn }
7711 }
7712 \cs_generate_variant:Nn \prop_show:N { c }

(End definition for \prop_show:N and \prop_show:c. These functions are documented on page 145.)

7713 〈/initex | package〉

477

17 l3box implementation
7714 〈*initex | package〉

7715 〈@@=box〉

The code in this module is very straight forward so I’m not going to comment it
very extensively.
17.1 Creating and initialising boxes
The following test files are used for this code: m3box001.lvt.

\box_new:N
\box_new:c

Defining a new 〈box〉 register: remember that box 255 is not generally available.
7716 〈*package〉
7717 \cs_new_protected:Npn \box_new:N #1
7718 {
7719 __chk_if_free_cs:N #1
7720 \cs:w newbox \cs_end: #1
7721 }
7722 〈/package〉
7723 \cs_generate_variant:Nn \box_new:N { c }

\box_clear:N
\box_clear:c
\box_gclear:N
\box_gclear:c

Clear a 〈box〉 register.
7724 \cs_new_protected:Npn \box_clear:N #1
7725 { \box_set_eq:NN #1 \c_empty_box }
7726 \cs_new_protected:Npn \box_gclear:N #1
7727 { \box_gset_eq:NN #1 \c_empty_box }
7728 \cs_generate_variant:Nn \box_clear:N { c }
7729 \cs_generate_variant:Nn \box_gclear:N { c }

\box_clear_new:N
\box_clear_new:c
\box_gclear_new:N
\box_gclear_new:c

Clear or new.
7730 \cs_new_protected:Npn \box_clear_new:N #1
7731 { \box_if_exist:NTF #1 { \box_clear:N #1 } { \box_new:N #1 } }
7732 \cs_new_protected:Npn \box_gclear_new:N #1
7733 { \box_if_exist:NTF #1 { \box_gclear:N #1 } { \box_new:N #1 } }
7734 \cs_generate_variant:Nn \box_clear_new:N { c }
7735 \cs_generate_variant:Nn \box_gclear_new:N { c }

\box_set_eq:NN
\box_set_eq:cN
\box_set_eq:Nc
\box_set_eq:cc
\box_gset_eq:NN
\box_gset_eq:cN
\box_gset_eq:Nc
\box_gset_eq:cc

Assigning the contents of a box to be another box.
7736 \cs_new_protected:Npn \box_set_eq:NN #1#2
7737 { \tex_setbox:D #1 \tex_copy:D #2 }
7738 \cs_new_protected:Npn \box_gset_eq:NN
7739 { \tex_global:D \box_set_eq:NN }
7740 \cs_generate_variant:Nn \box_set_eq:NN { c , Nc , cc }
7741 \cs_generate_variant:Nn \box_gset_eq:NN { c , Nc , cc }

\box_set_eq_clear:NN
\box_set_eq_clear:cN
\box_set_eq_clear:Nc
\box_set_eq_clear:cc
\box_gset_eq_clear:NN
\box_gset_eq_clear:cN
\box_gset_eq_clear:Nc
\box_gset_eq_clear:cc

Assigning the contents of a box to be another box. This clears the second box globally
(that’s how TEX does it).

7742 \cs_new_protected:Npn \box_set_eq_clear:NN #1#2
7743 { \tex_setbox:D #1 \tex_box:D #2 }

478

7744 \cs_new_protected:Npn \box_gset_eq_clear:NN
7745 { \tex_global:D \box_set_eq_clear:NN }
7746 \cs_generate_variant:Nn \box_set_eq_clear:NN { c , Nc , cc }
7747 \cs_generate_variant:Nn \box_gset_eq_clear:NN { c , Nc , cc }

\box_if_exist_p:N
\box_if_exist_p:c
\box_if_exist:NTF
\box_if_exist:cTF

Copies of the cs functions defined in l3basics.
7748 \prg_new_eq_conditional:NNn \box_if_exist:N \cs_if_exist:N
7749 { TF , T , F , p }
7750 \prg_new_eq_conditional:NNn \box_if_exist:c \cs_if_exist:c
7751 { TF , T , F , p }

17.2 Measuring and setting box dimensions

\box_ht:N
\box_ht:c
\box_dp:N
\box_dp:c
\box_wd:N
\box_wd:c

Accessing the height, depth, and width of a 〈box〉 register.
7752 \cs_new_eq:NN \box_ht:N \tex_ht:D
7753 \cs_new_eq:NN \box_dp:N \tex_dp:D
7754 \cs_new_eq:NN \box_wd:N \tex_wd:D
7755 \cs_generate_variant:Nn \box_ht:N { c }
7756 \cs_generate_variant:Nn \box_dp:N { c }
7757 \cs_generate_variant:Nn \box_wd:N { c }

\box_set_ht:Nn
\box_set_ht:cn
\box_set_dp:Nn
\box_set_dp:cn
\box_set_wd:Nn
\box_set_wd:cn

Measuring is easy: all primitive work. These primitives are not expandable, so the derived
functions are not either.

7758 \cs_new_protected:Npn \box_set_dp:Nn #1#2
7759 { \box_dp:N #1 __dim_eval:w #2 __dim_eval_end: }
7760 \cs_new_protected:Npn \box_set_ht:Nn #1#2
7761 { \box_ht:N #1 __dim_eval:w #2 __dim_eval_end: }
7762 \cs_new_protected:Npn \box_set_wd:Nn #1#2
7763 { \box_wd:N #1 __dim_eval:w #2 __dim_eval_end: }
7764 \cs_generate_variant:Nn \box_set_ht:Nn { c }
7765 \cs_generate_variant:Nn \box_set_dp:Nn { c }
7766 \cs_generate_variant:Nn \box_set_wd:Nn { c }

17.3 Using boxes

\box_use_clear:N
\box_use_clear:c

\box_use:N
\box_use:c

Using a 〈box〉. These are just TEX primitives with meaningful names.
7767 \cs_new_eq:NN \box_use_clear:N \tex_box:D
7768 \cs_new_eq:NN \box_use:N \tex_copy:D
7769 \cs_generate_variant:Nn \box_use_clear:N { c }
7770 \cs_generate_variant:Nn \box_use:N { c }

\box_move_left:nn
\box_move_right:nn

\box_move_up:nn
\box_move_down:nn

Move box material in different directions.
7771 \cs_new_protected:Npn \box_move_left:nn #1#2
7772 { \tex_moveleft:D __dim_eval:w #1 __dim_eval_end: #2 }
7773 \cs_new_protected:Npn \box_move_right:nn #1#2
7774 { \tex_moveright:D __dim_eval:w #1 __dim_eval_end: #2 }
7775 \cs_new_protected:Npn \box_move_up:nn #1#2
7776 { \tex_raise:D __dim_eval:w #1 __dim_eval_end: #2 }

479

7777 \cs_new_protected:Npn \box_move_down:nn #1#2
7778 { \tex_lower:D __dim_eval:w #1 __dim_eval_end: #2 }

17.4 Box conditionals

\if_hbox:N
\if_vbox:N

\if_box_empty:N

The primitives for testing if a 〈box〉 is empty/void or which type of box it is.
7779 \cs_new_eq:NN \if_hbox:N \tex_ifhbox:D
7780 \cs_new_eq:NN \if_vbox:N \tex_ifvbox:D
7781 \cs_new_eq:NN \if_box_empty:N \tex_ifvoid:D

\box_if_horizontal_p:N
\box_if_horizontal_p:c
\box_if_horizontal:NTF
\box_if_horizontal:cTF
\box_if_vertical_p:N
\box_if_vertical_p:c
\box_if_vertical:NTF
\box_if_vertical:cTF

7782 \prg_new_conditional:Npnn \box_if_horizontal:N #1 { p , T , F , TF }
7783 { \if_hbox:N #1 \prg_return_true: \else: \prg_return_false: \fi: }
7784 \prg_new_conditional:Npnn \box_if_vertical:N #1 { p , T , F , TF }
7785 { \if_vbox:N #1 \prg_return_true: \else: \prg_return_false: \fi: }
7786 \cs_generate_variant:Nn \box_if_horizontal_p:N { c }
7787 \cs_generate_variant:Nn \box_if_horizontal:NT { c }
7788 \cs_generate_variant:Nn \box_if_horizontal:NF { c }
7789 \cs_generate_variant:Nn \box_if_horizontal:NTF { c }
7790 \cs_generate_variant:Nn \box_if_vertical_p:N { c }
7791 \cs_generate_variant:Nn \box_if_vertical:NT { c }
7792 \cs_generate_variant:Nn \box_if_vertical:NF { c }
7793 \cs_generate_variant:Nn \box_if_vertical:NTF { c }

\box_if_empty_p:N
\box_if_empty_p:c
\box_if_empty:NTF
\box_if_empty:cTF

Testing if a 〈box〉 is empty/void.
7794 \prg_new_conditional:Npnn \box_if_empty:N #1 { p , T , F , TF }
7795 { \if_box_empty:N #1 \prg_return_true: \else: \prg_return_false: \fi: }
7796 \cs_generate_variant:Nn \box_if_empty_p:N { c }
7797 \cs_generate_variant:Nn \box_if_empty:NT { c }
7798 \cs_generate_variant:Nn \box_if_empty:NF { c }
7799 \cs_generate_variant:Nn \box_if_empty:NTF { c }

(End definition for \box_new:N and \box_new:c. These functions are documented on page 147.)

17.5 The last box inserted
\box_set_to_last:N
\box_set_to_last:c
\box_gset_to_last:N
\box_gset_to_last:c

Set a box to the previous box.
7800 \cs_new_protected:Npn \box_set_to_last:N #1
7801 { \tex_setbox:D #1 \tex_lastbox:D }
7802 \cs_new_protected:Npn \box_gset_to_last:N
7803 { \tex_global:D \box_set_to_last:N }
7804 \cs_generate_variant:Nn \box_set_to_last:N { c }
7805 \cs_generate_variant:Nn \box_gset_to_last:N { c }

(End definition for \box_set_to_last:N and \box_set_to_last:c. These functions are documented on
page 150.)

480

17.6 Constant boxes
\c_empty_box A box we never use.

7806 \box_new:N \c_empty_box

(End definition for \c_empty_box. This variable is documented on page 150.)

17.7 Scratch boxes
\l_tmpa_box
\l_tmpb_box
\g_tmpa_box
\g_tmpb_box

Scratch boxes.
7807 \box_new:N \l_tmpa_box
7808 \box_new:N \l_tmpb_box
7809 \box_new:N \g_tmpa_box
7810 \box_new:N \g_tmpb_box

(End definition for \l_tmpa_box and others. These variables are documented on page 150.)

17.8 Viewing box contents
TEX’s \showbox is not really that helpful in many cases, and it is also inconsistent with
other LATEX3 show functions as it does not actually shows material in the terminal. So
we provide a richer set of functionality.

\box_show:N
\box_show:c

\box_show:Nnn
\box_show:cnn

Essentially a wrapper around the internal function.
7811 \cs_new_protected:Npn \box_show:N #1
7812 { \box_show:Nnn #1 \c_max_int \c_max_int }
7813 \cs_generate_variant:Nn \box_show:N { c }
7814 \cs_new_protected_nopar:Npn \box_show:Nnn
7815 { __box_show:NNnn \c_one }
7816 \cs_generate_variant:Nn \box_show:Nnn { c }

(End definition for \box_show:N and \box_show:c. These functions are documented on page 150.)

\box_log:N
\box_log:c

\box_log:Nnn
\box_log:cnn

Getting TEX to write to the log without interruption the run is done by altering the
interaction mode. For that, the ε-TEX extensions are needed.

7817 \cs_new_protected:Npn \box_log:N #1
7818 { \box_log:Nnn #1 \c_max_int \c_max_int }
7819 \cs_generate_variant:Nn \box_log:N { c }
7820 \cs_new_protected:Npn \box_log:Nnn #1#2#3
7821 {
7822 \use:x
7823 {
7824 \etex_interactionmode:D \c_zero
7825 __box_show:NNnn \c_zero \exp_not:N #1
7826 { \int_eval:n {#2} } { \int_eval:n {#3} }
7827 \etex_interactionmode:D
7828 = \tex_the:D \etex_interactionmode:D \scan_stop:
7829 }
7830 }
7831 \cs_generate_variant:Nn \box_log:Nnn { c }

481

(End definition for \box_log:N and \box_log:c. These functions are documented on page 150.)

__box_show:NNnn The internal auxiliary to actually do the output uses a group to deal with breadth and
depth values. The \use:n here gives better output appearance. Setting \tracingonline
and \errorcontextlines is used to control what appears in the terminal.

7832 \cs_new_protected:Npn __box_show:NNnn #1#2#3#4
7833 {
7834 \group_begin:
7835 \int_set:Nn \tex_showboxbreadth:D {#3}
7836 \int_set:Nn \tex_showboxdepth:D {#4}
7837 \int_set_eq:NN \tex_tracingonline:D #1
7838 \int_set_eq:NN \tex_errorcontextlines:D \c_minus_one
7839 \box_if_exist:NTF #2
7840 { \tex_showbox:D \use:n {#2} }
7841 {
7842 __msg_kernel_error:nnx { kernel } { variable-not-defined }
7843 { \token_to_str:N #2 }
7844 }
7845 \group_end:
7846 }

(End definition for __box_show:NNnn.)

17.9 Horizontal mode boxes
\hbox:n (The test suite for this command, and others in this file, is m3box002.lvt.)

Put a horizontal box directly into the input stream.

7847 \cs_new_protected:Npn \hbox:n #1 { \tex_hbox:D \scan_stop: {#1} }

(End definition for \hbox:n. This function is documented on page 151.)

\hbox_set:Nn
\hbox_set:cn
\hbox_gset:Nn
\hbox_gset:cn

7848 \cs_new_protected:Npn \hbox_set:Nn #1#2
7849 { \tex_setbox:D #1 \tex_hbox:D {#2} }
7850 \cs_new_protected:Npn \hbox_gset:Nn { \tex_global:D \hbox_set:Nn }
7851 \cs_generate_variant:Nn \hbox_set:Nn { c }
7852 \cs_generate_variant:Nn \hbox_gset:Nn { c }

(End definition for \hbox_set:Nn and \hbox_set:cn. These functions are documented on page 151.)

\hbox_set_to_wd:Nnn
\hbox_set_to_wd:cnn
\hbox_gset_to_wd:Nnn
\hbox_gset_to_wd:cnn

Storing material in a horizontal box with a specified width.
7853 \cs_new_protected:Npn \hbox_set_to_wd:Nnn #1#2#3
7854 { \tex_setbox:D #1 \tex_hbox:D to __dim_eval:w #2 __dim_eval_end: {#3} }
7855 \cs_new_protected:Npn \hbox_gset_to_wd:Nnn
7856 { \tex_global:D \hbox_set_to_wd:Nnn }
7857 \cs_generate_variant:Nn \hbox_set_to_wd:Nnn { c }
7858 \cs_generate_variant:Nn \hbox_gset_to_wd:Nnn { c }

(End definition for \hbox_set_to_wd:Nnn and \hbox_set_to_wd:cnn. These functions are documented
on page 151.)

482

\hbox_set:Nw
\hbox_set:cw
\hbox_gset:Nw
\hbox_gset:cw
\hbox_set_end:

\hbox_gset_end:

Storing material in a horizontal box. This type is useful in environment definitions.
7859 \cs_new_protected:Npn \hbox_set:Nw #1
7860 { \tex_setbox:D #1 \tex_hbox:D \c_group_begin_token }
7861 \cs_new_protected:Npn \hbox_gset:Nw
7862 { \tex_global:D \hbox_set:Nw }
7863 \cs_generate_variant:Nn \hbox_set:Nw { c }
7864 \cs_generate_variant:Nn \hbox_gset:Nw { c }
7865 \cs_new_eq:NN \hbox_set_end: \c_group_end_token
7866 \cs_new_eq:NN \hbox_gset_end: \c_group_end_token

(End definition for \hbox_set:Nw and \hbox_set:cw. These functions are documented on page 151.)

\hbox_to_wd:nn
\hbox_to_zero:n

Put a horizontal box directly into the input stream.
7867 \cs_new_protected:Npn \hbox_to_wd:nn #1#2
7868 { \tex_hbox:D to __dim_eval:w #1 __dim_eval_end: {#2} }
7869 \cs_new_protected:Npn \hbox_to_zero:n #1 { \tex_hbox:D to \c_zero_dim {#1} }

(End definition for \hbox_to_wd:nn. This function is documented on page 151.)

\hbox_overlap_left:n
\hbox_overlap_right:n

Put a zero-sized box with the contents pushed against one side (which makes it stick out
on the other) directly into the input stream.

7870 \cs_new_protected:Npn \hbox_overlap_left:n #1
7871 { \hbox_to_zero:n { \tex_hss:D #1 } }
7872 \cs_new_protected:Npn \hbox_overlap_right:n #1
7873 { \hbox_to_zero:n { #1 \tex_hss:D } }

(End definition for \hbox_overlap_left:n and \hbox_overlap_right:n. These functions are docu-
mented on page 151.)

\hbox_unpack:N
\hbox_unpack:c

\hbox_unpack_clear:N
\hbox_unpack_clear:c

Unpacking a box and if requested also clear it.
7874 \cs_new_eq:NN \hbox_unpack:N \tex_unhcopy:D
7875 \cs_new_eq:NN \hbox_unpack_clear:N \tex_unhbox:D
7876 \cs_generate_variant:Nn \hbox_unpack:N { c }
7877 \cs_generate_variant:Nn \hbox_unpack_clear:N { c }

(End definition for \hbox_unpack:N and \hbox_unpack:c. These functions are documented on page 152.)

17.10 Vertical mode boxes
TEX ends these boxes directly with the internal end_graf routine. This means that there
is no \par at the end of vertical boxes unless we insert one.

\vbox:n The following test files are used for this code: m3box003.lvt.

\vbox_top:n
The following test files are used for this code: m3box003.lvt.

Put a vertical box directly into the input stream.
7878 \cs_new_protected:Npn \vbox:n #1 { \tex_vbox:D { #1 \par } }
7879 \cs_new_protected:Npn \vbox_top:n #1 { \tex_vtop:D { #1 \par } }

(End definition for \vbox:n. This function is documented on page 152.)

483

\vbox_to_ht:nn
\vbox_to_zero:n
\vbox_to_ht:nn

\vbox_to_zero:n

Put a vertical box directly into the input stream.
7880 \cs_new_protected:Npn \vbox_to_ht:nn #1#2
7881 { \tex_vbox:D to __dim_eval:w #1 __dim_eval_end: { #2 \par } }
7882 \cs_new_protected:Npn \vbox_to_zero:n #1
7883 { \tex_vbox:D to \c_zero_dim { #1 \par } }

(End definition for \vbox_to_ht:nn and \vbox_to_zero:n. These functions are documented on page
152.)

\vbox_set:Nn
\vbox_set:cn
\vbox_gset:Nn
\vbox_gset:cn

Storing material in a vertical box with a natural height.
7884 \cs_new_protected:Npn \vbox_set:Nn #1#2
7885 { \tex_setbox:D #1 \tex_vbox:D { #2 \par } }
7886 \cs_new_protected:Npn \vbox_gset:Nn { \tex_global:D \vbox_set:Nn }
7887 \cs_generate_variant:Nn \vbox_set:Nn { c }
7888 \cs_generate_variant:Nn \vbox_gset:Nn { c }

(End definition for \vbox_set:Nn and \vbox_set:cn. These functions are documented on page 153.)

\vbox_set_top:Nn
\vbox_set_top:cn
\vbox_gset_top:Nn
\vbox_gset_top:cn

Storing material in a vertical box with a natural height and reference point at the baseline
of the first object in the box.

7889 \cs_new_protected:Npn \vbox_set_top:Nn #1#2
7890 { \tex_setbox:D #1 \tex_vtop:D { #2 \par } }
7891 \cs_new_protected:Npn \vbox_gset_top:Nn
7892 { \tex_global:D \vbox_set_top:Nn }
7893 \cs_generate_variant:Nn \vbox_set_top:Nn { c }
7894 \cs_generate_variant:Nn \vbox_gset_top:Nn { c }

(End definition for \vbox_set_top:Nn and \vbox_set_top:cn. These functions are documented on page
153.)

\vbox_set_to_ht:Nnn
\vbox_set_to_ht:cnn
\vbox_gset_to_ht:Nnn
\vbox_gset_to_ht:cnn

Storing material in a vertical box with a specified height.
7895 \cs_new_protected:Npn \vbox_set_to_ht:Nnn #1#2#3
7896 {
7897 \tex_setbox:D #1 \tex_vbox:D to __dim_eval:w #2 __dim_eval_end:
7898 { #3 \par }
7899 }
7900 \cs_new_protected:Npn \vbox_gset_to_ht:Nnn
7901 { \tex_global:D \vbox_set_to_ht:Nnn }
7902 \cs_generate_variant:Nn \vbox_set_to_ht:Nnn { c }
7903 \cs_generate_variant:Nn \vbox_gset_to_ht:Nnn { c }

(End definition for \vbox_set_to_ht:Nnn and \vbox_set_to_ht:cnn. These functions are documented
on page 153.)

\vbox_set:Nw
\vbox_set:cw
\vbox_gset:Nw
\vbox_gset:cw
\vbox_set_end:
\vbox_gset_end:

Storing material in a vertical box. This type is useful in environment definitions.
7904 \cs_new_protected:Npn \vbox_set:Nw #1
7905 { \tex_setbox:D #1 \tex_vbox:D \c_group_begin_token }
7906 \cs_new_protected:Npn \vbox_gset:Nw
7907 { \tex_global:D \vbox_set:Nw }
7908 \cs_generate_variant:Nn \vbox_set:Nw { c }
7909 \cs_generate_variant:Nn \vbox_gset:Nw { c }

484

7910 \cs_new_protected:Npn \vbox_set_end:
7911 {
7912 \par
7913 \c_group_end_token
7914 }
7915 \cs_new_eq:NN \vbox_gset_end: \vbox_set_end:

(End definition for \vbox_set:Nw and \vbox_set:cw. These functions are documented on page 153.)

\vbox_unpack:N
\vbox_unpack:c

\vbox_unpack_clear:N
\vbox_unpack_clear:c

Unpacking a box and if requested also clear it.
7916 \cs_new_eq:NN \vbox_unpack:N \tex_unvcopy:D
7917 \cs_new_eq:NN \vbox_unpack_clear:N \tex_unvbox:D
7918 \cs_generate_variant:Nn \vbox_unpack:N { c }
7919 \cs_generate_variant:Nn \vbox_unpack_clear:N { c }

(End definition for \vbox_unpack:N and \vbox_unpack:c. These functions are documented on page 153.)

\vbox_set_split_to_ht:NNn Splitting a vertical box in two.
7920 \cs_new_protected:Npn \vbox_set_split_to_ht:NNn #1#2#3
7921 { \tex_setbox:D #1 \tex_vsplit:D #2 to __dim_eval:w #3 __dim_eval_end: }

(End definition for \vbox_set_split_to_ht:NNn. This function is documented on page 153.)

7922 〈/initex | package〉

18 l3coffins Implementation
7923 〈*initex | package〉

7924 〈@@=coffin〉

18.1 Coffins: data structures and general variables
\l__coffin_internal_box
\l__coffin_internal_dim
\l__coffin_internal_tl

Scratch variables.
7925 \box_new:N \l__coffin_internal_box
7926 \dim_new:N \l__coffin_internal_dim
7927 \tl_new:N \l__coffin_internal_tl

(End definition for \l__coffin_internal_box. This variable is documented on page ??.)

\c__coffin_corners_prop The “corners”; of a coffin define the real content, as opposed to the TEX bounding box.
They all start off in the same place, of course.

7928 \prop_new:N \c__coffin_corners_prop
7929 \prop_put:Nnn \c__coffin_corners_prop { tl } { { 0 pt } { 0 pt } }
7930 \prop_put:Nnn \c__coffin_corners_prop { tr } { { 0 pt } { 0 pt } }
7931 \prop_put:Nnn \c__coffin_corners_prop { bl } { { 0 pt } { 0 pt } }
7932 \prop_put:Nnn \c__coffin_corners_prop { br } { { 0 pt } { 0 pt } }

(End definition for \c__coffin_corners_prop. This variable is documented on page ??.)

485

\c__coffin_poles_prop Pole positions are given for horizontal, vertical and reference-point based values.
7933 \prop_new:N \c__coffin_poles_prop
7934 \tl_set:Nn \l__coffin_internal_tl { { 0 pt } { 0 pt } { 0 pt } { 1000 pt } }
7935 \prop_put:Nno \c__coffin_poles_prop { l } { \l__coffin_internal_tl }
7936 \prop_put:Nno \c__coffin_poles_prop { hc } { \l__coffin_internal_tl }
7937 \prop_put:Nno \c__coffin_poles_prop { r } { \l__coffin_internal_tl }
7938 \tl_set:Nn \l__coffin_internal_tl { { 0 pt } { 0 pt } { 1000 pt } { 0 pt } }
7939 \prop_put:Nno \c__coffin_poles_prop { b } { \l__coffin_internal_tl }
7940 \prop_put:Nno \c__coffin_poles_prop { vc } { \l__coffin_internal_tl }
7941 \prop_put:Nno \c__coffin_poles_prop { t } { \l__coffin_internal_tl }
7942 \prop_put:Nno \c__coffin_poles_prop { B } { \l__coffin_internal_tl }
7943 \prop_put:Nno \c__coffin_poles_prop { H } { \l__coffin_internal_tl }
7944 \prop_put:Nno \c__coffin_poles_prop { T } { \l__coffin_internal_tl }

(End definition for \c__coffin_poles_prop. This variable is documented on page ??.)

\l__coffin_slope_x_fp
\l__coffin_slope_y_fp

Used for calculations of intersections.
7945 \fp_new:N \l__coffin_slope_x_fp
7946 \fp_new:N \l__coffin_slope_y_fp

(End definition for \l__coffin_slope_x_fp. This variable is documented on page ??.)

\l__coffin_error_bool For propagating errors so that parts of the code can work around them.
7947 \bool_new:N \l__coffin_error_bool

(End definition for \l__coffin_error_bool. This variable is documented on page ??.)

\l__coffin_offset_x_dim
\l__coffin_offset_y_dim

The offset between two sets of coffin handles when typesetting. These values are corrected
from those requested in an alignment for the positions of the handles.

7948 \dim_new:N \l__coffin_offset_x_dim
7949 \dim_new:N \l__coffin_offset_y_dim

(End definition for \l__coffin_offset_x_dim. This variable is documented on page ??.)

\l__coffin_pole_a_tl
\l__coffin_pole_b_tl

Needed for finding the intersection of two poles.
7950 \tl_new:N \l__coffin_pole_a_tl
7951 \tl_new:N \l__coffin_pole_b_tl

(End definition for \l__coffin_pole_a_tl. This variable is documented on page ??.)

\l__coffin_x_dim
\l__coffin_y_dim

\l__coffin_x_prime_dim
\l__coffin_y_prime_dim

For calculating intersections and so forth.
7952 \dim_new:N \l__coffin_x_dim
7953 \dim_new:N \l__coffin_y_dim
7954 \dim_new:N \l__coffin_x_prime_dim
7955 \dim_new:N \l__coffin_y_prime_dim

(End definition for \l__coffin_x_dim. This variable is documented on page ??.)

486

18.2 Basic coffin functions
There are a number of basic functions needed for creating coffins and placing material in
them. This all relies on the following data structures.

\coffin_if_exist_p:N
\coffin_if_exist_p:c
\coffin_if_exist:NTF
\coffin_if_exist:cTF

Several of the higher-level coffin functions will give multiple errors if the coffin does not
exist. A cleaner way to handle this is provided here: both the box and the coffin structure
are checked.

7956 \prg_new_conditional:Npnn \coffin_if_exist:N #1 { p , T , F , TF }
7957 {
7958 \cs_if_exist:NTF #1
7959 {
7960 \cs_if_exist:cTF { l__coffin_poles_ __int_value:w #1 _prop }
7961 { \prg_return_true: }
7962 { \prg_return_false: }
7963 }
7964 { \prg_return_false: }
7965 }
7966 \cs_generate_variant:Nn \coffin_if_exist_p:N { c }
7967 \cs_generate_variant:Nn \coffin_if_exist:NT { c }
7968 \cs_generate_variant:Nn \coffin_if_exist:NF { c }
7969 \cs_generate_variant:Nn \coffin_if_exist:NTF { c }

(End definition for \coffin_if_exist:NTF and \coffin_if_exist:cTF. These functions are documented
on page 155.)

__coffin_if_exist:NT Several of the higher-level coffin functions will give multiple errors if the coffin does not
exist. So a wrapper is provided to deal with this correctly, issuing an error on erroneous
use.

7970 \cs_new_protected:Npn __coffin_if_exist:NT #1#2
7971 {
7972 \coffin_if_exist:NTF #1
7973 { #2 }
7974 {
7975 __msg_kernel_error:nnx { kernel } { unknown-coffin }
7976 { \token_to_str:N #1 }
7977 }
7978 }

(End definition for __coffin_if_exist:NT. This function is documented on page ??.)

\coffin_clear:N
\coffin_clear:c

Clearing coffins means emptying the box and resetting all of the structures.
7979 \cs_new_protected:Npn \coffin_clear:N #1
7980 {
7981 __coffin_if_exist:NT #1
7982 {
7983 \box_clear:N #1
7984 __coffin_reset_structure:N #1
7985 }
7986 }
7987 \cs_generate_variant:Nn \coffin_clear:N { c }

487

(End definition for \coffin_clear:N and \coffin_clear:c. These functions are documented on page
155.)

\coffin_new:N
\coffin_new:c

Creating a new coffin means making the underlying box and adding the data structures.
These are created globally, as there is a need to avoid any strange effects if the coffin is
created inside a group. This means that the usual rule about \l_... variables has to be
broken.

7988 \cs_new_protected:Npn \coffin_new:N #1
7989 {
7990 \box_new:N #1
7991 __chk_suspend_log:
7992 \prop_clear_new:c { l__coffin_corners_ __int_value:w #1 _prop }
7993 \prop_clear_new:c { l__coffin_poles_ __int_value:w #1 _prop }
7994 \prop_gset_eq:cN { l__coffin_corners_ __int_value:w #1 _prop }
7995 \c__coffin_corners_prop
7996 \prop_gset_eq:cN { l__coffin_poles_ __int_value:w #1 _prop }
7997 \c__coffin_poles_prop
7998 __chk_resume_log:
7999 }
8000 \cs_generate_variant:Nn \coffin_new:N { c }

(End definition for \coffin_new:N and \coffin_new:c. These functions are documented on page 155.)

\hcoffin_set:Nn
\hcoffin_set:cn

Horizontal coffins are relatively easy: set the appropriate box, reset the structures then
update the handle positions.

8001 \cs_new_protected:Npn \hcoffin_set:Nn #1#2
8002 {
8003 __coffin_if_exist:NT #1
8004 {
8005 \hbox_set:Nn #1
8006 {
8007 \color_group_begin:
8008 \color_ensure_current:
8009 #2
8010 \color_group_end:
8011 }
8012 __coffin_reset_structure:N #1
8013 __coffin_update_poles:N #1
8014 __coffin_update_corners:N #1
8015 }
8016 }
8017 \cs_generate_variant:Nn \hcoffin_set:Nn { c }

(End definition for \hcoffin_set:Nn and \hcoffin_set:cn. These functions are documented on page
155.)

\vcoffin_set:Nnn
\vcoffin_set:cnn

Setting vertical coffins is more complex. First, the material is typeset with a given width.
The default handles and poles are set as for a horizontal coffin, before finding the top
baseline using a temporary box. No \color_ensure_current: here as that would add a

488

whatsit to the start of the vertical box and mess up the location of the T pole (see TEX
by Topic for discussion of the \vtop primitive, used to do the measuring).

8018 \cs_new_protected:Npn \vcoffin_set:Nnn #1#2#3
8019 {
8020 __coffin_if_exist:NT #1
8021 {
8022 \vbox_set:Nn #1
8023 {
8024 \dim_set:Nn \tex_hsize:D {#2}
8025 〈*package〉
8026 \dim_set_eq:NN \linewidth \tex_hsize:D
8027 \dim_set_eq:NN \columnwidth \tex_hsize:D
8028 〈/package〉
8029 \color_group_begin:
8030 #3
8031 \color_group_end:
8032 }
8033 __coffin_reset_structure:N #1
8034 __coffin_update_poles:N #1
8035 __coffin_update_corners:N #1
8036 \vbox_set_top:Nn \l__coffin_internal_box { \vbox_unpack:N #1 }
8037 __coffin_set_pole:Nnx #1 { T }
8038 {
8039 { 0 pt }
8040 {
8041 \dim_eval:n
8042 { \box_ht:N #1 - \box_ht:N \l__coffin_internal_box }
8043 }
8044 { 1000 pt }
8045 { 0 pt }
8046 }
8047 \box_clear:N \l__coffin_internal_box
8048 }
8049 }
8050 \cs_generate_variant:Nn \vcoffin_set:Nnn { c }

(End definition for \vcoffin_set:Nnn and \vcoffin_set:cnn. These functions are documented on page
156.)

\hcoffin_set:Nw
\hcoffin_set:cw

\hcoffin_set_end:

These are the “begin”/“end” versions of the above: watch the grouping!
8051 \cs_new_protected:Npn \hcoffin_set:Nw #1
8052 {
8053 __coffin_if_exist:NT #1
8054 {
8055 \hbox_set:Nw #1 \color_group_begin: \color_ensure_current:
8056 \cs_set_protected_nopar:Npn \hcoffin_set_end:
8057 {
8058 \color_group_end:
8059 \hbox_set_end:
8060 __coffin_reset_structure:N #1

489

8061 __coffin_update_poles:N #1
8062 __coffin_update_corners:N #1
8063 }
8064 }
8065 }
8066 \cs_new_protected_nopar:Npn \hcoffin_set_end: { }
8067 \cs_generate_variant:Nn \hcoffin_set:Nw { c }

(End definition for \hcoffin_set:Nw and \hcoffin_set:cw. These functions are documented on page
156.)

\vcoffin_set:Nnw
\vcoffin_set:cnw
\vcoffin_set_end:

The same for vertical coffins.
8068 \cs_new_protected:Npn \vcoffin_set:Nnw #1#2
8069 {
8070 __coffin_if_exist:NT #1
8071 {
8072 \vbox_set:Nw #1
8073 \dim_set:Nn \tex_hsize:D {#2}
8074 〈*package〉
8075 \dim_set_eq:NN \linewidth \tex_hsize:D
8076 \dim_set_eq:NN \columnwidth \tex_hsize:D
8077 〈/package〉
8078 \color_group_begin: \color_ensure_current:
8079 \cs_set_protected:Npn \vcoffin_set_end:
8080 {
8081 \color_group_end:
8082 \vbox_set_end:
8083 __coffin_reset_structure:N #1
8084 __coffin_update_poles:N #1
8085 __coffin_update_corners:N #1
8086 \vbox_set_top:Nn \l__coffin_internal_box { \vbox_unpack:N #1 }
8087 __coffin_set_pole:Nnx #1 { T }
8088 {
8089 { 0 pt }
8090 {
8091 \dim_eval:n
8092 { \box_ht:N #1 - \box_ht:N \l__coffin_internal_box }
8093 }
8094 { 1000 pt }
8095 { 0 pt }
8096 }
8097 \box_clear:N \l__coffin_internal_box
8098 }
8099 }
8100 }
8101 \cs_new_protected_nopar:Npn \vcoffin_set_end: { }
8102 \cs_generate_variant:Nn \vcoffin_set:Nnw { c }

(End definition for \vcoffin_set:Nnw and \vcoffin_set:cnw. These functions are documented on page
156.)

490

\coffin_set_eq:NN
\coffin_set_eq:Nc
\coffin_set_eq:cN
\coffin_set_eq:cc

Setting two coffins equal is just a wrapper around other functions.
8103 \cs_new_protected:Npn \coffin_set_eq:NN #1#2
8104 {
8105 __coffin_if_exist:NT #1
8106 {
8107 \box_set_eq:NN #1 #2
8108 __coffin_set_eq_structure:NN #1 #2
8109 }
8110 }
8111 \cs_generate_variant:Nn \coffin_set_eq:NN { c , Nc , cc }

(End definition for \coffin_set_eq:NN and others. These functions are documented on page 155.)

\c_empty_coffin
\l__coffin_aligned_coffin

\l__coffin_aligned_internal_coffin

Special coffins: these cannot be set up earlier as they need \coffin_new:N. The empty
coffin is set as a box as the full coffin-setting system needs some material which is not
yet available.

8112 \coffin_new:N \c_empty_coffin
8113 \hbox_set:Nn \c_empty_coffin { }
8114 \coffin_new:N \l__coffin_aligned_coffin
8115 \coffin_new:N \l__coffin_aligned_internal_coffin

(End definition for \c_empty_coffin. This variable is documented on page 158.)

\l_tmpa_coffin
\l_tmpb_coffin

The usual scratch space.
8116 \coffin_new:N \l_tmpa_coffin
8117 \coffin_new:N \l_tmpb_coffin

(End definition for \l_tmpa_coffin and \l_tmpb_coffin. These variables are documented on page 158.)

18.3 Measuring coffins
\coffin_dp:N
\coffin_dp:c
\coffin_ht:N
\coffin_ht:c
\coffin_wd:N
\coffin_wd:c

Coffins are just boxes when it comes to measurement. However, semantically a separate
set of functions are required.

8118 \cs_new_eq:NN \coffin_dp:N \box_dp:N
8119 \cs_new_eq:NN \coffin_dp:c \box_dp:c
8120 \cs_new_eq:NN \coffin_ht:N \box_ht:N
8121 \cs_new_eq:NN \coffin_ht:c \box_ht:c
8122 \cs_new_eq:NN \coffin_wd:N \box_wd:N
8123 \cs_new_eq:NN \coffin_wd:c \box_wd:c

(End definition for \coffin_dp:N and others. These functions are documented on page 157.)

491

18.4 Coffins: handle and pole management
__coffin_get_pole:NnN A simple wrapper around the recovery of a coffin pole, with some error checking and

recovery built-in.
8124 \cs_new_protected:Npn __coffin_get_pole:NnN #1#2#3
8125 {
8126 \prop_get:cnNF
8127 { l__coffin_poles_ __int_value:w #1 _prop } {#2} #3
8128 {
8129 __msg_kernel_error:nnxx { kernel } { unknown-coffin-pole }
8130 {#2} { \token_to_str:N #1 }
8131 \tl_set:Nn #3 { { 0 pt } { 0 pt } { 0 pt } { 0 pt } }
8132 }
8133 }

(End definition for __coffin_get_pole:NnN. This function is documented on page ??.)

__coffin_reset_structure:N Resetting the structure is a simple copy job.
8134 \cs_new_protected:Npn __coffin_reset_structure:N #1
8135 {
8136 \prop_set_eq:cN { l__coffin_corners_ __int_value:w #1 _prop }
8137 \c__coffin_corners_prop
8138 \prop_set_eq:cN { l__coffin_poles_ __int_value:w #1 _prop }
8139 \c__coffin_poles_prop
8140 }

(End definition for __coffin_reset_structure:N. This function is documented on page ??.)

__coffin_set_eq_structure:NN
__coffin_gset_eq_structure:NN

Setting coffin structures equal simply means copying the property list.
8141 \cs_new_protected:Npn __coffin_set_eq_structure:NN #1#2
8142 {
8143 \prop_set_eq:cc { l__coffin_corners_ __int_value:w #1 _prop }
8144 { l__coffin_corners_ __int_value:w #2 _prop }
8145 \prop_set_eq:cc { l__coffin_poles_ __int_value:w #1 _prop }
8146 { l__coffin_poles_ __int_value:w #2 _prop }
8147 }
8148 \cs_new_protected:Npn __coffin_gset_eq_structure:NN #1#2
8149 {
8150 \prop_gset_eq:cc { l__coffin_corners_ __int_value:w #1 _prop }
8151 { l__coffin_corners_ __int_value:w #2 _prop }
8152 \prop_gset_eq:cc { l__coffin_poles_ __int_value:w #1 _prop }
8153 { l__coffin_poles_ __int_value:w #2 _prop }
8154 }

(End definition for __coffin_set_eq_structure:NN and __coffin_gset_eq_structure:NN. These
functions are documented on page ??.)

\coffin_set_horizontal_pole:Nnn
\coffin_set_horizontal_pole:cnn

\coffin_set_vertical_pole:Nnn
\coffin_set_vertical_pole:cnn

__coffin_set_pole:Nnn
__coffin_set_pole:Nnx

Setting the pole of a coffin at the user/designer level requires a bit more care. The idea
here is to provide a reasonable interface to the system, then to do the setting with full
expansion. The three-argument version is used internally to do a direct setting.

492

8155 \cs_new_protected:Npn \coffin_set_horizontal_pole:Nnn #1#2#3
8156 {
8157 __coffin_if_exist:NT #1
8158 {
8159 __coffin_set_pole:Nnx #1 {#2}
8160 {
8161 { 0 pt } { \dim_eval:n {#3} }
8162 { 1000 pt } { 0 pt }
8163 }
8164 }
8165 }
8166 \cs_new_protected:Npn \coffin_set_vertical_pole:Nnn #1#2#3
8167 {
8168 __coffin_if_exist:NT #1
8169 {
8170 __coffin_set_pole:Nnx #1 {#2}
8171 {
8172 { \dim_eval:n {#3} } { 0 pt }
8173 { 0 pt } { 1000 pt }
8174 }
8175 }
8176 }
8177 \cs_new_protected:Npn __coffin_set_pole:Nnn #1#2#3
8178 { \prop_put:cnn { l__coffin_poles_ __int_value:w #1 _prop } {#2} {#3} }
8179 \cs_generate_variant:Nn \coffin_set_horizontal_pole:Nnn { c }
8180 \cs_generate_variant:Nn \coffin_set_vertical_pole:Nnn { c }
8181 \cs_generate_variant:Nn __coffin_set_pole:Nnn { Nnx }

(End definition for \coffin_set_horizontal_pole:Nnn and \coffin_set_horizontal_pole:cnn. These
functions are documented on page 156.)

__coffin_update_corners:N Updating the corners of a coffin is straight-forward as at this stage there can be no
rotation. So the corners of the content are just those of the underlying TEX box.

8182 \cs_new_protected:Npn __coffin_update_corners:N #1
8183 {
8184 \prop_put:cnx { l__coffin_corners_ __int_value:w #1 _prop } { tl }
8185 { { 0 pt } { \dim_eval:n { \box_ht:N #1 } } }
8186 \prop_put:cnx { l__coffin_corners_ __int_value:w #1 _prop } { tr }
8187 { { \dim_eval:n { \box_wd:N #1 } } { \dim_eval:n { \box_ht:N #1 } } }
8188 \prop_put:cnx { l__coffin_corners_ __int_value:w #1 _prop } { bl }
8189 { { 0 pt } { \dim_eval:n { - \box_dp:N #1 } } }
8190 \prop_put:cnx { l__coffin_corners_ __int_value:w #1 _prop } { br }
8191 { { \dim_eval:n { \box_wd:N #1 } } { \dim_eval:n { -\box_dp:N #1 } } }
8192 }

(End definition for __coffin_update_corners:N. This function is documented on page ??.)

__coffin_update_poles:N This function is called when a coffin is set, and updates the poles to reflect the nature
of size of the box. Thus this function only alters poles where the default position is

493

dependent on the size of the box. It also does not set poles which are relevant only to
vertical coffins.

8193 \cs_new_protected:Npn __coffin_update_poles:N #1
8194 {
8195 \prop_put:cnx { l__coffin_poles_ __int_value:w #1 _prop } { hc }
8196 {
8197 { \dim_eval:n { 0.5 \box_wd:N #1 } }
8198 { 0 pt } { 0 pt } { 1000 pt }
8199 }
8200 \prop_put:cnx { l__coffin_poles_ __int_value:w #1 _prop } { r }
8201 {
8202 { \dim_eval:n { \box_wd:N #1 } }
8203 { 0 pt } { 0 pt } { 1000 pt }
8204 }
8205 \prop_put:cnx { l__coffin_poles_ __int_value:w #1 _prop } { vc }
8206 {
8207 { 0 pt }
8208 { \dim_eval:n { (\box_ht:N #1 - \box_dp:N #1) / 2 } }
8209 { 1000 pt }
8210 { 0 pt }
8211 }
8212 \prop_put:cnx { l__coffin_poles_ __int_value:w #1 _prop } { t }
8213 {
8214 { 0 pt }
8215 { \dim_eval:n { \box_ht:N #1 } }
8216 { 1000 pt }
8217 { 0 pt }
8218 }
8219 \prop_put:cnx { l__coffin_poles_ __int_value:w #1 _prop } { b }
8220 {
8221 { 0 pt }
8222 { \dim_eval:n { - \box_dp:N #1 } }
8223 { 1000 pt }
8224 { 0 pt }
8225 }
8226 }

(End definition for __coffin_update_poles:N. This function is documented on page ??.)

18.5 Coffins: calculation of pole intersections
__coffin_calculate_intersection:Nnn

__coffin_calculate_intersection:nnnnnnnn
__coffin_calculate_intersection_aux:nnnnnN

The lead off in finding intersections is to recover the two poles and then hand off to the
auxiliary for the actual calculation. There may of course not be an intersection, for which
an error trap is needed.

8227 \cs_new_protected:Npn __coffin_calculate_intersection:Nnn #1#2#3
8228 {
8229 __coffin_get_pole:NnN #1 {#2} \l__coffin_pole_a_tl
8230 __coffin_get_pole:NnN #1 {#3} \l__coffin_pole_b_tl
8231 \bool_set_false:N \l__coffin_error_bool

494

8232 \exp_last_two_unbraced:Noo
8233 __coffin_calculate_intersection:nnnnnnnn
8234 \l__coffin_pole_a_tl \l__coffin_pole_b_tl
8235 \bool_if:NT \l__coffin_error_bool
8236 {
8237 __msg_kernel_error:nn { kernel } { no-pole-intersection }
8238 \dim_zero:N \l__coffin_x_dim
8239 \dim_zero:N \l__coffin_y_dim
8240 }
8241 }

The two poles passed here each have four values (as dimensions), (a, b, c, d) and (a′, b′,
c′, d′). These are arguments 1–4 and 5–8, respectively. In both cases a and b are the
co-ordinates of a point on the pole and c and d define the direction of the pole. Finding
the intersection depends on the directions of the poles, which are given by d/c and d′/c′.
However, if one of the poles is either horizontal or vertical then one or more of c, d, c′
and d′ will be zero and a special case is needed.

8242 \cs_new_protected:Npn __coffin_calculate_intersection:nnnnnnnn
8243 #1#2#3#4#5#6#7#8
8244 {
8245 \dim_compare:nNnTF {#3} = { \c_zero_dim }

The case where the first pole is vertical. So the x-component of the interaction will be
at a. There is then a test on the second pole: if it is also vertical then there is an error.

8246 {
8247 \dim_set:Nn \l__coffin_x_dim {#1}
8248 \dim_compare:nNnTF {#7} = \c_zero_dim
8249 { \bool_set_true:N \l__coffin_error_bool }

The second pole may still be horizontal, in which case the y-component of the intersection
will be b′. If not,

y = d′

c′
(x− a′) + b′

with the x-component already known to be #1. This calculation is done as a generalised
auxiliary.

8250 {
8251 \dim_compare:nNnTF {#8} = \c_zero_dim
8252 { \dim_set:Nn \l__coffin_y_dim {#6} }
8253 {
8254 __coffin_calculate_intersection_aux:nnnnnN
8255 {#1} {#5} {#6} {#7} {#8} \l__coffin_y_dim
8256 }
8257 }
8258 }

If the first pole is not vertical then it may be horizontal. If so, then the procedure is
essentially the same as that already done but with the x- and y-components interchanged.

8259 {
8260 \dim_compare:nNnTF {#4} = \c_zero_dim
8261 {

495

8262 \dim_set:Nn \l__coffin_y_dim {#2}
8263 \dim_compare:nNnTF {#8} = { \c_zero_dim }
8264 { \bool_set_true:N \l__coffin_error_bool }
8265 {
8266 \dim_compare:nNnTF {#7} = \c_zero_dim
8267 { \dim_set:Nn \l__coffin_x_dim {#5} }

The formula for the case where the second pole is neither horizontal nor vertical is

x = c′

d′
(y − b′) + a′

which is again handled by the same auxiliary.
8268 {
8269 __coffin_calculate_intersection_aux:nnnnnN
8270 {#2} {#6} {#5} {#8} {#7} \l__coffin_x_dim
8271 }
8272 }
8273 }

The first pole is neither horizontal nor vertical. This still leaves the second pole, which
may be a special case. For those possibilities, the calculations are the same as above with
the first and second poles interchanged.

8274 {
8275 \dim_compare:nNnTF {#7} = \c_zero_dim
8276 {
8277 \dim_set:Nn \l__coffin_x_dim {#5}
8278 __coffin_calculate_intersection_aux:nnnnnN
8279 {#5} {#1} {#2} {#3} {#4} \l__coffin_y_dim
8280 }
8281 {
8282 \dim_compare:nNnTF {#8} = \c_zero_dim
8283 {
8284 \dim_set:Nn \l__coffin_y_dim {#6}
8285 __coffin_calculate_intersection_aux:nnnnnN
8286 {#6} {#2} {#1} {#4} {#3} \l__coffin_x_dim
8287 }

If none of the special cases apply then there is still a need to check that there is a unique
intersection between the two pole. This is the case if they have different slopes.

8288 {
8289 \fp_set:Nn \l__coffin_slope_x_fp
8290 { \dim_to_fp:n {#4} / \dim_to_fp:n {#3} }
8291 \fp_set:Nn \l__coffin_slope_y_fp
8292 { \dim_to_fp:n {#8} / \dim_to_fp:n {#7} }
8293 \fp_compare:nNnTF
8294 \l__coffin_slope_x_fp = \l__coffin_slope_y_fp
8295 { \bool_set_true:N \l__coffin_error_bool }

All of the tests pass, so there is the full complexity of the calculation:

x = a(d/c)− a′(d′/c′)− b+ b′

(d/c)− (d′/c′)

496

and noting that the two ratios are already worked out from the test just performed.
There is quite a bit of shuffling from dimensions to floating points in order to do the
work. The y-values is then worked out using the standard auxiliary starting from the
x-position.

8296 {
8297 \dim_set:Nn \l__coffin_x_dim
8298 {
8299 \fp_to_dim:n
8300 {
8301 (
8302 \dim_to_fp:n {#1} * \l__coffin_slope_x_fp
8303 - (\dim_to_fp:n {#5} * \l__coffin_slope_y_fp)
8304 - \dim_to_fp:n {#2}
8305 + \dim_to_fp:n {#6}
8306)
8307 /
8308 (\l__coffin_slope_x_fp - \l__coffin_slope_y_fp)
8309 }
8310 }
8311 __coffin_calculate_intersection_aux:nnnnnN
8312 { \l__coffin_x_dim }
8313 {#5} {#6} {#8} {#7} \l__coffin_y_dim
8314 }
8315 }
8316 }
8317 }
8318 }
8319 }

The formula for finding the intersection point is in most cases the same. The formula
here is

#6 = #4 ·
(

#1−#2
#5

)
#3

Thus #4 and #5 should be the directions of the pole while #2 and #3 are co-ordinates.
8320 \cs_new_protected:Npn __coffin_calculate_intersection_aux:nnnnnN
8321 #1#2#3#4#5#6
8322 {
8323 \dim_set:Nn #6
8324 {
8325 \fp_to_dim:n
8326 {
8327 \dim_to_fp:n {#4} *
8328 (\dim_to_fp:n {#1} - \dim_to_fp:n {#2}) /
8329 \dim_to_fp:n {#5}
8330 + \dim_to_fp:n {#3}
8331 }
8332 }
8333 }

(End definition for __coffin_calculate_intersection:Nnn. This function is documented on page ??.)

497

18.6 Aligning and typesetting of coffins
\coffin_join:NnnNnnnn
\coffin_join:cnnNnnnn
\coffin_join:Nnncnnnn
\coffin_join:cnncnnnn

This command joins two coffins, using a horizontal and vertical pole from each coffin and
making an offset between the two. The result is stored as the as a third coffin, which will
have all of its handles reset to standard values. First, the more basic alignment function
is used to get things started.

8334 \cs_new_protected:Npn \coffin_join:NnnNnnnn #1#2#3#4#5#6#7#8
8335 {
8336 __coffin_align:NnnNnnnnN
8337 #1 {#2} {#3} #4 {#5} {#6} {#7} {#8} \l__coffin_aligned_coffin

Correct the placement of the reference point. If the x-offset is negative then the reference
point of the second box is to the left of that of the first, which is corrected using a kern.
On the right side the first box might stick out, which will show up if it is wider than the
sum of the x-offset and the width of the second box. So a second kern may be needed.

8338 \hbox_set:Nn \l__coffin_aligned_coffin
8339 {
8340 \dim_compare:nNnT { \l__coffin_offset_x_dim } < \c_zero_dim
8341 { \tex_kern:D -\l__coffin_offset_x_dim }
8342 \hbox_unpack:N \l__coffin_aligned_coffin
8343 \dim_set:Nn \l__coffin_internal_dim
8344 { \l__coffin_offset_x_dim - \box_wd:N #1 + \box_wd:N #4 }
8345 \dim_compare:nNnT \l__coffin_internal_dim < \c_zero_dim
8346 { \tex_kern:D -\l__coffin_internal_dim }
8347 }

The coffin structure is reset, and the corners are cleared: only those from the two parent
coffins are needed.

8348 __coffin_reset_structure:N \l__coffin_aligned_coffin
8349 \prop_clear:c
8350 { l__coffin_corners_ __int_value:w \l__coffin_aligned_coffin _ prop }
8351 __coffin_update_poles:N \l__coffin_aligned_coffin

The structures of the parent coffins are now transferred to the new coffin, which requires
that the appropriate offsets are applied. That will then depend on whether any shift was
needed.

8352 \dim_compare:nNnTF \l__coffin_offset_x_dim < \c_zero_dim
8353 {
8354 __coffin_offset_poles:Nnn #1 { -\l__coffin_offset_x_dim } { 0 pt }
8355 __coffin_offset_poles:Nnn #4 { 0 pt } { \l__coffin_offset_y_dim }
8356 __coffin_offset_corners:Nnn #1 { -\l__coffin_offset_x_dim } { 0 pt }
8357 __coffin_offset_corners:Nnn #4 { 0 pt } { \l__coffin_offset_y_dim }
8358 }
8359 {
8360 __coffin_offset_poles:Nnn #1 { 0 pt } { 0 pt }
8361 __coffin_offset_poles:Nnn #4
8362 { \l__coffin_offset_x_dim } { \l__coffin_offset_y_dim }
8363 __coffin_offset_corners:Nnn #1 { 0 pt } { 0 pt }
8364 __coffin_offset_corners:Nnn #4
8365 { \l__coffin_offset_x_dim } { \l__coffin_offset_y_dim }

498

8366 }
8367 __coffin_update_vertical_poles:NNN #1 #4 \l__coffin_aligned_coffin
8368 \coffin_set_eq:NN #1 \l__coffin_aligned_coffin
8369 }
8370 \cs_generate_variant:Nn \coffin_join:NnnNnnnn { c , Nnnc , cnnc }

(End definition for \coffin_join:NnnNnnnn and others. These functions are documented on page 157.)

\coffin_attach:NnnNnnnn
\coffin_attach:cnnNnnnn
\coffin_attach:Nnncnnnn
\coffin_attach:cnncnnnn

\coffin_attach_mark:NnnNnnnn

A more simple version of the above, as it simply uses the size of the first coffin for the
new one. This means that the work here is rather simplified compared to the above code.
The function used when marking a position is hear also as it is similar but without the
structure updates.

8371 \cs_new_protected:Npn \coffin_attach:NnnNnnnn #1#2#3#4#5#6#7#8
8372 {
8373 __coffin_align:NnnNnnnnN
8374 #1 {#2} {#3} #4 {#5} {#6} {#7} {#8} \l__coffin_aligned_coffin
8375 \box_set_ht:Nn \l__coffin_aligned_coffin { \box_ht:N #1 }
8376 \box_set_dp:Nn \l__coffin_aligned_coffin { \box_dp:N #1 }
8377 \box_set_wd:Nn \l__coffin_aligned_coffin { \box_wd:N #1 }
8378 __coffin_reset_structure:N \l__coffin_aligned_coffin
8379 \prop_set_eq:cc
8380 { l__coffin_corners_ __int_value:w \l__coffin_aligned_coffin _prop }
8381 { l__coffin_corners_ __int_value:w #1 _prop }
8382 __coffin_update_poles:N \l__coffin_aligned_coffin
8383 __coffin_offset_poles:Nnn #1 { 0 pt } { 0 pt }
8384 __coffin_offset_poles:Nnn #4
8385 { \l__coffin_offset_x_dim } { \l__coffin_offset_y_dim }
8386 __coffin_update_vertical_poles:NNN #1 #4 \l__coffin_aligned_coffin
8387 \coffin_set_eq:NN #1 \l__coffin_aligned_coffin
8388 }
8389 \cs_new_protected:Npn \coffin_attach_mark:NnnNnnnn #1#2#3#4#5#6#7#8
8390 {
8391 __coffin_align:NnnNnnnnN
8392 #1 {#2} {#3} #4 {#5} {#6} {#7} {#8} \l__coffin_aligned_coffin
8393 \box_set_ht:Nn \l__coffin_aligned_coffin { \box_ht:N #1 }
8394 \box_set_dp:Nn \l__coffin_aligned_coffin { \box_dp:N #1 }
8395 \box_set_wd:Nn \l__coffin_aligned_coffin { \box_wd:N #1 }
8396 \box_set_eq:NN #1 \l__coffin_aligned_coffin
8397 }
8398 \cs_generate_variant:Nn \coffin_attach:NnnNnnnn { c , Nnnc , cnnc }

(End definition for \coffin_attach:NnnNnnnn and others. These functions are documented on page
157.)

__coffin_align:NnnNnnnnN The internal function aligns the two coffins into a third one, but performs no corrections
on the resulting coffin poles. The process begins by finding the points of intersection for
the poles for each of the input coffins. Those for the first coffin are worked out after those
for the second coffin, as this allows the ‘primed’ storage area to be used for the second
coffin. The ‘real’ box offsets are then calculated, before using these to re-box the input

499

coffins. The default poles are then set up, but the final result will depend on how the
bounding box is being handled.

8399 \cs_new_protected:Npn __coffin_align:NnnNnnnnN #1#2#3#4#5#6#7#8#9
8400 {
8401 __coffin_calculate_intersection:Nnn #4 {#5} {#6}
8402 \dim_set:Nn \l__coffin_x_prime_dim { \l__coffin_x_dim }
8403 \dim_set:Nn \l__coffin_y_prime_dim { \l__coffin_y_dim }
8404 __coffin_calculate_intersection:Nnn #1 {#2} {#3}
8405 \dim_set:Nn \l__coffin_offset_x_dim
8406 { \l__coffin_x_dim - \l__coffin_x_prime_dim + #7 }
8407 \dim_set:Nn \l__coffin_offset_y_dim
8408 { \l__coffin_y_dim - \l__coffin_y_prime_dim + #8 }
8409 \hbox_set:Nn \l__coffin_aligned_internal_coffin
8410 {
8411 \box_use:N #1
8412 \tex_kern:D -\box_wd:N #1
8413 \tex_kern:D \l__coffin_offset_x_dim
8414 \box_move_up:nn { \l__coffin_offset_y_dim } { \box_use:N #4 }
8415 }
8416 \coffin_set_eq:NN #9 \l__coffin_aligned_internal_coffin
8417 }

(End definition for __coffin_align:NnnNnnnnN. This function is documented on page ??.)

__coffin_offset_poles:Nnn
__coffin_offset_pole:Nnnnnnn

Transferring structures from one coffin to another requires that the positions are updated
by the offset between the two coffins. This is done by mapping to the property list of
the source coffins, moving as appropriate and saving to the new coffin data structures.
The test for a - means that the structures from the parent coffins are uniquely labelled
and do not depend on the order of alignment. The pay off for this is that - should not
be used in coffin pole or handle names, and that multiple alignments do not result in a
whole set of values.

8418 \cs_new_protected:Npn __coffin_offset_poles:Nnn #1#2#3
8419 {
8420 \prop_map_inline:cn { l__coffin_poles_ __int_value:w #1 _prop }
8421 { __coffin_offset_pole:Nnnnnnn #1 {##1} ##2 {#2} {#3} }
8422 }
8423 \cs_new_protected:Npn __coffin_offset_pole:Nnnnnnn #1#2#3#4#5#6#7#8
8424 {
8425 \dim_set:Nn \l__coffin_x_dim { #3 + #7 }
8426 \dim_set:Nn \l__coffin_y_dim { #4 + #8 }
8427 \tl_if_in:nnTF {#2} { - }
8428 { \tl_set:Nn \l__coffin_internal_tl { {#2} } }
8429 { \tl_set:Nn \l__coffin_internal_tl { { #1 - #2 } } }
8430 \exp_last_unbraced:NNo __coffin_set_pole:Nnx \l__coffin_aligned_coffin
8431 { \l__coffin_internal_tl }
8432 {
8433 { \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim }
8434 {#5} {#6}
8435 }

500

8436 }

(End definition for __coffin_offset_poles:Nnn. This function is documented on page ??.)

__coffin_offset_corners:Nnn
__coffin_offset_corner:Nnnnn

Saving the offset corners of a coffin is very similar, except that there is no need to worry
about naming: every corner can be saved here as order is unimportant.

8437 \cs_new_protected:Npn __coffin_offset_corners:Nnn #1#2#3
8438 {
8439 \prop_map_inline:cn { l__coffin_corners_ __int_value:w #1 _prop }
8440 { __coffin_offset_corner:Nnnnn #1 {##1} ##2 {#2} {#3} }
8441 }
8442 \cs_new_protected:Npn __coffin_offset_corner:Nnnnn #1#2#3#4#5#6
8443 {
8444 \prop_put:cnx
8445 { l__coffin_corners_ __int_value:w \l__coffin_aligned_coffin _prop }
8446 { #1 - #2 }
8447 {
8448 { \dim_eval:n { #3 + #5 } }
8449 { \dim_eval:n { #4 + #6 } }
8450 }
8451 }

(End definition for __coffin_offset_corners:Nnn. This function is documented on page ??.)

__coffin_update_vertical_poles:NNN
__coffin_update_T:nnnnnnnnN
__coffin_update_B:nnnnnnnnN

The T and B poles will need to be recalculated after alignment. These functions find the
larger absolute value for the poles, but this is of course only logical when the poles are
horizontal.

8452 \cs_new_protected:Npn __coffin_update_vertical_poles:NNN #1#2#3
8453 {
8454 __coffin_get_pole:NnN #3 { #1 -T } \l__coffin_pole_a_tl
8455 __coffin_get_pole:NnN #3 { #2 -T } \l__coffin_pole_b_tl
8456 \exp_last_two_unbraced:Noo __coffin_update_T:nnnnnnnnN
8457 \l__coffin_pole_a_tl \l__coffin_pole_b_tl #3
8458 __coffin_get_pole:NnN #3 { #1 -B } \l__coffin_pole_a_tl
8459 __coffin_get_pole:NnN #3 { #2 -B } \l__coffin_pole_b_tl
8460 \exp_last_two_unbraced:Noo __coffin_update_B:nnnnnnnnN
8461 \l__coffin_pole_a_tl \l__coffin_pole_b_tl #3
8462 }
8463 \cs_new_protected:Npn __coffin_update_T:nnnnnnnnN #1#2#3#4#5#6#7#8#9
8464 {
8465 \dim_compare:nNnTF {#2} < {#6}
8466 {
8467 __coffin_set_pole:Nnx #9 { T }
8468 { { 0 pt } {#6} { 1000 pt } { 0 pt } }
8469 }
8470 {
8471 __coffin_set_pole:Nnx #9 { T }
8472 { { 0 pt } {#2} { 1000 pt } { 0 pt } }
8473 }
8474 }

501

8475 \cs_new_protected:Npn __coffin_update_B:nnnnnnnnN #1#2#3#4#5#6#7#8#9
8476 {
8477 \dim_compare:nNnTF {#2} < {#6}
8478 {
8479 __coffin_set_pole:Nnx #9 { B }
8480 { { 0 pt } {#2} { 1000 pt } { 0 pt } }
8481 }
8482 {
8483 __coffin_set_pole:Nnx #9 { B }
8484 { { 0 pt } {#6} { 1000 pt } { 0 pt } }
8485 }
8486 }

(End definition for __coffin_update_vertical_poles:NNN. This function is documented on page ??.)

\coffin_typeset:Nnnnn
\coffin_typeset:cnnnn

Typesetting a coffin means aligning it with the current position, which is done using a
coffin with no content at all. As well as aligning to the empty coffin, there is also a need
to leave vertical mode, if necessary.

8487 \cs_new_protected:Npn \coffin_typeset:Nnnnn #1#2#3#4#5
8488 {
8489 \hbox_unpack:N \c_empty_box
8490 __coffin_align:NnnNnnnnN \c_empty_coffin { H } { l }
8491 #1 {#2} {#3} {#4} {#5} \l__coffin_aligned_coffin
8492 \box_use:N \l__coffin_aligned_coffin
8493 }
8494 \cs_generate_variant:Nn \coffin_typeset:Nnnnn { c }

(End definition for \coffin_typeset:Nnnnn and \coffin_typeset:cnnnn. These functions are docu-
mented on page 157.)

18.7 Coffin diagnostics
\l__coffin_display_coffin

\l__coffin_display_coord_coffin
\l__coffin_display_pole_coffin

Used for printing coffins with data structures attached.
8495 \coffin_new:N \l__coffin_display_coffin
8496 \coffin_new:N \l__coffin_display_coord_coffin
8497 \coffin_new:N \l__coffin_display_pole_coffin

(End definition for \l__coffin_display_coffin. This variable is documented on page ??.)

\l__coffin_display_handles_prop This property list is used to print coffin handles at suitable positions. The offsets are
expressed as multiples of the basic offset value, which therefore acts as a scale-factor.

8498 \prop_new:N \l__coffin_display_handles_prop
8499 \prop_put:Nnn \l__coffin_display_handles_prop { tl }
8500 { { b } { r } { -1 } { 1 } }
8501 \prop_put:Nnn \l__coffin_display_handles_prop { thc }
8502 { { b } { hc } { 0 } { 1 } }
8503 \prop_put:Nnn \l__coffin_display_handles_prop { tr }
8504 { { b } { l } { 1 } { 1 } }
8505 \prop_put:Nnn \l__coffin_display_handles_prop { vcl }
8506 { { vc } { r } { -1 } { 0 } }

502

8507 \prop_put:Nnn \l__coffin_display_handles_prop { vchc }
8508 { { vc } { hc } { 0 } { 0 } }
8509 \prop_put:Nnn \l__coffin_display_handles_prop { vcr }
8510 { { vc } { l } { 1 } { 0 } }
8511 \prop_put:Nnn \l__coffin_display_handles_prop { bl }
8512 { { t } { r } { -1 } { -1 } }
8513 \prop_put:Nnn \l__coffin_display_handles_prop { bhc }
8514 { { t } { hc } { 0 } { -1 } }
8515 \prop_put:Nnn \l__coffin_display_handles_prop { br }
8516 { { t } { l } { 1 } { -1 } }
8517 \prop_put:Nnn \l__coffin_display_handles_prop { Tl }
8518 { { t } { r } { -1 } { -1 } }
8519 \prop_put:Nnn \l__coffin_display_handles_prop { Thc }
8520 { { t } { hc } { 0 } { -1 } }
8521 \prop_put:Nnn \l__coffin_display_handles_prop { Tr }
8522 { { t } { l } { 1 } { -1 } }
8523 \prop_put:Nnn \l__coffin_display_handles_prop { Hl }
8524 { { vc } { r } { -1 } { 1 } }
8525 \prop_put:Nnn \l__coffin_display_handles_prop { Hhc }
8526 { { vc } { hc } { 0 } { 1 } }
8527 \prop_put:Nnn \l__coffin_display_handles_prop { Hr }
8528 { { vc } { l } { 1 } { 1 } }
8529 \prop_put:Nnn \l__coffin_display_handles_prop { Bl }
8530 { { b } { r } { -1 } { -1 } }
8531 \prop_put:Nnn \l__coffin_display_handles_prop { Bhc }
8532 { { b } { hc } { 0 } { -1 } }
8533 \prop_put:Nnn \l__coffin_display_handles_prop { Br }
8534 { { b } { l } { 1 } { -1 } }

(End definition for \l__coffin_display_handles_prop. This variable is documented on page ??.)

\l__coffin_display_offset_dim The standard offset for the label from the handle position when displaying handles.
8535 \dim_new:N \l__coffin_display_offset_dim
8536 \dim_set:Nn \l__coffin_display_offset_dim { 2 pt }

(End definition for \l__coffin_display_offset_dim. This variable is documented on page ??.)

\l__coffin_display_x_dim
\l__coffin_display_y_dim

As the intersections of poles have to be calculated to find which ones to print, there is
a need to avoid repetition. This is done by saving the intersection into two dedicated
values.

8537 \dim_new:N \l__coffin_display_x_dim
8538 \dim_new:N \l__coffin_display_y_dim

(End definition for \l__coffin_display_x_dim. This variable is documented on page ??.)

\l__coffin_display_poles_prop A property list for printing poles: various things need to be deleted from this to get a
“nice” output.

8539 \prop_new:N \l__coffin_display_poles_prop

(End definition for \l__coffin_display_poles_prop. This variable is documented on page ??.)

503

\l__coffin_display_font_tl Stores the settings used to print coffin data: this keeps things flexible.
8540 \tl_new:N \l__coffin_display_font_tl
8541 〈*initex〉
8542 \tl_set:Nn \l__coffin_display_font_tl { } % TODO
8543 〈/initex〉
8544 〈*package〉
8545 \tl_set:Nn \l__coffin_display_font_tl { \sffamily \tiny }
8546 〈/package〉

(End definition for \l__coffin_display_font_tl. This variable is documented on page ??.)

\coffin_mark_handle:Nnnn
\coffin_mark_handle:cnnn

__coffin_mark_handle_aux:nnnnNnn

Marking a single handle is relatively easy. The standard attachment function is used,
meaning that there are two calculations for the location. However, this is likely to be
okay given the load expected. Contrast with the more optimised version for showing all
handles which comes next.

8547 \cs_new_protected:Npn \coffin_mark_handle:Nnnn #1#2#3#4
8548 {
8549 \hcoffin_set:Nn \l__coffin_display_pole_coffin
8550 {
8551 〈*initex〉
8552 \hbox:n { \tex_vrule:D width 1 pt height 1 pt \scan_stop: } % TODO
8553 〈/initex〉
8554 〈*package〉
8555 \color {#4}
8556 \rule { 1 pt } { 1 pt }
8557 〈/package〉
8558 }
8559 \coffin_attach_mark:NnnNnnnn #1 {#2} {#3}
8560 \l__coffin_display_pole_coffin { hc } { vc } { 0 pt } { 0 pt }
8561 \hcoffin_set:Nn \l__coffin_display_coord_coffin
8562 {
8563 〈*initex〉
8564 % TODO
8565 〈/initex〉
8566 〈*package〉
8567 \color {#4}
8568 〈/package〉
8569 \l__coffin_display_font_tl
8570 (\tl_to_str:n { #2 , #3 })
8571 }
8572 \prop_get:NnN \l__coffin_display_handles_prop
8573 { #2 #3 } \l__coffin_internal_tl
8574 \quark_if_no_value:NTF \l__coffin_internal_tl
8575 {
8576 \prop_get:NnN \l__coffin_display_handles_prop
8577 { #3 #2 } \l__coffin_internal_tl
8578 \quark_if_no_value:NTF \l__coffin_internal_tl
8579 {
8580 \coffin_attach_mark:NnnNnnnn #1 {#2} {#3}

504

8581 \l__coffin_display_coord_coffin { l } { vc }
8582 { 1 pt } { 0 pt }
8583 }
8584 {
8585 \exp_last_unbraced:No __coffin_mark_handle_aux:nnnnNnn
8586 \l__coffin_internal_tl #1 {#2} {#3}
8587 }
8588 }
8589 {
8590 \exp_last_unbraced:No __coffin_mark_handle_aux:nnnnNnn
8591 \l__coffin_internal_tl #1 {#2} {#3}
8592 }
8593 }
8594 \cs_new_protected:Npn __coffin_mark_handle_aux:nnnnNnn #1#2#3#4#5#6#7
8595 {
8596 \coffin_attach_mark:NnnNnnnn #5 {#6} {#7}
8597 \l__coffin_display_coord_coffin {#1} {#2}
8598 { #3 \l__coffin_display_offset_dim }
8599 { #4 \l__coffin_display_offset_dim }
8600 }
8601 \cs_generate_variant:Nn \coffin_mark_handle:Nnnn { c }

(End definition for \coffin_mark_handle:Nnnn and \coffin_mark_handle:cnnn. These functions are
documented on page 158.)

\coffin_display_handles:Nn
\coffin_display_handles:cn

__coffin_display_handles_aux:nnnnnn
__coffin_display_handles_aux:nnnn

__coffin_display_attach:Nnnnn

Printing the poles starts by removing any duplicates, for which the H poles is used as
the definitive version for the baseline and bottom. Two loops are then used to find the
combinations of handles for all of these poles. This is done such that poles are removed
during the loops to avoid duplication.

8602 \cs_new_protected:Npn \coffin_display_handles:Nn #1#2
8603 {
8604 \hcoffin_set:Nn \l__coffin_display_pole_coffin
8605 {
8606 〈*initex〉
8607 \hbox:n { \tex_vrule:D width 1 pt height 1 pt \scan_stop: } % TODO
8608 〈/initex〉
8609 〈*package〉
8610 \color {#2}
8611 \rule { 1 pt } { 1 pt }
8612 〈/package〉
8613 }
8614 \prop_set_eq:Nc \l__coffin_display_poles_prop
8615 { l__coffin_poles_ __int_value:w #1 _prop }
8616 __coffin_get_pole:NnN #1 { H } \l__coffin_pole_a_tl
8617 __coffin_get_pole:NnN #1 { T } \l__coffin_pole_b_tl
8618 \tl_if_eq:NNT \l__coffin_pole_a_tl \l__coffin_pole_b_tl
8619 { \prop_remove:Nn \l__coffin_display_poles_prop { T } }
8620 __coffin_get_pole:NnN #1 { B } \l__coffin_pole_b_tl
8621 \tl_if_eq:NNT \l__coffin_pole_a_tl \l__coffin_pole_b_tl
8622 { \prop_remove:Nn \l__coffin_display_poles_prop { B } }

505

8623 \coffin_set_eq:NN \l__coffin_display_coffin #1
8624 \prop_map_inline:Nn \l__coffin_display_poles_prop
8625 {
8626 \prop_remove:Nn \l__coffin_display_poles_prop {##1}
8627 __coffin_display_handles_aux:nnnnnn {##1} ##2 {#2}
8628 }
8629 \box_use:N \l__coffin_display_coffin
8630 }

For each pole there is a check for an intersection, which here does not give an error if
none is found. The successful values are stored and used to align the pole coffin with the
main coffin for output. The positions are recovered from the preset list if available.

8631 \cs_new_protected:Npn __coffin_display_handles_aux:nnnnnn #1#2#3#4#5#6
8632 {
8633 \prop_map_inline:Nn \l__coffin_display_poles_prop
8634 {
8635 \bool_set_false:N \l__coffin_error_bool
8636 __coffin_calculate_intersection:nnnnnnnn {#2} {#3} {#4} {#5} ##2
8637 \bool_if:NF \l__coffin_error_bool
8638 {
8639 \dim_set:Nn \l__coffin_display_x_dim { \l__coffin_x_dim }
8640 \dim_set:Nn \l__coffin_display_y_dim { \l__coffin_y_dim }
8641 __coffin_display_attach:Nnnnn
8642 \l__coffin_display_pole_coffin { hc } { vc }
8643 { 0 pt } { 0 pt }
8644 \hcoffin_set:Nn \l__coffin_display_coord_coffin
8645 {
8646 〈*initex〉
8647 % TODO
8648 〈/initex〉
8649 〈*package〉
8650 \color {#6}
8651 〈/package〉
8652 \l__coffin_display_font_tl
8653 (\tl_to_str:n { #1 , ##1 })
8654 }
8655 \prop_get:NnN \l__coffin_display_handles_prop
8656 { #1 ##1 } \l__coffin_internal_tl
8657 \quark_if_no_value:NTF \l__coffin_internal_tl
8658 {
8659 \prop_get:NnN \l__coffin_display_handles_prop
8660 { ##1 #1 } \l__coffin_internal_tl
8661 \quark_if_no_value:NTF \l__coffin_internal_tl
8662 {
8663 __coffin_display_attach:Nnnnn
8664 \l__coffin_display_coord_coffin { l } { vc }
8665 { 1 pt } { 0 pt }
8666 }
8667 {
8668 \exp_last_unbraced:No

506

8669 __coffin_display_handles_aux:nnnn
8670 \l__coffin_internal_tl
8671 }
8672 }
8673 {
8674 \exp_last_unbraced:No __coffin_display_handles_aux:nnnn
8675 \l__coffin_internal_tl
8676 }
8677 }
8678 }
8679 }
8680 \cs_new_protected:Npn __coffin_display_handles_aux:nnnn #1#2#3#4
8681 {
8682 __coffin_display_attach:Nnnnn
8683 \l__coffin_display_coord_coffin {#1} {#2}
8684 { #3 \l__coffin_display_offset_dim }
8685 { #4 \l__coffin_display_offset_dim }
8686 }
8687 \cs_generate_variant:Nn \coffin_display_handles:Nn { c }

This is a dedicated version of \coffin_attach:NnnNnnnn with a hard-wired first coffin.
As the intersection is already known and stored for the display coffin the code simply
uses it directly, with no calculation.

8688 \cs_new_protected:Npn __coffin_display_attach:Nnnnn #1#2#3#4#5
8689 {
8690 __coffin_calculate_intersection:Nnn #1 {#2} {#3}
8691 \dim_set:Nn \l__coffin_x_prime_dim { \l__coffin_x_dim }
8692 \dim_set:Nn \l__coffin_y_prime_dim { \l__coffin_y_dim }
8693 \dim_set:Nn \l__coffin_offset_x_dim
8694 { \l__coffin_display_x_dim - \l__coffin_x_prime_dim + #4 }
8695 \dim_set:Nn \l__coffin_offset_y_dim
8696 { \l__coffin_display_y_dim - \l__coffin_y_prime_dim + #5 }
8697 \hbox_set:Nn \l__coffin_aligned_coffin
8698 {
8699 \box_use:N \l__coffin_display_coffin
8700 \tex_kern:D -\box_wd:N \l__coffin_display_coffin
8701 \tex_kern:D \l__coffin_offset_x_dim
8702 \box_move_up:nn { \l__coffin_offset_y_dim } { \box_use:N #1 }
8703 }
8704 \box_set_ht:Nn \l__coffin_aligned_coffin
8705 { \box_ht:N \l__coffin_display_coffin }
8706 \box_set_dp:Nn \l__coffin_aligned_coffin
8707 { \box_dp:N \l__coffin_display_coffin }
8708 \box_set_wd:Nn \l__coffin_aligned_coffin
8709 { \box_wd:N \l__coffin_display_coffin }
8710 \box_set_eq:NN \l__coffin_display_coffin \l__coffin_aligned_coffin
8711 }

(End definition for \coffin_display_handles:Nn and \coffin_display_handles:cn. These functions
are documented on page 158.)

507

\coffin_show_structure:N
\coffin_show_structure:c

For showing the various internal structures attached to a coffin in a way that keeps things
relatively readable. If there is no apparent structure then the code complains.

8712 \cs_new_protected:Npn \coffin_show_structure:N #1
8713 {
8714 __coffin_if_exist:NT #1
8715 {
8716 __msg_show_pre:nnxxxx { LaTeX / kernel } { show-coffin }
8717 { \token_to_str:N #1 }
8718 { \dim_eval:n { \coffin_ht:N #1 } }
8719 { \dim_eval:n { \coffin_dp:N #1 } }
8720 { \dim_eval:n { \coffin_wd:N #1 } }
8721 __msg_show_wrap:n
8722 {
8723 \prop_map_function:cN
8724 { l__coffin_poles_ __int_value:w #1 _prop }
8725 __msg_show_item_unbraced:nn
8726 }
8727 }
8728 }
8729 \cs_generate_variant:Nn \coffin_show_structure:N { c }

(End definition for \coffin_show_structure:N and \coffin_show_structure:c. These functions are
documented on page 158.)

18.8 Messages
8730 __msg_kernel_new:nnnn { kernel } { no-pole-intersection }
8731 { No~intersection~between~coffin~poles. }
8732 {
8733 \c__msg_coding_error_text_tl
8734 LaTeX~was~asked~to~find~the~intersection~between~two~poles,~
8735 but~they~do~not~have~a~unique~meeting~point:~
8736 the~value~(0~pt,~0~pt)~will~be~used.
8737 }
8738 __msg_kernel_new:nnnn { kernel } { unknown-coffin }
8739 { Unknown~coffin~’#1’. }
8740 { The~coffin~’#1’~was~never~defined. }
8741 __msg_kernel_new:nnnn { kernel } { unknown-coffin-pole }
8742 { Pole~’#1’~unknown~for~coffin~’#2’. }
8743 {
8744 \c__msg_coding_error_text_tl
8745 LaTeX~was~asked~to~find~a~typesetting~pole~for~a~coffin,~
8746 but~either~the~coffin~does~not~exist~or~the~pole~name~is~wrong.
8747 }
8748 __msg_kernel_new:nnn { kernel } { show-coffin }
8749 {
8750 Size~of~coffin~#1 : \\
8751 > ~ ht~=~#2 \\
8752 > ~ dp~=~#3 \\
8753 > ~ wd~=~#4 \\

508

8754 Poles~of~coffin~#1 :
8755 }

8756 〈/initex | package〉

19 l3color Implementation
8757 〈*initex | package〉

\color_group_begin:
\color_group_end:

Grouping for color is almost the same as using the basic \group_begin: and \group_-
end: functions. However, in vertical mode the end-of-group needs a \par, which in
horizontal mode does nothing.

8758 \cs_new_eq:NN \color_group_begin: \group_begin:
8759 \cs_new_protected_nopar:Npn \color_group_end:
8760 {
8761 \tex_par:D
8762 \group_end:
8763 }

(End definition for \color_group_begin: and \color_group_end:. These functions are documented on
page 159.)

\color_ensure_current: A driver-independent wrapper for setting the foreground color to the current color “now”.
8764 〈*initex〉
8765 \cs_new_protected_nopar:Npn \color_ensure_current:
8766 { __driver_color_ensure_current: }
8767 〈/initex〉

In package mode, the driver code may not be loaded. To keep down dependencies, if
there is no driver code available and no \set@color then color is not in use and this
function can be a no-op.

8768 〈*package〉
8769 \cs_new_protected_nopar:Npn \color_ensure_current: { }
8770 \AtBeginDocument
8771 {
8772 \cs_if_exist:NTF __driver_color_ensure_current:
8773 {
8774 \cs_set_protected_nopar:Npn \color_ensure_current:
8775 { __driver_color_ensure_current: }
8776 }
8777 {
8778 \cs_if_exist:NT \set@color
8779 {
8780 \cs_set_protected_nopar:Npn \color_ensure_current:
8781 { \set@color }
8782 }
8783 }
8784 }
8785 〈/package〉

(End definition for \color_ensure_current:. This function is documented on page 159.)

8786 〈/initex | package〉

509

20 l3msg implementation
8787 〈*initex | package〉

8788 〈@@=msg〉

\l__msg_internal_tl A general scratch for the module.
8789 \tl_new:N \l__msg_internal_tl

(End definition for \l__msg_internal_tl. This variable is documented on page ??.)

20.1 Creating messages
Messages are created and used separately, so there two parts to the code here. First, a
mechanism for creating message text. This is pretty simple, as there is not actually a lot
to do.

\c__msg_text_prefix_tl
\c__msg_more_text_prefix_tl

Locations for the text of messages.
8790 \tl_const:Nn \c__msg_text_prefix_tl { msg~text~>~ }
8791 \tl_const:Nn \c__msg_more_text_prefix_tl { msg~extra~text~>~ }

(End definition for \c__msg_text_prefix_tl and \c__msg_more_text_prefix_tl. These variables are
documented on page ??.)

\msg_if_exist_p:nn
\msg_if_exist:nnTF

Test whether the control sequence containing the message text exists or not.
8792 \prg_new_conditional:Npnn \msg_if_exist:nn #1#2 { p , T , F , TF }
8793 {
8794 \cs_if_exist:cTF { \c__msg_text_prefix_tl #1 / #2 }
8795 { \prg_return_true: } { \prg_return_false: }
8796 }

(End definition for \msg_if_exist:nnTF. This function is documented on page 161.)

__chk_if_free_msg:nn This auxiliary is similar to __chk_if_free_cs:N, and is used when defining messages
with \msg_new:nnnn. It could be inlined in \msg_new:nnnn, but the experimental l3trace
module needs to disable this check when reloading a package with the extra tracing
information.

8797 \cs_new_protected:Npn __chk_if_free_msg:nn #1#2
8798 {
8799 \msg_if_exist:nnT {#1} {#2}
8800 {
8801 __msg_kernel_error:nnxx { kernel } { message-already-defined }
8802 {#1} {#2}
8803 }
8804 }
8805 〈*package〉
8806 \if_bool:N \l@expl@log@functions@bool
8807 \cs_gset_protected:Npn __chk_if_free_msg:nn #1#2
8808 {
8809 \msg_if_exist:nnT {#1} {#2}
8810 {

510

8811 __msg_kernel_error:nnxx { kernel } { message-already-defined }
8812 {#1} {#2}
8813 }
8814 __chk_log:x { Defining~message~ #1 / #2 ~\msg_line_context: }
8815 }
8816 \fi:
8817 〈/package〉

(End definition for __chk_if_free_msg:nn.)

\msg_new:nnnn
\msg_new:nnn

\msg_gset:nnnn
\msg_gset:nnn
\msg_set:nnnn
\msg_set:nnn

Setting a message simply means saving the appropriate text into two functions. A sanity
check first.

8818 \cs_new_protected:Npn \msg_new:nnnn #1#2
8819 {
8820 __chk_if_free_msg:nn {#1} {#2}
8821 \msg_gset:nnnn {#1} {#2}
8822 }
8823 \cs_new_protected:Npn \msg_new:nnn #1#2#3
8824 { \msg_new:nnnn {#1} {#2} {#3} { } }
8825 \cs_new_protected:Npn \msg_set:nnnn #1#2#3#4
8826 {
8827 \cs_set:cpn { \c__msg_text_prefix_tl #1 / #2 }
8828 ##1##2##3##4 {#3}
8829 \cs_set:cpn { \c__msg_more_text_prefix_tl #1 / #2 }
8830 ##1##2##3##4 {#4}
8831 }
8832 \cs_new_protected:Npn \msg_set:nnn #1#2#3
8833 { \msg_set:nnnn {#1} {#2} {#3} { } }
8834 \cs_new_protected:Npn \msg_gset:nnnn #1#2#3#4
8835 {
8836 \cs_gset:cpn { \c__msg_text_prefix_tl #1 / #2 }
8837 ##1##2##3##4 {#3}
8838 \cs_gset:cpn { \c__msg_more_text_prefix_tl #1 / #2 }
8839 ##1##2##3##4 {#4}
8840 }
8841 \cs_new_protected:Npn \msg_gset:nnn #1#2#3
8842 { \msg_gset:nnnn {#1} {#2} {#3} { } }

(End definition for \msg_new:nnnn and \msg_new:nnn. These functions are documented on page 160.)

20.2 Messages: support functions and text
\c__msg_coding_error_text_tl

\c__msg_continue_text_tl
\c__msg_critical_text_tl

\c__msg_fatal_text_tl
\c__msg_help_text_tl

\c__msg_no_info_text_tl
\c__msg_on_line_text_tl
\c__msg_return_text_tl

\c__msg_trouble_text_tl

Simple pieces of text for messages.
8843 \tl_const:Nn \c__msg_coding_error_text_tl
8844 {
8845 This~is~a~coding~error.
8846 \\ \\
8847 }
8848 \tl_const:Nn \c__msg_continue_text_tl
8849 { Type~<return>~to~continue }

511

8850 \tl_const:Nn \c__msg_critical_text_tl
8851 { Reading~the~current~file~’\g_file_current_name_tl’~will~stop. }
8852 \tl_const:Nn \c__msg_fatal_text_tl
8853 { This~is~a~fatal~error:~LaTeX~will~abort. }
8854 \tl_const:Nn \c__msg_help_text_tl
8855 { For~immediate~help~type~H~<return> }
8856 \tl_const:Nn \c__msg_no_info_text_tl
8857 {
8858 LaTeX~does~not~know~anything~more~about~this~error,~sorry.
8859 \c__msg_return_text_tl
8860 }
8861 \tl_const:Nn \c__msg_on_line_text_tl { on~line }
8862 \tl_const:Nn \c__msg_return_text_tl
8863 {
8864 \\ \\
8865 Try~typing~<return>~to~proceed.
8866 \\
8867 If~that~doesn’t~work,~type~X~<return>~to~quit.
8868 }
8869 \tl_const:Nn \c__msg_trouble_text_tl
8870 {
8871 \\ \\
8872 More~errors~will~almost~certainly~follow: \\
8873 the~LaTeX~run~should~be~aborted.
8874 }

(End definition for \c__msg_coding_error_text_tl and others. These variables are documented on page
170.)

\msg_line_number:
\msg_line_context:

For writing the line number nicely. \msg_line_context: was set up earlier, so this is
not new.

8875 \cs_new_nopar:Npn \msg_line_number: { \int_use:N \tex_inputlineno:D }
8876 \cs_gset_nopar:Npn \msg_line_context:
8877 {
8878 \c__msg_on_line_text_tl
8879 \c_space_tl
8880 \msg_line_number:
8881 }

(End definition for \msg_line_number: and \msg_line_context:. These functions are documented on
page 161.)

20.3 Showing messages: low level mechanism
\msg_interrupt:nnn The low-level interruption macro is rather opaque, unfortunately. Depending on the

availability of more information there is a choice of how to set up the further help. We
feed the extra help text and the message itself to a wrapping auxiliary, in this order
because we must first setup TEX’s \errhelp register before issuing an \errmessage.

8882 \cs_new_protected:Npn \msg_interrupt:nnn #1#2#3
8883 {

512

8884 \tl_if_empty:nTF {#3}
8885 {
8886 __msg_interrupt_wrap:nn { \\ \c__msg_no_info_text_tl }
8887 {#1 \\\\ #2 \\\\ \c__msg_continue_text_tl }
8888 }
8889 {
8890 __msg_interrupt_wrap:nn { \\ #3 }
8891 {#1 \\\\ #2 \\\\ \c__msg_help_text_tl }
8892 }
8893 }

(End definition for \msg_interrupt:nnn. This function is documented on page 166.)

__msg_interrupt_wrap:nn
__msg_interrupt_more_text:n

First setup TEX’s \errhelp register with the extra help #1, then build a nice-looking error
message with #2. Everything is done using x-type expansion as the new line markers are
different for the two type of text and need to be correctly set up. The auxiliary __msg_-
interrupt_more_text:n receives its argument as a line-wrapped string, which is thus
unaffected by expansion.

8894 \cs_new_protected:Npn __msg_interrupt_wrap:nn #1#2
8895 {
8896 \iow_wrap:nnnN {#1} { | ~ } { } __msg_interrupt_more_text:n
8897 \iow_wrap:nnnN {#2} { ! ~ } { } __msg_interrupt_text:n
8898 }
8899 \cs_new_protected:Npn __msg_interrupt_more_text:n #1
8900 {
8901 \exp_args:Nx \tex_errhelp:D
8902 {
8903 |’’’
8904 #1 \iow_newline:
8905 |...
8906 }
8907 }

(End definition for __msg_interrupt_wrap:nn.)

__msg_interrupt_text:n The business end of the process starts by producing some visual separation of the message
from the main part of the log. The error message needs to be printed with everything
made “invisible”: TEX’s own information involves the macro in which \errmessage is
called, and the end of the argument of the \errmessage, including the closing brace. We
use an active ! to call the \errmessage primitive, and end its argument with \use_-
none:n {〈dots〉} which fills the output with dots. Two trailing closing braces are turned
into spaces to hide them as well. The group in which we alter the definition of the active
! is closed before producing the message: this ensures that tokens inserted by typing I
in the command-line will be inserted after the message is entirely cleaned up.

The __iow_with:Nnn auxiliary, defined in l3file, expects an 〈integer variable〉, an
integer 〈value〉, and some 〈code〉. It runs the 〈code〉 after ensuring that the 〈integer
variable〉 takes the given 〈value〉, then restores the former value of the 〈integer variable〉
if needed. We use it to ensure that the \newlinechar is 10, as needed for \iow_-
newline: to work, and that \errorcontextlines is −1, to avoid showing irrelevant

513

context. Note that restoring the former value of these integers requires inserting tokens
after the \errmessage, which go in the way of tokens which could be inserted by the
user. This is unavoidable.

8908 \group_begin:
8909 \char_set_lccode:nn {‘\{} {‘\ }
8910 \char_set_lccode:nn {‘\}} {‘\ }
8911 \char_set_lccode:nn {‘\&} {‘\!}
8912 \char_set_catcode_active:N \&
8913 \tex_lowercase:D
8914 {
8915 \group_end:
8916 \cs_new_protected:Npn __msg_interrupt_text:n #1
8917 {
8918 \iow_term:x
8919 {
8920 \iow_newline:
8921 !!
8922 \iow_newline:
8923 !
8924 }
8925 __iow_with:Nnn \tex_newlinechar:D { ‘\^^J }
8926 {
8927 __iow_with:Nnn \tex_errorcontextlines:D \c_minus_one
8928 {
8929 \group_begin:
8930 \cs_set_protected_nopar:Npn &
8931 {
8932 \tex_errmessage:D
8933 {
8934 #1
8935 \use_none:n
8936 { .. }
8937 }
8938 }
8939 \exp_after:wN
8940 \group_end:
8941 &
8942 }
8943 }
8944 }
8945 }

(End definition for __msg_interrupt_text:n.)

\msg_log:n
\msg_term:n

Printing to the log or terminal without a stop is rather easier. A bit of simple visual
work sets things off nicely.

8946 \cs_new_protected:Npn \msg_log:n #1
8947 {
8948 \iow_log:n { ... }

514

8949 \iow_wrap:nnnN { . ~ #1} { . ~ } { } \iow_log:n
8950 \iow_log:n { ... }
8951 }
8952 \cs_new_protected:Npn \msg_term:n #1
8953 {
8954 \iow_term:n { *** }
8955 \iow_wrap:nnnN { * ~ #1} { * ~ } { } \iow_term:n
8956 \iow_term:n { *** }
8957 }

(End definition for \msg_log:n. This function is documented on page 166.)

20.4 Displaying messages
LATEX is handling error messages and so the TEX ones are disabled. This is already done
by the LATEX2ε kernel, so to avoid messing up any deliberate change by a user this is
only set in format mode.

8958 〈*initex〉
8959 \int_gset_eq:NN \tex_errorcontextlines:D \c_minus_one
8960 〈/initex〉

\msg_fatal_text:n
\msg_critical_text:n

\msg_error_text:n
\msg_warning_text:n

\msg_info_text:n

A function for issuing messages: both the text and order could in principle vary.
8961 \cs_new:Npn \msg_fatal_text:n #1 { Fatal~#1~error }
8962 \cs_new:Npn \msg_critical_text:n #1 { Critical~#1~error }
8963 \cs_new:Npn \msg_error_text:n #1 { #1~error }
8964 \cs_new:Npn \msg_warning_text:n #1 { #1~warning }
8965 \cs_new:Npn \msg_info_text:n #1 { #1~info }

(End definition for \msg_fatal_text:n and others. These functions are documented on page 161.)

\msg_see_documentation_text:n Contextual footer information. The LATEX module only comprises LATEX3 code, so we
refer to the LATEX3 documentation rather than simply “LATEX”.

8966 \cs_new:Npn \msg_see_documentation_text:n #1
8967 {
8968 \\ \\ See~the~
8969 \str_if_eq:nnTF {#1} { LaTeX } { LaTeX3 } {#1} ~
8970 documentation~for~further~information.
8971 }

(End definition for \msg_see_documentation_text:n. This function is documented on page 162.)

__msg_class_new:nn

8972 \group_begin:
8973 \cs_set_protected:Npn __msg_class_new:nn #1#2
8974 {
8975 \prop_new:c { l__msg_redirect_ #1 _prop }
8976 \cs_new_protected:cpn { __msg_ #1 _code:nnnnnn }
8977 ##1##2##3##4##5##6 {#2}
8978 \cs_new_protected:cpn { msg_ #1 :nnnnnn } ##1##2##3##4##5##6
8979 {

515

8980 \use:x
8981 {
8982 \exp_not:n { __msg_use:nnnnnnn {#1} {##1} {##2} }
8983 { \tl_to_str:n {##3} } { \tl_to_str:n {##4} }
8984 { \tl_to_str:n {##5} } { \tl_to_str:n {##6} }
8985 }
8986 }
8987 \cs_new_protected:cpx { msg_ #1 :nnnnn } ##1##2##3##4##5
8988 { \exp_not:c { msg_ #1 :nnnnnn } {##1} {##2} {##3} {##4} {##5} { } }
8989 \cs_new_protected:cpx { msg_ #1 :nnnn } ##1##2##3##4
8990 { \exp_not:c { msg_ #1 :nnnnnn } {##1} {##2} {##3} {##4} { } { } }
8991 \cs_new_protected:cpx { msg_ #1 :nnn } ##1##2##3
8992 { \exp_not:c { msg_ #1 :nnnnnn } {##1} {##2} {##3} { } { } { } }
8993 \cs_new_protected:cpx { msg_ #1 :nn } ##1##2
8994 { \exp_not:c { msg_ #1 :nnnnnn } {##1} {##2} { } { } { } { } }
8995 \cs_new_protected:cpx { msg_ #1 :nnxxxx } ##1##2##3##4##5##6
8996 {
8997 \use:x
8998 {
8999 \exp_not:N \exp_not:n
9000 { \exp_not:c { msg_ #1 :nnnnnn } {##1} {##2} }
9001 {##3} {##4} {##5} {##6}
9002 }
9003 }
9004 \cs_new_protected:cpx { msg_ #1 :nnxxx } ##1##2##3##4##5
9005 { \exp_not:c { msg_ #1 :nnxxxx } {##1} {##2} {##3} {##4} {##5} { } }
9006 \cs_new_protected:cpx { msg_ #1 :nnxx } ##1##2##3##4
9007 { \exp_not:c { msg_ #1 :nnxxxx } {##1} {##2} {##3} {##4} { } { } }
9008 \cs_new_protected:cpx { msg_ #1 :nnx } ##1##2##3
9009 { \exp_not:c { msg_ #1 :nnxxxx } {##1} {##2} {##3} { } { } { } }
9010 }

(End definition for __msg_class_new:nn. This function is documented on page ??.)

\msg_fatal:nnnnnn
\msg_fatal:nnnnn
\msg_fatal:nnnn
\msg_fatal:nnn
\msg_fatal:nn

\msg_fatal:nnxxxx
\msg_fatal:nnxxx
\msg_fatal:nnxx
\msg_fatal:nnx

For fatal errors, after the error message TEX bails out.
9011 __msg_class_new:nn { fatal }
9012 {
9013 \msg_interrupt:nnn
9014 { \msg_fatal_text:n {#1} : ~ "#2" }
9015 {
9016 \use:c { \c__msg_text_prefix_tl #1 / #2 } {#3} {#4} {#5} {#6}
9017 \msg_see_documentation_text:n {#1}
9018 }
9019 { \c__msg_fatal_text_tl }
9020 \tex_end:D
9021 }

(End definition for \msg_fatal:nnnnnn and others. These functions are documented on page 162.)

\msg_critical:nnnnnn
\msg_critical:nnnnn
\msg_critical:nnnn
\msg_critical:nnn
\msg_critical:nn

\msg_critical:nnxxxx
\msg_critical:nnxxx
\msg_critical:nnxx
\msg_critical:nnx

Not quite so bad: just end the current file.

516

9022 __msg_class_new:nn { critical }
9023 {
9024 \msg_interrupt:nnn
9025 { \msg_critical_text:n {#1} : ~ "#2" }
9026 {
9027 \use:c { \c__msg_text_prefix_tl #1 / #2 } {#3} {#4} {#5} {#6}
9028 \msg_see_documentation_text:n {#1}
9029 }
9030 { \c__msg_critical_text_tl }
9031 \tex_endinput:D
9032 }

(End definition for \msg_critical:nnnnnn and others. These functions are documented on page 163.)

\msg_error:nnnnnn
\msg_error:nnnnn
\msg_error:nnnn
\msg_error:nnn
\msg_error:nn

\msg_error:nnxxxx
\msg_error:nnxxx
\msg_error:nnxx
\msg_error:nnx

__msg_error:cnnnnn
__msg_no_more_text:nnnn

For an error, the interrupt routine is called. We check if there is a “more text” by
comparing that control sequence with a permanently empty text.

9033 __msg_class_new:nn { error }
9034 {
9035 __msg_error:cnnnnn
9036 { \c__msg_more_text_prefix_tl #1 / #2 }
9037 {#3} {#4} {#5} {#6}
9038 {
9039 \msg_interrupt:nnn
9040 { \msg_error_text:n {#1} : ~ "#2" }
9041 {
9042 \use:c { \c__msg_text_prefix_tl #1 / #2 } {#3} {#4} {#5} {#6}
9043 \msg_see_documentation_text:n {#1}
9044 }
9045 }
9046 }
9047 \cs_new_protected:Npn __msg_error:cnnnnn #1#2#3#4#5#6
9048 {
9049 \cs_if_eq:cNTF {#1} __msg_no_more_text:nnnn
9050 { #6 { } }
9051 { #6 { \use:c {#1} {#2} {#3} {#4} {#5} } }
9052 }
9053 \cs_new:Npn __msg_no_more_text:nnnn #1#2#3#4 { }

(End definition for \msg_error:nnnnnn and others. These functions are documented on page 163.)

\msg_warning:nnnnnn
\msg_warning:nnnnn
\msg_warning:nnnn
\msg_warning:nnn
\msg_warning:nn

\msg_warning:nnxxxx
\msg_warning:nnxxx
\msg_warning:nnxx
\msg_warning:nnx

Warnings are printed to the terminal.
9054 __msg_class_new:nn { warning }
9055 {
9056 \msg_term:n
9057 {
9058 \msg_warning_text:n {#1} : ~ "#2" \\ \\
9059 \use:c { \c__msg_text_prefix_tl #1 / #2 } {#3} {#4} {#5} {#6}
9060 }
9061 }

(End definition for \msg_warning:nnnnnn and others. These functions are documented on page 163.)

517

\msg_info:nnnnnn
\msg_info:nnnnn
\msg_info:nnnn
\msg_info:nnn
\msg_info:nn

\msg_info:nnxxxx
\msg_info:nnxxx
\msg_info:nnxx
\msg_info:nnx

Information only goes into the log.
9062 __msg_class_new:nn { info }
9063 {
9064 \msg_log:n
9065 {
9066 \msg_info_text:n {#1} : ~ "#2" \\ \\
9067 \use:c { \c__msg_text_prefix_tl #1 / #2 } {#3} {#4} {#5} {#6}
9068 }
9069 }

(End definition for \msg_info:nnnnnn and others. These functions are documented on page 163.)

\msg_log:nnnnnn
\msg_log:nnnnn
\msg_log:nnnn
\msg_log:nnn
\msg_log:nn

\msg_log:nnxxxx
\msg_log:nnxxx
\msg_log:nnxx
\msg_log:nnx

“Log” data is very similar to information, but with no extras added.
9070 __msg_class_new:nn { log }
9071 {
9072 \iow_wrap:nnnN
9073 { \use:c { \c__msg_text_prefix_tl #1 / #2 } {#3} {#4} {#5} {#6} }
9074 { } { } \iow_log:n
9075 }

(End definition for \msg_log:nnnnnn and others. These functions are documented on page 164.)

\msg_none:nnnnnn
\msg_none:nnnnn
\msg_none:nnnn
\msg_none:nnn
\msg_none:nn

\msg_none:nnxxxx
\msg_none:nnxxx
\msg_none:nnxx
\msg_none:nnx

The none message type is needed so that input can be gobbled.
9076 __msg_class_new:nn { none } { }

(End definition for \msg_none:nnnnnn and others. These functions are documented on page 164.)
End the group to eliminate __msg_class_new:nn.

9077 \group_end:

__msg_class_chk_exist:nT Checking that a message class exists. We build this from \cs_if_free:cTF rather than
\cs_if_exist:cTF because that avoids reading the second argument earlier than neces-
sary.

9078 \cs_new:Npn __msg_class_chk_exist:nT #1
9079 {
9080 \cs_if_free:cTF { __msg_ #1 _code:nnnnnn }
9081 { __msg_kernel_error:nnx { kernel } { message-class-unknown } {#1} }
9082 }

(End definition for __msg_class_chk_exist:nT.)

\l__msg_class_tl
\l__msg_current_class_tl

Support variables needed for the redirection system.
9083 \tl_new:N \l__msg_class_tl
9084 \tl_new:N \l__msg_current_class_tl

(End definition for \l__msg_class_tl and \l__msg_current_class_tl. These variables are documented
on page ??.)

\l__msg_redirect_prop For redirection of individually-named messages
9085 \prop_new:N \l__msg_redirect_prop

(End definition for \l__msg_redirect_prop. This variable is documented on page ??.)

518

\l__msg_hierarchy_seq During redirection, split the message name into a sequence with items {/module/submodule},
{/module}, and {}.

9086 \seq_new:N \l__msg_hierarchy_seq

(End definition for \l__msg_hierarchy_seq. This variable is documented on page ??.)

\l__msg_class_loop_seq Classes encountered when following redirections to check for loops.
9087 \seq_new:N \l__msg_class_loop_seq

(End definition for \l__msg_class_loop_seq. This variable is documented on page ??.)

__msg_use:nnnnnnn
__msg_use_redirect_name:n
__msg_use_hierarchy:nwwN

__msg_use_redirect_module:n
__msg_use_code:

Actually using a message is a multi-step process. First, some safety checks on the message
and class requested. The code and arguments are then stored to avoid passing them
around. The assignment to __msg_use_code: is similar to \tl_set:Nn. The message
is eventually produced with whatever \l__msg_class_tl is when __msg_use_code: is
called.

9088 \cs_new_protected:Npn __msg_use:nnnnnnn #1#2#3#4#5#6#7
9089 {
9090 \msg_if_exist:nnTF {#2} {#3}
9091 {
9092 __msg_class_chk_exist:nT {#1}
9093 {
9094 \tl_set:Nn \l__msg_current_class_tl {#1}
9095 \cs_set_protected_nopar:Npx __msg_use_code:
9096 {
9097 \exp_not:n
9098 {
9099 \use:c { __msg_ \l__msg_class_tl _code:nnnnnn }
9100 {#2} {#3} {#4} {#5} {#6} {#7}
9101 }
9102 }
9103 __msg_use_redirect_name:n { #2 / #3 }
9104 }
9105 }
9106 { __msg_kernel_error:nnxx { kernel } { message-unknown } {#2} {#3} }
9107 }
9108 \cs_new_protected_nopar:Npn __msg_use_code: { }

The first check is for a individual message redirection. If this applies then no further redi-
rection is attempted. Otherwise, split the message name into module/submodule/message
(with an arbitrary number of slashes), and store {/module/submodule}, {/module} and
{} into \l__msg_hierarchy_seq. We will then map through this sequence, applying the
most specific redirection.

9109 \cs_new_protected:Npn __msg_use_redirect_name:n #1
9110 {
9111 \prop_get:NnNTF \l__msg_redirect_prop { / #1 } \l__msg_class_tl
9112 { __msg_use_code: }
9113 {
9114 \seq_clear:N \l__msg_hierarchy_seq

519

9115 __msg_use_hierarchy:nwwN { }
9116 #1 \q_mark __msg_use_hierarchy:nwwN
9117 / \q_mark \use_none_delimit_by_q_stop:w
9118 \q_stop
9119 __msg_use_redirect_module:n { }
9120 }
9121 }
9122 \cs_new_protected:Npn __msg_use_hierarchy:nwwN #1#2 / #3 \q_mark #4
9123 {
9124 \seq_put_left:Nn \l__msg_hierarchy_seq {#1}
9125 #4 { #1 / #2 } #3 \q_mark #4
9126 }

At this point, the items of \l__msg_hierarchy_seq are the various levels at which we
should look for a redirection. Redirections which are less specific than the argument of
__msg_use_redirect_module:n are not attempted. This argument is empty for a class
redirection, /module for a module redirection, etc. Loop through the sequence to find
the most specific redirection, with module ##1. The loop is interrupted after testing for
a redirection for ##1 equal to the argument #1 (least specific redirection allowed). When
a redirection is found, break the mapping, then if the redirection targets the same class,
output the code with that class, and otherwise set the target as the new current class,
and search for further redirections. Those redirections should be at least as specific as
##1.

9127 \cs_new_protected:Npn __msg_use_redirect_module:n #1
9128 {
9129 \seq_map_inline:Nn \l__msg_hierarchy_seq
9130 {
9131 \prop_get:cnNTF { l__msg_redirect_ \l__msg_current_class_tl _prop }
9132 {##1} \l__msg_class_tl
9133 {
9134 \seq_map_break:n
9135 {
9136 \tl_if_eq:NNTF \l__msg_current_class_tl \l__msg_class_tl
9137 { __msg_use_code: }
9138 {
9139 \tl_set_eq:NN \l__msg_current_class_tl \l__msg_class_tl
9140 __msg_use_redirect_module:n {##1}
9141 }
9142 }
9143 }
9144 {
9145 \str_if_eq:nnT {##1} {#1}
9146 {
9147 \tl_set_eq:NN \l__msg_class_tl \l__msg_current_class_tl
9148 \seq_map_break:n { __msg_use_code: }
9149 }
9150 }
9151 }
9152 }

520

(End definition for __msg_use:nnnnnnn.)

\msg_redirect_name:nnn Named message will always use the given class even if that class is redirected further. An
empty target class cancels any existing redirection for that message.

9153 \cs_new_protected:Npn \msg_redirect_name:nnn #1#2#3
9154 {
9155 \tl_if_empty:nTF {#3}
9156 { \prop_remove:Nn \l__msg_redirect_prop { / #1 / #2 } }
9157 {
9158 __msg_class_chk_exist:nT {#3}
9159 { \prop_put:Nnn \l__msg_redirect_prop { / #1 / #2 } {#3} }
9160 }
9161 }

(End definition for \msg_redirect_name:nnn. This function is documented on page 165.)

\msg_redirect_class:nn
\msg_redirect_module:nnn

__msg_redirect:nnn
__msg_redirect_loop_chk:nnn
__msg_redirect_loop_list:n

If the target class is empty, eliminate the corresponding redirection. Otherwise, add the
redirection. We must then check for a loop: as an initialization, we start by storing the
initial class in \l__msg_current_class_tl.

9162 \cs_new_protected_nopar:Npn \msg_redirect_class:nn
9163 { __msg_redirect:nnn { } }
9164 \cs_new_protected:Npn \msg_redirect_module:nnn #1
9165 { __msg_redirect:nnn { / #1 } }
9166 \cs_new_protected:Npn __msg_redirect:nnn #1#2#3
9167 {
9168 __msg_class_chk_exist:nT {#2}
9169 {
9170 \tl_if_empty:nTF {#3}
9171 { \prop_remove:cn { l__msg_redirect_ #2 _prop } {#1} }
9172 {
9173 __msg_class_chk_exist:nT {#3}
9174 {
9175 \prop_put:cnn { l__msg_redirect_ #2 _prop } {#1} {#3}
9176 \tl_set:Nn \l__msg_current_class_tl {#2}
9177 \seq_clear:N \l__msg_class_loop_seq
9178 __msg_redirect_loop_chk:nnn {#2} {#3} {#1}
9179 }
9180 }
9181 }
9182 }

Since multiple redirections can only happen with increasing specificity, a loop requires
that all steps are of the same specificity. The new redirection can thus only create a loop
with other redirections for the exact same module, #1, and not submodules. After some
initialization above, follow redirections with \l__msg_class_tl, and keep track in \l_-
_msg_class_loop_seq of the various classes encountered. A redirection from a class to
itself, or the absence of redirection both mean that there is no loop. A redirection to the
initial class marks a loop. To break it, we must decide which redirection to cancel. The
user most likely wants the newly added redirection to hold with no further redirection.

521

We thus remove the redirection starting from #2, target of the new redirection. Note
that no message is emitted by any of the underlying functions: otherwise we may get an
infinite loop because of a message from the message system itself.

9183 \cs_new_protected:Npn __msg_redirect_loop_chk:nnn #1#2#3
9184 {
9185 \seq_put_right:Nn \l__msg_class_loop_seq {#1}
9186 \prop_get:cnNT { l__msg_redirect_ #1 _prop } {#3} \l__msg_class_tl
9187 {
9188 \str_if_eq_x:nnF { \l__msg_class_tl } {#1}
9189 {
9190 \tl_if_eq:NNTF \l__msg_class_tl \l__msg_current_class_tl
9191 {
9192 \prop_put:cnn { l__msg_redirect_ #2 _prop } {#3} {#2}
9193 __msg_kernel_warning:nnxxxx
9194 { kernel } { message-redirect-loop }
9195 { \seq_item:Nn \l__msg_class_loop_seq { \c_one } }
9196 { \seq_item:Nn \l__msg_class_loop_seq { \c_two } }
9197 {#3}
9198 {
9199 \seq_map_function:NN \l__msg_class_loop_seq
9200 __msg_redirect_loop_list:n
9201 { \seq_item:Nn \l__msg_class_loop_seq { \c_one } }
9202 }
9203 }
9204 { __msg_redirect_loop_chk:onn \l__msg_class_tl {#2} {#3} }
9205 }
9206 }
9207 }
9208 \cs_generate_variant:Nn __msg_redirect_loop_chk:nnn { o }
9209 \cs_new:Npn __msg_redirect_loop_list:n #1 { {#1} ~ => ~ }

(End definition for \msg_redirect_class:nn and \msg_redirect_module:nnn. These functions are doc-
umented on page 165.)

20.5 Kernel-specific functions
__msg_kernel_new:nnnn
__msg_kernel_new:nnn
__msg_kernel_set:nnnn
__msg_kernel_set:nnn

The kernel needs some messages of its own. These are created using pre-built functions.
Two functions are provided: one more general and one which only has the short text
part.

9210 \cs_new_protected:Npn __msg_kernel_new:nnnn #1#2
9211 { \msg_new:nnnn { LaTeX } { #1 / #2 } }
9212 \cs_new_protected:Npn __msg_kernel_new:nnn #1#2
9213 { \msg_new:nnn { LaTeX } { #1 / #2 } }
9214 \cs_new_protected:Npn __msg_kernel_set:nnnn #1#2
9215 { \msg_set:nnnn { LaTeX } { #1 / #2 } }
9216 \cs_new_protected:Npn __msg_kernel_set:nnn #1#2
9217 { \msg_set:nnn { LaTeX } { #1 / #2 } }

(End definition for __msg_kernel_new:nnnn and __msg_kernel_new:nnn. These functions are docu-
mented on page 167.)

522

__msg_kernel_class_new:nN
__msg_kernel_class_new_aux:nN

All the functions for kernel messages come in variants ranging from 0 to 4 arguments.
Those with less than 4 arguments are defined in terms of the 4-argument variant, in a
way very similar to __msg_class_new:nn. This auxiliary is destroyed at the end of the
group.

9218 \group_begin:
9219 \cs_set_protected:Npn __msg_kernel_class_new:nN #1
9220 { __msg_kernel_class_new_aux:nN { kernel_ #1 } }
9221 \cs_set_protected:Npn __msg_kernel_class_new_aux:nN #1#2
9222 {
9223 \cs_new_protected:cpn { __msg_ #1 :nnnnnn } ##1##2##3##4##5##6
9224 {
9225 \use:x
9226 {
9227 \exp_not:n { #2 { LaTeX } { ##1 / ##2 } }
9228 { \tl_to_str:n {##3} } { \tl_to_str:n {##4} }
9229 { \tl_to_str:n {##5} } { \tl_to_str:n {##6} }
9230 }
9231 }
9232 \cs_new_protected:cpx { __msg_ #1 :nnnnn } ##1##2##3##4##5
9233 { \exp_not:c { __msg_ #1 :nnnnnn } {##1} {##2} {##3} {##4} {##5} { } }
9234 \cs_new_protected:cpx { __msg_ #1 :nnnn } ##1##2##3##4
9235 { \exp_not:c { __msg_ #1 :nnnnnn } {##1} {##2} {##3} {##4} { } { } }
9236 \cs_new_protected:cpx { __msg_ #1 :nnn } ##1##2##3
9237 { \exp_not:c { __msg_ #1 :nnnnnn } {##1} {##2} {##3} { } { } { } }
9238 \cs_new_protected:cpx { __msg_ #1 :nn } ##1##2
9239 { \exp_not:c { __msg_ #1 :nnnnnn } {##1} {##2} { } { } { } { } }
9240 \cs_new_protected:cpx { __msg_ #1 :nnxxxx } ##1##2##3##4##5##6
9241 {
9242 \use:x
9243 {
9244 \exp_not:N \exp_not:n
9245 { \exp_not:c { __msg_ #1 :nnnnnn } {##1} {##2} }
9246 {##3} {##4} {##5} {##6}
9247 }
9248 }
9249 \cs_new_protected:cpx { __msg_ #1 :nnxxx } ##1##2##3##4##5
9250 { \exp_not:c { __msg_ #1 :nnxxxx } {##1} {##2} {##3} {##4} {##5} { } }
9251 \cs_new_protected:cpx { __msg_ #1 :nnxx } ##1##2##3##4
9252 { \exp_not:c { __msg_ #1 :nnxxxx } {##1} {##2} {##3} {##4} { } { } }
9253 \cs_new_protected:cpx { __msg_ #1 :nnx } ##1##2##3
9254 { \exp_not:c { __msg_ #1 :nnxxxx } {##1} {##2} {##3} { } { } { } }
9255 }

(End definition for __msg_kernel_class_new:nN.)

__msg_kernel_fatal:nnnnnn
__msg_kernel_fatal:nnnnn
__msg_kernel_fatal:nnnn
__msg_kernel_fatal:nnn
__msg_kernel_fatal:nn

__msg_kernel_fatal:nnxxxx
__msg_kernel_fatal:nnxxx
__msg_kernel_fatal:nnxx
__msg_kernel_fatal:nnx

__msg_kernel_error:nnnnnn
__msg_kernel_error:nnnnn
__msg_kernel_error:nnnn
__msg_kernel_error:nnn
__msg_kernel_error:nn

__msg_kernel_error:nnxxxx
__msg_kernel_error:nnxxx
__msg_kernel_error:nnxx
__msg_kernel_error:nnx

Neither fatal kernel errors nor kernel errors can be redirected. We directly use the code for
(non-kernel) fatal errors and errors, adding the “LATEX” module name. Three functions
are already defined by l3basics; we need to undefine them to avoid errors.

9256 __msg_kernel_class_new:nN { fatal } __msg_fatal_code:nnnnnn

523

9257 \cs_undefine:N __msg_kernel_error:nnxx
9258 \cs_undefine:N __msg_kernel_error:nnx
9259 \cs_undefine:N __msg_kernel_error:nn
9260 __msg_kernel_class_new:nN { error } __msg_error_code:nnnnnn

(End definition for __msg_kernel_fatal:nnnnnn and others. These functions are documented on page
167.)

__msg_kernel_warning:nnnnnn
__msg_kernel_warning:nnnnn
__msg_kernel_warning:nnnn
__msg_kernel_warning:nnn
__msg_kernel_warning:nn

__msg_kernel_warning:nnxxxx
__msg_kernel_warning:nnxxx
__msg_kernel_warning:nnxx
__msg_kernel_warning:nnx
__msg_kernel_info:nnnnnn
__msg_kernel_info:nnnnn
__msg_kernel_info:nnnn
__msg_kernel_info:nnn
__msg_kernel_info:nn

__msg_kernel_info:nnxxxx
__msg_kernel_info:nnxxx
__msg_kernel_info:nnxx
__msg_kernel_info:nnx

Kernel messages which can be redirected simply use the machinery for normal messages,
with the module name “LATEX”.

9261 __msg_kernel_class_new:nN { warning } \msg_warning:nnxxxx
9262 __msg_kernel_class_new:nN { info } \msg_info:nnxxxx

(End definition for __msg_kernel_warning:nnnnnn and others. These functions are documented on
page 168.)

End the group to eliminate __msg_kernel_class_new:nN.
9263 \group_end:

Error messages needed to actually implement the message system itself.
9264 __msg_kernel_new:nnnn { kernel } { message-already-defined }
9265 { Message~’#2’~for~module~’#1’~already~defined. }
9266 {
9267 \c__msg_coding_error_text_tl
9268 LaTeX~was~asked~to~define~a~new~message~called~’#2’\\
9269 by~the~module~’#1’:~this~message~already~exists.
9270 \c__msg_return_text_tl
9271 }
9272 __msg_kernel_new:nnnn { kernel } { message-unknown }
9273 { Unknown~message~’#2’~for~module~’#1’. }
9274 {
9275 \c__msg_coding_error_text_tl
9276 LaTeX~was~asked~to~display~a~message~called~’#2’\\
9277 by~the~module~’#1’:~this~message~does~not~exist.
9278 \c__msg_return_text_tl
9279 }
9280 __msg_kernel_new:nnnn { kernel } { message-class-unknown }
9281 { Unknown~message~class~’#1’. }
9282 {
9283 LaTeX~has~been~asked~to~redirect~messages~to~a~class~’#1’:\\
9284 this~was~never~defined.
9285 \c__msg_return_text_tl
9286 }
9287 __msg_kernel_new:nnnn { kernel } { message-redirect-loop }
9288 {
9289 Message~redirection~loop~caused~by~ {#1} ~=>~ {#2}
9290 \tl_if_empty:nF {#3} { ~for~module~’ \use_none:n #3 ’ } .
9291 }
9292 {
9293 Adding~the~message~redirection~ {#1} ~=>~ {#2}
9294 \tl_if_empty:nF {#3} { ~for~the~module~’ \use_none:n #3 ’ } ~
9295 created~an~infinite~loop\\\\

524

9296 \iow_indent:n { #4 \\\\ }
9297 }

Messages for earlier kernel modules.
9298 __msg_kernel_new:nnnn { kernel } { bad-number-of-arguments }
9299 { Function~’#1’~cannot~be~defined~with~#2~arguments. }
9300 {
9301 \c__msg_coding_error_text_tl
9302 LaTeX~has~been~asked~to~define~a~function~’#1’~with~
9303 #2~arguments.~
9304 TeX~allows~between~0~and~9~arguments~for~a~single~function.
9305 }
9306 __msg_kernel_new:nnn { kernel } { char-active }
9307 { Cannot~generate~active~chars. }
9308 __msg_kernel_new:nnn { kernel } { char-invalid-catcode }
9309 { Invalid~catcode~for~char~generation. }
9310 __msg_kernel_new:nnn { kernel } { char-null-space }
9311 { Cannot~generate~null~char~as~a~space. }
9312 __msg_kernel_new:nnn { kernel } { char-out-of-range }
9313 { Charcode~requested~out~of~engine~range. }
9314 __msg_kernel_new:nnn { kernel } { char-space }
9315 { Cannot~generate~space~chars. }
9316 __msg_kernel_new:nnnn { kernel } { command-already-defined }
9317 { Control~sequence~#1~already~defined. }
9318 {
9319 \c__msg_coding_error_text_tl
9320 LaTeX~has~been~asked~to~create~a~new~control~sequence~’#1’~
9321 but~this~name~has~already~been~used~elsewhere. \\ \\
9322 The~current~meaning~is:\\
9323 \ \ #2
9324 }
9325 __msg_kernel_new:nnnn { kernel } { command-not-defined }
9326 { Control~sequence~#1~undefined. }
9327 {
9328 \c__msg_coding_error_text_tl
9329 LaTeX~has~been~asked~to~use~a~control~sequence~’#1’:\\
9330 this~has~not~been~defined~yet.
9331 }
9332 __msg_kernel_new:nnnn { kernel } { empty-search-pattern }
9333 { Empty~search~pattern. }
9334 {
9335 \c__msg_coding_error_text_tl
9336 LaTeX~has~been~asked~to~replace~an~empty~pattern~by~’#1’:~that~
9337 would~lead~to~an~infinite~loop!
9338 }
9339 __msg_kernel_new:nnnn { kernel } { out-of-registers }
9340 { No~room~for~a~new~#1. }
9341 {
9342 TeX~only~supports~\int_use:N \c_max_register_int \ %
9343 of~each~type.~All~the~#1~registers~have~been~used.~

525

9344 This~run~will~be~aborted~now.
9345 }
9346 __msg_kernel_new:nnnn { kernel } { missing-colon }
9347 { Function~’#1’~contains~no~’:’. }
9348 {
9349 \c__msg_coding_error_text_tl
9350 Code-level~functions~must~contain~’:’~to~separate~the~
9351 argument~specification~from~the~function~name.~This~is~
9352 needed~when~defining~conditionals~or~variants,~or~when~building~a~
9353 parameter~text~from~the~number~of~arguments~of~the~function.
9354 }
9355 __msg_kernel_new:nnnn { kernel } { protected-predicate }
9356 { Predicate~’#1’~must~be~expandable. }
9357 {
9358 \c__msg_coding_error_text_tl
9359 LaTeX~has~been~asked~to~define~’#1’~as~a~protected~predicate.~
9360 Only~expandable~tests~can~have~a~predicate~version.
9361 }
9362 __msg_kernel_new:nnnn { kernel } { conditional-form-unknown }
9363 { Conditional~form~’#1’~for~function~’#2’~unknown. }
9364 {
9365 \c__msg_coding_error_text_tl
9366 LaTeX~has~been~asked~to~define~the~conditional~form~’#1’~of~
9367 the~function~’#2’,~but~only~’TF’,~’T’,~’F’,~and~’p’~forms~exist.
9368 }
9369 〈*package〉
9370 \bool_if:NT \l@expl@check@declarations@bool
9371 {
9372 __msg_kernel_new:nnnn { check } { non-declared-variable }
9373 { The~variable~#1~has~not~been~declared~\msg_line_context:. }
9374 {
9375 Checking~is~active,~and~you~have~tried~do~so~something~like: \\
9376 \ \ \tl_set:Nn ~ #1 ~ \{ ~ ... ~ \} \\
9377 without~first~having: \\
9378 \ \ \tl_new:N ~ #1 \\
9379 \\
9380 LaTeX~will~create~the~variable~and~continue.
9381 }
9382 }
9383 〈/package〉
9384 __msg_kernel_new:nnnn { kernel } { scanmark-already-defined }
9385 { Scan~mark~#1~already~defined. }
9386 {
9387 \c__msg_coding_error_text_tl
9388 LaTeX~has~been~asked~to~create~a~new~scan~mark~’#1’~
9389 but~this~name~has~already~been~used~for~a~scan~mark.
9390 }
9391 __msg_kernel_new:nnnn { kernel } { variable-not-defined }
9392 { Variable~#1~undefined. }
9393 {

526

9394 \c__msg_coding_error_text_tl
9395 LaTeX~has~been~asked~to~show~a~variable~#1,~but~this~has~not~
9396 been~defined~yet.
9397 }
9398 __msg_kernel_new:nnnn { kernel } { variant-too-long }
9399 { Variant~form~’#1’~longer~than~base~signature~of~’#2’. }
9400 {
9401 \c__msg_coding_error_text_tl
9402 LaTeX~has~been~asked~to~create~a~variant~of~the~function~’#2’~
9403 with~a~signature~starting~with~’#1’,~but~that~is~longer~than~
9404 the~signature~(part~after~the~colon)~of~’#2’.
9405 }
9406 __msg_kernel_new:nnnn { kernel } { invalid-variant }
9407 { Variant~form~’#1’~invalid~for~base~form~’#2’. }
9408 {
9409 \c__msg_coding_error_text_tl
9410 LaTeX~has~been~asked~to~create~a~variant~of~the~function~’#2’~
9411 with~a~signature~starting~with~’#1’,~but~cannot~change~an~argument~
9412 from~type~’#3’~to~type~’#4’.
9413 }

Some errors only appear in expandable settings, hence don’t need a “more-text”
argument.

9414 __msg_kernel_new:nnn { kernel } { bad-variable }
9415 { Erroneous~variable~#1 used! }
9416 __msg_kernel_new:nnn { kernel } { misused-sequence }
9417 { A~sequence~was~misused. }
9418 __msg_kernel_new:nnn { kernel } { misused-prop }
9419 { A~property~list~was~misused. }
9420 __msg_kernel_new:nnn { kernel } { negative-replication }
9421 { Negative~argument~for~\prg_replicate:nn. }
9422 __msg_kernel_new:nnn { kernel } { unknown-comparison }
9423 { Relation~’#1’~unknown:~use~=,~<,~>,~==,~!=,~<=,~>=. }
9424 __msg_kernel_new:nnn { kernel } { zero-step }
9425 { Zero~step~size~for~step~function~#1. }

Messages used by the “show” functions.
9426 __msg_kernel_new:nnn { kernel } { show-clist }
9427 {
9428 The~comma~list~ \tl_if_empty:nF {#1} { #1 ~ }
9429 \tl_if_empty:nTF {#2}
9430 { is~empty }
9431 { contains~the~items~(without~outer~braces): }
9432 }
9433 __msg_kernel_new:nnn { kernel } { show-prop }
9434 {
9435 The~property~list~#1~
9436 \tl_if_empty:nTF {#2}
9437 { is~empty }
9438 { contains~the~pairs~(without~outer~braces): }

527

9439 }
9440 __msg_kernel_new:nnn { kernel } { show-seq }
9441 {
9442 The~sequence~#1~
9443 \tl_if_empty:nTF {#2}
9444 { is~empty }
9445 { contains~the~items~(without~outer~braces): }
9446 }
9447 __msg_kernel_new:nnn { kernel } { show-streams }
9448 {
9449 \tl_if_empty:nTF {#2} { No~ } { The~following~ }
9450 \str_case:nn {#1}
9451 {
9452 { ior } { input ~ }
9453 { iow } { output ~ }
9454 }
9455 streams~are~
9456 \tl_if_empty:nTF {#2} { open } { in~use: }
9457 }

20.6 Expandable errors
__msg_expandable_error:n
__msg_expandable_error:w

In expansion only context, we cannot use the normal means of reporting errors. Instead,
we feed TEX an undefined control sequence, \LaTeX3 error:. It is thus interrupted, and
shows the context, which thanks to the odd-looking \use:n is

<argument> \LaTeX3 error:
The error message.

In other words, TEX is processing the argument of \use:n, which is \LaTeX3 error:
〈error message〉. Then __msg_expandable_error:w cleans up. In fact, there is an
extra subtlety: if the user inserts tokens for error recovery, they should be kept. Thus we
also use an odd space character (with category code 7) and keep tokens until that space
character, dropping everything else until \q_stop. The \exp_end: prevents losing braces
around the user-inserted text if any, and stops the expansion of \exp:w. The group is
used to prevent \LaTeX3~error: from being globally equal to \scan_stop:.

9458 \group_begin:
9459 \cs_set_protected:Npn __msg_tmp:w #1#2
9460 {
9461 \cs_new:Npn __msg_expandable_error:n ##1
9462 {
9463 \exp:w
9464 \exp_after:wN \exp_after:wN
9465 \exp_after:wN __msg_expandable_error:w
9466 \exp_after:wN \exp_after:wN
9467 \exp_after:wN \exp_end:
9468 \use:n { #1 #2 ##1 } #2
9469 }
9470 \cs_new:Npn __msg_expandable_error:w ##1 #2 ##2 #2 {##1}

528

9471 }
9472 \exp_args:Ncx __msg_tmp:w { LaTeX3~error: }
9473 { \char_generate:nn { ‘\ } { 7 } }
9474 \group_end:

(End definition for __msg_expandable_error:n.)

__msg_kernel_expandable_error:nnnnnn
__msg_kernel_expandable_error:nnnnn
__msg_kernel_expandable_error:nnnn
__msg_kernel_expandable_error:nnn
__msg_kernel_expandable_error:nn

The command built from the csname \c_@@_text_prefix_tl LaTeX / #1 / #2 takes
four arguments and builds the error text, which is fed to __msg_expandable_error:n.

9475 \cs_new:Npn __msg_kernel_expandable_error:nnnnnn #1#2#3#4#5#6
9476 {
9477 \exp_args:Nf __msg_expandable_error:n
9478 {
9479 \exp_args:NNc \exp_after:wN \exp_stop_f:
9480 { \c__msg_text_prefix_tl LaTeX / #1 / #2 }
9481 {#3} {#4} {#5} {#6}
9482 }
9483 }
9484 \cs_new:Npn __msg_kernel_expandable_error:nnnnn #1#2#3#4#5
9485 {
9486 __msg_kernel_expandable_error:nnnnnn
9487 {#1} {#2} {#3} {#4} {#5} { }
9488 }
9489 \cs_new:Npn __msg_kernel_expandable_error:nnnn #1#2#3#4
9490 {
9491 __msg_kernel_expandable_error:nnnnnn
9492 {#1} {#2} {#3} {#4} { } { }
9493 }
9494 \cs_new:Npn __msg_kernel_expandable_error:nnn #1#2#3
9495 {
9496 __msg_kernel_expandable_error:nnnnnn
9497 {#1} {#2} {#3} { } { } { }
9498 }
9499 \cs_new:Npn __msg_kernel_expandable_error:nn #1#2
9500 {
9501 __msg_kernel_expandable_error:nnnnnn
9502 {#1} {#2} { } { } { } { }
9503 }

(End definition for __msg_kernel_expandable_error:nnnnnn and others. These functions are docu-
mented on page 168.)

20.7 Showing variables
Functions defined in this section are used for diagnostic functions in l3clist, l3file, l3prop,
l3seq, xtemplate

\g__msg_log_next_bool
__msg_log_next: 9504 \bool_new:N \g__msg_log_next_bool

9505 \cs_new_protected_nopar:Npn __msg_log_next:
9506 { \bool_gset_true:N \g__msg_log_next_bool }

529

(End definition for \g__msg_log_next_bool. This variable is documented on page ??.)

__msg_show_pre:nnnnnn
__msg_show_pre:nnxxxx
__msg_show_pre:nnnnnV
__msg_show_pre_aux:n

Print the text of a message to the terminal or log file without formatting: short cuts
around \iow_wrap:nnnN. The choice of terminal or log file is done by __msg_show_-
pre_aux:n.

9507 \cs_new_protected:Npn __msg_show_pre:nnnnnn #1#2#3#4#5#6
9508 {
9509 \exp_args:Nx \iow_wrap:nnnN
9510 {
9511 \exp_not:c { \c__msg_text_prefix_tl #1 / #2 }
9512 { \tl_to_str:n {#3} }
9513 { \tl_to_str:n {#4} }
9514 { \tl_to_str:n {#5} }
9515 { \tl_to_str:n {#6} }
9516 }
9517 { } { } __msg_show_pre_aux:n
9518 }
9519 \cs_new_protected:Npn __msg_show_pre:nnxxxx #1#2#3#4#5#6
9520 {
9521 \use:x
9522 { \exp_not:n { __msg_show_pre:nnnnnn {#1} {#2} } {#3} {#4} {#5} {#6} }
9523 }
9524 \cs_generate_variant:Nn __msg_show_pre:nnnnnn { nnnnnV }
9525 \cs_new_protected_nopar:Npn __msg_show_pre_aux:n
9526 { \bool_if:NTF \g__msg_log_next_bool { \iow_log:n } { \iow_term:n } }

(End definition for __msg_show_pre:nnnnnn , __msg_show_pre:nnxxxx , and __msg_show_pre:nnnnnV.)

__msg_show_variable:NNNnn The arguments of __msg_show_variable:NNNnn are

• The 〈variable〉 to be shown as #1.

• An 〈if-exist〉 conditional #2 with NTF signature.

• An 〈if-empty〉 conditional #3 or other function with NTF signature (sometimes
\use_ii:nnn).

• The 〈message〉 #4 to use.

• A construction #5 which produces the formatted string eventually passed to the
\showtokens primitive. Typically this is a mapping of the form \seq_map_-
function:NN 〈variable〉 __msg_show_item:n.

If 〈if-exist〉 〈variable〉 is false, throw an error and remember to reset \g__msg_log_-
next_bool, which is otherwise reset by __msg_show_wrap:n. If 〈message〉 is not empty,
output the message LaTeX/kernel/show-〈message〉 with as its arguments the 〈variable〉,
and either an empty second argument or ? depending on the result of 〈if-empty〉
〈variable〉. Afterwards, show the contents of #5 using __msg_show_wrap:n or __-
msg_log_wrap:n.

9527 \cs_new_protected:Npn __msg_show_variable:NNNnn #1#2#3#4#5

530

9528 {
9529 #2 #1
9530 {
9531 \tl_if_empty:nF {#4}
9532 {
9533 __msg_show_pre:nnxxxx { LaTeX / kernel } { show- #4 }
9534 { \token_to_str:N #1 } { #3 #1 { } { ? } } { } { }
9535 }
9536 __msg_show_wrap:n {#5}
9537 }
9538 {
9539 __msg_kernel_error:nnx { kernel } { variable-not-defined }
9540 { \token_to_str:N #1 }
9541 \bool_gset_false:N \g__msg_log_next_bool
9542 }
9543 }

(End definition for __msg_show_variable:NNNnn.)

__msg_show_wrap:Nn A short-hand used for \int_show:n and many other functions that passes to __msg_-
show_wrap:n the result of applying #1 (a function such as \int_eval:n) to the expression
#2. The leading >~ is needed by __msg_show_wrap:n. The use of x-expansion ensures
that #1 is expanded in the scope in which the show command is called, rather than in the
group created by \iow_wrap:nnnN. This is only important for expressions involving the
\currentgrouplevel or \currentgrouptype. This does not lead to double expansion
because the x-expansion of #1 {#2} is a string in all cases where __msg_show_wrap:Nn
is used.

9544 \cs_new_protected:Npn __msg_show_wrap:Nn #1#2
9545 { \exp_args:Nx __msg_show_wrap:n { > ~ \tl_to_str:n {#2} = #1 {#2} } }

(End definition for __msg_show_wrap:Nn.)

__msg_show_wrap:n
__msg_show_wrap_aux:n
__msg_show_wrap_aux:w

The argument of __msg_show_wrap:n is line-wrapped using \iow_wrap:nnnN. Every-
thing before the first > in the wrapped text is removed, as well as an optional space
following it (because of f-expansion). In order for line-wrapping to give the correct re-
sult, the first > must in fact appear at the beginning of a line and be followed by a space
(or a line-break), so in practice, the argument of __msg_show_wrap:n begins with >~ or
\\>~.

The line-wrapped text is then either sent to the log file through \iow_log:x, or
shown in the terminal using the ε-TEX primitive \showtokens after removing a leading
>~ and trailing dot since those are added automatically by \showtokens. The trailing dot
was included in the first place because its presence can affect line-wrapping. Note that the
space after > is removed through f-expansion rather than by using an argument delimited
by >~ because the space may have been replaced by a line-break when line-wrapping.

A special case is that if the line-wrapped text is a single dot (in other words if the
argument of __msg_show_wrap:n x-expands to nothing) then no >~ should be removed.
This makes it unnecessary to check explicitly for emptyness when using for instance
\seq_map_function:NN 〈seq var〉 __msg_show_item:n as the argument of __msg_-
show_wrap:n.

531

Finally, the token list \l__msg_internal_tl containing the result of all these ma-
nipulations is displayed to the terminal using \etex_showtokens:D and odd \exp_-
after:wN which expand the closing brace to improve the output slightly. The calls
to __iow_with:Nnn ensure that the \newlinechar is set to 10 so that the \iow_-
newline: inserted by the line-wrapping code are correctly recognized by TEX, and that
\errorcontextlines is −1 to avoid printing irrelevant context.

Note also that \g__msg_log_next_bool is only reset if that is necessary. This allows
the user of an interactive prompt to insert tokens as a response to ε-TEX’s \showtokens.

9546 \cs_new_protected:Npn __msg_show_wrap:n #1
9547 { \iow_wrap:nnnN { #1 . } { } { } __msg_show_wrap_aux:n }
9548 \cs_new_protected:Npn __msg_show_wrap_aux:n #1
9549 {
9550 \tl_if_single:nTF {#1}
9551 { \tl_clear:N \l__msg_internal_tl }
9552 { \tl_set:Nf \l__msg_internal_tl { __msg_show_wrap_aux:w #1 \q_stop } }
9553 \bool_if:NTF \g__msg_log_next_bool
9554 {
9555 \iow_log:x { > ~ \l__msg_internal_tl . }
9556 \bool_gset_false:N \g__msg_log_next_bool
9557 }
9558 {
9559 __iow_with:Nnn \tex_newlinechar:D { 10 }
9560 {
9561 __iow_with:Nnn \tex_errorcontextlines:D \c_minus_one
9562 {
9563 \etex_showtokens:D \exp_after:wN \exp_after:wN \exp_after:wN
9564 { \exp_after:wN \l__msg_internal_tl }
9565 }
9566 }
9567 }
9568 }
9569 \cs_new:Npn __msg_show_wrap_aux:w #1 > #2 . \q_stop {#2}

(End definition for __msg_show_wrap:n.)

__msg_show_item:n
__msg_show_item:nn

__msg_show_item_unbraced:nn

Each item in the variable is formatted using one of the following functions.
9570 \cs_new:Npn __msg_show_item:n #1
9571 {
9572 \\ > \ \ \{ \tl_to_str:n {#1} \}
9573 }
9574 \cs_new:Npn __msg_show_item:nn #1#2
9575 {
9576 \\ > \ \ \{ \tl_to_str:n {#1} \}
9577 \ \ => \ \ \{ \tl_to_str:n {#2} \}
9578 }
9579 \cs_new:Npn __msg_show_item_unbraced:nn #1#2
9580 {
9581 \\ > \ \ \tl_to_str:n {#1}
9582 \ \ => \ \ \tl_to_str:n {#2}

532

9583 }

(End definition for __msg_show_item:n.)

9584 〈/initex | package〉

21 l3keys Implementation
9585 〈*initex | package〉

21.1 Low-level interface
9586 〈@@=keyval〉

For historical reasons this code uses the ‘keyval’ module prefix.
\g__keyval_level_int To allow nesting of \keyval_parse:NNn, an integer is needed for the current level.

9587 \int_new:N \g__keyval_level_int

(End definition for \g__keyval_level_int. This variable is documented on page ??.)

\l__keyval_key_tl
\l__keyval_value_tl

The current key name and value.
9588 \tl_new:N \l__keyval_key_tl
9589 \tl_new:N \l__keyval_value_tl

(End definition for \l__keyval_key_tl and \l__keyval_value_tl. These variables are documented on
page ??.)

\l__keyval_sanitise_tl
\l__keyval_parse_tl

Token list variables for dealing with awkward category codes in the input.
9590 \tl_new:N \l__keyval_sanitise_tl
9591 \tl_new:N \l__keyval_parse_tl

(End definition for \l__keyval_sanitise_tl. This variable is documented on page ??.)

__keyval_parse:n The parsing function first deals with the category codes for = and ,, so that there are no
odd events. The input is then handed off to the element by element system.

9592 \group_begin:
9593 \char_set_catcode_active:n { ‘\= }
9594 \char_set_catcode_active:n { ‘\, }
9595 \cs_new_protected:Npx __keyval_parse:n #1
9596 {
9597 \group_begin:
9598 \tl_set:Nn \exp_not:N \l__keyval_sanitise_tl {#1}
9599 \tl_replace_all:Nnn \exp_not:N \l__keyval_sanitise_tl
9600 { \exp_not:N = } { \token_to_str:N = }
9601 \tl_replace_all:Nnn \exp_not:N \l__keyval_sanitise_tl
9602 { \exp_not:N , } { \token_to_str:N , }
9603 \tl_clear:N \exp_not:N \l__keyval_parse_tl
9604 \exp_not:N \exp_after:wN
9605 \exp_not:N __keyval_parse_elt:w \exp_not:N \exp_after:wN
9606 \exp_not:N \q_nil \exp_not:N \l__keyval_sanitise_tl
9607 \token_to_str:N , \exp_not:N \q_recursion_tail

533

9608 \token_to_str:N , \exp_not:N \q_recursion_stop
9609 \exp_not:N \exp_after:wN \group_end:
9610 \exp_not:N \l__keyval_parse_tl
9611 }
9612 \group_end:

(End definition for __keyval_parse:n. This function is documented on page ??.)

__keyval_parse_elt:w Each item to be parsed will have \q_nil added to the front. Hence the blank test here can
always be used to find a totally empty argument. To allow rapid matching for an = while
not stripping any braces, another \q_nil needed before the next phase of the parser.
Finally, loop around for the next item, adding in the \q_nil: this happens whatever the
nature of the current argument as the end-of-recursion will clear up in all cases.

9613 \cs_new_protected:Npn __keyval_parse_elt:w #1 ,
9614 {
9615 \tl_if_blank:oF { \use_none:n #1 }
9616 {
9617 \quark_if_recursion_tail_stop:o { \use_none:n #1 }
9618 __keyval_split_key_value:w #1 \q_nil = = \q_stop
9619 }
9620 __keyval_parse_elt:w \q_nil
9621 }

(End definition for __keyval_parse_elt:w. This function is documented on page ??.)

__keyval_split_key_value:w
__keyval_split_key:w

Split the key and value using a delimited argument. The \q_nil values added earlier
ensure that no braces will be stripped as part of this process. A blank test can then be
used on #3: it is only empty if there was no = in the original input. In that case, strip a
\q_nil from the end of the key name then hand on to remove other things and store as
\l__keyval_key_tl before adding to the output token list. In the case where there is
an =, first tidy up the key, this time without a trailing \q_nil, then do a check to ensure
that #3 is exactly one token (=). With that done, the final stage is to hand off to tidy up
the value.

9622 \cs_new_protected:Npn __keyval_split_key_value:w #1 = #2 = #3 \q_stop
9623 {
9624 \tl_if_blank:nTF {#3}
9625 {
9626 __keyval_split_key:w #1 \q_stop
9627 \tl_put_right:Nx \l__keyval_parse_tl
9628 {
9629 \exp_not:c
9630 {
9631 __keyval_key_no_value_elt_
9632 \int_use:N \g__keyval_level_int
9633 :n
9634 }
9635 { \exp_not:o \l__keyval_key_tl }
9636 }
9637 }

534

9638 {
9639 __keyval_split:Nn \l__keyval_key_tl {#1}
9640 \tl_if_blank:oTF { \use_none:n #3 }
9641 { __keyval_split_value:w \q_nil #2 \q_stop }
9642 { __msg_kernel_error:nn { kernel } { misplaced-equals-sign } }
9643 }
9644 }
9645 \cs_new_protected:Npn __keyval_split_key:w #1 \q_nil \q_stop
9646 { __keyval_split:Nn \l__keyval_key_tl {#1} }

(End definition for __keyval_split_key_value:w. This function is documented on page ??.)

__keyval_split:Nn
__keyval_split:Nw

There are two possible cases here. The first case is that #1 is surrounded by braces,
in which case the \use_none:nnn #1 \q_nil \q_nil will yield \q_nil. There, we can
remove the leading \q_nil, the braces and any spaces around the outside with \use_-
ii:nnn. On the other hand, if there are no braces then the second branch removes the
leading \q_nil and any surrounding spaces.

9647 \cs_new_protected:Npn __keyval_split:Nn #1#2
9648 {
9649 \quark_if_nil:oTF { \use_none:nnn #2 \q_nil \q_nil }
9650 { \tl_set:Nx #1 { \exp_not:o { \use_ii:nnn #2 \q_nil } } }
9651 { __keyval_split:Nw #1 #2 \q_stop }
9652 }
9653 \cs_new_protected:Npn __keyval_split:Nw #1 \q_nil #2 \q_stop
9654 { \tl_set:Nx #1 { \tl_trim_spaces:n {#2} } }

(End definition for __keyval_split:Nn. This function is documented on page ??.)

__keyval_split_value:w As this stage there is just the value to deal with. The leading and trailing \q_nil tokens
are removed in two steps before storing the value with spaces stripped (see __keyval_-
split:Nn). Doing the storage of key and value in one shot will put exactly the right
number of brace groups into the output.

9655 \cs_new_protected:Npn __keyval_split_value:w #1 \q_nil \q_stop
9656 {
9657 __keyval_split:Nn \l__keyval_value_tl {#1}
9658 \tl_put_right:Nx \l__keyval_parse_tl
9659 {
9660 \exp_not:c
9661 { __keyval_key_value_elt_ \int_use:N \g__keyval_level_int :nn }
9662 { \exp_not:o \l__keyval_key_tl }
9663 { \exp_not:o \l__keyval_value_tl }
9664 }
9665 }

(End definition for __keyval_split_value:w. This function is documented on page ??.)

\keyval_parse:NNn The outer parsing routine just sets up the processing functions and hands off.
9666 \cs_new_protected:Npn \keyval_parse:NNn #1#2#3
9667 {
9668 \int_gincr:N \g__keyval_level_int

535

9669 \cs_gset_eq:cN
9670 { __keyval_key_no_value_elt_ \int_use:N \g__keyval_level_int :n } #1
9671 \cs_gset_eq:cN
9672 { __keyval_key_value_elt_ \int_use:N \g__keyval_level_int :nn } #2
9673 __keyval_parse:n {#3}
9674 \int_gdecr:N \g__keyval_level_int
9675 }

(End definition for \keyval_parse:NNn. This function is documented on page 183.)
One message for the low level parsing system.

9676 __msg_kernel_new:nnnn { kernel } { misplaced-equals-sign }
9677 { Misplaced~equals~sign~in~key-value~input~\msg_line_number: }
9678 {
9679 LaTeX~is~attempting~to~parse~some~key-value~input~but~found~
9680 two~equals~signs~not~separated~by~a~comma.
9681 }

21.2 Constants and variables
9682 〈@@=keys〉

\c__keys_code_root_tl
\c__keys_info_root_tl

The prefixes for the code and variables of the keys themselves.
9683 \tl_const:Nn \c__keys_code_root_tl { key~code~>~ }
9684 \tl_const:Nn \c__keys_info_root_tl { key~info~>~ }

(End definition for \c__keys_code_root_tl and \c__keys_info_root_tl. These variables are docu-
mented on page ??.)

\c__keys_props_root_tl The prefix for storing properties.
9685 \tl_const:Nn \c__keys_props_root_tl { key~prop~>~ }

(End definition for \c__keys_props_root_tl. This variable is documented on page ??.)

\l_keys_choice_int
\l_keys_choice_tl

Publicly accessible data on which choice is being used when several are generated as a
set.

9686 \int_new:N \l_keys_choice_int
9687 \tl_new:N \l_keys_choice_tl

(End definition for \l_keys_choice_int and \l_keys_choice_tl. These variables are documented on
page 177.)

\l__keys_groups_clist Used for storing and recovering the list of groups which apply to a key: set as a comma
list but at one point we have to use this for a token list recovery.

9688 \clist_new:N \l__keys_groups_clist

(End definition for \l__keys_groups_clist. This variable is documented on page ??.)

\l_keys_key_tl The name of a key itself: needed when setting keys.
9689 \tl_new:N \l_keys_key_tl

(End definition for \l_keys_key_tl. This variable is documented on page 179.)

536

\l__keys_module_tl The module for an entire set of keys.
9690 \tl_new:N \l__keys_module_tl

(End definition for \l__keys_module_tl. This variable is documented on page ??.)

\l__keys_no_value_bool A marker is needed internally to show if only a key or a key plus a value was seen: this
is recorded here.

9691 \bool_new:N \l__keys_no_value_bool

(End definition for \l__keys_no_value_bool. This variable is documented on page ??.)

\l__keys_only_known_bool Used to track if only “known” keys are being set.
9692 \bool_new:N \l__keys_only_known_bool

(End definition for \l__keys_only_known_bool. This variable is documented on page ??.)

\l_keys_path_tl The “path” of the current key is stored here: this is available to the programmer and so
is public.

9693 \tl_new:N \l_keys_path_tl

(End definition for \l_keys_path_tl. This variable is documented on page 179.)

\l__keys_property_tl The “property” begin set for a key at definition time is stored here.
9694 \tl_new:N \l__keys_property_tl

(End definition for \l__keys_property_tl. This variable is documented on page ??.)

\l__keys_selective_bool
\l__keys_filtered_bool

Two flags for using key groups: one to indicate that “selective” setting is active, a second
to specify which type (“opt-in” or “opt-out”).

9695 \bool_new:N \l__keys_selective_bool
9696 \bool_new:N \l__keys_filtered_bool

(End definition for \l__keys_selective_bool and \l__keys_filtered_bool. These variables are docu-
mented on page ??.)

\l__keys_selective_seq The list of key groups being filtered in or out during selective setting.
9697 \seq_new:N \l__keys_selective_seq

(End definition for \l__keys_selective_seq. This variable is documented on page ??.)

\l__keys_unused_clist Used when setting only some keys to store those left over.
9698 \tl_new:N \l__keys_unused_clist

(End definition for \l__keys_unused_clist. This variable is documented on page ??.)

\l_keys_value_tl The value given for a key: may be empty if no value was given.
9699 \tl_new:N \l_keys_value_tl

(End definition for \l_keys_value_tl. This variable is documented on page 179.)

\l__keys_tmp_bool Scratch space.
9700 \bool_new:N \l__keys_tmp_bool

(End definition for \l__keys_tmp_bool. This variable is documented on page ??.)

537

21.3 The key defining mechanism
\keys_define:nn

__keys_define:nnn
__keys_define:onn

The public function for definitions is just a wrapper for the lower level mechanism, more
or less. The outer function is designed to keep a track of the current module, to allow
safe nesting. The module is set removing any leading / (which is not needed here).

9701 \cs_new_protected:Npn \keys_define:nn
9702 { __keys_define:onn \l__keys_module_tl }
9703 \cs_new_protected:Npn __keys_define:nnn #1#2#3
9704 {
9705 \tl_set:Nx \l__keys_module_tl { __keys_remove_spaces:n {#2} }
9706 \keyval_parse:NNn __keys_define_elt:n __keys_define_elt:nn {#3}
9707 \tl_set:Nn \l__keys_module_tl {#1}
9708 }
9709 \cs_generate_variant:Nn __keys_define:nnn { o }

(End definition for \keys_define:nn. This function is documented on page 172.)

__keys_define_elt:n
__keys_define_elt:nn

__keys_define_elt_aux:nn

The outer functions here record whether a value was given and then converge on a
common internal mechanism. There is first a search for a property in the current key
name, then a check to make sure it is known before the code hands off to the next step.

9710 \cs_new_protected:Npn __keys_define_elt:n #1
9711 {
9712 \bool_set_true:N \l__keys_no_value_bool
9713 __keys_define_elt_aux:nn {#1} { }
9714 }
9715 \cs_new_protected:Npn __keys_define_elt:nn #1#2
9716 {
9717 \bool_set_false:N \l__keys_no_value_bool
9718 __keys_define_elt_aux:nn {#1} {#2}
9719 }
9720 \cs_new_protected:Npn __keys_define_elt_aux:nn #1#2
9721 {
9722 __keys_property_find:n {#1}
9723 \cs_if_exist:cTF { \c__keys_props_root_tl \l__keys_property_tl }
9724 { __keys_define_key:n {#2} }
9725 {
9726 \str_if_eq_x:nnF { \l__keys_property_tl } { .abort: }
9727 {
9728 __msg_kernel_error:nnxx { kernel } { property-unknown }
9729 { \l__keys_property_tl } { \l_keys_path_tl }
9730 }
9731 }
9732 }

(End definition for __keys_define_elt:n.)

__keys_property_find:n
__keys_property_find:w

Searching for a property means finding the last . in the input, and storing the text before
and after it. Everything is turned into strings, so there is no problem using an x-type
expansion.

9733 \cs_new_protected:Npn __keys_property_find:n #1

538

9734 {
9735 \tl_set:Nx \l_keys_path_tl { \l__keys_module_tl / }
9736 \tl_if_in:nnTF {#1} { . }
9737 { __keys_property_find:w #1 \q_stop }
9738 {
9739 __msg_kernel_error:nnx { kernel } { key-no-property } {#1}
9740 \tl_set:Nn \l__keys_property_tl { .abort: }
9741 }
9742 }
9743 \cs_new_protected:Npn __keys_property_find:w #1 . #2 \q_stop
9744 {
9745 \tl_set:Nx \l_keys_path_tl
9746 {
9747 \l_keys_path_tl
9748 __keys_remove_spaces:n {#1}
9749 }
9750 \tl_if_in:nnTF {#2} { . }
9751 {
9752 \tl_set:Nx \l_keys_path_tl { \l_keys_path_tl . }
9753 __keys_property_find:w #2 \q_stop
9754 }
9755 { \tl_set:Nn \l__keys_property_tl { . #2 } }
9756 }

(End definition for __keys_property_find:n.)

__keys_define_key:n
__keys_define_key:w

Two possible cases. If there is a value for the key, then just use the function. If not,
then a check to make sure there is no need for a value with the property. If there should
be one then complain, otherwise execute it. There is no need to check for a : as if it is
missing the earlier tests will have failed.

9757 \cs_new_protected:Npn __keys_define_key:n #1
9758 {
9759 \bool_if:NTF \l__keys_no_value_bool
9760 {
9761 \exp_after:wN __keys_define_key:w
9762 \l__keys_property_tl \q_stop
9763 { \use:c { \c__keys_props_root_tl \l__keys_property_tl } }
9764 {
9765 __msg_kernel_error:nnxx { kernel }
9766 { property-requires-value } { \l__keys_property_tl }
9767 { \l_keys_path_tl }
9768 }
9769 }
9770 { \use:c { \c__keys_props_root_tl \l__keys_property_tl } {#1} }
9771 }
9772 \cs_new_protected:Npn __keys_define_key:w #1 : #2 \q_stop
9773 { \tl_if_empty:nTF {#2} }

(End definition for __keys_define_key:n.)

539

21.4 Turning properties into actions
__keys_ensure_exist:n
__keys_ensure_exist:V

Used to make sure that a key implementation and the related property list will exist
whenever this is required. We cannot use for example \prop_clear_new:c here as that
would affect the order in which key properties must be set. As key definitions are never
global we use \cs_set_protected:cpn not \cs_new_protected:cpn here. For the same
reason, to avoid issues if the key has been undefined in the current scope but exists at
a higher level, we do not use \prop_new:c but rather \prop_set_eq:cN. The function
__chk_log:x only writes to the log file if logging all new functions is active: without it
keys would not show up (as we are not using \..._new).

9774 \cs_new_protected:Npn __keys_ensure_exist:n #1
9775 {
9776 \prop_if_exist:cF { \c__keys_info_root_tl #1 }
9777 {
9778 \prop_set_eq:cN { \c__keys_info_root_tl #1 } \c_empty_prop
9779 }
9780 \cs_if_exist:cF { \c__keys_code_root_tl #1 }
9781 {
9782 __chk_log:x { Defining~key~#1~ \msg_line_context: }
9783 \cs_set_protected:cpn { \c__keys_code_root_tl #1 } ##1 { }
9784 }
9785 }
9786 \cs_generate_variant:Nn __keys_ensure_exist:n { V }

(End definition for __keys_ensure_exist:n and __keys_ensure_exist:V.)

__keys_bool_set:Nn
__keys_bool_set:cn

Boolean keys are really just choices, but all done by hand. The second argument here is
the scope: either empty or g for global.

9787 \cs_new_protected:Npn __keys_bool_set:Nn #1#2
9788 {
9789 \bool_if_exist:NF #1 { \bool_new:N #1 }
9790 __keys_choice_make:
9791 __keys_cmd_set:nx { \l_keys_path_tl / true }
9792 { \exp_not:c { bool_ #2 set_true:N } \exp_not:N #1 }
9793 __keys_cmd_set:nx { \l_keys_path_tl / false }
9794 { \exp_not:c { bool_ #2 set_false:N } \exp_not:N #1 }
9795 __keys_cmd_set:nn { \l_keys_path_tl / unknown }
9796 {
9797 __msg_kernel_error:nnx { kernel } { boolean-values-only }
9798 { \l_keys_key_tl }
9799 }
9800 __keys_default_set:n { true }
9801 }
9802 \cs_generate_variant:Nn __keys_bool_set:Nn { c }

(End definition for __keys_bool_set:Nn and __keys_bool_set:cn.)

__keys_bool_set_inverse:Nn
__keys_bool_set_inverse:cn

Inverse boolean setting is much the same.
9803 \cs_new_protected:Npn __keys_bool_set_inverse:Nn #1#2

540

9804 {
9805 \bool_if_exist:NF #1 { \bool_new:N #1 }
9806 __keys_choice_make:
9807 __keys_cmd_set:nx { \l_keys_path_tl / true }
9808 { \exp_not:c { bool_ #2 set_false:N } \exp_not:N #1 }
9809 __keys_cmd_set:nx { \l_keys_path_tl / false }
9810 { \exp_not:c { bool_ #2 set_true:N } \exp_not:N #1 }
9811 __keys_cmd_set:nn { \l_keys_path_tl / unknown }
9812 {
9813 __msg_kernel_error:nnx { kernel } { boolean-values-only }
9814 { \l_keys_key_tl }
9815 }
9816 __keys_default_set:n { true }
9817 }
9818 \cs_generate_variant:Nn __keys_bool_set_inverse:Nn { c }

(End definition for __keys_bool_set_inverse:Nn and __keys_bool_set_inverse:cn.)

__keys_choice_make:
__keys_multichoice_make:

__keys_choice_make:N
__keys_choice_make_aux:N

__keys_parent:n
__keys_parent:o

__keys_parent:wn

To make a choice from a key, two steps: set the code, and set the unknown key. There is
one point to watch here: choice keys cannot be nested! As multichoices and choices are
essentially the same bar one function, the code is given together.

9819 \cs_new_protected_nopar:Npn __keys_choice_make:
9820 { __keys_choice_make:N __keys_choice_find:n }
9821 \cs_new_protected_nopar:Npn __keys_multichoice_make:
9822 { __keys_choice_make:N __keys_multichoice_find:n }
9823 \cs_new_protected_nopar:Npn __keys_choice_make:N #1
9824 {
9825 \prop_if_exist:cTF
9826 { \c__keys_info_root_tl __keys_parent:o \l_keys_path_tl }
9827 {
9828 \prop_get:cnNTF
9829 { \c__keys_info_root_tl __keys_parent:o \l_keys_path_tl }
9830 { choice } \l_keys_value_tl
9831 {
9832 __msg_kernel_error:nnxx { kernel } { nested-choice-key }
9833 { \l_keys_path_tl } { __keys_parent:o \l_keys_path_tl }
9834 }
9835 { __keys_choice_make_aux:N #1 }
9836 }
9837 { __keys_choice_make_aux:N #1 }
9838 }
9839 \cs_new_protected_nopar:Npn __keys_choice_make_aux:N #1
9840 {
9841 __keys_cmd_set:nn { \l_keys_path_tl } { #1 {##1} }
9842 \prop_put:cnn { \c__keys_info_root_tl \l_keys_path_tl } { choice }
9843 { true }
9844 __keys_cmd_set:nn { \l_keys_path_tl / unknown }
9845 {
9846 __msg_kernel_error:nnxx { kernel } { key-choice-unknown }
9847 { \l_keys_path_tl } {##1}

541

9848 }
9849 }
9850 \cs_new:Npn __keys_parent:n #1
9851 { __keys_parent:wn #1 / / \q_stop { } }
9852 \cs_generate_variant:Nn __keys_parent:n { o }
9853 \cs_new:Npn __keys_parent:wn #1 / #2 / #3 \q_stop #4
9854 {
9855 \tl_if_blank:nTF {#2}
9856 { \use_none:n #4 }
9857 {
9858 __keys_parent:wn #2 / #3 \q_stop { #4 / #1 }
9859 }
9860 }

(End definition for __keys_choice_make: and __keys_multichoice_make:.)

__keys_choices_make:nn
__keys_multichoices_make:nn

__keys_choices_make:Nnn

Auto-generating choices means setting up the root key as a choice, then defining each
choice in turn.

9861 \cs_new_protected_nopar:Npn __keys_choices_make:nn
9862 { __keys_choices_make:Nnn __keys_choice_make: }
9863 \cs_new_protected_nopar:Npn __keys_multichoices_make:nn
9864 { __keys_choices_make:Nnn __keys_multichoice_make: }
9865 \cs_new_protected:Npn __keys_choices_make:Nnn #1#2#3
9866 {
9867 #1
9868 \int_zero:N \l_keys_choice_int
9869 \clist_map_inline:nn {#2}
9870 {
9871 \int_incr:N \l_keys_choice_int
9872 __keys_cmd_set:nx { \l_keys_path_tl / __keys_remove_spaces:n {##1} }
9873 {
9874 \tl_set:Nn \exp_not:N \l_keys_choice_tl {##1}
9875 \int_set:Nn \exp_not:N \l_keys_choice_int
9876 { \int_use:N \l_keys_choice_int }
9877 \exp_not:n {#3}
9878 }
9879 }
9880 }

(End definition for __keys_choices_make:nn and __keys_multichoices_make:nn.)

__keys_cmd_set:nn
__keys_cmd_set:nx
__keys_cmd_set:Vn
__keys_cmd_set:Vo

Setting the code for a key first checks that the basic data structures exist, then saves the
code.

9881 \cs_new_protected:Npn __keys_cmd_set:nn #1#2
9882 {
9883 __keys_ensure_exist:V \l_keys_path_tl
9884 \cs_set_protected:cpn { \c__keys_code_root_tl #1 } ##1 {#2}
9885 }
9886 \cs_generate_variant:Nn __keys_cmd_set:nn { nx , Vn , Vo }

(End definition for __keys_cmd_set:nn and others.)

542

__keys_default_set:n Setting a default value is easy.
9887 \cs_new_protected:Npn __keys_default_set:n #1
9888 {
9889 __keys_ensure_exist:V \l_keys_path_tl
9890 \tl_if_empty:nTF {#1}
9891 {
9892 \prop_remove:cn { \c__keys_info_root_tl \l_keys_path_tl }
9893 { default }
9894 }
9895 {
9896 \prop_put:cnn { \c__keys_info_root_tl \l_keys_path_tl }
9897 { default } {#1}
9898 }
9899 }

(End definition for __keys_default_set:n.)

__keys_groups_set:n Assigning a key to one or more groups uses comma lists. So that the comma list is “well-
behaved” later, the storage is done via a stored list here, which does the normalisation.

9900 \cs_new_protected:Npn __keys_groups_set:n #1
9901 {
9902 __keys_ensure_exist:V \l_keys_path_tl
9903 \clist_set:Nn \l__keys_groups_clist {#1}
9904 \clist_if_empty:NTF \l__keys_groups_clist
9905 {
9906 \prop_remove:cn { \c__keys_info_root_tl \l_keys_path_tl }
9907 { groups }
9908 }
9909 {
9910 \prop_put:cnV { \c__keys_info_root_tl \l_keys_path_tl }
9911 { groups } \l__keys_groups_clist
9912 }
9913 }

(End definition for __keys_groups_set:n.)

__keys_initialise:n
__keys_initialise:wn

A set up for initialisation from which the key system requires that the path is split up
into a module and a key name. At this stage, \l_keys_path_tl will contain / so a split
is easy to do.

9914 \cs_new_protected:Npn __keys_initialise:n #1
9915 {
9916 __keys_ensure_exist:V \l_keys_path_tl
9917 \exp_after:wN __keys_initialise:wn \l_keys_path_tl \q_stop {#1}
9918 }
9919 \cs_new_protected:Npn __keys_initialise:wn #1 / #2 \q_stop #3
9920 { \keys_set:nn {#1} { #2 = {#3} } }

(End definition for __keys_initialise:n.)

543

__keys_meta_make:n
__keys_meta_make:nn

To create a meta-key, simply set up to pass data through.
9921 \cs_new_protected:Npn __keys_meta_make:n #1
9922 {
9923 __keys_cmd_set:Vo \l_keys_path_tl
9924 {
9925 \exp_after:wN \keys_set:nn
9926 \exp_after:wN { \l__keys_module_tl } {#1}
9927 }
9928 }
9929 \cs_new_protected:Npn __keys_meta_make:nn #1#2
9930 { __keys_cmd_set:Vn \l_keys_path_tl { \keys_set:nn {#1} {#2} } }

(End definition for __keys_meta_make:n.)

__keys_undefine: Undefining a key has to be done without \cs_undefine:c as that function acts globally.
9931 \cs_new_protected_nopar:Npn __keys_undefine:
9932 {
9933 \cs_set_eq:cN { \c__keys_code_root_tl \l_keys_path_tl } \tex_undefined:D
9934 \cs_set_eq:cN { \c__keys_info_root_tl \l_keys_path_tl } \tex_undefined:D
9935 }

(End definition for __keys_undefine:.)

__keys_value_requirement:nn Values can be required or forbidden by having the appropriate marker set. First, both
the required and forbidden ones are clear, just in case!

9936 \cs_new_protected:Npn __keys_value_requirement:nn #1#2
9937 {
9938 __keys_ensure_exist:V \l_keys_path_tl
9939 \prop_remove:cn { \c__keys_info_root_tl \l_keys_path_tl }
9940 { required }
9941 \prop_remove:cn { \c__keys_info_root_tl \l_keys_path_tl }
9942 { forbidden }
9943 \str_if_eq:nnTF {#2} { true }
9944 {
9945 \prop_put:cnn { \c__keys_info_root_tl \l_keys_path_tl }
9946 {#1} { true }
9947 }
9948 {
9949 \str_if_eq:nnF {#2} { false }
9950 {
9951 __msg_kernel_error:nnx { kernel } { property-boolean-values-only }
9952 { .value_ #1 :n }
9953 }
9954 }
9955 }

(End definition for __keys_value_requirement:nn.)

544

__keys_variable_set:NnnN
__keys_variable_set:cnnN

Setting a variable takes the type and scope separately so that it is easy to make a new
variable if needed.

9956 \cs_new_protected:Npn __keys_variable_set:NnnN #1#2#3#4
9957 {
9958 \use:c { #2_if_exist:NF } #1 { \use:c { #2 _new:N } #1 }
9959 __keys_cmd_set:nx { \l_keys_path_tl }
9960 {
9961 \exp_not:c { #2 _ #3 set:N #4 }
9962 \exp_not:N #1
9963 \exp_not:n { {##1} }
9964 }
9965 }
9966 \cs_generate_variant:Nn __keys_variable_set:NnnN { c }

(End definition for __keys_variable_set:NnnN and __keys_variable_set:cnnN.)

21.5 Creating key properties
The key property functions are all wrappers for internal functions, meaning that things
stay readable and can also be altered later on.

Importantly, while key properties have “normal” argument specs, the underlying
code always supplies one braced argument to these. As such, argument expansion is
handled by hand rather than using the standard tools. This shows up particularly for
the two-argument properties, where things would otherwise go badly wrong.

.bool_set:N

.bool_set:c
.bool_gset:N
.bool_gset:c

One function for this.
9967 \cs_new_protected:cpn { \c__keys_props_root_tl .bool_set:N } #1
9968 { __keys_bool_set:Nn #1 { } }
9969 \cs_new_protected:cpn { \c__keys_props_root_tl .bool_set:c } #1
9970 { __keys_bool_set:cn {#1} { } }
9971 \cs_new_protected:cpn { \c__keys_props_root_tl .bool_gset:N } #1
9972 { __keys_bool_set:Nn #1 { g } }
9973 \cs_new_protected:cpn { \c__keys_props_root_tl .bool_gset:c } #1
9974 { __keys_bool_set:cn {#1} { g } }

(End definition for .bool_set:N and .bool_set:c. These functions are documented on page 173.)

.bool_set_inverse:N

.bool_set_inverse:c
.bool_gset_inverse:N
.bool_gset_inverse:c

One function for this.
9975 \cs_new_protected:cpn { \c__keys_props_root_tl .bool_set_inverse:N } #1
9976 { __keys_bool_set_inverse:Nn #1 { } }
9977 \cs_new_protected:cpn { \c__keys_props_root_tl .bool_set_inverse:c } #1
9978 { __keys_bool_set_inverse:cn {#1} { } }
9979 \cs_new_protected:cpn { \c__keys_props_root_tl .bool_gset_inverse:N } #1
9980 { __keys_bool_set_inverse:Nn #1 { g } }
9981 \cs_new_protected:cpn { \c__keys_props_root_tl .bool_gset_inverse:c } #1
9982 { __keys_bool_set_inverse:cn {#1} { g } }

(End definition for .bool_set_inverse:N and .bool_set_inverse:c. These functions are documented
on page 173.)

545

.choice: Making a choice is handled internally, as it is also needed by .generate_choices:n.
9983 \cs_new_protected_nopar:cpn { \c__keys_props_root_tl .choice: }
9984 { __keys_choice_make: }

(End definition for .choice:. This function is documented on page 173.)

.choices:nn

.choices:Vn

.choices:on

.choices:xn

For auto-generation of a series of mutually-exclusive choices. Here, #1 will consist of two
separate arguments, hence the slightly odd-looking implementation.

9985 \cs_new_protected:cpn { \c__keys_props_root_tl .choices:nn } #1
9986 { __keys_choices_make:nn #1 }
9987 \cs_new_protected:cpn { \c__keys_props_root_tl .choices:Vn } #1
9988 { \exp_args:NV __keys_choices_make:nn #1 }
9989 \cs_new_protected:cpn { \c__keys_props_root_tl .choices:on } #1
9990 { \exp_args:No __keys_choices_make:nn #1 }
9991 \cs_new_protected:cpn { \c__keys_props_root_tl .choices:xn } #1
9992 { \exp_args:Nx __keys_choices_make:nn #1 }

(End definition for .choices:nn and others. These functions are documented on page 173.)

.code:n Creating code is simply a case of passing through to the underlying set function.
9993 \cs_new_protected:cpn { \c__keys_props_root_tl .code:n } #1
9994 { __keys_cmd_set:nn { \l_keys_path_tl } {#1} }

(End definition for .code:n. This function is documented on page 174.)

.clist_set:N

.clist_set:c
.clist_gset:N
.clist_gset:c

9995 \cs_new_protected:cpn { \c__keys_props_root_tl .clist_set:N } #1
9996 { __keys_variable_set:NnnN #1 { clist } { } n }
9997 \cs_new_protected:cpn { \c__keys_props_root_tl .clist_set:c } #1
9998 { __keys_variable_set:cnnN {#1} { clist } { } n }
9999 \cs_new_protected:cpn { \c__keys_props_root_tl .clist_gset:N } #1

10000 { __keys_variable_set:NnnN #1 { clist } { g } n }
10001 \cs_new_protected:cpn { \c__keys_props_root_tl .clist_gset:c } #1
10002 { __keys_variable_set:cnnN {#1} { clist } { g } n }

(End definition for .clist_set:N and .clist_set:c. These functions are documented on page 174.)

.default:n

.default:V

.default:o

.default:x

Expansion is left to the internal functions.
10003 \cs_new_protected:cpn { \c__keys_props_root_tl .default:n } #1
10004 { __keys_default_set:n {#1} }
10005 \cs_new_protected:cpn { \c__keys_props_root_tl .default:V } #1
10006 { \exp_args:NV __keys_default_set:n #1 }
10007 \cs_new_protected:cpn { \c__keys_props_root_tl .default:o } #1
10008 { \exp_args:No __keys_default_set:n {#1} }
10009 \cs_new_protected:cpn { \c__keys_props_root_tl .default:x } #1
10010 { \exp_args:Nx __keys_default_set:n {#1} }

(End definition for .default:n and others. These functions are documented on page 174.)

546

.dim_set:N

.dim_set:c
.dim_gset:N
.dim_gset:c

Setting a variable is very easy: just pass the data along.
10011 \cs_new_protected:cpn { \c__keys_props_root_tl .dim_set:N } #1
10012 { __keys_variable_set:NnnN #1 { dim } { } n }
10013 \cs_new_protected:cpn { \c__keys_props_root_tl .dim_set:c } #1
10014 { __keys_variable_set:cnnN {#1} { dim } { } n }
10015 \cs_new_protected:cpn { \c__keys_props_root_tl .dim_gset:N } #1
10016 { __keys_variable_set:NnnN #1 { dim } { g } n }
10017 \cs_new_protected:cpn { \c__keys_props_root_tl .dim_gset:c } #1
10018 { __keys_variable_set:cnnN {#1} { dim } { g } n }

(End definition for .dim_set:N and .dim_set:c. These functions are documented on page 174.)

.fp_set:N

.fp_set:c
.fp_gset:N
.fp_gset:c

Setting a variable is very easy: just pass the data along.
10019 \cs_new_protected:cpn { \c__keys_props_root_tl .fp_set:N } #1
10020 { __keys_variable_set:NnnN #1 { fp } { } n }
10021 \cs_new_protected:cpn { \c__keys_props_root_tl .fp_set:c } #1
10022 { __keys_variable_set:cnnN {#1} { fp } { } n }
10023 \cs_new_protected:cpn { \c__keys_props_root_tl .fp_gset:N } #1
10024 { __keys_variable_set:NnnN #1 { fp } { g } n }
10025 \cs_new_protected:cpn { \c__keys_props_root_tl .fp_gset:c } #1
10026 { __keys_variable_set:cnnN {#1} { fp } { g } n }

(End definition for .fp_set:N and .fp_set:c. These functions are documented on page 174.)

.groups:n A single property to create groups of keys.
10027 \cs_new_protected:cpn { \c__keys_props_root_tl .groups:n } #1
10028 { __keys_groups_set:n {#1} }

(End definition for .groups:n. This function is documented on page 174.)

.initial:n

.initial:V

.initial:o

.initial:x

The standard hand-off approach.
10029 \cs_new_protected:cpn { \c__keys_props_root_tl .initial:n } #1
10030 { __keys_initialise:n {#1} }
10031 \cs_new_protected:cpn { \c__keys_props_root_tl .initial:V } #1
10032 { \exp_args:NV __keys_initialise:n #1 }
10033 \cs_new_protected:cpn { \c__keys_props_root_tl .initial:o } #1
10034 { \exp_args:No __keys_initialise:n {#1} }
10035 \cs_new_protected:cpn { \c__keys_props_root_tl .initial:x } #1
10036 { \exp_args:Nx __keys_initialise:n {#1} }

(End definition for .initial:n and others. These functions are documented on page 175.)

.int_set:N

.int_set:c
.int_gset:N
.int_gset:c

Setting a variable is very easy: just pass the data along.
10037 \cs_new_protected:cpn { \c__keys_props_root_tl .int_set:N } #1
10038 { __keys_variable_set:NnnN #1 { int } { } n }
10039 \cs_new_protected:cpn { \c__keys_props_root_tl .int_set:c } #1
10040 { __keys_variable_set:cnnN {#1} { int } { } n }
10041 \cs_new_protected:cpn { \c__keys_props_root_tl .int_gset:N } #1
10042 { __keys_variable_set:NnnN #1 { int } { g } n }
10043 \cs_new_protected:cpn { \c__keys_props_root_tl .int_gset:c } #1
10044 { __keys_variable_set:cnnN {#1} { int } { g } n }

547

(End definition for .int_set:N and .int_set:c. These functions are documented on page 175.)

.meta:n Making a meta is handled internally.
10045 \cs_new_protected:cpn { \c__keys_props_root_tl .meta:n } #1
10046 { __keys_meta_make:n {#1} }

(End definition for .meta:n. This function is documented on page 175.)

.meta:nn Meta with path: potentially lots of variants, but for the moment no so many defined.
10047 \cs_new_protected:cpn { \c__keys_props_root_tl .meta:nn } #1
10048 { __keys_meta_make:nn #1 }

(End definition for .meta:nn. This function is documented on page 175.)

.multichoice:
.multichoices:nn
.multichoices:Vn
.multichoices:on
.multichoices:xn

The same idea as .choice: and .choices:nn, but where more than one choice is allowed.
10049 \cs_new_protected_nopar:cpn { \c__keys_props_root_tl .multichoice: }
10050 { __keys_multichoice_make: }
10051 \cs_new_protected:cpn { \c__keys_props_root_tl .multichoices:nn } #1
10052 { __keys_multichoices_make:nn #1 }
10053 \cs_new_protected:cpn { \c__keys_props_root_tl .multichoices:Vn } #1
10054 { \exp_args:NV __keys_multichoices_make:nn #1 }
10055 \cs_new_protected:cpn { \c__keys_props_root_tl .multichoices:on } #1
10056 { \exp_args:No __keys_multichoices_make:nn #1 }
10057 \cs_new_protected:cpn { \c__keys_props_root_tl .multichoices:xn } #1
10058 { \exp_args:Nx __keys_multichoices_make:nn #1 }

(End definition for .multichoice:. This function is documented on page 175.)

.skip_set:N

.skip_set:c
.skip_gset:N
.skip_gset:c

Setting a variable is very easy: just pass the data along.
10059 \cs_new_protected:cpn { \c__keys_props_root_tl .skip_set:N } #1
10060 { __keys_variable_set:NnnN #1 { skip } { } n }
10061 \cs_new_protected:cpn { \c__keys_props_root_tl .skip_set:c } #1
10062 { __keys_variable_set:cnnN {#1} { skip } { } n }
10063 \cs_new_protected:cpn { \c__keys_props_root_tl .skip_gset:N } #1
10064 { __keys_variable_set:NnnN #1 { skip } { g } n }
10065 \cs_new_protected:cpn { \c__keys_props_root_tl .skip_gset:c } #1
10066 { __keys_variable_set:cnnN {#1} { skip } { g } n }

(End definition for .skip_set:N and .skip_set:c. These functions are documented on page 175.)

.tl_set:N

.tl_set:c
.tl_gset:N
.tl_gset:c
.tl_set_x:N
.tl_set_x:c
.tl_gset_x:N
.tl_gset_x:c

Setting a variable is very easy: just pass the data along.
10067 \cs_new_protected:cpn { \c__keys_props_root_tl .tl_set:N } #1
10068 { __keys_variable_set:NnnN #1 { tl } { } n }
10069 \cs_new_protected:cpn { \c__keys_props_root_tl .tl_set:c } #1
10070 { __keys_variable_set:cnnN {#1} { tl } { } n }
10071 \cs_new_protected:cpn { \c__keys_props_root_tl .tl_set_x:N } #1
10072 { __keys_variable_set:NnnN #1 { tl } { } x }
10073 \cs_new_protected:cpn { \c__keys_props_root_tl .tl_set_x:c } #1
10074 { __keys_variable_set:cnnN {#1} { tl } { } x }
10075 \cs_new_protected:cpn { \c__keys_props_root_tl .tl_gset:N } #1

548

10076 { __keys_variable_set:NnnN #1 { tl } { g } n }
10077 \cs_new_protected:cpn { \c__keys_props_root_tl .tl_gset:c } #1
10078 { __keys_variable_set:cnnN {#1} { tl } { g } n }
10079 \cs_new_protected:cpn { \c__keys_props_root_tl .tl_gset_x:N } #1
10080 { __keys_variable_set:NnnN #1 { tl } { g } x }
10081 \cs_new_protected:cpn { \c__keys_props_root_tl .tl_gset_x:c } #1
10082 { __keys_variable_set:cnnN {#1} { tl } { g } x }

(End definition for .tl_set:N and .tl_set:c. These functions are documented on page 175.)

.undefine: Another simple wrapper.
10083 \cs_new_protected_nopar:cpn { \c__keys_props_root_tl .undefine: }
10084 { __keys_undefine: }

(End definition for .undefine:. This function is documented on page 176.)

.value_forbidden:n
.value_required:n

These are very similar, so both call the same function.
10085 \cs_new_protected:cpn { \c__keys_props_root_tl .value_forbidden:n } #1
10086 { __keys_value_requirement:nn { forbidden } {#1} }
10087 \cs_new_protected:cpn { \c__keys_props_root_tl .value_required:n } #1
10088 { __keys_value_requirement:nn { required } {#1} }

(End definition for .value_forbidden:n. This function is documented on page 176.)

21.6 Setting keys
\keys_set:nn
\keys_set:nV
\keys_set:nv
\keys_set:no

__keys_set:nnn
__keys_set:onn

A simple wrapper again.
10089 \cs_new_protected_nopar:Npn \keys_set:nn
10090 { __keys_set:onn { \l__keys_module_tl } }
10091 \cs_new_protected:Npn __keys_set:nnn #1#2#3
10092 {
10093 \tl_set:Nx \l__keys_module_tl { __keys_remove_spaces:n {#2} }
10094 \keyval_parse:NNn __keys_set_elt:n __keys_set_elt:nn {#3}
10095 \tl_set:Nn \l__keys_module_tl {#1}
10096 }
10097 \cs_generate_variant:Nn \keys_set:nn { nV , nv , no }
10098 \cs_generate_variant:Nn __keys_set:nnn { o }

(End definition for \keys_set:nn and others. These functions are documented on page 179.)

\keys_set_known:nnN
\keys_set_known:nVN
\keys_set_known:nvN
\keys_set_known:noN

__keys_set_known:nnnN
__keys_set_known:onnN

\keys_set_known:nn
\keys_set_known:nV
\keys_set_known:nv
\keys_set_known:no

Setting known keys simply means setting the appropriate flag, then running the standard
code. To allow for nested setting, any existing value of \l__keys_unused_clist is saved
on the stack and reset afterwards.Note that for speed/simplicity reasons we use a tl
operation to set the clist here!

10099 \cs_new_protected_nopar:Npn \keys_set_known:nnN
10100 { __keys_set_known:onnN \l__keys_unused_clist }
10101 \cs_generate_variant:Nn \keys_set_known:nnN { nV , nv , no }
10102 \cs_new_protected:Npn __keys_set_known:nnnN #1#2#3#4
10103 {
10104 \clist_clear:N \l__keys_unused_clist

549

10105 \keys_set_known:nn {#2} {#3}
10106 \tl_set:Nx #4 { \exp_not:o { \l__keys_unused_clist } }
10107 \tl_set:Nn \l__keys_unused_clist {#1}
10108 }
10109 \cs_generate_variant:Nn __keys_set_known:nnnN { o }
10110 \cs_new_protected:Npn \keys_set_known:nn #1#2
10111 {
10112 \bool_set_true:N \l__keys_only_known_bool
10113 \keys_set:nn {#1} {#2}
10114 \bool_set_false:N \l__keys_only_known_bool
10115 }
10116 \cs_generate_variant:Nn \keys_set_known:nn { nV , nv , no }

(End definition for \keys_set_known:nnN and others. These functions are documented on page 180.)

\keys_set_filter:nnnN
\keys_set_filter:nnVN

\keys_set_filter:nnvN \keys_set_filter:nnoN
__keys_set_filter:nnnnN
__keys_set_filter:onnnN

\keys_set_filter:nnn
\keys_set_filter:nnV

\keys_set_filter:nnv \keys_set_filter:nno
\keys_set_groups:nnn
\keys_set_groups:nnV

\keys_set_groups:nnv \keys_set_groups:nno

The idea of setting keys in a selective manner again uses flags wrapped around the basic
code. The comments on \keys_set_known:nnN also apply here.

10117 \cs_new_protected_nopar:Npn \keys_set_filter:nnnN
10118 { __keys_set_filter:onnnN \l__keys_unused_clist }
10119 \cs_generate_variant:Nn \keys_set_filter:nnnN { nnV , nnv , nno }
10120 \cs_new_protected:Npn __keys_set_filter:nnnnN #1#2#3#4#5
10121 {
10122 \clist_clear:N \l__keys_unused_clist
10123 \keys_set_filter:nnn {#2} {#3} {#4}
10124 \tl_set:Nx #5 { \exp_not:o { \l__keys_unused_clist } }
10125 \tl_set:Nn \l__keys_unused_clist {#1}
10126 }
10127 \cs_generate_variant:Nn __keys_set_filter:nnnnN { o }
10128 \cs_new_protected:Npn \keys_set_filter:nnn #1#2#3
10129 {
10130 \bool_set_true:N \l__keys_selective_bool
10131 \bool_set_true:N \l__keys_filtered_bool
10132 \seq_set_from_clist:Nn \l__keys_selective_seq {#2}
10133 \keys_set:nn {#1} {#3}
10134 \bool_set_false:N \l__keys_selective_bool
10135 }
10136 \cs_generate_variant:Nn \keys_set_filter:nnn { nnV , nnv , nno }
10137 \cs_new_protected:Npn \keys_set_groups:nnn #1#2#3
10138 {
10139 \bool_set_true:N \l__keys_selective_bool
10140 \bool_set_false:N \l__keys_filtered_bool
10141 \seq_set_from_clist:Nn \l__keys_selective_seq {#2}
10142 \keys_set:nn {#1} {#3}
10143 \bool_set_false:N \l__keys_selective_bool
10144 }
10145 \cs_generate_variant:Nn \keys_set_groups:nnn { nnV , nnv , nno }

(End definition for \keys_set_filter:nnnN , \keys_set_filter:nnVN , and \keys_set_filter:nnvN
\keys_set_filter:nnoN. These functions are documented on page 181.)

550

__keys_set_elt:n
__keys_set_elt:nn

__keys_set_elt_aux:nnn
__keys_set_elt_aux:onn

__keys_find_key_module:w
__keys_set_elt_aux:

__keys_set_elt_selective:

A shared system once again. First, set the current path and add a default if needed.
There are then checks to see if the a value is required or forbidden. If everything passes,
move on to execute the code.

10146 \cs_new_protected:Npn __keys_set_elt:n #1
10147 {
10148 \bool_set_true:N \l__keys_no_value_bool
10149 __keys_set_elt_aux:onn \l__keys_module_tl {#1} { }
10150 }
10151 \cs_new_protected:Npn __keys_set_elt:nn #1#2
10152 {
10153 \bool_set_false:N \l__keys_no_value_bool
10154 __keys_set_elt_aux:onn \l__keys_module_tl {#1} {#2}
10155 }

The key path here can be fully defined, after which there is a search for the key and
module names: the user may have passed them with part of what is actually the module
(for our purposes) in the key name. As that happens on a per-key basis, we use the stack
approach to restore the module name without a group.

10156 \cs_new_protected:Npn __keys_set_elt_aux:nnn #1#2#3
10157 {
10158 \tl_set:Nx \l_keys_path_tl
10159 { \l__keys_module_tl / __keys_remove_spaces:n {#2} }
10160 \tl_clear:N \l__keys_module_tl
10161 \exp_after:wN __keys_find_key_module:w \l_keys_path_tl / \q_stop
10162 __keys_value_or_default:n {#3}
10163 \bool_if:NTF \l__keys_selective_bool
10164 { __keys_set_elt_selective: }
10165 { __keys_set_elt_aux: }
10166 \tl_set:Nn \l__keys_module_tl {#1}
10167 }
10168 \cs_generate_variant:Nn __keys_set_elt_aux:nnn { o }
10169 \cs_new_protected:Npn __keys_find_key_module:w #1 / #2 \q_stop
10170 {
10171 \tl_if_blank:nTF {#2}
10172 { \tl_set:Nn \l_keys_key_tl {#1} }
10173 {
10174 \tl_put_right:Nx \l__keys_module_tl
10175 {
10176 \tl_if_empty:NF \l__keys_module_tl { / }
10177 #1
10178 }
10179 __keys_find_key_module:w #2 \q_stop
10180 }
10181 }
10182 \cs_new_protected_nopar:Npn __keys_set_elt_aux:
10183 {
10184 \bool_if:nTF
10185 {
10186 __keys_if_value_p:n { required } &&

551

10187 \l__keys_no_value_bool
10188 }
10189 {
10190 __msg_kernel_error:nnx { kernel } { value-required }
10191 { \l_keys_path_tl }
10192 }
10193 {
10194 \bool_if:nTF
10195 {
10196 __keys_if_value_p:n { forbidden } &&
10197 ! \l__keys_no_value_bool
10198 }
10199 {
10200 __msg_kernel_error:nnxx { kernel } { value-forbidden }
10201 { \l_keys_path_tl } { \l_keys_value_tl }
10202 }
10203 { __keys_execute: }
10204 }
10205 }

If selective setting is active, there are a number of possible sub-cases to consider. The
key name may not be known at all or if it is, it may not have any groups assigned. There
is then the question of whether the selection is opt-in or opt-out.

10206 \cs_new_protected_nopar:Npn __keys_set_elt_selective:
10207 {
10208 \prop_if_exist:cTF { \c__keys_info_root_tl \l_keys_path_tl }
10209 {
10210 \prop_get:cnNTF { \c__keys_info_root_tl \l_keys_path_tl }
10211 { groups } \l__keys_groups_clist
10212 { __keys_check_groups: }
10213 {
10214 \bool_if:NTF \l__keys_filtered_bool
10215 { __keys_set_elt_aux: }
10216 { __keys_store_unused: }
10217 }
10218 }
10219 {
10220 \bool_if:NTF \l__keys_filtered_bool
10221 { __keys_set_elt_aux: }
10222 { __keys_store_unused: }
10223 }
10224 }

In the case where selective setting requires a comparison of the list of groups which apply
to a key with the list of those which have been set active. That requires two mappings,
and again a different outcome depending on whether opt-in or opt-out is set.

10225 \cs_new_protected_nopar:Npn __keys_check_groups:
10226 {
10227 \bool_set_false:N \l__keys_tmp_bool
10228 \seq_map_inline:Nn \l__keys_selective_seq

552

10229 {
10230 \clist_map_inline:Nn \l__keys_groups_clist
10231 {
10232 \str_if_eq:nnT {##1} {####1}
10233 {
10234 \bool_set_true:N \l__keys_tmp_bool
10235 \clist_map_break:n { \seq_map_break: }
10236 }
10237 }
10238 }
10239 \bool_if:NTF \l__keys_tmp_bool
10240 {
10241 \bool_if:NTF \l__keys_filtered_bool
10242 { __keys_store_unused: }
10243 { __keys_set_elt_aux: }
10244 }
10245 {
10246 \bool_if:NTF \l__keys_filtered_bool
10247 { __keys_set_elt_aux: }
10248 { __keys_store_unused: }
10249 }
10250 }

(End definition for __keys_set_elt:n and __keys_set_elt:nn.)

__keys_value_or_default:n If a value is given, return it as #1, otherwise send a default if available.
10251 \cs_new_protected:Npn __keys_value_or_default:n #1
10252 {
10253 \bool_if:NTF \l__keys_no_value_bool
10254 {
10255 \prop_get:cnNF { \c__keys_info_root_tl \l_keys_path_tl }
10256 { default } \l_keys_value_tl
10257 { \tl_clear:N \l_keys_value_tl }
10258 }
10259 { \tl_set:Nn \l_keys_value_tl {#1} }
10260 }

(End definition for __keys_value_or_default:n.)

__keys_if_value_p:n To test if a value is required or forbidden. A simple check for the existence of the
appropriate marker.

10261 \prg_new_conditional:Npnn __keys_if_value:n #1 { p }
10262 {
10263 \prop_if_exist:cTF { \c__keys_info_root_tl \l_keys_path_tl }
10264 {
10265 \prop_if_in:cnTF { \c__keys_info_root_tl \l_keys_path_tl } {#1}
10266 { \prg_return_true: }
10267 { \prg_return_false: }
10268 }
10269 { \prg_return_false: }
10270 }

553

(End definition for __keys_if_value_p:n.)

__keys_execute:
__keys_execute_unknown:

__keys_execute:nn
__keys_store_unused:

Actually executing a key is done in two parts. First, look for the key itself, then look
for the unknown key with the same path. If both of these fail, complain. What exactly
happens if a key is unknown depends on whether unknown keys are being skipped or if
an error should be raised.

10271 \cs_new_protected_nopar:Npn __keys_execute:
10272 { __keys_execute:nn { \l_keys_path_tl } { __keys_execute_unknown: } }
10273 \cs_new_protected_nopar:Npn __keys_execute_unknown:
10274 {
10275 \bool_if:NTF \l__keys_only_known_bool
10276 { __keys_store_unused: }
10277 {
10278 __keys_execute:nn { \l__keys_module_tl / unknown }
10279 {
10280 __msg_kernel_error:nnxx { kernel } { key-unknown }
10281 { \l_keys_path_tl } { \l__keys_module_tl }
10282 }
10283 }
10284 }
10285 \cs_new:Npn __keys_execute:nn #1#2
10286 {
10287 \cs_if_exist:cTF { \c__keys_code_root_tl #1 }
10288 {
10289 \exp_args:Nc \exp_args:No { \c__keys_code_root_tl #1 }
10290 \l_keys_value_tl
10291 }
10292 {#2}
10293 }
10294 \cs_new_protected_nopar:Npn __keys_store_unused:
10295 {
10296 \clist_put_right:Nx \l__keys_unused_clist
10297 {
10298 \exp_not:o \l_keys_key_tl
10299 \bool_if:NF \l__keys_no_value_bool
10300 { = { \exp_not:o \l_keys_value_tl } }
10301 }
10302 }

(End definition for __keys_execute:.)

__keys_choice_find:n
__keys_multichoice_find:n

Executing a choice has two parts. First, try the choice given, then if that fails call the
unknown key. That will exist, as it is created when a choice is first made. So there is no
need for any escape code. For multiple choices, the same code ends up used in a mapping.

10303 \cs_new:Npn __keys_choice_find:n #1
10304 {
10305 __keys_execute:nn { \l_keys_path_tl / __keys_remove_spaces:n {#1} }
10306 { __keys_execute:nn { \l_keys_path_tl / unknown } { } }
10307 }

554

10308 \cs_new:Npn __keys_multichoice_find:n #1
10309 { \clist_map_function:nN {#1} __keys_choice_find:n }

(End definition for __keys_choice_find:n.)

21.7 Utilities
__keys_remove_spaces:n
__keys_remove_spaces:w

Removes all spaces from the input which is detokenized as a result. This function has
the same effect as \zap@space in LATEX2ε after applying \tl_to_str:n. It is set up to
be fast as the use case here is tightly defined. The ? is only there to allow for a space
after \use_none:nn responsible for ending the loop.

10310 \cs_new:Npn __keys_remove_spaces:n #1
10311 {
10312 \exp_after:wN __keys_remove_spaces:w \tl_to_str:n {#1}
10313 \use_none:nn ? ~
10314 }
10315 \cs_new:Npn __keys_remove_spaces:w #1 ~
10316 { #1 __keys_remove_spaces:w }

(End definition for __keys_remove_spaces:n.)

\keys_if_exist_p:nn
\keys_if_exist:nnTF

A utility for others to see if a key exists.
10317 \prg_new_conditional:Npnn \keys_if_exist:nn #1#2 { p , T , F , TF }
10318 {
10319 \cs_if_exist:cTF
10320 { \c__keys_code_root_tl __keys_remove_spaces:n { #1 / #2 } }
10321 { \prg_return_true: }
10322 { \prg_return_false: }
10323 }

(End definition for \keys_if_exist:nnTF. This function is documented on page 181.)

\keys_if_choice_exist_p:nnn
\keys_if_choice_exist:nnnTF

Just an alternative view on \keys_if_exist:nn(TF).
10324 \prg_new_conditional:Npnn \keys_if_choice_exist:nnn #1#2#3
10325 { p , T , F , TF }
10326 {
10327 \cs_if_exist:cTF
10328 { \c__keys_code_root_tl __keys_remove_spaces:n { #1 / #2 / #3 } }
10329 { \prg_return_true: }
10330 { \prg_return_false: }
10331 }

(End definition for \keys_if_choice_exist:nnnTF. This function is documented on page 182.)

\keys_show:nn
__keys_show:NN

To show a key, test for its existence to issue the correct message (same message, but with
a t or f argument, then build the control sequences which contain the code and other
information about the key, call an intermediate auxiliary which constructs the code that
will be displayed to the terminal, and finally conclude with __msg_show_wrap:n.

10332 \cs_new_protected:Npn \keys_show:nn #1#2
10333 {

555

10334 \keys_if_exist:nnTF {#1} {#2}
10335 {
10336 __msg_show_pre:nnxxxx { LaTeX / kernel } { show-key }
10337 { __keys_remove_spaces:n { #1 / #2 } } { t } { } { }
10338 \exp_args:Ncc __keys_show:NN
10339 { \c__keys_code_root_tl __keys_remove_spaces:n { #1 / #2 } }
10340 { \c__keys_info_root_tl __keys_remove_spaces:n { #1 / #2 } }
10341 }
10342 {
10343 __msg_show_pre:nnxxxx { LaTeX / kernel } { show-key }
10344 { __keys_remove_spaces:n { #1 / #2 } } { f } { } { }
10345 __msg_show_wrap:n { }
10346 }
10347 }
10348 \cs_new_protected:Npn __keys_show:NN #1#2
10349 {
10350 \use:x
10351 {
10352 __msg_show_wrap:n
10353 {
10354 \exp_not:N __msg_show_item_unbraced:nn { code }
10355 { \token_get_replacement_spec:N #1 }
10356 \exp_not:n
10357 { \prop_map_function:NN #2 __msg_show_item_unbraced:nn }
10358 }
10359 }
10360 }

(End definition for \keys_show:nn. This function is documented on page 182.)

21.8 Messages
For when there is a need to complain.

10361 __msg_kernel_new:nnnn { kernel } { boolean-values-only }
10362 { Key~’#1’~accepts~boolean~values~only. }
10363 { The~key~’#1’~only~accepts~the~values~’true’~and~’false’. }
10364 __msg_kernel_new:nnnn { kernel } { choice-unknown }
10365 { Choice~’#2’~unknown~for~key~’#1’. }
10366 {
10367 The~key~’#1’~takes~a~limited~number~of~values.\\
10368 The~input~given,~’#2’,~is~not~on~the~list~accepted.
10369 }
10370 __msg_kernel_new:nnnn { kernel } { key-choice-unknown }
10371 { Key~’#1’~accepts~only~a~fixed~set~of~choices. }
10372 {
10373 The~key~’#1’~only~accepts~predefined~values,~
10374 and~’#2’~is~not~one~of~these.
10375 }
10376 __msg_kernel_new:nnnn { kernel } { key-no-property }
10377 { No~property~given~in~definition~of~key~’#1’. }

556

10378 {
10379 \c__msg_coding_error_text_tl
10380 Inside~\keys_define:nn each~key~name~
10381 needs~a~property: \\ \\
10382 \iow_indent:n { #1 .<property> } \\ \\
10383 LaTeX~did~not~find~a~’.’~to~indicate~the~start~of~a~property.
10384 }
10385 __msg_kernel_new:nnnn { kernel } { key-unknown }
10386 { The~key~’#1’~is~unknown~and~is~being~ignored. }
10387 {
10388 The~module~’#2’~does~not~have~a~key~called~’#1’.\\
10389 Check~that~you~have~spelled~the~key~name~correctly.
10390 }
10391 __msg_kernel_new:nnnn { kernel } { nested-choice-key }
10392 { Attempt~to~define~’#1’~as~a~nested~choice~key. }
10393 {
10394 The~key~’#1’~cannot~be~defined~as~a~choice~as~the~parent~key~’#2’~is~
10395 itself~a~choice.
10396 }
10397 __msg_kernel_new:nnnn { kernel } { property-boolean-values-only }
10398 { The~property~’#1’~accepts~boolean~values~only. }
10399 {
10400 \c__msg_coding_error_text_tl
10401 The~property~’#1’~only~accepts~the~values~’true’~and~’false’.
10402 }
10403 __msg_kernel_new:nnnn { kernel } { property-requires-value }
10404 { The~property~’#1’~requires~a~value. }
10405 {
10406 \c__msg_coding_error_text_tl
10407 LaTeX~was~asked~to~set~property~’#1’~for~key~’#2’.\\
10408 No~value~was~given~for~the~property,~and~one~is~required.
10409 }
10410 __msg_kernel_new:nnnn { kernel } { property-unknown }
10411 { The~key~property~’#1’~is~unknown. }
10412 {
10413 \c__msg_coding_error_text_tl
10414 LaTeX~has~been~asked~to~set~the~property~’#1’~for~key~’#2’:~
10415 this~property~is~not~defined.
10416 }
10417 __msg_kernel_new:nnnn { kernel } { value-forbidden }
10418 { The~key~’#1’~does~not~take~a~value. }
10419 {
10420 The~key~’#1’~should~be~given~without~a~value.\\
10421 The~value~’#2’~was~present:~the~key~will~be~ignored.
10422 }
10423 __msg_kernel_new:nnnn { kernel } { value-required }
10424 { The~key~’#1’~requires~a~value. }
10425 {
10426 The~key~’#1’~must~have~a~value.\\
10427 No~value~was~present:~the~key~will~be~ignored.

557

10428 }
10429 __msg_kernel_new:nnn { kernel } { show-key }
10430 {
10431 The~key~#1~
10432 \str_if_eq:nnTF {#2} { t }
10433 { has~the~properties: }
10434 { is~undefined. }
10435 }

21.9 Deprecated functions
.value_forbidden:
.value_required:

Deprecated 2015-07-14.
10436 \cs_new_protected_nopar:cpn { \c__keys_props_root_tl .value_forbidden: }
10437 { __keys_value_requirement:nn { forbidden } { true } }
10438 \cs_new_protected_nopar:cpn { \c__keys_props_root_tl .value_required: }
10439 { __keys_value_requirement:nn { required } { true } }

(End definition for .value_forbidden:. This function is documented on page ??.)

10440 〈/initex | package〉

22 l3file implementation
The following test files are used for this code: m3file001.

10441 〈*initex | package〉

10442 〈@@=file〉

22.1 File operations
\g_file_current_name_tl The name of the current file should be available at all times. For the format the file name

needs to be picked up at the start of the file. In LATEX2ε package mode the current file
name is collected from \@currname.

10443 \tl_new:N \g_file_current_name_tl
10444 〈*initex〉
10445 \tex_everyjob:D \exp_after:wN
10446 {
10447 \tex_the:D \tex_everyjob:D
10448 \tl_gset:Nx \g_file_current_name_tl { \tex_jobname:D }
10449 }
10450 〈/initex〉
10451 〈*package〉
10452 \cs_if_exist:NT \@currname
10453 { \tl_gset_eq:NN \g_file_current_name_tl \@currname }
10454 〈/package〉

(End definition for \g_file_current_name_tl. This variable is documented on page 184.)

558

\g__file_stack_seq The input list of files is stored as a sequence stack.
10455 \seq_new:N \g__file_stack_seq

(End definition for \g__file_stack_seq. This variable is documented on page ??.)

\g__file_record_seq The total list of files used is recorded separately from the current file stack, as nothing
is ever popped from this list. The current file name should be included in the file list!
In format mode, this is done at the very start of the TEX run. In package mode we will
eventually copy the contents of \@filelist.

10456 \seq_new:N \g__file_record_seq
10457 〈*initex〉
10458 \tex_everyjob:D \exp_after:wN
10459 {
10460 \tex_the:D \tex_everyjob:D
10461 \seq_gput_right:NV \g__file_record_seq \g_file_current_name_tl
10462 }
10463 〈/initex〉

(End definition for \g__file_record_seq. This variable is documented on page ??.)

\l__file_internal_tl Used as a short-term scratch variable. It may be possible to reuse \l__file_internal_-
name_tl there.

10464 \tl_new:N \l__file_internal_tl

(End definition for \l__file_internal_tl. This variable is documented on page ??.)

\l__file_internal_name_tl Used to return the fully-qualified name of a file.
10465 \tl_new:N \l__file_internal_name_tl

(End definition for \l__file_internal_name_tl. This variable is documented on page 190.)

\l__file_search_path_seq The current search path.
10466 \seq_new:N \l__file_search_path_seq

(End definition for \l__file_search_path_seq. This variable is documented on page ??.)

\l__file_saved_search_path_seq The current search path has to be saved for package use.
10467 〈*package〉
10468 \seq_new:N \l__file_saved_search_path_seq
10469 〈/package〉

(End definition for \l__file_saved_search_path_seq. This variable is documented on page ??.)

\l__file_internal_seq Scratch space for comma list conversion in package mode.
10470 〈*package〉
10471 \seq_new:N \l__file_internal_seq
10472 〈/package〉

(End definition for \l__file_internal_seq. This variable is documented on page ??.)

559

__file_name_sanitize:nn
__file_name_sanitize_aux:n

For converting a token list to a string where active characters are treated as strings
from the start. The logic to the quoting normalisation is the same as used by
lualatexquotejobname: check for balanced ", and assuming they balance strip all of
them out before quoting the entire name if it contains spaces.

10473 \cs_new_protected:Npn __file_name_sanitize:nn #1#2
10474 {
10475 \group_begin:
10476 \seq_map_inline:Nn \l_char_active_seq
10477 { \char_set:active:Npx ##1 { \cs_to_str:N ##1 } }
10478 \tl_set:Nx \l__file_internal_name_tl {#1}
10479 \tl_set:Nx \l__file_internal_name_tl
10480 { \tl_to_str:N \l__file_internal_name_tl }
10481 \int_compare:nNnTF
10482 {
10483 \int_mod:nn
10484 {
10485 0 \tl_map_function:NN \l__file_internal_name_tl
10486 __file_name_sanitize_aux:n
10487 }
10488 \c_two
10489 }
10490 = \c_zero
10491 {
10492 \tl_remove_all:Nn \l__file_internal_name_tl { " }
10493 \tl_if_in:NnT \l__file_internal_name_tl { ~ }
10494 {
10495 \tl_set:Nx \l__file_internal_name_tl
10496 { " \exp_not:V \l__file_internal_name_tl " }
10497 }
10498 }
10499 {
10500 __msg_kernel_error:nnx
10501 { kernel } { unbalanced-quote-in-filename }
10502 { \l__file_internal_name_tl }
10503 }
10504 \use:x
10505 {
10506 \group_end:
10507 \exp_not:n {#2} { \l__file_internal_name_tl }
10508 }
10509 }
10510 \cs_new:Npn __file_name_sanitize_aux:n #1
10511 {
10512 \token_if_eq_charcode:NNT #1 "
10513 { + \c_one }
10514 }

(End definition for __file_name_sanitize:nn.)

\file_add_path:nN
__file_add_path:nN

__file_add_path_search:nN

The way to test if a file exists is to try to open it: if it does not exist then TEX will

560

report end-of-file. For files which are in the current directory, this is straight-forward.
For other locations, a search has to be made looking at each potential path in turn. The
first location is of course treated as the correct one. If nothing is found, #2 is returned
empty.

10515 \cs_new_protected:Npn \file_add_path:nN #1
10516 { __file_name_sanitize:nn {#1} { __file_add_path:nN } }
10517 \cs_new_protected:Npn __file_add_path:nN #1#2
10518 {
10519 __ior_open:Nn \g__file_internal_ior {#1}
10520 \ior_if_eof:NTF \g__file_internal_ior
10521 { __file_add_path_search:nN {#1} #2 }
10522 { \tl_set:Nn #2 {#1} }
10523 \ior_close:N \g__file_internal_ior
10524 }
10525 \cs_new_protected:Npn __file_add_path_search:nN #1#2
10526 {
10527 \tl_set:Nn #2 { \q_no_value }
10528 〈*package〉
10529 \cs_if_exist:NT \input@path
10530 {
10531 \seq_set_eq:NN \l__file_saved_search_path_seq
10532 \l__file_search_path_seq
10533 \seq_set_split:NnV \l__file_internal_seq { , } \input@path
10534 \seq_concat:NNN \l__file_search_path_seq
10535 \l__file_search_path_seq \l__file_internal_seq
10536 }
10537 〈/package〉
10538 \seq_map_inline:Nn \l__file_search_path_seq
10539 {
10540 __ior_open:Nn \g__file_internal_ior { ##1 #1 }
10541 \ior_if_eof:NF \g__file_internal_ior
10542 {
10543 \tl_set:Nx #2 { ##1 #1 }
10544 \seq_map_break:
10545 }
10546 }
10547 〈*package〉
10548 \cs_if_exist:NT \input@path
10549 {
10550 \seq_set_eq:NN \l__file_search_path_seq
10551 \l__file_saved_search_path_seq
10552 }
10553 〈/package〉
10554 }

(End definition for \file_add_path:nN. This function is documented on page 184.)

\file_if_exist:nTF The test for the existence of a file is a wrapper around the function to add a path to a
file. If the file was found, the path will contain something, whereas if the file was not
located then the return value will be \q_no_value.

561

10555 \prg_new_protected_conditional:Npnn \file_if_exist:n #1 { T , F , TF }
10556 {
10557 \file_add_path:nN {#1} \l__file_internal_name_tl
10558 \quark_if_no_value:NTF \l__file_internal_name_tl
10559 { \prg_return_false: }
10560 { \prg_return_true: }
10561 }

(End definition for \file_if_exist:nTF. This function is documented on page 184.)

\file_input:n
__file_if_exist:nT

__file_input:n __file_input:V
__file_input_aux:n
__file_input_aux:o

Loading a file is done in a safe way, checking first that the file exists and loading only
if it does. Push the file name on the \g__file_stack_seq, and add it to the file list,
either \g__file_record_seq, or \@filelist in package mode.

10562 \cs_new_protected:Npn \file_input:n #1
10563 {
10564 __file_if_exist:nT {#1}
10565 { __file_input:V \l__file_internal_name_tl }
10566 }

This code is spun out as a separate function to encapsulate the error message into a
easy-to-reuse form.

10567 \cs_new_protected:Npn __file_if_exist:nT #1#2
10568 {
10569 \file_if_exist:nTF {#1}
10570 {#2}
10571 {
10572 __file_name_sanitize:nn {#1}
10573 { __msg_kernel_error:nnx { kernel } { file-not-found } }
10574 }
10575 }
10576 \cs_new_protected:Npn __file_input:n #1
10577 {
10578 \tl_if_in:nnTF {#1} { . }
10579 { __file_input_aux:n {#1} }
10580 { __file_input_aux:o { \tl_to_str:n { #1 . tex } } }
10581 }
10582 \cs_generate_variant:Nn __file_input:n { V }
10583 \cs_new_protected:Npn __file_input_aux:n #1
10584 {
10585 〈*initex〉
10586 \seq_gput_right:Nn \g__file_record_seq {#1}
10587 〈/initex〉
10588 〈*package〉
10589 \clist_if_exist:NTF \@filelist
10590 { \@addtofilelist {#1} }
10591 { \seq_gput_right:Nn \g__file_record_seq {#1} }
10592 〈/package〉
10593 \seq_gpush:No \g__file_stack_seq \g_file_current_name_tl
10594 \tl_gset:Nn \g_file_current_name_tl {#1}
10595 \tex_input:D #1 \c_space_tl

562

10596 \seq_gpop:NN \g__file_stack_seq \l__file_internal_tl
10597 \tl_gset_eq:NN \g_file_current_name_tl \l__file_internal_tl
10598 }
10599 \cs_generate_variant:Nn __file_input_aux:n { o }

(End definition for \file_input:n. This function is documented on page 184.)

\file_path_include:n
\file_path_remove:n

__file_path_include:n

Wrapper functions to manage the search path.
10600 \cs_new_protected:Npn \file_path_include:n #1
10601 { __file_name_sanitize:nn {#1} { __file_path_include:n } }
10602 \cs_new_protected:Npn __file_path_include:n #1
10603 {
10604 \seq_if_in:NnF \l__file_search_path_seq {#1}
10605 { \seq_put_right:Nn \l__file_search_path_seq {#1} }
10606 }
10607 \cs_new_protected:Npn \file_path_remove:n #1
10608 {
10609 __file_name_sanitize:nn {#1}
10610 { \seq_remove_all:Nn \l__file_search_path_seq }
10611 }

(End definition for \file_path_include:n. This function is documented on page 185.)

\file_list: A function to list all files used to the log, without duplicates. In package mode, if
\@filelist is still defined, we need to take this list of file names into account (we
capture it \AtBeginDocument into \g__file_record_seq), turning each file name into
a string.

10612 \cs_new_protected_nopar:Npn \file_list:
10613 {
10614 \seq_set_eq:NN \l__file_internal_seq \g__file_record_seq
10615 〈*package〉
10616 \clist_if_exist:NT \@filelist
10617 {
10618 \clist_map_inline:Nn \@filelist
10619 {
10620 \seq_put_right:No \l__file_internal_seq
10621 { \tl_to_str:n {##1} }
10622 }
10623 }
10624 〈/package〉
10625 \seq_remove_duplicates:N \l__file_internal_seq
10626 \iow_log:n { *~File~List~* }
10627 \seq_map_inline:Nn \l__file_internal_seq { \iow_log:n {##1} }
10628 \iow_log:n { ************* }
10629 }

(End definition for \file_list:. This function is documented on page 185.)
When used as a package, there is a need to hold onto the standard file list as well as

the new one here. File names recorded in \@filelist must be turned to strings before
being added to \g__file_record_seq.

563

10630 〈*package〉
10631 \AtBeginDocument
10632 {
10633 \clist_map_inline:Nn \@filelist
10634 { \seq_gput_right:No \g__file_record_seq { \tl_to_str:n {#1} } }
10635 }
10636 〈/package〉

22.2 Input operations
10637 〈@@=ior〉

22.2.1 Variables and constants

\c_term_ior Reading from the terminal (with a prompt) is done using a positive but non-existent
stream number. Unlike writing, there is no concept of reading from the log.

10638 \cs_new_eq:NN \c_term_ior \c_sixteen

(End definition for \c_term_ior. This variable is documented on page 190.)

\g__ior_streams_seq A list of the currently-available input streams to be used as a stack. In format mode, all
streams (from 0 to 15) are available, while the package requests streams to LATEX2ε as
they are needed (initially none are needed), so the starting point varies!

10639 \seq_new:N \g__ior_streams_seq
10640 〈*initex〉
10641 \seq_gset_split:Nnn \g__ior_streams_seq { , }
10642 { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 }
10643 〈/initex〉

(End definition for \g__ior_streams_seq. This variable is documented on page ??.)

\l__ior_stream_tl Used to recover the raw stream number from the stack.
10644 \tl_new:N \l__ior_stream_tl

(End definition for \l__ior_stream_tl. This variable is documented on page ??.)

\g__ior_streams_prop The name of the file attached to each stream is tracked in a property list. To get the
correct number of reserved streams in package mode the underlying mechanism needs to
be queried. For LATEX2ε and plain TEX this data is stored in \count16: with the etex
package loaded we need to subtract 1 as the register holds the number of the next stream
to use. In ConTEXt, we need to look at \count38 but there is no subtraction: like the
original plain TEX/LATEX2ε mechanism it holds the value of the last stream allocated.

10645 \prop_new:N \g__ior_streams_prop
10646 〈*package〉
10647 \int_step_inline:nnnn
10648 { \c_zero }
10649 { \c_one }
10650 {
10651 \cs_if_exist:NTF \normalend
10652 { \tex_count:D 38 \scan_stop: }

564

10653 {
10654 \tex_count:D 16 \scan_stop:
10655 \cs_if_exist:NT \loccount { - \c_one }
10656 }
10657 }
10658 {
10659 \prop_gput:Nnn \g__ior_streams_prop {#1} { Reserved~by~format }
10660 }
10661 〈/package〉

(End definition for \g__ior_streams_prop. This variable is documented on page ??.)

22.2.2 Stream management

\ior_new:N
\ior_new:c

Reserving a new stream is done by defining the name as equal to using the terminal.
10662 \cs_new_protected:Npn \ior_new:N #1 { \cs_new_eq:NN #1 \c_term_ior }
10663 \cs_generate_variant:Nn \ior_new:N { c }

(End definition for \ior_new:N and \ior_new:c. These functions are documented on page 185.)

\ior_open:Nn
\ior_open:cn

__ior_open_aux:Nn

Opening an input stream requires a bit of pre-processing. The file name is sanitized to
deal with active characters, before an auxiliary adds a path and checks that the file really
exists. If those two tests pass, then pass the information on to the lower-level function
which deals with streams.

10664 \cs_new_protected:Npn \ior_open:Nn #1#2
10665 { __file_name_sanitize:nn {#2} { __ior_open_aux:Nn #1 } }
10666 \cs_generate_variant:Nn \ior_open:Nn { c }
10667 \cs_new_protected:Npn __ior_open_aux:Nn #1#2
10668 {
10669 \file_add_path:nN {#2} \l__file_internal_name_tl
10670 \quark_if_no_value:NTF \l__file_internal_name_tl
10671 { __msg_kernel_error:nnx { kernel } { file-not-found } {#2} }
10672 { __ior_open:No #1 \l__file_internal_name_tl }
10673 }

(End definition for \ior_open:Nn and \ior_open:cn. These functions are documented on page 185.)

\ior_open:NnTF
\ior_open:cnTF

__ior_open_aux:NnTF

Much the same idea for opening a read with a conditional, except the auxiliary function
does not issue an error if the file is not found.

10674 \prg_new_protected_conditional:Npnn \ior_open:Nn #1#2 { T , F , TF }
10675 { __file_name_sanitize:nn {#2} { __ior_open_aux:NnTF #1 } }
10676 \cs_generate_variant:Nn \ior_open:NnT { c }
10677 \cs_generate_variant:Nn \ior_open:NnF { c }
10678 \cs_generate_variant:Nn \ior_open:NnTF { c }
10679 \cs_new_protected:Npn __ior_open_aux:NnTF #1#2
10680 {
10681 \file_add_path:nN {#2} \l__file_internal_name_tl
10682 \quark_if_no_value:NTF \l__file_internal_name_tl
10683 { \prg_return_false: }
10684 {

565

10685 __ior_open:No #1 \l__file_internal_name_tl
10686 \prg_return_true:
10687 }
10688 }

(End definition for \ior_open:NnTF and \ior_open:cnTF. These functions are documented on page 185.)

__ior_new:N In package mode, streams are reserved using \newread before they can be managed by
ior. To prevent ior from being affected by redefinitions of \newread (such as done by
the third-party package morewrites), this macro is saved here under a private name. The
complicated code ensures that __ior_new:N is not \outer despite plain TEX’s \newread
being \outer.

10689 〈*package〉
10690 \exp_args:NNf \cs_new_protected_nopar:Npn __ior_new:N
10691 { \exp_args:NNc \exp_after:wN \exp_stop_f: { newread } }
10692 〈/package〉

(End definition for __ior_new:N.)

__ior_open:Nn
__ior_open:No

__ior_open_stream:Nn

The stream allocation itself uses the fact that there is a list of all of those available, so
allocation is simply a question of using the number at the top of the list. In package
mode, life gets more complex as it’s important to keep things in sync. That is done using
a two-part approach: any streams that have already been taken up by ior but are now
free are tracked, so we first try those. If that fails, ask plain TEX or LATEX2ε for a new
stream and use that number (after a bit of conversion).

10693 \cs_new_protected:Npn __ior_open:Nn #1#2
10694 {
10695 \ior_close:N #1
10696 \seq_gpop:NNTF \g__ior_streams_seq \l__ior_stream_tl
10697 { __ior_open_stream:Nn #1 {#2} }
10698 〈*initex〉
10699 { __msg_kernel_fatal:nn { kernel } { input-streams-exhausted } }
10700 〈/initex〉
10701 〈*package〉
10702 {
10703 __ior_new:N #1
10704 \tl_set:Nx \l__ior_stream_tl { \int_eval:n {#1} }
10705 __ior_open_stream:Nn #1 {#2}
10706 }
10707 〈/package〉
10708 }
10709 \cs_generate_variant:Nn __ior_open:Nn { No }
10710 \cs_new_protected:Npn __ior_open_stream:Nn #1#2
10711 {
10712 \tex_global:D \tex_chardef:D #1 = \l__ior_stream_tl \scan_stop:
10713 \prop_gput:NVn \g__ior_streams_prop #1 {#2}
10714 \tex_openin:D #1 #2 \scan_stop:
10715 }

(End definition for __ior_open:Nn and __ior_open:No.)

566

\ior_close:N
\ior_close:c

Closing a stream means getting rid of it at the TEX level and removing from the various
data structures. Unless the name passed is an invalid stream number (outside the range
[0, 15]), it can be closed. On the other hand, it only gets added to the stack if it was not
already there, to avoid duplicates building up.

10716 \cs_new_protected:Npn \ior_close:N #1
10717 {
10718 \int_compare:nT { \c_minus_one < #1 < \c_sixteen }
10719 {
10720 \tex_closein:D #1
10721 \prop_gremove:NV \g__ior_streams_prop #1
10722 \seq_if_in:NVF \g__ior_streams_seq #1
10723 { \seq_gpush:NV \g__ior_streams_seq #1 }
10724 \cs_gset_eq:NN #1 \c_term_ior
10725 }
10726 }
10727 \cs_generate_variant:Nn \ior_close:N { c }

(End definition for \ior_close:N and \ior_close:c. These functions are documented on page 186.)

\ior_list_streams:
__ior_list_streams:Nn

Show the property lists, but with some “pretty printing”. See the l3msg module. The
first argument of the message is ior (as opposed to iow) and the second is empty if no
read stream is open and non-empty (in fact a question mark) otherwise. The code of the
message show-streams takes care of translating ior/iow to English. The list of streams
is formatted using __msg_show_item_unbraced:nn.

10728 \cs_new_protected_nopar:Npn \ior_list_streams:
10729 { __ior_list_streams:Nn \g__ior_streams_prop { ior } }
10730 \cs_new_protected:Npn __ior_list_streams:Nn #1#2
10731 {
10732 __msg_show_pre:nnxxxx { LaTeX / kernel } { show-streams }
10733 {#2} { \prop_if_empty:NF #1 { ? } } { } { }
10734 __msg_show_wrap:n
10735 { \prop_map_function:NN #1 __msg_show_item_unbraced:nn }
10736 }

(End definition for \ior_list_streams:. This function is documented on page 186.)

22.2.3 Reading input

\if_eof:w The primitive conditional
10737 \cs_new_eq:NN \if_eof:w \tex_ifeof:D

(End definition for \if_eof:w.)

\ior_if_eof_p:N
\ior_if_eof:NTF

To test if some particular input stream is exhausted the following conditional is provided.
10738 \prg_new_conditional:Nnn \ior_if_eof:N { p , T , F , TF }
10739 {
10740 \cs_if_exist:NTF #1
10741 {
10742 \if_int_compare:w #1 = \c_sixteen

567

10743 \prg_return_true:
10744 \else:
10745 \if_eof:w #1
10746 \prg_return_true:
10747 \else:
10748 \prg_return_false:
10749 \fi:
10750 \fi:
10751 }
10752 { \prg_return_true: }
10753 }

(End definition for \ior_if_eof:NTF. This function is documented on page 187.)

\ior_get:NN And here we read from files.
10754 \cs_new_protected:Npn \ior_get:NN #1#2
10755 { \tex_read:D #1 to #2 }

(End definition for \ior_get:NN. This function is documented on page 186.)

\ior_get_str:NN Reading as strings is a more complicated wrapper, as we wish to remove the endline
character.

10756 \cs_new_protected:Npn \ior_get_str:NN #1#2
10757 {
10758 \use:x
10759 {
10760 \int_set_eq:NN \tex_endlinechar:D \c_minus_one
10761 \exp_not:n { \etex_readline:D #1 to #2 }
10762 \int_set:Nn \tex_endlinechar:D { \int_use:N \tex_endlinechar:D }
10763 }
10764 }

(End definition for \ior_get_str:NN. This function is documented on page 187.)

\g__file_internal_ior Needed by the higher-level code, but cannot be created until here.
10765 \ior_new:N \g__file_internal_ior

(End definition for \g__file_internal_ior. This variable is documented on page 190.)

22.3 Output operations
10766 〈@@=iow〉

There is a lot of similarity here to the input operations, at least for many of the
basics. Thus quite a bit is copied from the earlier material with minor alterations.
22.3.1 Variables and constants

\c_log_iow
\c_term_iow

Here we allocate two output streams for writing to the transcript file only (\c_log_iow)
and to both the terminal and transcript file (\c_term_iow).

10767 \cs_new_eq:NN \c_log_iow \c_minus_one
10768 \int_const:Nn \c_term_iow { 128 }

568

(End definition for \c_log_iow and \c_term_iow. These variables are documented on page 190.)

\g__iow_streams_seq A list of the currently-available output streams to be used as a stack.
10769 \seq_new:N \g__iow_streams_seq
10770 〈*initex〉
10771 \seq_set_eq:NN \g__iow_streams_seq \g__ior_streams_seq
10772 \cs_if_exist:NT \luatex_directlua:D
10773 {
10774 \int_compare:nNnT \luatex_luatexversion:D > { 80 }
10775 {
10776 \int_step_inline:nnnn { 16 } { 1 } { 127 }
10777 {
10778 \seq_gput_right:Nn \g__iow_streams_seq {#1}
10779 }
10780 }
10781 }
10782 〈/initex〉

(End definition for \g__iow_streams_seq. This variable is documented on page ??.)

\l__iow_stream_tl Used to recover the raw stream number from the stack.
10783 \tl_new:N \l__iow_stream_tl

(End definition for \l__iow_stream_tl. This variable is documented on page ??.)

\g__iow_streams_prop As for reads with the appropriate adjustment of the register numbers to check on.
10784 \prop_new:N \g__iow_streams_prop
10785 〈*package〉
10786 \int_step_inline:nnnn
10787 { \c_zero }
10788 { \c_one }
10789 {
10790 \cs_if_exist:NTF \normalend
10791 { \tex_count:D 39 \scan_stop: }
10792 {
10793 \tex_count:D 17 \scan_stop:
10794 \cs_if_exist:NT \loccount { - \c_one }
10795 }
10796 }
10797 {
10798 \prop_gput:Nnn \g__iow_streams_prop {#1} { Reserved~by~format }
10799 }
10800 〈/package〉

(End definition for \g__iow_streams_prop. This variable is documented on page ??.)

569

22.4 Stream management
\iow_new:N
\iow_new:c

Reserving a new stream is done by defining the name as equal to writing to the terminal:
odd but at least consistent.

10801 \cs_new_protected:Npn \iow_new:N #1 { \cs_new_eq:NN #1 \c_term_iow }
10802 \cs_generate_variant:Nn \iow_new:N { c }

(End definition for \iow_new:N and \iow_new:c. These functions are documented on page 185.)

__iow_new:N As for read streams, copy \newwrite in package mode, making sure that it is not \outer.
10803 〈*package〉
10804 \exp_args:NNf \cs_new_protected_nopar:Npn __iow_new:N
10805 { \exp_args:NNc \exp_after:wN \exp_stop_f: { newwrite } }
10806 〈/package〉

(End definition for __iow_new:N.)

\iow_open:Nn
\iow_open:cn

__iow_open:Nn
__iow_open_stream:Nn

The same idea as for reading, but without the path and without the need to allow for a
conditional version.

10807 \cs_new_protected:Npn \iow_open:Nn #1#2
10808 { __file_name_sanitize:nn {#2} { __iow_open:Nn #1 } }
10809 \cs_generate_variant:Nn \iow_open:Nn { c }
10810 \cs_new_protected:Npn __iow_open:Nn #1#2
10811 {
10812 \iow_close:N #1
10813 \seq_gpop:NNTF \g__iow_streams_seq \l__iow_stream_tl
10814 { __iow_open_stream:Nn #1 {#2} }
10815 〈*initex〉
10816 { __msg_kernel_fatal:nn { kernel } { output-streams-exhausted } }
10817 〈/initex〉
10818 〈*package〉
10819 {
10820 __iow_new:N #1
10821 \tl_set:Nx \l__iow_stream_tl { \int_eval:n {#1} }
10822 __iow_open_stream:Nn #1 {#2}
10823 }
10824 〈/package〉
10825 }
10826 \cs_generate_variant:Nn __iow_open:Nn { No }
10827 \cs_new_protected:Npn __iow_open_stream:Nn #1#2
10828 {
10829 \tex_global:D \tex_chardef:D #1 = \l__iow_stream_tl \scan_stop:
10830 \prop_gput:NVn \g__iow_streams_prop #1 {#2}
10831 \tex_immediate:D \tex_openout:D #1 #2 \scan_stop:
10832 }

(End definition for \iow_open:Nn and \iow_open:cn. These functions are documented on page 186.)

570

\iow_close:N
\iow_close:c

Closing a stream is not quite the reverse of opening one. First, the close operation is
easier than the open one, and second as the stream is actually a number we can use it
directly to show that the slot has been freed up.

10833 \cs_new_protected:Npn \iow_close:N #1
10834 {
10835 \int_compare:nT { \c_minus_one < #1 < \c_sixteen }
10836 {
10837 \tex_immediate:D \tex_closeout:D #1
10838 \prop_gremove:NV \g__iow_streams_prop #1
10839 \seq_if_in:NVF \g__iow_streams_seq #1
10840 { \seq_gpush:NV \g__iow_streams_seq #1 }
10841 \cs_gset_eq:NN #1 \c_term_ior
10842 }
10843 }
10844 \cs_generate_variant:Nn \iow_close:N { c }

(End definition for \iow_close:N and \iow_close:c. These functions are documented on page 186.)

\iow_list_streams:
__iow_list_streams:Nn

Done as for input, but with a copy of the auxiliary so the name is correct.
10845 \cs_new_protected_nopar:Npn \iow_list_streams:
10846 { __iow_list_streams:Nn \g__iow_streams_prop { iow } }
10847 \cs_new_eq:NN __iow_list_streams:Nn __ior_list_streams:Nn

(End definition for \iow_list_streams:. This function is documented on page 186.)

22.4.1 Deferred writing

\iow_shipout_x:Nn
\iow_shipout_x:Nx
\iow_shipout_x:cn
\iow_shipout_x:cx

First the easy part, this is the primitive, which expects its argument to be braced.
10848 \cs_new_protected:Npn \iow_shipout_x:Nn #1#2
10849 { \tex_write:D #1 {#2} }
10850 \cs_generate_variant:Nn \iow_shipout_x:Nn { c, Nx, cx }

(End definition for \iow_shipout_x:Nn and others. These functions are documented on page 188.)

\iow_shipout:Nn
\iow_shipout:Nx
\iow_shipout:cn
\iow_shipout:cx

With ε-TEX available deferred writing without expansion is easy.
10851 \cs_new_protected:Npn \iow_shipout:Nn #1#2
10852 { \tex_write:D #1 { \exp_not:n {#2} } }
10853 \cs_generate_variant:Nn \iow_shipout:Nn { c, Nx, cx }

(End definition for \iow_shipout:Nn and others. These functions are documented on page 188.)

22.4.2 Immediate writing

__iow_with:Nnn
__iow_with_aux:nNnn

If the integer #1 is equal to #2, just leave #3 in the input stream. Otherwise, pass the old
value to an auxiliary, which sets the integer to the new value, runs the code, and restores
the integer.

10854 \cs_new_protected:Npn __iow_with:Nnn #1#2
10855 {
10856 \int_compare:nNnTF {#1} = {#2}
10857 { \use:n }

571

10858 { \exp_args:No __iow_with_aux:nNnn { \int_use:N #1 } #1 {#2} }
10859 }
10860 \cs_new_protected:Npn __iow_with_aux:nNnn #1#2#3#4
10861 {
10862 \int_set:Nn #2 {#3}
10863 #4
10864 \int_set:Nn #2 {#1}
10865 }

(End definition for __iow_with:Nnn and __iow_with_aux:nNnn.)

\iow_now:Nn
\iow_now:Nx
\iow_now:cn
\iow_now:cx

This routine writes the second argument onto the output stream without expansion. If
this stream isn’t open, the output goes to the terminal instead. If the first argument is
no output stream at all, we get an internal error. We don’t use the expansion done by
\write to get the Nx variant, because it differs in subtle ways from x-expansion, namely,
macro parameter characters would not need to be doubled. We set the \newlinechar
to 10 using __iow_with:Nnn to support formats such as plain TEX: otherwise, \iow_-
newline: would not work. We do not do this for \iow_shipout:Nn or \iow_shipout_-
x:Nn, as TEX looks at the value of the \newlinechar at shipout time in those cases.

10866 \cs_new_protected:Npn \iow_now:Nn #1#2
10867 {
10868 __iow_with:Nnn \tex_newlinechar:D { ‘\^^J }
10869 { \tex_immediate:D \tex_write:D #1 { \exp_not:n {#2} } }
10870 }
10871 \cs_generate_variant:Nn \iow_now:Nn { c, Nx, cx }

(End definition for \iow_now:Nn and others. These functions are documented on page 187.)

\iow_log:n
\iow_log:x
\iow_term:n
\iow_term:x

Writing to the log and the terminal directly are relatively easy.
10872 \cs_set_protected_nopar:Npn \iow_log:x { \iow_now:Nx \c_log_iow }
10873 \cs_new_protected_nopar:Npn \iow_log:n { \iow_now:Nn \c_log_iow }
10874 \cs_set_protected_nopar:Npn \iow_term:x { \iow_now:Nx \c_term_iow }
10875 \cs_new_protected_nopar:Npn \iow_term:n { \iow_now:Nn \c_term_iow }

(End definition for \iow_log:n and \iow_log:x. These functions are documented on page 187.)

22.4.3 Special characters for writing

\iow_newline: Global variable holding the character that forces a new line when something is written
to an output stream.

10876 \cs_new_nopar:Npn \iow_newline: { ^^J }

(End definition for \iow_newline:. This function is documented on page 188.)

\iow_char:N Function to write any escaped char to an output stream.
10877 \cs_new_eq:NN \iow_char:N \cs_to_str:N

(End definition for \iow_char:N. This function is documented on page 188.)

572

22.4.4 Hard-wrapping lines to a character count

The code here implements a generic hard-wrapping function. This is used by the mes-
saging system, but is designed such that it is available for other uses.

\l_iow_line_count_int This is the “raw” number of characters in a line which can be written to the terminal.
The standard value is the line length typically used by TEXLive and MikTEX.

10878 \int_new:N \l_iow_line_count_int
10879 \int_set:Nn \l_iow_line_count_int { 78 }

(End definition for \l_iow_line_count_int. This variable is documented on page 189.)

\l__iow_target_count_int This stores the target line count: the full number of characters in a line, minus any part
for a leader at the start of each line.

10880 \int_new:N \l__iow_target_count_int

(End definition for \l__iow_target_count_int.)

\l__iow_current_line_int
\l__iow_current_word_int

\l__iow_current_indentation_int

These store the number of characters in the line and word currently being constructed,
and the current indentation, respectively.

10881 \int_new:N \l__iow_current_line_int
10882 \int_new:N \l__iow_current_word_int
10883 \int_new:N \l__iow_current_indentation_int

(End definition for \l__iow_current_line_int , \l__iow_current_word_int , and \l__iow_current_-
indentation_int.)

\l__iow_current_line_tl
\l__iow_current_word_tl

\l__iow_current_indentation_tl

These hold the current line of text and current word, and a number of spaces for inden-
tation, respectively.

10884 \tl_new:N \l__iow_current_line_tl
10885 \tl_new:N \l__iow_current_word_tl
10886 \tl_new:N \l__iow_current_indentation_tl

(End definition for \l__iow_current_line_tl , \l__iow_current_word_tl , and \l__iow_current_-
indentation_tl.)

\l__iow_wrap_tl Used for the expansion step before detokenizing, and for the output from wrapping text:
fully expanded and with lines which are not overly long.

10887 \tl_new:N \l__iow_wrap_tl

(End definition for \l__iow_wrap_tl.)

\l__iow_newline_tl The token list inserted to produce the new line, with the 〈run-on text〉.
10888 \tl_new:N \l__iow_newline_tl

(End definition for \l__iow_newline_tl.)

\l__iow_line_start_bool Boolean to avoid adding a space at the beginning of forced newlines, and to know when
to add the indentation.

10889 \bool_new:N \l__iow_line_start_bool

573

(End definition for \l__iow_line_start_bool.)

\c_catcode_other_space_tl Create a space with category code 12: an “other” space.
10890 \tl_const:Nx \c_catcode_other_space_tl { \char_generate:nn { ‘\ } { 12 } }

(End definition for \c_catcode_other_space_tl. This function is documented on page 190.)

\c__iow_wrap_marker_tl
\c__iow_wrap_end_marker_tl

\c__iow_wrap_newline_marker_tl
\c__iow_wrap_indent_marker_tl

\c__iow_wrap_unindent_marker_tl

Every special action of the wrapping code is preceded by the same recognizable string,
\c__iow_wrap_marker_tl. Upon seeing that “word”, the wrapping code reads one space-
delimited argument to know what operation to perform. The setting of \escapechar here
is not very important, but makes \c__iow_wrap_marker_tl look nicer.

10891 \group_begin:
10892 \int_set_eq:NN \tex_escapechar:D \c_minus_one
10893 \tl_const:Nx \c__iow_wrap_marker_tl
10894 { \tl_to_str:n { \^^I \^^O \^^W \^^_ \^^W \^^R \^^A \^^P } }
10895 \group_end:
10896 \tl_map_inline:nn
10897 { { end } { newline } { indent } { unindent } }
10898 {
10899 \tl_const:cx { c__iow_wrap_ #1 _marker_tl }
10900 {
10901 \c_catcode_other_space_tl
10902 \c__iow_wrap_marker_tl
10903 \c_catcode_other_space_tl
10904 #1
10905 \c_catcode_other_space_tl
10906 }
10907 }

(End definition for \c__iow_wrap_marker_tl.)

\iow_indent:n
__iow_indent:n

__iow_indent_error:n

We give a (protected) error definition to \iow_indent:n when outside messages. Within
wrapped message, it places the instruction for increasing the indentation before its argu-
ment, and the instruction for unindenting afterwards. Note that there will be no forced
line-break, so the indentation only changes when the next line is started.

10908 \cs_new:Npx __iow_indent:n #1
10909 {
10910 \c__iow_wrap_indent_marker_tl
10911 #1
10912 \c__iow_wrap_unindent_marker_tl
10913 }
10914 \cs_new:Npn __iow_indent_error:n #1
10915 {
10916 __msg_kernel_expandable_error:nn { kernel } { indent-outside-wrapping-code }
10917 #1
10918 }
10919 \cs_new_protected_nopar:Npn \iow_indent:n { __iow_indent_error:n }

(End definition for \iow_indent:n. This function is documented on page 189.)

574

\iow_wrap:nnnN
__iow_wrap_set:Nx

The main wrapping function works as follows. First give \\, \␣ and other formatting com-
mands the correct definition for messages, before fully-expanding the input. In package
mode, the expansion uses LATEX2ε’s \protect mechanism. Afterwards, set the newline
marker (two assignments to fully expand, then convert to a string) and its length, and
initialize some registers. There is then a loop over each word in the input, which will
do the actual wrapping. After the loop, the resulting text is passed on to the function
which has been given as a post-processor. The argument #4 is available for additional
set up steps for the output. The definition of \\ and \␣ use an “other” space rather than
a normal space, because the latter might be absorbed by TEX to end a number or other
f-type expansions. The \tl_to_str:N step converts the “other” space back to a normal
space.

10920 \cs_new_protected:Npn \iow_wrap:nnnN #1#2#3#4
10921 {
10922 \group_begin:
10923 \int_set_eq:NN \tex_escapechar:D \c_minus_one
10924 \cs_set_nopar:Npx \{ { \token_to_str:N \{ }
10925 \cs_set_nopar:Npx \# { \token_to_str:N \# }
10926 \cs_set_nopar:Npx \} { \token_to_str:N \} }
10927 \cs_set_nopar:Npx \% { \token_to_str:N \% }
10928 \cs_set_nopar:Npx \~ { \token_to_str:N \~ }
10929 \int_set:Nn \tex_escapechar:D { 92 }
10930 \cs_set_eq:NN \\ \c__iow_wrap_newline_marker_tl
10931 \cs_set_eq:NN \ \c_catcode_other_space_tl
10932 \cs_set_eq:NN \iow_indent:n __iow_indent:n
10933 #3
10934 〈*initex〉
10935 \tl_set:Nx \l__iow_wrap_tl {#1}
10936 〈/initex〉
10937 〈*package〉
10938 __iow_wrap_set:Nx \l__iow_wrap_tl {#1}
10939 〈/package〉
To warn users that \iow_indent:n only works in the first argument of \iow_wrap:nnnN
reset \iow_indent:n to its error definition. Then store a newline character and the run-
on text as a string in \l__iow_newline_tl, and set some variables. The first line’s target
count is equal to the length of the whole line. The value \l__iow_target_count_int is
altered later on by __iow_wrap_set_target:.

10940 \cs_set_eq:NN \iow_indent:n __iow_indent_error:n
10941 \tl_set:Nx \l__iow_newline_tl { \iow_newline: #2 }
10942 \tl_set:Nx \l__iow_newline_tl { \tl_to_str:N \l__iow_newline_tl }
10943 \int_set_eq:NN \l__iow_target_count_int \l_iow_line_count_int
10944 \tl_clear:N \l__iow_current_indentation_tl
10945 \int_zero:N \l__iow_current_line_int
10946 \tl_set:Nn \l__iow_current_line_tl { \use_none:n }
10947 \bool_set_true:N \l__iow_line_start_bool

After some setup above (in particular the odd setting of the current line to \use_none:n),
a loop goes through space-delimited words in the message, recognizing special markers.

575

To make sure that the first line behaves identically to others, start with a newline marker:
the \use_none:n above avoids actually getting a new line in the output.

10948 \use:x
10949 {
10950 \exp_not:n { \tl_clear:N \l__iow_wrap_tl }
10951 __iow_wrap_loop:w
10952 \tl_to_str:N \c__iow_wrap_newline_marker_tl
10953 \tl_to_str:N \l__iow_wrap_tl
10954 \tl_to_str:N \c__iow_wrap_end_marker_tl
10955 \c_space_tl \c_space_tl
10956 \exp_not:N \q_stop
10957 }
10958 \exp_args:NNo \group_end:
10959 #4 \l__iow_wrap_tl
10960 }

As using the generic loader will mean that \protected@edef is not available, it’s not
placed directly in the wrap function but is set up as an auxiliary. In the generic loader
this can then be redefined.

10961 〈*package〉
10962 \cs_new_eq:NN __iow_wrap_set:Nx \protected@edef
10963 〈/package〉

(End definition for \iow_wrap:nnnN. This function is documented on page 189.)

__iow_wrap_set_target: This is called at the beginning of every line (both those forced by \\ and those due to
line-breaking). The initial call does nothing except redefine __iow_wrap_set_target:
itself (within the group in which \iow_wrap:nnnN works). The next call (at the beginning
of the second line) disables any later call and sets the \l__iow_target_count_int to the
correct value, namely the \l_iow_line_count_int shortened by the length of the run-on
text (the shift by 1 is due to the presence of \iow_newline: in \l__iow_newline_tl).
This is a bit of a hack to measure the string length of the run on text without the l3str
module (which is still experimental). This should be replaced once the string module is
finalised with something a little cleaner.

10964 \cs_new_protected_nopar:Npn __iow_wrap_set_target:
10965 {
10966 \cs_set_protected_nopar:Npn __iow_wrap_set_target:
10967 {
10968 \cs_set_protected_nopar:Npn __iow_wrap_set_target: { }
10969 \tl_replace_all:Nnn \l__iow_newline_tl { ~ } { \c_space_tl }
10970 \int_set:Nn \l__iow_target_count_int
10971 { \l_iow_line_count_int - \tl_count:N \l__iow_newline_tl + \c_one }
10972 }
10973 }

(End definition for __iow_wrap_set_target:.)

__iow_wrap_loop:w The loop grabs one word in the input, and checks whether it is the special marker, or a
normal word.

576

10974 \cs_new_protected:Npn __iow_wrap_loop:w #1 ~ %
10975 {
10976 \tl_set:Nn \l__iow_current_word_tl {#1}
10977 \tl_if_eq:NNTF \l__iow_current_word_tl \c__iow_wrap_marker_tl
10978 { __iow_wrap_special:w }
10979 { __iow_wrap_word: }
10980 }

(End definition for __iow_wrap_loop:w.)

__iow_wrap_word:
__iow_wrap_word_fits:

__iow_wrap_word_newline:

For a normal word, update the line count, then test if the current word would fit in
the current line, and call the appropriate function. If the word fits in the current line,
add it to the line, preceded by a space unless it is the first word of the line. Otherwise,
the current line is added to the result, with the run-on text. The current word (and its
character count) are then put in the new line.

10981 \cs_new_protected_nopar:Npn __iow_wrap_word:
10982 {
10983 \int_set:Nn \l__iow_current_word_int
10984 { \exp_args:No \str_count_ignore_spaces:n \l__iow_current_word_tl }
10985 \int_add:Nn \l__iow_current_line_int { \l__iow_current_word_int }
10986 \int_compare:nNnTF \l__iow_current_line_int < \l__iow_target_count_int
10987 { __iow_wrap_word_fits: }
10988 { __iow_wrap_word_newline: }
10989 __iow_wrap_loop:w
10990 }
10991 \cs_new_protected_nopar:Npn __iow_wrap_word_fits:
10992 {
10993 \bool_if:NTF \l__iow_line_start_bool
10994 {
10995 \bool_set_false:N \l__iow_line_start_bool
10996 \tl_put_right:Nx \l__iow_current_line_tl
10997 { \l__iow_current_indentation_tl \l__iow_current_word_tl }
10998 \int_add:Nn \l__iow_current_line_int
10999 { \l__iow_current_indentation_int }
11000 }
11001 {
11002 \tl_put_right:Nx \l__iow_current_line_tl
11003 { ~ \l__iow_current_word_tl }
11004 \int_incr:N \l__iow_current_line_int
11005 }
11006 }
11007 \cs_new_protected_nopar:Npn __iow_wrap_word_newline:
11008 {
11009 __iow_wrap_set_target:
11010 \tl_put_right:Nx \l__iow_wrap_tl
11011 { \l__iow_current_line_tl \l__iow_newline_tl }
11012 \int_set:Nn \l__iow_current_line_int
11013 {
11014 \l__iow_current_word_int
11015 + \l__iow_current_indentation_int

577

11016 }
11017 \tl_set:Nx \l__iow_current_line_tl
11018 { \l__iow_current_indentation_tl \l__iow_current_word_tl }
11019 }

(End definition for __iow_wrap_word:.)

__iow_wrap_special:w
__iow_wrap_newline:w
__iow_wrap_indent:w

__iow_wrap_unindent:w
__iow_wrap_end:w

When the “special” marker is encountered, read what operation to perform, as a space-
delimited argument, perform it, and remember to loop. In fact, to avoid spurious spaces
when two special actions follow each other, we look ahead for another copy of the marker.
Forced newlines are almost identical to those caused by overflow, except that here the
word is empty. To indent more, add four spaces to the start of the indentation token list.
To reduce indentation, rebuild the indentation token list using \prg_replicate:nn. At
the end, we simply save the last line (without the run-on text), and prevent the loop.

11020 \cs_new_protected:Npn __iow_wrap_special:w #1 ~ #2 ~ #3 ~ %
11021 {
11022 \use:c { __iow_wrap_#1: }
11023 \str_if_eq_x:nnTF { #2~#3 } { ~ \c__iow_wrap_marker_tl }
11024 { __iow_wrap_special:w }
11025 { __iow_wrap_loop:w #2 ~ #3 ~ }
11026 }
11027 \cs_new_protected_nopar:Npn __iow_wrap_newline:
11028 {
11029 __iow_wrap_set_target:
11030 \tl_put_right:Nx \l__iow_wrap_tl
11031 { \l__iow_current_line_tl \l__iow_newline_tl }
11032 \int_zero:N \l__iow_current_line_int
11033 \tl_clear:N \l__iow_current_line_tl
11034 \bool_set_true:N \l__iow_line_start_bool
11035 }
11036 \cs_new_protected_nopar:Npx __iow_wrap_indent:
11037 {
11038 \int_add:Nn \l__iow_current_indentation_int \c_four
11039 \tl_put_right:Nx \exp_not:N \l__iow_current_indentation_tl
11040 { \c_space_tl \c_space_tl \c_space_tl \c_space_tl }
11041 }
11042 \cs_new_protected_nopar:Npn __iow_wrap_unindent:
11043 {
11044 \int_sub:Nn \l__iow_current_indentation_int \c_four
11045 \tl_set:Nx \l__iow_current_indentation_tl
11046 { \prg_replicate:nn \l__iow_current_indentation_int { ~ } }
11047 }
11048 \cs_new_protected_nopar:Npn __iow_wrap_end:
11049 {
11050 \tl_put_right:Nx \l__iow_wrap_tl
11051 { \l__iow_current_line_tl }
11052 \use_none_delimit_by_q_stop:w
11053 }

(End definition for __iow_wrap_special:w.)

578

22.5 Messages
11054 __msg_kernel_new:nnnn { kernel } { file-not-found }
11055 { File~’#1’~not~found. }
11056 {
11057 The~requested~file~could~not~be~found~in~the~current~directory,~
11058 in~the~TeX~search~path~or~in~the~LaTeX~search~path.
11059 }
11060 __msg_kernel_new:nnnn { kernel } { input-streams-exhausted }
11061 { Input~streams~exhausted }
11062 {
11063 TeX~can~only~open~up~to~16~input~streams~at~one~time.\\
11064 All~16~are~currently~in~use,~and~something~wanted~to~open~
11065 another~one.
11066 }
11067 __msg_kernel_new:nnnn { kernel } { output-streams-exhausted }
11068 { Output~streams~exhausted }
11069 {
11070 TeX~can~only~open~up~to~16~output~streams~at~one~time.\\
11071 All~16~are~currently~in~use,~and~something~wanted~to~open~
11072 another~one.
11073 }
11074 __msg_kernel_new:nnnn { kernel } { unbalanced-quote-in-filename }
11075 { Unbalanced~quotes~in~file~name~’#1’. }
11076 {
11077 File~names~must~contain~balanced~numbers~of~quotes~(").
11078 }
11079 __msg_kernel_new:nnn { kernel } { indent-outside-wrapping-code }
11080 { Only~\iow_wrap:nnnN~(arg~1)~allows~\iow_indent:n }

11081 〈/initex | package〉

23 l3fp implementation
Nothing to see here: everything is in the subfiles!

24 l3fp-aux implementation
11082 〈*initex | package〉

11083 〈@@=fp〉

24.1 Internal representation
Internally, a floating point number 〈X〉 is a token list containing

\s__fp __fp_chk:w 〈case〉 〈sign〉 〈body〉 ;

Let us explain each piece separately.
Internal floating point numbers will be used in expressions, and in this context will

be subject to f-expansion. They must leave a recognizable mark after f-expansion, to

579

prevent the floating point number from being re-parsed. Thus, \s__fp is simply another
name for \relax.

Since floating point numbers are always accessed by the various operations using
f-expansion, we can safely let them be protected: x-expansion will then leave them un-
touched. However, when used directly without an accessor function, floating points should
produce an error. \s__fp will do nothing, and __fp_chk:w produces an error.

The (decimal part of the) IEEE-754-2008 standard requires the format to be able
to represent special floating point numbers besides the usual positive and negative cases.
The various possibilities will be distinguished by their 〈case〉, which is a single digit:8

0 zeros: +0 and -0,

1 “normal” numbers (positive and negative),

2 infinities: +inf and -inf,

3 quiet and signalling nan.

The 〈sign〉 is 0 (positive) or 2 (negative), except in the case of nan, which have 〈sign〉 = 1.
This ensures that changing the 〈sign〉 digit to 2−〈sign〉 is exactly equivalent to changing
the sign of the number.

Special floating point numbers have the form

\s__fp __fp_chk:w 〈case〉 〈sign〉 \s__fp_... ;

where \s__fp_... is a scan mark carrying information about how the number was formed
(useful for debugging).

Normal floating point numbers (〈case〉 = 1) have the form

\s__fp __fp_chk:w 1 〈sign〉 {〈exponent〉} {〈X1〉} {〈X2〉} {〈X3〉} {〈X4〉} ;

Here, the 〈exponent〉 is an integer, at most \c__fp_max_exponent_int = 10000 in ab-
solute value. The body consists in four blocks of exactly 4 digits, 0000 ≤ 〈Xi〉 ≤ 9999,
such that

〈X〉 = (−1)〈sign〉10−〈exponent〉
4∑
i=1
〈Xi〉10−4i

and such that the 〈exponent〉 is minimal. This implies 1000 ≤ 〈X1〉 ≤ 9999.

24.2 Internal storage of floating points numbers
A floating point number 〈X〉 is stored as

\s__fp __fp_chk:w 〈case〉 〈sign〉 〈body〉 ;
8Bruno: I need to implement subnormal numbers. Also, quiet and signalling nan must be better

distinguished.

580

Table 1: Internal representation of floating point numbers.
Representation Meaning

0 0 \s__fp_... ; Positive zero.
0 2 \s__fp_... ; Negative zero.
1 0 {〈exponent〉} {〈X1〉} {〈X2〉} {〈X3〉} {〈X4〉} ; Positive floating point.
1 2 {〈exponent〉} {〈X1〉} {〈X2〉} {〈X3〉} {〈X4〉} ; Negative floating point.
2 0 \s__fp_... ; Positive infinity.
2 2 \s__fp_... ; Negative infinity.
3 1 \s__fp_... ; Quiet nan.
3 1 \s__fp_... ; Signalling nan.

Here, 〈case〉 is 0 for ±0, 1 for normal numbers, 2 for ±∞, and 3 for nan, and 〈sign〉 is
0 for positive numbers, 1 for nans, and 2 for negative numbers. The 〈body〉 of normal
numbers is {〈exponent〉} {〈X1〉} {〈X2〉} {〈X3〉} {〈X4〉}, with

〈X〉 = (−1)〈sign〉10−〈exponent〉
∑
i

〈Xi〉10−4i.

Calculations are done in base 10000, i.e. one myriad. The 〈exponent〉 lies between
±\c__fp_max_exponent_int = ±10000 inclusive.

Additionally, positive and negative floating point numbers may only be stored with
1000 ≤ 〈X1〉 < 10000. This requirement is necessary in order to preserve accuracy and
speed.

24.3 Using arguments and semicolons
__fp_use_none_stop_f:n This function removes an argument (typically a digit) and replaces it by \exp_stop_f:,

a marker which stops f-type expansion.
11084 \cs_new:Npn __fp_use_none_stop_f:n #1 { \exp_stop_f: }

(End definition for __fp_use_none_stop_f:n.)

__fp_use_s:n
__fp_use_s:nn

Those functions place a semicolon after one or two arguments (typically digits).
11085 \cs_new:Npn __fp_use_s:n #1 { #1; }
11086 \cs_new:Npn __fp_use_s:nn #1#2 { #1#2; }

(End definition for __fp_use_s:n and __fp_use_s:nn.)

__fp_use_none_until_s:w
__fp_use_i_until_s:nw

__fp_use_ii_until_s:nnw

Those functions select specific arguments among a set of arguments delimited by a semi-
colon.

11087 \cs_new:Npn __fp_use_none_until_s:w #1; { }
11088 \cs_new:Npn __fp_use_i_until_s:nw #1#2; {#1}
11089 \cs_new:Npn __fp_use_ii_until_s:nnw #1#2#3; {#2}

(End definition for __fp_use_none_until_s:w , __fp_use_i_until_s:nw , and __fp_use_ii_until_-
s:nnw.)

581

__fp_reverse_args:Nww Many internal functions take arguments delimited by semicolons, and it is occasionally
useful to swap two such arguments.

11090 \cs_new:Npn __fp_reverse_args:Nww #1 #2; #3; { #1 #3; #2; }

(End definition for __fp_reverse_args:Nww.)

__fp_rrot:www Rotate three arguments delimited by semicolons. This is the inverse (or the square) of
the Forth primitive ROT.

11091 \cs_new:Npn __fp_rrot:www #1; #2; #3; { #2; #3; #1; }

(End definition for __fp_rrot:www.)

__fp_use_i:ww
__fp_use_i:www

Many internal functions take arguments delimited by semicolons, and it is occasionally
useful to remove one or two such arguments.

11092 \cs_new:Npn __fp_use_i:ww #1; #2; { #1; }
11093 \cs_new:Npn __fp_use_i:www #1; #2; #3; { #1; }

(End definition for __fp_use_i:ww and __fp_use_i:www.)

24.4 Constants, and structure of floating points
\s__fp

__fp_chk:w
Floating points numbers all start with \s__fp __fp_chk:w, where \s__fp is equal to
the TEX primitive \relax, and __fp_chk:w is protected. The rest of the floating point
number is made of characters (or \relax). This ensures that nothing expands under
f-expansion, nor under x-expansion. However, when typeset, \s__fp does nothing, and
__fp_chk:w is expanded. We define __fp_chk:w to produce an error.

11094 __scan_new:N \s__fp
11095 \cs_new_protected:Npn __fp_chk:w #1 ;
11096 {
11097 __msg_kernel_error:nnx { kernel } { misused-fp }
11098 { \fp_to_tl:n { \s__fp __fp_chk:w #1 ; } }
11099 }

(End definition for \s__fp and __fp_chk:w.)

\s__fp_mark
\s__fp_stop

Aliases of \tex_relax:D, used to terminate expressions.
11100 __scan_new:N \s__fp_mark
11101 __scan_new:N \s__fp_stop

(End definition for \s__fp_mark and \s__fp_stop.)

\s__fp_invalid
\s__fp_underflow
\s__fp_overflow
\s__fp_division

\s__fp_exact

A couple of scan marks used to indicate where special floating point numbers come from.
11102 __scan_new:N \s__fp_invalid
11103 __scan_new:N \s__fp_underflow
11104 __scan_new:N \s__fp_overflow
11105 __scan_new:N \s__fp_division
11106 __scan_new:N \s__fp_exact

(End definition for \s__fp_invalid and others.)

582

\c_zero_fp
\c_minus_zero_fp

\c_inf_fp
\c_minus_inf_fp

\c_nan_fp

The special floating points. All of them have the form

\s__fp __fp_chk:w 〈case〉 〈sign〉 \s__fp_... ;

where the dots in \s__fp_... are one of invalid, underflow, overflow, division,
exact, describing how the floating point was created. We define the floating points here
as “exact”.

11107 \tl_const:Nn \c_zero_fp { \s__fp __fp_chk:w 0 0 \s__fp_exact ; }
11108 \tl_const:Nn \c_minus_zero_fp { \s__fp __fp_chk:w 0 2 \s__fp_exact ; }
11109 \tl_const:Nn \c_inf_fp { \s__fp __fp_chk:w 2 0 \s__fp_exact ; }
11110 \tl_const:Nn \c_minus_inf_fp { \s__fp __fp_chk:w 2 2 \s__fp_exact ; }
11111 \tl_const:Nn \c_nan_fp { \s__fp __fp_chk:w 3 1 \s__fp_exact ; }

(End definition for \c_zero_fp and others. These variables are documented on page 199.)

\c__fp_max_exponent_int Normal floating point numbers have an exponent at most max_exponent in absolute
value. Larger numbers are rounded to ±∞. Smaller numbers are subnormal (not im-
plemented yet), and digits beyond 10−max_exponent are rounded away, hence the true min-
imum exponent is −max_exponent − 16; beyond this, numbers are rounded to zero.
Why this choice of limits? When computing (a · 10n)(b · 10p), we need to evaluate
log(a · 10n) = log(a) + n log(10) as a fixed point number, which we manipulate as blocks
of 4 digits. Multiplying such a fixed point number by n < 10000 is much cheaper than
larger n, because we can multiply n with each block safely.

11112 \int_const:Nn \c__fp_max_exponent_int { 10000 }

(End definition for \c__fp_max_exponent_int.)

__fp_zero_fp:N
__fp_inf_fp:N

In case of overflow or underflow, we have to output a zero or infinity with a given sign.
11113 \cs_new:Npn __fp_zero_fp:N #1
11114 { \s__fp __fp_chk:w 0 #1 \s__fp_underflow ; }
11115 \cs_new:Npn __fp_inf_fp:N #1
11116 { \s__fp __fp_chk:w 2 #1 \s__fp_overflow ; }

(End definition for __fp_zero_fp:N and __fp_inf_fp:N.)

__fp_max_fp:N
__fp_min_fp:N

In some cases, we need to output the smallest or biggest positive or negative finite
numbers.

11117 \cs_new:Npn __fp_min_fp:N #1
11118 {
11119 \s__fp __fp_chk:w 1 #1
11120 { \int_eval:n { - \c__fp_max_exponent_int } }
11121 {1000} {0000} {0000} {0000} ;
11122 }
11123 \cs_new:Npn __fp_max_fp:N #1
11124 {
11125 \s__fp __fp_chk:w 1 #1
11126 { \int_use:N \c__fp_max_exponent_int }
11127 {9999} {9999} {9999} {9999} ;
11128 }

583

(End definition for __fp_max_fp:N and __fp_min_fp:N.)

__fp_exponent:w For normal numbers, the function expands to the exponent, otherwise to 0.
11129 \cs_new:Npn __fp_exponent:w \s__fp __fp_chk:w #1
11130 {
11131 \if_meaning:w 1 #1
11132 \exp_after:wN __fp_use_ii_until_s:nnw
11133 \else:
11134 \exp_after:wN __fp_use_i_until_s:nw
11135 \exp_after:wN 0
11136 \fi:
11137 }

(End definition for __fp_exponent:w.)

__fp_neg_sign:N When appearing in an integer expression or after __int_value:w, this expands to the
sign opposite to #1, namely 0 (positive) is turned to 2 (negative), 1 (nan) to 1, and 2 to
0.

11138 \cs_new:Npn __fp_neg_sign:N #1
11139 { __int_eval:w \c_two - #1 __int_eval_end: }

(End definition for __fp_neg_sign:N.)

24.5 Overflow, underflow, and exact zero
__fp_sanitize:Nw
__fp_sanitize:wN

__fp_sanitize_zero:w

Expects the sign and the exponent in some order, then the significand (which we don’t
touch). Outputs the corresponding floating point number, possibly underflowed to ±0
or overflowed to ±∞. The functions __fp_underflow:w and __fp_overflow:w are
defined in l3fp-traps.

11140 \cs_new:Npn __fp_sanitize:Nw #1 #2;
11141 {
11142 \if_case:w
11143 \if_int_compare:w #2 > \c__fp_max_exponent_int \c_one \else:
11144 \if_int_compare:w #2 < - \c__fp_max_exponent_int \c_two \else:
11145 \if_meaning:w 1 #1 \c_three \else: \c_zero \fi: \fi: \fi:
11146 \or: \exp_after:wN __fp_overflow:w
11147 \or: \exp_after:wN __fp_underflow:w
11148 \or: \exp_after:wN __fp_sanitize_zero:w
11149 \fi:
11150 \s__fp __fp_chk:w 1 #1 {#2}
11151 }
11152 \cs_new:Npn __fp_sanitize:wN #1; #2 { __fp_sanitize:Nw #2 #1; }
11153 \cs_new:Npn __fp_sanitize_zero:w \s__fp __fp_chk:w #1 #2 #3;
11154 { \c_zero_fp }

(End definition for __fp_sanitize:Nw and __fp_sanitize:wN.)

584

24.6 Expanding after a floating point number
__fp_exp_after_o:w

__fp_exp_after_o:nw
__fp_exp_after_f:nw

Places 〈tokens〉 (empty in the case of __fp_exp_after_o:w) between the 〈floating point〉
and the 〈more tokens〉, then hits those tokens with either o-expansion (one \exp_-
after:wN) or f-expansion, and leaves the floating point number unchanged.

We first distinguish normal floating points, which have a significand, from the much
simpler special floating points.

11155 \cs_new:Npn __fp_exp_after_o:w \s__fp __fp_chk:w #1
11156 {
11157 \if_meaning:w 1 #1
11158 \exp_after:wN __fp_exp_after_normal:nNNw
11159 \else:
11160 \exp_after:wN __fp_exp_after_special:nNNw
11161 \fi:
11162 { }
11163 #1
11164 }
11165 \cs_new:Npn __fp_exp_after_o:nw #1 \s__fp __fp_chk:w #2
11166 {
11167 \if_meaning:w 1 #2
11168 \exp_after:wN __fp_exp_after_normal:nNNw
11169 \else:
11170 \exp_after:wN __fp_exp_after_special:nNNw
11171 \fi:
11172 { #1 }
11173 #2
11174 }
11175 \cs_new:Npn __fp_exp_after_f:nw #1 \s__fp __fp_chk:w #2
11176 {
11177 \if_meaning:w 1 #2
11178 \exp_after:wN __fp_exp_after_normal:nNNw
11179 \else:
11180 \exp_after:wN __fp_exp_after_special:nNNw
11181 \fi:
11182 { \exp:w \exp_end_continue_f:w #1 }
11183 #2
11184 }

(End definition for __fp_exp_after_o:w.)

__fp_exp_after_special:nNNw Special floating point numbers are easy to jump over since they contain few tokens.
11185 \cs_new:Npn __fp_exp_after_special:nNNw #1#2#3#4;
11186 {
11187 \exp_after:wN \s__fp
11188 \exp_after:wN __fp_chk:w
11189 \exp_after:wN #2
11190 \exp_after:wN #3
11191 \exp_after:wN #4
11192 \exp_after:wN ;
11193 #1

585

11194 }

(End definition for __fp_exp_after_special:nNNw.)

__fp_exp_after_normal:nNNw For normal floating point numbers, life is slightly harder, since we have many tokens to
jump over. Here it would be slightly better if the digits were not braced but instead were
delimited arguments (for instance delimited by ,). That may be changed some day.

11195 \cs_new:Npn __fp_exp_after_normal:nNNw #1 1 #2 #3 #4#5#6#7;
11196 {
11197 \exp_after:wN __fp_exp_after_normal:Nwwwww
11198 \exp_after:wN #2
11199 __int_value:w #3 \exp_after:wN ;
11200 __int_value:w 1 #4 \exp_after:wN ;
11201 __int_value:w 1 #5 \exp_after:wN ;
11202 __int_value:w 1 #6 \exp_after:wN ;
11203 __int_value:w 1 #7 \exp_after:wN ; #1
11204 }
11205 \cs_new:Npn __fp_exp_after_normal:Nwwwww
11206 #1 #2; 1 #3 ; 1 #4 ; 1 #5 ; 1 #6 ;
11207 { \s__fp __fp_chk:w 1 #1 {#2} {#3} {#4} {#5} {#6} ; }

(End definition for __fp_exp_after_normal:nNNw.)

__fp_exp_after_array_f:w
__fp_exp_after_stop_f:nw 11208 \cs_new:Npn __fp_exp_after_array_f:w #1

11209 {
11210 \cs:w __fp_exp_after __fp_type_from_scan:N #1 _f:nw \cs_end:
11211 { __fp_exp_after_array_f:w }
11212 #1
11213 }
11214 \cs_new_eq:NN __fp_exp_after_stop_f:nw \use_none:nn

(End definition for __fp_exp_after_array_f:w.)

24.7 Packing digits
When a positive integer #1 is known to be less than 108, the following trick will split it
into two blocks of 4 digits, padding with zeros on the left.

\cs_new:Npn \pack:NNNNNw #1 #2#3#4#5 #6; { {#2#3#4#5} {#6} }
\exp_after:wN \pack:NNNNNw
__int_value:w __int_eval:w 1 0000 0000 + #1 ;

The idea is that adding 108 to the number ensures that it has exactly 9 digits, and can
then easily find which digits correspond to what position in the number. Of course, this
can be modified for any number of digits less or equal to 9 (we are limited by TEX’s
integers). This method is very heavily relied upon in l3fp-basics.

More specifically, the auxiliary inserts + #1#2#3#4#5 ; {#6}, which allows us to
compute several blocks of 4 digits in a nested manner, performing carries on the fly. Say
we want to compute 1 2345× 6677 8899. With simplified names, we would do

586

\exp_after:wN \post_processing:w
__int_value:w __int_eval:w - 5 0000
\exp_after:wN \pack:NNNNNw
__int_value:w __int_eval:w 4 9995 0000
+ 12345 * 6677
\exp_after:wN \pack:NNNNNw
__int_value:w __int_eval:w 5 0000 0000
+ 12345 * 8899 ;

The \exp_after:wN triggers __int_value:w __int_eval:w, which starts a first com-
putation, whose initial value is−5 0000 (the “leading shift”). In that computation appears
an \exp_after:wN, which triggers the nested computation __int_value:w __int_eval:w
with starting value 4 9995 0000 (the “middle shift”). That, in turn, expands \exp_-
after:wN which triggers the third computation. The third computation’s value is
5 0000 0000 + 12345 × 8899, which has 9 digits. Adding 5 · 108 to the product allowed
us to know how many digits to expect as long as the numbers to multiply are not too
big; it will also work to some extent with negative results. The pack function puts the
last 4 of those 9 digits into a brace group, moves the semi-colon delimiter, and inserts a
+, which combines the carry with the previous computation. The shifts nicely combine
into 5 0000 0000/104 + 4 9995 0000 = 5 0000 0000. As long as the operands are in some
range, the result of this second computation will have 9 digits. The corresponding pack
function, expanded after the result is computed, braces the last 4 digits, and leaves + 〈5
digits〉 for the initial computation. The “leading shift” cancels the combination of the
other shifts, and the \post_processing:w takes care of packing the last few digits.

Admittedly, this is quite intricate. It is probably the key in making l3fp as fast as
other pure TEX floating point units despite its increased precision. In fact, this is used so
much that we provide different sets of packing functions and shifts, depending on ranges
of input.

__fp_pack:NNNNNw
\c__fp_trailing_shift_int
\c__fp_middle_shift_int
\c__fp_leading_shift_int

This set of shifts allows for computations involving results in the range [−4·108, 5·108−1].
Shifted values all have exactly 9 digits.

11215 \int_const:Nn \c__fp_leading_shift_int { - 5 0000 }
11216 \int_const:Nn \c__fp_middle_shift_int { 5 0000 * 9999 }
11217 \int_const:Nn \c__fp_trailing_shift_int { 5 0000 * 10000 }
11218 \cs_new:Npn __fp_pack:NNNNNw #1 #2#3#4#5 #6; { + #1#2#3#4#5 ; {#6} }

(End definition for __fp_pack:NNNNNw.)

__fp_pack_big:NNNNNNw
\c__fp_big_trailing_shift_int

\c__fp_big_middle_shift_int
\c__fp_big_leading_shift_int

This set of shifts allows for computations involving results in the range [−5·108, 6·108−1]
(actually a bit more). Shifted values all have exactly 10 digits. Note that the upper
bound is due to TEX’s limit of 231 − 1 on integers. The shifts are chosen to be roughly
the mid-point of 109 and 231, the two bounds on 10-digit integers in TEX.

11219 \int_const:Nn \c__fp_big_leading_shift_int { - 15 2374 }
11220 \int_const:Nn \c__fp_big_middle_shift_int { 15 2374 * 9999 }
11221 \int_const:Nn \c__fp_big_trailing_shift_int { 15 2374 * 10000 }
11222 \cs_new:Npn __fp_pack_big:NNNNNNw #1#2 #3#4#5#6 #7;
11223 { + #1#2#3#4#5#6 ; {#7} }

587

(End definition for __fp_pack_big:NNNNNNw.)

__fp_pack_Bigg:NNNNNNw
\c__fp_Bigg_trailing_shift_int

\c__fp_Bigg_middle_shift_int
\c__fp_Bigg_leading_shift_int

This set of shifts allows for computations with results in the range [−1 · 109, 147483647];
the end-point is 231 − 1− 2 · 109 ' 1.47 · 108. Shifted values all have exactly 10 digits.

11224 \int_const:Nn \c__fp_Bigg_leading_shift_int { - 20 0000 }
11225 \int_const:Nn \c__fp_Bigg_middle_shift_int { 20 0000 * 9999 }
11226 \int_const:Nn \c__fp_Bigg_trailing_shift_int { 20 0000 * 10000 }
11227 \cs_new:Npn __fp_pack_Bigg:NNNNNNw #1#2 #3#4#5#6 #7;
11228 { + #1#2#3#4#5#6 ; {#7} }

(End definition for __fp_pack_Bigg:NNNNNNw.)

__fp_pack_twice_four:wNNNNNNNN Grabs two sets of 4 digits and places them before the semi-colon delimiter. Putting
several copies of this function before a semicolon will pack more digits since each will
take the digits packed by the others in its first argument.

11229 \cs_new:Npn __fp_pack_twice_four:wNNNNNNNN #1; #2#3#4#5 #6#7#8#9
11230 { #1 {#2#3#4#5} {#6#7#8#9} ; }

(End definition for __fp_pack_twice_four:wNNNNNNNN.)

__fp_pack_eight:wNNNNNNNN Grabs one set of 8 digits and places them before the semi-colon delimiter as a single
group. Putting several copies of this function before a semicolon will pack more digits
since each will take the digits packed by the others in its first argument.

11231 \cs_new:Npn __fp_pack_eight:wNNNNNNNN #1; #2#3#4#5 #6#7#8#9
11232 { #1 {#2#3#4#5#6#7#8#9} ; }

(End definition for __fp_pack_eight:wNNNNNNNN.)

24.8 Decimate (dividing by a power of 10)
__fp_decimate:nNnnnn Each 〈Xi〉 consists in 4 digits exactly, and 1000 ≤ 〈X1〉 < 9999. The first argument

determines by how much we shift the digits. 〈f1〉 is called as follows: where 0 ≤ 〈X’i〉 <
108 − 1 are 8 digit numbers, forming the truncation of our number. In other words,(4∑

i=1
〈Xi〉 · 10−4i · 10−〈shift〉 − 〈X’1〉 · 10−8 + 〈X’2〉 · 10−16

)
∈ [0, 10−16).

To round properly later, we need to remember some information about the difference.
The 〈rounding〉 digit is 0 if and only if the difference is exactly 0, and 5 if and only if the
difference is exactly 0.5 · 10−16. Otherwise, it is the (non-0, non-5) digit closest to 1017

times the difference. In particular, if the shift is 17 or more, all the digits are dropped,
〈rounding〉 is 1 (not 0), and 〈X’1〉 〈X’2〉 are both zero.

If the shift is 1, the 〈rounding〉 digit is simply the only digit that was pushed out
of the brace groups (this is important for subtraction). It would be more natural for
the 〈rounding〉 digit to be placed after the 〈Xi〉, but the choice we make involves less
reshuffling.

Note that this function fails for negative 〈shift〉.
11233 \cs_new:Npn __fp_decimate:nNnnnn #1

588

11234 {
11235 \cs:w
11236 __fp_decimate_
11237 \if_int_compare:w __int_eval:w #1 > \c_sixteen
11238 tiny
11239 \else:
11240 __int_to_roman:w __int_eval:w #1
11241 \fi:
11242 :Nnnnn
11243 \cs_end:
11244 }

Each of the auxiliaries see the function 〈f1〉, followed by 4 blocks of 4 digits.

(End definition for __fp_decimate:nNnnnn.)

__fp_decimate_:Nnnnn
__fp_decimate_tiny:Nnnnn

If the 〈shift〉 is zero, or too big, life is very easy.
11245 \cs_new:Npn __fp_decimate_:Nnnnn #1 #2#3#4#5
11246 { #1 0 {#2#3} {#4#5} ; }
11247 \cs_new:Npn __fp_decimate_tiny:Nnnnn #1 #2#3#4#5
11248 { #1 1 { 0000 0000 } { 0000 0000 } 0 #2#3#4#5 ; }

(End definition for __fp_decimate_:Nnnnn and __fp_decimate_tiny:Nnnnn.)

__fp_decimate_auxi:Nnnnn
__fp_decimate_auxii:Nnnnn
__fp_decimate_auxiii:Nnnnn
__fp_decimate_auxiv:Nnnnn
__fp_decimate_auxv:Nnnnn

__fp_decimate_auxvi:Nnnnn
__fp_decimate_auxvii:Nnnnn
__fp_decimate_auxviii:Nnnnn
__fp_decimate_auxix:Nnnnn
__fp_decimate_auxx:Nnnnn

__fp_decimate_auxxi:Nnnnn
__fp_decimate_auxxii:Nnnnn
__fp_decimate_auxxiii:Nnnnn
__fp_decimate_auxxiv:Nnnnn
__fp_decimate_auxxv:Nnnnn
__fp_decimate_auxxvi:Nnnnn

Shifting happens in two steps: compute the 〈rounding〉 digit, and repack digits into two
blocks of 8. The sixteen functions are very similar, and defined through __fp_tmp:w.
The arguments are as follows: #1 indicates which function is being defined; after one step
of expansion, #2 yields the “extra digits” which are then converted by __fp_round_-
digit:Nw to the 〈rounding〉 digit. This triggers the f-expansion of __fp_decimate_-
pack:nnnnnnnnnnw,9 responsible for building two blocks of 8 digits, and removing the
rest. For this to work, #3 alternates between braced and unbraced blocks of 4 digits, in
such a way that the 5 first and 5 next token groups yield the correct blocks of 8 digits.

11249 \cs_new:Npn __fp_tmp:w #1 #2 #3
11250 {
11251 \cs_new:cpn { __fp_decimate_ #1 :Nnnnn } ##1 ##2##3##4##5
11252 {
11253 \exp_after:wN ##1
11254 __int_value:w
11255 \exp_after:wN __fp_round_digit:Nw #2 ;
11256 __fp_decimate_pack:nnnnnnnnnnw #3 ;
11257 }
11258 }
11259 __fp_tmp:w {i} {\use_none:nnn #50}{ 0{#2}#3{#4}#5 }
11260 __fp_tmp:w {ii} {\use_none:nn #5 }{ 00{#2}#3{#4}#5 }
11261 __fp_tmp:w {iii} {\use_none:n #5 }{ 000{#2}#3{#4}#5 }
11262 __fp_tmp:w {iv} { #5 }{ {0000}#2{#3}#4 #5 }
11263 __fp_tmp:w {v} {\use_none:nnn #4#5 }{ 0{0000}#2{#3}#4 #5 }
11264 __fp_tmp:w {vi} {\use_none:nn #4#5 }{ 00{0000}#2{#3}#4 #5 }

9No, the argument spec is not a mistake: the function calls an auxiliary to do half of the job.

589

11265 __fp_tmp:w {vii} {\use_none:n #4#5 }{ 000{0000}#2{#3}#4 #5 }
11266 __fp_tmp:w {viii}{ #4#5 }{ {0000}0000{#2}#3 #4 #5 }
11267 __fp_tmp:w {ix} {\use_none:nnn #3#4+#5}{ 0{0000}0000{#2}#3 #4 #5 }
11268 __fp_tmp:w {x} {\use_none:nn #3#4+#5}{ 00{0000}0000{#2}#3 #4 #5 }
11269 __fp_tmp:w {xi} {\use_none:n #3#4+#5}{ 000{0000}0000{#2}#3 #4 #5 }
11270 __fp_tmp:w {xii} { #3#4+#5}{ {0000}0000{0000}#2 #3 #4 #5 }
11271 __fp_tmp:w {xiii}{\use_none:nnn#2#3+#4#5}{ 0{0000}0000{0000}#2 #3 #4 #5 }
11272 __fp_tmp:w {xiv} {\use_none:nn #2#3+#4#5}{ 00{0000}0000{0000}#2 #3 #4 #5 }
11273 __fp_tmp:w {xv} {\use_none:n #2#3+#4#5}{ 000{0000}0000{0000}#2 #3 #4 #5 }
11274 __fp_tmp:w {xvi} { #2#3+#4#5}{{0000}0000{0000}0000 #2 #3 #4 #5}

(End definition for __fp_decimate_auxi:Nnnnn and others.)

__fp_round_digit:Nw
__fp_decimate_pack:nnnnnnnnnnw

__fp_round_digit:Nw will receive the “extra digits” as its argument, and its expansion
is triggered by __int_value:w. If the first digit is neither 0 nor 5, then it is the
〈rounding〉 digit. Otherwise, if the remaining digits are not all zero, we need to add 1 to
that leading digit to get the rounding digit. Some caution is required, though, because
there may be more than 10 “extra digits”, and this may overflow TEX’s integers. Instead
of feeding the digits directly to __fp_round_digit:Nw, they come split into several
blocks, separated by +. Hence the first __int_eval:w here.

The computation of the 〈rounding〉 digit leaves an unfinished __int_value:w, which
expands the following functions. This allows us to repack nicely the digits we keep.
Those digits come as an alternation of unbraced and braced blocks of 4 digits, such that
the first 5 groups of token consist in 4 single digits, and one brace group (in some order),
and the next 5 have the same structure. This is followed by some digits and a semicolon.

11275 \cs_new:Npn __fp_decimate_pack:nnnnnnnnnnw #1#2#3#4#5
11276 { __fp_decimate_pack:nnnnnnw { #1#2#3#4#5 } }
11277 \cs_new:Npn __fp_decimate_pack:nnnnnnw #1 #2#3#4#5#6
11278 { {#1} {#2#3#4#5#6} }

(End definition for __fp_round_digit:Nw and __fp_decimate_pack:nnnnnnnnnnw.)

24.9 Functions for use within primitive conditional branches
The functions described in this section are not pretty and can easily be misused. When
correctly used, each of them removes one \fi: as part of its parameter text, and puts
one back as part of its replacement text.

Many computation functions in l3fp must perform tests on the type of floating points
that they receive. This is often done in an \if_case:w statement or another conditional
statement, and only a few cases lead to actual computations: most of the special cases
are treated using a few standard functions which we define now. A typical use context for
those functions would be In this example, the case 0 will return the floating point 〈fp var〉,
expanding once after that floating point. Case 1 will do 〈some computation〉 using the
〈floating point〉 (presumably compute the operation requested by the user in that non-
trivial case). Case 2 will return the 〈floating point〉 without modifying it, removing the
〈junk〉 and expanding once after. Case 3 will close the conditional, remove the 〈junk〉
and the 〈floating point〉, and expand 〈something〉 next. In other cases, the “〈junk〉” is

590

expanded, performing some other operation on the 〈floating point〉. We provide similar
functions with two trailing 〈floating points〉.

__fp_case_use:nw This function ends a TEX conditional, removes junk until the next floating point, and
places its first argument before that floating point, to perform some operation on the
floating point.

11279 \cs_new:Npn __fp_case_use:nw #1#2 \fi: #3 \s__fp { \fi: #1 \s__fp }

(End definition for __fp_case_use:nw.)

__fp_case_return:nw This function ends a TEX conditional, removes junk and a floating point, and places its
first argument in the input stream. A quirk is that we don’t define this function requiring
a floating point to follow, simply anything ending in a semicolon. This, in turn, means
that the 〈junk〉 may not contain semicolons.

11280 \cs_new:Npn __fp_case_return:nw #1#2 \fi: #3 ; { \fi: #1 }

(End definition for __fp_case_return:nw.)

__fp_case_return_o:Nw This function ends a TEX conditional, removes junk and a floating point, and returns its
first argument (an 〈fp var〉) then expands once after it.

11281 \cs_new:Npn __fp_case_return_o:Nw #1#2 \fi: #3 \s__fp #4 ;
11282 { \fi: \exp_after:wN #1 }

(End definition for __fp_case_return_o:Nw.)

__fp_case_return_same_o:w This function ends a TEX conditional, removes junk, and returns the following floating
point, expanding once after it.

11283 \cs_new:Npn __fp_case_return_same_o:w #1 \fi: #2 \s__fp
11284 { \fi: __fp_exp_after_o:w \s__fp }

(End definition for __fp_case_return_same_o:w.)

__fp_case_return_o:Nww Same as __fp_case_return_o:Nw but with two trailing floating points.
11285 \cs_new:Npn __fp_case_return_o:Nww #1#2 \fi: #3 \s__fp #4 ; #5 ;
11286 { \fi: \exp_after:wN #1 }

(End definition for __fp_case_return_o:Nww.)

__fp_case_return_i_o:ww
__fp_case_return_ii_o:ww

Similar to __fp_case_return_same_o:w, but this returns the first or second of two
trailing floating point numbers, expanding once after the result.

11287 \cs_new:Npn __fp_case_return_i_o:ww #1 \fi: #2 \s__fp #3 ; \s__fp #4 ;
11288 { \fi: __fp_exp_after_o:w \s__fp #3 ; }
11289 \cs_new:Npn __fp_case_return_ii_o:ww #1 \fi: #2 \s__fp #3 ;
11290 { \fi: __fp_exp_after_o:w }

(End definition for __fp_case_return_i_o:ww and __fp_case_return_ii_o:ww.)

591

24.10 Small integer floating points
__fp_small_int:wTF

__fp_small_int_true:wTF
__fp_small_int_normal:NnwTF
__fp_small_int_test:NnnwNTF

Tests if the floating point argument is an integer or ±∞. If so, it is converted to an integer
in the range [−108, 108] and fed as a braced argument to the 〈true code〉. Otherwise, the
〈false code〉 is performed. First filter special cases: neither nan nor infinities are integers.
Normal numbers with a non-positive exponent are never integers. When the exponent is
greater than 8, the number is too large for the range. Otherwise, decimate, and test the
digits after the decimal separator. The \use_iii:nnn remove a trailing ; and the true
branch, leaving only the false branch. The __int_value:w appearing in the case where
the normal floating point is an integer takes care of expanding all the conditionals until
the trailing ;. That integer is fed to __fp_small_int_true:wTF which places it as a
braced argument of the true branch. The \use_i:nn in __fp_small_int_test:NnnwNTF
removes the top-level \else: coming from __fp_small_int_normal:NnwTF, hence will
call the \use_iii:nnn which follows, taking the false branch.

11291 \cs_new:Npn __fp_small_int:wTF \s__fp __fp_chk:w #1#2
11292 {
11293 \if_case:w #1 \exp_stop_f:
11294 __fp_case_return:nw { __fp_small_int_true:wTF 0 ; }
11295 \or: \exp_after:wN __fp_small_int_normal:NnwTF
11296 \or:
11297 __fp_case_return:nw
11298 {
11299 \exp_after:wN __fp_small_int_true:wTF __int_value:w
11300 \if_meaning:w 2 #2 - \fi: 1 0000 0000 ;
11301 }
11302 \else: __fp_case_return:nw \use_ii:nn
11303 \fi:
11304 #2
11305 }
11306 \cs_new:Npn __fp_small_int_true:wTF #1; #2#3 { #2 {#1} }
11307 \cs_new:Npn __fp_small_int_normal:NnwTF #1#2#3;
11308 {
11309 \if_int_compare:w #2 > \c_zero
11310 __fp_decimate:nNnnnn { \c_sixteen - #2 }
11311 __fp_small_int_test:NnnwNnw
11312 #3 #1 {#2}
11313 \else:
11314 \exp_after:wN \use_iii:nnn
11315 \fi:
11316 ;
11317 }
11318 \cs_new:Npn __fp_small_int_test:NnnwNnw #1#2#3#4; #5#6
11319 {
11320 \if_meaning:w 0 #1
11321 \exp_after:wN __fp_small_int_true:wTF
11322 __int_value:w \if_meaning:w 2 #5 - \fi:
11323 \if_int_compare:w #6 > \c_eight
11324 1 0000 0000
11325 \else:

592

11326 #3
11327 \fi:
11328 \else:
11329 \use_i:nn
11330 \fi:
11331 }

(End definition for __fp_small_int:wTF.)

24.11 Length of a floating point array
__fp_array_count:n

__fp_array_count_loop:Nw
Count the number of items in an array of floating points. The technique is very similar
to \tl_count:n, but with the loop built-in. Checking for the end of the loop is done
with the \use_none:n #1 construction.

11332 \cs_new:Npn __fp_array_count:n #1
11333 {
11334 __int_value:w __int_eval:w \c_zero
11335 __fp_array_count_loop:Nw #1 { ? __prg_break: } ;
11336 __prg_break_point:
11337 __int_eval_end:
11338 }
11339 \cs_new:Npn __fp_array_count_loop:Nw #1#2;
11340 { \use_none:n #1 + \c_one __fp_array_count_loop:Nw }

(End definition for __fp_array_count:n.)

24.12 x-like expansion expandably
__fp_expand:n

__fp_expand_loop:nwnN
This expandable function behaves in a way somewhat similar to \use:x, but much less
robust. The argument is f-expanded, then the leading item (often a single character
token) is moved to a storage area after \s__fp_mark, and f-expansion is applied again,
repeating until the argument is empty. The result built one piece at a time is then
inserted in the input stream. Note that spaces are ignored by this procedure, unless
surrounded with braces. Multiple tokens which do not need expansion can be inserted
within braces.

11341 \cs_new:Npn __fp_expand:n #1
11342 {
11343 __fp_expand_loop:nwnN { }
11344 #1 \prg_do_nothing:
11345 \s__fp_mark { } __fp_expand_loop:nwnN
11346 \s__fp_mark { } __fp_use_i_until_s:nw ;
11347 }
11348 \cs_new:Npn __fp_expand_loop:nwnN #1#2 \s__fp_mark #3 #4
11349 {
11350 \exp_after:wN #4 \exp:w \exp_end_continue_f:w
11351 #2
11352 \s__fp_mark { #3 #1 } #4
11353 }

(End definition for __fp_expand:n.)

593

24.13 Messages
Using a floating point directly is an error.

11354 __msg_kernel_new:nnnn { kernel } { misused-fp }
11355 { A~floating~point~with~value~’#1’~was~misused. }
11356 {
11357 To~obtain~the~value~of~a~floating~point~variable,~use~
11358 ’\token_to_str:N \fp_to_decimal:N’,~
11359 ’\token_to_str:N \fp_to_scientific:N’,~or~other~
11360 conversion~functions.
11361 }

11362 〈/initex | package〉

25 l3fp-traps Implementation
11363 〈*initex | package〉

11364 〈@@=fp〉

Exceptions should be accessed by an n-type argument, among
• invalid_operation

• division_by_zero

• overflow

• underflow

• inexact (actually never used).

25.1 Flags
\fp_flag_off:n Function to turn a flag off. Simply undefine it.

11365 \cs_new_protected:Npn \fp_flag_off:n #1
11366 { \cs_set_eq:cN { l__fp_ #1 _flag_token } \tex_undefined:D }

(End definition for \fp_flag_off:n. This function is documented on page 200.)

\fp_flag_on:n Function to turn a flag on expandably: use TEX’s automatic assignment to \scan_stop:.
11367 \cs_new:Npn \fp_flag_on:n #1
11368 { \exp_args:Nc \use_none:n { l__fp_ #1 _flag_token } }

(End definition for \fp_flag_on:n. This function is documented on page 200.)

\fp_if_flag_on_p:n
\fp_if_flag_on:nTF

Returns true if the flag is on, false otherwise.
11369 \prg_new_conditional:Npnn \fp_if_flag_on:n #1 { p , T , F , TF }
11370 {
11371 \if_cs_exist:w l__fp_ #1 _flag_token \cs_end:
11372 \prg_return_true:
11373 \else:

594

11374 \prg_return_false:
11375 \fi:
11376 }

(End definition for \fp_if_flag_on:nTF. This function is documented on page 200.)

\l__fp_invalid_operation_flag_token
\l__fp_division_by_zero_flag_token

\l__fp_overflow_flag_token
\l__fp_underflow_flag_token

The ieee standard defines five exceptions. We currently don’t support the “inexact”
exception.

11377 \cs_new_eq:NN \l__fp_invalid_operation_flag_token \tex_undefined:D
11378 \cs_new_eq:NN \l__fp_division_by_zero_flag_token \tex_undefined:D
11379 \cs_new_eq:NN \l__fp_overflow_flag_token \tex_undefined:D
11380 \cs_new_eq:NN \l__fp_underflow_flag_token \tex_undefined:D

(End definition for \l__fp_invalid_operation_flag_token and others.)

25.2 Traps
Exceptions can be trapped to obtain custom behaviour. When an invalid operation or
a division by zero is trapped, the trap receives as arguments the result as an N -type
floating point number, the function name (multiple letters for prefix operations, or a
single symbol for infix operations), and the operand(s). When an overflow or underflow
is trapped, the trap receives the resulting overly large or small floating point number if
it is not too big, otherwise it receives +∞. Currently, the inexact exception is entirely
ignored.

The behaviour when an exception occurs is controlled by the definitions of the func-
tions

• __fp_invalid_operation:nnw,

• __fp_invalid_operation_o:Nww,

• __fp_invalid_operation_tl_o:ff,

• __fp_division_by_zero_o:Nnw,

• __fp_division_by_zero_o:NNww,

• __fp_overflow:w,

• __fp_underflow:w.

Rather than changing them directly, we provide a user interface as \fp_trap:nn
{〈exception〉} {〈way of trapping〉}, where the 〈way of trapping〉 is one of error, flag, or
none.

We also provide __fp_invalid_operation_o:nw, defined in terms of __fp_-
invalid_operation:nnw.

595

\fp_trap:nn

11381 \cs_new_protected:Npn \fp_trap:nn #1#2
11382 {
11383 \cs_if_exist_use:cF { __fp_trap_#1_set_#2: }
11384 {
11385 \clist_if_in:nnTF
11386 { invalid_operation , division_by_zero , overflow , underflow }
11387 {#1}
11388 {
11389 __msg_kernel_error:nnxx { kernel }
11390 { unknown-fpu-trap-type } {#1} {#2}
11391 }
11392 {
11393 __msg_kernel_error:nnx
11394 { kernel } { unknown-fpu-exception } {#1}
11395 }
11396 }
11397 }

(End definition for \fp_trap:nn. This function is documented on page 201.)

__fp_trap_invalid_operation_set_error:
__fp_trap_invalid_operation_set_flag:
__fp_trap_invalid_operation_set_none:

__fp_trap_invalid_operation_set:N

We provide three types of trapping for invalid operations: either produce an error and
raise the relevant flag; or only raise the flag; or don’t even raise the flag. In most cases,
the function produces as a result its first argument, possibly with post-expansion.

11398 \cs_new_protected_nopar:Npn __fp_trap_invalid_operation_set_error:
11399 { __fp_trap_invalid_operation_set:N \prg_do_nothing: }
11400 \cs_new_protected_nopar:Npn __fp_trap_invalid_operation_set_flag:
11401 { __fp_trap_invalid_operation_set:N \use_none:nnnnn }
11402 \cs_new_protected_nopar:Npn __fp_trap_invalid_operation_set_none:
11403 { __fp_trap_invalid_operation_set:N \use_none:nnnnnnn }
11404 \cs_new_protected:Npn __fp_trap_invalid_operation_set:N #1
11405 {
11406 \exp_args:Nno \use:n
11407 { \cs_set:Npn __fp_invalid_operation:nnw ##1##2##3; }
11408 {
11409 #1
11410 __fp_error:nnfn { invalid } {##2} { \fp_to_tl:n { ##3; } } { }
11411 \fp_flag_on:n { invalid_operation }
11412 ##1
11413 }
11414 \exp_args:Nno \use:n
11415 { \cs_set:Npn __fp_invalid_operation_o:Nww ##1##2; ##3; }
11416 {
11417 #1
11418 __fp_error:nffn { invalid-ii }
11419 { \fp_to_tl:n { ##2; } } { \fp_to_tl:n { ##3; } } {##1}
11420 \fp_flag_on:n { invalid_operation }
11421 \exp_after:wN \c_nan_fp
11422 }
11423 \exp_args:Nno \use:n

596

11424 { \cs_set:Npn __fp_invalid_operation_tl_o:ff ##1##2 }
11425 {
11426 #1
11427 __fp_error:nffn { invalid } {##1} {##2} { }
11428 \fp_flag_on:n { invalid_operation }
11429 \exp_after:wN \c_nan_fp
11430 }
11431 }

(End definition for __fp_trap_invalid_operation_set_error: and others.)

__fp_trap_division_by_zero_set_error:
__fp_trap_division_by_zero_set_flag:
__fp_trap_division_by_zero_set_none:

__fp_trap_division_by_zero_set:N

We provide three types of trapping for invalid operations and division by zero: either
produce an error and raise the relevant flag; or only raise the flag; or don’t even raise the
flag. In all cases, the function must produce a result, namely its first argument, ±∞ or
NaN.

11432 \cs_new_protected_nopar:Npn __fp_trap_division_by_zero_set_error:
11433 { __fp_trap_division_by_zero_set:N \prg_do_nothing: }
11434 \cs_new_protected_nopar:Npn __fp_trap_division_by_zero_set_flag:
11435 { __fp_trap_division_by_zero_set:N \use_none:nnnnn }
11436 \cs_new_protected_nopar:Npn __fp_trap_division_by_zero_set_none:
11437 { __fp_trap_division_by_zero_set:N \use_none:nnnnnnn }
11438 \cs_new_protected:Npn __fp_trap_division_by_zero_set:N #1
11439 {
11440 \exp_args:Nno \use:n
11441 { \cs_set:Npn __fp_division_by_zero_o:Nnw ##1##2##3; }
11442 {
11443 #1
11444 __fp_error:nnfn { zero-div } {##2} { \fp_to_tl:n { ##3; } } { }
11445 \fp_flag_on:n { division_by_zero }
11446 \exp_after:wN ##1
11447 }
11448 \exp_args:Nno \use:n
11449 { \cs_set:Npn __fp_division_by_zero_o:NNww ##1##2##3; ##4; }
11450 {
11451 #1
11452 __fp_error:nffn { zero-div-ii }
11453 { \fp_to_tl:n { ##3; } } { \fp_to_tl:n { ##4; } } {##2}
11454 \fp_flag_on:n { division_by_zero }
11455 \exp_after:wN ##1
11456 }
11457 }

(End definition for __fp_trap_division_by_zero_set_error: and others.)

__fp_trap_overflow_set_error:
__fp_trap_overflow_set_flag:
__fp_trap_overflow_set_none:

__fp_trap_overflow_set:N
__fp_trap_underflow_set_error:
__fp_trap_underflow_set_flag:
__fp_trap_underflow_set_none:

__fp_trap_underflow_set:N
__fp_trap_overflow_set:NnNn

Just as for invalid operations and division by zero, the three different behaviours are
obtained by feeding \prg_do_nothing:, \use_none:nnnnn or \use_none:nnnnnnn to an
auxiliary, with a further auxiliary common to overflow and underflow functions. In most
cases, the argument of the __fp_overflow:w and __fp_underflow:w functions will
be an (almost) normal number (with an exponent outside the allowed range), and the
error message thus displays that number together with the result to which it overflowed

597

or underflowed. For extreme cases such as 10 ** 1e9999, the exponent would be too
large for TEX, and __fp_overflow:w receives ±∞ (__fp_underflow:w would receive
±0); then we cannot do better than simply say an overflow or underflow occurred.

11458 \cs_new_protected_nopar:Npn __fp_trap_overflow_set_error:
11459 { __fp_trap_overflow_set:N \prg_do_nothing: }
11460 \cs_new_protected_nopar:Npn __fp_trap_overflow_set_flag:
11461 { __fp_trap_overflow_set:N \use_none:nnnnn }
11462 \cs_new_protected_nopar:Npn __fp_trap_overflow_set_none:
11463 { __fp_trap_overflow_set:N \use_none:nnnnnnn }
11464 \cs_new_protected:Npn __fp_trap_overflow_set:N #1
11465 { __fp_trap_overflow_set:NnNn #1 { overflow } __fp_inf_fp:N { inf } }
11466 \cs_new_protected_nopar:Npn __fp_trap_underflow_set_error:
11467 { __fp_trap_underflow_set:N \prg_do_nothing: }
11468 \cs_new_protected_nopar:Npn __fp_trap_underflow_set_flag:
11469 { __fp_trap_underflow_set:N \use_none:nnnnn }
11470 \cs_new_protected_nopar:Npn __fp_trap_underflow_set_none:
11471 { __fp_trap_underflow_set:N \use_none:nnnnnnn }
11472 \cs_new_protected:Npn __fp_trap_underflow_set:N #1
11473 { __fp_trap_overflow_set:NnNn #1 { underflow } __fp_zero_fp:N { 0 } }
11474 \cs_new_protected:Npn __fp_trap_overflow_set:NnNn #1#2#3#4
11475 {
11476 \exp_args:Nno \use:n
11477 { \cs_set:cpn { __fp_ #2 :w } \s__fp __fp_chk:w ##1##2##3; }
11478 {
11479 #1
11480 __fp_error:nffn
11481 { flow \if_meaning:w 1 ##1 -to \fi: }
11482 { \fp_to_tl:n { \s__fp __fp_chk:w ##1##2##3; } }
11483 { \token_if_eq_meaning:NNF 0 ##2 { - } #4 }
11484 {#2}
11485 \fp_flag_on:n {#2}
11486 #3 ##2
11487 }
11488 }

(End definition for __fp_trap_overflow_set_error: and others.)

__fp_invalid_operation:nnw
__fp_invalid_operation_o:Nww

__fp_invalid_operation_tl_o:ff
__fp_division_by_zero_o:Nnw

__fp_division_by_zero_o:NNww
__fp_overflow:w

__fp_underflow:w

Initialize the two control sequences (to log properly their existence). Then set invalid
operations to trigger an error, and division by zero, overflow, and underflow to act silently
on their flag.

11489 \cs_new:Npn __fp_invalid_operation:nnw #1#2#3; { }
11490 \cs_new:Npn __fp_invalid_operation_o:Nww #1#2; #3; { }
11491 \cs_new:Npn __fp_invalid_operation_tl_o:ff #1 #2 { }
11492 \cs_new:Npn __fp_division_by_zero_o:Nnw #1#2#3; { }
11493 \cs_new:Npn __fp_division_by_zero_o:NNww #1#2#3; #4; { }
11494 \cs_new:Npn __fp_overflow:w { }
11495 \cs_new:Npn __fp_underflow:w { }
11496 \fp_trap:nn { invalid_operation } { error }
11497 \fp_trap:nn { division_by_zero } { flag }

598

11498 \fp_trap:nn { overflow } { flag }
11499 \fp_trap:nn { underflow } { flag }

(End definition for __fp_invalid_operation:nnw and others.)

__fp_invalid_operation_o:nw
__fp_invalid_operation_o:fw

Convenient short-hands for returning \c_nan_fp for a unary or binary operation, and
expanding after.

11500 \cs_new_nopar:Npn __fp_invalid_operation_o:nw
11501 { __fp_invalid_operation:nnw { \exp_after:wN \c_nan_fp } }
11502 \cs_generate_variant:Nn __fp_invalid_operation_o:nw { f }

(End definition for __fp_invalid_operation_o:nw and __fp_invalid_operation_o:fw.)

25.3 Errors
__fp_error:nnnn
__fp_error:nnfn
__fp_error:nffn

11503 \cs_new:Npn __fp_error:nnnn #1
11504 { __msg_kernel_expandable_error:nnnnn { kernel } { fp - #1 } }
11505 \cs_generate_variant:Nn __fp_error:nnnn { nnf, nff }

(End definition for __fp_error:nnnn , __fp_error:nnfn , and __fp_error:nffn.)

25.4 Messages
Some messages.

11506 __msg_kernel_new:nnnn { kernel } { unknown-fpu-exception }
11507 {
11508 The~FPU~exception~’#1’~is~not~known:~
11509 that~trap~will~never~be~triggered.
11510 }
11511 {
11512 The~only~exceptions~to~which~traps~can~be~attached~are \\
11513 \iow_indent:n
11514 {
11515 * ~ invalid_operation \\
11516 * ~ division_by_zero \\
11517 * ~ overflow \\
11518 * ~ underflow
11519 }
11520 }
11521 __msg_kernel_new:nnnn { kernel } { unknown-fpu-trap-type }
11522 { The~FPU~trap~type~’#2’~is~not~known. }
11523 {
11524 The~trap~type~must~be~one~of \\
11525 \iow_indent:n
11526 {
11527 * ~ error \\
11528 * ~ flag \\
11529 * ~ none
11530 }

599

11531 }
11532 __msg_kernel_new:nnn { kernel } { fp-flow }
11533 { An ~ #3 ~ occurred. }
11534 __msg_kernel_new:nnn { kernel } { fp-flow-to }
11535 { #1 ~ #3 ed ~ to ~ #2 . }
11536 __msg_kernel_new:nnn { kernel } { fp-zero-div }
11537 { Division~by~zero~in~ #1 (#2) }
11538 __msg_kernel_new:nnn { kernel } { fp-zero-div-ii }
11539 { Division~by~zero~in~ (#1) #3 (#2) }
11540 __msg_kernel_new:nnn { kernel } { fp-invalid }
11541 { Invalid~operation~ #1 (#2) }
11542 __msg_kernel_new:nnn { kernel } { fp-invalid-ii }
11543 { Invalid~operation~ (#1) #3 (#2) }

11544 〈/initex | package〉

26 l3fp-round implementation
11545 〈*initex | package〉

11546 〈@@=fp〉

26.1 Rounding tools
Floating point operations often yield a result that cannot be exactly represented in a sig-
nificand with 16 digits. In that case, we need to round the exact result to a representable
number. The ieee standard defines four rounding modes:

• Round to nearest: round to the representable floating point number whose absolute
difference with the exact result is the smallest. If the exact result lies exactly at the
mid-point between two consecutive representable floating point numbers, round to
the floating point number whose last digit is even.

• Round towards negative infinity: round to the greatest floating point number not
larger than the exact result.

• Round towards zero: round to a floating point number with the same sign as the
exact result, with the largest absolute value not larger than the absolute value of
the exact result.

• Round towards positive infinity: round to the least floating point number not
smaller than the exact result.

This is not fully implemented in l3fp yet, and transcendental functions fall back on the
“round to nearest” mode. All rounding for basic algebra is done through the functions
defined in this module, which can be redefined to change their rounding behaviour (but
there is not interface for that yet).

The rounding tools available in this module are many variations on a base function
__fp_round:NNN, which expands to \c_zero or \c_one depending on whether the final
result should be rounded up or down.

600

• __fp_round:NNN 〈sign〉 〈digit1〉 〈digit2〉 can expand to \c_zero or \c_one.

• __fp_round_s:NNNw 〈sign〉 〈digit1〉 〈digit2〉 〈more digits〉; can expand to \c_zero ;
or \c_one ;.

• __fp_round_neg:NNN 〈sign〉 〈digit1〉 〈digit2〉 can expand to \c_zero or \c_one.

See implementation comments for details on the syntax.

__fp_round:NNN
__fp_round_to_nearest:NNN

__fp_round_to_nearest_ninf:NNN
__fp_round_to_nearest_zero:NNN
__fp_round_to_nearest_pinf:NNN

__fp_round_to_ninf:NNN
__fp_round_to_zero:NNN
__fp_round_to_pinf:NNN

If rounding the number 〈final sign〉〈digit1〉.〈digit2〉 to an integer rounds it towards zero
(truncates it), this function expands to \c_zero, and otherwise to \c_one. Typically used
within the scope of an __int_eval:w, to add 1 if needed, and thereby round correctly.
The result depends on the rounding mode.

It is very important that 〈final sign〉 be the final sign of the result. Otherwise, the
result will be incorrect in the case of rounding towards −∞ or towards +∞. Also recall
that 〈final sign〉 is 0 for positive, and 2 for negative.

By default, the functions below return \c_zero, but this is superseded by __fp_-
round_return_one:, which instead returns \c_one, expanding everything and removing
\c_zero in the process. In the case of rounding towards ±∞ or towards 0, this is not
really useful, but it prepares us for the “round to nearest, ties to even” mode.

The “round to nearest” mode is the default. If the 〈digit2〉 is larger than 5, then
round up. If it is less than 5, round down. If it is exactly 5, then round such that 〈digit1〉
plus the result is even. In other words, round up if 〈digit1〉 is odd.

The “round to nearest” mode has three variants, which differ in how ties are rounded:
down towards −∞, truncated towards 0, or up towards +∞.

11547 \cs_new:Npn __fp_round_return_one:
11548 { \exp_after:wN \c_one \exp:w }
11549 \cs_new:Npn __fp_round_to_ninf:NNN #1 #2 #3
11550 {
11551 \if_meaning:w 2 #1
11552 \if_int_compare:w #3 > \c_zero
11553 __fp_round_return_one:
11554 \fi:
11555 \fi:
11556 \c_zero
11557 }
11558 \cs_new:Npn __fp_round_to_zero:NNN #1 #2 #3 { \c_zero }
11559 \cs_new:Npn __fp_round_to_pinf:NNN #1 #2 #3
11560 {
11561 \if_meaning:w 0 #1
11562 \if_int_compare:w #3 > \c_zero
11563 __fp_round_return_one:
11564 \fi:
11565 \fi:
11566 \c_zero
11567 }
11568 \cs_new:Npn __fp_round_to_nearest:NNN #1 #2 #3
11569 {
11570 \if_int_compare:w #3 > \c_five

601

11571 __fp_round_return_one:
11572 \else:
11573 \if_meaning:w 5 #3
11574 \if_int_odd:w #2 \exp_stop_f:
11575 __fp_round_return_one:
11576 \fi:
11577 \fi:
11578 \fi:
11579 \c_zero
11580 }
11581 \cs_new:Npn __fp_round_to_nearest_ninf:NNN #1 #2 #3
11582 {
11583 \if_int_compare:w #3 > \c_five
11584 __fp_round_return_one:
11585 \else:
11586 \if_meaning:w 5 #3
11587 \if_meaning:w 2 #1
11588 __fp_round_return_one:
11589 \fi:
11590 \fi:
11591 \fi:
11592 \c_zero
11593 }
11594 \cs_new:Npn __fp_round_to_nearest_zero:NNN #1 #2 #3
11595 {
11596 \if_int_compare:w #3 > \c_five
11597 __fp_round_return_one:
11598 \fi:
11599 \c_zero
11600 }
11601 \cs_new:Npn __fp_round_to_nearest_pinf:NNN #1 #2 #3
11602 {
11603 \if_int_compare:w #3 > \c_five
11604 __fp_round_return_one:
11605 \else:
11606 \if_meaning:w 5 #3
11607 \if_meaning:w 0 #1
11608 __fp_round_return_one:
11609 \fi:
11610 \fi:
11611 \fi:
11612 \c_zero
11613 }
11614 \cs_new_eq:NN __fp_round:NNN __fp_round_to_nearest:NNN

(End definition for __fp_round:NNN.)

__fp_round_s:NNNw Similar to __fp_round:NNN, but with an extra semicolon, this function expands to
\c_zero ; if rounding 〈final sign〉〈digit〉.〈more digits〉 to an integer truncates, and to
\c_one ; otherwise. The 〈more digits〉 part must be a digit, followed by something

602

that does not overflow a \int_use:N __int_eval:w construction. The only relevant
information about this piece is whether it is zero or not.

11615 \cs_new:Npn __fp_round_s:NNNw #1 #2 #3 #4;
11616 {
11617 \exp_after:wN __fp_round:NNN
11618 \exp_after:wN #1
11619 \exp_after:wN #2
11620 __int_value:w __int_eval:w
11621 \if_int_odd:w 0 \if_meaning:w 0 #3 1 \fi:
11622 \if_meaning:w 5 #3 1 \fi:
11623 \exp_stop_f:
11624 \if_int_compare:w __int_eval:w #4 > \c_zero
11625 1 +
11626 \fi:
11627 \fi:
11628 #3
11629 ;
11630 }

(End definition for __fp_round_s:NNNw.)

__fp_round_digit:Nw This function should always be called within an __int_value:w or __int_eval:w
expansion; it may add an extra __int_eval:w, which means that the integer or integer
expression should not be ended with a synonym of \relax, but with a semi-colon for
instance.

11631 \cs_new:Npn __fp_round_digit:Nw #1 #2;
11632 {
11633 \if_int_odd:w \if_meaning:w 0 #1 \c_one \else:
11634 \if_meaning:w 5 #1 \c_one \else:
11635 \c_zero \fi: \fi:
11636 \if_int_compare:w __int_eval:w #2 > \c_zero
11637 __int_eval:w \c_one +
11638 \fi:
11639 \fi:
11640 #1
11641 }

(End definition for __fp_round_digit:Nw.)

__fp_round_neg:NNN
__fp_round_to_nearest_neg:NNN

__fp_round_to_nearest_ninf_neg:NNN
__fp_round_to_nearest_zero_neg:NNN
__fp_round_to_nearest_pinf_neg:NNN

__fp_round_to_ninf_neg:NNN
__fp_round_to_zero_neg:NNN
__fp_round_to_pinf_neg:NNN

This expands to \c_zero or \c_one after doing the following test. Starting from a
number of the form 〈final sign〉0.〈15 digits〉〈digit1〉 with exactly 15 (non-all-zero) digits
before 〈digit1〉, subtract from it 〈final sign〉0.0 . . . 0〈digit2〉, where there are 16 zeros. If
in the current rounding mode the result should be rounded down, then this function
returns \c_one. Otherwise, i.e., if the result is rounded back to the first operand, then
this function returns \c_zero.

It turns out that this negative “round to nearest” is identical to the positive one.
And this is the default mode.

11642 \cs_new_eq:NN __fp_round_to_ninf_neg:NNN __fp_round_to_pinf:NNN
11643 \cs_new:Npn __fp_round_to_zero_neg:NNN #1 #2 #3

603

11644 {
11645 \if_int_compare:w #3 > \c_zero
11646 __fp_round_return_one:
11647 \fi:
11648 \c_zero
11649 }
11650 \cs_new_eq:NN __fp_round_to_pinf_neg:NNN __fp_round_to_ninf:NNN
11651 \cs_new_eq:NN __fp_round_to_nearest_neg:NNN __fp_round_to_nearest:NNN
11652 \cs_new_eq:NN __fp_round_to_nearest_ninf_neg:NNN __fp_round_to_nearest_pinf:NNN
11653 \cs_new:Npn __fp_round_to_nearest_zero_neg:NNN #1 #2 #3
11654 {
11655 \if_int_compare:w #3 > \c_four
11656 __fp_round_return_one:
11657 \fi:
11658 \c_zero
11659 }
11660 \cs_new_eq:NN __fp_round_to_nearest_pinf_neg:NNN __fp_round_to_nearest_ninf:NNN
11661 \cs_new_eq:NN __fp_round_neg:NNN __fp_round_to_nearest_neg:NNN

(End definition for __fp_round_neg:NNN.)

26.2 The round function
__fp_round_o:Nw The trunc, ceil and floor functions expect one or two arguments (the second is 0 by

default), and the round function also accepts a third argument (nan by default), which
will change #1 from __fp_round_to_nearest:NNN to one of its analogues.

11662 \cs_new:Npn __fp_round_o:Nw #1#2 @
11663 {
11664 \if_case:w
11665 __int_eval:w __fp_array_count:n {#2} - \c_one __int_eval_end:
11666 __fp_round:Nwn #1 #2 {0} \exp:w
11667 \or: __fp_round:Nww #1 #2 \exp:w
11668 \else: __fp_round:Nwww #1 #2 @ \exp:w
11669 \fi:
11670 \exp_end_continue_f:w
11671 }

(End definition for __fp_round_o:Nw.)

__fp_round:Nwww Having three arguments is only allowed for round, not trunc, ceil, floor, so check for
that case. If all is well, construct one of __fp_round_to_nearest:NNN, __fp_round_-
to_nearest_zero:NNN, __fp_round_to_nearest_ninf:NNN, __fp_round_to_nearest_-
pinf:NNN and act accordingly.

11672 \cs_new:Npn __fp_round:Nwww #1#2 ; #3 ; \s__fp __fp_chk:w #4#5#6 ; #7 @
11673 {
11674 \cs_if_eq:NNTF #1 __fp_round_to_nearest:NNN
11675 {
11676 \tl_if_empty:nTF {#7}
11677 {

604

11678 \exp_args:Nc __fp_round:Nww
11679 {
11680 __fp_round_to_nearest
11681 \if_meaning:w 0 #4 _zero \else:
11682 \if_case:w #5 \exp_stop_f: _pinf \or: \else: _ninf \fi: \fi:
11683 :NNN
11684 }
11685 #2 ; #3 ;
11686 }
11687 {
11688 __fp_error:nnnn { num-args } { round () } { 1 } { 3 }
11689 \exp_after:wN \c_nan_fp
11690 }
11691 }
11692 {
11693 __fp_error:nffn { num-args }
11694 { __fp_round_name_from_cs:N #1 () } { 1 } { 2 }
11695 \exp_after:wN \c_nan_fp
11696 }
11697 }

(End definition for __fp_round:Nwww.)

__fp_round_name_from_cs:N

11698 \cs_new:Npn __fp_round_name_from_cs:N #1
11699 {
11700 \cs_if_eq:NNTF #1 __fp_round_to_zero:NNN { trunc }
11701 {
11702 \cs_if_eq:NNTF #1 __fp_round_to_ninf:NNN { floor }
11703 {
11704 \cs_if_eq:NNTF #1 __fp_round_to_pinf:NNN { ceil }
11705 { round }
11706 }
11707 }
11708 }

(End definition for __fp_round_name_from_cs:N.)

__fp_round:Nww
__fp_round:Nwn

__fp_round_normal:NwNNnw
__fp_round_normal:NnnwNNnn

__fp_round_pack:Nw
__fp_round_normal:NNwNnn

__fp_round_normal_end:wwNnn
__fp_round_special:NwwNnn
__fp_round_special_aux:Nw

11709 \cs_new:Npn __fp_round:Nww #1#2 ; #3 ;
11710 {
11711 __fp_small_int:wTF #3; { __fp_round:Nwn #1#2; }
11712 {
11713 __fp_invalid_operation_tl_o:ff
11714 { __fp_round_name_from_cs:N #1 }
11715 { __fp_array_to_clist:n { #2; #3; } }
11716 }
11717 }
11718 \cs_new:Npn __fp_round:Nwn #1 \s__fp __fp_chk:w #2#3#4; #5
11719 {

605

11720 \if_meaning:w 1 #2
11721 \exp_after:wN __fp_round_normal:NwNNnw
11722 \exp_after:wN #1
11723 __int_value:w #5
11724 \else:
11725 \exp_after:wN __fp_exp_after_o:w
11726 \fi:
11727 \s__fp __fp_chk:w #2#3#4;
11728 }
11729 \cs_new:Npn __fp_round_normal:NwNNnw #1#2 \s__fp __fp_chk:w 1#3#4#5;
11730 {
11731 __fp_decimate:nNnnnn { \c_sixteen - #4 - #2 }
11732 __fp_round_normal:NnnwNNnn #5 #1 #3 {#4} {#2}
11733 }
11734 \cs_new:Npn __fp_round_normal:NnnwNNnn #1#2#3#4; #5#6
11735 {
11736 \exp_after:wN __fp_round_normal:NNwNnn
11737 __int_value:w __int_eval:w
11738 \if_int_compare:w #2 > \c_zero
11739 1 __int_value:w #2
11740 \exp_after:wN __fp_round_pack:Nw
11741 __int_value:w __int_eval:w 1#3 +
11742 \else:
11743 \if_int_compare:w #3 > \c_zero
11744 1 __int_value:w #3 +
11745 \fi:
11746 \fi:
11747 \exp_after:wN #5
11748 \exp_after:wN #6
11749 \use_none:nnnnnnn #3
11750 #1
11751 __int_eval_end:
11752 0000 0000 0000 0000 ; #6
11753 }
11754 \cs_new:Npn __fp_round_pack:Nw #1
11755 { \if_meaning:w 2 #1 + \c_one \fi: __int_eval_end: }
11756 \cs_new:Npn __fp_round_normal:NNwNnn #1 #2
11757 {
11758 \if_meaning:w 0 #2
11759 \exp_after:wN __fp_round_special:NwwNnn
11760 \exp_after:wN #1
11761 \fi:
11762 __fp_pack_twice_four:wNNNNNNNN
11763 __fp_pack_twice_four:wNNNNNNNN
11764 __fp_round_normal_end:wwNnn
11765 ; #2
11766 }
11767 \cs_new:Npn __fp_round_normal_end:wwNnn #1;#2;#3#4#5
11768 {
11769 \exp_after:wN __fp_exp_after_o:w \exp:w \exp_end_continue_f:w

606

11770 __fp_sanitize:Nw #3 #4 ; #1 ;
11771 }
11772 \cs_new:Npn __fp_round_special:NwwNnn #1#2;#3;#4#5#6
11773 {
11774 \if_meaning:w 0 #1
11775 __fp_case_return:nw
11776 { \exp_after:wN __fp_zero_fp:N \exp_after:wN #4 }
11777 \else:
11778 \exp_after:wN __fp_round_special_aux:Nw
11779 \exp_after:wN #4
11780 __int_value:w __int_eval:w \c_one
11781 \if_meaning:w 1 #1 -#6 \else: +#5 \fi:
11782 \fi:
11783 ;
11784 }
11785 \cs_new:Npn __fp_round_special_aux:Nw #1#2;
11786 {
11787 \exp_after:wN __fp_exp_after_o:w \exp:w \exp_end_continue_f:w
11788 __fp_sanitize:Nw #1#2; {1000}{0000}{0000}{0000};
11789 }

(End definition for __fp_round:Nww and __fp_round:Nwn.)

11790 〈/initex | package〉

27 l3fp-parse implementation
11791 〈*initex | package〉
11792 〈@@=fp〉

27.1 Work plan
The task at hand is non-trivial, and some previous failed attempts show that the code
leads to unreadable logs, so we had better get it (almost) right the first time. Let us first
describe our goal, then discuss the design precisely before writing any code.

__fp_parse:n Evaluates the 〈floating point expression〉 and leaves the result in the input stream as an
internal floating point number. This function forms the basis of almost all public l3fp
functions. During evaluation, each token is fully f-expanded.

TEXhackers note: Registers (integers, toks, etc.) are automatically unpacked, without
requiring a function such as \int_use:N. Invalid tokens remaining after f-expansion will lead
to unrecoverable low-level TEX errors.

(End definition for __fp_parse:n.)
Floating point expressions are composed of numbers, given in various forms, infix

operators, such as +, **, or , (which joins two numbers into a list), and prefix operators,
such as the unary -, functions, or opening parentheses. Here is a list of precedences
which control the order of evaluation (some distinctions are irrelevant for the order of
evaluation, but serve as signals), from the tightest binding to the loosest binding.

607

16 Function calls with multiple arguments.

15 Function calls expecting exactly one argument.

14 Binary ** and ^ (right to left).

12 Unary +, -, ! (right to left).

10 Binary *, /, and juxtaposition (implicit *).

9 Binary + and -.

7 Comparisons.

5 Logical and, denoted by &&.

4 Logical or, denoted by ||.

3 Ternary operator ?:, piece ?.

2 Ternary operator ?:, piece :.

1 Commas, and parentheses accepting commas.

0 Parentheses expecting exactly one argument.

-1 Start and end of the expression.

27.1.1 Storing results

The main question in parsing expressions expandably is to decide where to put the
intermediate results computed for various subexpressions.

One option is to store the values at the start of the expression, and carry them
together as the first argument of each macro. However, we want to f-expand tokens
one by one in the expression (as \int_eval:n does), and with this approach, expanding
the next unread token forces us to jump with \exp_after:wN over every value computed
earlier in the expression. With this approach, the run-time will grow at least quadratically
in the length of the expression, if not as its cube (inserting the \exp_after:wN is tricky
and slow).

A second option is to place those values at the end of the expression. Then expanding
the next unread token is straightforward, but this still hits a performance issue: for long
expressions we would be reaching all the way to the end of the expression at every step
of the calculation. The run-time is again quadratic.

A variation of the above attempts to place the intermediate results which appear
when computing a parenthesized expression near the closing parenthesis. This still lets
us expand tokens as we go, and avoids performance problems as long as there are enough
parentheses. However, it would be much better to avoid requiring the closing parenthesis
to be present as soon as the corresponding opening parenthesis is read: the closing
parenthesis may still be hidden in a macro yet to be expanded.

Hence, we need to go for some fine expansion control: the result is stored before the
start!

608

Let us illustrate this idea in a simple model: adding positive integers which may be
resulting from the expansion of macros, or may be values of registers. Assume that one
number, say, 12345, has already been found, and that we want to parse the next number.
The current status of the code may look as follows.

\exp_after:wN \add:ww __int_value:w 12345 \exp_after:wN ;
\exp:w \operand:w 〈stuff〉

One step of expansion expands \exp_after:wN, which triggers the primitive __int_-
value:w, which reads the five digits we have already found, 12345. This integer is
unfinished, causing the second \exp_after:wN to expand, and to trigger the construction
\exp:w, which expands \operand:w, defined to read what follows and make a number
out of it, then leave \c_zero, the number, and a semicolon in the input stream. Once
\operand:w is done expanding, we obtain essentially

\exp_after:wN \add:ww __int_value:w 12345 ;
\exp:w \c_zero 333444 ;

where in fact \exp_after:wN has already been expanded, __int_value:w has already
seen 12345, and \exp:w is still looking for a number. It finds \c_zero, hence expands
to nothing. Now, __int_value:w sees the ;, which cannot be part of a number. The
expansion stops, and we are left with

\add:ww 12345 ; 333444 ;

which can safely perform the addition by grabbing two arguments delimited by ;.
If we were to continue parsing the expression, then the following number should also

be cleaned up before the next use of a binary operation such as \add:ww. Just like __-
int_value:w 12345 \exp_after:wN ; expanded what follows once, we need \add:ww to
do the calculation, and in the process to expand the following once. This is also true in
our real application: all the functions of the form __fp_..._o:ww expand what follows
once. This comes at the cost of leaving tokens in the input stack, and we will need to be
careful not to waste this memory. All of our discussion above is nice but simplistic, as
operations should not simply be performed in the order they appear.

27.1.2 Precedence and infix operators

The various operators we will encounter have different precedences, which influence the
order of calculations: 1 + 2× 3 = 1 + (2× 3) because × has a higher precedence than +.
The true analog of our macro \operand:w must thus take care of that. When looking for
an operand, it needs to perform calculations until reaching an operator which has lower
precedence than the one which called \operand:w. This means that \operand:w must
know what the previous binary operator is, or rather, its precedence: we thus rename
it \operand:Nw. Let us describe as an example how the calculation 41-2^3*4+5 will be
done. Here, we abuse notations: the first argument of \operand:Nw should be an integer
constant (\c_three, \c_nine, . . .) equal to the precedence of the given operator, not
directly the operator itself.

• Clean up 41 and find -. We call \operand:Nw - to find the second operand.

609

• Clean up 2 and find ^.

• Compare the precedences of - and ^. Since the latter is higher, we need to com-
pute the exponentiation. For this, find the second operand with a nested call to
\operand:Nw ^.

• Clean up 3 and find *.

• Compare the precedences of ^ and *. Since the former is higher, \operand:Nw ^
has found the second operand of the exponentiation, which is computed: 23 = 8.

• We now have 41+8*4+5, and \operand:Nw - is still looking for a second operand
for the subtraction. Is it 8?

• Compare the precedences of - and *. Since the latter is higher, we are not done
with 8. Call \operand:Nw * to find the second operand of the multiplication.

• Clean up 4, and find -.

• Compare the precedences of * and -. Since the former is higher, \operand:Nw *
has found the second operand of the multiplication, which is computed: 8 ∗ 4 = 32.

• We now have 41+32+5, and \operand:Nw - is still looking for a second operand for
the subtraction. Is it 32?

• Compare the precedences of - and +. Since they are equal, \operand:Nw - has
found the second operand for the subtraction, which is computed: 41− 32 = 9.

• We now have 9+5.

The procedure above stops short of performing all computations, but adding a surround-
ing call to \operand:Nw with a very low precedence ensures that all computations will
be performed before \operand:Nw is done. Adding a trailing marker with the same very
low precedence prevents the surrounding \operand:Nw from going beyond the marker.

The pattern above to find an operand for a given operator, is to find one number and
the next operator, then compare precedences to know if the next computation should be
done. If it should, then perform it after finding its second operand, and look at the next
operator, then compare precedences to know if the next computation should be done.
This continues until we find that the next computation should not be done. Then, we
stop.

We are now ready to get a bit more technical and describe which of the l3fp-parse
functions correspond to each step above.

First, __fp_parse_operand:Nw is the \operand:Nw function above, with small
modifications due to expansion issues discussed later. We denote by 〈precedence〉 the
argument of __fp_parse_operand:Nw, that is, the precedence of the binary operator
whose operand we are trying to find. The basic action is to read numbers from the input
stream. This is done by __fp_parse_one:Nw. A first approximation of this function is
that it reads one 〈number〉, performing no computation, and finds the following binary
〈operator〉. Then it expands to

610

〈number〉
__fp_parse_infix_〈operator〉:N 〈precedence〉

expanding the infix auxiliary before leaving the above in the input stream.
We now explain the infix auxiliaries. We need some flexibility in how we treat

the case of equal precedences: most often, the first operation encountered should be
performed, such as 1-2-3 being computed as (1-2)-3, but 2^3^4 should be eval-
uated as 2^(3^4) instead. For this reason, and to support the equivalence be-
tween ** and ^ more easily, each binary operator is converted to a control sequence
__fp_parse_infix_〈operator〉:N when it is encountered for the first time. Instead of
passing both precedences to a test function to do the comparison steps above, we pass the
〈precedence〉 (of the earlier operator) to the infix auxiliary for the following 〈operator〉,
to know whether to perform the computation of the 〈operator〉. If it should not be
performed, the infix auxiliary expands to

@ \use_none:n __fp_parse_infix_〈operator〉:N

and otherwise it calls __fp_parse_operand:Nw with the precedence of the 〈operator〉
to find its second operand 〈number2〉 and the next 〈operator2〉, and expands to

@ __fp_parse_apply_binary:NwNwN
〈operator〉 〈number2〉
@ __fp_parse_infix_〈operator2〉:N

The infix function is responsible for comparing precedences, but cannot directly call the
computation functions, because the first operand 〈number〉 is before the infix function
in the input stream. This is why we stop the expansion here and give control to another
function to close the loop.

A definition of __fp_parse_operand:Nw 〈precedence〉 with some of the expansion
control removed is

\exp_after:wN __fp_parse_continue:NwN
\exp_after:wN 〈precedence〉
\exp:w \exp_end_continue_f:w
__fp_parse_one:Nw 〈precedence〉

This expands __fp_parse_one:Nw 〈precedence〉 completely, which finds a number, wraps
the next 〈operator〉 into an infix function, feeds this function the 〈precedence〉, and
expands it, yielding either

__fp_parse_continue:NwN 〈precedence〉
〈number〉 @
\use_none:n __fp_parse_infix_〈operator〉:N

or

__fp_parse_continue:NwN 〈precedence〉
〈number〉 @
__fp_parse_apply_binary:NwNwN
〈operator〉 〈number2〉
@ __fp_parse_infix_〈operator2〉:N

611

The definition of __fp_parse_continue:NwN is then very simple:

\cs_new:Npn __fp_parse_continue:NwN #1#2@#3 { #3 #1 #2 @ }

In the first case, #3 is \use_none:n, yielding

\use_none:n 〈precedence〉 〈number〉 @
__fp_parse_infix_〈operator〉:N

then 〈number〉 @ __fp_parse_infix_〈operator〉:N. In the second case, #3 is __fp_-
parse_apply_binary:NwNwN, whose role is to compute 〈number〉 〈operator〉 〈number2〉
and to prepare for the next comparison of precedences: first we get

__fp_parse_apply_binary:NwNwN
〈precedence〉 〈number〉 @
〈operator〉 〈number2〉
@ __fp_parse_infix_〈operator2〉:N

then

\exp_after:wN __fp_parse_continue:NwN
\exp_after:wN 〈precedence〉
\exp:w \exp_end_continue_f:w
__fp_〈operator〉_o:ww 〈number〉 〈number2〉
\exp:w \exp_end_continue_f:w
__fp_parse_infix_〈operator2〉:N 〈precedence〉

where __fp_〈operator〉_o:ww computes 〈number〉 〈operator〉 〈number2〉 and expands
after the result, thus triggers the comparison of the precedence of the 〈operator2〉 and
the 〈precedence〉, continuing the loop.

We have introduced the most important functions here, and the next few paragraphs
will describe various subtleties.

27.1.3 Prefix operators, parentheses, and functions

Prefix operators (unary -, +, !) and parentheses are taken care of by the same mechanism,
and functions (sin, exp, etc.) as well. Finding the argument of the unary -, for instance,
is very similar to grabbing the second operand of a binary infix operator, with a subtle
precedence explained below. Once that operand is found, the operator can be applied to
it (for the unary -, this simply flips the sign). A left parenthesis is just a prefix operator
with a very low precedence equal to that of the closing parenthesis (which is treated as
an infix operator, since it normally appears just after numbers), so that all computations
are performed until the closing parenthesis. The prefix operator associated to the left
parenthesis does not alter its argument, but it removes the closing parenthesis (with some
checks).

Prefix operators are the reason why we only summarily described the function _-
_fp_parse_one:Nw earlier. This function is responsible for reading in the input stream
the first possible 〈number〉 and the next infix 〈operator〉. If what follows __fp_parse_-
one:Nw 〈precedence〉 is a prefix operator, then we must find the operand of this prefix

612

operator through a nested call to __fp_parse_operand:Nw with the appropriate prece-
dence, then apply the operator to the operand found to yield the result of __fp_parse_-
one:Nw. So far, all is simple.

The unary operators +, -, ! complicate things a little bit: -3**2 should be −(32) =
−9, and not (−3)2 = 9. This would easily be done by giving - a lower precedence,
equal to that of the infix + and -. Unfortunately, this fails in cases such as 3**-2*4,
yielding 3−2×4 instead of the correct 3−2 × 4. A second attempt would be to call _-
_fp_parse_operand:Nw with the 〈precedence〉 of the previous operator, but 0>-2+3 is
then parsed as 0>-(2+3): the addition is performed because it binds more tightly than
the comparision which precedes -. The correct approach is for a unary - to perform
operations whose precedence is greater than both that of the previous operation, and
that of the unary - itself. The unary - is given a precedence higher than multiplication
and division. This does not lead to any surprising result, since −(x/y) = (−x)/y and
similarly for multiplication, and it reduces the number of nested calls to __fp_parse_-
operand:Nw.

Functions are implemented as prefix operators with very high precedence, so that
their argument is the first number that can possibly be built.

Note that contrarily to the infix functions discussed earlier, the prefix functions
do perform tests on the previous 〈precedence〉 to decide whether to find an argument or
not, since we know that we need a number, and must never stop there.

27.1.4 Numbers and reading tokens one by one

So far, we have glossed over one important point: what is a “number”? A number is
typically given in the form 〈significand〉e〈exponent〉, where the 〈significand〉 is any non-
empty string composed of decimal digits and at most one decimal separator (a period),
the exponent “e〈exponent〉” is optional and is composed of an exponent mark e followed
by a possibly empty string of signs + or - and a non-empty string of decimal digits. The
〈significand〉 can also be an integer, dimension, skip, or muskip variable, in which case
dimensions are converted from points (or mu units) to floating points, and the 〈exponent〉
can also be an integer variable. Numbers can also be given as floating point variables, or
as named constants such as nan, inf or pi. We may add more types in the future.

When __fp_parse_one:Nw is looking for a “number”, here is what happens.

• If the next token is a control sequence with the meaning of \scan_stop:, it can
be: \s__fp, in which case our job is done, as what follows is an internal floating
point number, or \s__fp_mark, in which case the expression has come to an early
end, as we are still looking for a number here, or something else, in which case we
consider the control sequence to be a bad variable resulting from c-expansion.

• If the next token is a control sequence with a different meaning, we assume that it is
a register, unpack it with \tex_the:D, and use its value (in pt for dimensions and
skips, mu for muskips) as the 〈significand〉 of a number: we look for an exponent.

• If the next token is a digit, we remove any leading zeros, then read a significand
larger than 1 if the next character is a digit, read a significand smaller than 1 if the

613

next character is a period, or we have found a significand equal to 0 otherwise, and
look for an exponent.

• If the next token is a letter, we collect more letters until the first non-letter: the
resulting word may denote a function such as asin, a constant such as pi or be
unknown. In the first case, we call __fp_parse_operand:Nw to find the argument
of the function, then apply the function, before declaring that we are done. Other-
wise, we are done, either with the value of the constant, or with the value nan for
unknown words.

• If the next token is anything else, we check whether it is a known prefix operator,
in which case __fp_parse_operand:Nw finds its operand. If it is not known, then
either a number is missing (if the token is a known infix operator) or the token is
simply invalid in floating point expressions.

Once a number is found, __fp_parse_one:Nw also finds an infix operator. This goes as
follows.

• If the next token is a control sequence, it could be the special marker \s__fp_-
mark, and otherwise it is a case of juxtaposing numbers, such as 2\c_three, with
an implied multiplication.

• If the next token is a letter, it is also a case of juxtaposition, as letters cannot be
proper infix operators.

• Otherwise (including in the case of digits), if the token is a known infix operator, the
appropriate __fp_infix_〈operator〉:N function is built, and if it does not exist,
we complain. In particular, the juxtaposition \c_three 2 is disallowed.

In the above, we need to test whether a character token #1 is a digit:

\if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f:
is a digit

\else:
not a digit

\fi:

To exclude 0, replace \c_nine by \c_ten. The use of \token_to_str:N ensures that a
digit with any catcode is detected. To test if a character token is a letter, we need to
work with its character code, testing if ‘#1 lies in [65, 90] (uppercase letters) or [97, 112]
(lowercase letters)

\if_int_compare:w __int_eval:w
(‘#1 \if_int_compare:w ‘#1 > ‘Z - 32 \fi:) / 26 = \c_three

is a letter
\else:
not a letter

\fi:

614

At all steps, we try to accept all category codes: when #1 is kept to be used later,
it is almost always converted to category code other through \token_to_str:N. More
precisely, catcodes {3, 6, 7, 8, 11, 12} should work without trouble, but {1, 2, 4, 10, 13} will
not work, and of course {0, 5, 9} cannot become tokens.

Floating point expressions should behave as much as possible like ε-TEX-based integer
expressions and dimension expressions. In particular, f-expansion should be performed
as the expression is read, token by token, forcing the expansion of protected macros, and
ignoring spaces. One advantage of expanding at every step is that restricted expandable
functions can then be used in floating point expressions just as they can be in other kinds
of expressions. Problematically, spaces stop f-expansion: for instance, the macro \X
below will not be expanded if we simply perform f-expansion.

\DeclareDocumentCommand {\test} {m} { \fp_eval:n {#1} }
\ExplSyntaxOff
\test { 1 + \X }

Of course, spaces will not appear in a code setting, but may very easily come in document-
level input, from which some expressions may come. To avoid this problem, at every step,
we do essentially what \use:f would do: take an argument, put it back in the input
stream, then f-expand it. This is not a complete solution, since a macro’s expansion
could contain leading spaces which will stop the f-expansion before further macro calls
are performed. However, in practice it should be enough: in particular, floating point
numbers will correctly be expanded to the underlying \s__fp . . . structure. The f-
expansion is performed by __fp_parse_expand:w.

27.2 Main auxiliary functions
__fp_parse_operand:Nw Reads the “...”, performing every computation with a precedence higher than 〈precedence〉,

then expands to where the 〈operation〉 is the first operation with a lower precedence, pos-
sibly end, and the “...” start just after the 〈operation〉.

(End definition for __fp_parse_operand:Nw.)

__fp_parse_infix_+:N If + has a precedence higher than the 〈precedence〉, cleans up a second 〈operand〉 and finds
the 〈operation2〉 which follows, and expands to Otherwise expands to A similar function
exists for each infix operator.

(End definition for __fp_parse_infix_+:N.)

__fp_parse_one:Nw Cleans up one or two operands depending on how the precedence of the next operation
compares to the 〈precedence〉. If the following 〈operation〉 has a precedence higher than
〈precedence〉, expands to and otherwise expands to

(End definition for __fp_parse_one:Nw.)

615

27.3 Helpers
__fp_parse_expand:w This function must always come within a \exp:w expansion. The 〈tokens〉 should be the

part of the expression that we have not yet read. This requires in particular closing all
conditionals properly before expanding.

11793 \cs_new:Npn __fp_parse_expand:w #1 { \exp_end_continue_f:w #1 }

(End definition for __fp_parse_expand:w.)

__fp_parse_return_semicolon:w This very odd function swaps its position with the following \fi: and removes __fp_-
parse_expand:w normally responsible for expansion. That turns out to be useful.

11794 \cs_new:Npn __fp_parse_return_semicolon:w
11795 #1 \fi: __fp_parse_expand:w { \fi: ; #1 }

(End definition for __fp_parse_return_semicolon:w.)

__fp_type_from_scan:N
__fp_type_from_scan:w

Grabs the pieces of the stringified 〈token〉 which lies after the first s__fp. If the 〈token〉
does not contain that string, the result is _?.

11796 \cs_new:Npx __fp_type_from_scan:N #1
11797 {
11798 \exp_not:N \exp_after:wN \exp_not:N __fp_type_from_scan:w
11799 \exp_not:N \token_to_str:N #1 \exp_not:N \q_mark
11800 \tl_to_str:n { s__fp _? } \exp_not:N \q_mark \exp_not:N \q_stop
11801 }
11802 \use:x
11803 {
11804 \cs_new:Npn \exp_not:N __fp_type_from_scan:w
11805 ##1 \tl_to_str:n { s__fp } ##2 \exp_not:N \q_mark ##3 \exp_not:N \q_stop
11806 {##2}
11807 }

(End definition for __fp_type_from_scan:N and __fp_type_from_scan:w.)

__fp_parse_digits_vii:N
__fp_parse_digits_vi:N
__fp_parse_digits_v:N

__fp_parse_digits_iv:N
__fp_parse_digits_iii:N
__fp_parse_digits_ii:N
__fp_parse_digits_i:N
__fp_parse_digits_:N

These functions must be called within an __int_value:w or __int_eval:w construc-
tion. The first token which follows must be f-expanded prior to calling those functions.
The functions read tokens one by one, and output digits into the input stream, until
meeting a non-digit, or up to a number of digits equal to their index. The full expansion
is

〈digits〉 ; 〈filling 0 〉 ; 〈length〉

where 〈filling 0 〉 is a string of zeros such that 〈digits〉 〈filling 0 〉 has the length given by
the index of the function, and 〈length〉 is the number of zeros in the 〈filling 0 〉 string.
Each function puts a digit into the input stream and calls the next function, until we
find a non-digit. We are careful to pass the tested tokens through \token_to_str:N to
normalize their category code.

11808 \cs_set_protected:Npn __fp_tmp:w #1 #2 #3
11809 {
11810 \cs_new:cpn { __fp_parse_digits_ #1 :N } ##1
11811 {

616

11812 \if_int_compare:w \c_nine < 1 \token_to_str:N ##1 \exp_stop_f:
11813 \token_to_str:N ##1 \exp_after:wN #2 \exp:w
11814 \else:
11815 __fp_parse_return_semicolon:w #3 ##1
11816 \fi:
11817 __fp_parse_expand:w
11818 }
11819 }
11820 __fp_tmp:w {vii} __fp_parse_digits_vi:N { 0000000 ; 7 }
11821 __fp_tmp:w {vi} __fp_parse_digits_v:N { 000000 ; 6 }
11822 __fp_tmp:w {v} __fp_parse_digits_iv:N { 00000 ; 5 }
11823 __fp_tmp:w {iv} __fp_parse_digits_iii:N { 0000 ; 4 }
11824 __fp_tmp:w {iii} __fp_parse_digits_ii:N { 000 ; 3 }
11825 __fp_tmp:w {ii} __fp_parse_digits_i:N { 00 ; 2 }
11826 __fp_tmp:w {i} __fp_parse_digits_:N { 0 ; 1 }
11827 \cs_new_nopar:Npn __fp_parse_digits_:N { ; ; 0 }

(End definition for __fp_parse_digits_vii:N and others.)

27.4 Parsing one number
__fp_parse_one:Nw This function finds one number, and packs the symbol which follows in an \..._infix_...

csname. #1 is the previous 〈precedence〉, and #2 the first token of the operand. We distin-
guish four cases: #2 is equal to \scan_stop: in meaning, #2 is a different control sequence,
#2 is a digit, and #2 is something else (this last case will be split further). Despite the
earlier f-expansion, #2 may still be expandable if it was protected by \exp_not:N, as
may happen with the LATEX2ε command \protect. Using a well placed \reverse_if:N,
this case is sent to __fp_parse_one_fp:NN which deals with it robustly.

11828 \cs_new:Npn __fp_parse_one:Nw #1 #2
11829 {
11830 \if_catcode:w \scan_stop: \exp_not:N #2
11831 \exp_after:wN \if_meaning:w \exp_not:N #2 #2 \else:
11832 \exp_after:wN \reverse_if:N
11833 \fi:
11834 \if_meaning:w \scan_stop: #2
11835 \exp_after:wN \exp_after:wN
11836 \exp_after:wN __fp_parse_one_fp:NN
11837 \else:
11838 \exp_after:wN \exp_after:wN
11839 \exp_after:wN __fp_parse_one_register:NN
11840 \fi:
11841 \else:
11842 \if_int_compare:w \c_nine < 1 \token_to_str:N #2 \exp_stop_f:
11843 \exp_after:wN \exp_after:wN
11844 \exp_after:wN __fp_parse_one_digit:NN
11845 \else:
11846 \exp_after:wN \exp_after:wN
11847 \exp_after:wN __fp_parse_one_other:NN
11848 \fi:

617

11849 \fi:
11850 #1 #2
11851 }

(End definition for __fp_parse_one:Nw.)

__fp_parse_one_fp:NN
__fp_exp_after_mark_f:nw

__fp_exp_after_?_f:nw

This function receives a 〈precedence〉 and a control sequence equal to \scan_stop: in
meaning. There are three cases, dispatched using __fp_type_from_scan:N.

• \s__fp starts a floating point number, and we call __fp_exp_after_f:nw, which
f-expands after the floating point.

• \s__fp_mark is a premature end, we call __fp_exp_after_mark_f:nw, which trig-
gers an fp-early-end error.

• For a control sequence not containing \s__fp, we call __fp_exp_after_?_f:nw,
causing a bad-variable error.

This scheme is extensible: additional types can be added by starting the variables with
a scan mark of the form \s__fp_〈type〉 and defining __fp_exp_after_〈type〉_f:nw. In
all cases, we make sure that the second argument of __fp_parse_infix:NN is correctly
expanded. A special case only enabled in LATEX2ε is that if \protect is encountered then
the error message mentions the control sequence which follows it rather than \protect it-
self. The test for LATEX2ε uses \@unexpandable@protect rather than \protect because
\protect is often \scan_stop: hence “does not exist”.

11852 \cs_new:Npn __fp_parse_one_fp:NN #1#2
11853 {
11854 \cs:w __fp_exp_after __fp_type_from_scan:N #2 _f:nw \cs_end:
11855 {
11856 \exp_after:wN __fp_parse_infix:NN
11857 \exp_after:wN #1 \exp:w __fp_parse_expand:w
11858 }
11859 #2
11860 }
11861 \cs_new:Npn __fp_exp_after_mark_f:nw #1
11862 {
11863 __msg_kernel_expandable_error:nn { kernel } { fp-early-end }
11864 \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w #1
11865 }
11866 \cs_new:cpn { __fp_exp_after_?_f:nw } #1#2
11867 {
11868 __msg_kernel_expandable_error:nnn { kernel } { bad-variable } {#2}
11869 \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w #1
11870 }
11871 〈*package〉
11872 \group_begin:
11873 \char_set_catcode_letter:N \@
11874 \cs_if_exist:NT \@unexpandable@protect
11875 {
11876 \cs_gset:cpn { __fp_exp_after_?_f:nw } #1#2

618

11877 {
11878 \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w #1
11879 \str_if_eq:nnTF {#2} { \protect }
11880 {
11881 \cs_if_eq:NNTF #2 \@unexpandable@protect { \use_i:nn } { \use:n }
11882 { __msg_kernel_expandable_error:nnn { kernel } { fp-robust-cmd } }
11883 }
11884 { __msg_kernel_expandable_error:nnn { kernel } { bad-variable } {#2} }
11885 }
11886 }
11887 \group_end:
11888 〈/package〉

(End definition for __fp_parse_one_fp:NN , __fp_exp_after_mark_f:nw , and __fp_exp_after_?_-
f:nw.)

__fp_parse_one_register:NN
__fp_parse_one_register_aux:Nw

__fp_parse_one_register_auxii:wwwNw
__fp_parse_one_register_int:www
__fp_parse_one_register_mu:www
__fp_parse_one_register_dim:ww

This is called whenever #2 is a control sequence other than \scan_stop: in meaning.
We assume that it is a register, but carefully unpacking it with \tex_the:D within
braces. First, we find the exponent following #2. Then we unpack #2 with \tex_-
the:D, and the auxii auxiliary distinguishes integer registers from dimensions/skips
from muskips, according to the presence of a period and/or of pt. For integers, sim-
ply convert 〈value〉e〈exponent〉 to a floating point number with \fp_parse:n (this is
somewhat wasteful). For other registers, the decimal rounding provided by TEX does
not accurately represent the binary value that it manipulates, so we extract this binary
value as a number of scaled points with __int_value:w __dim_eval:w 〈decimal value〉
pt, and use an auxiliary of \dim_to_fp:n, which performs the multiplication by 2−16,
correctly rounded.

11889 \cs_new:Npn __fp_parse_one_register:NN #1#2
11890 {
11891 \exp_after:wN __fp_parse_infix_after_operand:NwN
11892 \exp_after:wN #1
11893 \exp:w \exp_end_continue_f:w
11894 \exp_after:wN __fp_parse_one_register_aux:Nw
11895 \exp_after:wN #2
11896 __int_value:w
11897 \exp_after:wN __fp_parse_exponent:N
11898 \exp:w __fp_parse_expand:w
11899 }
11900 \cs_new:Npx __fp_parse_one_register_aux:Nw #1
11901 {
11902 \exp_not:n
11903 {
11904 \exp_after:wN \use:nn
11905 \exp_after:wN __fp_parse_one_register_auxii:wwwNw
11906 }
11907 \exp_not:N \exp_after:wN { \exp_not:N \tex_the:D #1 }
11908 ; \exp_not:N __fp_parse_one_register_dim:ww
11909 \tl_to_str:n { pt } ; \exp_not:N __fp_parse_one_register_mu:www
11910 . \tl_to_str:n { pt } ; \exp_not:N __fp_parse_one_register_int:www

619

11911 \exp_not:N \q_stop
11912 }
11913 \use:x
11914 {
11915 \cs_new:Npn \exp_not:N __fp_parse_one_register_auxii:wwwNw
11916 ##1 . ##2 \tl_to_str:n { pt } ##3 ; ##4##5 \exp_not:N \q_stop
11917 { ##4 ##1.##2; }
11918 \cs_new:Npn \exp_not:N __fp_parse_one_register_mu:www
11919 ##1 \tl_to_str:n { mu } ; ##2 ;
11920 { \exp_not:N __fp_parse_one_register_dim:ww ##1 ; }
11921 }
11922 \cs_new:Npn __fp_parse_one_register_int:www #1; #2.; #3;
11923 { __fp_parse:n { #1 e #3 } }
11924 \cs_new:Npn __fp_parse_one_register_dim:ww #1; #2;
11925 {
11926 \exp_after:wN __fp_from_dim_test:ww
11927 __int_value:w #2 \exp_after:wN ,
11928 __int_value:w __dim_eval:w #1 pt ;
11929 }

(End definition for __fp_parse_one_register:NN and others.)

__fp_parse_one_digit:NN A digit marks the beginning of an explicit floating point number. Once the number
is found, we will catch the case of overflow and underflow with __fp_sanitize:wN,
then __fp_parse_infix_after_operand:NwN expands __fp_parse_infix:NN after
the number we find, to wrap the following infix operator as required. Finding the number
itself begins by removing leading zeros: further steps are described later.

11930 \cs_new:Npn __fp_parse_one_digit:NN #1
11931 {
11932 \exp_after:wN __fp_parse_infix_after_operand:NwN
11933 \exp_after:wN #1
11934 \exp:w \exp_end_continue_f:w
11935 \exp_after:wN __fp_sanitize:wN
11936 __int_value:w __int_eval:w \c_zero __fp_parse_trim_zeros:N
11937 }

(End definition for __fp_parse_one_digit:NN.)

__fp_parse_one_other:NN For this function, #2 is a character token which is not a digit. If it is a let-
ter, __fp_parse_letters:N beyond this one and give the result to __fp_parse_-
word:Nw. Otherwise, the character is assumed to be a prefix operator, and we build
__fp_parse_prefix_〈operator〉:Nw.

11938 \cs_new:Npn __fp_parse_one_other:NN #1 #2
11939 {
11940 \if_int_compare:w
11941 __int_eval:w
11942 (‘#2 \if_int_compare:w ‘#2 > ‘Z - \c_thirty_two \fi:) / 26
11943 = \c_three
11944 \exp_after:wN __fp_parse_word:Nw
11945 \exp_after:wN #1

620

11946 \exp_after:wN #2
11947 \exp:w \exp_after:wN __fp_parse_letters:N
11948 \exp:w
11949 \else:
11950 \exp_after:wN __fp_parse_prefix:NNN
11951 \exp_after:wN #1
11952 \exp_after:wN #2
11953 \cs:w
11954 __fp_parse_prefix_ \token_to_str:N #2 :Nw
11955 \exp_after:wN
11956 \cs_end:
11957 \exp:w
11958 \fi:
11959 __fp_parse_expand:w
11960 }

(End definition for __fp_parse_one_other:NN.)

__fp_parse_word:Nw
__fp_parse_letters:N

Finding letters is a simple recursion. Once __fp_parse_letters:N has done its job,
we try to build a control sequence from the word #2. If it is a known word, then the
corresponding action is taken, and otherwise, we complain about an unknown word, yield
\c_nan_fp, and look for the following infix operator. Note that the unknown word could
be a mistyped function as well as a mistyped constant, so there is no way to tell whether
to look for arguments; we do not.

11961 \cs_new:Npn __fp_parse_word:Nw #1#2;
11962 {
11963 \cs_if_exist_use:cF { __fp_parse_word_#2:N }
11964 {
11965 __msg_kernel_expandable_error:nnn
11966 { kernel } { unknown-fp-word } {#2}
11967 \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w
11968 __fp_parse_infix:NN
11969 }
11970 #1
11971 }
11972 \cs_new:Npn __fp_parse_letters:N #1
11973 {
11974 \exp_end_continue_f:w
11975 \if_int_compare:w
11976 \if_catcode:w \scan_stop: \exp_not:N #1
11977 \c_zero
11978 \else:
11979 __int_eval:w
11980 (‘#1 \if_int_compare:w ‘#1 > ‘Z - \c_thirty_two \fi:)
11981 / 26
11982 \fi:
11983 = \c_three
11984 \exp_after:wN #1
11985 \exp:w \exp_after:wN __fp_parse_letters:N
11986 \exp:w

621

11987 \else:
11988 __fp_parse_return_semicolon:w #1
11989 \fi:
11990 __fp_parse_expand:w
11991 }

(End definition for __fp_parse_word:Nw.)

__fp_parse_prefix:NNN
__fp_parse_prefix_unknown:NNN

For this function, #1 is the previous 〈precedence〉, #2 is the operator just seen, and #3 is a
control sequence which implements the operator if it is a known operator. If this control
sequence is \scan_stop:, then the operator is in fact unknown. Either the expression is
missing a number there (if the operator is valid as an infix operator), and we put nan,
wrapping the infix operator in a csname as appropriate, or the character is simply invalid
in floating point expressions, and we continue looking for a number, starting again from
__fp_parse_one:Nw.

11992 \cs_new:Npn __fp_parse_prefix:NNN #1#2#3
11993 {
11994 \if_meaning:w \scan_stop: #3
11995 \exp_after:wN __fp_parse_prefix_unknown:NNN
11996 \exp_after:wN #2
11997 \fi:
11998 #3 #1
11999 }
12000 \cs_new:Npn __fp_parse_prefix_unknown:NNN #1#2#3
12001 {
12002 \cs_if_exist:cTF { __fp_parse_infix_ \token_to_str:N #1 :N }
12003 {
12004 __msg_kernel_expandable_error:nnn
12005 { kernel } { fp-missing-number } {#1}
12006 \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w
12007 __fp_parse_infix:NN #3 #1
12008 }
12009 {
12010 __msg_kernel_expandable_error:nnn
12011 { kernel } { fp-unknown-symbol } {#1}
12012 __fp_parse_one:Nw #3
12013 }
12014 }

(End definition for __fp_parse_prefix:NNN and __fp_parse_prefix_unknown:NNN.)

27.4.1 Numbers: trimming leading zeros

Numbers will be parsed as follows: first we trim leading zeros, then if the next character is
a digit, start reading a significand ≥ 1 with the set of functions __fp_parse_large. . . ;
if it is a period, the significand is < 1; and otherwise it is zero. In the second case,
trim additional zeros after the period, counting them for an exponent shift 〈exp1〉 < 0,
then read the significand with the set of functions __fp_parse_small. . . Once the
significand is read, read the exponent if e is present.

622

__fp_parse_trim_zeros:N
__fp_parse_trim_end:w

This function expects an already expanded token. It removes any leading zero, then
distinguishes three cases: if the first non-zero token is a digit, then call __fp_parse_-
large:N (the significand is ≥ 1); if it is ., then continue trimming zeros with __-
fp_parse_strim_zeros:N; otherwise, our number is exactly zero, and we call __fp_-
parse_zero: to take care of that case.

12015 \cs_new:Npn __fp_parse_trim_zeros:N #1
12016 {
12017 \if:w 0 \exp_not:N #1
12018 \exp_after:wN __fp_parse_trim_zeros:N
12019 \exp:w
12020 \else:
12021 \if:w . \exp_not:N #1
12022 \exp_after:wN __fp_parse_strim_zeros:N
12023 \exp:w
12024 \else:
12025 __fp_parse_trim_end:w #1
12026 \fi:
12027 \fi:
12028 __fp_parse_expand:w
12029 }
12030 \cs_new:Npn __fp_parse_trim_end:w #1 \fi: \fi: __fp_parse_expand:w
12031 {
12032 \fi:
12033 \fi:
12034 \if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f:
12035 \exp_after:wN __fp_parse_large:N
12036 \else:
12037 \exp_after:wN __fp_parse_zero:
12038 \fi:
12039 #1
12040 }

(End definition for __fp_parse_trim_zeros:N and __fp_parse_trim_end:w.)

__fp_parse_strim_zeros:N
__fp_parse_strim_end:w

If we have removed all digits until a period (or if the body started with a period), then
enter the “small_trim” loop which outputs −1 for each removed 0. Those −1 are added
to an integer expression waiting for the exponent. If the first non-zero token is a digit,
call __fp_parse_small:N (our significand is smaller than 1), and otherwise, the number
is an exact zero. The name strim stands for “small trim”.

12041 \cs_new:Npn __fp_parse_strim_zeros:N #1
12042 {
12043 \if:w 0 \exp_not:N #1
12044 - \c_one
12045 \exp_after:wN __fp_parse_strim_zeros:N \exp:w
12046 \else:
12047 __fp_parse_strim_end:w #1
12048 \fi:
12049 __fp_parse_expand:w
12050 }

623

12051 \cs_new:Npn __fp_parse_strim_end:w #1 \fi: __fp_parse_expand:w
12052 {
12053 \fi:
12054 \if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f:
12055 \exp_after:wN __fp_parse_small:N
12056 \else:
12057 \exp_after:wN __fp_parse_zero:
12058 \fi:
12059 #1
12060 }

(End definition for __fp_parse_strim_zeros:N and __fp_parse_strim_end:w.)

__fp_parse_zero: After reading a significand of 0, we need to remove any exponent, then put a sign of 1
for __fp_sanitize:wN, small hack to denote an exact zero (rather than an underflow).

12061 \cs_new:Npn __fp_parse_zero:
12062 {
12063 \exp_after:wN ; \exp_after:wN 1
12064 __int_value:w __fp_parse_exponent:N
12065 }

(End definition for __fp_parse_zero:.)

27.4.2 Number: small significand

__fp_parse_small:N This function is called after we have passed the decimal separator and removed all leading
zeros from the significand. It is followed by a non-zero digit (with any catcode). The
goal is to read up to 16 digits. But we can’t do that all at once, because __int_-
value:w (which allows us to collect digits and continue expanding) can only go up to 9
digits. Hence we grab digits in two steps of 8 digits. Since #1 is a digit, read seven more
digits using __fp_parse_digits_vii:N. The small_leading auxiliary will leave those
digits in the __int_value:w, and grab some more, or stop if there are no more digits.
Then the pack_leading auxiliary puts the various parts in the appropriate order for the
processing further up.

12066 \cs_new:Npn __fp_parse_small:N #1
12067 {
12068 \exp_after:wN __fp_parse_pack_leading:NNNNNww
12069 __int_value:w __int_eval:w 1 \token_to_str:N #1
12070 \exp_after:wN __fp_parse_small_leading:wwNN
12071 __int_value:w 1
12072 \exp_after:wN __fp_parse_digits_vii:N
12073 \exp:w __fp_parse_expand:w
12074 }

(End definition for __fp_parse_small:N.)

__fp_parse_small_leading:wwNN We leave 〈digits〉 〈zeros〉 in the input stream: the functions used to grab digits are
such that this constitutes digits 1 through 8 of the significand. Then prepare to pack
8 more digits, with an exponent shift of \c_zero (this shift is used in the case of a large

624

significand). If #4 is a digit, leave it behind for the packing function, and read 6 more
digits to reach a total of 15 digits: further digits are involved in the rounding. Otherwise
put 8 zeros in to complete the significand, then look for an exponent.

12075 \cs_new:Npn __fp_parse_small_leading:wwNN 1 #1 ; #2; #3 #4
12076 {
12077 #1 #2
12078 \exp_after:wN __fp_parse_pack_trailing:NNNNNNww
12079 \exp_after:wN \c_zero
12080 __int_value:w __int_eval:w 1
12081 \if_int_compare:w \c_nine < 1 \token_to_str:N #4 \exp_stop_f:
12082 \token_to_str:N #4
12083 \exp_after:wN __fp_parse_small_trailing:wwNN
12084 __int_value:w 1
12085 \exp_after:wN __fp_parse_digits_vi:N
12086 \exp:w
12087 \else:
12088 0000 0000 __fp_parse_exponent:Nw #4
12089 \fi:
12090 __fp_parse_expand:w
12091 }

(End definition for __fp_parse_small_leading:wwNN.)

__fp_parse_small_trailing:wwNN Leave digits 10 to 15 (arguments #1 and #2) in the input stream. If the 〈next token〉 is
a digit, it is the 16th digit, we keep it, then the small_round auxiliary considers this
digit and all further digits to perform the rounding: the function expands to nothing, to
+\c_zero or to +\c_one. Otherwise, there is no 16-th digit, so we put a 0, and look for
an exponent.

12092 \cs_new:Npn __fp_parse_small_trailing:wwNN 1 #1 ; #2; #3 #4
12093 {
12094 #1 #2
12095 \if_int_compare:w \c_nine < 1 \token_to_str:N #4 \exp_stop_f:
12096 \token_to_str:N #4
12097 \exp_after:wN __fp_parse_small_round:NN
12098 \exp_after:wN #4
12099 \exp:w
12100 \else:
12101 0 __fp_parse_exponent:Nw #4
12102 \fi:
12103 __fp_parse_expand:w
12104 }

(End definition for __fp_parse_small_trailing:wwNN.)

__fp_parse_pack_trailing:NNNNNNww
__fp_parse_pack_leading:NNNNNww

__fp_parse_pack_carry:w

Those functions are expanded after all the digits are found, we took care of the rounding,
as well as the exponent. The last argument is the exponent. The previous five arguments
are 8 digits which we pack in groups of 4, and the argument before that is 1, except in the
rare case where rounding lead to a carry, in which case the argument is 2. The trailing
function has an exponent shift as its first argument, which we add to the exponent found in

625

the e... syntax. If the trailing digits cause a carry, the integer expression for the leading
digits is incremented (+ \c_one in the code below). If the leading digits propagate this
carry all the way up, the function __fp_parse_pack_carry:w increments the exponent,
and changes the significand from 0000... to 1000...: this is simple because such a carry
can only occur to give rise to a power of 10.

12105 \cs_new:Npn __fp_parse_pack_trailing:NNNNNNww #1 #2 #3#4#5#6 #7; #8 ;
12106 {
12107 \if_meaning:w 2 #2 + \c_one \fi:
12108 ; #8 + #1 ; {#3#4#5#6} {#7};
12109 }
12110 \cs_new:Npn __fp_parse_pack_leading:NNNNNww #1 #2#3#4#5 #6; #7;
12111 {
12112 + #7
12113 \if_meaning:w 2 #1 __fp_parse_pack_carry:w \fi:
12114 ; 0 {#2#3#4#5} {#6}
12115 }
12116 \cs_new:Npn __fp_parse_pack_carry:w \fi: ; 0 #1
12117 { \fi: + \c_one ; 0 {1000} }

(End definition for __fp_parse_pack_trailing:NNNNNNww , __fp_parse_pack_leading:NNNNNww , and
__fp_parse_pack_carry:w.)

27.4.3 Number: large significand

Parsing a significand larger than 1 is a little bit more difficult than parsing small signif-
icands. We need to count the number of digits before the decimal separator, and add
that to the final exponent. We also need to test for the presence of a dot each time we
run out of digits, and branch to the appropriate parse_small function in those cases.

__fp_parse_large:N This function is followed by the first non-zero digit of a “large” significand (≥ 1). It is
called within an integer expression for the exponent. Grab up to 7 more digits, for a
total of 8 digits.

12118 \cs_new:Npn __fp_parse_large:N #1
12119 {
12120 \exp_after:wN __fp_parse_large_leading:wwNN
12121 __int_value:w 1 \token_to_str:N #1
12122 \exp_after:wN __fp_parse_digits_vii:N
12123 \exp:w __fp_parse_expand:w
12124 }

(End definition for __fp_parse_large:N.)

__fp_parse_large_leading:wwNN We shift the exponent by the number of digits in #1, namely the target number, 8, minus
the 〈number of zeros〉 (number of digits missing). Then prepare to pack the 8 first digits.
If the 〈next token〉 is a digit, read up to 6 more digits (digits 10 to 15). If it is a period, try
to grab the end of our 8 first digits, branching to the small functions since the number of
digit does not affect the exponent anymore. Finally, if this is the end of the significand,
insert the 〈zeros〉 to complete the 8 first digits, insert 8 more, and look for an exponent.

12125 \cs_new:Npn __fp_parse_large_leading:wwNN 1 #1 ; #2; #3 #4

626

12126 {
12127 + \c_eight - #3
12128 \exp_after:wN __fp_parse_pack_leading:NNNNNww
12129 __int_value:w __int_eval:w 1 #1
12130 \if_int_compare:w \c_nine < 1 \token_to_str:N #4 \exp_stop_f:
12131 \exp_after:wN __fp_parse_large_trailing:wwNN
12132 __int_value:w 1 \token_to_str:N #4
12133 \exp_after:wN __fp_parse_digits_vi:N
12134 \exp:w
12135 \else:
12136 \if:w . \exp_not:N #4
12137 \exp_after:wN __fp_parse_small_leading:wwNN
12138 __int_value:w 1
12139 \cs:w
12140 __fp_parse_digits_
12141 __int_to_roman:w #3
12142 :N \exp_after:wN
12143 \cs_end:
12144 \exp:w
12145 \else:
12146 #2
12147 \exp_after:wN __fp_parse_pack_trailing:NNNNNNww
12148 \exp_after:wN \c_zero
12149 __int_value:w 1 0000 0000
12150 __fp_parse_exponent:Nw #4
12151 \fi:
12152 \fi:
12153 __fp_parse_expand:w
12154 }

(End definition for __fp_parse_large_leading:wwNN.)

__fp_parse_large_trailing:wwNN We have just read 15 digits. If the 〈next token〉 is a digit, then the exponent shift
caused by this block of 8 digits is 8, first argument to the pack_trailing function. We
keep the 〈digits〉 and this 16-th digit, and find how this should be rounded using _-
_fp_parse_large_round:NN. Otherwise, the exponent shift is the number of 〈digits〉,
7 minus the 〈number of zeros〉, and we test for a decimal point. This case happens in
123451234512345.67 with exactly 15 digits before the decimal separator. Then branch
to the appropriate small auxiliary, grabbing a few more digits to complement the digits
we already grabbed. Finally, if this is truly the end of the significand, look for an exponent
after using the 〈zeros〉 and providing a 16-th digit of 0.

12155 \cs_new:Npn __fp_parse_large_trailing:wwNN 1 #1 ; #2; #3 #4
12156 {
12157 \if_int_compare:w \c_nine < 1 \token_to_str:N #4 \exp_stop_f:
12158 \exp_after:wN __fp_parse_pack_trailing:NNNNNNww
12159 \exp_after:wN \c_eight
12160 __int_value:w __int_eval:w 1 #1 \token_to_str:N #4
12161 \exp_after:wN __fp_parse_large_round:NN
12162 \exp_after:wN #4

627

12163 \exp:w
12164 \else:
12165 \exp_after:wN __fp_parse_pack_trailing:NNNNNNww
12166 __int_value:w __int_eval:w \c_seven - #3 \exp_stop_f:
12167 __int_value:w __int_eval:w 1 #1
12168 \if:w . \exp_not:N #4
12169 \exp_after:wN __fp_parse_small_trailing:wwNN
12170 __int_value:w 1
12171 \cs:w
12172 __fp_parse_digits_
12173 __int_to_roman:w #3
12174 :N \exp_after:wN
12175 \cs_end:
12176 \exp:w
12177 \else:
12178 #2 0 __fp_parse_exponent:Nw #4
12179 \fi:
12180 \fi:
12181 __fp_parse_expand:w
12182 }

(End definition for __fp_parse_large_trailing:wwNN.)

27.4.4 Number: beyond 16 digits, rounding

__fp_parse_round_loop:N
__fp_parse_round_up:N

This loop is called when rounding a number (whether the mantissa is small or large).
It should appear in an integer expression. This function reads digits one by one, until
reaching a non-digit, and adds 1 to the integer expression for each digit. If all digits
found are 0, the function ends the expression by ;\c_zero, otherwise by ;\c_one. This
is done by switching the loop to round_up at the first non-zero digit, thus we avoid to
test whether digits are 0 or not once we see a first non-zero digit.

12183 \cs_new:Npn __fp_parse_round_loop:N #1
12184 {
12185 \if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f:
12186 + \c_one
12187 \if:w 0 \token_to_str:N #1
12188 \exp_after:wN __fp_parse_round_loop:N
12189 \exp:w
12190 \else:
12191 \exp_after:wN __fp_parse_round_up:N
12192 \exp:w
12193 \fi:
12194 \else:
12195 __fp_parse_return_semicolon:w \c_zero #1
12196 \fi:
12197 __fp_parse_expand:w
12198 }
12199 \cs_new:Npn __fp_parse_round_up:N #1
12200 {

628

12201 \if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f:
12202 + \c_one
12203 \exp_after:wN __fp_parse_round_up:N
12204 \exp:w
12205 \else:
12206 __fp_parse_return_semicolon:w \c_one #1
12207 \fi:
12208 __fp_parse_expand:w
12209 }

(End definition for __fp_parse_round_loop:N and __fp_parse_round_up:N.)

__fp_parse_round_after:wN After the loop __fp_parse_round_loop:N, this function fetches an exponent with _-
_fp_parse_exponent:N, and combines it with the number of digits counted by __fp_-
parse_round_loop:N. At the same time, the result \c_zero or \c_one is added to the
surrounding integer expression.

12210 \cs_new:Npn __fp_parse_round_after:wN #1; #2
12211 {
12212 + #2 \exp_after:wN ;
12213 __int_value:w __int_eval:w #1 + __fp_parse_exponent:N
12214 }

(End definition for __fp_parse_round_after:wN.)

__fp_parse_small_round:NN
__fp_parse_round_after:wN

Here, #1 is the digit that we are currently rounding (we only care whether it is even
or odd). If #2 is not a digit, then fetch an exponent and expand to ;〈exponent〉 only.
Otherwise, we will expand to +\c_zero or +\c_one, then ;〈exponent〉. To decide which,
call __fp_round_s:NNNw to know whether to round up, giving it as arguments a sign 0
(all explicit numbers are positive), the digit #1 to round, the first following digit #2, and
either +\c_zero or +\c_one depending on whether the following digits are all zero or
not. This last argument is obtained by __fp_parse_round_loop:N, whose number of
digits we discard by multiplying it by 0. The exponent which follows the number is also
fetched by __fp_parse_round_after:wN.

12215 \cs_new:Npn __fp_parse_small_round:NN #1#2
12216 {
12217 \if_int_compare:w \c_nine < 1 \token_to_str:N #2 \exp_stop_f:
12218 +
12219 \exp_after:wN __fp_round_s:NNNw
12220 \exp_after:wN 0
12221 \exp_after:wN #1
12222 \exp_after:wN #2
12223 __int_value:w __int_eval:w
12224 \exp_after:wN __fp_parse_round_after:wN
12225 __int_value:w __int_eval:w \c_zero * __int_eval:w \c_zero
12226 \exp_after:wN __fp_parse_round_loop:N
12227 \exp:w
12228 \else:
12229 __fp_parse_exponent:Nw #2
12230 \fi:

629

12231 __fp_parse_expand:w
12232 }

(End definition for __fp_parse_small_round:NN and __fp_parse_round_after:wN.)

__fp_parse_large_round:NN
__fp_parse_large_round_test:NN
__fp_parse_large_round_aux:wNN

Large numbers are harder to round, as there may be a period in the way. Again, #1 is
the digit that we are currently rounding (we only care whether it is even or odd). If there
are no more digits (#2 is not a digit), then we must test for a period: if there is one,
then switch to the rounding function for small significands, otherwise fetch an exponent.
If there are more digits (#2 is a digit), then round, checking with __fp_parse_round_-
loop:N if all further digits vanish, or some are non-zero. This loop is not enough, as it is
stopped by a period. After the loop, the aux function tests for a period: if it is present,
then we must continue looking for digits, this time discarding the number of digits we
find.

12233 \cs_new:Npn __fp_parse_large_round:NN #1#2
12234 {
12235 \if_int_compare:w \c_nine < 1 \token_to_str:N #2 \exp_stop_f:
12236 +
12237 \exp_after:wN __fp_round_s:NNNw
12238 \exp_after:wN 0
12239 \exp_after:wN #1
12240 \exp_after:wN #2
12241 __int_value:w __int_eval:w
12242 \exp_after:wN __fp_parse_large_round_aux:wNN
12243 __int_value:w __int_eval:w \c_one
12244 \exp_after:wN __fp_parse_round_loop:N
12245 \else: %^^A could be dot, or e, or other
12246 \exp_after:wN __fp_parse_large_round_test:NN
12247 \exp_after:wN #1
12248 \exp_after:wN #2
12249 \fi:
12250 }
12251 \cs_new:Npn __fp_parse_large_round_test:NN #1#2
12252 {
12253 \if:w . \exp_not:N #2
12254 \exp_after:wN __fp_parse_small_round:NN
12255 \exp_after:wN #1
12256 \exp:w
12257 \else:
12258 __fp_parse_exponent:Nw #2
12259 \fi:
12260 __fp_parse_expand:w
12261 }
12262 \cs_new:Npn __fp_parse_large_round_aux:wNN #1 ; #2 #3
12263 {
12264 + #2
12265 \exp_after:wN __fp_parse_round_after:wN
12266 __int_value:w __int_eval:w #1
12267 \if:w . \exp_not:N #3

630

12268 + \c_zero * __int_eval:w \c_zero
12269 \exp_after:wN __fp_parse_round_loop:N
12270 \exp:w \exp_after:wN __fp_parse_expand:w
12271 \else:
12272 \exp_after:wN ;
12273 \exp_after:wN \c_zero
12274 \exp_after:wN #3
12275 \fi:
12276 }

(End definition for __fp_parse_large_round:NN , __fp_parse_large_round_test:NN , and __fp_-
parse_large_round_aux:wNN.)

27.4.5 Number: finding the exponent

Expansion is a little bit tricky here, in part because we accept input where multiplication
is implicit.

\@@_parse:n { 3.2 erf(0.1) }
\@@_parse:n { 3.2 e\l_my_int }
\@@_parse:n { 3.2 \c_pi_fp }

The first case indicates that just looking one character ahead for an “e” is not enough,
since we would mistake the function erf for an exponent of “rf”. An alternative would
be to look two tokens ahead and check if what follows is a sign or a digit, considering
in that case that we must be finding an exponent. But taking care of the second case
requires that we unpack registers after e. However, blindly expanding the two tokens
ahead completely would break the third example (unpacking is even worse). Indeed, in
the course of reading 3.2, \c_pi_fp is expanded to \s__fp __fp_chk:w 1 0 {-1} {3141}
· · · ; and \s__fp stops the expansion. Expanding two tokens ahead would then force
the expansion of __fp_chk:w (despite it being protected), and that function tries to
produce an error.

What can we do? Really, the reason why this last case breaks is that just as TEX
does, we should read ahead as little as possible. Here, the only case where there may be
an exponent is if the first token ahead is e. Then we expand (and possibly unpack) the
second token.

__fp_parse_exponent:Nw This auxiliary is convenient to smuggle some material through \fi: ending conditional
processing. We place those \fi: (argument #2) at a very odd place because this allows
us to insert __int_eval:w . . . there if needed.

12277 \cs_new:Npn __fp_parse_exponent:Nw #1 #2 __fp_parse_expand:w
12278 {
12279 \exp_after:wN ;
12280 __int_value:w #2 __fp_parse_exponent:N #1
12281 }

(End definition for __fp_parse_exponent:Nw.)

631

__fp_parse_exponent:N
__fp_parse_exponent_aux:N

This function should be called within an __int_value:w expansion (or within an integer
expression. It leaves digits of the exponent behind it in the input stream, and terminates
the expansion with a semicolon. If there is no e, leave an exponent of 0. If there is an e,
expand the next token to run some tests on it. The first rough test is that if the character
code of #1 is greater than that of 9 (largest code valid for an exponent, less than any
code valid for an identifier), there was in fact no exponent; otherwise, we search for the
sign of the exponent.

12282 \cs_new:Npn __fp_parse_exponent:N #1
12283 {
12284 \if:w e \exp_not:N #1
12285 \exp_after:wN __fp_parse_exponent_aux:N
12286 \exp:w
12287 \else:
12288 0 __fp_parse_return_semicolon:w #1
12289 \fi:
12290 __fp_parse_expand:w
12291 }
12292 \cs_new:Npn __fp_parse_exponent_aux:N #1
12293 {
12294 \if_int_compare:w \if_catcode:w \scan_stop: \exp_not:N #1
12295 \c_zero \else: ‘#1 \fi: > ‘9 \exp_stop_f:
12296 0 \exp_after:wN ; \exp_after:wN e
12297 \else:
12298 \exp_after:wN __fp_parse_exponent_sign:N
12299 \fi:
12300 #1
12301 }

(End definition for __fp_parse_exponent:N and __fp_parse_exponent_aux:N.)

__fp_parse_exponent_sign:N Read signs one by one (if there is any).
12302 \cs_new:Npn __fp_parse_exponent_sign:N #1
12303 {
12304 \if:w + \if:w - \exp_not:N #1 + \fi: \token_to_str:N #1
12305 \exp_after:wN __fp_parse_exponent_sign:N
12306 \exp:w \exp_after:wN __fp_parse_expand:w
12307 \else:
12308 \exp_after:wN __fp_parse_exponent_body:N
12309 \exp_after:wN #1
12310 \fi:
12311 }

(End definition for __fp_parse_exponent_sign:N.)

__fp_parse_exponent_body:N An exponent can be an explicit integer (most common case), or various other things
(most of which are invalid).

12312 \cs_new:Npn __fp_parse_exponent_body:N #1
12313 {
12314 \if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f:

632

12315 \token_to_str:N #1
12316 \exp_after:wN __fp_parse_exponent_digits:N
12317 \exp:w
12318 \else:
12319 __fp_parse_exponent_keep:NTF #1
12320 { __fp_parse_return_semicolon:w #1 }
12321 {
12322 \exp_after:wN ;
12323 \exp:w
12324 }
12325 \fi:
12326 __fp_parse_expand:w
12327 }

(End definition for __fp_parse_exponent_body:N.)

__fp_parse_exponent_digits:N Read digits one by one, and leave them behind in the input stream. When finding a
non-digit, stop, and insert a semicolon. Note that we do not check for overflow of the
exponent, hence there can be a TEX error. It is mostly harmless, except when parsing
0e9876543210, which should be a valid representation of 0, but is not.

12328 \cs_new:Npn __fp_parse_exponent_digits:N #1
12329 {
12330 \if_int_compare:w \c_nine < 1 \token_to_str:N #1 \exp_stop_f:
12331 \token_to_str:N #1
12332 \exp_after:wN __fp_parse_exponent_digits:N
12333 \exp:w
12334 \else:
12335 __fp_parse_return_semicolon:w #1
12336 \fi:
12337 __fp_parse_expand:w
12338 }

(End definition for __fp_parse_exponent_digits:N.)

__fp_parse_exponent_keep:NTF This is the last building block for parsing exponents. The argument #1 is already fully
expanded, and neither + nor - nor a digit. It can be:

• \s__fp, marking the start of an internal floating point, invalid here;

• another control sequence equal to \relax, probably a bad variable;

• a register: in this case we make sure that it is an integer register, not a dimension;

• a character other than +, - or digits, again, an error.

12339 \prg_new_conditional:Npnn __fp_parse_exponent_keep:N #1 { TF }
12340 {
12341 \if_catcode:w \scan_stop: \exp_not:N #1
12342 \if_meaning:w \scan_stop: #1
12343 \if_int_compare:w
12344 __str_if_eq_x:nn { \s__fp } { \exp_not:N #1 } = \c_zero

633

12345 0
12346 __msg_kernel_expandable_error:nnn
12347 { kernel } { fp-after-e } { floating~point~ }
12348 \prg_return_true:
12349 \else:
12350 0
12351 __msg_kernel_expandable_error:nnn
12352 { kernel } { bad-variable } {#1}
12353 \prg_return_false:
12354 \fi:
12355 \else:
12356 \if_int_compare:w
12357 __str_if_eq_x:nn { __int_value:w #1 } { \tex_the:D #1 }
12358 = \c_zero
12359 __int_value:w #1
12360 \else:
12361 0
12362 __msg_kernel_expandable_error:nnn
12363 { kernel } { fp-after-e } { dimension~#1 }
12364 \fi:
12365 \prg_return_false:
12366 \fi:
12367 \else:
12368 0
12369 __msg_kernel_expandable_error:nnn
12370 { kernel } { fp-missing } { exponent }
12371 \prg_return_true:
12372 \fi:
12373 }

(End definition for __fp_parse_exponent_keep:NTF.)

27.5 Constants, functions and prefix operators
27.5.1 Prefix operators

__fp_parse_prefix_+:Nw A unary + does nothing: we should continue looking for a number.
12374 \cs_new_eq:cN { __fp_parse_prefix_+:Nw } __fp_parse_one:Nw

(End definition for __fp_parse_prefix_+:Nw.)

__fp_parse_apply_unary:NNNwN Here, #1 is a precedence, #2 is some extra data used by some functions, #3 is e.g., _-
_fp_sin_o:w, and expands once after the calculation, #4 is the operand, and #5 is a
__fp_parse_infix_...:N function. We feed the data #2, and the argument #4, to the
function #3, which expands \exp:w thus the infix function #5.

12375 \cs_new:Npn __fp_parse_apply_unary:NNNwN #1#2#3#4@#5
12376 {
12377 #3 #2 #4 @
12378 \exp:w \exp_end_continue_f:w #5 #1
12379 }

634

(End definition for __fp_parse_apply_unary:NNNwN.)

__fp_parse_prefix_-:Nw
__fp_parse_prefix_!:Nw

The unary - and boolean not are harder: we parse the operand using a precedence equal
to the maximum of the previous precedence ##1 and the precedence \c_twelve of the
unary operator, then call the appropriate __fp_〈operation〉_o:w function, where the
〈operation〉 is set_sign or not.

12380 \cs_set_protected:Npn __fp_tmp:w #1#2#3#4
12381 {
12382 \cs_new:cpn { __fp_parse_prefix_ #1 :Nw } ##1
12383 {
12384 \exp_after:wN __fp_parse_apply_unary:NNNwN
12385 \exp_after:wN ##1
12386 \exp_after:wN #4
12387 \exp_after:wN #3
12388 \exp:w
12389 \if_int_compare:w #2 < ##1
12390 __fp_parse_operand:Nw ##1
12391 \else:
12392 __fp_parse_operand:Nw #2
12393 \fi:
12394 __fp_parse_expand:w
12395 }
12396 }
12397 __fp_tmp:w - \c_twelve __fp_set_sign_o:w 2
12398 __fp_tmp:w ! \c_twelve __fp_not_o:w ?

(End definition for __fp_parse_prefix_-:Nw and __fp_parse_prefix_!:Nw.)

__fp_parse_prefix_.:Nw Numbers which start with a decimal separator (a period) end up here. Of course, we do
not look for an operand, but for the rest of the number. This function is very similar to
__fp_parse_one_digit:NN but calls __fp_parse_strim_zeros:N to trim zeros after
the decimal point, rather than the trim_zeros function for zeros before the decimal
point.

12399 \cs_new:cpn { __fp_parse_prefix_.:Nw } #1
12400 {
12401 \exp_after:wN __fp_parse_infix_after_operand:NwN
12402 \exp_after:wN #1
12403 \exp:w \exp_end_continue_f:w
12404 \exp_after:wN __fp_sanitize:wN
12405 __int_value:w __int_eval:w \c_zero __fp_parse_strim_zeros:N
12406 }

(End definition for __fp_parse_prefix_.:Nw.)

__fp_parse_prefix_(:Nw
__fp_parse_lparen_after:NwN

The left parenthesis is treated as a unary prefix operator because it appears in exactly
the same settings. Commas will be allowed if the previous precedence is 16 (function with
multiple arguments) or 13 (unary boolean “not”). In this case, find an operand using the
precedence 1; otherwise the precedence 0. Once the operand is found, the lparen_after
auxiliary makes sure that there was a closing parenthesis (otherwise it complains), and

635

leaves in the input stream the array it found as an operand, fetching the following infix
operator.

12407 \group_begin:
12408 \char_set_catcode_letter:N (
12409 \char_set_catcode_letter:N)
12410 \cs_new:Npn __fp_parse_prefix_(:Nw #1
12411 {
12412 \exp_after:wN __fp_parse_lparen_after:NwN
12413 \exp_after:wN #1
12414 \exp:w
12415 \if_int_compare:w #1 = \c_sixteen
12416 __fp_parse_operand:Nw \c_one
12417 \else:
12418 __fp_parse_operand:Nw \c_zero
12419 \fi:
12420 __fp_parse_expand:w
12421 }
12422 \cs_new:Npn __fp_parse_lparen_after:NwN #1#2 @ #3
12423 {
12424 \token_if_eq_meaning:NNTF #3 __fp_parse_infix_):N
12425 {
12426 __fp_exp_after_array_f:w #2 \s__fp_stop
12427 \exp_after:wN __fp_parse_infix:NN
12428 \exp_after:wN #1
12429 \exp:w __fp_parse_expand:w
12430 }
12431 {
12432 __msg_kernel_expandable_error:nnn
12433 { kernel } { fp-missing } {) }
12434 #2 @ \use_none:n #3
12435 }
12436 }
12437 \group_end:

(End definition for __fp_parse_prefix_(:Nw and __fp_parse_lparen_after:NwN.)

27.5.2 Constants

__fp_parse_word_inf:N
__fp_parse_word_nan:N
__fp_parse_word_pi:N
__fp_parse_word_deg:N

__fp_parse_word_true:N
__fp_parse_word_false:N

Some words correspond to constant floating points. The floating point constant is left as
a result of __fp_parse_one:Nw after expanding __fp_parse_infix:NN.

12438 \cs_set_protected:Npn __fp_tmp:w #1 #2
12439 {
12440 \cs_new_nopar:cpn { __fp_parse_word_#1:N }
12441 { \exp_after:wN #2 \exp:w \exp_end_continue_f:w __fp_parse_infix:NN }
12442 }
12443 __fp_tmp:w { inf } \c_inf_fp
12444 __fp_tmp:w { nan } \c_nan_fp
12445 __fp_tmp:w { pi } \c_pi_fp
12446 __fp_tmp:w { deg } \c_one_degree_fp

636

12447 __fp_tmp:w { true } \c_one_fp
12448 __fp_tmp:w { false } \c_zero_fp

(End definition for __fp_parse_word_inf:N and others.)

__fp_parse_word_pt:N
__fp_parse_word_in:N
__fp_parse_word_pc:N
__fp_parse_word_cm:N
__fp_parse_word_mm:N
__fp_parse_word_dd:N
__fp_parse_word_cc:N
__fp_parse_word_nd:N
__fp_parse_word_nc:N
__fp_parse_word_bp:N
__fp_parse_word_sp:N

Dimension units are also floating point constants but their value is not stored as a floating
point constant. We give the values explicitly here.

12449 \cs_set_protected:Npn __fp_tmp:w #1 #2
12450 {
12451 \cs_new_nopar:cpn { __fp_parse_word_#1:N }
12452 {
12453 __fp_exp_after_f:nw { __fp_parse_infix:NN }
12454 \s__fp __fp_chk:w 10 #2 ;
12455 }
12456 }
12457 __fp_tmp:w {pt} { {1} {1000} {0000} {0000} {0000} }
12458 __fp_tmp:w {in} { {2} {7227} {0000} {0000} {0000} }
12459 __fp_tmp:w {pc} { {2} {1200} {0000} {0000} {0000} }
12460 __fp_tmp:w {cm} { {2} {2845} {2755} {9055} {1181} }
12461 __fp_tmp:w {mm} { {1} {2845} {2755} {9055} {1181} }
12462 __fp_tmp:w {dd} { {1} {1070} {0085} {6496} {0630} }
12463 __fp_tmp:w {cc} { {2} {1284} {0102} {7795} {2756} }
12464 __fp_tmp:w {nd} { {1} {1066} {9783} {4645} {6693} }
12465 __fp_tmp:w {nc} { {2} {1280} {3740} {1574} {8031} }
12466 __fp_tmp:w {bp} { {1} {1003} {7500} {0000} {0000} }
12467 __fp_tmp:w {sp} { {-4} {1525} {8789} {0625} {0000} }

(End definition for __fp_parse_word_pt:N and others.)

__fp_parse_word_em:N
__fp_parse_word_ex:N

The font-dependent units em and ex must be evaluated on the fly. We reuse an auxiliary
of \dim_to_fp:n.

12468 \tl_map_inline:nn { {em} {ex} }
12469 {
12470 \cs_new_nopar:cpn { __fp_parse_word_#1:N }
12471 {
12472 \exp_after:wN __fp_from_dim_test:ww
12473 \exp_after:wN 0 \exp_after:wN ,
12474 __int_value:w __dim_eval:w 1 #1 \exp_after:wN ;
12475 \exp:w \exp_end_continue_f:w __fp_parse_infix:NN
12476 }
12477 }

(End definition for __fp_parse_word_em:N and __fp_parse_word_ex:N.)

27.5.3 Functions

__fp_parse_unary_function:nNN
__fp_parse_function:NNN 12478 \cs_new:Npn __fp_parse_unary_function:nNN #1#2#3

12479 {
12480 \exp_after:wN __fp_parse_apply_unary:NNNwN

637

12481 \exp_after:wN #3
12482 \exp_after:wN #2
12483 \cs:w __fp_#1_o:w \exp_after:wN \cs_end:
12484 \exp:w
12485 __fp_parse_operand:Nw \c_fifteen __fp_parse_expand:w
12486 }
12487 \cs_new:Npn __fp_parse_function:NNN #1#2#3
12488 {
12489 \exp_after:wN __fp_parse_apply_unary:NNNwN
12490 \exp_after:wN #3
12491 \exp_after:wN #2
12492 \exp_after:wN #1
12493 \exp:w
12494 __fp_parse_operand:Nw \c_sixteen __fp_parse_expand:w
12495 }

(End definition for __fp_parse_unary_function:nNN and __fp_parse_function:NNN.)

__fp_parse_word_acot:N
__fp_parse_word_acotd:N
__fp_parse_word_atan:N
__fp_parse_word_atand:N

__fp_parse_word_max:N
__fp_parse_word_min:N

Those functions are also unary (not binary), but may receive a variable number of argu-
ments.

12496 \cs_new_nopar:Npn __fp_parse_word_acot:N
12497 { __fp_parse_function:NNN __fp_acot_o:Nw \use_i:nn }
12498 \cs_new_nopar:Npn __fp_parse_word_acotd:N
12499 { __fp_parse_function:NNN __fp_acot_o:Nw \use_ii:nn }
12500 \cs_new_nopar:Npn __fp_parse_word_atan:N
12501 { __fp_parse_function:NNN __fp_atan_o:Nw \use_i:nn }
12502 \cs_new_nopar:Npn __fp_parse_word_atand:N
12503 { __fp_parse_function:NNN __fp_atan_o:Nw \use_ii:nn }
12504 \cs_new_nopar:Npn __fp_parse_word_max:N
12505 { __fp_parse_function:NNN __fp_minmax_o:Nw 2 }
12506 \cs_new_nopar:Npn __fp_parse_word_min:N
12507 { __fp_parse_function:NNN __fp_minmax_o:Nw 0 }

(End definition for __fp_parse_word_acot:N and others.)

__fp_parse_word_abs:N
__fp_parse_word_exp:N
__fp_parse_word_ln:N

__fp_parse_word_sqrt:N

Unary functions.
12508 \cs_new:Npn __fp_parse_word_abs:N
12509 { __fp_parse_unary_function:nNN { set_sign } 0 }
12510 \cs_new_nopar:Npn __fp_parse_word_exp:N
12511 { __fp_parse_unary_function:nNN {exp} ? }
12512 \cs_new_nopar:Npn __fp_parse_word_ln:N
12513 { __fp_parse_unary_function:nNN {ln} ? }
12514 \cs_new_nopar:Npn __fp_parse_word_sqrt:N
12515 { __fp_parse_unary_function:nNN {sqrt} ? }

(End definition for __fp_parse_word_abs:N and others.)

__fp_parse_word_acos:N
__fp_parse_word_acosd:N
__fp_parse_word_acsc:N

__fp_parse_word_acscd:N
__fp_parse_word_asec:N

__fp_parse_word_asecd:N
__fp_parse_word_asin:N

__fp_parse_word_asind:N
__fp_parse_word_cos:N
__fp_parse_word_cosd:N
__fp_parse_word_cot:N
__fp_parse_word_cotd:N
__fp_parse_word_csc:N
__fp_parse_word_cscd:N
__fp_parse_word_sec:N
__fp_parse_word_secd:N
__fp_parse_word_sin:N
__fp_parse_word_sind:N
__fp_parse_word_tan:N
__fp_parse_word_tand:N

Unary functions.
12516 \tl_map_inline:nn
12517 {

638

12518 {acos} {acsc} {asec} {asin}
12519 {cos} {cot} {csc} {sec} {sin} {tan}
12520 }
12521 {
12522 \cs_new_nopar:cpn { __fp_parse_word_#1:N }
12523 { __fp_parse_unary_function:nNN {#1} \use_i:nn }
12524 \cs_new_nopar:cpn { __fp_parse_word_#1d:N }
12525 { __fp_parse_unary_function:nNN {#1} \use_ii:nn }
12526 }

(End definition for __fp_parse_word_acos:N and others.)

__fp_parse_word_trunc:N
__fp_parse_word_floor:N
__fp_parse_word_ceil:N

12527 \cs_new_nopar:Npn __fp_parse_word_trunc:N
12528 { __fp_parse_function:NNN __fp_round_o:Nw __fp_round_to_zero:NNN }
12529 \cs_new_nopar:Npn __fp_parse_word_floor:N
12530 { __fp_parse_function:NNN __fp_round_o:Nw __fp_round_to_ninf:NNN }
12531 \cs_new_nopar:Npn __fp_parse_word_ceil:N
12532 { __fp_parse_function:NNN __fp_round_o:Nw __fp_round_to_pinf:NNN }

(End definition for __fp_parse_word_trunc:N , __fp_parse_word_floor:N , and __fp_parse_word_-
ceil:N.)

__fp_parse_word_round:N
__fp_parse_round:Nw 12533 \cs_new:Npn __fp_parse_word_round:N #1#2

12534 {
12535 \if_meaning:w + #2
12536 __fp_parse_round:Nw __fp_round_to_pinf:NNN
12537 \else:
12538 \if_meaning:w 0 #2
12539 __fp_parse_round:Nw __fp_round_to_zero:NNN
12540 \else:
12541 \if_meaning:w - #2
12542 __fp_parse_round:Nw __fp_round_to_ninf:NNN
12543 \fi:
12544 \fi:
12545 \fi:
12546 __fp_parse_function:NNN
12547 __fp_round_o:Nw __fp_round_to_nearest:NNN #1
12548 #2
12549 }
12550 \cs_new:Npn __fp_parse_round:Nw
12551 #1 #2 __fp_round_to_nearest:NNN #3#4 { #2 #1 #3 }

(End definition for __fp_parse_word_round:N and __fp_parse_round:Nw.)

639

27.6 Main functions
__fp_parse:n

__fp_parse_after:ww
Start an \exp:w expansion so that __fp_parse:n expands in two steps. The __fp_-
parse_operand:Nw function will perform computations until reaching an operation with
precedence \c_minus_one or less, namely, the end of the expression. The marker \s__-
fp_mark indicates that the next token is an already parsed version of an infix operator,
and __fp_parse_infix_end:N has infinitely negative precedence. Finally, clean up a
(well-defined) set of extra tokens and stop the initial expansion with \exp_end:.

12552 \cs_new:Npn __fp_parse:n #1
12553 {
12554 \exp:w
12555 \exp_after:wN __fp_parse_after:ww
12556 \exp:w
12557 __fp_parse_operand:Nw \c_minus_one
12558 __fp_parse_expand:w #1
12559 \s__fp_mark __fp_parse_infix_end:N
12560 \s__fp_stop
12561 }
12562 \cs_new:Npn __fp_parse_after:ww
12563 #1@ __fp_parse_infix_end:N \s__fp_stop
12564 { \exp_end: #1 }

(End definition for __fp_parse:n.)

__fp_parse_operand:Nw
__fp_parse_continue:NwN

The __fp_parse_operand This is just a shorthand which sets up both __fp_parse_-
continue and __fp_parse_one with the same precedence. Note the trailing \exp:w.
This function should be used with much care.

12565 \cs_new:Npn __fp_parse_operand:Nw #1
12566 {
12567 \exp_end_continue_f:w
12568 \exp_after:wN __fp_parse_continue:NwN
12569 \exp_after:wN #1
12570 \exp:w \exp_end_continue_f:w
12571 \exp_after:wN __fp_parse_one:Nw
12572 \exp_after:wN #1
12573 \exp:w
12574 }
12575 \cs_new:Npn __fp_parse_continue:NwN #1 #2 @ #3 { #3 #1 #2 @ }

(End definition for __fp_parse_operand:Nw.)

__fp_parse_apply_binary:NwNwN Receives 〈precedence〉 〈operand1〉 @ 〈operation〉 〈operand2〉 @ 〈infix command〉. Builds the
appropriate call to the 〈operation〉 #3.

12576 \cs_new:Npn __fp_parse_apply_binary:NwNwN #1 #2@ #3 #4@ #5
12577 {
12578 \exp_after:wN __fp_parse_continue:NwN
12579 \exp_after:wN #1
12580 \exp:w \exp_end_continue_f:w \cs:w __fp_#3_o:ww \cs_end: #2 #4
12581 \exp:w \exp_end_continue_f:w #5 #1
12582 }

640

(End definition for __fp_parse_apply_binary:NwNwN.)

27.7 Infix operators
__fp_parse_infix_after_operand:NwN

12583 \cs_new:Npn __fp_parse_infix_after_operand:NwN #1 #2;
12584 {
12585 __fp_exp_after_f:nw { __fp_parse_infix:NN #1 }
12586 #2;
12587 }
12588 \group_begin:
12589 \char_set_catcode_letter:N *
12590 \cs_new:Npn __fp_parse_infix:NN #1 #2
12591 {
12592 \if_catcode:w \scan_stop: \exp_not:N #2
12593 \if_int_compare:w
12594 __str_if_eq_x:nn { \s__fp_mark } { \exp_not:N #2 }
12595 = \c_zero
12596 \exp_after:wN \exp_after:wN
12597 \exp_after:wN __fp_parse_infix_mark:NNN
12598 \else:
12599 \exp_after:wN \exp_after:wN
12600 \exp_after:wN __fp_parse_infix_juxtapose:N
12601 \fi:
12602 \else:
12603 \if_int_compare:w
12604 __int_eval:w
12605 (‘#2 \if_int_compare:w ‘#2 > ‘Z - \c_thirty_two \fi:)
12606 / 26
12607 = \c_three
12608 \exp_after:wN \exp_after:wN
12609 \exp_after:wN __fp_parse_infix_juxtapose:N
12610 \else:
12611 \exp_after:wN __fp_parse_infix_check:NNN
12612 \cs:w
12613 __fp_parse_infix_ \token_to_str:N #2 :N
12614 \exp_after:wN \exp_after:wN \exp_after:wN
12615 \cs_end:
12616 \fi:
12617 \fi:
12618 #1
12619 #2
12620 }
12621 \cs_new:Npn __fp_parse_infix_check:NNN #1#2#3
12622 {
12623 \if_meaning:w \scan_stop: #1
12624 __msg_kernel_expandable_error:nnn
12625 { kernel } { fp-missing } { * }
12626 \exp_after:wN __fp_parse_infix_*:N

641

12627 \exp_after:wN #2
12628 \exp_after:wN #3
12629 \else:
12630 \exp_after:wN #1
12631 \exp_after:wN #2
12632 \exp:w \exp_after:wN __fp_parse_expand:w
12633 \fi:
12634 }
12635 \group_end:

(End definition for __fp_parse_infix_after_operand:NwN.)

27.7.1 Closing parentheses and commas

__fp_parse_infix_mark:NNN As an infix operator, \s__fp_mark means that the next token (#3) has already gone
through __fp_parse_infix:NN and should be provided the precedence #1. The scan
mark #2 is discarded.

12636 \cs_new:Npn __fp_parse_infix_mark:NNN #1#2#3 { #3 #1 }

(End definition for __fp_parse_infix_mark:NNN.)

__fp_parse_infix_end:N This one is a little bit odd: force every previous operator to end, regardless of the
precedence.

12637 \cs_new:Npn __fp_parse_infix_end:N #1
12638 { @ \use_none:n __fp_parse_infix_end:N }

(End definition for __fp_parse_infix_end:N.)

__fp_parse_infix_):N This is very similar to __fp_parse_infix_end:N, complaining about an extra closing
parenthesis if the previous operator was the beginning of the expression.

12639 \group_begin:
12640 \char_set_catcode_letter:N \)
12641 \cs_new:Npn __fp_parse_infix_):N #1
12642 {
12643 \if_int_compare:w #1 < \c_zero
12644 __msg_kernel_expandable_error:nnn { kernel } { fp-extra } {) }
12645 \exp_after:wN __fp_parse_infix:NN
12646 \exp_after:wN #1
12647 \exp:w \exp_after:wN __fp_parse_expand:w
12648 \else:
12649 \exp_after:wN @
12650 \exp_after:wN \use_none:n
12651 \exp_after:wN __fp_parse_infix_):N
12652 \fi:
12653 }
12654 \group_end:

(End definition for __fp_parse_infix_):N.)

642

__fp_parse_infix_
:N 12655 \group_begin:

12656 \char_set_catcode_letter:N \,
12657 \cs_new:Npn __fp_parse_infix_,:N #1
12658 {
12659 \if_int_compare:w #1 > \c_one
12660 \exp_after:wN @
12661 \exp_after:wN \use_none:n
12662 \exp_after:wN __fp_parse_infix_,:N
12663 \else:
12664 \if_int_compare:w #1 = \c_one
12665 \exp_after:wN __fp_parse_infix_comma:w
12666 \exp:w
12667 \else:
12668 \exp_after:wN __fp_parse_infix_comma_gobble:w
12669 \exp:w
12670 \fi:
12671 __fp_parse_operand:Nw \c_one
12672 \exp_after:wN __fp_parse_expand:w
12673 \fi:
12674 }
12675 \cs_new:Npn __fp_parse_infix_comma:w #1 @
12676 { #1 @ \use_none:n }
12677 \cs_new:Npn __fp_parse_infix_comma_gobble:w #1 @
12678 {
12679 __msg_kernel_expandable_error:nn { kernel } { fp-extra-comma }
12680 @ \use_none:n
12681 }
12682 \group_end:

(End definition for __fp_parse_infix_ and :N.)

27.7.2 Usual infix operators

__fp_parse_infix_+:N
__fp_parse_infix_-:N
__fp_parse_infix_/:N

__fp_parse_infix_mul:N
__fp_parse_infix_and:N
__fp_parse_infix_or:N
__fp_parse_infix_^:N

As described in the “work plan”, each infix operator has an associated \..._infix_...
function, a computing function, and precedence, given as arguments to __fp_tmp:w.
Using the general mechanism for arithmetic operations. The power operation must be
associative in the opposite order from all others. For this, we use two distinct precedences.

The odd requirement to set \+ here is to cover the case where expl3 is loaded by
plain TEX: \+ is an \outer macro there, and so the following code would otherwise give
an error in that case.

12683 \group_begin:
12684 〈*package〉
12685 \cs_set_nopar:Npn \+ { }
12686 〈/package〉
12687 \char_set_catcode_other:N \&
12688 \char_set_catcode_letter:N \^
12689 \char_set_catcode_letter:N \/
12690 \char_set_catcode_letter:N \-

643

12691 \char_set_catcode_letter:N \+
12692 \cs_set_protected:Npn __fp_tmp:w #1#2#3#4
12693 {
12694 \cs_new:Npn #1 ##1
12695 {
12696 \if_int_compare:w ##1 < #3
12697 \exp_after:wN @
12698 \exp_after:wN __fp_parse_apply_binary:NwNwN
12699 \exp_after:wN #2
12700 \exp:w
12701 __fp_parse_operand:Nw #4
12702 \exp_after:wN __fp_parse_expand:w
12703 \else:
12704 \exp_after:wN @
12705 \exp_after:wN \use_none:n
12706 \exp_after:wN #1
12707 \fi:
12708 }
12709 }
12710 __fp_tmp:w __fp_parse_infix_^:N ^ \c_fifteen \c_fourteen
12711 __fp_tmp:w __fp_parse_infix_/:N / \c_ten \c_ten
12712 __fp_tmp:w __fp_parse_infix_mul:N * \c_ten \c_ten
12713 __fp_tmp:w __fp_parse_infix_-:N - \c_nine \c_nine
12714 __fp_tmp:w __fp_parse_infix_+:N + \c_nine \c_nine
12715 __fp_tmp:w __fp_parse_infix_and:N & \c_five \c_five
12716 __fp_tmp:w __fp_parse_infix_or:N | \c_four \c_four
12717 \group_end:

(End definition for __fp_parse_infix_+:N and others.)

27.7.3 Juxtaposition

__fp_parse_infix_(:N When an opening parenthesis appears where we expect an infix operator, we compute
the product of the previous operand and the contents of the parentheses using __fp_-
parse_infix_juxtapose:N.

12718 \cs_new:cpn { __fp_parse_infix_(:N } #1
12719 { __fp_parse_infix_juxtapose:N #1 (}

(End definition for __fp_parse_infix_(:N.)

__fp_parse_infix_juxtapose:N
__fp_parse_apply_juxtapose:NwwN

Juxtaposition follows the same scheme as other binary operations, but calls __-
fp_parse_apply_juxtapose:NwwN rather than directly calling __fp_parse_apply_-
binary:NwNwN. This lets us catch errors such as ...(1,2,3)pt where one operand of
the juxtaposition is not a single number: both #3 and #5 of the apply auxiliary must be
empty.

12720 \cs_new:Npn __fp_parse_infix_juxtapose:N #1
12721 {
12722 \if_int_compare:w #1 < \c_ten
12723 \exp_after:wN @

644

12724 \exp_after:wN __fp_parse_apply_juxtapose:NwwN
12725 \exp:w
12726 __fp_parse_operand:Nw \c_ten
12727 \exp_after:wN __fp_parse_expand:w
12728 \else:
12729 \exp_after:wN @
12730 \exp_after:wN \use_none:n
12731 \exp_after:wN __fp_parse_infix_juxtapose:N
12732 \fi:
12733 }
12734 \cs_new:Npn __fp_parse_apply_juxtapose:NwwN #1 #2;#3@ #4;#5@
12735 {
12736 \if_catcode:w ^ \tl_to_str:n { #3 #5 } ^
12737 \else:
12738 __fp_error:nffn { invalid-ii }
12739 { __fp_array_to_clist:n { #2; #3 } }
12740 { __fp_array_to_clist:n { #4; #5 } }
12741 { }
12742 \fi:
12743 __fp_parse_apply_binary:NwNwN #1 #2;@ * #4;@
12744 }

(End definition for __fp_parse_infix_juxtapose:N and __fp_parse_apply_juxtapose:NwwN.)

27.7.4 Multi-character cases

__fp_parse_infix_*:N

12745 \group_begin:
12746 \char_set_catcode_letter:N ^
12747 \cs_new:cpn { __fp_parse_infix_*:N } #1#2
12748 {
12749 \if:w * \exp_not:N #2
12750 \exp_after:wN __fp_parse_infix_^:N
12751 \exp_after:wN #1
12752 \else:
12753 \exp_after:wN __fp_parse_infix_mul:N
12754 \exp_after:wN #1
12755 \exp_after:wN #2
12756 \fi:
12757 }
12758 \group_end:

(End definition for __fp_parse_infix_*:N.)

__fp_parse_infix_|:Nw
__fp_parse_infix_&:Nw 12759 \group_begin:

12760 \char_set_catcode_letter:N \|
12761 \char_set_catcode_letter:N \&
12762 \cs_new:Npn __fp_parse_infix_|:N #1#2
12763 {

645

12764 \if:w | \exp_not:N #2
12765 \exp_after:wN __fp_parse_infix_|:N
12766 \exp_after:wN #1
12767 \exp:w \exp_after:wN __fp_parse_expand:w
12768 \else:
12769 \exp_after:wN __fp_parse_infix_or:N
12770 \exp_after:wN #1
12771 \exp_after:wN #2
12772 \fi:
12773 }
12774 \cs_new:Npn __fp_parse_infix_&:N #1#2
12775 {
12776 \if:w & \exp_not:N #2
12777 \exp_after:wN __fp_parse_infix_&:N
12778 \exp_after:wN #1
12779 \exp:w \exp_after:wN __fp_parse_expand:w
12780 \else:
12781 \exp_after:wN __fp_parse_infix_and:N
12782 \exp_after:wN #1
12783 \exp_after:wN #2
12784 \fi:
12785 }
12786 \group_end:

(End definition for __fp_parse_infix_|:Nw.)

27.7.5 Ternary operator

__fp_parse_infix_?:N
__fp_parse_infix_::N 12787 \group_begin:

12788 \char_set_catcode_letter:N \?
12789 \cs_new:Npn __fp_parse_infix_?:N #1
12790 {
12791 \if_int_compare:w #1 < \c_three
12792 \exp_after:wN @
12793 \exp_after:wN __fp_ternary:NwwN
12794 \exp:w
12795 __fp_parse_operand:Nw \c_three
12796 \exp_after:wN __fp_parse_expand:w
12797 \else:
12798 \exp_after:wN @
12799 \exp_after:wN \use_none:n
12800 \exp_after:wN __fp_parse_infix_?:N
12801 \fi:
12802 }
12803 \cs_new:Npn __fp_parse_infix_::N #1
12804 {
12805 \if_int_compare:w #1 < \c_three
12806 __msg_kernel_expandable_error:nnnn
12807 { kernel } { fp-missing } { ? } { ~for~?: }

646

12808 \exp_after:wN @
12809 \exp_after:wN __fp_ternary_auxii:NwwN
12810 \exp:w
12811 __fp_parse_operand:Nw \c_two
12812 \exp_after:wN __fp_parse_expand:w
12813 \else:
12814 \exp_after:wN @
12815 \exp_after:wN \use_none:n
12816 \exp_after:wN __fp_parse_infix_::N
12817 \fi:
12818 }
12819 \group_end:

(End definition for __fp_parse_infix_?:N and __fp_parse_infix_::N.)

27.7.6 Comparisons

__fp_parse_infix_<:N
__fp_parse_infix_=:N
__fp_parse_infix_>:N
__fp_parse_infix_!:N

__fp_parse_excl_error:
__fp_parse_compare:NNNNNNN

__fp_parse_compare_auxi:NNNNNNN
__fp_parse_compare_auxii:NNNNN

__fp_parse_compare_end:NNNNw
__fp_compare:wNNNNw

12820 \cs_new:cpn { __fp_parse_infix_<:N } #1
12821 {
12822 __fp_parse_compare:NNNNNNN #1 \c_one
12823 \c_zero \c_zero \c_zero \c_zero <
12824 }
12825 \cs_new:cpn { __fp_parse_infix_=:N } #1
12826 {
12827 __fp_parse_compare:NNNNNNN #1 \c_one
12828 \c_zero \c_zero \c_zero \c_zero =
12829 }
12830 \cs_new:cpn { __fp_parse_infix_>:N } #1
12831 {
12832 __fp_parse_compare:NNNNNNN #1 \c_one
12833 \c_zero \c_zero \c_zero \c_zero >
12834 }
12835 \cs_new:cpn { __fp_parse_infix_!:N } #1
12836 {
12837 \exp_after:wN __fp_parse_compare:NNNNNNN
12838 \exp_after:wN #1
12839 \exp_after:wN \c_zero
12840 \exp_after:wN \c_one
12841 \exp_after:wN \c_one
12842 \exp_after:wN \c_one
12843 \exp_after:wN \c_one
12844 }
12845 \cs_new:Npn __fp_parse_excl_error:
12846 {
12847 __msg_kernel_expandable_error:nnnn
12848 { kernel } { fp-missing } { = } { ~after~!. }
12849 }
12850 \cs_new:Npn __fp_parse_compare:NNNNNNN #1
12851 {

647

12852 \if_int_compare:w #1 < \c_seven
12853 \exp_after:wN __fp_parse_compare_auxi:NNNNNNN
12854 \exp_after:wN __fp_parse_excl_error:
12855 \else:
12856 \exp_after:wN @
12857 \exp_after:wN \use_none:n
12858 \exp_after:wN __fp_parse_compare:NNNNNNN
12859 \fi:
12860 }
12861 \cs_new:Npn __fp_parse_compare_auxi:NNNNNNN #1#2#3#4#5#6#7
12862 {
12863 \if_case:w
12864 \if_catcode:w \scan_stop: \exp_not:N #7
12865 \c_minus_one
12866 \else:
12867 __int_eval:w ‘#7 - ‘< __int_eval_end:
12868 \fi:
12869 __fp_parse_compare_auxii:NNNNN #2#2#4#5#6
12870 \or: __fp_parse_compare_auxii:NNNNN #2#3#2#5#6
12871 \or: __fp_parse_compare_auxii:NNNNN #2#3#4#2#6
12872 \or: __fp_parse_compare_auxii:NNNNN #2#3#4#5#2
12873 \else: #1 __fp_parse_compare_end:NNNNw #3#4#5#6#7
12874 \fi:
12875 }
12876 \cs_new:Npn __fp_parse_compare_auxii:NNNNN #1#2#3#4#5
12877 {
12878 \exp_after:wN __fp_parse_compare_auxi:NNNNNNN
12879 \exp_after:wN \prg_do_nothing:
12880 \exp_after:wN #1
12881 \exp_after:wN #2
12882 \exp_after:wN #3
12883 \exp_after:wN #4
12884 \exp_after:wN #5
12885 \exp:w \exp_after:wN __fp_parse_expand:w
12886 }
12887 \cs_new:Npn __fp_parse_compare_end:NNNNw #1#2#3#4#5 \fi:
12888 {
12889 \fi:
12890 \exp_after:wN @
12891 \exp_after:wN __fp_parse_apply_compare:NwNNNNNwN
12892 \exp_after:wN \c_one_fp
12893 \exp_after:wN #1
12894 \exp_after:wN #2
12895 \exp_after:wN #3
12896 \exp_after:wN #4
12897 \exp:w
12898 __fp_parse_operand:Nw \c_seven __fp_parse_expand:w #5
12899 }
12900 \cs_new:Npn __fp_parse_apply_compare:NwNNNNNwN
12901 #1 #2@ #3 #4#5#6#7 #8@ #9

648

12902 {
12903 \if_int_odd:w
12904 \if_meaning:w \c_zero_fp #3
12905 \c_zero
12906 \else:
12907 \if_case:w __fp_compare_back:ww #8 #2 \exp_stop_f:
12908 #5 \or: #6 \or: #7 \else: #4
12909 \fi:
12910 \fi:
12911 \exp_after:wN __fp_parse_apply_compare_aux:NNwN
12912 \exp_after:wN \c_one_fp
12913 \else:
12914 \exp_after:wN __fp_parse_apply_compare_aux:NNwN
12915 \exp_after:wN \c_zero_fp
12916 \fi:
12917 #1 #8 #9
12918 }
12919 \cs_new:Npn __fp_parse_apply_compare_aux:NNwN #1 #2 #3; #4
12920 {
12921 \if_meaning:w __fp_parse_compare:NNNNNNN #4
12922 \exp_after:wN __fp_parse_continue_compare:NNwNN
12923 \exp_after:wN #1
12924 \exp_after:wN #2
12925 \exp:w \exp_end_continue_f:w
12926 __fp_exp_after_o:w #3;
12927 \exp:w \exp_end_continue_f:w
12928 \else:
12929 \exp_after:wN __fp_parse_continue:NwN
12930 \exp_after:wN #2
12931 \exp:w \exp_end_continue_f:w
12932 \exp_after:wN #1
12933 \exp:w \exp_end_continue_f:w
12934 \fi:
12935 #4 #2
12936 }
12937 \cs_new:Npn __fp_parse_continue_compare:NNwNN #1#2 #3@ #4#5
12938 { #4 #2 #3@ #1 }

(End definition for __fp_parse_infix_<:N and others.)

27.8 Candidate: defining new l3fp functions
\fp_function:Nw Parse the argument of the function #1 using __fp_parse_operand:Nw with a precedence

of 16, and pass the function and argument to __fp_function_apply:nw.
12939 \cs_new:Npn \fp_function:Nw #1
12940 {
12941 \exp_after:wN __fp_function_apply:nw
12942 \exp_after:wN #1
12943 \exp:w
12944 __fp_parse_operand:Nw \c_sixteen __fp_parse_expand:w

649

12945 }

(End definition for \fp_function:Nw. This function is documented on page ??.)

\fp_new_function:Npn
__fp_new_function:NNnnn
__fp_new_function:Ncfnn
__fp_function_args:Nwn

Save the code provided by the user in the control sequence __fp_user_#1. Define
#1 to call __fp_function_apply:nw after parsing one operand using __fp_parse_-
operand:Nw with precedence 16. The auxiliary __fp_function_args:Nwn receives the
user function and the number of arguments (half of the number of tokens in the parameter
text #2), followed by the operand (as a token list of floating points). It checks the number
of arguments, and applies the user function to the arguments (without the outer brace
group).

12946 \cs_new_protected:Npn \fp_new_function:Npn #1#2#
12947 {
12948 __fp_new_function:Ncfnn #1
12949 { __fp_user_ \cs_to_str:N #1 }
12950 { \int_eval:n { \tl_count:n {#2} / \c_two } }
12951 {#2}
12952 }
12953 \cs_new_protected:Npn __fp_new_function:NNnnn #1#2#3#4#5
12954 {
12955 \cs_new_nopar:Npn #1
12956 {
12957 \exp_after:wN __fp_function_apply:nw \exp_after:wN
12958 {
12959 \exp_after:wN __fp_function_args:Nwn
12960 \exp_after:wN #2
12961 __int_value:w #3 \exp_after:wN ; \exp_after:wN
12962 }
12963 \exp:w
12964 __fp_parse_operand:Nw \c_sixteen __fp_parse_expand:w
12965 }
12966 \cs_new:Npn #2 #4 {#5}
12967 }
12968 \cs_generate_variant:Nn __fp_new_function:NNnnn { Ncf }
12969 \cs_new:Npn __fp_function_args:Nwn #1#2; #3
12970 {
12971 \int_compare:nNnTF { \tl_count:n {#3} } = {#2}
12972 { #1 #3 }
12973 {
12974 __msg_kernel_expandable_error:nnnnn
12975 { kernel } { fp-num-args } { #1() } {#2} {#2}
12976 \c_nan_fp
12977 }
12978 }

(End definition for \fp_new_function:Npn. This function is documented on page ??.)

__fp_function_apply:nw
__fp_function_store:wwNwnn

__fp_function_store_end:wnnn

The auxiliary __fp_function_apply:nw is called after parsing an operand, so it receives
some code #1, then the operand ending with @, then a function such as __fp_parse_-
infix_+:N (but not always of this form, see comparisons for instance). Package the

650

operand (an array) into a token list with floating point items: this is the role of __fp_-
function_store:wwNwnn and __fp_function_store_end:wnnn. Then apply __fp_-
parse:n to the code #1 followed by a brace group with this token list. This results in a
floating point result, which will correctly be parsed as the next operand of whatever was
looking for one. The trailing \s__fp_mark is used as a special infix operator to indicate
that the next token has already gone through __fp_parse_infix:NN.

12979 \cs_new:Npn __fp_function_apply:nw #1#2 @
12980 {
12981 __fp_parse:n
12982 {
12983 __fp_function_store:wwNwnn #2
12984 \s__fp_mark __fp_function_store:wwNwnn ;
12985 \s__fp_mark __fp_function_store_end:wnnn
12986 \s__fp_stop { } { } {#1}
12987 }
12988 \s__fp_mark
12989 }
12990 \cs_new:Npn __fp_function_store:wwNwnn
12991 #1; #2 \s__fp_mark #3#4 \s__fp_stop #5#6
12992 { #3 #2 \s__fp_mark #3#4 \s__fp_stop { #5 #6 } { { #1; } } }
12993 \cs_new:Npn __fp_function_store_end:wnnn
12994 #1 \s__fp_stop #2#3#4
12995 { #4 {#2} }

(End definition for __fp_function_apply:nw , __fp_function_store:wwNwnn , and __fp_function_-
store_end:wnnn.)

27.9 Messages
12996 __msg_kernel_new:nnn { kernel } { unknown-fp-word }
12997 { Unknown~fp~word~#1. }
12998 __msg_kernel_new:nnn { kernel } { fp-missing }
12999 { Missing~#1~inserted #2. }
13000 __msg_kernel_new:nnn { kernel } { fp-extra }
13001 { Extra~#1~ignored. }
13002 __msg_kernel_new:nnn { kernel } { fp-early-end }
13003 { Premature~end~in~fp~expression. }
13004 __msg_kernel_new:nnn { kernel } { fp-after-e }
13005 { Cannot~use~#1 after~’e’. }
13006 __msg_kernel_new:nnn { kernel } { fp-missing-number }
13007 { Missing~number~before~’#1’. }
13008 __msg_kernel_new:nnn { kernel } { fp-unknown-symbol }
13009 { Unknown~symbol~#1~ignored. }
13010 __msg_kernel_new:nnn { kernel } { fp-extra-comma }
13011 { Unexpected~comma:~extra~arguments~ignored. }
13012 __msg_kernel_new:nnn { kernel } { fp-num-args }
13013 { #1~expects~between~#2~and~#3~arguments. }
13014 〈*package〉
13015 \cs_if_exist:cT { @unexpandable@protect }

651

13016 {
13017 __msg_kernel_new:nnn { kernel } { fp-robust-cmd }
13018 { Robust~command~#1 invalid~in~fp~expression! }
13019 }
13020 〈/package〉

13021 〈/initex | package〉

28 l3fp-logic Implementation
13022 〈*initex | package〉

13023 〈@@=fp〉

28.1 Syntax of internal functions
• __fp_compare_npos:nwnw {〈expo1〉} 〈body1〉 ; {〈expo2〉} 〈body2〉 ;

• __fp_minmax_o:Nw 〈sign〉 〈floating point array〉

• __fp_not_o:w ? 〈floating point array〉 (with one floating point number only)

• __fp_&_o:ww 〈floating point〉 〈floating point〉

• __fp_|_o:ww 〈floating point〉 〈floating point〉

• __fp_ternary:NwwN, __fp_ternary_auxi:NwwN, __fp_ternary_auxii:NwwN
have to be understood.

28.2 Existence test
\fp_if_exist_p:N
\fp_if_exist_p:c
\fp_if_exist:NTF
\fp_if_exist:cTF

Copies of the cs functions defined in l3basics.
13024 \prg_new_eq_conditional:NNn \fp_if_exist:N \cs_if_exist:N { TF , T , F , p }
13025 \prg_new_eq_conditional:NNn \fp_if_exist:c \cs_if_exist:c { TF , T , F , p }

(End definition for \fp_if_exist:NTF and \fp_if_exist:cTF. These functions are documented on page
196.)

28.3 Comparison
\fp_compare_p:n
\fp_compare:nTF

__fp_compare_return:w

Within floating point expressions, comparison operators are treated as operations, so we
evaluate #1, then compare with 0.

13026 \prg_new_conditional:Npnn \fp_compare:n #1 { p , T , F , TF }
13027 {
13028 \exp_after:wN __fp_compare_return:w
13029 \exp:w \exp_end_continue_f:w __fp_parse:n {#1}
13030 }
13031 \cs_new:Npn __fp_compare_return:w \s__fp __fp_chk:w #1#2;
13032 {
13033 \if_meaning:w 0 #1
13034 \prg_return_false:
13035 \else:

652

13036 \prg_return_true:
13037 \fi:
13038 }

(End definition for \fp_compare:nTF. This function is documented on page 197.)

\fp_compare_p:nNn
\fp_compare:nNnTF

__fp_compare_aux:wn

Evaluate #1 and #3, using an auxiliary to expand both, and feed the two floating point
numbers swapped to __fp_compare_back:ww, defined below. Compare the result with
‘#2-‘=, which is −1 for <, 0 for =, 1 for > and 2 for ?.

13039 \prg_new_conditional:Npnn \fp_compare:nNn #1#2#3 { p , T , F , TF }
13040 {
13041 \if_int_compare:w
13042 \exp_after:wN __fp_compare_aux:wn
13043 \exp:w \exp_end_continue_f:w __fp_parse:n {#1} {#3}
13044 = __int_eval:w ‘#2 - ‘= __int_eval_end:
13045 \prg_return_true:
13046 \else:
13047 \prg_return_false:
13048 \fi:
13049 }
13050 \cs_new:Npn __fp_compare_aux:wn #1; #2
13051 {
13052 \exp_after:wN __fp_compare_back:ww
13053 \exp:w \exp_end_continue_f:w __fp_parse:n {#2} #1;
13054 }

(End definition for \fp_compare:nNnTF. This function is documented on page 196.)

__fp_compare_back:ww
__fp_compare_nan:w

__fp_compare_back:ww 〈y〉 ; 〈x〉 ;
Expands (in the same way as \int_eval:n) to −1 if x < y, 0 if x = y, 1 if x > y,

and 2 otherwise (denoted as x?y). If either operand is nan, stop the comparison with
__fp_compare_nan:w returning 2. If x is negative, swap the outputs 1 and −1 (i.e., >
and <); we can henceforth assume that x ≥ 0. If y ≥ 0, and they have the same type,
either they are normal and we compare them with __fp_compare_npos:nwnw, or they
are equal. If y ≥ 0, but of a different type, the highest type is a larger number. Finally,
if y ≤ 0, then x > y, unless both are zero.

13055 \cs_new:Npn __fp_compare_back:ww
13056 \s__fp __fp_chk:w #1 #2 #3;
13057 \s__fp __fp_chk:w #4 #5 #6;
13058 {
13059 __int_value:w
13060 \if_meaning:w 3 #1 \exp_after:wN __fp_compare_nan:w \fi:
13061 \if_meaning:w 3 #4 \exp_after:wN __fp_compare_nan:w \fi:
13062 \if_meaning:w 2 #5 - \fi:
13063 \if_meaning:w #2 #5
13064 \if_meaning:w #1 #4
13065 \if_meaning:w 1 #1
13066 __fp_compare_npos:nwnw #6; #3;
13067 \else:

653

13068 0
13069 \fi:
13070 \else:
13071 \if_int_compare:w #4 < #1 - \fi: 1
13072 \fi:
13073 \else:
13074 \if_int_compare:w #1#4 = \c_zero
13075 0
13076 \else:
13077 1
13078 \fi:
13079 \fi:
13080 \exp_stop_f:
13081 }
13082 \cs_new:Npn __fp_compare_nan:w #1 \exp_stop_f: { \c_two }

(End definition for __fp_compare_back:ww and __fp_compare_nan:w.)

__fp_compare_npos:nwnw
__fp_compare_significand:nnnnnnnn

__fp_compare_npos:nwnw {〈expo1〉} 〈body1〉 ; {〈expo2〉} 〈body2〉 ;
Within an __int_value:w . . . \exp_stop_f: construction, this expands to 0 if

the two numbers are equal, −1 if the first is smaller, and 1 if the first is bigger. First
compare the exponents: the larger one denotes the larger number. If they are equal, we
must compare significands. If both the first 8 digits and the next 8 digits coincide, the
numbers are equal. If only the first 8 digits coincide, the next 8 decide. Otherwise, the
first 8 digits are compared.

13083 \cs_new:Npn __fp_compare_npos:nwnw #1#2; #3#4;
13084 {
13085 \if_int_compare:w #1 = #3 \exp_stop_f:
13086 __fp_compare_significand:nnnnnnnn #2 #4
13087 \else:
13088 \if_int_compare:w #1 < #3 - \fi: 1
13089 \fi:
13090 }
13091 \cs_new:Npn __fp_compare_significand:nnnnnnnn #1#2#3#4#5#6#7#8
13092 {
13093 \if_int_compare:w #1#2 = #5#6 \exp_stop_f:
13094 \if_int_compare:w #3#4 = #7#8 \exp_stop_f:
13095 0
13096 \else:
13097 \if_int_compare:w #3#4 < #7#8 - \fi: 1
13098 \fi:
13099 \else:
13100 \if_int_compare:w #1#2 < #5#6 - \fi: 1
13101 \fi:
13102 }

(End definition for __fp_compare_npos:nwnw.)

654

28.4 Floating point expression loops
\fp_do_until:nn
\fp_do_while:nn
\fp_until_do:nn
\fp_while_do:nn

These are quite easy given the above functions. The do_until and do_while versions
execute the body, then test. The until_do and while_do do it the other way round.

13103 \cs_new:Npn \fp_do_until:nn #1#2
13104 {
13105 #2
13106 \fp_compare:nF {#1}
13107 { \fp_do_until:nn {#1} {#2} }
13108 }
13109 \cs_new:Npn \fp_do_while:nn #1#2
13110 {
13111 #2
13112 \fp_compare:nT {#1}
13113 { \fp_do_while:nn {#1} {#2} }
13114 }
13115 \cs_new:Npn \fp_until_do:nn #1#2
13116 {
13117 \fp_compare:nF {#1}
13118 {
13119 #2
13120 \fp_until_do:nn {#1} {#2}
13121 }
13122 }
13123 \cs_new:Npn \fp_while_do:nn #1#2
13124 {
13125 \fp_compare:nT {#1}
13126 {
13127 #2
13128 \fp_while_do:nn {#1} {#2}
13129 }
13130 }

(End definition for \fp_do_until:nn and others. These functions are documented on page 198.)

\fp_do_until:nNnn
\fp_do_while:nNnn
\fp_until_do:nNnn
\fp_while_do:nNnn

As above but not using the nNn syntax.
13131 \cs_new:Npn \fp_do_until:nNnn #1#2#3#4
13132 {
13133 #4
13134 \fp_compare:nNnF {#1} #2 {#3}
13135 { \fp_do_until:nNnn {#1} #2 {#3} {#4} }
13136 }
13137 \cs_new:Npn \fp_do_while:nNnn #1#2#3#4
13138 {
13139 #4
13140 \fp_compare:nNnT {#1} #2 {#3}
13141 { \fp_do_while:nNnn {#1} #2 {#3} {#4} }
13142 }
13143 \cs_new:Npn \fp_until_do:nNnn #1#2#3#4
13144 {

655

13145 \fp_compare:nNnF {#1} #2 {#3}
13146 {
13147 #4
13148 \fp_until_do:nNnn {#1} #2 {#3} {#4}
13149 }
13150 }
13151 \cs_new:Npn \fp_while_do:nNnn #1#2#3#4
13152 {
13153 \fp_compare:nNnT {#1} #2 {#3}
13154 {
13155 #4
13156 \fp_while_do:nNnn {#1} #2 {#3} {#4}
13157 }
13158 }

(End definition for \fp_do_until:nNnn and others. These functions are documented on page 197.)

28.5 Extrema
__fp_minmax_o:Nw The argument #1 is 2 to find the maximum of an array #2 of floating point numbers,

and 0 to find the minimum. We read numbers sequentially, keeping track of the largest
(smallest) number found so far. If numbers are equal (for instance ±0), the first is
kept. We append −∞ (∞), for the case of an empty array, currently impossible. Since
no number is smaller (larger) than that, it will never alter the maximum (minimum).
The weird fp-like trailing marker breaks the loop correctly: see the precise definition of
__fp_minmax_loop:Nww.

13159 \cs_new:Npn __fp_minmax_o:Nw #1#2 @
13160 {
13161 \if_meaning:w 0 #1
13162 \exp_after:wN __fp_minmax_loop:Nww \exp_after:wN \c_one
13163 \else:
13164 \exp_after:wN __fp_minmax_loop:Nww \exp_after:wN \c_minus_one
13165 \fi:
13166 #2
13167 \s__fp __fp_chk:w 2 #1 \s__fp_exact ;
13168 \s__fp __fp_chk:w { 3 __fp_minmax_break_o:w } ;
13169 }

(End definition for __fp_minmax_o:Nw.)

__fp_minmax_loop:Nww The first argument is −1 or 1 to denote the case where the currently largest (smallest)
number found (first floating point argument) should be replaced by the new number
(second floating point argument). If the new number is nan, keep that as the extremum,
unless that extremum is already a nan. Otherwise, compare the two numbers. If the new
number is larger (in the case of max) or smaller (in the case of min), the test yields true,
and we keep the second number as a new maximum; otherwise we keep the first number.
Then loop.

13170 \cs_new:Npn __fp_minmax_loop:Nww
13171 #1 \s__fp __fp_chk:w #2#3; \s__fp __fp_chk:w #4#5;

656

13172 {
13173 \if_meaning:w 3 #4
13174 \if_meaning:w 3 #2
13175 __fp_minmax_auxi:ww
13176 \else:
13177 __fp_minmax_auxii:ww
13178 \fi:
13179 \else:
13180 \if_int_compare:w
13181 __fp_compare_back:ww
13182 \s__fp __fp_chk:w #4#5;
13183 \s__fp __fp_chk:w #2#3;
13184 = #1
13185 __fp_minmax_auxii:ww
13186 \else:
13187 __fp_minmax_auxi:ww
13188 \fi:
13189 \fi:
13190 __fp_minmax_loop:Nww #1
13191 \s__fp __fp_chk:w #2#3;
13192 \s__fp __fp_chk:w #4#5;
13193 }

(End definition for __fp_minmax_loop:Nww.)

__fp_minmax_auxi:ww
__fp_minmax_auxii:ww

Keep the first/second number, and remove the other.
13194 \cs_new:Npn __fp_minmax_auxi:ww #1 \fi: \fi: #2 \s__fp #3 ; \s__fp #4;
13195 { \fi: \fi: #2 \s__fp #3 ; }
13196 \cs_new:Npn __fp_minmax_auxii:ww #1 \fi: \fi: #2 \s__fp #3 ;
13197 { \fi: \fi: #2 }

(End definition for __fp_minmax_auxi:ww and __fp_minmax_auxii:ww.)

__fp_minmax_break_o:w This function is called from within an \if_meaning:w test. Skip to the end of the tests,
close the current test with \fi:, clean up, and return the appropriate number with one
post-expansion.

13198 \cs_new:Npn __fp_minmax_break_o:w #1 \fi: \fi: #2 \s__fp #3; #4;
13199 { \fi: __fp_exp_after_o:w \s__fp #3; }

(End definition for __fp_minmax_break_o:w.)

28.6 Boolean operations
__fp_not_o:w Return true or false, with two expansions, one to exit the conditional, and one to please

l3fp-parse. The first argument is provided by l3fp-parse and is ignored.
13200 \cs_new:cpn { __fp_not_o:w } #1 \s__fp __fp_chk:w #2#3; @
13201 {
13202 \if_meaning:w 0 #2
13203 \exp_after:wN \exp_after:wN \exp_after:wN \c_one_fp
13204 \else:

657

13205 \exp_after:wN \exp_after:wN \exp_after:wN \c_zero_fp
13206 \fi:
13207 }

(End definition for __fp_not_o:w.)

__fp_&_o:ww
__fp_|_o:ww

__fp_and_return:wNw

For and, if the first number is zero, return it (with the same sign). Otherwise, return
the second one. For or, the logic is reversed: if the first number is non-zero, return
it, otherwise return the second number: we achieve that by hi-jacking __fp_&_o:ww,
inserting an extra argument, \else:, before \s__fp. In all cases, expand after the
floating point number.

13208 \group_begin:
13209 \char_set_catcode_letter:N &
13210 \char_set_catcode_letter:N |
13211 \cs_new:Npn __fp_&_o:ww #1 \s__fp __fp_chk:w #2#3;
13212 {
13213 \if_meaning:w 0 #2 #1
13214 __fp_and_return:wNw \s__fp __fp_chk:w #2#3;
13215 \fi:
13216 __fp_exp_after_o:w
13217 }
13218 \cs_new_nopar:Npn __fp_|_o:ww { __fp_&_o:ww \else: }
13219 \group_end:
13220 \cs_new:Npn __fp_and_return:wNw #1; \fi: #2#3; { \fi: #2 #1; }

(End definition for __fp_&_o:ww.)

28.7 Ternary operator
__fp_ternary:NwwN

__fp_ternary_auxi:NwwN
__fp_ternary_auxii:NwwN

__fp_ternary_loop_break:w
__fp_ternary_loop:Nw

__fp_ternary_map_break:
__fp_ternary_break_point:n

The first function receives the test and the true branch of the ?: ternary operator. It
returns the true branch, unless the test branch is zero. In that case, the function returns
a very specific nan. The second function receives the output of the first function, and the
false branch. It returns the previous input, unless that is the special nan, in which case
we return the false branch.

13221 \cs_new:Npn __fp_ternary:NwwN #1 #2@ #3@ #4
13222 {
13223 \if_meaning:w __fp_parse_infix_::N #4
13224 __fp_ternary_loop:Nw
13225 #2
13226 \s__fp __fp_chk:w { __fp_ternary_loop_break:w } ;
13227 __fp_ternary_break_point:n { \exp_after:wN __fp_ternary_auxi:NwwN }
13228 \exp_after:wN #1
13229 \exp:w \exp_end_continue_f:w
13230 __fp_exp_after_array_f:w #3 \s__fp_stop
13231 \exp_after:wN @
13232 \exp:w
13233 __fp_parse_operand:Nw \c_two
13234 __fp_parse_expand:w
13235 \else:

658

13236 __msg_kernel_expandable_error:nnnn
13237 { kernel } { fp-missing } { : } { ~for~?: }
13238 \exp_after:wN __fp_parse_continue:NwN
13239 \exp_after:wN #1
13240 \exp:w \exp_end_continue_f:w
13241 __fp_exp_after_array_f:w #3 \s__fp_stop
13242 \exp_after:wN #4
13243 \exp_after:wN #1
13244 \fi:
13245 }
13246 \cs_new:Npn __fp_ternary_loop_break:w
13247 #1 \fi: #2 __fp_ternary_break_point:n #3
13248 {
13249 \c_zero = \c_zero \fi:
13250 \exp_after:wN __fp_ternary_auxii:NwwN
13251 }
13252 \cs_new:Npn __fp_ternary_loop:Nw \s__fp __fp_chk:w #1#2;
13253 {
13254 \if_int_compare:w #1 > \c_zero
13255 \exp_after:wN __fp_ternary_map_break:
13256 \fi:
13257 __fp_ternary_loop:Nw
13258 }
13259 \cs_new:Npn __fp_ternary_map_break: #1 __fp_ternary_break_point:n #2 {#2}
13260 \cs_new:Npn __fp_ternary_auxi:NwwN #1#2@#3@#4
13261 {
13262 \exp_after:wN __fp_parse_continue:NwN
13263 \exp_after:wN #1
13264 \exp:w \exp_end_continue_f:w
13265 __fp_exp_after_array_f:w #2 \s__fp_stop
13266 #4 #1
13267 }
13268 \cs_new:Npn __fp_ternary_auxii:NwwN #1#2@#3@#4
13269 {
13270 \exp_after:wN __fp_parse_continue:NwN
13271 \exp_after:wN #1
13272 \exp:w \exp_end_continue_f:w
13273 __fp_exp_after_array_f:w #3 \s__fp_stop
13274 #4 #1
13275 }

(End definition for __fp_ternary:NwwN , __fp_ternary_auxi:NwwN , and __fp_ternary_auxii:NwwN.)

13276 〈/initex | package〉

29 l3fp-basics Implementation
13277 〈*initex | package〉

13278 〈@@=fp〉

659

The l3fp-basics module implements addition, subtraction, multiplication, and divi-
sion of two floating points, and the absolute value and sign-changing operations on one
floating point. All operations implemented in this module yield the outcome of rounding
the infinitely precise result of the operation to the nearest floating point.

Some algorithms used below end up being quite similar to some described in “What
Every Computer Scientist Should Know About Floating Point Arithmetic”, by David
Goldberg, which can be found at http://cr.yp.to/2005-590/goldberg.pdf.
29.1 Common to several operations

__fp_basics_pack_low:NNNNNw
__fp_basics_pack_high:NNNNNw

__fp_basics_pack_high_carry:w

Addition and multiplication of significands are done in two steps: first compute a (more or
less) exact result, then round and pack digits in the final (braced) form. These functions
take care of the packing, with special attention given to the case where rounding has
caused a carry. Since rounding can only shift the final digit by 1, a carry always produces
an exact power of 10. Thus, __fp_basics_pack_high_carry:w is always followed by
four times {0000}.

13279 \cs_new:Npn __fp_basics_pack_low:NNNNNw #1 #2#3#4#5 #6;
13280 { + #1 - \c_one ; {#2#3#4#5} {#6} ; }
13281 \cs_new:Npn __fp_basics_pack_high:NNNNNw #1 #2#3#4#5 #6;
13282 {
13283 \if_meaning:w 2 #1
13284 __fp_basics_pack_high_carry:w
13285 \fi:
13286 ; {#2#3#4#5} {#6}
13287 }
13288 \cs_new:Npn __fp_basics_pack_high_carry:w \fi: ; #1
13289 { \fi: + \c_one ; {1000} }

(End definition for __fp_basics_pack_low:NNNNNw , __fp_basics_pack_high:NNNNNw , and __fp_-
basics_pack_high_carry:w.)

__fp_basics_pack_weird_low:NNNNw
__fp_basics_pack_weird_high:NNNNNNNNw

I don’t fully understand those functions, used for additions and divisions. Hence the
name.

13290 \cs_new:Npn __fp_basics_pack_weird_low:NNNNw #1 #2#3#4 #5;
13291 {
13292 \if_meaning:w 2 #1
13293 + \c_one
13294 \fi:
13295 __int_eval_end:
13296 #2#3#4; {#5} ;
13297 }
13298 \cs_new:Npn __fp_basics_pack_weird_high:NNNNNNNNw
13299 1 #1#2#3#4 #5#6#7#8 #9; { ; {#1#2#3#4} {#5#6#7#8} {#9} }

(End definition for __fp_basics_pack_weird_low:NNNNw and __fp_basics_pack_weird_high:NNNNNNNNw.)

660

29.2 Addition and subtraction
We define here two functions, __fp_-_o:ww and __fp_+_o:ww, which perform the
subtraction and addition of their two floating point operands, and expand the tokens
following the result once.

A more obscure function, __fp_add_big_i_o:wNww, is used in l3fp-expo.
The logic goes as follows:

• __fp_-_o:ww calls __fp_+_o:ww to do the work, with the sign of the second
operand flipped;

• __fp_+_o:ww dispatches depending on the type of floating point, calling specialized
auxiliaries;

• in all cases except summing two normal floating point numbers, we return one or
the other operands depending on the signs, or detect an invalid operation in the
case of ∞−∞;

• for normal floating point numbers, compare the signs;

• to add two floating point numbers of the same sign or of opposite signs, shift
the significand of the smaller one to match the bigger one, perform the addi-
tion or subtraction of significands, check for a carry, round, and pack using the
__fp_basics_pack_... functions.

The trickiest part is to round correctly when adding or subtracting normal floating point
numbers.

29.2.1 Sign, exponent, and special numbers

__fp_-_o:ww A previous version of this function grabbed its two operands, changed the sign of the
second, and called __fp_+_o:ww. However, for efficiency reasons, the operands were
swapped in the process, which means that error messages ended up wrong. Now, the
__fp_+_o:ww auxiliary has a hook: it takes one argument between the first \s__fp and
__fp_chk:w, which is applied to the sign of the second operand. Positioning the hook
there means that __fp_+_o:ww can still check that it was followed by \s__fp and not
arbitrary junk.

13300 \cs_new_nopar:cpx { __fp_-_o:ww } \s__fp
13301 {
13302 \exp_not:c { __fp_+_o:ww }
13303 \exp_not:n { \s__fp __fp_neg_sign:N }
13304 }

(End definition for __fp_-_o:ww.)

__fp_+_o:ww This function is either called directly with an empty #1 to compute an addition, or
it is called by __fp_-_o:ww with __fp_neg_sign:N as #1 to compute a subtraction
(equivalent to changing the 〈sign2〉 of the second operand). If the 〈types〉 #2 and #4 are
the same, dispatch to case #2 (0, 1, 2, or 3), where we call specialized functions: thanks to

661

__int_value:w, those receive the tweaked 〈sign2〉 (expansion of #1#5) as an argument.
If the 〈types〉 are distinct, the result is simply the floating point number with the highest
〈type〉. Since case 3 (used for two nan) also picks the first operand, we can also use it
when 〈type1〉 is greater than 〈type2〉. Also note that we don’t need to worry about 〈sign2〉
in that case since the second operand is discarded.

13305 \cs_new:cpn { __fp_+_o:ww }
13306 \s__fp #1 __fp_chk:w #2 #3 ; \s__fp __fp_chk:w #4 #5
13307 {
13308 \if_case:w
13309 \if_meaning:w #2 #4
13310 #2 \exp_stop_f:
13311 \else:
13312 \if_int_compare:w #2 > #4 \exp_stop_f:
13313 \c_three
13314 \else:
13315 \c_minus_one
13316 \fi:
13317 \fi:
13318 \exp_after:wN __fp_add_zeros_o:Nww __int_value:w
13319 \or: \exp_after:wN __fp_add_normal_o:Nww __int_value:w
13320 \or: \exp_after:wN __fp_add_inf_o:Nww __int_value:w
13321 \or: __fp_case_return_i_o:ww
13322 \else: \exp_after:wN __fp_add_return_ii_o:Nww __int_value:w
13323 \fi:
13324 #1 #5
13325 \s__fp __fp_chk:w #2 #3 ;
13326 \s__fp __fp_chk:w #4 #5
13327 }

(End definition for __fp_+_o:ww.)

__fp_add_return_ii_o:Nww Ignore the first operand, and return the second, but using the sign #1 rather than #4. As
usual, expand after the floating point.

13328 \cs_new:Npn __fp_add_return_ii_o:Nww #1 #2 ; \s__fp __fp_chk:w #3 #4
13329 { __fp_exp_after_o:w \s__fp __fp_chk:w #3 #1 }

(End definition for __fp_add_return_ii_o:Nww.)

__fp_add_zeros_o:Nww Adding two zeros yields \c_zero_fp, except if both zeros were −0.
13330 \cs_new:Npn __fp_add_zeros_o:Nww #1 \s__fp __fp_chk:w 0 #2
13331 {
13332 \if_int_compare:w #2 #1 = 20 \exp_stop_f:
13333 \exp_after:wN __fp_add_return_ii_o:Nww
13334 \else:
13335 __fp_case_return_i_o:ww
13336 \fi:
13337 #1
13338 \s__fp __fp_chk:w 0 #2
13339 }

662

(End definition for __fp_add_zeros_o:Nww.)

__fp_add_inf_o:Nww If both infinities have the same sign, just return that infinity, otherwise, it is an invalid
operation. We find out if that invalid operation is an addition or a subtraction by testing
whether the tweaked 〈sign2〉 (#1) and the 〈sign2〉 (#4) are identical.

13340 \cs_new:Npn __fp_add_inf_o:Nww
13341 #1 \s__fp __fp_chk:w 2 #2 #3; \s__fp __fp_chk:w 2 #4
13342 {
13343 \if_meaning:w #1 #2
13344 __fp_case_return_i_o:ww
13345 \else:
13346 __fp_case_use:nw
13347 {
13348 \if_meaning:w #1 #4
13349 \exp_after:wN __fp_invalid_operation_o:Nww
13350 \exp_after:wN +
13351 \else:
13352 \exp_after:wN __fp_invalid_operation_o:Nww
13353 \exp_after:wN -
13354 \fi:
13355 }
13356 \fi:
13357 \s__fp __fp_chk:w 2 #2 #3;
13358 \s__fp __fp_chk:w 2 #4
13359 }

(End definition for __fp_add_inf_o:Nww.)

__fp_add_normal_o:Nww __fp_add_normal_o:Nww 〈sign2〉 \s__fp __fp_chk:w 1 〈sign1〉 〈exp1〉
〈body1〉 ; \s__fp __fp_chk:w 1 〈initial sign2〉 〈exp2〉 〈body2〉 ;

We now have two normal numbers to add, and we have to check signs and exponents
more carefully before performing the addition.

13360 \cs_new:Npn __fp_add_normal_o:Nww #1 \s__fp __fp_chk:w 1 #2
13361 {
13362 \if_meaning:w #1#2
13363 \exp_after:wN __fp_add_npos_o:NnwNnw
13364 \else:
13365 \exp_after:wN __fp_sub_npos_o:NnwNnw
13366 \fi:
13367 #2
13368 }

(End definition for __fp_add_normal_o:Nww.)

29.2.2 Absolute addition

In this subsection, we perform the addition of two positive normal numbers.

663

__fp_add_npos_o:NnwNnw __fp_add_npos_o:NnwNnw 〈sign1〉 〈exp1〉 〈body1〉 ; \s__fp __fp_chk:w 1
〈initial sign2〉 〈exp2〉 〈body2〉 ;

Since we are doing an addition, the final sign is 〈sign1〉. Start an __int_eval:w,
responsible for computing the exponent: the result, and the 〈final sign〉 are then given to
__fp_sanitize:Nw which checks for overflow. The exponent is computed as the largest
exponent #2 or #5, incremented if there is a carry. To add the significands, we decimate
the smaller number by the difference between the exponents. This is done by __fp_-
add_big_i:wNww or __fp_add_big_ii:wNww. We need to bring the final sign with us in
the midst of the calculation to round properly at the end.

13369 \cs_new:Npn __fp_add_npos_o:NnwNnw #1#2#3 ; \s__fp __fp_chk:w 1 #4 #5
13370 {
13371 \exp_after:wN __fp_sanitize:Nw
13372 \exp_after:wN #1
13373 __int_value:w __int_eval:w
13374 \if_int_compare:w #2 > #5 \exp_stop_f:
13375 #2
13376 \exp_after:wN __fp_add_big_i_o:wNww __int_value:w -
13377 \else:
13378 #5
13379 \exp_after:wN __fp_add_big_ii_o:wNww __int_value:w
13380 \fi:
13381 __int_eval:w #5 - #2 ; #1 #3;
13382 }

(End definition for __fp_add_npos_o:NnwNnw.)

__fp_add_big_i_o:wNww
__fp_add_big_ii_o:wNww

__fp_add_big_i_o:wNww 〈shift〉 ; 〈final sign〉 〈body1〉 ; 〈body2〉 ;
Shift the significand of the small number, then add with __fp_add_significand_-

o:NnnwnnnnN.
13383 \cs_new:Npn __fp_add_big_i_o:wNww #1; #2 #3; #4;
13384 {
13385 __fp_decimate:nNnnnn {#1}
13386 __fp_add_significand_o:NnnwnnnnN
13387 #4
13388 #3
13389 #2
13390 }
13391 \cs_new:Npn __fp_add_big_ii_o:wNww #1; #2 #3; #4;
13392 {
13393 __fp_decimate:nNnnnn {#1}
13394 __fp_add_significand_o:NnnwnnnnN
13395 #3
13396 #4
13397 #2
13398 }

(End definition for __fp_add_big_i_o:wNww.)

664

__fp_add_significand_o:NnnwnnnnN
__fp_add_significand_pack:NNNNNNN

__fp_add_significand_test_o:N

__fp_add_significand_o:NnnwnnnnN 〈rounding digit〉 {〈Y’1〉} {〈Y’2〉}
〈extra-digits〉 ; {〈X1〉} {〈X2〉} {〈X3〉} {〈X4〉} 〈final sign〉

To round properly, we must know at which digit the rounding should occur. This
requires to know whether the addition produces an overall carry or not. Thus, we do the
computation now and check for a carry, then go back and do the rounding. The rounding
may cause a carry in very rare cases such as 0.99 · · · 95 → 1.00 · · · 0, but this situation
always give an exact power of 10, for which it is easy to correct the result at the end.

13399 \cs_new:Npn __fp_add_significand_o:NnnwnnnnN #1 #2#3 #4; #5#6#7#8
13400 {
13401 \exp_after:wN __fp_add_significand_test_o:N
13402 __int_value:w __int_eval:w 1#5#6 + #2
13403 \exp_after:wN __fp_add_significand_pack:NNNNNNN
13404 __int_value:w __int_eval:w 1#7#8 + #3 ; #1
13405 }
13406 \cs_new:Npn __fp_add_significand_pack:NNNNNNN #1 #2#3#4#5#6#7
13407 {
13408 \if_meaning:w 2 #1
13409 + \c_one
13410 \fi:
13411 ; #2 #3 #4 #5 #6 #7 ;
13412 }
13413 \cs_new:Npn __fp_add_significand_test_o:N #1
13414 {
13415 \if_meaning:w 2 #1
13416 \exp_after:wN __fp_add_significand_carry_o:wwwNN
13417 \else:
13418 \exp_after:wN __fp_add_significand_no_carry_o:wwwNN
13419 \fi:
13420 }

(End definition for __fp_add_significand_o:NnnwnnnnN.)

__fp_add_significand_no_carry_o:wwwNN __fp_add_significand_no_carry_o:wwwNN 〈8d〉 ; 〈6d〉 ; 〈2d〉 ; 〈rounding
digit〉 〈sign〉

If there’s no carry, grab all the digits again and round. The packing function __-
fp_basics_pack_high:NNNNNw takes care of the case where rounding brings a carry.

13421 \cs_new:Npn __fp_add_significand_no_carry_o:wwwNN
13422 #1; #2; #3#4 ; #5#6
13423 {
13424 \exp_after:wN __fp_basics_pack_high:NNNNNw
13425 __int_value:w __int_eval:w 1 #1
13426 \exp_after:wN __fp_basics_pack_low:NNNNNw
13427 __int_value:w __int_eval:w 1 #2 #3#4
13428 + __fp_round:NNN #6 #4 #5
13429 \exp_after:wN ;
13430 }

(End definition for __fp_add_significand_no_carry_o:wwwNN.)

665

__fp_add_significand_carry_o:wwwNN __fp_add_significand_carry_o:wwwNN 〈8d〉 ; 〈6d〉 ; 〈2d〉 ; 〈rounding
digit〉 〈sign〉

The case where there is a carry is very similar. Rounding can even raise the first
digit from 1 to 2, but we don’t care.

13431 \cs_new:Npn __fp_add_significand_carry_o:wwwNN
13432 #1; #2; #3#4; #5#6
13433 {
13434 + \c_one
13435 \exp_after:wN __fp_basics_pack_weird_high:NNNNNNNNw
13436 __int_value:w __int_eval:w 1 1 #1
13437 \exp_after:wN __fp_basics_pack_weird_low:NNNNw
13438 __int_value:w __int_eval:w 1 #2#3 +
13439 \exp_after:wN __fp_round:NNN
13440 \exp_after:wN #6
13441 \exp_after:wN #3
13442 __int_value:w __fp_round_digit:Nw #4 #5 ;
13443 \exp_after:wN ;
13444 }

(End definition for __fp_add_significand_carry_o:wwwNN.)

29.2.3 Absolute subtraction

__fp_sub_npos_o:NnwNnw
__fp_sub_eq_o:Nnwnw

__fp_sub_npos_ii_o:Nnwnw

__fp_sub_npos_o:NnwNnw 〈sign1〉 〈exp1〉 〈body1〉 ; \s__fp __fp_chk:w 1
〈initial sign2〉 〈exp2〉 〈body2〉 ;

Rounding properly in some modes requires to know what the sign of the result will
be. Thus, we start by comparing the exponents and significands. If the numbers coincide,
return zero. If the second number is larger, swap the numbers and call __fp_sub_npos_-
i_o:Nnwnw with the opposite of 〈sign1〉.

13445 \cs_new:Npn __fp_sub_npos_o:NnwNnw #1#2#3; \s__fp __fp_chk:w 1 #4#5#6;
13446 {
13447 \if_case:w __fp_compare_npos:nwnw {#2} #3; {#5} #6; \exp_stop_f:
13448 \exp_after:wN __fp_sub_eq_o:Nnwnw
13449 \or:
13450 \exp_after:wN __fp_sub_npos_i_o:Nnwnw
13451 \else:
13452 \exp_after:wN __fp_sub_npos_ii_o:Nnwnw
13453 \fi:
13454 #1 {#2} #3; {#5} #6;
13455 }
13456 \cs_new:Npn __fp_sub_eq_o:Nnwnw #1#2; #3; { \exp_after:wN \c_zero_fp }
13457 \cs_new:Npn __fp_sub_npos_ii_o:Nnwnw #1 #2; #3;
13458 {
13459 \exp_after:wN __fp_sub_npos_i_o:Nnwnw
13460 __int_value:w __int_eval:w \c_two - #1 __int_eval_end:
13461 #3; #2;
13462 }

(End definition for __fp_sub_npos_o:NnwNnw.)

666

__fp_sub_npos_i_o:Nnwnw After the computation is done, __fp_sanitize:Nw checks for overflow/underflow. It
expects the 〈final sign〉 and the 〈exponent〉 (delimited by ;). Start an integer expression
for the exponent, which starts with the exponent of the largest number, and may be
decreased if the two numbers are very close. If the two numbers have the same exponent,
call the near auxiliary. Otherwise, decimate y, then call the far auxiliary to evaluate
the difference between the two significands. Note that we decimate by 1 less than one
could expect.

13463 \cs_new:Npn __fp_sub_npos_i_o:Nnwnw #1 #2#3; #4#5;
13464 {
13465 \exp_after:wN __fp_sanitize:Nw
13466 \exp_after:wN #1
13467 __int_value:w __int_eval:w
13468 #2
13469 \if_int_compare:w #2 = #4 \exp_stop_f:
13470 \exp_after:wN __fp_sub_back_near_o:nnnnnnnnN
13471 \else:
13472 \exp_after:wN __fp_decimate:nNnnnn \exp_after:wN
13473 { __int_value:w __int_eval:w #2 - #4 - \c_one \exp_after:wN }
13474 \exp_after:wN __fp_sub_back_far_o:NnnwnnnnN
13475 \fi:
13476 #5
13477 #3
13478 #1
13479 }

(End definition for __fp_sub_npos_i_o:Nnwnw.)

__fp_sub_back_near_o:nnnnnnnnN
__fp_sub_back_near_pack:NNNNNNw
__fp_sub_back_near_after:wNNNNw

__fp_sub_back_near_o:nnnnnnnnN {〈Y1〉} {〈Y2〉} {〈Y3〉} {〈Y4〉} {〈X1〉}
{〈X2〉} {〈X3〉} {〈X4〉} 〈final sign〉

In this case, the subtraction is exact, so we discard the 〈final sign〉 #9. The very
large shifts of 109 and 1.1 ·109 are unnecessary here, but allow the auxiliaries to be reused
later. Each integer expression produces a 10 digit result. If the resulting 16 digits start
with a 0, then we need to shift the group, padding with trailing zeros.

13480 \cs_new:Npn __fp_sub_back_near_o:nnnnnnnnN #1#2#3#4 #5#6#7#8 #9
13481 {
13482 \exp_after:wN __fp_sub_back_near_after:wNNNNw
13483 __int_value:w __int_eval:w 10#5#6 - #1#2 - \c_eleven
13484 \exp_after:wN __fp_sub_back_near_pack:NNNNNNw
13485 __int_value:w __int_eval:w 11#7#8 - #3#4 \exp_after:wN ;
13486 }
13487 \cs_new:Npn __fp_sub_back_near_pack:NNNNNNw #1#2#3#4#5#6#7 ;
13488 { + #1#2 ; {#3#4#5#6} {#7} ; }
13489 \cs_new:Npn __fp_sub_back_near_after:wNNNNw 10 #1#2#3#4 #5 ;
13490 {
13491 \if_meaning:w 0 #1
13492 \exp_after:wN __fp_sub_back_shift:wnnnn
13493 \fi:
13494 ; {#1#2#3#4} {#5}
13495 }

667

(End definition for __fp_sub_back_near_o:nnnnnnnnN.)

__fp_sub_back_shift:wnnnn
__fp_sub_back_shift_ii:ww

__fp_sub_back_shift_iii:NNNNNNNNw
__fp_sub_back_shift_iv:nnnnw

__fp_sub_back_shift:wnnnn ; {〈Z1〉} {〈Z2〉} {〈Z3〉} {〈Z4〉} ;
This function is called with 〈Z1〉 ≤ 999. Act with \number to trim leading zeros from

〈Z1〉 〈Z2〉 (we don’t do all four blocks at once, since non-zero blocks would then overflow
TEX’s integers). If the first two blocks are zero, the auxiliary receives an empty #1 and
trims #2#30 from leading zeros, yielding a total shift between 7 and 16 to the exponent.
Otherwise we get the shift from #1 alone, yielding a result between 1 and 6. Once the
exponent is taken care of, trim leading zeros from #1#2#3 (when #1 is empty, the space
before #2#3 is ignored), get four blocks of 4 digits and finally clean up. Trailing zeros are
added so that digits can be grabbed safely.

13496 \cs_new:Npn __fp_sub_back_shift:wnnnn ; #1#2
13497 {
13498 \exp_after:wN __fp_sub_back_shift_ii:ww
13499 __int_value:w #1 #2 0 ;
13500 }
13501 \cs_new:Npn __fp_sub_back_shift_ii:ww #1 0 ; #2#3 ;
13502 {
13503 \if_meaning:w @ #1 @
13504 - \c_seven
13505 - \exp_after:wN \use_i:nnn
13506 \exp_after:wN __fp_sub_back_shift_iii:NNNNNNNNw
13507 __int_value:w #2#3 0 ~ 123456789;
13508 \else:
13509 - __fp_sub_back_shift_iii:NNNNNNNNw #1 123456789;
13510 \fi:
13511 \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
13512 \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
13513 \exp_after:wN __fp_sub_back_shift_iv:nnnnw
13514 \exp_after:wN ;
13515 __int_value:w
13516 #1 ~ #2#3 0 ~ 0000 0000 0000 000 ;
13517 }
13518 \cs_new:Npn __fp_sub_back_shift_iii:NNNNNNNNw #1#2#3#4#5#6#7#8#9; {#8}
13519 \cs_new:Npn __fp_sub_back_shift_iv:nnnnw #1 ; #2 ; { ; #1 ; }

(End definition for __fp_sub_back_shift:wnnnn.)

__fp_sub_back_far_o:NnnwnnnnN __fp_sub_back_far_o:NnnwnnnnN 〈rounding〉 {〈Y’1〉} {〈Y’2〉}
〈extra-digits〉 ; {〈X1〉} {〈X2〉} {〈X3〉} {〈X4〉} 〈final sign〉

If the difference is greater than 10〈expox〉, call the very_far auxiliary. If the result is
less than 10〈expox〉, call the not_far auxiliary. If it is too close a call to know yet, namely
if 1〈Y’1〉〈Y’2〉 = 〈X1〉〈X2〉〈X3〉〈X4〉0, then call the quite_far auxiliary. We use the odd
combination of space and semi-colon delimiters to allow the not_far auxiliary to grab
each piece individually, the very_far auxiliary to use __fp_pack_eight:wNNNNNNNN,
and the quite_far to ignore the significands easily (using the ; delimiter).

13520 \cs_new:Npn __fp_sub_back_far_o:NnnwnnnnN #1 #2#3 #4; #5#6#7#8
13521 {

668

13522 \if_case:w
13523 \if_int_compare:w 1 #2 = #5#6 \use_i:nnnn #7 \exp_stop_f:
13524 \if_int_compare:w #3 = \use_none:n #7#8 0 \exp_stop_f:
13525 \c_zero
13526 \else:
13527 \if_int_compare:w #3 > \use_none:n #7#8 0 - \fi: \c_one
13528 \fi:
13529 \else:
13530 \if_int_compare:w 1 #2 > #5#6 \use_i:nnnn #7 - \fi: \c_one
13531 \fi:
13532 \exp_after:wN __fp_sub_back_quite_far_o:wwNN
13533 \or: \exp_after:wN __fp_sub_back_very_far_o:wwwwNN
13534 \else: \exp_after:wN __fp_sub_back_not_far_o:wwwwNN
13535 \fi:
13536 #2 ~ #3 ; #5 #6 ~ #7 #8 ; #1
13537 }

(End definition for __fp_sub_back_far_o:NnnwnnnnN.)

__fp_sub_back_quite_far_o:wwNN
__fp_sub_back_quite_far_ii:NN

The easiest case is when x− y is extremely close to a power of 10, namely the first digit
of x is 1, and all others vanish when subtracting y. Then the 〈rounding〉 #3 and the 〈final
sign〉 #4 control whether we get 1 or 0.9999999999999999. In the usual round-to-nearest
mode, we will get 1 whenever the 〈rounding〉 digit is less than or equal to 5 (remember
that the 〈rounding〉 digit is only equal to 5 if there was no further non-zero digit).

13538 \cs_new:Npn __fp_sub_back_quite_far_o:wwNN #1; #2; #3#4
13539 {
13540 \exp_after:wN __fp_sub_back_quite_far_ii:NN
13541 \exp_after:wN #3
13542 \exp_after:wN #4
13543 }
13544 \cs_new:Npn __fp_sub_back_quite_far_ii:NN #1#2
13545 {
13546 \if_case:w __fp_round_neg:NNN #2 0 #1
13547 \exp_after:wN \use_i:nn
13548 \else:
13549 \exp_after:wN \use_ii:nn
13550 \fi:
13551 { ; {1000} {0000} {0000} {0000} ; }
13552 { - \c_one ; {9999} {9999} {9999} {9999} ; }
13553 }

(End definition for __fp_sub_back_quite_far_o:wwNN.)

__fp_sub_back_not_far_o:wwwwNN In the present case, x and y have different exponents, but y is large enough that x − y
has a smaller exponent than x. Decrement the exponent (with - \c_one). Then proceed
in a way similar to the near auxiliaries seen earlier, but multiplying x by 10 (#30 and
#40 below), and with the added quirk that the 〈rounding〉 digit has to be taken into
account. Namely, we may have to decrease the result by one unit if __fp_round_neg:NNN
returns 1. This function expects the 〈final sign〉 #6, the last digit of 1100000000+#40-#2,
and the 〈rounding〉 digit. Instead of redoing the computation for the second argument,

669

we note that __fp_round_neg:NNN only cares about its parity, which is identical to that
of the last digit of #2.

13554 \cs_new:Npn __fp_sub_back_not_far_o:wwwwNN #1 ~ #2; #3 ~ #4; #5#6
13555 {
13556 - \c_one
13557 \exp_after:wN __fp_sub_back_near_after:wNNNNw
13558 __int_value:w __int_eval:w 1#30 - #1 - \c_eleven
13559 \exp_after:wN __fp_sub_back_near_pack:NNNNNNw
13560 __int_value:w __int_eval:w 11 0000 0000 + #40 - #2
13561 - \exp_after:wN __fp_round_neg:NNN
13562 \exp_after:wN #6
13563 \use_none:nnnnnnn #2 #5
13564 \exp_after:wN ;
13565 }

(End definition for __fp_sub_back_not_far_o:wwwwNN.)

__fp_sub_back_very_far_o:wwwwNN
__fp_sub_back_very_far_ii_o:nnNwwNN

The case where x− y and x have the same exponent is a bit more tricky, mostly because
it cannot reuse the same auxiliaries. Shift the y significand by adding a leading 0. Then
the logic is similar to the not_far functions above. Rounding is a bit more complicated:
we have two 〈rounding〉 digits #3 and #6 (from the decimation, and from the new shift)
to take into account, and getting the parity of the main result requires a computation.
The first __int_value:w triggers the second one because the number is unfinished; we
can thus not use 0 in place of 2 there.

13566 \cs_new:Npn __fp_sub_back_very_far_o:wwwwNN #1#2#3#4#5#6#7
13567 {
13568 __fp_pack_eight:wNNNNNNNN
13569 __fp_sub_back_very_far_ii_o:nnNwwNN
13570 { 0 #1#2#3 #4#5#6#7 }
13571 ;
13572 }
13573 \cs_new:Npn __fp_sub_back_very_far_ii_o:nnNwwNN #1#2 ; #3 ; #4 ~ #5; #6#7
13574 {
13575 \exp_after:wN __fp_basics_pack_high:NNNNNw
13576 __int_value:w __int_eval:w 1#4 - #1 - \c_one
13577 \exp_after:wN __fp_basics_pack_low:NNNNNw
13578 __int_value:w __int_eval:w 2#5 - #2
13579 - \exp_after:wN __fp_round_neg:NNN
13580 \exp_after:wN #7
13581 __int_value:w
13582 \if_int_odd:w __int_eval:w #5 - #2 __int_eval_end:
13583 1 \else: 2 \fi:
13584 __int_value:w __fp_round_digit:Nw #3 #6 ;
13585 \exp_after:wN ;
13586 }

(End definition for __fp_sub_back_very_far_o:wwwwNN.)

670

29.3 Multiplication
29.3.1 Signs, and special numbers

__fp_*_o:ww We go through an auxiliary, which is common with __fp_/_o:ww. The first argument
is the operation, used for the invalid operation exception. The second is inserted in a
formula to dispatch cases slightly differently between multiplication and division. The
third is the operation for normal floating points. The fourth is there for extra cases
needed in __fp_/_o:ww.

13587 \cs_new_nopar:cpn { __fp_*_o:ww }
13588 {
13589 __fp_mul_cases_o:NnNnww
13590 *
13591 { - \c_two + }
13592 __fp_mul_npos_o:Nww
13593 { }
13594 }

(End definition for __fp_*_o:ww.)

__fp_mul_cases_o:nNnnww Split into 10 cases (12 for division). If both numbers are normal, go to case 0 (same sign)
or case 1 (opposite signs): in both cases, call __fp_mul_npos_o:Nww to do the work. If
the first operand is nan, go to case 2, in which the second operand is discarded; if the
second operand is nan, go to case 3, in which the first operand is discarded (note the
weird interaction with the final test on signs). Then we separate the case where the first
number is normal and the second is zero: this goes to cases 4 and 5 for multiplication,
10 and 11 for division. Otherwise, we do a computation which dispatches the products
0×0 = 0×1 = 1×0 = 0 to case 4 or 5 depending on the combined sign, the products 0×∞
and∞×0 to case 6 or 7 (invalid operation), and the products 1×∞ =∞×1 =∞×∞ =∞
to cases 8 and 9. Note that the code for these two cases (which return ±∞) is inserted
as argument #4, because it differs in the case of divisions.

13595 \cs_new:Npn __fp_mul_cases_o:NnNnww
13596 #1#2#3#4 \s__fp __fp_chk:w #5#6#7; \s__fp __fp_chk:w #8#9
13597 {
13598 \if_case:w __int_eval:w
13599 \if_int_compare:w #5 #8 = \c_eleven
13600 \c_one
13601 \else:
13602 \if_meaning:w 3 #8
13603 \c_three
13604 \else:
13605 \if_meaning:w 3 #5
13606 \c_two
13607 \else:
13608 \if_int_compare:w #5 #8 = \c_ten
13609 \c_nine #2 - \c_two
13610 \else:
13611 (#5 #2 #8) / \c_two * \c_two + \c_seven
13612 \fi:

671

13613 \fi:
13614 \fi:
13615 \fi:
13616 \if_meaning:w #6 #9 - \c_one \fi:
13617 __int_eval_end:
13618 __fp_case_use:nw { #3 0 }
13619 \or: __fp_case_use:nw { #3 2 }
13620 \or: __fp_case_return_i_o:ww
13621 \or: __fp_case_return_ii_o:ww
13622 \or: __fp_case_return_o:Nww \c_zero_fp
13623 \or: __fp_case_return_o:Nww \c_minus_zero_fp
13624 \or: __fp_case_use:nw { __fp_invalid_operation_o:Nww #1 }
13625 \or: __fp_case_use:nw { __fp_invalid_operation_o:Nww #1 }
13626 \or: __fp_case_return_o:Nww \c_inf_fp
13627 \or: __fp_case_return_o:Nww \c_minus_inf_fp
13628 #4
13629 \fi:
13630 \s__fp __fp_chk:w #5 #6 #7;
13631 \s__fp __fp_chk:w #8 #9
13632 }

(End definition for __fp_mul_cases_o:nNnnww.)

29.3.2 Absolute multiplication

In this subsection, we perform the multiplication of two positive normal numbers.

__fp_mul_npos_o:Nww __fp_mul_npos_o:Nww 〈final sign〉 \s__fp __fp_chk:w 1 〈sign1〉 {〈exp1〉}
〈body1〉 ; \s__fp __fp_chk:w 1 〈sign2〉 {〈exp2〉} 〈body2〉 ;

After the computation, __fp_sanitize:Nw checks for overflow or underflow. As
we did for addition, __int_eval:w computes the exponent, catching any shift coming
from the computation in the significand. The 〈final sign〉 is needed to do the rounding
properly in the significand computation. We setup the post-expansion here, triggered by
__fp_mul_significand_o:nnnnNnnnn.

13633 \cs_new:Npn __fp_mul_npos_o:Nww
13634 #1 \s__fp __fp_chk:w #2 #3 #4 #5 ; \s__fp __fp_chk:w #6 #7 #8 #9 ;
13635 {
13636 \exp_after:wN __fp_sanitize:Nw
13637 \exp_after:wN #1
13638 __int_value:w __int_eval:w
13639 #4 + #8
13640 __fp_mul_significand_o:nnnnNnnnn #5 #1 #9
13641 }

(End definition for __fp_mul_npos_o:Nww.)

__fp_mul_significand_o:nnnnNnnnn
__fp_mul_significand_drop:NNNNNw
__fp_mul_significand_keep:NNNNNw

__fp_mul_significand_o:nnnnNnnnn {〈X1〉} {〈X2〉} {〈X3〉} {〈X4〉} 〈sign〉
{〈Y1〉} {〈Y2〉} {〈Y3〉} {〈Y4〉}

Note the three semicolons at the end of the definition. One is for the last __fp_-
mul_significand_drop:NNNNNw; one is for __fp_round_digit:Nw later on; and one,

672

preceded by \exp_after:wN, which is correctly expanded (within an __int_eval:w), is
used by __fp_basics_pack_low:NNNNNw.

The product of two 16 digit integers has 31 or 32 digits, but it is impossible to
know which one before computing. The place where we round depends on that number
of digits, and may depend on all digits until the last in some rare cases. The approach
is thus to compute the 5 first blocks of 4 digits (the first one is between 100 and 9999
inclusive), and a compact version of the remaining 3 blocks. Afterwards, the number of
digits is known, and we can do the rounding within yet another set of __int_eval:w.

13642 \cs_new:Npn __fp_mul_significand_o:nnnnNnnnn #1#2#3#4 #5 #6#7#8#9
13643 {
13644 \exp_after:wN __fp_mul_significand_test_f:NNN
13645 \exp_after:wN #5
13646 __int_value:w __int_eval:w 99990000 + #1*#6 +
13647 \exp_after:wN __fp_mul_significand_keep:NNNNNw
13648 __int_value:w __int_eval:w 99990000 + #1*#7 + #2*#6 +
13649 \exp_after:wN __fp_mul_significand_keep:NNNNNw
13650 __int_value:w __int_eval:w 99990000 + #1*#8 + #2*#7 + #3*#6 +
13651 \exp_after:wN __fp_mul_significand_drop:NNNNNw
13652 __int_value:w __int_eval:w 99990000 + #1*#9 + #2*#8 + #3*#7 + #4*#6 +
13653 \exp_after:wN __fp_mul_significand_drop:NNNNNw
13654 __int_value:w __int_eval:w 99990000 + #2*#9 + #3*#8 + #4*#7 +
13655 \exp_after:wN __fp_mul_significand_drop:NNNNNw
13656 __int_value:w __int_eval:w 99990000 + #3*#9 + #4*#8 +
13657 \exp_after:wN __fp_mul_significand_drop:NNNNNw
13658 __int_value:w __int_eval:w 100000000 + #4*#9 ;
13659 ; \exp_after:wN ;
13660 }
13661 \cs_new:Npn __fp_mul_significand_drop:NNNNNw #1#2#3#4#5 #6;
13662 { #1#2#3#4#5 ; + #6 }
13663 \cs_new:Npn __fp_mul_significand_keep:NNNNNw #1#2#3#4#5 #6;
13664 { #1#2#3#4#5 ; #6 ; }

(End definition for __fp_mul_significand_o:nnnnNnnnn.)

__fp_mul_significand_test_f:NNN __fp_mul_significand_test_f:NNN 〈sign〉 1 〈digits 1–8 〉 ; 〈digits 9–12 〉 ;
〈digits 13–16 〉 ; + 〈digits 17–20 〉 + 〈digits 21–24 〉 + 〈digits 25–28 〉 + 〈digits
29–32 〉 ; \exp_after:wN ;

If the 〈digit 1 〉 is non-zero, then for rounding we only care about the digits 16 and
17, and whether further digits are zero or not (check for exact ties). On the other hand,
if 〈digit 1 〉 is zero, we care about digits 17 and 18, and whether further digits are zero.

13665 \cs_new:Npn __fp_mul_significand_test_f:NNN #1 #2 #3
13666 {
13667 \if_meaning:w 0 #3
13668 \exp_after:wN __fp_mul_significand_small_f:NNwwwN
13669 \else:
13670 \exp_after:wN __fp_mul_significand_large_f:NwwNNNN
13671 \fi:
13672 #1 #3
13673 }

673

(End definition for __fp_mul_significand_test_f:NNN.)

__fp_mul_significand_large_f:NwwNNNN In this branch, 〈digit 1 〉 is non-zero. The result is thus 〈digits 1–16 〉, plus some rounding
which depends on the digits 16, 17, and whether all subsequent digits are zero or not.
Here, __fp_round_digit:Nw takes digits 17 and further (as an integer expression), and
replaces it by a 〈rounding digit〉, suitable for __fp_round:NNN.

13674 \cs_new:Npn __fp_mul_significand_large_f:NwwNNNN #1 #2; #3; #4#5#6#7; +
13675 {
13676 \exp_after:wN __fp_basics_pack_high:NNNNNw
13677 __int_value:w __int_eval:w 1#2
13678 \exp_after:wN __fp_basics_pack_low:NNNNNw
13679 __int_value:w __int_eval:w 1#3#4#5#6#7
13680 + \exp_after:wN __fp_round:NNN
13681 \exp_after:wN #1
13682 \exp_after:wN #7
13683 __int_value:w __fp_round_digit:Nw
13684 }

(End definition for __fp_mul_significand_large_f:NwwNNNN.)

__fp_mul_significand_small_f:NNwwwN In this branch, 〈digit 1 〉 is zero. Our result will thus be 〈digits 2–17 〉, plus some rounding
which depends on the digits 17, 18, and whether all subsequent digits are zero or not.
The 8 digits 1#3 are followed, after expansion of the small_pack auxiliary, by the next
digit, to form a 9 digit number.

13685 \cs_new:Npn __fp_mul_significand_small_f:NNwwwN #1 #2#3; #4#5; #6; + #7
13686 {
13687 - \c_one
13688 \exp_after:wN __fp_basics_pack_high:NNNNNw
13689 __int_value:w __int_eval:w 1#3#4
13690 \exp_after:wN __fp_basics_pack_low:NNNNNw
13691 __int_value:w __int_eval:w 1#5#6#7
13692 + \exp_after:wN __fp_round:NNN
13693 \exp_after:wN #1
13694 \exp_after:wN #7
13695 __int_value:w __fp_round_digit:Nw
13696 }

(End definition for __fp_mul_significand_small_f:NNwwwN.)

29.4 Division
29.4.1 Signs, and special numbers

Time is now ripe to tackle the hardest of the four elementary operations: division.

__fp_/_o:ww Filtering special floating point is very similar to what we did for multiplications, with
a few variations. Invalid operation exceptions display / rather than *. In the formula
for dispatch, we replace - \c_two + by -. The case of normal numbers is treated using
__fp_div_npos_o:Nww rather than __fp_mul_npos_o:Nww. There are two additional

674

cases: if the first operand is normal and the second is a zero, then the division by zero
exception is raised: cases 10 and 11 of the \if_case:w construction in __fp_mul_-
cases_o:NnNnww are provided as the fourth argument here.

13697 \cs_new_nopar:cpn { __fp_/_o:ww }
13698 {
13699 __fp_mul_cases_o:NnNnww
13700 /
13701 { - }
13702 __fp_div_npos_o:Nww
13703 {
13704 \or:
13705 __fp_case_use:nw
13706 { __fp_division_by_zero_o:NNww \c_inf_fp / }
13707 \or:
13708 __fp_case_use:nw
13709 { __fp_division_by_zero_o:NNww \c_minus_inf_fp / }
13710 }
13711 }

(End definition for __fp_/_o:ww.)

__fp_div_npos_o:Nww __fp_div_npos_o:Nww 〈final sign〉 \s__fp __fp_chk:w 1 〈signA〉 {〈exp A〉}
{〈A1〉} {〈A2〉} {〈A3〉} {〈A4〉} ; \s__fp __fp_chk:w 1 〈signZ〉 {〈exp Z 〉}
{〈Z1〉} {〈Z2〉} {〈Z3〉} {〈Z4〉} ;

We want to compute A/Z. As for multiplication, __fp_sanitize:Nw checks for
overflow or underflow; we provide it with the 〈final sign〉, and an integer expression in
which we compute the exponent. We set up the arguments of __fp_div_significand_-
i_o:wnnw, namely an integer 〈y〉 obtained by adding 1 to the first 5 digits of Z (expla-
nation given soon below), then the four {〈Ai〉}, then the four {〈Zi〉}, a semi-colon, and
the 〈final sign〉, used for rounding at the end.

13712 \cs_new:Npn __fp_div_npos_o:Nww
13713 #1 \s__fp __fp_chk:w 1 #2 #3 #4 ; \s__fp __fp_chk:w 1 #5 #6 #7#8#9;
13714 {
13715 \exp_after:wN __fp_sanitize:Nw
13716 \exp_after:wN #1
13717 __int_value:w __int_eval:w
13718 #3 - #6
13719 \exp_after:wN __fp_div_significand_i_o:wnnw
13720 __int_value:w __int_eval:w #7 \use_i:nnnn #8 + \c_one ;
13721 #4
13722 {#7}{#8}#9 ;
13723 #1
13724 }

(End definition for __fp_div_npos_o:Nww.)

675

29.4.2 Work plan

In this subsection, we explain how to avoid overflowing TEX’s integers when performing
the division of two positive normal numbers.

We are given two numbers, A = 0.A1A2A3A4 and Z = 0.Z1Z2Z3Z4, in blocks of 4
digits, and we know that the first digits of A1 and of Z1 are non-zero. To compute A/Z,
we proceed as follows.

• Find an integer QA ' 104A/Z.

• Replace A by B = 104A−QAZ.

• Find an integer QB ' 104B/Z.

• Replace B by C = 104B −QBZ.

• Find an integer QC ' 104C/Z.

• Replace C by D = 104C −QCZ.

• Find an integer QD ' 104D/Z.

• Consider E = 104D −QDZ, and ensure correct rounding.

The result is then Q = 10−4QA + 10−8QB + 10−12QC + 10−16QD + rounding. Since
the Qi are integers, B, C, D, and E are all exact multiples of 10−16, in other words,
computing with 16 digits after the decimal separator yields exact results. The problem
will be overflow: in general B, C, D, and E may be greater than 1.

Unfortunately, things are not as easy as they seem. In particular, we want all
intermediate steps to be positive, since negative results would require extra calculations
at the end. This requires that QA ≤ 104A/Z etc. A reasonable attempt would be to
define QA as

\int_eval:n
{
A1A2

Z1 + 1 − 1
}
≤ 104A

Z

Subtracting 1 at the end takes care of the fact that ε-TEX’s __int_eval:w rounds
divisions instead of truncating (really, 1/2 would be sufficient, but we work with integers).
We add 1 to Z1 because Z1 ≤ 104Z < Z1 + 1 and we need QA to be an underestimate.
However, we are now underestimating QA too much: it can be wrong by up to 100, for
instance when Z = 0.1 and A ' 1. Then B could take values up to 10 (maybe more),
and a few steps down the line, we would run into arithmetic overflow, since TEX can only
handle integers less than roughly 2 · 109.

A better formula is to take

QA = \int_eval:n
{

10 ·A1A2

b10−3 · Z1Z2c+ 1 − 1
}
.

This is always less than 109A/(105Z), as we wanted. In words, we take the 5 first digits
of Z into account, and the 8 first digits of A, using 0 as a 9-th digit rather than the true

676

digit for efficiency reasons. We shall prove that using this formula to define all the Qi
avoids any overflow. For convenience, let us denote

y =
⌊
10−3 · Z1Z2

⌋
+ 1,

so that, taking into account the fact that ε-TEX rounds ties away from zero,

QA =
⌊
A1A20
y

− 1
2

⌋
>
A1A20
y

− 3
2 .

Note that 104 < y ≤ 105, and 999 ≤ QA ≤ 99989. Also note that this formula does not
cause an overflow as long as A < (231 − 1)/109 ' 2.147 · · · , since the numerator involves
an integer slightly smaller than 109A.

Let us bound B:

105B = A1A20 + 10 · 0.A3A4 − 10 · Z1.Z2Z3Z4 ·QA

< A1A20 ·
(

1− 10 · Z1.Z2Z3Z4

y

)
+ 3

2 · 10 · Z1.Z2Z3Z4 + 10

≤ A1A20 · (y − 10 · Z1.Z2Z3Z4)
y

+ 3
2y + 10

≤ A1A20 · 1
y

+ 3
2y + 10 ≤ 109A

y
+ 1.6 · y.

At the last step, we hide 10 into the second term for later convenience. The same
reasoning yields

105B < 109A/y + 1.6y,
105C < 109B/y + 1.6y,
105D < 109C/y + 1.6y,
105E < 109D/y + 1.6y.

The goal is now to prove that none of B, C, D, and E can go beyond (231 − 1)/109 =
2.147 · · · .

Combining the various inequalities together with A < 1, we get

105B < 109/y + 1.6y,
105C < 1013/y2 + 1.6(y + 104),
105D < 1017/y3 + 1.6(y + 104 + 108/y),
105E < 1021/y4 + 1.6(y + 104 + 108/y + 1012/y2).

677

All of those bounds are convex functions of y (since every power of y involved is convex,
and the coefficients are positive), and thus maximal at one of the end-points of the allowed
range 104 < y ≤ 105. Thus,

105B < max(1.16 · 105, 1.7 · 105),
105C < max(1.32 · 105, 1.77 · 105),
105D < max(1.48 · 105, 1.777 · 105),
105E < max(1.64 · 105, 1.7777 · 105).

All of those bounds are less than 2.147 · 105, and we are thus within TEX’s bounds in all
cases!

We will later need to have a bound on the Qi. Their definitions imply that QA <
109A/y − 1/2 < 105A and similarly for the other Qi. Thus, all of them are less than
177770.

The last step is to ensure correct rounding. We have

A/Z =
4∑
i=1

(
10−4iQi

)
+ 10−16E/Z

exactly. Furthermore, we know that the result will be in [0.1, 10), hence will be rounded
to a multiple of 10−16 or of 10−15, so we only need to know the integer part of E/Z, and
a “rounding” digit encoding the rest. Equivalently, we need to find the integer part of
2E/Z, and determine whether it was an exact integer or not (this serves to detect ties).
Since

2E
Z

= 2105E

105Z
≤ 2105E

104 < 36,

this integer part is between 0 and 35 inclusive. We let ε-TEX round

P = \int_eval:n
{

2 · E1E2

Z1Z2

}
,

which differs from 2E/Z by at most

1
2 + 2

∣∣∣∣EZ − E

10−8Z1Z2

∣∣∣∣+ 2
∣∣∣∣108E − E1E2

Z1Z2

∣∣∣∣ < 1,

(1/2 comes from ε-TEX’s rounding) because each absolute value is less than 10−7. Thus
P is either the correct integer part, or is off by 1; furthermore, if 2E/Z is an integer, P =
2E/Z. We will check the sign of 2E−PZ. If it is negative, then E/Z ∈

(
(P −1)/2, P/2

)
.

If it is zero, then E/Z = P/2. If it is positive, then E/Z ∈
(
P/2, (P−1)/2

)
. In each case,

we know how to round to an integer, depending on the parity of P , and the rounding
mode.

678

29.4.3 Implementing the significand division

__fp_div_significand_i_o:wnnw __fp_div_significand_i_o:wnnw 〈y〉 ; {〈A1〉} {〈A2〉} {〈A3〉} {〈A4〉}
{〈Z1〉} {〈Z2〉} {〈Z3〉} {〈Z4〉} ; 〈sign〉

Compute 106 + QA (a 7 digit number thanks to the shift), unbrace 〈A1〉 and
〈A2〉, and prepare the 〈continuation〉 arguments for 4 consecutive calls to __fp_div_-
significand_calc:wwnnnnnnn. Each of these calls will need 〈y〉 (#1), and it turns out
that we need post-expansion there, hence the __int_value:w. Here, #4 is six brace
groups, which give the six first n-type arguments of the calc function.

13725 \cs_new:Npn __fp_div_significand_i_o:wnnw #1 ; #2#3 #4 ;
13726 {
13727 \exp_after:wN __fp_div_significand_test_o:w
13728 __int_value:w __int_eval:w
13729 \exp_after:wN __fp_div_significand_calc:wwnnnnnnn
13730 __int_value:w __int_eval:w 999999 + #2 #3 0 / #1 ;
13731 #2 #3 ;
13732 #4
13733 { \exp_after:wN __fp_div_significand_ii:wwn __int_value:w #1 }
13734 { \exp_after:wN __fp_div_significand_ii:wwn __int_value:w #1 }
13735 { \exp_after:wN __fp_div_significand_ii:wwn __int_value:w #1 }
13736 { \exp_after:wN __fp_div_significand_iii:wwnnnnn __int_value:w #1 }
13737 }

(End definition for __fp_div_significand_i_o:wnnw.)

__fp_div_significand_calc:wwnnnnnnn
__fp_div_significand_calc_i:wwnnnnnnn

__fp_div_significand_calc_ii:wwnnnnnnn

__fp_div_significand_calc:wwnnnnnnn 〈106 +QA〉 ; 〈A1〉 〈A2〉 ; {〈A3〉}
{〈A4〉} {〈Z1〉} {〈Z2〉} {〈Z3〉} {〈Z4〉} {〈continuation〉}

expands to

〈106 +QA〉 〈continuation〉 ; 〈B1〉 〈B2〉 ; {〈B3〉} {〈B4〉} {〈Z1〉} {〈Z2〉} {〈Z3〉}
{〈Z4〉}

where B = 104A − QA · Z. This function is also used to compute C, D, E (with the
input shifted accordingly), and is used in l3fp-expo.

We know that 0 < QA < 1.8 ·105, so the product of QA with each Zi is within TEX’s
bounds. However, it is a little bit too large for our purposes: we would not be able to
use the usual trick of adding a large power of 10 to ensure that the number of digits is
fixed.

The bound on QA, implies that 106 + QA starts with the digit 1, followed by 0 or
1. We test, and call different auxiliaries for the two cases. An earlier implementation
did the tests within the computation, but since we added a 〈continuation〉, this is not
possible because the macro has 9 parameters.

The result we want is then (the overall power of 10 is arbitrary):

10−4(#2−#1 ·#5− 10 · 〈i〉 ·#5#6) + 10−8(#3−#1 ·#6− 10 · 〈i〉 ·#7)
+ 10−12(#4−#1 ·#7− 10 · 〈i〉 ·#8) + 10−16(−#1 ·#8),

where 〈i〉 stands for the 105 digit of QA, which is 0 or 1, and #1, #2, etc. are the
parameters of either auxiliary. The factors of 10 come from the fact that QA = 10 ·

679

104 · 〈i〉+ #1. As usual, to combine all the terms, we need to choose some shifts which
must ensure that the number of digits of the second, third, and fourth terms are each
fixed. Here, the positive contributions are at most 108 and the negative contributions
can go up to 109. Indeed, for the auxiliary with 〈i〉 = 1, #1 is at most 80000, leading
to contributions of at worse −8 · 1084, while the other negative term is very small < 106

(except in the first expression, where we don’t care about the number of digits); for the
auxiliary with 〈i〉 = 0, #1 can go up to 99999, but there is no other negative term. Hence,
a good choice is 2 · 109, which produces totals in the range [109, 2.1 · 109]. We are flirting
with TEX’s limits once more.

13738 \cs_new:Npn __fp_div_significand_calc:wwnnnnnnn 1#1
13739 {
13740 \if_meaning:w 1 #1
13741 \exp_after:wN __fp_div_significand_calc_i:wwnnnnnnn
13742 \else:
13743 \exp_after:wN __fp_div_significand_calc_ii:wwnnnnnnn
13744 \fi:
13745 }
13746 \cs_new:Npn __fp_div_significand_calc_i:wwnnnnnnn #1; #2;#3#4 #5#6#7#8 #9
13747 {
13748 1 1 #1
13749 #9 \exp_after:wN ;
13750 __int_value:w __int_eval:w \c__fp_Bigg_leading_shift_int
13751 + #2 - #1 * #5 - #5#60
13752 \exp_after:wN __fp_pack_Bigg:NNNNNNw
13753 __int_value:w __int_eval:w \c__fp_Bigg_middle_shift_int
13754 + #3 - #1 * #6 - #70
13755 \exp_after:wN __fp_pack_Bigg:NNNNNNw
13756 __int_value:w __int_eval:w \c__fp_Bigg_middle_shift_int
13757 + #4 - #1 * #7 - #80
13758 \exp_after:wN __fp_pack_Bigg:NNNNNNw
13759 __int_value:w __int_eval:w \c__fp_Bigg_trailing_shift_int
13760 - #1 * #8 ;
13761 {#5}{#6}{#7}{#8}
13762 }
13763 \cs_new:Npn __fp_div_significand_calc_ii:wwnnnnnnn #1; #2;#3#4 #5#6#7#8 #9
13764 {
13765 1 0 #1
13766 #9 \exp_after:wN ;
13767 __int_value:w __int_eval:w \c__fp_Bigg_leading_shift_int
13768 + #2 - #1 * #5
13769 \exp_after:wN __fp_pack_Bigg:NNNNNNw
13770 __int_value:w __int_eval:w \c__fp_Bigg_middle_shift_int
13771 + #3 - #1 * #6
13772 \exp_after:wN __fp_pack_Bigg:NNNNNNw
13773 __int_value:w __int_eval:w \c__fp_Bigg_middle_shift_int
13774 + #4 - #1 * #7
13775 \exp_after:wN __fp_pack_Bigg:NNNNNNw
13776 __int_value:w __int_eval:w \c__fp_Bigg_trailing_shift_int
13777 - #1 * #8 ;

680

13778 {#5}{#6}{#7}{#8}
13779 }

(End definition for __fp_div_significand_calc:wwnnnnnnn.)

__fp_div_significand_ii:wwn __fp_div_significand_ii:wwn 〈y〉 ; 〈B1〉 ; {〈B2〉} {〈B3〉} {〈B4〉} {〈Z1〉}
{〈Z2〉} {〈Z3〉} {〈Z4〉} 〈continuations〉 〈sign〉

Compute QB by evaluating 〈B1〉〈B2〉0/y − 1. The result will be output to the left,
in an __int_eval:w which we start now. Once that is evaluated (and the other Qi also,
since later expansions are triggered by this one), a packing auxiliary takes care of placing
the digits of QB in an appropriate way for the final addition to obtain Q. This auxiliary
is also used to compute QC and QD with the inputs C and D instead of B.

13780 \cs_new:Npn __fp_div_significand_ii:wwn #1; #2;#3
13781 {
13782 \exp_after:wN __fp_div_significand_pack:NNN
13783 __int_value:w __int_eval:w
13784 \exp_after:wN __fp_div_significand_calc:wwnnnnnnn
13785 __int_value:w __int_eval:w 999999 + #2 #3 0 / #1 ; #2 #3 ;
13786 }

(End definition for __fp_div_significand_ii:wwn.)

__fp_div_significand_iii:wwnnnnn __fp_div_significand_iii:wwnnnnn 〈y〉 ; 〈E1〉 ; {〈E2〉} {〈E3〉} {〈E4〉}
{〈Z1〉} {〈Z2〉} {〈Z3〉} {〈Z4〉} 〈sign〉

We compute P ' 2E/Z by rounding 2E1E2/Z1Z2. Note the first 0, which multiplies
QD by 10: we will later add (roughly) 5 · P , which amounts to adding P/2 ' E/Z to
QD, the appropriate correction from a hypothetical QE .

13787 \cs_new:Npn __fp_div_significand_iii:wwnnnnn #1; #2;#3#4#5 #6#7
13788 {
13789 0
13790 \exp_after:wN __fp_div_significand_iv:wwnnnnnnn
13791 __int_value:w __int_eval:w (\c_two * #2 #3) / #6 #7 ; % <- P
13792 #2 ; {#3} {#4} {#5}
13793 {#6} {#7}
13794 }

(End definition for __fp_div_significand_iii:wwnnnnn.)

__fp_div_significand_iv:wwnnnnnnn
__fp_div_significand_v:NNw
__fp_div_significand_vi:Nw

__fp_div_significand_iv:wwnnnnnnn 〈P〉 ; 〈E1〉 ; {〈E2〉} {〈E3〉} {〈E4〉}
{〈Z1〉} {〈Z2〉} {〈Z3〉} {〈Z4〉} 〈sign〉

This adds to the current expression (107 + 10 ·QD) a contribution of 5 ·P + sign(T)
with T = 2E −PZ. This amounts to adding P/2 to QD, with an extra 〈rounding〉 digit.
This 〈rounding〉 digit is 0 or 5 if T does not contribute, i.e., if 0 = T = 2E − PZ, in
other words if 1016A/Z is an integer or half-integer. Otherwise it is in the appropriate
range, [1, 4] or [6, 9]. This is precise enough for rounding purposes (in any mode).

It seems an overkill to compute T exactly as I do here, but I see no faster way right
now.

Once more, we need to be careful and show that the calculation #1 ·#6#7 below
does not cause an overflow: naively, P can be up to 35, and #6#7 up to 108, but both

681

cannot happen simultaneously. To show that things are fine, we split in two (non-disjoint)
cases.

• For P < 10, the product obeys P ·#6#7 < 108 · P < 109.

• For large P ≥ 3, the rounding error on P , which is at most 1, is less than a factor
of 2, hence P ≤ 4E/Z. Also, #6#7 ≤ 108 · Z, hence P ·#6#7 ≤ 4E · 108 < 109.

Both inequalities could be made tighter if needed.
Note however that P ·#8#9 may overflow, since the two factors are now independent,

and the result may reach 3.5 · 109. Thus we compute the two lower levels separately.
The rest is standard, except that we use + as a separator (ending integer expressions
explicitly). T is negative if the first character is -, it is positive if the first character
is neither 0 nor -. It is also positive if the first character is 0 and second argument of
__fp_div_significand_vi:Nw, a sum of several terms, is also zero. Otherwise, there
was an exact agreement: T = 0.

13795 \cs_new:Npn __fp_div_significand_iv:wwnnnnnnn #1; #2;#3#4#5 #6#7#8#9
13796 {
13797 + \c_five * #1
13798 \exp_after:wN __fp_div_significand_vi:Nw
13799 __int_value:w __int_eval:w -20 + 2*#2#3 - #1*#6#7 +
13800 \exp_after:wN __fp_div_significand_v:NN
13801 __int_value:w __int_eval:w 199980 + 2*#4 - #1*#8 +
13802 \exp_after:wN __fp_div_significand_v:NN
13803 __int_value:w __int_eval:w 200000 + 2*#5 - #1*#9 ;
13804 }
13805 \cs_new:Npn __fp_div_significand_v:NN #1#2 { #1#2 __int_eval_end: + }
13806 \cs_new:Npn __fp_div_significand_vi:Nw #1#2;
13807 {
13808 \if_meaning:w 0 #1
13809 \if_int_compare:w __int_eval:w #2 > \c_zero + \c_one \fi:
13810 \else:
13811 \if_meaning:w - #1 - \else: + \fi: \c_one
13812 \fi:
13813 ;
13814 }

(End definition for __fp_div_significand_iv:wwnnnnnnn , __fp_div_significand_v:NNw , and __-
fp_div_significand_vi:Nw.)

__fp_div_significand_pack:NNN At this stage, we are in the following situation: TEX is in the process of expanding several
integer expressions, thus functions at the bottom expand before those above.

__fp_div_significand_test_o:w 106 + QA __fp_div_significand_-
pack:NNN 106 + QB __fp_div_significand_pack:NNN 106 + QC __fp_-
div_significand_pack:NNN 107 + 10 ·QD + 5 · P + ε ; 〈sign〉

Here, ε = sign(T) is 0 in case 2E = PZ, 1 in case 2E > PZ, which means that P was
the correct value, but not with an exact quotient, and −1 if 2E < PZ, i.e., P was an

682

overestimate. The packing function we define now does nothing special: it removes the
106 and carries two digits (for the 105’s and the 104’s).

13815 \cs_new:Npn __fp_div_significand_pack:NNN 1 #1 #2 { + #1 #2 ; }

(End definition for __fp_div_significand_pack:NNN.)

__fp_div_significand_test_o:w __fp_div_significand_test_o:w 1 0 〈5d〉 ; 〈4d〉 ; 〈4d〉 ; 〈5d〉 ; 〈sign〉
The reason we know that the first two digits are 1 and 0 is that the final result is

known to be between 0.1 (inclusive) and 10, hence Q̃A (the tilde denoting the contribution
from the other Qi) is at most 99999, and 106 + Q̃A = 10 · · · .

It is now time to round. This depends on how many digits the final result will have.
13816 \cs_new:Npn __fp_div_significand_test_o:w 10 #1
13817 {
13818 \if_meaning:w 0 #1
13819 \exp_after:wN __fp_div_significand_small_o:wwwNNNNwN
13820 \else:
13821 \exp_after:wN __fp_div_significand_large_o:wwwNNNNwN
13822 \fi:
13823 #1
13824 }

(End definition for __fp_div_significand_test_o:w.)

__fp_div_significand_small_o:wwwNNNNwN __fp_div_significand_small_o:wwwNNNNwN 0 〈4d〉 ; 〈4d〉 ; 〈4d〉 ; 〈5d〉
; 〈final sign〉

Standard use of the functions __fp_basics_pack_low:NNNNNw and __fp_basics_-
pack_high:NNNNNw. We finally get to use the 〈final sign〉 which has been sitting there
for a while.

13825 \cs_new:Npn __fp_div_significand_small_o:wwwNNNNwN
13826 0 #1; #2; #3; #4#5#6#7#8; #9
13827 {
13828 \exp_after:wN __fp_basics_pack_high:NNNNNw
13829 __int_value:w __int_eval:w 1 #1#2
13830 \exp_after:wN __fp_basics_pack_low:NNNNNw
13831 __int_value:w __int_eval:w 1 #3#4#5#6#7
13832 + __fp_round:NNN #9 #7 #8
13833 \exp_after:wN ;
13834 }

(End definition for __fp_div_significand_small_o:wwwNNNNwN.)

__fp_div_significand_large_o:wwwNNNNwN __fp_div_significand_large_o:wwwNNNNwN 〈5d〉 ; 〈4d〉 ; 〈4d〉 ; 〈5d〉 ;
〈sign〉

We know that the final result cannot reach 10, hence 1#1#2, together with contri-
butions from the level below, cannot reach 2 · 109. For rounding, we build the 〈rounding
digit〉 from the last two of our 18 digits.

13835 \cs_new:Npn __fp_div_significand_large_o:wwwNNNNwN
13836 #1; #2; #3; #4#5#6#7#8; #9
13837 {

683

13838 + \c_one
13839 \exp_after:wN __fp_basics_pack_weird_high:NNNNNNNNw
13840 __int_value:w __int_eval:w 1 #1 #2
13841 \exp_after:wN __fp_basics_pack_weird_low:NNNNw
13842 __int_value:w __int_eval:w 1 #3 #4 #5 #6 +
13843 \exp_after:wN __fp_round:NNN
13844 \exp_after:wN #9
13845 \exp_after:wN #6
13846 __int_value:w __fp_round_digit:Nw #7 #8 ;
13847 \exp_after:wN ;
13848 }

(End definition for __fp_div_significand_large_o:wwwNNNNwN.)

29.5 Square root
__fp_sqrt_o:w Zeros are unchanged:

√
−0 = −0 and

√
+0 = +0. Negative numbers (other than −0)

have no real square root. Positive infinity, and nan, are unchanged. Finally, for normal
positive numbers, there is some work to do.

13849 \cs_new:Npn __fp_sqrt_o:w #1 \s__fp __fp_chk:w #2#3#4; @
13850 {
13851 \if_meaning:w 0 #2 __fp_case_return_same_o:w \fi:
13852 \if_meaning:w 2 #3
13853 __fp_case_use:nw { __fp_invalid_operation_o:nw { sqrt } }
13854 \fi:
13855 \if_meaning:w 1 #2 \else: __fp_case_return_same_o:w \fi:
13856 __fp_sqrt_npos_o:w
13857 \s__fp __fp_chk:w #2 #3 #4;
13858 }

(End definition for __fp_sqrt_o:w.)

__fp_sqrt_npos_o:w
__fp_sqrt_npos_auxi_o:wwnnN

__fp_sqrt_npos_auxii_o:wNNNNNNNN

Prepare __fp_sanitize:Nw to receive the final sign 0 (the result is always positive) and
the exponent, equal to half of the exponent #1 of the argument. If the exponent #1 is even,
find a first approximation of the square root of the significand 108a1+a2 = 108#2#3+#4#5
through Newton’s method, starting at x = 57234133 ' 107.75. Otherwise, first shift the
significand of of the argument by one digit, getting a′1 ∈ [106, 107) instead of [107, 108),
then use Newton’s method starting at 17782794 ' 107.25.

13859 \cs_new:Npn __fp_sqrt_npos_o:w \s__fp __fp_chk:w 1 0 #1#2#3#4#5;
13860 {
13861 \exp_after:wN __fp_sanitize:Nw
13862 \exp_after:wN 0
13863 __int_value:w __int_eval:w
13864 \if_int_odd:w #1 \exp_stop_f:
13865 \exp_after:wN __fp_sqrt_npos_auxi_o:wwnnN
13866 \fi:
13867 #1 / \c_two
13868 __fp_sqrt_Newton_o:wwn 56234133; 0; {#2#3} {#4#5} 0
13869 }

684

13870 \cs_new:Npn __fp_sqrt_npos_auxi_o:wwnnN #1 / \c_two #2; 0; #3#4#5
13871 {
13872 (#1 + \c_one) / \c_two
13873 __fp_pack_eight:wNNNNNNNN
13874 __fp_sqrt_npos_auxii_o:wNNNNNNNN
13875 ;
13876 0 #3 #4
13877 }
13878 \cs_new:Npn __fp_sqrt_npos_auxii_o:wNNNNNNNN #1; #2#3#4#5#6#7#8#9
13879 { __fp_sqrt_Newton_o:wwn 17782794; 0; {#1} {#2#3#4#5#6#7#8#9} }

(End definition for __fp_sqrt_npos_o:w.)

__fp_sqrt_Newton_o:wwn Newton’s method maps x 7→
[
(x + [108a1/x])/2

]
in each iteration, where [b/c] denotes

ε-TEX’s division. This division rounds the real number b/c to the closest integer, rounding
ties away from zero, hence when c is even, b/c− 1/2 + 1/c ≤ [b/c] ≤ b/c+ 1/2 and when
c is odd, b/c− 1/2 + 1/(2c) ≤ [b/c] ≤ b/c+ 1/2− 1/(2c). For all c, b/c− 1/2 + 1/(2c) ≤
[b/c] ≤ b/c+ 1/2.

Let us prove that the method converges when implemented with ε-TEX integer di-
vision, for any 106 ≤ a1 < 108 and starting value 106 ≤ x < 108. Using the inequalities
above and the arithmetic–geometric inequality (x+ t)/2 ≥

√
xt for t = 108a1/x, we find

x′ =
[
x+ [108a1/x]

2

]
≥ x+ 108a1/x− 1/2 + 1/(2x)

2 ≥
√

108a1 −
1
4 + 1

4x .

After any step of iteration, we thus have δ = x−
√

108a1 ≥ −0.25 + 0.25 · 10−8. The new
difference δ′ = x′ −

√
108a1 after one step is bounded above as

x′ −
√

108a1 ≤
x+ 108a1/x+ 1/2

2 + 1
2 −

√
108a1 ≤

δ

2
δ√

108a1 + δ
+ 3

4 .

For δ > 3/2, this last expression is ≤ δ/2 + 3/4 < δ, hence δ decreases at each step: since
all x are integers, δ must reach a value −1/4 < δ ≤ 3/2. In this range of values, we get
δ′ ≤ 3

4
3

2
√

108a1
+ 3

4 ≤ 0.75 + 1.125 · 10−7. We deduce that the difference δ = x−
√

108a1

eventually reaches a value in the interval [−0.25 + 0.25 · 10−8, 0.75 + 11.25 · 10−8], whose
width is 1 + 11 · 10−8. The corresponding interval for x may contain two integers, hence
x might oscillate between those two values.

However, the fact that x 7→ x − 1 and x − 1 7→ x puts stronger constraints, which
are not compatible: the first implies

x+ [108a1/x] ≤ 2x− 2

hence 108a1/x ≤ x− 3/2, while the second implies

x− 1 + [108a1/(x− 1)] ≥ 2x− 1

hence 108a1/(x−1) ≥ x−1/2. Combining the two inequalities yields x2−3x/2 ≥ 108a1 ≥
x− 3x/2 + 1/2, which cannot hold. Therefore, the iteration always converges to a single

685

integer x. To stop the iteration when two consecutive results are equal, the function _-
_fp_sqrt_Newton_o:wwn receives the newly computed result as #1, the previous result
as #2, and a1 as #3. Note that ε-TEX combines the computation of a multiplication and
a following division, thus avoiding overflow in #3 * 100000000 / #1. In any case, the
result is within [107, 108].

13880 \cs_new:Npn __fp_sqrt_Newton_o:wwn #1; #2; #3
13881 {
13882 \if_int_compare:w #1 = #2 \exp_stop_f:
13883 \exp_after:wN __fp_sqrt_auxi_o:NNNNwnnN
13884 __int_value:w __int_eval:w 9999 9999 +
13885 \exp_after:wN __fp_use_none_until_s:w
13886 \fi:
13887 \exp_after:wN __fp_sqrt_Newton_o:wwn
13888 __int_value:w __int_eval:w (#1 + #3 * 1 0000 0000 / #1) / \c_two ;
13889 #1; {#3}
13890 }

(End definition for __fp_sqrt_Newton_o:wwn.)

__fp_sqrt_auxi_o:NNNNwnnN This function is followed by 108 + x − 1, which has 9 digits starting with 1, then ;
{〈a1〉} {〈a2〉} 〈a’〉. Here, x '

√
108a1 and we want to estimate the square root of

a = 10−8a1 + 10−16a2 + 10−17a′. We set up an initial underestimate

y = (x− 1)10−8 + 0.2499998875 · 10−8 .
√
a .

From the inequalities shown earlier, we know that y ≤
√

10−8a1 ≤
√
a and that√

10−8a1 ≤ y + 10−8 + 11 · 10−16 hence (using 0.1 ≤ y ≤
√
a ≤ 1)

a− y2 ≤ 10−8a1 + 10−8 − y2 ≤ (y + 10−8 + 11 · 10−16)2 − y2 + 10−8 < 3.2 · 10−8 ,

and
√
a−y = (a−y2)/(

√
a+y) ≤ 16 ·10−8. Next, __fp_sqrt_auxii_o:NnnnnnnnN will

be called several times to get closer and closer underestimates of
√
a. By construction,

the underestimates y are always increasing, a− y2 < 3.2 · 10−8 for all. Also, y < 1.
13891 \cs_new:Npn __fp_sqrt_auxi_o:NNNNwnnN 1 #1#2#3#4#5;
13892 {
13893 __fp_sqrt_auxii_o:NnnnnnnnN
13894 __fp_sqrt_auxiii_o:wnnnnnnnn
13895 {#1#2#3#4} {#5} {2499} {9988} {7500}
13896 }

(End definition for __fp_sqrt_auxi_o:NNNNwnnN.)

__fp_sqrt_auxii_o:NnnnnnnnN This receives a continuation function #1, then five blocks of 4 digits for y, then two 8-digit
blocks and a single digit for a. A common estimate of

√
a−y = (a−y2)/(

√
a+y) is (a−

y2)/(2y), which leads to alternating overestimates and underestimates. We tweak this, to
only work with underestimates (no need then to worry about signs in the computation).
Each step finds the largest integer j ≤ 6 such that 104j(a− y2) < 2 · 108, then computes
the integer (with ε-TEX’s rounding division)

104jz =
[(
b104j(a− y2)c − 257

)
· (0.5 · 108)

/
b108y + 1c

]
.

686

The choice of j ensures that 104jz < 2 · 108 · 0.5 · 108/107 = 109, thus 109 + 104jz has
exactly 10 digits, does not overflow TEX’s integer range, and starts with 1. Incidentally,
since all a− y2 ≤ 3.2 · 10−8, we know that j ≥ 3.

Let us show that z is an underestimate of
√
a−y. On the one hand,

√
a−y ≤ 16·10−8

because this holds for the initial y and values of y can only increase. On the other hand,
the choice of j implies that

√
a−y ≤ 5(

√
a+y)(

√
a−y) = 5(a−y2) < 109−4j . For j = 3,

the first bound is better, while for larger j, the second bound is better. For all j ∈ [3, 6],
we find

√
a− y < 16 · 10−2j . From this, we deduce that

104j(
√
a− y) =

104j(a− y2 − (
√
a− y)2)

2y ≥
⌊
104j(a− y2)

⌋
− 257

2 · 10−8b108y + 1c + 1
2

where we have replaced the bound 104j(16 · 10−2j) = 256 by 257 and extracted the
corresponding term 1/

(
2 · 10−8b108y + 1c

)
≥ 1/2. Given that ε-TEX’s integer division

obeys [b/c] ≤ b/c + 1/2, we deduce that 104jz ≤ 104j(
√
a − y), hence y + z ≤

√
a is an

underestimate of
√
a, as claimed. One implementation detail: because the computation

involves -#4*#4 - 2*#3*#5 - 2*#2*#6 which may be as low as −5 · 108, we need to use
the pack_big functions, and the big shifts.

13897 \cs_new:Npn __fp_sqrt_auxii_o:NnnnnnnnN #1 #2#3#4#5#6 #7#8#9
13898 {
13899 \exp_after:wN #1
13900 __int_value:w __int_eval:w \c__fp_big_leading_shift_int
13901 + #7 - #2 * #2
13902 \exp_after:wN __fp_pack_big:NNNNNNw
13903 __int_value:w __int_eval:w \c__fp_big_middle_shift_int
13904 - 2 * #2 * #3
13905 \exp_after:wN __fp_pack_big:NNNNNNw
13906 __int_value:w __int_eval:w \c__fp_big_middle_shift_int
13907 + #8 - #3 * #3 - 2 * #2 * #4
13908 \exp_after:wN __fp_pack_big:NNNNNNw
13909 __int_value:w __int_eval:w \c__fp_big_middle_shift_int
13910 - 2 * #3 * #4 - 2 * #2 * #5
13911 \exp_after:wN __fp_pack_big:NNNNNNw
13912 __int_value:w __int_eval:w \c__fp_big_middle_shift_int
13913 + #9 000 0000 - #4 * #4 - 2 * #3 * #5 - 2 * #2 * #6
13914 \exp_after:wN __fp_pack_big:NNNNNNw
13915 __int_value:w __int_eval:w \c__fp_big_middle_shift_int
13916 - 2 * #4 * #5 - 2 * #3 * #6
13917 \exp_after:wN __fp_pack_big:NNNNNNw
13918 __int_value:w __int_eval:w \c__fp_big_middle_shift_int
13919 - #5 * #5 - 2 * #4 * #6
13920 \exp_after:wN __fp_pack_big:NNNNNNw
13921 __int_value:w __int_eval:w
13922 \c__fp_big_middle_shift_int
13923 - 2 * #5 * #6
13924 \exp_after:wN __fp_pack_big:NNNNNNw
13925 __int_value:w __int_eval:w
13926 \c__fp_big_trailing_shift_int

687

13927 - #6 * #6 ;
13928 % (
13929 - 257) * 5000 0000 / (#2#3 + 1) + 10 0000 0000 ;
13930 {#2}{#3}{#4}{#5}{#6} {#7}{#8}#9
13931 }

(End definition for __fp_sqrt_auxii_o:NnnnnnnnN.)

__fp_sqrt_auxiii_o:wnnnnnnnn
__fp_sqrt_auxiv_o:NNNNNw
__fp_sqrt_auxv_o:NNNNNw
__fp_sqrt_auxvi_o:NNNNNw

__fp_sqrt_auxvii_o:NNNNNw

We receive here the difference a − y2 = d =
∑
i di · 10−4i, as 〈d2〉 ; {〈d3〉} . . . {〈d10〉},

where each block has 4 digits, except 〈d2〉. This function finds the largest j ≤ 6 such
that 104j(a−y2) < 2 ·108, then leaves an open parenthesis and the integer

⌊
104j(a−y2)

⌋
in an integer expression. The closing parenthesis is provided by the caller __fp_sqrt_-
auxii_o:NnnnnnnnN, which completes the expression

104jz =
[(
b104j(a− y2)c − 257

)
· (0.5 · 108)

/
b108y + 1c

]
for an estimate of 104j(

√
a−y). If d2 ≥ 2, j = 3 and the auxiv auxiliary receives 1012z. If

d2 ≤ 1 but 104d2 +d3 ≥ 2, j = 4 and the auxv auxiliary is called, and receives 1016z, and
so on. In all those cases, the auxviii auxiliary is set up to add z to y, then go back to
the auxii step with continuation auxiii (the function we are currently describing). The
maximum value of j is 6, regardless of whether 1012d2 + 108d3 + 104d4 + d5 ≥ 1. In this
last case, we detect when 1024z < 107, which essentially means

√
a−y . 10−17: once this

threshold is reached, there is enough information to find the correctly rounded
√
a with

only one more call to __fp_sqrt_auxii_o:NnnnnnnnN. Note that the iteration cannot
be stuck before reaching j = 6, because for j < 6, one has 2 · 108 ≤ 104(j+1)(a − y2),
hence

104jz ≥ (20000− 257)(0.5 · 108)
b108y + 1c ≥ (20000− 257) · 0.5 > 0 .

13932 \cs_new:Npn __fp_sqrt_auxiii_o:wnnnnnnnn
13933 #1; #2#3#4#5#6#7#8#9
13934 {
13935 \if_int_compare:w #1 > \c_one
13936 \exp_after:wN __fp_sqrt_auxiv_o:NNNNNw
13937 __int_value:w __int_eval:w (#1#2 %)
13938 \else:
13939 \if_int_compare:w #1#2 > \c_one
13940 \exp_after:wN __fp_sqrt_auxv_o:NNNNNw
13941 __int_value:w __int_eval:w (#1#2#3 %)
13942 \else:
13943 \if_int_compare:w #1#2#3 > \c_one
13944 \exp_after:wN __fp_sqrt_auxvi_o:NNNNNw
13945 __int_value:w __int_eval:w (#1#2#3#4 %)
13946 \else:
13947 \exp_after:wN __fp_sqrt_auxvii_o:NNNNNw
13948 __int_value:w __int_eval:w (#1#2#3#4#5 %)
13949 \fi:
13950 \fi:
13951 \fi:

688

13952 }
13953 \cs_new:Npn __fp_sqrt_auxiv_o:NNNNNw 1#1#2#3#4#5#6;
13954 { __fp_sqrt_auxviii_o:nnnnnnn {#1#2#3#4#5#6} {00000000} }
13955 \cs_new:Npn __fp_sqrt_auxv_o:NNNNNw 1#1#2#3#4#5#6;
13956 { __fp_sqrt_auxviii_o:nnnnnnn {000#1#2#3#4#5} {#60000} }
13957 \cs_new:Npn __fp_sqrt_auxvi_o:NNNNNw 1#1#2#3#4#5#6;
13958 { __fp_sqrt_auxviii_o:nnnnnnn {0000000#1} {#2#3#4#5#6} }
13959 \cs_new:Npn __fp_sqrt_auxvii_o:NNNNNw 1#1#2#3#4#5#6;
13960 {
13961 \if_int_compare:w #1#2 = \c_zero
13962 \exp_after:wN __fp_sqrt_auxx_o:Nnnnnnnn
13963 \fi:
13964 __fp_sqrt_auxviii_o:nnnnnnn {00000000} {000#1#2#3#4#5}
13965 }

(End definition for __fp_sqrt_auxiii_o:wnnnnnnnn and others.)

__fp_sqrt_auxviii_o:nnnnnnn
__fp_sqrt_auxix_o:wnwnw

Simply add the two 8-digit blocks of z, aligned to the last four of the five 4-digit blocks
of y, then call the auxii auxiliary to evaluate y′2 = (y + z)2.

13966 \cs_new:Npn __fp_sqrt_auxviii_o:nnnnnnn #1#2 #3#4#5#6#7
13967 {
13968 \exp_after:wN __fp_sqrt_auxix_o:wnwnw
13969 __int_value:w __int_eval:w #3
13970 \exp_after:wN __fp_basics_pack_low:NNNNNw
13971 __int_value:w __int_eval:w #1 + 1#4#5
13972 \exp_after:wN __fp_basics_pack_low:NNNNNw
13973 __int_value:w __int_eval:w #2 + 1#6#7 ;
13974 }
13975 \cs_new:Npn __fp_sqrt_auxix_o:wnwnw #1; #2#3; #4#5;
13976 {
13977 __fp_sqrt_auxii_o:NnnnnnnnN
13978 __fp_sqrt_auxiii_o:wnnnnnnnn {#1}{#2}{#3}{#4}{#5}
13979 }

(End definition for __fp_sqrt_auxviii_o:nnnnnnn and __fp_sqrt_auxix_o:wnwnw.)

__fp_sqrt_auxx_o:Nnnnnnnn
__fp_sqrt_auxxi_o:wwnnN

At this stage, j = 6 and 1024z < 107, hence

107 + 1/2 > 1024z + 1/2 ≥
(
1024(a− y2)− 258

)
· (0.5 · 108)

/
(108y + 1) ,

then 1024(a− y2)− 258 < 2(107 + 1/2)(y + 10−8), and

1024(a− y2) < (107 + 1290.5)(1 + 10−8/y)(2y) < (107 + 1290.5)(1 + 10−7)(y +
√
a) ,

which finally implies 0 ≤
√
a − y < 0.2 · 10−16. In particular, y is an underestimate

of
√
a and y+ 0.5 · 10−16 is a (strict) overestimate. There is at exactly one multiple m of

0.5 ·10−16 in the interval [y, y+0.5 ·10−16). If m2 > a, then the square root is inexact and
is obtained by rounding m− ε to a multiple of 10−16 (the precise shift 0 < ε < 0.5 · 10−16

is irrelevant for rounding). If m2 = a then the square root is exactly m, and there is no

689

rounding. If m2 < a then we round m+ ε. For now, discard a few irrelevant arguments
#1, #2, #3, and find the multiple of 0.5 · 10−16 within [y, y+ 0.5 · 10−16); rather, only the
last 4 digits #8 of y are considered, and we do not perform any carry yet. The auxxi
auxiliary sets up auxii with a continuation function auxxii instead of auxiii as before.
To prevent auxii from giving a negative results a − m2, we compute a + 10−16 − m2

instead, always positive since m <
√
a+ 0.5 · 10−16 and a ≤ 1− 10−16.

13980 \cs_new:Npn __fp_sqrt_auxx_o:Nnnnnnnn #1#2#3 #4#5#6#7#8
13981 {
13982 \exp_after:wN __fp_sqrt_auxxi_o:wwnnN
13983 __int_value:w __int_eval:w
13984 (#8 + 2499) / 5000 * 5000 ;
13985 {#4} {#5} {#6} {#7} ;
13986 }
13987 \cs_new:Npn __fp_sqrt_auxxi_o:wwnnN #1; #2; #3#4#5
13988 {
13989 __fp_sqrt_auxii_o:NnnnnnnnN
13990 __fp_sqrt_auxxii_o:nnnnnnnnw
13991 #2 {#1}
13992 {#3} { #4 + \c_one } #5
13993 }

(End definition for __fp_sqrt_auxx_o:Nnnnnnnn and __fp_sqrt_auxxi_o:wwnnN.)

__fp_sqrt_auxxii_o:nnnnnnnnw
__fp_sqrt_auxxiii_o:w

The difference 0 ≤ a + 10−16 −m2 ≤ 10−16 + (
√
a −m)(

√
a + m) ≤ 2 · 10−16 was just

computed: its first 8 digits vanish, as do the next four, #1, and most of the following
four, #2. The guess m is an overestimate if a + 10−16 − m2 < 10−16, that is, #1#2
vanishes. Otherwise it is an underestimate, unless a+ 10−16 −m2 = 10−16 exactly. For
an underestimate, call the auxxiv function with argument 9998. For an exact result call
it with 9999, and for an overestimate call it with 10000.

13994 \cs_new:Npn __fp_sqrt_auxxii_o:nnnnnnnnw 0; #1#2#3#4#5#6#7#8 #9;
13995 {
13996 \if_int_compare:w #1#2 > \c_zero
13997 \if_int_compare:w #1#2 = \c_one
13998 \if_int_compare:w #3#4 = \c_zero
13999 \if_int_compare:w #5#6 = \c_zero
14000 \if_int_compare:w #7#8 = \c_zero
14001 __fp_sqrt_auxxiii_o:w
14002 \fi:
14003 \fi:
14004 \fi:
14005 \fi:
14006 \exp_after:wN __fp_sqrt_auxxiv_o:wnnnnnnnN
14007 __int_value:w 9998
14008 \else:
14009 \exp_after:wN __fp_sqrt_auxxiv_o:wnnnnnnnN
14010 __int_value:w 10000
14011 \fi:
14012 ;
14013 }

690

14014 \cs_new:Npn __fp_sqrt_auxxiii_o:w \fi: \fi: \fi: \fi: #1 \fi: ;
14015 {
14016 \fi: \fi: \fi: \fi: \fi:
14017 __fp_sqrt_auxxiv_o:wnnnnnnnN 9999 ;
14018 }

(End definition for __fp_sqrt_auxxii_o:nnnnnnnnw and __fp_sqrt_auxxiii_o:w.)

__fp_sqrt_auxxiv_o:wnnnnnnnN This receives 9998, 9999 or 10000 as #1 when m is an underestimate, exact, or an overes-
timate, respectively. Then comes m as five blocks of 4 digits, but where the last block #6
may be 0, 5000, or 10000. In the latter case, we need to add a carry, unless m is an
overestimate (#1 is then 10000). Then comes a as three arguments. Rounding is done
by __fp_round:NNN, whose first argument is the final sign 0 (square roots are positive).
We fake its second argument. It should be the last digit kept, but this is only used when
ties are “rounded to even”, and only when the result is exactly half-way between two
representable numbers rational square roots of numbers with 16 significant digits have:
this situation never arises for the square root, as any exact square root of a 16 digit
number has at most 8 significant digits. Finally, the last argument is the next digit,
possibly shifted by 1 when there are further nonzero digits. This is achieved by __fp_-
round_digit:Nw, which receives (after removal of the 10000’s digit) one of 0000, 0001,
4999, 5000, 5001, or 9999, which it converts to 0, 1, 4, 5, 6, and 9, respectively.

14019 \cs_new:Npn __fp_sqrt_auxxiv_o:wnnnnnnnN #1; #2#3#4#5#6 #7#8#9
14020 {
14021 \exp_after:wN __fp_basics_pack_high:NNNNNw
14022 __int_value:w __int_eval:w 1 0000 0000 + #2#3
14023 \exp_after:wN __fp_basics_pack_low:NNNNNw
14024 __int_value:w __int_eval:w 1 0000 0000
14025 + #4#5
14026 \if_int_compare:w #6 > #1 \exp_stop_f: + \c_one \fi:
14027 + \exp_after:wN __fp_round:NNN
14028 \exp_after:wN 0
14029 \exp_after:wN 0
14030 __int_value:w
14031 \exp_after:wN \use_i:nn
14032 \exp_after:wN __fp_round_digit:Nw
14033 __int_value:w __int_eval:w #6 + 19999 - #1 ;
14034 \exp_after:wN ;
14035 }

(End definition for __fp_sqrt_auxxiv_o:wnnnnnnnN.)

29.6 Setting the sign
__fp_set_sign_o:w This function is used for the unary minus and for abs. It leaves the sign of nan invariant,

turns negative numbers (sign 2) to positive numbers (sign 0) and positive numbers (sign 0)
to positive or negative numbers depending on #1. It also expands after itself in the input
stream, just like __fp_+_o:ww.

14036 \cs_new:Npn __fp_set_sign_o:w #1 \s__fp __fp_chk:w #2#3#4; @

691

14037 {
14038 \exp_after:wN __fp_exp_after_o:w
14039 \exp_after:wN \s__fp
14040 \exp_after:wN __fp_chk:w
14041 \exp_after:wN #2
14042 __int_value:w
14043 \if_case:w #3 \exp_stop_f: #1 \or: 1 \or: 0 \fi: \exp_stop_f:
14044 #4;
14045 }

(End definition for __fp_set_sign_o:w.)

14046 〈/initex | package〉

30 l3fp-extended implementation
14047 〈*initex | package〉

14048 〈@@=fp〉

30.1 Description of fixed point numbers
This module provides a few functions to manipulate positive floating point numbers with
extended precision (24 digits), but mostly provides functions for fixed-point numbers
with this precision (24 digits). Those are used in the computation of Taylor series for
the logarithm, exponential, and trigonometric functions. Since we eventually only care
about the 16 first digits of the final result, some of the calculations are not performed
with the full 24-digit precision. In other words, the last two blocks of each fixed point
number may be wrong as long as the error is small enough to be rounded away when
converting back to a floating point number. The fixed point numbers are expressed as

{〈a1〉} {〈a2〉} {〈a3〉} {〈a4〉} {〈a5〉} {〈a6〉} ;

where each 〈ai〉 is exactly 4 digits (ranging from 0000 to 9999), except 〈a1〉, which may
be any “not-too-large” non-negative integer, with or without leading zeros. Here, “not-
too-large” depends on the specific function (see the corresponding comments for details).
Checking for overflow is the responsibility of the code calling those functions. The fixed
point number a corresponding to the representation above is a =

∑6
i=1〈ai〉 · 10−4i.

Most functions we define here have the form They perform the 〈calculation〉 on the
two 〈operands〉, then feed the result (6 brace groups followed by a semicolon) to the
〈continuation〉, responsible for the next step of the calculation. Some functions only
accept an N-type 〈continuation〉. This allows constructions such as

__fp_fixed_add:wwn 〈X1〉 ; 〈X2〉 ;
__fp_fixed_mul:wwn 〈X3〉 ;
__fp_fixed_add:wwn 〈X4〉 ;

692

to compute (X1 + X2) ·X3 + X4. This turns out to be very appropriate for computing
continued fractions and Taylor series.

At the end of the calculation, the result is turned back to a floating point num-
ber using __fp_fixed_to_float:wN. This function has to change the exponent of the
floating point number: it must be used after starting an integer expression for the overall
exponent of the result.

30.2 Helpers for numbers with extended precision
\c__fp_one_fixed_tl The fixed-point number 1, used in l3fp-expo.

14049 \tl_const:Nn \c__fp_one_fixed_tl
14050 { {10000} {0000} {0000} {0000} {0000} {0000} }

(End definition for \c__fp_one_fixed_tl.)

__fp_fixed_continue:wn This function does nothing. Of course, there is no bound on a1 (except TEX’s own 231−1).
14051 \cs_new:Npn __fp_fixed_continue:wn #1; #2 { #2 #1; }

(End definition for __fp_fixed_continue:wn.)

__fp_fixed_add_one:wN This function adds 1 to the fixed point 〈a〉, by changing a1 to 10000 + a1, then calls the
〈continuation〉. This requires a1 ≤ 231 − 10001.

14052 \cs_new:Npn __fp_fixed_add_one:wN #1#2; #3
14053 {
14054 \exp_after:wN #3 \exp_after:wN
14055 { __int_value:w __int_eval:w \c_ten_thousand + #1 } #2 ;
14056 }

(End definition for __fp_fixed_add_one:wN.)

__fp_fixed_div_myriad:wn Divide a fixed point number by 10000. This is a little bit more subtle than just removing
the last group and adding a leading group of zeros: the first group #1 may have any
number of digits, and we must split #1 into the new first group and a second group of
exactly 4 digits. The choice of shifts allows #1 to be in the range [0, 5 · 108 − 1].

14057 \cs_new:Npn __fp_fixed_div_myriad:wn #1#2#3#4#5#6;
14058 {
14059 \exp_after:wN __fp_fixed_mul_after:wwn
14060 __int_value:w __int_eval:w \c__fp_leading_shift_int
14061 \exp_after:wN __fp_pack:NNNNNw
14062 __int_value:w __int_eval:w \c__fp_trailing_shift_int
14063 + #1 ; {#2}{#3}{#4}{#5};
14064 }

(End definition for __fp_fixed_div_myriad:wn.)

__fp_fixed_mul_after:wwn The fixed point operations which involve multiplication end by calling this auxiliary.
It braces the last block of digits, and places the 〈continuation〉 #2 in front. The
〈continuation〉 was brought up through the expansions by the packing functions.

14065 \cs_new:Npn __fp_fixed_mul_after:wwn #1; #2; #3 { #3 {#1} #2; }

(End definition for __fp_fixed_mul_after:wwn.)

693

30.3 Multiplying a fixed point number by a short one
__fp_fixed_mul_short:wwn Computes the product c = ab of a =

∑
i〈ai〉10−4i and b =

∑
i〈bi〉10−4i, rounds it to

the closest multiple of 10−24, and leaves 〈continuation〉 {〈c1〉} . . . {〈c6〉} ; in the input
stream, where each of the 〈ci〉 are blocks of 4 digits, except 〈c1〉, which is any TEX integer.
Note that indices for 〈b〉 start at 0: a second operand of {0001}{0000}{0000} will leave
the first operand unchanged (rather than dividing it by 104, as __fp_fixed_mul:wwn
would).

14066 \cs_new:Npn __fp_fixed_mul_short:wwn #1#2#3#4#5#6; #7#8#9;
14067 {
14068 \exp_after:wN __fp_fixed_mul_after:wwn
14069 __int_value:w __int_eval:w \c__fp_leading_shift_int
14070 + #1*#7
14071 \exp_after:wN __fp_pack:NNNNNw
14072 __int_value:w __int_eval:w \c__fp_middle_shift_int
14073 + #1*#8 + #2*#7
14074 \exp_after:wN __fp_pack:NNNNNw
14075 __int_value:w __int_eval:w \c__fp_middle_shift_int
14076 + #1*#9 + #2*#8 + #3*#7
14077 \exp_after:wN __fp_pack:NNNNNw
14078 __int_value:w __int_eval:w \c__fp_middle_shift_int
14079 + #2*#9 + #3*#8 + #4*#7
14080 \exp_after:wN __fp_pack:NNNNNw
14081 __int_value:w __int_eval:w \c__fp_middle_shift_int
14082 + #3*#9 + #4*#8 + #5*#7
14083 \exp_after:wN __fp_pack:NNNNNw
14084 __int_value:w __int_eval:w \c__fp_trailing_shift_int
14085 + #4*#9 + #5*#8 + #6*#7
14086 + (#5*#9 + #6*#8 + #6*#9 / \c_ten_thousand)
14087 / \c_ten_thousand ; ;
14088 }

(End definition for __fp_fixed_mul_short:wwn.)

30.4 Dividing a fixed point number by a small integer
__fp_fixed_div_int:wwN
__fp_fixed_div_int:wnN

__fp_fixed_div_int_auxi:wnn
__fp_fixed_div_int_auxii:wnn

__fp_fixed_div_int_pack:Nw
__fp_fixed_div_int_after:Nw

Divides the fixed point number 〈a〉 by the (small) integer 0 < 〈n〉 < 104 and feeds the
result to the 〈continuation〉. There is no bound on a1.

The arguments of the i auxiliary are 1: one of the ai, 2: n, 3: the ii or the iii
auxiliary. It computes a (somewhat tight) lower bound Qi for the ratio ai/n.

The ii auxiliary receives Qi, n, and ai as arguments. It adds Qi to a surrounding
integer expression, and starts a new one with the initial value 9999, which ensures that the
result of this expression will have 5 digits. The auxiliary also computes ai−n ·Qi, placing
the result in front of the 4 digits of ai+1. The resulting a′i+1 = 104(ai − n · Qi) + ai+1
serves as the first argument for a new call to the i auxiliary.

When the iii auxiliary is called, the situation looks like this:

__fp_fixed_div_int_after:Nw 〈continuation〉
−1 +Q1

694

__fp_fixed_div_int_pack:Nw 9999 +Q2
__fp_fixed_div_int_pack:Nw 9999 +Q3
__fp_fixed_div_int_pack:Nw 9999 +Q4
__fp_fixed_div_int_pack:Nw 9999 +Q5
__fp_fixed_div_int_pack:Nw 9999
__fp_fixed_div_int_auxii:wnn Q6 ; {〈n〉} {〈a6〉}

where expansion is happening from the last line up. The iii auxiliary adds Q6 + 2 '
a6/n+ 1 to the last 9999, giving the integer closest to 10000 + a6/n.

Each pack auxiliary receives 5 digits followed by a semicolon. The first digit is added
as a carry to the integer expression above, and the 4 other digits are braced. Each call
to the pack auxiliary thus produces one brace group. The last brace group is produced
by the after auxiliary, which places the 〈continuation〉 as appropriate.

14089 \cs_new:Npn __fp_fixed_div_int:wwN #1#2#3#4#5#6 ; #7 ; #8
14090 {
14091 \exp_after:wN __fp_fixed_div_int_after:Nw
14092 \exp_after:wN #8
14093 __int_value:w __int_eval:w \c_minus_one
14094 __fp_fixed_div_int:wnN
14095 #1; {#7} __fp_fixed_div_int_auxi:wnn
14096 #2; {#7} __fp_fixed_div_int_auxi:wnn
14097 #3; {#7} __fp_fixed_div_int_auxi:wnn
14098 #4; {#7} __fp_fixed_div_int_auxi:wnn
14099 #5; {#7} __fp_fixed_div_int_auxi:wnn
14100 #6; {#7} __fp_fixed_div_int_auxii:wnn ;
14101 }
14102 \cs_new:Npn __fp_fixed_div_int:wnN #1; #2 #3
14103 {
14104 \exp_after:wN #3
14105 __int_value:w __int_eval:w #1 / #2 - \c_one ;
14106 {#2}
14107 {#1}
14108 }
14109 \cs_new:Npn __fp_fixed_div_int_auxi:wnn #1; #2 #3
14110 {
14111 + #1
14112 \exp_after:wN __fp_fixed_div_int_pack:Nw
14113 __int_value:w __int_eval:w 9999
14114 \exp_after:wN __fp_fixed_div_int:wnN
14115 __int_value:w __int_eval:w #3 - #1*#2 __int_eval_end:
14116 }
14117 \cs_new:Npn __fp_fixed_div_int_auxii:wnn #1; #2 #3 { + #1 + \c_two ; }
14118 \cs_new:Npn __fp_fixed_div_int_pack:Nw #1 #2; { + #1; {#2} }
14119 \cs_new:Npn __fp_fixed_div_int_after:Nw #1 #2; { #1 {#2} }

(End definition for __fp_fixed_div_int:wwN.)

695

30.5 Adding and subtracting fixed points
__fp_fixed_add:wwn
__fp_fixed_sub:wwn

__fp_fixed_add:Nnnnnwnn
__fp_fixed_add:nnNnnnwn

__fp_fixed_add_pack:NNNNNwn
__fp_fixed_add_after:NNNNNwn

Computes a + b (resp. a − b) and feeds the result to the 〈continuation〉. This function
requires 0 ≤ a1, b1 ≤ 114748, its result must be positive (this happens automatically for
addition) and its first group must have at most 5 digits: (a ± b)1 < 100000. The two
functions only differ by a sign, hence use a common auxiliary. It would be nice to grab
the 12 brace groups in one go; only 9 parameters are allowed. Start by grabbing the sign,
a1, . . . , a4, the rest of a, and b1 and b2. The second auxiliary receives the rest of a, the
sign multiplying b, the rest of b, and the 〈continuation〉 as arguments. After going down
through the various level, we go back up, packing digits and bringing the 〈continuation〉
(#8, then #7) from the end of the argument list to its start.

14120 \cs_new_nopar:Npn __fp_fixed_add:wwn { __fp_fixed_add:Nnnnnwnn + }
14121 \cs_new_nopar:Npn __fp_fixed_sub:wwn { __fp_fixed_add:Nnnnnwnn - }
14122 \cs_new:Npn __fp_fixed_add:Nnnnnwnn #1 #2#3#4#5 #6; #7#8
14123 {
14124 \exp_after:wN __fp_fixed_add_after:NNNNNwn
14125 __int_value:w __int_eval:w 9 9999 9998 + #2#3 #1 #7#8
14126 \exp_after:wN __fp_fixed_add_pack:NNNNNwn
14127 __int_value:w __int_eval:w 1 9999 9998 + #4#5
14128 __fp_fixed_add:nnNnnnwn #6 #1
14129 }
14130 \cs_new:Npn __fp_fixed_add:nnNnnnwn #1#2 #3 #4#5 #6#7 ; #8
14131 {
14132 #3 #4#5
14133 \exp_after:wN __fp_fixed_add_pack:NNNNNwn
14134 __int_value:w __int_eval:w 2 0000 0000 #3 #6#7 + #1#2 ; {#8} ;
14135 }
14136 \cs_new:Npn __fp_fixed_add_pack:NNNNNwn #1 #2#3#4#5 #6; #7
14137 { + #1 ; {#7} {#2#3#4#5} {#6} }
14138 \cs_new:Npn __fp_fixed_add_after:NNNNNwn 1 #1 #2#3#4#5 #6; #7
14139 { #7 {#1#2#3#4#5} {#6} }

(End definition for __fp_fixed_add:wwn and __fp_fixed_sub:wwn.)

30.6 Multiplying fixed points
__fp_fixed_mul:wwn

__fp_fixed_mul:nnnnnnnw
Computes a×b and feeds the result to 〈continuation〉. This function requires 0 ≤ a1, b1 <
10000. Once more, we need to play around the limit of 9 arguments for TEX macros.
Note that we don’t need to obtain an exact rounding, contrarily to the * operator, so

696

things could be harder. We wish to perform carries in

a× b =a1 · b1 · 10−8

+ (a1 · b2 + a2 · b1) · 10−12

+ (a1 · b3 + a2 · b2 + a3 · b1) · 10−16

+ (a1 · b4 + a2 · b3 + a3 · b2 + a4 · b1) · 10−20

+
(
a2 · b4 + a3 · b3 + a4 · b2

+ a3 · b4 + a4 · b3 + a1 · b6 + a2 · b5 + a5 · b2 + a6 · b1

104

+ a1 · b5 + a5 · b1

)
· 10−24 +O(10−24),

where the O(10−24) stands for terms which are at most 5 · 10−24; ignoring those leads
to an error of at most 5 ulp. Note how the first 15 terms only depend on a1, . . . , a4
and b1, . . . , b4, while the last 6 terms only depend on a1, a2, a5, a6, and the corresponding
parts of b. Hence, the first function grabs a1, . . . , a4, the rest of a, and b1, . . . , b4, and
writes the 15 first terms of the expression, including a left parenthesis for the fraction.
The i auxiliary receives a5, a6, b1, b2, a1, a2, b5, b6 and finally the 〈continuation〉 as
arguments. It writes the end of the expression, including the right parenthesis and the
denominator of the fraction. The 〈continuation〉 is finally placed in front of the 6 brace
groups by __fp_fixed_mul_after:wwn.

14140 \cs_new:Npn __fp_fixed_mul:wwn #1#2#3#4 #5; #6#7#8#9
14141 {
14142 \exp_after:wN __fp_fixed_mul_after:wwn
14143 __int_value:w __int_eval:w \c__fp_leading_shift_int
14144 \exp_after:wN __fp_pack:NNNNNw
14145 __int_value:w __int_eval:w \c__fp_middle_shift_int
14146 + #1*#6
14147 \exp_after:wN __fp_pack:NNNNNw
14148 __int_value:w __int_eval:w \c__fp_middle_shift_int
14149 + #1*#7 + #2*#6
14150 \exp_after:wN __fp_pack:NNNNNw
14151 __int_value:w __int_eval:w \c__fp_middle_shift_int
14152 + #1*#8 + #2*#7 + #3*#6
14153 \exp_after:wN __fp_pack:NNNNNw
14154 __int_value:w __int_eval:w \c__fp_middle_shift_int
14155 + #1*#9 + #2*#8 + #3*#7 + #4*#6
14156 \exp_after:wN __fp_pack:NNNNNw
14157 __int_value:w __int_eval:w \c__fp_trailing_shift_int
14158 + #2*#9 + #3*#8 + #4*#7
14159 + (#3*#9 + #4*#8
14160 + __fp_fixed_mul:nnnnnnnw #5 {#6}{#7} {#1}{#2}
14161 }
14162 \cs_new:Npn __fp_fixed_mul:nnnnnnnw #1#2 #3#4 #5#6 #7#8 ;
14163 {
14164 #1*#4 + #2*#3 + #5*#8 + #6*#7) / \c_ten_thousand

697

14165 + #1*#3 + #5*#7 ; ;
14166 }

(End definition for __fp_fixed_mul:wwn.)

30.7 Combining product and sum of fixed points
__fp_fixed_mul_add:wwwn

__fp_fixed_mul_sub_back:wwwn
__fp_fixed_mul_one_minus_mul:wwn

Compute a × b + c, c − a × b, and 1 − a × b and feed the result to the 〈continuation〉.
Those functions require 0 ≤ a1, b1, c1 ≤ 10000. Since those functions are at the heart of
the computation of Taylor expansions, we over-optimize them a bit, and in particular we
do not factor out the common parts of the three functions.

For definiteness, consider the task of computing a× b+ c. We will perform carries in

a× b+ c =(a1 · b1 + c1c2) · 10−8

+ (a1 · b2 + a2 · b1) · 10−12

+ (a1 · b3 + a2 · b2 + a3 · b1 + c3c4) · 10−16

+ (a1 · b4 + a2 · b3 + a3 · b2 + a4 · b1) · 10−20

+
(
a2 · b4 + a3 · b3 + a4 · b2

+ a3 · b4 + a4 · b3 + a1 · b6 + a2 · b5 + a5 · b2 + a6 · b1

104

+ a1 · b5 + a5 · b1 + c5c6

)
· 10−24 +O(10−24),

where c1c2, c3c4, c5c6 denote the 8-digit number obtained by juxtaposing the two blocks
of digits of c, and · denotes multiplication. The task is obviously tough because we have
18 brace groups in front of us.

Each of the three function starts the first two levels (the first, corresponding to 10−4,
is empty), with c1c2 in the first level, calls the i auxiliary with arguments described later,
and adds a trailing + c5c6 ; {〈continuation〉} ;. The + c5c6 piece, which is omitted for
__fp_fixed_one_minus_mul:wwn, will be taken in the integer expression for the 10−24

level.
14167 \cs_new:Npn __fp_fixed_mul_add:wwwn #1; #2; #3#4#5#6#7#8;
14168 {
14169 \exp_after:wN __fp_fixed_mul_after:wwn
14170 __int_value:w __int_eval:w \c__fp_big_leading_shift_int
14171 \exp_after:wN __fp_pack_big:NNNNNNw
14172 __int_value:w __int_eval:w \c__fp_big_middle_shift_int + #3 #4
14173 __fp_fixed_mul_add:Nwnnnwnnn +
14174 + #5 #6 ; #2 ; #1 ; #2 ; +
14175 + #7 #8 ; ;
14176 }
14177 \cs_new:Npn __fp_fixed_mul_sub_back:wwwn #1; #2; #3#4#5#6#7#8;
14178 {
14179 \exp_after:wN __fp_fixed_mul_after:wwn
14180 __int_value:w __int_eval:w \c__fp_big_leading_shift_int
14181 \exp_after:wN __fp_pack_big:NNNNNNw

698

14182 __int_value:w __int_eval:w \c__fp_big_middle_shift_int + #3 #4
14183 __fp_fixed_mul_add:Nwnnnwnnn -
14184 + #5 #6 ; #2 ; #1 ; #2 ; -
14185 + #7 #8 ; ;
14186 }
14187 \cs_new:Npn __fp_fixed_one_minus_mul:wwn #1; #2;
14188 {
14189 \exp_after:wN __fp_fixed_mul_after:wwn
14190 __int_value:w __int_eval:w \c__fp_big_leading_shift_int
14191 \exp_after:wN __fp_pack_big:NNNNNNw
14192 __int_value:w __int_eval:w \c__fp_big_middle_shift_int + 1 0000 0000
14193 __fp_fixed_mul_add:Nwnnnwnnn -
14194 ; #2 ; #1 ; #2 ; -
14195 ; ;
14196 }

(End definition for __fp_fixed_mul_add:wwwn , __fp_fixed_mul_sub_back:wwwn , and __fp_fixed_-
mul_one_minus_mul:wwn.)

__fp_fixed_mul_add:Nwnnnwnnn Here, 〈op〉 is either + or -. Arguments #3, #4, #5 are 〈b1〉, 〈b2〉, 〈b3〉; arguments #7, #8,
#9 are 〈a1〉, 〈a2〉, 〈a3〉. We can build three levels: a1 · b1 for 10−8, (a1 · b2 + a2 · b1) for
10−12, and (a1 · b3 + a2 · b2 + a3 · b1 + c3c4) for 10−16. The a–b products use the sign #1.
Note that #2 is empty for __fp_fixed_one_minus_mul:wwn. We call the ii auxiliary
for levels 10−20 and 10−24, keeping the pieces of 〈a〉 we’ve read, but not 〈b〉, since there
is another copy later in the input stream.

14197 \cs_new:Npn __fp_fixed_mul_add:Nwnnnwnnn #1 #2; #3#4#5#6; #7#8#9
14198 {
14199 #1 #7*#3
14200 \exp_after:wN __fp_pack_big:NNNNNNw
14201 __int_value:w __int_eval:w \c__fp_big_middle_shift_int
14202 #1 #7*#4 #1 #8*#3
14203 \exp_after:wN __fp_pack_big:NNNNNNw
14204 __int_value:w __int_eval:w \c__fp_big_middle_shift_int
14205 #1 #7*#5 #1 #8*#4 #1 #9*#3 #2
14206 \exp_after:wN __fp_pack_big:NNNNNNw
14207 __int_value:w __int_eval:w \c__fp_big_middle_shift_int
14208 #1 __fp_fixed_mul_add:nnnnwnnnn {#7}{#8}{#9}
14209 }

(End definition for __fp_fixed_mul_add:Nwnnnwnnn.)

__fp_fixed_mul_add:nnnnwnnnn Level 10−20 is (a1 · b4 +a2 · b3 +a3 · b2 +a4 · b1), multiplied by the sign, which was inserted
by the i auxiliary. Then we prepare level 10−24. We don’t have access to all parts of 〈a〉
and 〈b〉 needed to make all products. Instead, we prepare the partial expressions

b1 + a4 · b2 + a3 · b3 + a2 · b4 + a1

b2 + a4 · b3 + a3 · b4 + a2.

699

Obviously, those expressions make no mathematical sense: we will complete them with
a5 · and · b5, and with a6 · b1 + a5 · and · b5 + a1 · b6, and of course with the trailing
+ c5c6. To do all this, we keep a1, a5, a6, and the corresponding pieces of 〈b〉.
14210 \cs_new:Npn __fp_fixed_mul_add:nnnnwnnnn #1#2#3#4#5; #6#7#8#9
14211 {
14212 (#1*#9 + #2*#8 + #3*#7 + #4*#6)
14213 \exp_after:wN __fp_pack_big:NNNNNNw
14214 __int_value:w __int_eval:w \c__fp_big_trailing_shift_int
14215 __fp_fixed_mul_add:nnnnwnnwN
14216 { #6 + #4*#7 + #3*#8 + #2*#9 + #1 }
14217 { #7 + #4*#8 + #3*#9 + #2 }
14218 {#1} #5;
14219 {#6}
14220 }

(End definition for __fp_fixed_mul_add:nnnnwnnnn.)

__fp_fixed_mul_add:nnnnwnnwN Complete the 〈partial1〉 and 〈partial2〉 expressions as explained for the ii auxiliary. The
second one is divided by 10000: this is the carry from level 10−28. The trailing + c5c6
is taken into the expression for level 10−24. Note that the total of level 10−24 is in the
interval [−5 ·108, 6 ·108 (give or take a couple of 10000), hence adding it to the shift gives
a 10-digit number, as expected by the packing auxiliaries. See l3fp-aux for the definition
of the shifts and packing auxiliaries.

14221 \cs_new:Npn __fp_fixed_mul_add:nnnnwnnwN #1#2 #3#4#5; #6#7#8; #9
14222 {
14223 #9 (#4* #1 *#7)
14224 #9 (#5*#6+#4* #2 *#7+#3*#8) / \c_ten_thousand
14225 }

(End definition for __fp_fixed_mul_add:nnnnwnnwN.)

30.8 Extended-precision floating point numbers
In this section we manipulate floating point numbers with roughly 24 significant figures
(“extended-precision” numbers, in short, “ep”), which take the form of an integer expo-
nent, followed by a comma, then six groups of digits, ending with a semicolon. The first
group of digit may be any non-negative integer, while other groups of digits have 4 digits.
In other words, an extended-precision number is an exponent ending in a comma, then
a fixed point number.

__fp_ep_to_fixed:wwn
__fp_ep_to_fixed_auxi:www

__fp_ep_to_fixed_auxii:nnnnnnnwn

Converts an extended-precision number with an exponent at most 4 to a fixed point
number whose first block will have 12 digits, most often starting with many zeros.

14226 \cs_new:Npn __fp_ep_to_fixed:wwn #1,#2
14227 {
14228 \exp_after:wN __fp_ep_to_fixed_auxi:www
14229 __int_value:w __int_eval:w 1 0000 0000 + #2 \exp_after:wN ;
14230 \exp:w \exp_end_continue_f:w
14231 \prg_replicate:nn { \c_four - \int_max:nn {#1} { -32 } } { 0 } ;

700

14232 }
14233 \cs_new:Npn __fp_ep_to_fixed_auxi:www 1#1; #2; #3#4#5#6#7;
14234 {
14235 __fp_pack_eight:wNNNNNNNN
14236 __fp_pack_twice_four:wNNNNNNNN
14237 __fp_pack_twice_four:wNNNNNNNN
14238 __fp_pack_twice_four:wNNNNNNNN
14239 __fp_ep_to_fixed_auxii:nnnnnnnwn ;
14240 #2 #1#3#4#5#6#7 0000 !
14241 }
14242 \cs_new:Npn __fp_ep_to_fixed_auxii:nnnnnnnwn #1#2#3#4#5#6#7; #8! #9
14243 { #9 {#1#2}{#3}{#4}{#5}{#6}{#7}; }

(End definition for __fp_ep_to_fixed:wwn.)

__fp_ep_to_ep:wwN
__fp_ep_to_ep_loop:N
__fp_ep_to_ep_end:www
__fp_ep_to_ep_zero:ww

Normalize an extended-precision number. More precisely, leading zeros are removed from
the mantissa of the argument, decreasing its exponent as appropriate. Then the digits
are packed into 6 groups of 4 (discarding any remaining digit, not rounding). Finally,
the continuation #8 is placed before the resulting exponent–mantissa pair. The input
exponent may in fact be given as an integer expression. The loop auxiliary grabs a
digit: if it is 0, decrement the exponent and continue looping, and otherwise call the end
auxiliary, which places all digits in the right order (the digit that was not 0, and any
remaining digits), followed by some 0, then packs them up neatly in 3× 2 = 6 blocks of
four. At the end of the day, remove with __fp_use_i:ww any digit that did not make it
in the final mantissa (typically only zeros, unless the original first block has more than 4
digits).

14244 \cs_new:Npn __fp_ep_to_ep:wwN #1,#2#3#4#5#6#7; #8
14245 {
14246 \exp_after:wN #8
14247 __int_value:w __int_eval:w #1 + \c_four
14248 \exp_after:wN \use_i:nn
14249 \exp_after:wN __fp_ep_to_ep_loop:N
14250 __int_value:w __int_eval:w 1 0000 0000 + #2 __int_eval_end:
14251 #3#4#5#6#7 ; ; !
14252 }
14253 \cs_new:Npn __fp_ep_to_ep_loop:N #1
14254 {
14255 \if_meaning:w 0 #1
14256 - \c_one
14257 \else:
14258 __fp_ep_to_ep_end:www #1
14259 \fi:
14260 __fp_ep_to_ep_loop:N
14261 }
14262 \cs_new:Npn __fp_ep_to_ep_end:www
14263 #1 \fi: __fp_ep_to_ep_loop:N #2; #3!
14264 {
14265 \fi:
14266 \if_meaning:w ; #1

701

14267 - \c_two * \c__fp_max_exponent_int
14268 __fp_ep_to_ep_zero:ww
14269 \fi:
14270 __fp_pack_twice_four:wNNNNNNNN
14271 __fp_pack_twice_four:wNNNNNNNN
14272 __fp_pack_twice_four:wNNNNNNNN
14273 __fp_use_i:ww , ;
14274 #1 #2 0000 0000 0000 0000 0000 0000 ;
14275 }
14276 \cs_new:Npn __fp_ep_to_ep_zero:ww \fi: #1; #2; #3;
14277 { \fi: , {1000}{0000}{0000}{0000}{0000}{0000} ; }

(End definition for __fp_ep_to_ep:wwN.)

__fp_ep_compare:wwww
__fp_ep_compare_aux:wwww

In l3fp-trig we need to compare two extended-precision numbers. This is based on the
same function for positive floating point numbers, with an extra test if comparing only
16 decimals is not enough to distinguish the numbers. Note that this function only works
if the numbers are normalized so that their first block is in [1000, 9999].

14278 \cs_new:Npn __fp_ep_compare:wwww #1,#2#3#4#5#6#7;
14279 { __fp_ep_compare_aux:wwww {#1}{#2}{#3}{#4}{#5}; #6#7; }
14280 \cs_new:Npn __fp_ep_compare_aux:wwww #1;#2;#3,#4#5#6#7#8#9;
14281 {
14282 \if_case:w
14283 __fp_compare_npos:nwnw #1; {#3}{#4}{#5}{#6}{#7}; \exp_stop_f:
14284 \if_int_compare:w #2 = #8#9 \exp_stop_f:
14285 0
14286 \else:
14287 \if_int_compare:w #2 < #8#9 - \fi: 1
14288 \fi:
14289 \or: 1
14290 \else: -1
14291 \fi:
14292 }

(End definition for __fp_ep_compare:wwww.)

__fp_ep_mul:wwwwn
__fp_ep_mul_raw:wwwwN

Multiply two extended-precision numbers: first normalize them to avoid losing too much
precision, then multiply the mantissas #2 and #4 as fixed point numbers, and sum the
exponents #1 and #3. The result’s first block is in [100, 9999].

14293 \cs_new:Npn __fp_ep_mul:wwwwn #1,#2; #3,#4;
14294 {
14295 __fp_ep_to_ep:wwN #3,#4;
14296 __fp_fixed_continue:wn
14297 {
14298 __fp_ep_to_ep:wwN #1,#2;
14299 __fp_ep_mul_raw:wwwwN
14300 }
14301 __fp_fixed_continue:wn
14302 }
14303 \cs_new:Npn __fp_ep_mul_raw:wwwwN #1,#2; #3,#4; #5

702

14304 {
14305 __fp_fixed_mul:wwn #2; #4;
14306 { \exp_after:wN #5 __int_value:w __int_eval:w #1 + #3 , }
14307 }

(End definition for __fp_ep_mul:wwwwn and __fp_ep_mul_raw:wwwwN.)

30.9 Dividing extended-precision numbers
Divisions of extended-precision numbers are difficult to perform with exact rounding: the
technique used in l3fp-basics for 16-digit floating point numbers does not generalize easily
to 24-digit numbers. Thankfully, there is no need for exact rounding.

Let us call 〈n〉 the numerator and 〈d〉 the denominator. After a simple normalization
step, we can assume that 〈n〉 ∈ [0.1, 1) and 〈d〉 ∈ [0.1, 1), and compute 〈n〉/(10〈d〉) ∈
(0.01, 1). In terms of the 6 blocks of digits 〈n1〉 · · · 〈n6〉 and the 6 blocks 〈d1〉 · · · 〈d6〉, the
condition translates to 〈n1〉, 〈d1〉 ∈ [1000, 9999].

We will first find an integer estimate a ' 108/〈d〉 by computing

α =
[

109

〈d1〉+ 1

]
β =

[
109

〈d1〉

]
a = 103α+ (β − α) ·

(
103 −

[
〈d2〉
10

])
− 1250,

where
[•
•
]
denotes ε-TEX’s rounding division, which rounds ties away from zero. The

idea is to interpolate between 103α and 103β with a parameter 〈d2〉/104, so that when
〈d2〉 = 0 one gets a = 103β − 1250 ' 1012/〈d1〉 ' 108/〈d〉, while when 〈d2〉 = 9999 one
gets a = 103α − 1250 ' 1012/(〈d1〉 + 1) ' 108/〈d〉. The shift by 1250 helps to ensure
that a is an underestimate of the correct value. We will prove that

1− 1.755 · 10−5 <
〈d〉a
108 < 1.

We can then compute the inverse of 〈d〉a/108 = 1 − ε using the relation 1/(1 − ε) '
(1 + ε)(1 + ε2) + ε4, which is correct up to a relative error of ε5 < 1.6 · 10−24. This allows
us to find the desired ratio as

〈n〉
〈d〉 = 〈n〉a108

(
(1 + ε)(1 + ε2) + ε4

)
.

Let us prove the upper bound first (multiplied by 1015). Note that 107〈d〉 < 103〈d1〉+
10−1(〈d2〉+1), and that ε-TEX’s division

[
〈d2〉
10

]
will at most underestimate 10−1(〈d2〉+1)

703

by 0.5, as can be checked for each possible last digit of 〈d2〉. Then,

107〈d〉a <
(

103〈d1〉+
[
〈d2〉
10

]
+ 1

2

)((
103 −

[
〈d2〉
10

])
β +

[
〈d2〉
10

]
α− 1250

)
(1)

<

(
103〈d1〉+

[
〈d2〉
10

]
+ 1

2

)
(2)((

103 −
[
〈d2〉
10

])(
109

〈d1〉
+ 1

2

)
+
[
〈d2〉
10

](
109

〈d1〉+ 1 + 1
2

)
− 1250

)
(3)

<

(
103〈d1〉+

[
〈d2〉
10

]
+ 1

2

)(
1012

〈d1〉
−
[
〈d2〉
10

]
109

〈d1〉(〈d1〉+ 1) − 750
)

(4)

We recognize a quadratic polynomial in [〈d2〉/10] with a negative leading coefficient: this
polynomial is bounded above, according to ([〈d2〉/10]+a)(b−c[〈d2〉/10]) ≤ (b+ca)2/(4c).
Hence,

107〈d〉a < 1015

〈d1〉(〈d1〉+ 1)

(
〈d1〉+ 1

2 + 1
410−3 − 3

8 · 10−9〈d1〉(〈d1〉+ 1)
)2

Since 〈d1〉 takes integer values within [1000, 9999], it is a simple programming exercise to
check that the squared expression is always less than 〈d1〉(〈d1〉+1), hence 107〈d〉a < 1015.
The upper bound is proven. We also find that 3

8 can be replaced by slightly smaller
numbers, but nothing less than 0.374563 . . ., and going back through the derivation of
the upper bound, we find that 1250 is as small a shift as we can obtain without breaking
the bound.

Now, the lower bound. The same computation as for the upper bound implies

107〈d〉a >
(

103〈d1〉+
[
〈d2〉
10

]
− 1

2

)(
1012

〈d1〉
−
[
〈d2〉
10

]
109

〈d1〉(〈d1〉+ 1) − 1750
)

This time, we want to find the minimum of this quadratic polynomial. Since the leading
coefficient is still negative, the minimum is reached for one of the extreme values [y/10] =
0 or [y/10] = 100, and we easily check the bound for those values.

We have proven that the algorithm will give us a precise enough answer. Incidentally,
the upper bound that we derived tells us that a < 108/〈d〉 ≤ 109, hence we can compute
a safely as a TEX integer, and even add 109 to it to ease grabbing of all the digits. The
lower bound implies 108 − 1755 < a, which we do not care about.

__fp_ep_div:wwwwn Compute the ratio of two extended-precision numbers. The result is an extended-
precision number whose first block lies in the range [100, 9999], and is placed after the
〈continuation〉 once we are done. First normalize the inputs so that both first block lie in
[1000, 9999], then call __fp_ep_div_esti:wwwwn 〈denominator〉 〈numerator〉, responsi-
ble for estimating the inverse of the denominator.

14308 \cs_new:Npn __fp_ep_div:wwwwn #1,#2; #3,#4;
14309 {
14310 __fp_ep_to_ep:wwN #1,#2;
14311 __fp_fixed_continue:wn

704

14312 {
14313 __fp_ep_to_ep:wwN #3,#4;
14314 __fp_ep_div_esti:wwwwn
14315 }
14316 }

(End definition for __fp_ep_div:wwwwn.)

__fp_ep_div_esti:wwwwn
__fp_ep_div_estii:wwnnwwn

__fp_ep_div_estiii:NNNNNwwwn

The esti function evaluates α = 109/(〈d1〉 + 1), which is used twice in the expression
for a, and combines the exponents #1 and #4 (with a shift by 1 because we will compute
〈n〉/(10〈d〉). Then the estii function evaluates 109 + a, and puts the exponent #2
after the continuation #7: from there on we can forget exponents and focus on the
mantissa. The estiii function multiplies the denominator #7 by 10−8a (obtained as a
split into the single digit #1 and two blocks of 4 digits, #2#3#4#5 and #6). The result
10−8a〈d〉 = (1 − ε), and a partially packed 10−9a (as a block of four digits, and five
individual digits, not packed by lack of available macro parameters here) are passed to
__fp_ep_div_epsi:wnNNNNn, which computes 10−9a/(1− ε), that is, 1/(10〈d〉) and we
finally multiply this by the numerator #8.

14317 \cs_new:Npn __fp_ep_div_esti:wwwwn #1,#2#3; #4,
14318 {
14319 \exp_after:wN __fp_ep_div_estii:wwnnwwn
14320 __int_value:w __int_eval:w 10 0000 0000 / (#2 + \c_one)
14321 \exp_after:wN ;
14322 __int_value:w __int_eval:w #4 - #1 + \c_one ,
14323 {#2} #3;
14324 }
14325 \cs_new:Npn __fp_ep_div_estii:wwnnwwn #1; #2,#3#4#5; #6; #7
14326 {
14327 \exp_after:wN __fp_ep_div_estiii:NNNNNwwwn
14328 __int_value:w __int_eval:w 10 0000 0000 - 1750
14329 + #1 000 + (10 0000 0000 / #3 - #1) * (1000 - #4 / 10) ;
14330 {#3}{#4}#5; #6; { #7 #2, }
14331 }
14332 \cs_new:Npn __fp_ep_div_estiii:NNNNNwwwn 1#1#2#3#4#5#6; #7;
14333 {
14334 __fp_fixed_mul_short:wwn #7; {#1}{#2#3#4#5}{#6};
14335 __fp_ep_div_epsi:wnNNNNNn {#1#2#3#4}#5#6
14336 __fp_fixed_mul:wwn
14337 }

(End definition for __fp_ep_div_esti:wwwwn , __fp_ep_div_estii:wwnnwwn , and __fp_ep_div_-
estiii:NNNNNwwwn.)

__fp_ep_div_epsi:wnNNNNNn
__fp_ep_div_eps_pack:NNNNNw
__fp_ep_div_epsii:wwnNNNNNn

The bounds shown above imply that the epsi function’s first operand is (1 − ε) with
ε ∈ [0, 1.755 · 10−5]. The epsi function computes ε as 1 − (1 − ε). Since ε < 10−4, its
first block vanishes and there is no need to explicitly use #1 (which is 9999). Then epsii
evaluates 10−9a/(1 − ε) as (1 + ε2)(1 + ε)(10−9aε) + 10−9a. Importantly, we compute
10−9aε before multiplying it with the rest, rather than multiplying by ε and then 10−9a,

705

as this second option loses more precision. Also, the combination of short_mul and
div_myriad is both faster and more precise than a simple mul.

14338 \cs_new:Npn __fp_ep_div_epsi:wnNNNNNn #1#2#3#4#5#6;
14339 {
14340 \exp_after:wN __fp_ep_div_epsii:wwnNNNNNn
14341 __int_value:w __int_eval:w 1 9998 - #2
14342 \exp_after:wN __fp_ep_div_eps_pack:NNNNNw
14343 __int_value:w __int_eval:w 1 9999 9998 - #3#4
14344 \exp_after:wN __fp_ep_div_eps_pack:NNNNNw
14345 __int_value:w __int_eval:w 2 0000 0000 - #5#6 ; ;
14346 }
14347 \cs_new:Npn __fp_ep_div_eps_pack:NNNNNw #1#2#3#4#5#6;
14348 { + #1 ; {#2#3#4#5} {#6} }
14349 \cs_new:Npn __fp_ep_div_epsii:wwnNNNNNn 1#1; #2; #3#4#5#6#7#8
14350 {
14351 __fp_fixed_mul:wwn {0000}{#1}#2; {0000}{#1}#2;
14352 __fp_fixed_add_one:wN
14353 __fp_fixed_mul:wwn {10000} {#1} #2 ;
14354 {
14355 __fp_fixed_mul_short:wwn {0000}{#1}#2; {#3}{#4#5#6#7}{#8000};
14356 __fp_fixed_div_myriad:wn
14357 __fp_fixed_mul:wwn
14358 }
14359 __fp_fixed_add:wwn {#3}{#4#5#6#7}{#8000}{0000}{0000}{0000};
14360 }

(End definition for __fp_ep_div_epsi:wnNNNNNn , __fp_ep_div_eps_pack:NNNNNw , and __fp_ep_-
div_epsii:wwnNNNNNn.)

30.10 Inverse square root of extended precision numbers
The idea here is similar to division. Normalize the input, multiplying by powers of 100
until we have x ∈ [0.01, 1). Then find an integer approximation r ∈ [101, 1003] of 102/

√
x,

as the fixed point of iterations of the Newton method: essentially r 7→ (r+ 108/(x1r))/2,
starting from a guess that optimizes the number of steps before convergence. In fact,
just as there is a slight shift when computing divisions to ensure that some inequalities
hold, we will replace 108 by a slightly larger number which will ensure that r2x ≥ 104.
This also causes r ∈ [101, 1003]. Another correction to the above is that the input is
actually normalized to [0.1, 1), and we use either 108 or 109 in the Newton method,
depending on the parity of the exponent. Skipping those technical hurdles, once we have
the approximation r, we set y = 10−4r2x (or rather, the correct power of 10 to get y ' 1)
and compute y−1/2 through another application of Newton’s method. This time, the
starting value is z = 1, each step maps z 7→ z(1.5 − 0.5yz2), and we perform a fixed
number of steps. Our final result combines r with y−1/2 as x−1/2 = 10−2ry−1/2.

__fp_ep_isqrt:wwn
__fp_ep_isqrt_aux:wwn

__fp_ep_isqrt_auxii:wwnnnwn

First normalize the input, then check the parity of the exponent #1. If it is even, the
result’s exponent will be −#1/2, otherwise it will be (#1 − 1)/2 (except in the case
where the input was an exact power of 100). The auxii function receives as #1 the

706

result’s exponent just computed, as #2 the starting value for the iteration giving r (the
values 168 and 535 lead to the least number of iterations before convergence, on average),
as #3 and #4 one empty argument and one 0, depending on the parity of the original
exponent, as #5 and #6 the normalized mantissa (#5 ∈ [1000, 9999]), and as #7 the
continuation. It sets up the iteration giving r: the esti function thus receives the initial
two guesses #2 and 0, an approximation #5 of 104x (its first block of digits), and the
empty/zero arguments #3 and #4, followed by the mantissa and an altered continuation
where we have stored the result’s exponent.

14361 \cs_new:Npn __fp_ep_isqrt:wwn #1,#2;
14362 {
14363 __fp_ep_to_ep:wwN #1,#2;
14364 __fp_ep_isqrt_auxi:wwn
14365 }
14366 \cs_new:Npn __fp_ep_isqrt_auxi:wwn #1,
14367 {
14368 \exp_after:wN __fp_ep_isqrt_auxii:wwnnnwn
14369 __int_value:w __int_eval:w
14370 \int_if_odd:nTF {#1}
14371 { (\c_one - #1) / \c_two , 535 , { 0 } { } }
14372 { \c_one - #1 / \c_two , 168 , { } { 0 } }
14373 }
14374 \cs_new:Npn __fp_ep_isqrt_auxii:wwnnnwn #1, #2, #3#4 #5#6; #7
14375 {
14376 __fp_ep_isqrt_esti:wwwnnwn #2, 0, #5, {#3} {#4}
14377 {#5} #6 ; { #7 #1 , }
14378 }

(End definition for __fp_ep_isqrt:wwn.)

__fp_ep_isqrt_esti:wwwnnwn
__fp_ep_isqrt_estii:wwwnnwn

__fp_ep_isqrt_estiii:NNNNNwwwn

If the last two approximations gave the same result, we are done: call the estii function
to clean up. Otherwise, evaluate (〈prev〉 + 1.005 · 108 or 9/(〈prev〉 · x))/2, as the next
approximation: omitting the 1.005 factor, this would be Newton’s method. We can
check by brute force that if #4 is empty (the original exponent was even), the process
computes an integer slightly larger than 100/

√
x, while if #4 is 0 (the original exponent

was odd), the result is an integer slightly larger than 100/
√
x/10. Once we are done, we

evaluate 100r2/2 or 10r2/2 (when the exponent is even or odd, respectively) and feed
that to estiii. This third auxiliary finds yeven/2 = 10−4r2x/2 or yodd/2 = 10−5r2x/2
(again, depending on earlier parity). A simple program shows that y ∈ [1, 1.0201]. The
number y/2 is fed to __fp_ep_isqrt_epsi:wN, which computes 1/√y, and we finally
multiply the result by r.

14379 \cs_new:Npn __fp_ep_isqrt_esti:wwwnnwn #1, #2, #3, #4
14380 {
14381 \if_int_compare:w #1 = #2 \exp_stop_f:
14382 \exp_after:wN __fp_ep_isqrt_estii:wwwnnwn
14383 \fi:
14384 \exp_after:wN __fp_ep_isqrt_esti:wwwnnwn
14385 __int_value:w __int_eval:w
14386 (#1 + 1 0050 0000 #4 / (#1 * #3)) / \c_two ,

707

14387 #1, #3, {#4}
14388 }
14389 \cs_new:Npn __fp_ep_isqrt_estii:wwwnnwn #1, #2, #3, #4#5
14390 {
14391 \exp_after:wN __fp_ep_isqrt_estiii:NNNNNwwwn
14392 __int_value:w __int_eval:w 1000 0000 + #2 * #2 #5 * \c_five
14393 \exp_after:wN , __int_value:w __int_eval:w 10000 + #2 ;
14394 }
14395 \cs_new:Npn __fp_ep_isqrt_estiii:NNNNNwwwn 1#1#2#3#4#5#6, 1#7#8; #9;
14396 {
14397 __fp_fixed_mul_short:wwn #9; {#1} {#2#3#4#5} {#600} ;
14398 __fp_ep_isqrt_epsi:wN
14399 __fp_fixed_mul_short:wwn {#7} {#80} {0000} ;
14400 }

(End definition for __fp_ep_isqrt_esti:wwwnnwn , __fp_ep_isqrt_estii:wwwnnwn , and __fp_ep_-
isqrt_estiii:NNNNNwwwn.)

__fp_ep_isqrt_epsi:wN
__fp_ep_isqrt_epsii:wwN

Here, we receive a fixed point number y/2 with y ∈ [1, 1.0201]. Starting from z = 1 we
iterate z 7→ z(3/2 − z2y/2). In fact, we start from the first iteration z = 3/2 − y/2 to
avoid useless multiplications. The epsii auxiliary receives z as #1 and y as #2.

14401 \cs_new:Npn __fp_ep_isqrt_epsi:wN #1;
14402 {
14403 __fp_fixed_sub:wwn {15000}{0000}{0000}{0000}{0000}{0000}; #1;
14404 __fp_ep_isqrt_epsii:wwN #1;
14405 __fp_ep_isqrt_epsii:wwN #1;
14406 __fp_ep_isqrt_epsii:wwN #1;
14407 }
14408 \cs_new:Npn __fp_ep_isqrt_epsii:wwN #1; #2;
14409 {
14410 __fp_fixed_mul:wwn #1; #1;
14411 __fp_fixed_mul_sub_back:wwwn #2;
14412 {15000}{0000}{0000}{0000}{0000}{0000};
14413 __fp_fixed_mul:wwn #1;
14414 }

(End definition for __fp_ep_isqrt_epsi:wN and __fp_ep_isqrt_epsii:wwN.)

30.11 Converting from fixed point to floating point
After computing Taylor series, we wish to convert the result from extended precision
(with or without an exponent) to the public floating point format. The functions here
should be called within an integer expression for the overall exponent of the floating
point.

__fp_ep_to_float:wwN
__fp_ep_inv_to_float:wwN

An extended-precision number is simply a comma-delimited exponent followed by a fixed
point number. Leave the exponent in the current integer expression then convert the
fixed point number.

14415 \cs_new:Npn __fp_ep_to_float:wwN #1,

708

14416 { + __int_eval:w #1 __fp_fixed_to_float:wN }
14417 \cs_new:Npn __fp_ep_inv_to_float:wwN #1,#2;
14418 {
14419 __fp_ep_div:wwwwn 1,{1000}{0000}{0000}{0000}{0000}{0000}; #1,#2;
14420 __fp_ep_to_float:wwN
14421 }

(End definition for __fp_ep_to_float:wwN and __fp_ep_inv_to_float:wwN.)

__fp_fixed_inv_to_float:wN Another function which reduces to converting an extended precision number to a float.
14422 \cs_new:Npn __fp_fixed_inv_to_float:wN
14423 { __fp_ep_inv_to_float:wwN 0, }

(End definition for __fp_fixed_inv_to_float:wN.)

__fp_fixed_to_float_rad:wN Converts the fixed point number #1 from degrees to radians then to a floating point
number. This could perhaps remain in l3fp-trig.

14424 \cs_new:Npn __fp_fixed_to_float_rad:wN #1;
14425 {
14426 __fp_fixed_mul:wwn #1; {5729}{5779}{5130}{8232}{0876}{7981};
14427 { __fp_ep_to_float:wwN 2, }
14428 }

(End definition for __fp_fixed_to_float_rad:wN.)

__fp_fixed_to_float:wN
__fp_fixed_to_float:Nw

yields

〈exponent’〉 ; {〈a’1〉} {〈a’2〉} {〈a’3〉} {〈a’4〉} ;

And the to_fixed version gives six brace groups instead of 4, ensuring that 1000 ≤
〈a’1〉 ≤ 9999. At this stage, we know that 〈a1〉 is positive (otherwise, it is sign of an error
before), and we assume that it is less than 108.10

14429 \cs_new:Npn __fp_fixed_to_float:Nw #1#2; { __fp_fixed_to_float:wN #2; #1 }
14430 \cs_new:Npn __fp_fixed_to_float:wN #1#2#3#4#5#6; #7
14431 {
14432 + __int_eval:w \c_four % for the 8-digit-at-the-start thing.
14433 \exp_after:wN \exp_after:wN
14434 \exp_after:wN __fp_fixed_to_loop:N
14435 \exp_after:wN \use_none:n
14436 __int_value:w __int_eval:w
14437 1 0000 0000 + #1 \exp_after:wN __fp_use_none_stop_f:n
14438 __int_value:w 1#2 \exp_after:wN __fp_use_none_stop_f:n
14439 __int_value:w 1#3#4 \exp_after:wN __fp_use_none_stop_f:n
14440 __int_value:w 1#5#6
14441 \exp_after:wN ;
14442 \exp_after:wN ;
14443 }
14444 \cs_new:Npn __fp_fixed_to_loop:N #1
14445 {

10Bruno: I must double check this assumption.

709

14446 \if_meaning:w 0 #1
14447 - \c_one
14448 \exp_after:wN __fp_fixed_to_loop:N
14449 \else:
14450 \exp_after:wN __fp_fixed_to_loop_end:w
14451 \exp_after:wN #1
14452 \fi:
14453 }
14454 \cs_new:Npn __fp_fixed_to_loop_end:w #1 #2 ;
14455 {
14456 \if_meaning:w ; #1
14457 \exp_after:wN __fp_fixed_to_float_zero:w
14458 \else:
14459 \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
14460 \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
14461 \exp_after:wN __fp_fixed_to_float_pack:ww
14462 \exp_after:wN ;
14463 \fi:
14464 #1 #2 0000 0000 0000 0000 ;
14465 }
14466 \cs_new:Npn __fp_fixed_to_float_zero:w ; 0000 0000 0000 0000 ;
14467 {
14468 - \c_two * \c__fp_max_exponent_int ;
14469 {0000} {0000} {0000} {0000} ;
14470 }
14471 \cs_new:Npn __fp_fixed_to_float_pack:ww #1 ; #2#3 ; ;
14472 {
14473 \if_int_compare:w #2 > \c_four
14474 \exp_after:wN __fp_fixed_to_float_round_up:wnnnnw
14475 \fi:
14476 ; #1 ;
14477 }
14478 \cs_new:Npn __fp_fixed_to_float_round_up:wnnnnw ; #1#2#3#4 ;
14479 {
14480 \exp_after:wN __fp_basics_pack_high:NNNNNw
14481 __int_value:w __int_eval:w 1 #1#2
14482 \exp_after:wN __fp_basics_pack_low:NNNNNw
14483 __int_value:w __int_eval:w 1 #3#4 + \c_one ;
14484 }

(End definition for __fp_fixed_to_float:wN and __fp_fixed_to_float:Nw.)

14485 〈/initex | package〉

31 l3fp-expo implementation
14486 〈*initex | package〉

14487 〈@@=fp〉

710

31.1 Logarithm
31.1.1 Work plan

As for many other functions, we filter out special cases in __fp_ln_o:w. Then __fp_-
ln_npos_o:w receives a positive normal number, which we write in the form a · 10b with
a ∈ [0.1, 1).

The rest of this section is actually not in sync with the code. Or is the code not in
sync with the section? In the current code, c ∈ [1, 10] will be such that 0.7 ≤ ac < 1.4.

We are given a positive normal number, of the form a · 10b with a ∈ [0.1, 1). To
compute its logarithm, we find a small integer 5 ≤ c < 50 such that 0.91 ≤ ac/5 < 1.1,
and use the relation

ln(a · 10b) = b · ln(10)− ln(c/5) + ln(ac/5).

The logarithms ln(10) and ln(c/5) are looked up in a table. The last term is computed
using the following Taylor series of ln near 1:

ln
(ac

5

)
= ln

(
1 + t

1− t

)
= 2t

(
1 + t2

(
1
3 + t2

(
1
5 + t2

(
1
7 + t2

(
1
9 + · · ·

)))))
where t = 1 − 10/(ac + 5). We can now see one reason for the choice of ac ∼ 5: then
ac+ 5 = 10(1− ε) with −0.05 < ε ≤ 0.045, hence

t = ε

1− ε = ε(1 + ε)(1 + ε2)(1 + ε4) . . . ,

is not too difficult to compute.

31.1.2 Some constants

\c__fp_ln_i_fixed_tl
\c__fp_ln_ii_fixed_tl

\c__fp_ln_iii_fixed_tl
\c__fp_ln_iv_fixed_tl
\c__fp_ln_vi_fixed_tl

\c__fp_ln_vii_fixed_tl
\c__fp_ln_viii_fixed_tl

\c__fp_ln_ix_fixed_tl
\c__fp_ln_x_fixed_tl

A few values of the logarithm as extended fixed point numbers. Those are needed in the
implementation. It turns out that we don’t need the value of ln(5).

14488 \tl_const:Nn \c__fp_ln_i_fixed_tl { {0000}{0000}{0000}{0000}{0000}{0000} }
14489 \tl_const:Nn \c__fp_ln_ii_fixed_tl { {6931}{4718}{0559}{9453}{0941}{7232} }
14490 \tl_const:Nn \c__fp_ln_iii_fixed_tl {{10986}{1228}{8668}{1096}{9139}{5245} }
14491 \tl_const:Nn \c__fp_ln_iv_fixed_tl {{13862}{9436}{1119}{8906}{1883}{4464} }
14492 \tl_const:Nn \c__fp_ln_vi_fixed_tl {{17917}{5946}{9228}{0550}{0081}{2477} }
14493 \tl_const:Nn \c__fp_ln_vii_fixed_tl {{19459}{1014}{9055}{3133}{0510}{5353} }
14494 \tl_const:Nn \c__fp_ln_viii_fixed_tl{{20794}{4154}{1679}{8359}{2825}{1696} }
14495 \tl_const:Nn \c__fp_ln_ix_fixed_tl {{21972}{2457}{7336}{2193}{8279}{0490} }
14496 \tl_const:Nn \c__fp_ln_x_fixed_tl {{23025}{8509}{2994}{0456}{8401}{7991} }

(End definition for \c__fp_ln_i_fixed_tl and others.)

31.1.3 Sign, exponent, and special numbers

__fp_ln_o:w The logarithm of negative numbers (including −∞ and −0) raises the “invalid” exception.
The logarithm of +0 is −∞, raising a division by zero exception. The logarithm of +∞
or a nan is itself. Positive normal numbers call __fp_ln_npos_o:w.

711

14497 \cs_new:Npn __fp_ln_o:w #1 \s__fp __fp_chk:w #2#3#4; @
14498 {
14499 \if_meaning:w 2 #3
14500 __fp_case_use:nw { __fp_invalid_operation_o:nw { ln } }
14501 \fi:
14502 \if_case:w #2 \exp_stop_f:
14503 __fp_case_use:nw
14504 { __fp_division_by_zero_o:Nnw \c_minus_inf_fp { ln } }
14505 \or:
14506 \else:
14507 __fp_case_return_same_o:w
14508 \fi:
14509 __fp_ln_npos_o:w \s__fp __fp_chk:w #2#3#4;
14510 }

(End definition for __fp_ln_o:w.)

31.1.4 Absolute ln

__fp_ln_npos_o:w We catch the case of a significand very close to 0.1 or to 1. In all other cases, the final
result is at least 10−4, and then an error of 0.5 · 10−20 is acceptable.

14511 \cs_new:Npn __fp_ln_npos_o:w \s__fp __fp_chk:w 10#1#2#3;
14512 { %^^A todo: ln(1) should be "exact zero", not "underflow"
14513 \exp_after:wN __fp_sanitize:Nw
14514 __int_value:w % for the overall sign
14515 \if_int_compare:w #1 < \c_one
14516 2
14517 \else:
14518 0
14519 \fi:
14520 \exp_after:wN \exp_stop_f:
14521 __int_value:w __int_eval:w % for the exponent
14522 __fp_ln_significand:NNNNnnnN #2#3
14523 __fp_ln_exponent:wn {#1}
14524 }

(End definition for __fp_ln_npos_o:w.)

__fp_ln_significand:NNNNnnnN __fp_ln_significand:NNNNnnnN 〈X1〉 {〈X2〉} {〈X3〉} {〈X4〉} 〈continuation〉
This function expands to

〈continuation〉 {〈Y1〉} {〈Y2〉} {〈Y3〉} {〈Y4〉} {〈Y5〉} {〈Y6〉} ;

where Y = − ln(X) as an extended fixed point.
14525 \cs_new:Npn __fp_ln_significand:NNNNnnnN #1#2#3#4
14526 {
14527 \exp_after:wN __fp_ln_x_ii:wnnnn
14528 __int_value:w
14529 \if_case:w #1 \exp_stop_f:
14530 \or:

712

14531 \if_int_compare:w #2 < \c_four
14532 __int_eval:w \c_ten - #2
14533 \else:
14534 6
14535 \fi:
14536 \or: 4
14537 \or: 3
14538 \or: 2
14539 \or: 2
14540 \or: 2
14541 \else: 1
14542 \fi:
14543 ; { #1 #2 #3 #4 }
14544 }

(End definition for __fp_ln_significand:NNNNnnnN.)

__fp_ln_x_ii:wnnnn We have thus found c ∈ [1, 10] such that 0.7 ≤ ac < 1.4 in all cases. Compute 1 + x =
1 + ac ∈ [1.7, 2.4).

14545 \cs_new:Npn __fp_ln_x_ii:wnnnn #1; #2#3#4#5
14546 {
14547 \exp_after:wN __fp_ln_div_after:Nw
14548 \cs:w c__fp_ln_ __int_to_roman:w #1 _fixed_tl \exp_after:wN \cs_end:
14549 __int_value:w
14550 \exp_after:wN __fp_ln_x_iv:wnnnnnnnn
14551 __int_value:w __int_eval:w
14552 \exp_after:wN __fp_ln_x_iii_var:NNNNNw
14553 __int_value:w __int_eval:w 9999 9990 + #1*#2#3 +
14554 \exp_after:wN __fp_ln_x_iii:NNNNNNw
14555 __int_value:w __int_eval:w 10 0000 0000 + #1*#4#5 ;
14556 {20000} {0000} {0000} {0000}
14557 } %^^A todo: reoptimize (a generalization attempt failed).
14558 \cs_new:Npn __fp_ln_x_iii:NNNNNNw #1#2 #3#4#5#6 #7;
14559 { #1#2; {#3#4#5#6} {#7} }
14560 \cs_new:Npn __fp_ln_x_iii_var:NNNNNw #1 #2#3#4#5 #6;
14561 {
14562 #1#2#3#4#5 + \c_one ;
14563 {#1#2#3#4#5} {#6}
14564 }

The Taylor series will be expressed in terms of t = (x−1)/(x+1) = 1−2/(x+1). We now
compute the quotient with extended precision, reusing some code from __fp_/_o:ww.
Note that 1 + x is known exactly.

To reuse notations from l3fp-basics, we want to compute A/Z with A = 2 and
Z = x + 1. In l3fp-basics, we considered the case where both A and Z are arbitrary, in
the range [0.1, 1), and we had to monitor the growth of the sequence of remainders A, B,
C, etc. to ensure that no overflow occurred during the computation of the next quotient.
The main source of risk was our choice to define the quotient as roughly 109 ·A/105 · Z:
then A was bound to be below 2.147 · · · , and this limit was never far.

713

In our case, we can simply work with 108 ·A and 104 ·Z, because our reason to work
with higher powers has gone: we needed the integer y ' 105 · Z to be at least 104, and
now, the definition y ' 104 · Z suffices.

Let us thus define y =
⌊
104 · Z

⌋
+ 1 ∈ (1.7 · 104, 2.4 · 104], and

Q1 =
⌊⌊

108 ·A
⌋

y
− 1

2

⌋
.

(The 1/2 comes from how eTEX rounds.) As for division, it is easy to see that Q1 ≤
104A/Z, i.e., Q1 is an underestimate.

Exactly as we did for division, we set B = 104A−Q1Z. Then

104B ≤ A1A2.A3A4 −
(
A1A2

y
− 3

2

)
104Z

≤ A1A2

(
1− 104Z

y

)
+ 1 + 3

2y

≤ 108A

y
+ 1 + 3

2y

In the same way, and using 1.7 · 104 ≤ y ≤ 2.4 · 104, and convexity, we get

104A = 2 · 104

104B ≤ 108A

y
+ 1.6y ≤ 4.7 · 104

104C ≤ 108B

y
+ 1.6y ≤ 5.8 · 104

104D ≤ 108C

y
+ 1.6y ≤ 6.3 · 104

104E ≤ 108D

y
+ 1.6y ≤ 6.5 · 104

104F ≤ 108E

y
+ 1.6y ≤ 6.6 · 104

Note that we compute more steps than for division: since t is not the end result, we need
to know it with more accuracy (on the other hand, the ending is much simpler, as we
don’t need an exact rounding for transcendental functions, but just a faithful rounding).11

__fp_ln_x_iv:wnnnnnnnn 〈1 or 2 〉 〈8d〉 ; {〈4d〉} {〈4d〉} 〈fixed-tl〉

The number is x. Compute y by adding 1 to the five first digits.
14565 \cs_new:Npn __fp_ln_x_iv:wnnnnnnnn #1; #2#3#4#5 #6#7#8#9
14566 {

11Bruno: to be completed.

714

14567 \exp_after:wN __fp_div_significand_pack:NNN
14568 __int_value:w __int_eval:w
14569 __fp_ln_div_i:w #1 ;
14570 #6 #7 ; {#8} {#9}
14571 {#2} {#3} {#4} {#5}
14572 { \exp_after:wN __fp_ln_div_ii:wwn __int_value:w #1 }
14573 { \exp_after:wN __fp_ln_div_ii:wwn __int_value:w #1 }
14574 { \exp_after:wN __fp_ln_div_ii:wwn __int_value:w #1 }
14575 { \exp_after:wN __fp_ln_div_ii:wwn __int_value:w #1 }
14576 { \exp_after:wN __fp_ln_div_vi:wwn __int_value:w #1 }
14577 }
14578 \cs_new:Npn __fp_ln_div_i:w #1;
14579 {
14580 \exp_after:wN __fp_div_significand_calc:wwnnnnnnn
14581 __int_value:w __int_eval:w 999999 + 2 0000 0000 / #1 ; % Q1
14582 }
14583 \cs_new:Npn __fp_ln_div_ii:wwn #1; #2;#3 % y; B1;B2 <- for k=1
14584 {
14585 \exp_after:wN __fp_div_significand_pack:NNN
14586 __int_value:w __int_eval:w
14587 \exp_after:wN __fp_div_significand_calc:wwnnnnnnn
14588 __int_value:w __int_eval:w 999999 + #2 #3 / #1 ; % Q2
14589 #2 #3 ;
14590 }
14591 \cs_new:Npn __fp_ln_div_vi:wwn #1; #2;#3#4#5 #6#7#8#9 %y;F1;F2F3F4x1x2x3x4
14592 {
14593 \exp_after:wN __fp_div_significand_pack:NNN
14594 __int_value:w __int_eval:w 1000000 + #2 #3 / #1 ; % Q6
14595 }

We now have essentially12

__fp_ln_div_after:Nw 〈fixed tl〉 __fp_div_significand_pack:NNN 106+
Q1 __fp_div_significand_pack:NNN 106 +Q2 __fp_div_significand_-
pack:NNN 106 + Q3 __fp_div_significand_pack:NNN 106 + Q4 __fp_-
div_significand_pack:NNN 106 + Q5 __fp_div_significand_pack:NNN
106 +Q6 ; 〈exponent〉 ; 〈continuation〉

where 〈fixed tl〉 holds the logarithm of a number in [1, 10], and 〈exponent〉 is the exponent.
Also, the expansion is done backwards. Then __fp_div_significand_pack:NNN puts
things in the correct order to add the Qi together and put semicolons between each piece.
Once those have been expanded, we get

__fp_ln_div_after:Nw 〈fixed-tl〉 〈1d〉 ; 〈4d〉 ; 〈4d〉 ; 〈4d〉 ; 〈4d〉 ; 〈4d〉 ;
〈4d〉 ; 〈exponent〉 ;

Just as with division, we know that the first two digits are 1 and 0 because of bounds on
the final result of the division 2/(x+ 1), which is between roughly 0.8 and 1.2. We then
compute 1− 2/(x+ 1), after testing whether 2/(x+ 1) is greater than or smaller than 1.

12Bruno: add a mention that the error on Q6 is bounded by 10 (probably 6.7), and thus corresponds
to an error of 10−23 on the final result, small enough in all cases.

715

14596 \cs_new:Npn __fp_ln_div_after:Nw #1#2;
14597 {
14598 \if_meaning:w 0 #2
14599 \exp_after:wN __fp_ln_t_small:Nw
14600 \else:
14601 \exp_after:wN __fp_ln_t_large:NNw
14602 \exp_after:wN -
14603 \fi:
14604 #1
14605 }
14606 \cs_new:Npn __fp_ln_t_small:Nw #1 #2; #3; #4; #5; #6; #7;
14607 {
14608 \exp_after:wN __fp_ln_t_large:NNw
14609 \exp_after:wN + % <sign>
14610 \exp_after:wN #1
14611 __int_value:w __int_eval:w 9999 - #2 \exp_after:wN ;
14612 __int_value:w __int_eval:w 9999 - #3 \exp_after:wN ;
14613 __int_value:w __int_eval:w 9999 - #4 \exp_after:wN ;
14614 __int_value:w __int_eval:w 9999 - #5 \exp_after:wN ;
14615 __int_value:w __int_eval:w 9999 - #6 \exp_after:wN ;
14616 __int_value:w __int_eval:w 1 0000 - #7 ;
14617 }

__fp_ln_t_large:NNw 〈sign〉〈fixed tl〉 〈t1〉; 〈t2〉 ; 〈t3〉; 〈t4〉; 〈t5〉 ; 〈t6〉;
〈exponent〉 ; 〈continuation〉

Compute the square t2, and keep t at the end with its sign. We know that t < 0.1765,
so every piece has at most 4 digits. However, since we were not careful in __fp_ln_t_-
small:w, they can have less than 4 digits.

14618 \cs_new:Npn __fp_ln_t_large:NNw #1 #2 #3; #4; #5; #6; #7; #8;
14619 {
14620 \exp_after:wN __fp_ln_square_t_after:w
14621 __int_value:w __int_eval:w 9999 0000 + #3*#3
14622 \exp_after:wN __fp_ln_square_t_pack:NNNNNw
14623 __int_value:w __int_eval:w 9999 0000 + 2*#3*#4
14624 \exp_after:wN __fp_ln_square_t_pack:NNNNNw
14625 __int_value:w __int_eval:w 9999 0000 + 2*#3*#5 + #4*#4
14626 \exp_after:wN __fp_ln_square_t_pack:NNNNNw
14627 __int_value:w __int_eval:w 9999 0000 + 2*#3*#6 + 2*#4*#5
14628 \exp_after:wN __fp_ln_square_t_pack:NNNNNw
14629 __int_value:w __int_eval:w 1 0000 0000 + 2*#3*#7 + 2*#4*#6 + #5*#5
14630 + (2*#3*#8 + 2*#4*#7 + 2*#5*#6) / 1 0000
14631 % ; ; ;
14632 \exp_after:wN __fp_ln_twice_t_after:w
14633 __int_value:w __int_eval:w -1 + 2*#3
14634 \exp_after:wN __fp_ln_twice_t_pack:Nw
14635 __int_value:w __int_eval:w 9999 + 2*#4
14636 \exp_after:wN __fp_ln_twice_t_pack:Nw
14637 __int_value:w __int_eval:w 9999 + 2*#5

716

14638 \exp_after:wN __fp_ln_twice_t_pack:Nw
14639 __int_value:w __int_eval:w 9999 + 2*#6
14640 \exp_after:wN __fp_ln_twice_t_pack:Nw
14641 __int_value:w __int_eval:w 9999 + 2*#7
14642 \exp_after:wN __fp_ln_twice_t_pack:Nw
14643 __int_value:w __int_eval:w 10000 + 2*#8 ; ;
14644 { __fp_ln_c:NwNw #1 }
14645 #2
14646 }
14647 \cs_new:Npn __fp_ln_twice_t_pack:Nw #1 #2; { + #1 ; {#2} }
14648 \cs_new:Npn __fp_ln_twice_t_after:w #1; { ;;; {#1} }
14649 \cs_new:Npn __fp_ln_square_t_pack:NNNNNw #1 #2#3#4#5 #6;
14650 { + #1#2#3#4#5 ; {#6} }
14651 \cs_new:Npn __fp_ln_square_t_after:w 1 0 #1#2#3 #4;
14652 { __fp_ln_Taylor:wwNw {0#1#2#3} {#4} }

(End definition for __fp_ln_x_ii:wnnnn.)

__fp_ln_Taylor:wwNw Denoting T = t2, we get

__fp_ln_Taylor:wwNw {〈T1〉} {〈T2〉} {〈T3〉} {〈T4〉} {〈T5〉} {〈T6〉} ; ;
{〈(2t)1〉} {〈(2t)2〉} {〈(2t)3〉} {〈(2t)4〉} {〈(2t)5〉} {〈(2t)6〉} ; { __fp_ln_-
c:NwNn 〈sign〉 } 〈fixed tl〉 〈exponent〉 ; 〈continuation〉

And we want to compute

ln
(

1 + t

1− t

)
= 2t

(
1 + T

(
1
3 + T

(
1
5 + T

(
1
7 + T

(
1
9 + · · ·

)))))
The process looks as follows

\loop 5; A;
\div_int 5; 1.0; \add A; \mul T; {\loop \eval 5-2;}
\add 0.2; A; \mul T; {\loop \eval 5-2;}
\mul B; T; {\loop 3;}
\loop 3; C;

13

This uses the routine for dividing a number by a small integer (< 104).
14653 \cs_new:Npn __fp_ln_Taylor:wwNw
14654 { __fp_ln_Taylor_loop:www 21 ; {0000}{0000}{0000}{0000}{0000}{0000} ; }
14655 \cs_new:Npn __fp_ln_Taylor_loop:www #1; #2; #3;
14656 {
14657 \if_int_compare:w #1 = \c_one
14658 __fp_ln_Taylor_break:w
14659 \fi:
14660 \exp_after:wN __fp_fixed_div_int:wwN \c__fp_one_fixed_tl ; #1;
14661 __fp_fixed_add:wwn #2;
14662 __fp_fixed_mul:wwn #3;

13Bruno: add explanations.

717

14663 {
14664 \exp_after:wN __fp_ln_Taylor_loop:www
14665 __int_value:w __int_eval:w #1 - \c_two ;
14666 }
14667 #3;
14668 }
14669 \cs_new:Npn __fp_ln_Taylor_break:w \fi: #1 __fp_fixed_add:wwn #2#3; #4 ;;
14670 {
14671 \fi:
14672 \exp_after:wN __fp_fixed_mul:wwn
14673 \exp_after:wN { __int_value:w __int_eval:w 10000 + #2 } #3;
14674 }

(End definition for __fp_ln_Taylor:wwNw. This function is documented on page ??.)

__fp_ln_c:NwNw __fp_ln_c:NwNw 〈sign〉 {〈r1〉} {〈r2〉} {〈r3〉} {〈r4〉} {〈r5〉} {〈r6〉} ; 〈fixed tl〉
〈exponent〉 ; 〈continuation〉

We are now reduced to finding ln(c) and 〈exponent〉 ln(10) in a table, and adding it
to the mixture. The first step is to get ln(c)− ln(x) = − ln(a), then we get b ln(10) and
add or subtract.

For now, ln(x) is given as ·100. Unless both the exponent is 1 and c = 1, we shift to
working in units of ·104, since the final result will be at least ln(10/7) ' 0.35.14

14675 \cs_new:Npn __fp_ln_c:NwNw #1 #2; #3
14676 {
14677 \if_meaning:w + #1
14678 \exp_after:wN \exp_after:wN \exp_after:wN __fp_fixed_sub:wwn
14679 \else:
14680 \exp_after:wN \exp_after:wN \exp_after:wN __fp_fixed_add:wwn
14681 \fi:
14682 #3 ; #2 ;
14683 }

15

(End definition for __fp_ln_c:NwNw. This function is documented on page ??.)

__fp_ln_exponent:wn __fp_ln_exponent:wn {〈s1〉} {〈s2〉} {〈s3〉} {〈s4〉} {〈s5〉} {〈s6〉} ;
{〈exponent〉}

Compute 〈exponent〉 times ln(10). Apart from the cases where 〈exponent〉 is 0 or 1,
the result will necessarily be at least ln(10) ' 2.3 in magnitude. We can thus drop the
least significant 4 digits. In the case of a very large (positive or negative) exponent, we
can (and we need to) drop 4 additional digits, since the result is of order 104. Naively,
one would think that in both cases we can drop 4 more digits than we do, but that would
be slightly too tight for rounding to happen correctly. Besides, we already have addition
and subtraction for 24 digits fixed point numbers.

14684 \cs_new:Npn __fp_ln_exponent:wn #1; #2
14685 {

14Bruno: that was wrong at some point, I must check.
15Bruno: this must be updated with correct values!

718

14686 \if_case:w #2 \exp_stop_f:
14687 \c_zero __fp_case_return:nw { __fp_fixed_to_float:Nw 2 }
14688 \or:
14689 \exp_after:wN __fp_ln_exponent_one:ww __int_value:w
14690 \else:
14691 \if_int_compare:w #2 > \c_zero
14692 \exp_after:wN __fp_ln_exponent_small:NNww
14693 \exp_after:wN 0
14694 \exp_after:wN __fp_fixed_sub:wwn __int_value:w
14695 \else:
14696 \exp_after:wN __fp_ln_exponent_small:NNww
14697 \exp_after:wN 2
14698 \exp_after:wN __fp_fixed_add:wwn __int_value:w -
14699 \fi:
14700 \fi:
14701 #2; #1;
14702 }

Now we painfully write all the cases.16 No overflow nor underflow can happen, except
when computing ln(1).

14703 \cs_new:Npn __fp_ln_exponent_one:ww 1; #1;
14704 {
14705 \c_zero
14706 \exp_after:wN __fp_fixed_sub:wwn \c__fp_ln_x_fixed_tl ; #1;
14707 __fp_fixed_to_float:wN 0
14708 }

For small exponents, we just drop one block of digits, and set the exponent of the log
to 4 (minus any shift coming from leading zeros in the conversion from fixed point to
floating point). Note that here the exponent has been made positive.

14709 \cs_new:Npn __fp_ln_exponent_small:NNww #1#2#3; #4#5#6#7#8#9;
14710 {
14711 \c_four
14712 \exp_after:wN __fp_fixed_mul:wwn
14713 \c__fp_ln_x_fixed_tl ;
14714 {#3}{0000}{0000}{0000}{0000}{0000} ;
14715 #2
14716 {0000}{#4}{#5}{#6}{#7}{#8};
14717 __fp_fixed_to_float:wN #1
14718 }

(End definition for __fp_ln_exponent:wn. This function is documented on page ??.)

31.2 Exponential
31.2.1 Sign, exponent, and special numbers

__fp_exp_o:w

14719 \cs_new:Npn __fp_exp_o:w #1 \s__fp __fp_chk:w #2#3#4; @

16Bruno: do rounding.

719

14720 {
14721 \if_case:w #2 \exp_stop_f:
14722 __fp_case_return_o:Nw \c_one_fp
14723 \or:
14724 \exp_after:wN __fp_exp_normal:w
14725 \or:
14726 \if_meaning:w 0 #3
14727 \exp_after:wN __fp_case_return_o:Nw
14728 \exp_after:wN \c_inf_fp
14729 \else:
14730 \exp_after:wN __fp_case_return_o:Nw
14731 \exp_after:wN \c_zero_fp
14732 \fi:
14733 \or:
14734 __fp_case_return_same_o:w
14735 \fi:
14736 \s__fp __fp_chk:w #2#3#4;
14737 }

(End definition for __fp_exp_o:w.)

__fp_exp_normal:w
__fp_exp_pos:Nnwnw 14738 \cs_new:Npn __fp_exp_normal:w \s__fp __fp_chk:w 1#1

14739 {
14740 \if_meaning:w 0 #1
14741 __fp_exp_pos:NNwnw + __fp_fixed_to_float:wN
14742 \else:
14743 __fp_exp_pos:NNwnw - __fp_fixed_inv_to_float:wN
14744 \fi:
14745 }
14746 \cs_new:Npn __fp_exp_pos:NNwnw #1#2#3 \fi: #4#5;
14747 {
14748 \fi:
14749 \exp_after:wN __fp_sanitize:Nw
14750 \exp_after:wN 0
14751 __int_value:w #1 __int_eval:w
14752 \if_int_compare:w #4 < - \c_eight
14753 \c_one
14754 \exp_after:wN __fp_add_big_i_o:wNww
14755 __int_value:w __int_eval:w \c_one - #4 ;
14756 0 {1000}{0000}{0000}{0000} ; #5;
14757 \exp:w
14758 \else:
14759 \if_int_compare:w #4 > \c_five % cf \c__fp_max_exponent_int
14760 \exp_after:wN __fp_exp_overflow:
14761 \exp:w
14762 \else:
14763 \if_int_compare:w #4 < \c_zero
14764 \exp_after:wN \use_i:nn
14765 \else:

720

14766 \exp_after:wN \use_ii:nn
14767 \fi:
14768 {
14769 \c_zero
14770 __fp_decimate:nNnnnn { - #4 }
14771 __fp_exp_Taylor:Nnnwn
14772 }
14773 {
14774 __fp_decimate:nNnnnn { \c_sixteen - #4 }
14775 __fp_exp_pos_large:NnnNwn
14776 }
14777 #5
14778 {#4}
14779 #1 #2 0
14780 \exp:w
14781 \fi:
14782 \fi:
14783 \exp_after:wN \c_zero
14784 }
14785 \cs_new:Npn __fp_exp_overflow:
14786 { + \c_two * \c__fp_max_exponent_int ; {1000} {0000} {0000} {0000} ; }

(End definition for __fp_exp_normal:w and __fp_exp_pos:Nnwnw.)

__fp_exp_Taylor:Nnnwn
__fp_exp_Taylor_loop:www

__fp_exp_Taylor_break:Nww

This function is called for numbers in the range [10−9, 10−1). Our only task is to compute
the Taylor series. The first argument is irrelevant (rounding digit used by some other
functions). The next three arguments, at least 16 digits, delimited by a semicolon, form
a fixed point number, so we pack it in blocks of 4 digits.

14787 \cs_new:Npn __fp_exp_Taylor:Nnnwn #1#2#3 #4; #5 #6
14788 {
14789 #6
14790 __fp_pack_twice_four:wNNNNNNNN
14791 __fp_pack_twice_four:wNNNNNNNN
14792 __fp_pack_twice_four:wNNNNNNNN
14793 __fp_exp_Taylor_ii:ww
14794 ; #2#3#4 0000 0000 ;
14795 }
14796 \cs_new:Npn __fp_exp_Taylor_ii:ww #1; #2;
14797 { __fp_exp_Taylor_loop:www 10 ; #1 ; #1 ; \s__stop }
14798 \cs_new:Npn __fp_exp_Taylor_loop:www #1; #2; #3;
14799 {
14800 \if_int_compare:w #1 = \c_one
14801 \exp_after:wN __fp_exp_Taylor_break:Nww
14802 \fi:
14803 __fp_fixed_div_int:wwN #3 ; #1 ;
14804 __fp_fixed_add_one:wN
14805 __fp_fixed_mul:wwn #2 ;
14806 {
14807 \exp_after:wN __fp_exp_Taylor_loop:www
14808 __int_value:w __int_eval:w #1 - 1 ;

721

14809 #2 ;
14810 }
14811 }
14812 \cs_new:Npn __fp_exp_Taylor_break:Nww #1 #2; #3 \s__stop
14813 { __fp_fixed_add_one:wN #2 ; }

(End definition for __fp_exp_Taylor:Nnnwn.)

__fp_exp_pos_large:NnnNwn
__fp_exp_large_after:wwn

__fp_exp_large:w
__fp_exp_large_v:wN
__fp_exp_large_iv:wN
__fp_exp_large_iii:wN
__fp_exp_large_ii:wN
__fp_exp_large_i:wN
__fp_exp_large_:wN

The first two arguments are irrelevant (a rounding digit, and a brace group with 8 zeros).
The third argument is the integer part of our number, then we have the decimal part
delimited by a semicolon, and finally the exponent, in the range [0, 5]. Remove leading
zeros from the integer part: putting #4 in there too ensures that an integer part of 0 is
also removed. Then read digits one by one, looking up exp(〈digit〉·10〈exponent〉) in a table,
and multiplying that to the current total. The loop is done by having the auxiliary for
one exponent call the auxiliary for the next exponent. The current total is expressed by
leaving the exponent behind in the input stream (we are currently within an __int_-
eval:w), and keeping track of a fixed point number, #1 for the numbered auxiliaries. Our
usage of \if_case:w is somewhat dirty for optimization: TEX jumps to the appropriate
case, but we then close the \if_case:w “by hand”, using \or: and \fi: as delimiters.

14814 \cs_new:Npn __fp_exp_pos_large:NnnNwn #1#2#3 #4#5; #6
14815 {
14816 \exp_after:wN \exp_after:wN
14817 \cs:w __fp_exp_large_ __int_to_roman:w #6 :wN \exp_after:wN \cs_end:
14818 \exp_after:wN \c__fp_one_fixed_tl
14819 \exp_after:wN ;
14820 __int_value:w #3 #4 \exp_stop_f:
14821 #5 00000 ;
14822 }
14823 \cs_new:Npn __fp_exp_large:w #1 \or: #2 \fi:
14824 { \fi: __fp_fixed_mul:wwn #1; }
14825 \cs_new:Npn __fp_exp_large_v:wN #1; #2
14826 {
14827 \if_case:w #2 ~ \exp_after:wN __fp_fixed_continue:wn \or:
14828 + 4343 __fp_exp_large:w {8806}{8182}{2566}{2921}{5872}{6150} \or:
14829 + 8686 __fp_exp_large:w {7756}{0047}{2598}{6861}{0458}{3204} \or:
14830 + 13029 __fp_exp_large:w {6830}{5723}{7791}{4884}{1932}{7351} \or:
14831 + 17372 __fp_exp_large:w {6015}{5609}{3095}{3052}{3494}{7574} \or:
14832 + 21715 __fp_exp_large:w {5297}{7951}{6443}{0315}{3251}{3576} \or:
14833 + 26058 __fp_exp_large:w {4665}{6719}{0099}{3379}{5527}{2929} \or:
14834 + 30401 __fp_exp_large:w {4108}{9724}{3326}{3186}{5271}{5665} \or:
14835 + 34744 __fp_exp_large:w {3618}{6973}{3140}{0875}{3856}{4102} \or:
14836 + 39087 __fp_exp_large:w {3186}{9209}{6113}{3900}{6705}{9685} \or:
14837 \fi:
14838 #1;
14839 __fp_exp_large_iv:wN
14840 }
14841 \cs_new:Npn __fp_exp_large_iv:wN #1; #2
14842 {
14843 \if_case:w #2 ~ \exp_after:wN __fp_fixed_continue:wn \or:

722

14844 + 435 __fp_exp_large:w {1970}{0711}{1401}{7046}{9938}{8888} \or:
14845 + 869 __fp_exp_large:w {3881}{1801}{9428}{4368}{5764}{8232} \or:
14846 + 1303 __fp_exp_large:w {7646}{2009}{8905}{4704}{8893}{1073} \or:
14847 + 1738 __fp_exp_large:w {1506}{3559}{7005}{0524}{9009}{7592} \or:
14848 + 2172 __fp_exp_large:w {2967}{6283}{8402}{3667}{0689}{6630} \or:
14849 + 2606 __fp_exp_large:w {5846}{4389}{5650}{2114}{7278}{5046} \or:
14850 + 3041 __fp_exp_large:w {1151}{7900}{5080}{6878}{2914}{4154} \or:
14851 + 3475 __fp_exp_large:w {2269}{1083}{0850}{6857}{8724}{4002} \or:
14852 + 3909 __fp_exp_large:w {4470}{3047}{3316}{5442}{6408}{6591} \or:
14853 \fi:
14854 #1;
14855 __fp_exp_large_iii:wN
14856 }
14857 \cs_new:Npn __fp_exp_large_iii:wN #1; #2
14858 {
14859 \if_case:w #2 ~ \exp_after:wN __fp_fixed_continue:wn \or:
14860 + 44 __fp_exp_large:w {2688}{1171}{4181}{6135}{4484}{1263} \or:
14861 + 87 __fp_exp_large:w {7225}{9737}{6812}{5749}{2581}{7748} \or:
14862 + 131 __fp_exp_large:w {1942}{4263}{9524}{1255}{9365}{8421} \or:
14863 + 174 __fp_exp_large:w {5221}{4696}{8976}{4143}{9505}{8876} \or:
14864 + 218 __fp_exp_large:w {1403}{5922}{1785}{2837}{4107}{3977} \or:
14865 + 261 __fp_exp_large:w {3773}{0203}{0092}{9939}{8234}{0143} \or:
14866 + 305 __fp_exp_large:w {1014}{2320}{5473}{5004}{5094}{5533} \or:
14867 + 348 __fp_exp_large:w {2726}{3745}{7211}{2566}{5673}{6478} \or:
14868 + 391 __fp_exp_large:w {7328}{8142}{2230}{7421}{7051}{8866} \or:
14869 \fi:
14870 #1;
14871 __fp_exp_large_ii:wN
14872 }
14873 \cs_new:Npn __fp_exp_large_ii:wN #1; #2
14874 {
14875 \if_case:w #2 ~ \exp_after:wN __fp_fixed_continue:wn \or:
14876 + 5 __fp_exp_large:w {2202}{6465}{7948}{0671}{6516}{9579} \or:
14877 + 9 __fp_exp_large:w {4851}{6519}{5409}{7902}{7796}{9107} \or:
14878 + 14 __fp_exp_large:w {1068}{6474}{5815}{2446}{2146}{9905} \or:
14879 + 18 __fp_exp_large:w {2353}{8526}{6837}{0199}{8540}{7900} \or:
14880 + 22 __fp_exp_large:w {5184}{7055}{2858}{7072}{4640}{8745} \or:
14881 + 27 __fp_exp_large:w {1142}{0073}{8981}{5684}{2836}{6296} \or:
14882 + 31 __fp_exp_large:w {2515}{4386}{7091}{9167}{0062}{6578} \or:
14883 + 35 __fp_exp_large:w {5540}{6223}{8439}{3510}{0525}{7117} \or:
14884 + 40 __fp_exp_large:w {1220}{4032}{9431}{7840}{8020}{0271} \or:
14885 \fi:
14886 #1;
14887 __fp_exp_large_i:wN
14888 }
14889 \cs_new:Npn __fp_exp_large_i:wN #1; #2
14890 {
14891 \if_case:w #2 ~ \exp_after:wN __fp_fixed_continue:wn \or:
14892 + 1 __fp_exp_large:w {2718}{2818}{2845}{9045}{2353}{6029} \or:
14893 + 1 __fp_exp_large:w {7389}{0560}{9893}{0650}{2272}{3043} \or:

723

14894 + 2 __fp_exp_large:w {2008}{5536}{9231}{8766}{7740}{9285} \or:
14895 + 2 __fp_exp_large:w {5459}{8150}{0331}{4423}{9078}{1103} \or:
14896 + 3 __fp_exp_large:w {1484}{1315}{9102}{5766}{0342}{1116} \or:
14897 + 3 __fp_exp_large:w {4034}{2879}{3492}{7351}{2260}{8387} \or:
14898 + 4 __fp_exp_large:w {1096}{6331}{5842}{8458}{5992}{6372} \or:
14899 + 4 __fp_exp_large:w {2980}{9579}{8704}{1728}{2747}{4359} \or:
14900 + 4 __fp_exp_large:w {8103}{0839}{2757}{5384}{0077}{1000} \or:
14901 \fi:
14902 #1;
14903 __fp_exp_large_:wN
14904 }
14905 \cs_new:Npn __fp_exp_large_:wN #1; #2
14906 {
14907 \if_case:w #2 ~ \exp_after:wN __fp_fixed_continue:wn \or:
14908 + 1 __fp_exp_large:w {1105}{1709}{1807}{5647}{6248}{1171} \or:
14909 + 1 __fp_exp_large:w {1221}{4027}{5816}{0169}{8339}{2107} \or:
14910 + 1 __fp_exp_large:w {1349}{8588}{0757}{6003}{1039}{8374} \or:
14911 + 1 __fp_exp_large:w {1491}{8246}{9764}{1270}{3178}{2485} \or:
14912 + 1 __fp_exp_large:w {1648}{7212}{7070}{0128}{1468}{4865} \or:
14913 + 1 __fp_exp_large:w {1822}{1188}{0039}{0508}{9748}{7537} \or:
14914 + 1 __fp_exp_large:w {2013}{7527}{0747}{0476}{5216}{2455} \or:
14915 + 1 __fp_exp_large:w {2225}{5409}{2849}{2467}{6045}{7954} \or:
14916 + 1 __fp_exp_large:w {2459}{6031}{1115}{6949}{6638}{0013} \or:
14917 \fi:
14918 #1;
14919 __fp_exp_large_after:wwn
14920 }
14921 \cs_new:Npn __fp_exp_large_after:wwn #1; #2; #3
14922 {
14923 __fp_exp_Taylor:Nnnwn ? { } { } 0 #2; {} #3
14924 __fp_fixed_mul:wwn #1;
14925 }

(End definition for __fp_exp_pos_large:NnnNwn and others.)

31.3 Power
Raising a number a to a power b leads to many distinct situations.

724

ab −∞ −y −n ±0 +n +y +∞ NaN
+∞ +0 +0 +0 +1 +∞ +∞ +∞ NaN

1 < x +0 +x−y +x−n +1 +xn +xy +∞ NaN
+1 +1 +1 +1 +1 +1 +1 +1 +1

0 < x < 1 +∞ +x−y +x−n +1 +xn +xy +0 NaN
+0 +∞ +∞ +∞ +1 +0 +0 +0 NaN
−0 NaN NaN ±∞ +1 ±0 +0 +0 NaN

−1 < −x < 0 NaN NaN ±x−n +1 ±xn NaN +0 NaN
−1 NaN NaN ±1 +1 ±1 NaN NaN NaN

−x < −1 +0 NaN ±x−n +1 ±xn NaN NaN NaN
−∞ +0 +0 ±0 +1 ±∞ NaN NaN NaN
NaN NaN NaN NaN +1 NaN NaN NaN NaN

One peculiarity of this operation is that NaN0 = 1NaN = 1, because this relation is obeyed
for any number, even ±∞.

__fp_^_o:ww We cram a most of the tests into a single function to save csnames. First treat the case
b = 0: a0 = 1 for any a, even nan. Then test the sign of a.

• If it is positive, and a is a normal number, call __fp_pow_normal:ww followed by
the two fp a and b. For a = +0 or + inf, call __fp_pow_zero_or_inf:ww instead,
to return either +0 or +∞ as appropriate.

• If a is a nan, then skip to the next semicolon (which happens to be conveniently
the end of b) and return nan.

• Finally, if a is negative, compute ab (__fp_pow_normal:ww which ignores the sign
of its first operand), and keep an extra copy of a and b (the second brace group,
containing { b a }, is inserted between a and b). Then do some tests to find the
final sign of the result if it exists.

14926 \cs_new:cpn { __fp_ \iow_char:N \^ _o:ww }
14927 \s__fp __fp_chk:w #1#2#3; \s__fp __fp_chk:w #4#5#6;
14928 {
14929 \if_meaning:w 0 #4
14930 __fp_case_return_o:Nw \c_one_fp
14931 \fi:
14932 \if_case:w #2 \exp_stop_f:
14933 \exp_after:wN \use_i:nn
14934 \or:
14935 __fp_case_return_o:Nw \c_nan_fp
14936 \else:
14937 \exp_after:wN __fp_pow_neg:www
14938 \exp:w \exp_end_continue_f:w \exp_after:wN \use:nn
14939 \fi:
14940 {
14941 \if_meaning:w 1 #1
14942 \exp_after:wN __fp_pow_normal:ww
14943 \else:

725

14944 \exp_after:wN __fp_pow_zero_or_inf:ww
14945 \fi:
14946 \s__fp __fp_chk:w #1#2#3;
14947 }
14948 { \s__fp __fp_chk:w #4#5#6; \s__fp __fp_chk:w #1#2#3; }
14949 \s__fp __fp_chk:w #4#5#6;
14950 }

(End definition for __fp_^_o:ww.)

__fp_pow_zero_or_inf:ww Raising −0 or −∞ to nan yields nan. For other powers, the result is +0 if 0 is raised to
a positive power or ∞ to a negative power, and +∞ otherwise. Thus, if the type of a
and the sign of b coincide, the result is 0, since those conveniently take the same possible
values, 0 and 2. Otherwise, either a = ±0 with b < 0 and we have a division by zero, or
a = ±∞ and b > 0 and the result is also +∞, but without any exception.

14951 \cs_new:Npn __fp_pow_zero_or_inf:ww
14952 \s__fp __fp_chk:w #1#2; \s__fp __fp_chk:w #3#4
14953 {
14954 \if_meaning:w 1 #4
14955 __fp_case_return_same_o:w
14956 \fi:
14957 \if_meaning:w #1 #4
14958 __fp_case_return_o:Nw \c_zero_fp
14959 \fi:
14960 \if_meaning:w 0 #1
14961 __fp_case_use:nw
14962 {
14963 __fp_division_by_zero_o:NNww \c_inf_fp ^
14964 \s__fp __fp_chk:w #1 #2 ;
14965 }
14966 \else:
14967 __fp_case_return_o:Nw \c_inf_fp
14968 \fi:
14969 \s__fp __fp_chk:w #3#4
14970 }

(End definition for __fp_pow_zero_or_inf:ww.)

__fp_pow_normal:ww We have in front of us a, and b 6= 0, we know that a is a normal number, and we wish to
compute |a|b. If |a| = 1, we return 1, unless a = −1 and b is nan. Indeed, returning 1 at
this point would wrongly raise “invalid” when the sign is considered. If |a| 6= 1, test the
type of b:

0 Impossible, we already filtered b = ±0.

1 Call __fp_pow_npos:ww.

2 Return +∞ or +0 depending on the sign of b and whether the exponent of a is
positive or not.

3 Return b.

726

14971 \cs_new:Npn __fp_pow_normal:ww
14972 \s__fp __fp_chk:w 1 #1#2#3; \s__fp __fp_chk:w #4#5
14973 {
14974 \if_int_compare:w __str_if_eq_x:nn { #2 #3 }
14975 { 1 {1000} {0000} {0000} {0000} } = \c_zero
14976 \if_int_compare:w #4 #1 = 32 \exp_stop_f:
14977 \exp_after:wN __fp_case_return_ii_o:ww
14978 \fi:
14979 __fp_case_return_o:Nww \c_one_fp
14980 \fi:
14981 \if_case:w #4 \exp_stop_f:
14982 \or:
14983 \exp_after:wN __fp_pow_npos:Nww
14984 \exp_after:wN #5
14985 \or:
14986 \if_meaning:w 2 #5 \exp_after:wN \reverse_if:N \fi:
14987 \if_int_compare:w #2 > \c_zero
14988 \exp_after:wN __fp_case_return_o:Nww
14989 \exp_after:wN \c_inf_fp
14990 \else:
14991 \exp_after:wN __fp_case_return_o:Nww
14992 \exp_after:wN \c_zero_fp
14993 \fi:
14994 \or:
14995 __fp_case_return_ii_o:ww
14996 \fi:
14997 \s__fp __fp_chk:w 1 #1 {#2} #3 ;
14998 \s__fp __fp_chk:w #4 #5
14999 }

(End definition for __fp_pow_normal:ww.)

__fp_pow_npos:Nww We now know that a 6= ±1 is a normal number, and b is a normal number too. We want
to compute |a|b = (|x| · 10n)y·10p = exp((ln|x|+ n ln(10)) · y · 10p) = exp(z). To compute
the exponential accurately, we need to know the digits of z up to the 16-th position. Since
the exponential of 105 is infinite, we only need at most 21 digits, hence the fixed point
result of __fp_ln_o:w is precise enough for our needs. Start an integer expression for
the decimal exponent of e|z|. If z is negative, negate that decimal exponent, and prepare
to take the inverse when converting from the fixed point to the floating point result.

15000 \cs_new:Npn __fp_pow_npos:Nww #1 \s__fp __fp_chk:w 1#2#3
15001 {
15002 \exp_after:wN __fp_sanitize:Nw
15003 \exp_after:wN 0
15004 __int_value:w
15005 \if:w #1 \if_int_compare:w #3 > \c_zero 0 \else: 2 \fi:
15006 \exp_after:wN __fp_pow_npos_aux:NNnww
15007 \exp_after:wN +
15008 \exp_after:wN __fp_fixed_to_float:wN
15009 \else:

727

15010 \exp_after:wN __fp_pow_npos_aux:NNnww
15011 \exp_after:wN -
15012 \exp_after:wN __fp_fixed_inv_to_float:wN
15013 \fi:
15014 {#3}
15015 }

(End definition for __fp_pow_npos:Nww.)

__fp_pow_npos_aux:NNnww The first argument is the conversion function from fixed point to float. Then comes an
exponent and the 4 brace groups of x, followed by b. Compute − ln(x).

15016 \cs_new:Npn __fp_pow_npos_aux:NNnww #1#2#3#4#5; \s__fp __fp_chk:w 1#6#7#8;
15017 {
15018 #1
15019 __int_eval:w
15020 __fp_ln_significand:NNNNnnnN #4#5
15021 __fp_pow_exponent:wnN {#3}
15022 __fp_fixed_mul:wwn #8 {0000}{0000} ;
15023 __fp_pow_B:wwN #7;
15024 #1 #2 0 % fixed_to_float:wN
15025 }
15026 \cs_new:Npn __fp_pow_exponent:wnN #1; #2
15027 {
15028 \if_int_compare:w #2 > \c_zero
15029 \exp_after:wN __fp_pow_exponent:Nwnnnnnw % n\ln(10) - (-\ln(x))
15030 \exp_after:wN +
15031 \else:
15032 \exp_after:wN __fp_pow_exponent:Nwnnnnnw % -(|n|\ln(10) + (-\ln(x)))
15033 \exp_after:wN -
15034 \fi:
15035 #2; #1;
15036 }
15037 \cs_new:Npn __fp_pow_exponent:Nwnnnnnw #1#2; #3#4#5#6#7#8;
15038 { %^^A todo: use that in ln.
15039 \exp_after:wN __fp_fixed_mul_after:wwn
15040 __int_value:w __int_eval:w \c__fp_leading_shift_int
15041 \exp_after:wN __fp_pack:NNNNNw
15042 __int_value:w __int_eval:w \c__fp_middle_shift_int
15043 #1#2*23025 - #1 #3
15044 \exp_after:wN __fp_pack:NNNNNw
15045 __int_value:w __int_eval:w \c__fp_middle_shift_int
15046 #1 #2*8509 - #1 #4
15047 \exp_after:wN __fp_pack:NNNNNw
15048 __int_value:w __int_eval:w \c__fp_middle_shift_int
15049 #1 #2*2994 - #1 #5
15050 \exp_after:wN __fp_pack:NNNNNw
15051 __int_value:w __int_eval:w \c__fp_middle_shift_int
15052 #1 #2*0456 - #1 #6
15053 \exp_after:wN __fp_pack:NNNNNw
15054 __int_value:w __int_eval:w \c__fp_trailing_shift_int

728

15055 #1 #2*8401 - #1 #7
15056 #1 (#2*7991 - #8) / 1 0000 ; ;
15057 }
15058 \cs_new:Npn __fp_pow_B:wwN #1#2#3#4#5#6; #7;
15059 {
15060 \if_int_compare:w #7 < \c_zero
15061 \exp_after:wN __fp_pow_C_neg:w __int_value:w -
15062 \else:
15063 \if_int_compare:w #7 < 22 \exp_stop_f:
15064 \exp_after:wN __fp_pow_C_pos:w __int_value:w
15065 \else:
15066 \exp_after:wN __fp_pow_C_overflow:w __int_value:w
15067 \fi:
15068 \fi:
15069 #7 \exp_after:wN ;
15070 __int_value:w __int_eval:w 10 0000 + #1 __int_eval_end:
15071 #2#3#4#5#6 0000 0000 0000 0000 0000 0000 ; %^^A todo: how many 0?
15072 }
15073 \cs_new:Npn __fp_pow_C_overflow:w #1; #2; #3
15074 {
15075 + \c_two * \c__fp_max_exponent_int
15076 \exp_after:wN __fp_fixed_continue:wn \c__fp_one_fixed_tl ;
15077 }
15078 \cs_new:Npn __fp_pow_C_neg:w #1 ; 1
15079 {
15080 \exp_after:wN \exp_after:wN \exp_after:wN __fp_pow_C_pack:w
15081 \prg_replicate:nn {#1} {0}
15082 }
15083 \cs_new:Npn __fp_pow_C_pos:w #1; 1
15084 { __fp_pow_C_pos_loop:wN #1; }
15085 \cs_new:Npn __fp_pow_C_pos_loop:wN #1; #2
15086 {
15087 \if_meaning:w 0 #1
15088 \exp_after:wN __fp_pow_C_pack:w
15089 \exp_after:wN #2
15090 \else:
15091 \if_meaning:w 0 #2
15092 \exp_after:wN __fp_pow_C_pos_loop:wN __int_value:w
15093 \else:
15094 \exp_after:wN __fp_pow_C_overflow:w __int_value:w
15095 \fi:
15096 __int_eval:w #1 - \c_one \exp_after:wN ;
15097 \fi:
15098 }
15099 \cs_new:Npn __fp_pow_C_pack:w
15100 { \exp_after:wN __fp_exp_large_v:wN \c__fp_one_fixed_tl ; }

(End definition for __fp_pow_npos_aux:NNnww.)

__fp_pow_neg:www
__fp_pow_neg_aux:wNN

This function is followed by three floating point numbers: ab, a ∈ [−∞,−0], and b. If b is

729

an even integer (case −1), ab = ab. If b is an odd integer (case 0), ab = −ab, obtained by a
call to __fp_pow_neg_aux:wNN. Otherwise, the sign is undefined. This is invalid, unless
ab turns out to be +0 or nan, in which case we return that as ab. In particular, since
the underflow detection occurs before __fp_pow_neg:www is called, (-0.1)**(12345.6)
will give +0 rather than complaining that the sign is not defined.

15101 \cs_new:Npn __fp_pow_neg:www \s__fp __fp_chk:w #1#2; #3; #4;
15102 {
15103 \if_case:w __fp_pow_neg_case:w #4 ;
15104 \exp_after:wN __fp_pow_neg_aux:wNN
15105 \or:
15106 \if_int_compare:w __int_eval:w #1 / \c_two = \c_one
15107 __fp_invalid_operation_o:Nww ^ #3; #4;
15108 \exp:w \exp_end_continue_f:w
15109 \exp_after:wN \exp_after:wN
15110 \exp_after:wN __fp_use_none_until_s:w
15111 \fi:
15112 \fi:
15113 __fp_exp_after_o:w
15114 \s__fp __fp_chk:w #1#2;
15115 }
15116 \cs_new:Npn __fp_pow_neg_aux:wNN #1 \s__fp __fp_chk:w #2#3
15117 {
15118 \exp_after:wN __fp_exp_after_o:w
15119 \exp_after:wN \s__fp
15120 \exp_after:wN __fp_chk:w
15121 \exp_after:wN #2
15122 __int_value:w __int_eval:w \c_two - #3 __int_eval_end:
15123 }

(End definition for __fp_pow_neg:www and __fp_pow_neg_aux:wNN.)

__fp_pow_neg_case:w
__fp_pow_neg_case_aux:nnnnn

__fp_pow_neg_case_aux:NNNNNNNNw

This function expects a floating point number, and “returns” −1 if it is an even integer, 0
if it is an odd integer, and 1 if it is not an integer. Zeros are even, ±∞ and nan are non-
integers. The sign of normal numbers is irrelevant to parity. If the exponent is greater
than sixteen, then the number is even. If the exponent is non-positive, the number cannot
be an integer. We also separate the ranges of exponent [1, 8] and [9, 16]. In the former
case, check that the last 8 digits are zero (otherwise we don’t have an integer). In both
cases, consider the appropriate 8 digits, either #4#5 or #2#3, remove the first few: we
are then left with 〈digit〉 〈digits〉 ; which would be the digits surrounding the decimal
period. If the 〈digits〉 are non-zero, the number is not an integer. Otherwise, check the
parity of the 〈digit〉 and return \c_zero or \c_minus_one.

15124 \cs_new:Npn __fp_pow_neg_case:w \s__fp __fp_chk:w #1#2#3;
15125 {
15126 \if_case:w #1 \exp_stop_f:
15127 \c_minus_one
15128 \or: __fp_pow_neg_case_aux:nnnnn #3
15129 \else: \c_one
15130 \fi:
15131 }

730

15132 \cs_new:Npn __fp_pow_neg_case_aux:nnnnn #1#2#3#4#5
15133 {
15134 \if_int_compare:w #1 > \c_eight
15135 \if_int_compare:w #1 > \c_sixteen
15136 \c_minus_one
15137 \else:
15138 \exp_after:wN \exp_after:wN
15139 \exp_after:wN __fp_pow_neg_case_aux:NNNNNNNNw
15140 \prg_replicate:nn { \c_sixteen - #1 } { 0 } #4#5 ;
15141 \fi:
15142 \else:
15143 \if_int_compare:w #1 > \c_zero
15144 \if_int_compare:w #4#5 = \c_zero
15145 \exp_after:wN \exp_after:wN
15146 \exp_after:wN __fp_pow_neg_case_aux:NNNNNNNNw
15147 \prg_replicate:nn { \c_eight - #1 } { 0 } #2#3 ;
15148 \else:
15149 \c_one
15150 \fi:
15151 \else:
15152 \c_one
15153 \fi:
15154 \fi:
15155 }
15156 \cs_new:Npn __fp_pow_neg_case_aux:NNNNNNNNw #1#2#3#4#5#6#7#8#9;
15157 {
15158 \if_int_compare:w 0 #9 = \c_zero
15159 \if_int_odd:w #8 \exp_stop_f:
15160 \c_zero
15161 \else:
15162 \c_minus_one
15163 \fi:
15164 \else:
15165 \c_one
15166 \fi:
15167 }

(End definition for __fp_pow_neg_case:w , __fp_pow_neg_case_aux:nnnnn , and __fp_pow_neg_-
case_aux:NNNNNNNNw.)

15168 〈/initex | package〉

32 l3fp-trig Implementation
15169 〈*initex | package〉
15170 〈@@=fp〉

32.1 Direct trigonometric functions
The approach for all trigonometric functions (sine, cosine, tangent, cotangent, cosecant,
and secant), with arguments given in radians or in degrees, is the same.

731

• Filter out special cases (±0, ± inf and NaN).

• Keep the sign for later, and work with the absolute value |x| of the argument.

• Small numbers (|x| < 1 in radians, |x| < 10 in degrees) are converted to fixed point
numbers (and to radians if |x| is in degrees).

• For larger numbers, we need argument reduction. Subtract a multiple of π/2 (in
degrees, 90) to bring the number to the range to [0, π/2) (in degrees, [0, 90)).

• Reduce further to [0, π/4] (in degrees, [0, 45]) using sin x = cos(π/2−x), and when
working in degrees, convert to radians.

• Use the appropriate power series depending on the octant b x
π/4c mod 8 (in degrees,

the same formula with π/4→ 45), the sign, and the function to compute.

32.1.1 Filtering special cases

__fp_sin_o:w This function, and its analogs for cos, csc, sec, tan, and cot instead of sin, are followed
either by \use_i:nn and a float in radians or by \use_ii:nn and a float in degrees. The
sine of ±0 or NaN is the same float. The sine of ±∞ raises an invalid operation excep-
tion with the appropriate function name. Otherwise, call the trig function to perform
argument reduction and if necessary convert the reduced argument to radians. Then,
__fp_sin_series_o:NNwwww will be called to compute the Taylor series: this function
receives a sign #3, an initial octant of 0, and the function __fp_ep_to_float:wwN which
converts the result of the series to a floating point directly rather than taking its inverse,
since sin(x) = #3 sin|x|.

15171 \cs_new:Npn __fp_sin_o:w #1 \s__fp __fp_chk:w #2#3#4; @
15172 {
15173 \if_case:w #2 \exp_stop_f:
15174 __fp_case_return_same_o:w
15175 \or: __fp_case_use:nw
15176 {
15177 __fp_trig:NNNNNwn #1 __fp_sin_series_o:NNwwww
15178 __fp_ep_to_float:wwN #3 \c_zero
15179 }
15180 \or: __fp_case_use:nw
15181 { __fp_invalid_operation_o:fw { #1 { sin } { sind } } }
15182 \else: __fp_case_return_same_o:w
15183 \fi:
15184 \s__fp __fp_chk:w #2 #3 #4;
15185 }

(End definition for __fp_sin_o:w.)

__fp_cos_o:w The cosine of ±0 is 1. The cosine of ±∞ raises an invalid operation exception. The
cosine of NaN is itself. Otherwise, the trig function reduces the argument to at most half
a right-angle and converts if necessary to radians. We will then call the same series as

732

for sine, but using a positive sign 0 regardless of the sign of x, and with an initial octant
of 2, because cos(x) = + sin(π/2 + |x|).

15186 \cs_new:Npn __fp_cos_o:w #1 \s__fp __fp_chk:w #2#3; @
15187 {
15188 \if_case:w #2 \exp_stop_f:
15189 __fp_case_return_o:Nw \c_one_fp
15190 \or: __fp_case_use:nw
15191 {
15192 __fp_trig:NNNNNwn #1 __fp_sin_series_o:NNwwww
15193 __fp_ep_to_float:wwN 0 \c_two
15194 }
15195 \or: __fp_case_use:nw
15196 { __fp_invalid_operation_o:fw { #1 { cos } { cosd } } }
15197 \else: __fp_case_return_same_o:w
15198 \fi:
15199 \s__fp __fp_chk:w #2 #3;
15200 }

(End definition for __fp_cos_o:w.)

__fp_csc_o:w The cosecant of ±0 is ±∞ with the same sign, with a division by zero exception (see
__fp_cot_zero_o:Nfw defined below), which requires the function name. The cosecant
of ±∞ raises an invalid operation exception. The cosecant of NaN is itself. Otherwise,
the trig function performs the argument reduction, and converts if necessary to radians
before calling the same series as for sine, using the sign #3, a starting octant of 0, and
inverting during the conversion from the fixed point sine to the floating point result,
because csc(x) = #3

(
sin|x|

)−1.
15201 \cs_new:Npn __fp_csc_o:w #1 \s__fp __fp_chk:w #2#3#4; @
15202 {
15203 \if_case:w #2 \exp_stop_f:
15204 __fp_cot_zero_o:Nfw #3 { #1 { csc } { cscd } }
15205 \or: __fp_case_use:nw
15206 {
15207 __fp_trig:NNNNNwn #1 __fp_sin_series_o:NNwwww
15208 __fp_ep_inv_to_float:wwN #3 \c_zero
15209 }
15210 \or: __fp_case_use:nw
15211 { __fp_invalid_operation_o:fw { #1 { csc } { cscd } } }
15212 \else: __fp_case_return_same_o:w
15213 \fi:
15214 \s__fp __fp_chk:w #2 #3 #4;
15215 }

(End definition for __fp_csc_o:w.)

__fp_sec_o:w The secant of ±0 is 1. The secant of ±∞ raises an invalid operation exception. The
secant of NaN is itself. Otherwise, the trig function reduces the argument and turns it
to radians before calling the same series as for sine, using a positive sign 0, a starting
octant of 2, and inverting upon conversion, because sec(x) = +1/ sin(π/2 + |x|).

733

15216 \cs_new:Npn __fp_sec_o:w #1 \s__fp __fp_chk:w #2#3; @
15217 {
15218 \if_case:w #2 \exp_stop_f:
15219 __fp_case_return_o:Nw \c_one_fp
15220 \or: __fp_case_use:nw
15221 {
15222 __fp_trig:NNNNNwn #1 __fp_sin_series_o:NNwwww
15223 __fp_ep_inv_to_float:wwN 0 \c_two
15224 }
15225 \or: __fp_case_use:nw
15226 { __fp_invalid_operation_o:fw { #1 { sec } { secd } } }
15227 \else: __fp_case_return_same_o:w
15228 \fi:
15229 \s__fp __fp_chk:w #2 #3;
15230 }

(End definition for __fp_sec_o:w.)

__fp_tan_o:w The tangent of ±0 or NaN is the same floating point number. The tangent of ±∞
raises an invalid operation exception. Once more, the trig function does the argument
reduction step and conversion to radians before calling __fp_tan_series_o:NNwwww,
with a sign #3 and an initial octant of 1 (this shift is somewhat arbitrary). See __fp_-
cot_o:w for an explanation of the 0 argument.

15231 \cs_new:Npn __fp_tan_o:w #1 \s__fp __fp_chk:w #2#3#4; @
15232 {
15233 \if_case:w #2 \exp_stop_f:
15234 __fp_case_return_same_o:w
15235 \or: __fp_case_use:nw
15236 {
15237 __fp_trig:NNNNNwn #1
15238 __fp_tan_series_o:NNwwww 0 #3 \c_one
15239 }
15240 \or: __fp_case_use:nw
15241 { __fp_invalid_operation_o:fw { #1 { tan } { tand } } }
15242 \else: __fp_case_return_same_o:w
15243 \fi:
15244 \s__fp __fp_chk:w #2 #3 #4;
15245 }

(End definition for __fp_tan_o:w.)

__fp_cot_o:w
__fp_cot_zero_o:Nfw

The cotangent of ±0 is ±∞ with the same sign, with a division by zero exception (see
__fp_cot_zero_o:Nfw. The cotangent of ±∞ raises an invalid operation exception.
The cotangent of NaN is itself. We use cotx = − tan(π/2 + x), and the initial octant
for the tangent was chosen to be 1, so the octant here starts at 3. The change in sign
is obtained by feeding __fp_tan_series_o:NNwwww two signs rather than just the sign
of the argument: the first of those indicates whether we compute tangent or cotangent.
Those signs are eventually combined.

15246 \cs_new:Npn __fp_cot_o:w #1 \s__fp __fp_chk:w #2#3#4; @

734

15247 {
15248 \if_case:w #2 \exp_stop_f:
15249 __fp_cot_zero_o:Nfw #3 { #1 { cot } { cotd } }
15250 \or: __fp_case_use:nw
15251 {
15252 __fp_trig:NNNNNwn #1
15253 __fp_tan_series_o:NNwwww 2 #3 \c_three
15254 }
15255 \or: __fp_case_use:nw
15256 { __fp_invalid_operation_o:fw { #1 { cot } { cotd } } }
15257 \else: __fp_case_return_same_o:w
15258 \fi:
15259 \s__fp __fp_chk:w #2 #3 #4;
15260 }
15261 \cs_new:Npn __fp_cot_zero_o:Nfw #1#2#3 \fi:
15262 {
15263 \fi:
15264 \token_if_eq_meaning:NNTF 0 #1
15265 { \exp_args:NNf __fp_division_by_zero_o:Nnw \c_inf_fp }
15266 { \exp_args:NNf __fp_division_by_zero_o:Nnw \c_minus_inf_fp }
15267 {#2}
15268 }

(End definition for __fp_cot_o:w.)

32.1.2 Distinguishing small and large arguments

__fp_trig:NNNNNwn The first argument is \use_i:nn if the operand is in radians and \use_ii:nn if it is in
degrees. Arguments #2 to #5 control what trigonometric function we compute, and #6
to #8 are pieces of a normal floating point number. Call the _series function #2, with
arguments #3, either a conversion function (__fp_ep_to_float:wN or __fp_ep_inv_-
to_float:wN) or a sign 0 or 2 when computing tangent or cotangent; #4, a sign 0 or 2; the
octant, computed in an integer expression starting with #5 and stopped by a period; and
a fixed point number obtained from the floating point number by argument reduction (if
necessary) and conversion to radians (if necessary). Any argument reduction adjusts the
octant accordingly by leaving a (positive) shift into its integer expression. Let us explain
the integer comparison. Two of the four \exp_after:wN are expanded, the expansion
hits the test, which is true if the float is at least 1 when working in radians, and at least
10 when working in degrees. Then one of the remaining \exp_after:wN hits #1, which
picks the trig or trigd function in whichever branch of the conditional was taken. The
final \exp_after:wN closes the conditional. At the end of the day, a number is large
if it is ≥ 1 in radians or ≥ 10 in degrees, and small otherwise. All four trig/trigd
auxiliaries receive the operand as an extended-precision number.

15269 \cs_new:Npn __fp_trig:NNNNNwn #1#2#3#4#5 \s__fp __fp_chk:w 1#6#7#8;
15270 {
15271 \exp_after:wN #2
15272 \exp_after:wN #3
15273 \exp_after:wN #4

735

15274 __int_value:w __int_eval:w #5
15275 \exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN
15276 \if_int_compare:w #7 > #1 \c_zero \c_one
15277 #1 __fp_trig_large:ww __fp_trigd_large:ww
15278 \else:
15279 #1 __fp_trig_small:ww __fp_trigd_small:ww
15280 \fi:
15281 #7,#8{0000}{0000};
15282 }

(End definition for __fp_trig:NNNNNwn.)

32.1.3 Small arguments

__fp_trig_small:ww This receives a small extended-precision number in radians and converts it to a fixed
point number. Some trailing digits may be lost in the conversion, so we keep the original
floating point number around: when computing sine or tangent (or their inverses), the last
step will be to multiply by the floating point number (as an extended-precision number)
rather than the fixed point number. The period serves to end the integer expression for
the octant.

15283 \cs_new:Npn __fp_trig_small:ww #1,#2;
15284 { __fp_ep_to_fixed:wwn #1,#2; . #1,#2; }

(End definition for __fp_trig_small:ww.)

__fp_trigd_small:ww Convert the extended-precision number to radians, then call __fp_trig_small:ww to
massage it in the form appropriate for the _series auxiliary.

15285 \cs_new:Npn __fp_trigd_small:ww #1,#2;
15286 {
15287 __fp_ep_mul_raw:wwwwN
15288 -1,{1745}{3292}{5199}{4329}{5769}{2369}; #1,#2;
15289 __fp_trig_small:ww
15290 }

(End definition for __fp_trigd_small:ww.)

32.1.4 Argument reduction in degrees

__fp_trigd_large:ww
__fp_trigd_large_auxi:nnnnwNNNN

__fp_trigd_large_auxii:wNw
__fp_trigd_large_auxiii:www

Note that 25× 360 = 9000, so 10k+1 ≡ 10k (mod 360) for k ≥ 3. When the exponent #1
is very large, we can thus safely replace it by 22 (or even 19). We turn the floating point
number into a fixed point number with two blocks of 8 digits followed by five blocks of
4 digits. The original float is 100× 〈block1〉 · · · 〈block3〉.〈block4〉 · · · 〈block7〉, or is equal to
it modulo 360 if the exponent #1 is very large. The first auxiliary finds 〈block1〉+ 〈block2〉
(mod 9), a single digit, and prepends it to the 4 digits of 〈block3〉. It also unpacks
〈block4〉 and grabs the 4 digits of 〈block7〉. The second auxiliary grabs the 〈block3〉 plus
any contribution from the first two blocks as #1, the first digit of 〈block4〉 (just after the
decimal point in hundreds of degrees) as #2, and the three other digits as #3. It finds
the quotient and remainder of #1#2 modulo 9, adds twice the quotient to the integer
expression for the octant, and places the remainder (between 0 and 8) before #3 to form

736

a new 〈block4〉. The resulting fixed point number is x ∈ [0, 0.9]. If x ≥ 0.45, we add 1 to
the octant and feed 0.9 − x with an exponent of 2 (to compensate the fact that we are
working in units of hundreds of degrees rather than degrees) to __fp_trigd_small:ww.
Otherwise, we feed it x with an exponent of 2. The third auxiliary also discards digits
which were not packed into the various 〈blocks〉. Since the original exponent #1 is at
least 2, those are all 0 and no precision is lost (#6 and #7 are four 0 each).

15291 \cs_new:Npn __fp_trigd_large:ww #1, #2#3#4#5#6#7;
15292 {
15293 \exp_after:wN __fp_pack_eight:wNNNNNNNN
15294 \exp_after:wN __fp_pack_eight:wNNNNNNNN
15295 \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
15296 \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
15297 \exp_after:wN __fp_trigd_large_auxi:nnnnwNNNN
15298 \exp_after:wN ;
15299 \exp:w \exp_end_continue_f:w
15300 \prg_replicate:nn { \int_max:nn { 22 - #1 } { 0 } } { 0 }
15301 #2#3#4#5#6#7 0000 0000 0000 !
15302 }
15303 \cs_new:Npn __fp_trigd_large_auxi:nnnnwNNNN #1#2#3#4#5; #6#7#8#9
15304 {
15305 \exp_after:wN __fp_trigd_large_auxii:wNw
15306 __int_value:w __int_eval:w #1 + #2
15307 - (#1 + #2 - \c_four) / \c_nine * \c_nine __int_eval_end:
15308 #3;
15309 #4; #5{#6#7#8#9};
15310 }
15311 \cs_new:Npn __fp_trigd_large_auxii:wNw #1; #2#3;
15312 {
15313 + (#1#2 - \c_four) / \c_nine * \c_two
15314 \exp_after:wN __fp_trigd_large_auxiii:www
15315 __int_value:w __int_eval:w #1#2
15316 - (#1#2 - \c_four) / \c_nine * \c_nine __int_eval_end: #3 ;
15317 }
15318 \cs_new:Npn __fp_trigd_large_auxiii:www #1; #2; #3!
15319 {
15320 \if_int_compare:w #1 < 4500 \exp_stop_f:
15321 \exp_after:wN __fp_use_i_until_s:nw
15322 \exp_after:wN __fp_fixed_continue:wn
15323 \else:
15324 + \c_one
15325 \fi:
15326 __fp_fixed_sub:wwn {9000}{0000}{0000}{0000}{0000}{0000};
15327 {#1}#2{0000}{0000};
15328 { __fp_trigd_small:ww 2, }
15329 }

(End definition for __fp_trigd_large:ww and others.)

737

32.1.5 Argument reduction in radians

Arguments greater or equal to 1 need to be reduced to a range where we only need a few
terms of the Taylor series. We reduce to the range [0, 2π] by subtracting multiples of 2π,
then to the smaller range [0, π/2] by subtracting multiples of π/2 (keeping track of how
many times π/2 is subtracted), then to [0, π/4] by mapping x→ π/2− x if appropriate.
When the argument is very large, say, 10100, an equally large multiple of 2π must be
subtracted, hence we must work with a very good approximation of 2π in order to get a
sensible remainder modulo 2π.

Specifically, we multiply the argument by an approximation of 1/(2π) with 10048 dig-
its, then discard the integer part of the result, keeping 52 digits of the fractional part.
From the fractional part of x/(2π) we deduce the octant (quotient of the first three dig-
its by 125). We then multiply by 8 or −8 (the latter when the octant is odd), ignore
any integer part (related to the octant), and convert the fractional part to an extended
precision number, before multiplying by π/4 to convert back to a value in radians in
[0, π/4].

It is possible to prove that given the precision of floating points and their range
of exponents, the 52 digits may start at most with 24 zeros. The 5 last digits are
affected by carries from computations which are not done, hence we are left with at least
52− 24− 5 = 23 significant digits, enough to round correctly up to 0.6 · ulp in all cases.

__fp_trig_inverse_two_pi: This macro expands to ,,! or ,! followed by 10112 decimals of 10−16/(2π). The number
of decimals we really need is the maximum exponent plus the number of digits we will
need later, 52, plus 12 (4 − 1 groups of 4 digits). We store the decimals as a control
sequence name, and convert it to a token list when required: strings take up less memory
than their token list representation.

15330 \cs_new_nopar:Npx __fp_trig_inverse_two_pi:
15331 {
15332 \exp_not:n { \exp_after:wN \use_none:n \token_to_str:N }
15333 \cs:w , , !
15334 0000000000000000159154943091895335768883763372514362034459645740 ~
15335 4564487476673440588967976342265350901138027662530859560728427267 ~
15336 5795803689291184611457865287796741073169983922923996693740907757 ~
15337 3077746396925307688717392896217397661693362390241723629011832380 ~
15338 1142226997557159404618900869026739561204894109369378440855287230 ~
15339 9994644340024867234773945961089832309678307490616698646280469944 ~
15340 8652187881574786566964241038995874139348609983868099199962442875 ~
15341 5851711788584311175187671605465475369880097394603647593337680593 ~
15342 0249449663530532715677550322032477781639716602294674811959816584 ~
15343 0606016803035998133911987498832786654435279755070016240677564388 ~
15344 8495713108801221993761476813777647378906330680464579784817613124 ~
15345 2731406996077502450029775985708905690279678513152521001631774602 ~
15346 0924811606240561456203146484089248459191435211575407556200871526 ~
15347 6068022171591407574745827225977462853998751553293908139817724093 ~
15348 5825479707332871904069997590765770784934703935898280871734256403 ~
15349 6689511662545705943327631268650026122717971153211259950438667945 ~
15350 0376255608363171169525975812822494162333431451061235368785631136 ~
15351 3669216714206974696012925057833605311960859450983955671870995474 ~

738

15352 6510431623815517580839442979970999505254387566129445883306846050 ~
15353 7852915151410404892988506388160776196993073410389995786918905980 ~
15354 9373777206187543222718930136625526123878038753888110681406765434 ~
15355 0828278526933426799556070790386060352738996245125995749276297023 ~
15356 5940955843011648296411855777124057544494570217897697924094903272 ~
15357 9477021664960356531815354400384068987471769158876319096650696440 ~
15358 4776970687683656778104779795450353395758301881838687937766124814 ~
15359 9530599655802190835987510351271290432315804987196868777594656634 ~
15360 6221034204440855497850379273869429353661937782928735937843470323 ~
15361 0237145837923557118636341929460183182291964165008783079331353497 ~
15362 7909974586492902674506098936890945883050337030538054731232158094 ~
15363 3197676032283131418980974982243833517435698984750103950068388003 ~
15364 9786723599608024002739010874954854787923568261139948903268997427 ~
15365 0834961149208289037767847430355045684560836714793084567233270354 ~
15366 8539255620208683932409956221175331839402097079357077496549880868 ~
15367 6066360968661967037474542102831219251846224834991161149566556037 ~
15368 9696761399312829960776082779901007830360023382729879085402387615 ~
15369 5744543092601191005433799838904654921248295160707285300522721023 ~
15370 6017523313173179759311050328155109373913639645305792607180083617 ~
15371 9548767246459804739772924481092009371257869183328958862839904358 ~
15372 6866663975673445140950363732719174311388066383072592302759734506 ~
15373 0548212778037065337783032170987734966568490800326988506741791464 ~
15374 6835082816168533143361607309951498531198197337584442098416559541 ~
15375 5225064339431286444038388356150879771645017064706751877456059160 ~
15376 8716857857939226234756331711132998655941596890719850688744230057 ~
15377 5191977056900382183925622033874235362568083541565172971088117217 ~
15378 9593683256488518749974870855311659830610139214454460161488452770 ~
15379 2511411070248521739745103866736403872860099674893173561812071174 ~
15380 0478899368886556923078485023057057144063638632023685201074100574 ~
15381 8592281115721968003978247595300166958522123034641877365043546764 ~
15382 6456565971901123084767099309708591283646669191776938791433315566 ~
15383 5066981321641521008957117286238426070678451760111345080069947684 ~
15384 2235698962488051577598095339708085475059753626564903439445420581 ~
15385 7886435683042000315095594743439252544850674914290864751442303321 ~
15386 3324569511634945677539394240360905438335528292434220349484366151 ~
15387 4663228602477666660495314065734357553014090827988091478669343492 ~
15388 2737602634997829957018161964321233140475762897484082891174097478 ~
15389 2637899181699939487497715198981872666294601830539583275209236350 ~
15390 6853889228468247259972528300766856937583659722919824429747406163 ~
15391 8183113958306744348516928597383237392662402434501997809940402189 ~
15392 6134834273613676449913827154166063424829363741850612261086132119 ~
15393 9863346284709941839942742955915628333990480382117501161211667205 ~
15394 1912579303552929241134403116134112495318385926958490443846807849 ~
15395 0973982808855297045153053991400988698840883654836652224668624087 ~
15396 2540140400911787421220452307533473972538149403884190586842311594 ~
15397 6322744339066125162393106283195323883392131534556381511752035108 ~
15398 7459558201123754359768155340187407394340363397803881721004531691 ~
15399 8295194879591767395417787924352761740724605939160273228287946819 ~
15400 3649128949714953432552723591659298072479985806126900733218844526 ~
15401 7943350455801952492566306204876616134365339920287545208555344144 ~

739

15402 0990512982727454659118132223284051166615650709837557433729548631 ~
15403 2041121716380915606161165732000083306114606181280326258695951602 ~
15404 4632166138576614804719932707771316441201594960110632830520759583 ~
15405 4850305079095584982982186740289838551383239570208076397550429225 ~
15406 9847647071016426974384504309165864528360324933604354657237557916 ~
15407 1366324120457809969715663402215880545794313282780055246132088901 ~
15408 8742121092448910410052154968097113720754005710963406643135745439 ~
15409 9159769435788920793425617783022237011486424925239248728713132021 ~
15410 7667360756645598272609574156602343787436291321097485897150713073 ~
15411 9104072643541417970572226547980381512759579124002534468048220261 ~
15412 7342299001020483062463033796474678190501811830375153802879523433 ~
15413 4195502135689770912905614317878792086205744999257897569018492103 ~
15414 2420647138519113881475640209760554895793785141404145305151583964 ~
15415 2823265406020603311891586570272086250269916393751527887360608114 ~
15416 5569484210322407772727421651364234366992716340309405307480652685 ~
15417 0930165892136921414312937134106157153714062039784761842650297807 ~
15418 8606266969960809184223476335047746719017450451446166382846208240 ~
15419 8673595102371302904443779408535034454426334130626307459513830310 ~
15420 2293146934466832851766328241515210179422644395718121717021756492 ~
15421 1964449396532222187658488244511909401340504432139858628621083179 ~
15422 3939608443898019147873897723310286310131486955212620518278063494 ~
15423 5711866277825659883100535155231665984394090221806314454521212978 ~
15424 9734471488741258268223860236027109981191520568823472398358013366 ~
15425 0683786328867928619732367253606685216856320119489780733958419190 ~
15426 6659583867852941241871821727987506103946064819585745620060892122 ~
15427 8416394373846549589932028481236433466119707324309545859073361878 ~
15428 6290631850165106267576851216357588696307451999220010776676830946 ~
15429 9814975622682434793671310841210219520899481912444048751171059184 ~
15430 4139907889455775184621619041530934543802808938628073237578615267 ~
15431 7971143323241969857805637630180884386640607175368321362629671224 ~
15432 2609428540110963218262765120117022552929289655594608204938409069 ~
15433 0760692003954646191640021567336017909631872891998634341086903200 ~
15434 5796637103128612356988817640364252540837098108148351903121318624 ~
15435 7228181050845123690190646632235938872454630737272808789830041018 ~
15436 9485913673742589418124056729191238003306344998219631580386381054 ~
15437 2457893450084553280313511884341007373060595654437362488771292628 ~
15438 9807423539074061786905784443105274262641767830058221486462289361 ~
15439 9296692992033046693328438158053564864073184440599549689353773183 ~
15440 6726613130108623588021288043289344562140479789454233736058506327 ~
15441 0439981932635916687341943656783901281912202816229500333012236091 ~
15442 8587559201959081224153679499095448881099758919890811581163538891 ~
15443 6339402923722049848375224236209100834097566791710084167957022331 ~
15444 7897107102928884897013099533995424415335060625843921452433864640 ~
15445 3432440657317477553405404481006177612569084746461432976543900008 ~
15446 3826521145210162366431119798731902751191441213616962045693602633 ~
15447 6102355962140467029012156796418735746835873172331004745963339773 ~
15448 2477044918885134415363760091537564267438450166221393719306748706 ~
15449 2881595464819775192207710236743289062690709117919412776212245117 ~
15450 2354677115640433357720616661564674474627305622913332030953340551 ~
15451 3841718194605321501426328000879551813296754972846701883657425342 ~

740

15452 5016994231069156343106626043412205213831587971115075454063290657 ~
15453 0248488648697402872037259869281149360627403842332874942332178578 ~
15454 7750735571857043787379693402336902911446961448649769719434527467 ~
15455 4429603089437192540526658890710662062575509930379976658367936112 ~
15456 8137451104971506153783743579555867972129358764463093757203221320 ~
15457 2460565661129971310275869112846043251843432691552928458573495971 ~
15458 5042565399302112184947232132380516549802909919676815118022483192 ~
15459 5127372199792134331067642187484426215985121676396779352982985195 ~
15460 8545392106957880586853123277545433229161989053189053725391582222 ~
15461 9232597278133427818256064882333760719681014481453198336237910767 ~
15462 1255017528826351836492103572587410356573894694875444694018175923 ~
15463 0609370828146501857425324969212764624247832210765473750568198834 ~
15464 5641035458027261252285503154325039591848918982630498759115406321 ~
15465 0354263890012837426155187877318375862355175378506956599570028011 ~
15466 5841258870150030170259167463020842412449128392380525772514737141 ~
15467 2310230172563968305553583262840383638157686828464330456805994018 ~
15468 7001071952092970177990583216417579868116586547147748964716547948 ~
15469 8312140431836079844314055731179349677763739898930227765607058530 ~
15470 4083747752640947435070395214524701683884070908706147194437225650 ~
15471 2823145872995869738316897126851939042297110721350756978037262545 ~
15472 8141095038270388987364516284820180468288205829135339013835649144 ~
15473 3004015706509887926715417450706686888783438055583501196745862340 ~
15474 8059532724727843829259395771584036885940989939255241688378793572 ~
15475 7967951654076673927031256418760962190243046993485989199060012977 ~
15476 7469214532970421677817261517850653008552559997940209969455431545 ~
15477 2745856704403686680428648404512881182309793496962721836492935516 ~
15478 2029872469583299481932978335803459023227052612542114437084359584 ~
15479 9443383638388317751841160881711251279233374577219339820819005406 ~
15480 3292937775306906607415304997682647124407768817248673421685881509 ~
15481 9133422075930947173855159340808957124410634720893194912880783576 ~
15482 3115829400549708918023366596077070927599010527028150868897828549 ~
15483 4340372642729262103487013992868853550062061514343078665396085995 ~
15484 0058714939141652065302070085265624074703660736605333805263766757 ~
15485 2018839497277047222153633851135483463624619855425993871933367482 ~
15486 0422097449956672702505446423243957506869591330193746919142980999 ~
15487 3424230550172665212092414559625960554427590951996824313084279693 ~
15488 7113207021049823238195747175985519501864630940297594363194450091 ~
15489 9150616049228764323192129703446093584259267276386814363309856853 ~
15490 2786024332141052330760658841495858718197071242995959226781172796 ~
15491 4438853796763139274314227953114500064922126500133268623021550837
15492 \cs_end:
15493 }

(End definition for __fp_trig_inverse_two_pi:.)

__fp_trig_large:ww
__fp_trig_large_auxi:wwwwww

__fp_trig_large_auxii:ww
__fp_trig_large_auxiii:wNNNNNNNN

__fp_trig_large_auxiv:wN

The exponent #1 is between 1 and 10000. We discard the integer part of 10#1−16/(2π),
that is, the first #1 digits of 10−16/(2π), because it yields an integer contribution to
x/(2π). The auxii auxiliary discards 64 digits at a time thanks to spaces inserted in the
result of __fp_trig_inverse_two_pi:, while auxiii discards 8 digits at a time, and

741

auxiv discards digits one at a time. Then 64 digits are packed into groups of 4 and the
auxv auxiliary is called.

15494 \cs_new:Npn __fp_trig_large:ww #1, #2#3#4#5#6;
15495 {
15496 \exp_after:wN __fp_trig_large_auxi:wwwwww
15497 __int_value:w __int_eval:w (#1 - 32) / 64 \exp_after:wN ,
15498 __int_value:w __int_eval:w (#1 - 4) / 8 \exp_after:wN ,
15499 __int_value:w #1 __fp_trig_inverse_two_pi: ;
15500 {#2}{#3}{#4}{#5} ;
15501 }
15502 \cs_new:Npn __fp_trig_large_auxi:wwwwww #1, #2, #3, #4!
15503 {
15504 \prg_replicate:nn {#1} { __fp_trig_large_auxii:ww }
15505 \prg_replicate:nn { #2 - #1 * \c_eight }
15506 { __fp_trig_large_auxiii:wNNNNNNNN }
15507 \prg_replicate:nn { #3 - #2 * \c_eight }
15508 { __fp_trig_large_auxiv:wN }
15509 \prg_replicate:nn { \c_eight } { __fp_pack_twice_four:wNNNNNNNN }
15510 __fp_trig_large_auxv:www
15511 ;
15512 }
15513 \cs_new:Npn __fp_trig_large_auxii:ww #1; #2 ~ { #1; }
15514 \cs_new:Npn __fp_trig_large_auxiii:wNNNNNNNN
15515 #1; #2#3#4#5#6#7#8#9 { #1; }
15516 \cs_new:Npn __fp_trig_large_auxiv:wN #1; #2 { #1; }

(End definition for __fp_trig_large:ww and others.)

__fp_trig_large_auxv:www
__fp_trig_large_auxvi:wnnnnnnnn

__fp_trig_large_pack:NNNNNw

First come the first 64 digits of the fractional part of 10#1−16/(2π), arranged in 16 blocks
of 4, and ending with a semicolon. Then some more digits of the same fractional part,
ending with a semicolon, then 4 blocks of 4 digits holding the significand of the orig-
inal argument. Multiply the 16-digit significand with the 64-digit fractional part: the
auxvi auxiliary receives the significand as #2#3#4#5 and 16 digits of the fractional part
as #6#7#8#9, and computes one step of the usual ladder of pack functions we use for
multiplication (see e.g., __fp_fixed_mul:wwn), then discards one block of the fractional
part to set things up for the next step of the ladder. We perform 13 such steps, replacing
the last middle shift by the appropriate trailing shift, then discard the significand and
remaining 3 blocks from the fractional part, as there are not enough digits to compute
any more step in the ladder. The last semicolon closes the ladder, and we return control
to the auxvii auxiliary.

15517 \cs_new:Npn __fp_trig_large_auxv:www #1; #2; #3;
15518 {
15519 \exp_after:wN __fp_use_i_until_s:nw
15520 \exp_after:wN __fp_trig_large_auxvii:w
15521 __int_value:w __int_eval:w \c__fp_leading_shift_int
15522 \prg_replicate:nn { \c_thirteen }
15523 { __fp_trig_large_auxvi:wnnnnnnnn }
15524 + \c__fp_trailing_shift_int - \c__fp_middle_shift_int
15525 __fp_use_i_until_s:nw

742

15526 ; #3 #1 ; ;
15527 }
15528 \cs_new:Npn __fp_trig_large_auxvi:wnnnnnnnn #1; #2#3#4#5#6#7#8#9
15529 {
15530 \exp_after:wN __fp_trig_large_pack:NNNNNw
15531 __int_value:w __int_eval:w \c__fp_middle_shift_int
15532 + #2*#9 + #3*#8 + #4*#7 + #5*#6
15533 #1; {#2}{#3}{#4}{#5} {#7}{#8}{#9}
15534 }
15535 \cs_new:Npn __fp_trig_large_pack:NNNNNw #1#2#3#4#5#6;
15536 { + #1#2#3#4#5 ; #6 }

(End definition for __fp_trig_large_auxv:www , __fp_trig_large_auxvi:wnnnnnnnn , and __fp_-
trig_large_pack:NNNNNw.)

__fp_trig_large_auxvii:w
__fp_trig_large_auxviii:w
__fp_trig_large_auxix:Nw

__fp_trig_large_auxx:wNNNNN
__fp_trig_large_auxxi:w

The auxvii auxiliary is followed by 52 digits and a semicolon. We find the octant as the
integer part of 8 times what follows, or equivalently as the integer part of #1#2#3/125,
and add it to the surrounding integer expression for the octant. We then compute 8 times
the 52-digit number, with a minus sign if the octant is odd. Again, the last middle shift
is converted to a trailing shift. Any integer part (including negative values which come
up when the octant is odd) is discarded by __fp_use_i_until_s:nw. The resulting
fractional part should then be converted to radians by multiplying by 2π/8, but first, build
an extended precision number by abusing __fp_ep_to_ep_loop:N with the appropriate
trailing markers. Finally, __fp_trig_small:ww sets up the argument for the functions
which compute the Taylor series.

15537 \cs_new:Npn __fp_trig_large_auxvii:w #1#2#3
15538 {
15539 \exp_after:wN __fp_trig_large_auxviii:ww
15540 __int_value:w __int_eval:w (#1#2#3 - 62) / 125 ;
15541 #1#2#3
15542 }
15543 \cs_new:Npn __fp_trig_large_auxviii:ww #1;
15544 {
15545 + #1
15546 \if_int_odd:w #1 \exp_stop_f:
15547 \exp_after:wN __fp_trig_large_auxix:Nw
15548 \exp_after:wN -
15549 \else:
15550 \exp_after:wN __fp_trig_large_auxix:Nw
15551 \exp_after:wN +
15552 \fi:
15553 }
15554 \cs_new_nopar:Npn __fp_trig_large_auxix:Nw
15555 {
15556 \exp_after:wN __fp_use_i_until_s:nw
15557 \exp_after:wN __fp_trig_large_auxxi:w
15558 __int_value:w __int_eval:w \c__fp_leading_shift_int
15559 \prg_replicate:nn { \c_thirteen }
15560 { __fp_trig_large_auxx:wNNNNN }

743

15561 + \c__fp_trailing_shift_int - \c__fp_middle_shift_int
15562 ;
15563 }
15564 \cs_new:Npn __fp_trig_large_auxx:wNNNNN #1; #2 #3#4#5#6
15565 {
15566 \exp_after:wN __fp_trig_large_pack:NNNNNw
15567 __int_value:w __int_eval:w \c__fp_middle_shift_int
15568 #2 \c_eight * #3#4#5#6
15569 #1; #2
15570 }
15571 \cs_new:Npn __fp_trig_large_auxxi:w #1;
15572 {
15573 \exp_after:wN __fp_ep_mul_raw:wwwwN
15574 __int_value:w __int_eval:w \c_zero __fp_ep_to_ep_loop:N #1 ; ; !
15575 0,{7853}{9816}{3397}{4483}{0961}{5661};
15576 __fp_trig_small:ww
15577 }

(End definition for __fp_trig_large_auxvii:w and __fp_trig_large_auxviii:w.)

32.1.6 Computing the power series

__fp_sin_series_o:NNwwww
__fp_sin_series_aux_o:NNnwww

Here we receive a conversion function __fp_ep_to_float:wwN or __fp_ep_inv_to_-
float:wwN, a 〈sign〉 (0 or 2), a (non-negative) 〈octant〉 delimited by a dot, a 〈fixed point〉
number delimited by a semicolon, and an extended-precision number. The auxiliary
receives:

• the conversion function #1;

• the final sign, which depends on the octant #3 and the sign #2;

• the octant #3, which will control the series we use;

• the square #4 * #4 of the argument as a fixed point number, computed with __-
fp_fixed_mul:wwn;

• the number itself as an extended-precision number.

If the octant is in {1, 2, 5, 6, . . . }, we are near an extremum of the function and we use
the series

cos(x) = 1− x2
(

1
2! − x

2
(

1
4! − x

2
(
· · ·
)))

.

Otherwise, the series

sin(x) = x

(
1− x2

(
1
3! − x

2
(

1
5! − x

2
(
· · ·
))))

is used. Finally, the extended-precision number is converted to a floating point number
with the given sign, and __fp_sanitize:Nw checks for overflow and underflow.

15578 \cs_new:Npn __fp_sin_series_o:NNwwww #1#2#3. #4;

744

15579 {
15580 __fp_fixed_mul:wwn #4; #4;
15581 {
15582 \exp_after:wN __fp_sin_series_aux_o:NNnwww
15583 \exp_after:wN #1
15584 __int_value:w
15585 \if_int_odd:w __int_eval:w (#3 + \c_two) / \c_four __int_eval_end:
15586 #2
15587 \else:
15588 \if_meaning:w #2 0 2 \else: 0 \fi:
15589 \fi:
15590 {#3}
15591 }
15592 }
15593 \cs_new:Npn __fp_sin_series_aux_o:NNnwww #1#2#3 #4; #5,#6;
15594 {
15595 \if_int_odd:w __int_eval:w #3 / \c_two __int_eval_end:
15596 \exp_after:wN \use_i:nn
15597 \else:
15598 \exp_after:wN \use_ii:nn
15599 \fi:
15600 { % 1/18!
15601 __fp_fixed_mul_sub_back:wwwn {0000}{0000}{0000}{0001}{5619}{2070};
15602 #4;{0000}{0000}{0000}{0477}{9477}{3324};
15603 __fp_fixed_mul_sub_back:wwwn #4;{0000}{0000}{0011}{4707}{4559}{7730};
15604 __fp_fixed_mul_sub_back:wwwn #4;{0000}{0000}{2087}{6756}{9878}{6810};
15605 __fp_fixed_mul_sub_back:wwwn #4;{0000}{0027}{5573}{1922}{3985}{8907};
15606 __fp_fixed_mul_sub_back:wwwn #4;{0000}{2480}{1587}{3015}{8730}{1587};
15607 __fp_fixed_mul_sub_back:wwwn #4;{0013}{8888}{8888}{8888}{8888}{8889};
15608 __fp_fixed_mul_sub_back:wwwn #4;{0416}{6666}{6666}{6666}{6666}{6667};
15609 __fp_fixed_mul_sub_back:wwwn #4;{5000}{0000}{0000}{0000}{0000}{0000};
15610 __fp_fixed_mul_sub_back:wwwn#4;{10000}{0000}{0000}{0000}{0000}{0000};
15611 { __fp_fixed_continue:wn 0, }
15612 }
15613 { % 1/17!
15614 __fp_fixed_mul_sub_back:wwwn {0000}{0000}{0000}{0028}{1145}{7254};
15615 #4;{0000}{0000}{0000}{7647}{1637}{3182};
15616 __fp_fixed_mul_sub_back:wwwn #4;{0000}{0000}{0160}{5904}{3836}{8216};
15617 __fp_fixed_mul_sub_back:wwwn #4;{0000}{0002}{5052}{1083}{8544}{1719};
15618 __fp_fixed_mul_sub_back:wwwn #4;{0000}{0275}{5731}{9223}{9858}{9065};
15619 __fp_fixed_mul_sub_back:wwwn #4;{0001}{9841}{2698}{4126}{9841}{2698};
15620 __fp_fixed_mul_sub_back:wwwn #4;{0083}{3333}{3333}{3333}{3333}{3333};
15621 __fp_fixed_mul_sub_back:wwwn #4;{1666}{6666}{6666}{6666}{6666}{6667};
15622 __fp_fixed_mul_sub_back:wwwn#4;{10000}{0000}{0000}{0000}{0000}{0000};
15623 { __fp_ep_mul:wwwwn 0, } #5,#6;
15624 }
15625 {
15626 \exp_after:wN __fp_sanitize:Nw
15627 \exp_after:wN #2
15628 __int_value:w __int_eval:w #1

745

15629 }
15630 #2
15631 }

(End definition for __fp_sin_series_o:NNwwww and __fp_sin_series_aux_o:NNnwww.)

__fp_tan_series_o:NNwwww
__fp_tan_series_aux_o:Nnwww

Contrarily to __fp_sin_series_o:NNwwww which received a conversion auxiliary as #1,
here, #1 is 0 for tangent and 2 for cotangent. Consider first the case of the tangent.
The octant #3 starts at 1, which means that it is 1 or 2 for |x| ∈ [0, π/2], it is 3 or 4
for |x| ∈ [π/2, π], and so on: the intervals on which tan|x| ≥ 0 coincide with those for
which b(#3+ 1)/2c is odd. We also have to take into account the original sign of x to get
the sign of the final result; it is straightforward to check that the first __int_value:w
expansion produces 0 for a positive final result, and 2 otherwise. A similar story holds
for cot(x).

The auxiliary receives the sign, the octant, the square of the (reduced) input, and
the (reduced) input (an extended-precision number) as arguments. It then computes the
numerator and denominator of

tan(x) ' x(1− x2(a1 − x2(a2 − x2(a3 − x2(a4 − x2a5)))))
1− x2(b1 − x2(b2 − x2(b3 − x2(b4 − x2b5)))) .

The ratio is computed by __fp_ep_div:wwwwn, then converted to a floating point num-
ber. For octants #3 (really, quadrants) next to a pole of the functions, the fixed point
numerator and denominator are exchanged before computing the ratio. Note that this
\if_int_odd:w test relies on the fact that the octant is at least 1.

15632 \cs_new:Npn __fp_tan_series_o:NNwwww #1#2#3. #4;
15633 {
15634 __fp_fixed_mul:wwn #4; #4;
15635 {
15636 \exp_after:wN __fp_tan_series_aux_o:Nnwww
15637 __int_value:w
15638 \if_int_odd:w __int_eval:w #3 / \c_two __int_eval_end:
15639 \exp_after:wN \reverse_if:N
15640 \fi:
15641 \if_meaning:w #1#2 2 \else: 0 \fi:
15642 {#3}
15643 }
15644 }
15645 \cs_new:Npn __fp_tan_series_aux_o:Nnwww #1 #2 #3; #4,#5;
15646 {
15647 __fp_fixed_mul_sub_back:wwwn {0000}{0000}{1527}{3493}{0856}{7059};
15648 #3; {0000}{0159}{6080}{0274}{5257}{6472};
15649 __fp_fixed_mul_sub_back:wwwn #3; {0002}{4571}{2320}{0157}{2558}{8481};
15650 __fp_fixed_mul_sub_back:wwwn #3; {0115}{5830}{7533}{5397}{3168}{2147};
15651 __fp_fixed_mul_sub_back:wwwn #3; {1929}{8245}{6140}{3508}{7719}{2982};
15652 __fp_fixed_mul_sub_back:wwwn #3;{10000}{0000}{0000}{0000}{0000}{0000};
15653 { __fp_ep_mul:wwwwn 0, } #4,#5;
15654 {
15655 __fp_fixed_mul_sub_back:wwwn {0000}{0007}{0258}{0681}{9408}{4706};

746

15656 #3;{0000}{2343}{7175}{1399}{6151}{7670};
15657 __fp_fixed_mul_sub_back:wwwn #3;{0019}{2638}{4588}{9232}{8861}{3691};
15658 __fp_fixed_mul_sub_back:wwwn #3;{0536}{6357}{0691}{4344}{6852}{4252};
15659 __fp_fixed_mul_sub_back:wwwn #3;{5263}{1578}{9473}{6842}{1052}{6315};
15660 __fp_fixed_mul_sub_back:wwwn#3;{10000}{0000}{0000}{0000}{0000}{0000};
15661 {
15662 \reverse_if:N \if_int_odd:w
15663 __int_eval:w (#2 - \c_one) / \c_two __int_eval_end:
15664 \exp_after:wN __fp_reverse_args:Nww
15665 \fi:
15666 __fp_ep_div:wwwwn 0,
15667 }
15668 }
15669 {
15670 \exp_after:wN __fp_sanitize:Nw
15671 \exp_after:wN #1
15672 __int_value:w __int_eval:w __fp_ep_to_float:wwN
15673 }
15674 #1
15675 }

(End definition for __fp_tan_series_o:NNwwww and __fp_tan_series_aux_o:Nnwww.)

32.2 Inverse trigonometric functions
All inverse trigonometric functions (arcsine, arccosine, arctangent, arccotangent, arc-
cosecant, and arcsecant) are based on a function often denoted atan2. This func-
tion is accessed directly by feeding two arguments to arctangent, and is defined by
atan(y, x) = atan(y/x) for generic y and x. Its advantages over the conventional arc-
tangent is that it takes values in [−π, π] rather than [−π/2, π/2], and that it is better
behaved in boundary cases. Other inverse trigonometric functions are expressed in terms
of atan as

acosx = atan(
√

1− x2, x) (5)

asin x = atan(x,
√

1− x2) (6)

asecx = atan(
√
x2 − 1, 1) (7)

acscx = atan(1,
√
x2 − 1) (8)

atan x = atan(x, 1) (9)
acotx = atan(1, x). (10)

Rather than introducing a new function, atan2, the arctangent function atan is over-
loaded: it can take one or two arguments. In the comments below, following many texts,
we call the first argument y and the second x, because atan(y, x) = atan(y/x) is the
angular coordinate of the point (x, y).

As for direct trigonometric functions, the first step in computing atan(y, x) is argu-
ment reduction. The sign of y will give that of the result. We distinguish eight regions

747

where the point (x, |y|) can lie, of angular size roughly π/8, characterized by their “oc-
tant”, between 0 and 7 included. In each region, we compute an arctangent as a Taylor
series, then shift this arctangent by the appropriate multiple of π/4 and sign to get the
result. Here is a list of octants, and how we compute the arctangent (we assume y > 0:
otherwise replace y by −y below):

0 0 < |y| < 0.41421x, then atan |y|x is given by a nicely convergent Taylor series;

1 0 < 0.41421x < |y| < x, then atan |y|x = π
4 − atan x−|y|

x+|y| ;

2 0 < 0.41421|y| < x < |y|, then atan |y|x = π
4 + atan −x+|y|

x+|y| ;

3 0 < x < 0.41421|y|, then atan |y|x = π
2 − atan x

|y| ;

4 0 < −x < 0.41421|y|, then atan |y|x = π
2 + atan −x|y| ;

5 0 < 0.41421|y| < −x < |y|, then atan |y|x = 3π
4 − atan x+|y|

−x+|y| ;

6 0 < −0.41421x < |y| < −x, then atan |y|x = 3π
4 + atan −x−|y|−x+|y| ;

7 0 < |y| < −0.41421x, then atan |y|x = π − atan |y|−x .

In the following, we will denote by z the ratio among | yx |, |
x
y |, |

x+y
x−y |, |

x−y
x+y | which appears

in the right-hand side above.

32.2.1 Arctangent and arccotangent

__fp_atan_o:Nw
__fp_acot_o:Nw

__fp_atan_dispatch_o:NNnNw

The parsing step manipulates atan and acot like min and max, reading in an array of
operands, but also leaves \use_i:nn or \use_ii:nn depending on whether the result
should be given in radians or in degrees. Here, we dispatch according to the number of
arguments. The one-argument versions of arctangent and arccotangent are special cases
of the two-argument ones: atan(y) = atan(y, 1) = acot(1, y) and acot(x) = atan(1, x) =
acot(x, 1).

15676 \cs_new_nopar:Npn __fp_atan_o:Nw
15677 {
15678 __fp_atan_dispatch_o:NNnNw
15679 __fp_acotii_o:Nww __fp_atanii_o:Nww { atan }
15680 }
15681 \cs_new_nopar:Npn __fp_acot_o:Nw
15682 {
15683 __fp_atan_dispatch_o:NNnNw
15684 __fp_atanii_o:Nww __fp_acotii_o:Nww { acot }
15685 }
15686 \cs_new:Npn __fp_atan_dispatch_o:NNnNw #1#2#3#4#5@
15687 {
15688 \if_case:w
15689 __int_eval:w __fp_array_count:n {#5} - \c_one __int_eval_end:

748

15690 \exp_after:wN #1 \exp_after:wN #4 \c_one_fp #5
15691 \exp:w
15692 \or: #2 #4 #5 \exp:w
15693 \else:
15694 __msg_kernel_expandable_error:nnnnn
15695 { kernel } { fp-num-args } { #3() } { 1 } { 2 }
15696 \exp_after:wN \c_nan_fp \exp:w
15697 \fi:
15698 \exp_after:wN \c_zero
15699 }

(End definition for __fp_atan_o:Nw and __fp_acot_o:Nw.)

__fp_atanii_o:Nww
__fp_acotii_o:Nww

If either operand is nan, we return it. If both are normal, we call __fp_atan_normal_-
o:NNnwNnw. If both are zero or both infinity, we call __fp_atan_inf_o:NNNw with
argument 2, leading to a result among {±π/4,±3π/4} (in degrees, {±45,±135}). Oth-
erwise, one is much bigger than the other, and we call __fp_atan_inf_o:NNNw with
either an argument of 4, leading to the values ±π/2 (in degrees, ±90), or 0, leading to
{±0,±π} (in degrees, {±0,±180}). Since acot(x, y) = atan(y, x), __fp_acotii_o:ww
simply reverses its two arguments.

15700 \cs_new:Npn __fp_atanii_o:Nww
15701 #1 \s__fp __fp_chk:w #2#3#4; \s__fp __fp_chk:w #5
15702 {
15703 \if_meaning:w 3 #2 __fp_case_return_i_o:ww \fi:
15704 \if_meaning:w 3 #5 __fp_case_return_ii_o:ww \fi:
15705 \if_case:w
15706 \if_meaning:w #2 #5
15707 \if_meaning:w 1 #2 \c_ten \else: \c_zero \fi:
15708 \else:
15709 \if_int_compare:w #2 > #5 \c_one \else: \c_two \fi:
15710 \fi:
15711 __fp_case_return:nw { __fp_atan_inf_o:NNNw #1 #3 \c_two }
15712 \or: __fp_case_return:nw { __fp_atan_inf_o:NNNw #1 #3 \c_four }
15713 \or: __fp_case_return:nw { __fp_atan_inf_o:NNNw #1 #3 \c_zero }
15714 \fi:
15715 __fp_atan_normal_o:NNnwNnw #1
15716 \s__fp __fp_chk:w #2#3#4;
15717 \s__fp __fp_chk:w #5
15718 }
15719 \cs_new:Npn __fp_acotii_o:Nww #1#2; #3;
15720 { __fp_atanii_o:Nww #1#3; #2; }

(End definition for __fp_atanii_o:Nww and __fp_acotii_o:Nww.)

__fp_atan_inf_o:NNNw This auxiliary is called whenever one number is ±0 or ±∞ (and neither is NaN). Then
the result only depends on the signs, and its value is a multiple of π/4. We use the same
auxiliary as for normal numbers, __fp_atan_combine_o:NwwwwwN, with arguments the
final sign #2; the octant #3; atan z/z = 1 as a fixed point number; z = 0 as a fixed point
number; and z = 0 as an extended-precision number. Given the values we provide, atan z

749

will be computed to be 0, and the result will be [#3/2] ·π/4 if the sign #5 of x is positive,
and [(7− #3)/2] · π/4 for negative x, where the divisions are rounded up.

15721 \cs_new:Npn __fp_atan_inf_o:NNNw #1#2#3 \s__fp __fp_chk:w #4#5#6;
15722 {
15723 \exp_after:wN __fp_atan_combine_o:NwwwwwN
15724 \exp_after:wN #2
15725 __int_value:w __int_eval:w
15726 \if_meaning:w 2 #5 \c_seven - \fi: #3 \exp_after:wN ;
15727 \c__fp_one_fixed_tl ;
15728 {0000}{0000}{0000}{0000}{0000}{0000};
15729 0,{0000}{0000}{0000}{0000}{0000}{0000}; #1
15730 }

(End definition for __fp_atan_inf_o:NNNw.)

__fp_atan_normal_o:NNnwNnw Here we simply reorder the floating point data into a pair of signed extended-precision
numbers, that is, a sign, an exponent ending with a comma, and a six-block mantissa
ending with a semi-colon. This extended precision is required by other inverse trigono-
metric functions, to compute things like atan(x,

√
1− x2) without intermediate rounding

errors.
15731 \cs_new_protected:Npn __fp_atan_normal_o:NNnwNnw
15732 #1 \s__fp __fp_chk:w 1#2#3#4; \s__fp __fp_chk:w 1#5#6#7;
15733 {
15734 __fp_atan_test_o:NwwNwwN
15735 #2 #3, #4{0000}{0000};
15736 #5 #6, #7{0000}{0000}; #1
15737 }

(End definition for __fp_atan_normal_o:NNnwNnw.)

__fp_atan_test_o:NwwNwwN This receives: the sign #1 of y, its exponent #2, its 24 digits #3 in groups of 4, and
similarly for x. We prepare to call __fp_atan_combine_o:NwwwwwN which expects the
sign #1, the octant, the ratio (atan z)/z = 1 − · · · , and the value of z, both as a fixed
point number and as an extended-precision floating point number with a mantissa in
[0.01, 1). For now, we place #1 as a first argument, and start an integer expression for
the octant. The sign of x does not affect what z will be, so we simply leave a contribution
to the octant: 〈octant〉 → 7 − 〈octant〉 for negative x. Then we order |y| and |x| in a
non-decreasing order: if |y| > |x|, insert 3− in the expression for the octant, and swap
the two numbers. The finer test with 0.41421 is done by __fp_atan_div:wnwwnw after
the operands have been ordered.

15738 \cs_new:Npn __fp_atan_test_o:NwwNwwN #1#2,#3; #4#5,#6;
15739 {
15740 \exp_after:wN __fp_atan_combine_o:NwwwwwN
15741 \exp_after:wN #1
15742 __int_value:w __int_eval:w
15743 \if_meaning:w 2 #4
15744 \c_seven - __int_eval:w
15745 \fi:
15746 \if_int_compare:w

750

15747 __fp_ep_compare:wwww #2,#3; #5,#6; > \c_zero
15748 \c_three -
15749 \exp_after:wN __fp_reverse_args:Nww
15750 \fi:
15751 __fp_atan_div:wnwwnw #2,#3; #5,#6;
15752 }

(End definition for __fp_atan_test_o:NwwNwwN.)

__fp_atan_div:wnwwnw
__fp_atan_near:wwwn

__fp_atan_near_aux:wwn

This receives two positive numbers a and b (equal to |x| and |y| in some order), each as
an exponent and 6 blocks of 4 digits, such that 0 < a < b. If 0.41421b < a, the two
numbers are “near”, hence the point (y, x) that we started with is closer to the diagonals
{|y| = |x|} than to the axes {xy = 0}. In that case, the octant is 1 (possibly combined
with the 7− and 3− inserted earlier) and we wish to compute atan b−a

a+b . Otherwise, the
octant is 0 (again, combined with earlier terms) and we wish to compute atan a

b . In
any case, call __fp_atan_auxi:ww followed by z, as a comma-delimited exponent and
a fixed point number.

15753 \cs_new:Npn __fp_atan_div:wnwwnw #1,#2#3; #4,#5#6;
15754 {
15755 \if_int_compare:w
15756 __int_eval:w 41421 * #5 < #2 000
15757 \if_case:w __int_eval:w #4 - #1 __int_eval_end: 00 \or: 0 \fi:
15758 \exp_stop_f:
15759 \exp_after:wN __fp_atan_near:wwwn
15760 \fi:
15761 \c_zero
15762 __fp_ep_div:wwwwn #1,{#2}#3; #4,{#5}#6;
15763 __fp_atan_auxi:ww
15764 }
15765 \cs_new:Npn __fp_atan_near:wwwn
15766 \c_zero __fp_ep_div:wwwwn #1,#2; #3,
15767 {
15768 \c_one
15769 __fp_ep_to_fixed:wwn #1 - #3, #2;
15770 __fp_atan_near_aux:wwn
15771 }
15772 \cs_new:Npn __fp_atan_near_aux:wwn #1; #2;
15773 {
15774 __fp_fixed_add:wwn #1; #2;
15775 { __fp_fixed_sub:wwn #2; #1; { __fp_ep_div:wwwwn 0, } 0, }
15776 }

(End definition for __fp_atan_div:wnwwnw and __fp_atan_near:wwwn.)

__fp_atan_auxi:ww
__fp_atan_auxii:w

Convert z from a representation as an exponent and a fixed point number in [0.01, 1) to a
fixed point number only, then set up the call to __fp_atan_Taylor_loop:www, followed
by the fixed point representation of z and the old representation.

15777 \cs_new:Npn __fp_atan_auxi:ww #1,#2;
15778 { __fp_ep_to_fixed:wwn #1,#2; __fp_atan_auxii:w #1,#2; }

751

15779 \cs_new:Npn __fp_atan_auxii:w #1;
15780 {
15781 __fp_fixed_mul:wwn #1; #1;
15782 {
15783 __fp_atan_Taylor_loop:www 39 ;
15784 {0000}{0000}{0000}{0000}{0000}{0000} ;
15785 }
15786 ! #1;
15787 }

(End definition for __fp_atan_auxi:ww and __fp_atan_auxii:w.)

__fp_atan_Taylor_loop:www
__fp_atan_Taylor_break:w

We compute the series of (atan z)/z. A typical intermediate stage has #1 = 2k − 1,
#2 = 1

2k+1 − z
2(1

2k+3 − z
2(· · · − z2 1

39)), and #3 = z2. To go to the next step k → k − 1,
we compute 1

2k−1 , then subtract from it z2 times #2. The loop stops when k = 0: then
#2 is (atan z)/z, and there is a need to clean up all the unnecessary data, end the integer
expression computing the octant with a semicolon, and leave the result #2 afterwards.

15788 \cs_new:Npn __fp_atan_Taylor_loop:www #1; #2; #3;
15789 {
15790 \if_int_compare:w #1 = \c_minus_one
15791 __fp_atan_Taylor_break:w
15792 \fi:
15793 \exp_after:wN __fp_fixed_div_int:wwN \c__fp_one_fixed_tl ; #1;
15794 __fp_rrot:www __fp_fixed_mul_sub_back:wwwn #2; #3;
15795 {
15796 \exp_after:wN __fp_atan_Taylor_loop:www
15797 __int_value:w __int_eval:w #1 - \c_two ;
15798 }
15799 #3;
15800 }
15801 \cs_new:Npn __fp_atan_Taylor_break:w
15802 \fi: #1 __fp_fixed_mul_sub_back:wwwn #2; #3 !
15803 { \fi: ; #2 ; }

(End definition for __fp_atan_Taylor_loop:www and __fp_atan_Taylor_break:w.)

__fp_atan_combine_o:NwwwwwN
__fp_atan_combine_aux:ww

This receives a 〈sign〉, an 〈octant〉, a fixed point value of (atan z)/z, a fixed point num-
ber z, and another representation of z, as an 〈exponent〉 and the fixed point number
10−〈exponent〉z, followed by either \use_i:nn (when working in radians) or \use_ii:nn
(when working in degrees). The function computes the floating point result

〈sign〉
(⌈
〈octant〉

2

⌉
π

4 + (−1)〈octant〉 atan z
z
· z
)
, (11)

multiplied by 180/π if working in degrees, and using in any case the most appropriate
representation of z. The floating point result is passed to __fp_sanitize:Nw, which
checks for overflow or underflow. If the octant is 0, leave the exponent #5 for __fp_-
sanitize:Nw, and multiply #3 = atan z

z with #6, the adjusted z. Otherwise, multiply
#3 = atan z

z with #4 = z, then compute the appropriate multiple of π4 and add or subtract

752

the product #3 · #4. In both cases, convert to a floating point with __fp_fixed_to_-
float:wN.

15804 \cs_new:Npn __fp_atan_combine_o:NwwwwwN #1 #2; #3; #4; #5,#6; #7
15805 {
15806 \exp_after:wN __fp_sanitize:Nw
15807 \exp_after:wN #1
15808 __int_value:w __int_eval:w
15809 \if_meaning:w 0 #2
15810 \exp_after:wN \use_i:nn
15811 \else:
15812 \exp_after:wN \use_ii:nn
15813 \fi:
15814 { #5 __fp_fixed_mul:wwn #3; #6; }
15815 {
15816 __fp_fixed_mul:wwn #3; #4;
15817 {
15818 \exp_after:wN __fp_atan_combine_aux:ww
15819 __int_value:w __int_eval:w #2 / \c_two ; #2;
15820 }
15821 }
15822 { #7 __fp_fixed_to_float:wN __fp_fixed_to_float_rad:wN }
15823 #1
15824 }
15825 \cs_new:Npn __fp_atan_combine_aux:ww #1; #2;
15826 {
15827 __fp_fixed_mul_short:wwn
15828 {7853}{9816}{3397}{4483}{0961}{5661};
15829 {#1}{0000}{0000};
15830 {
15831 \if_int_odd:w #2 \exp_stop_f:
15832 \exp_after:wN __fp_fixed_sub:wwn
15833 \else:
15834 \exp_after:wN __fp_fixed_add:wwn
15835 \fi:
15836 }
15837 }

(End definition for __fp_atan_combine_o:NwwwwwN and __fp_atan_combine_aux:ww.)

32.2.2 Arcsine and arccosine

__fp_asin_o:w Again, the first argument provided by l3fp-parse is \use_i:nn if we are to work in radians
and \use_ii:nn for degrees. Then comes a floating point number. The arcsine of ±0
or NaN is the same floating point number. The arcsine of ±∞ raises an invalid opera-
tion exception. Otherwise, call an auxiliary common with __fp_acos_o:w, feeding it
information about what function is being performed (for “invalid operation” exceptions).

15838 \cs_new:Npn __fp_asin_o:w #1 \s__fp __fp_chk:w #2#3; @
15839 {
15840 \if_case:w #2 \exp_stop_f:

753

15841 __fp_case_return_same_o:w
15842 \or:
15843 __fp_case_use:nw
15844 { __fp_asin_normal_o:NfwNnnnnw #1 { #1 { asin } { asind } } }
15845 \or:
15846 __fp_case_use:nw
15847 { __fp_invalid_operation_o:fw { #1 { asin } { asind } } }
15848 \else:
15849 __fp_case_return_same_o:w
15850 \fi:
15851 \s__fp __fp_chk:w #2 #3;
15852 }

(End definition for __fp_asin_o:w.)

__fp_acos_o:w The arccosine of ±0 is π/2 (in degrees, 90). The arccosine of ±∞ raises an invalid
operation exception. The arccosine of NaN is itself. Otherwise, call an auxiliary common
with __fp_sin_o:w, informing it that it was called by acos or acosd, and preparing to
swap some arguments down the line.

15853 \cs_new:Npn __fp_acos_o:w #1 \s__fp __fp_chk:w #2#3; @
15854 {
15855 \if_case:w #2 \exp_stop_f:
15856 __fp_case_use:nw { __fp_atan_inf_o:NNNw #1 0 \c_four }
15857 \or:
15858 __fp_case_use:nw
15859 {
15860 __fp_asin_normal_o:NfwNnnnnw #1 { #1 { acos } { acosd } }
15861 __fp_reverse_args:Nww
15862 }
15863 \or:
15864 __fp_case_use:nw
15865 { __fp_invalid_operation_o:fw { #1 { acos } { acosd } } }
15866 \else:
15867 __fp_case_return_same_o:w
15868 \fi:
15869 \s__fp __fp_chk:w #2 #3;
15870 }

(End definition for __fp_acos_o:w.)

__fp_asin_normal_o:NfwNnnnnw If the exponent #5 is strictly less than 1, the operand lies within (−1, 1) and the operation
is permitted: call __fp_asin_auxi_o:nNww with the appropriate arguments. If the
number is exactly ±1 (the test works because we know that #5 ≥ 1, #6#7 ≥ 10000000,
#8#9 ≥ 0, with equality only for ±1), we also call __fp_asin_auxi_o:nNww. Otherwise,
__fp_use_i:ww gets rid of the asin auxiliary, and raises instead an invalid operation,
because the operand is outside the domain of arcsine or arccosine.

15871 \cs_new:Npn __fp_asin_normal_o:NfwNnnnnw
15872 #1#2#3 \s__fp __fp_chk:w 1#4#5#6#7#8#9;
15873 {

754

15874 \if_int_compare:w #5 < \c_one
15875 \exp_after:wN __fp_use_none_until_s:w
15876 \fi:
15877 \if_int_compare:w __int_eval:w #5 + #6#7 + #8#9 = 1000 0001 ~
15878 \exp_after:wN __fp_use_none_until_s:w
15879 \fi:
15880 __fp_use_i:ww
15881 __fp_invalid_operation_o:fw {#2}
15882 \s__fp __fp_chk:w 1#4{#5}{#6}{#7}{#8}{#9};
15883 __fp_asin_auxi_o:NnNww
15884 #1 {#3} #4 #5,{#6}{#7}{#8}{#9}{0000}{0000};
15885 }

(End definition for __fp_asin_normal_o:NfwNnnnnw.)

__fp_asin_auxi_o:NnNww
__fp_asin_isqrt:wn

We compute x/
√

1− x2. This function is used by asin and acos, but also by acsc and
asec after inverting the operand, thus it must manipulate extended-precision numbers.
First evaluate 1 − x2 as (1 + x)(1 − x): this behaves better near x = 1. We do the
addition/subtraction with fixed point numbers (they are not implemented for extended-
precision floats), but go back to extended-precision floats to multiply and compute the
inverse square root 1/

√
1− x2. Finally, multiply by the (positive) extended-precision float

|x|, and feed the (signed) result, and the number +1, as arguments to the arctangent
function. When computing the arccosine, the arguments x/

√
1− x2 and +1 are swapped

by #2 (__fp_reverse_args:Nww in that case) before __fp_atan_test_o:NwwNwwN is
evaluated. Note that the arctangent function requires normalized arguments, hence the
need for ep_to_ep and continue after ep_mul.

15886 \cs_new:Npn __fp_asin_auxi_o:NnNww #1#2#3#4,#5;
15887 {
15888 __fp_ep_to_fixed:wwn #4,#5;
15889 __fp_asin_isqrt:wn
15890 __fp_ep_mul:wwwwn #4,#5;
15891 __fp_ep_to_ep:wwN
15892 __fp_fixed_continue:wn
15893 { #2 __fp_atan_test_o:NwwNwwN #3 }
15894 0 1,{1000}{0000}{0000}{0000}{0000}{0000}; #1
15895 }
15896 \cs_new:Npn __fp_asin_isqrt:wn #1;
15897 {
15898 \exp_after:wN __fp_fixed_sub:wwn \c__fp_one_fixed_tl ; #1;
15899 {
15900 __fp_fixed_add_one:wN #1;
15901 __fp_fixed_continue:wn { __fp_ep_mul:wwwwn 0, } 0,
15902 }
15903 __fp_ep_isqrt:wwn
15904 }

(End definition for __fp_asin_auxi_o:NnNww and __fp_asin_isqrt:wn.)

755

32.2.3 Arccosecant and arcsecant

__fp_acsc_o:w Cases are mostly labelled by #2, except when #2 is 2: then we use #3#2, which is 02 = 2
when the number is +∞ and 22 when the number is −∞. The arccosecant of ±0 raises
an invalid operation exception. The arccosecant of ±∞ is ±0 with the same sign. The
arcosecant of NaN is itself. Otherwise, __fp_acsc_normal_o:NfwNnw does some more
tests, keeping the function name (acsc or acscd) as an argument for invalid operation
exceptions.

15905 \cs_new:Npn __fp_acsc_o:w #1 \s__fp __fp_chk:w #2#3#4; @
15906 {
15907 \if_case:w \if_meaning:w 2 #2 #3 \fi: #2 \exp_stop_f:
15908 __fp_case_use:nw
15909 { __fp_invalid_operation_o:fw { #1 { acsc } { acscd } } }
15910 \or: __fp_case_use:nw
15911 { __fp_acsc_normal_o:NfwNnw #1 { #1 { acsc } { acscd } } }
15912 \or: __fp_case_return_o:Nw \c_zero_fp
15913 \or: __fp_case_return_same_o:w
15914 \else: __fp_case_return_o:Nw \c_minus_zero_fp
15915 \fi:
15916 \s__fp __fp_chk:w #2 #3 #4;
15917 }

(End definition for __fp_acsc_o:w.)

__fp_asec_o:w The arcsecant of ±0 raises an invalid operation exception. The arcsecant of ±∞ is π/2
(in degrees, 90). The arcosecant of NaN is itself. Otherwise, do some more tests, keeping
the function name asec (or asecd) as an argument for invalid operation exceptions, and
a __fp_reverse_args:Nww following precisely that appearing in __fp_acos_o:w.

15918 \cs_new:Npn __fp_asec_o:w #1 \s__fp __fp_chk:w #2#3; @
15919 {
15920 \if_case:w #2 \exp_stop_f:
15921 __fp_case_use:nw
15922 { __fp_invalid_operation_o:fw { #1 { asec } { asecd } } }
15923 \or:
15924 __fp_case_use:nw
15925 {
15926 __fp_acsc_normal_o:NfwNnw #1 { #1 { asec } { asecd } }
15927 __fp_reverse_args:Nww
15928 }
15929 \or: __fp_case_use:nw { __fp_atan_inf_o:NNNw #1 0 \c_four }
15930 \else: __fp_case_return_same_o:w
15931 \fi:
15932 \s__fp __fp_chk:w #2 #3;
15933 }

(End definition for __fp_asec_o:w.)

__fp_acsc_normal_o:NfwNnw If the exponent is non-positive, the operand is less than 1 in absolute value, which is
always an invalid operation: complain. Otherwise, compute the inverse of the operand,

756

and feed it to __fp_asin_auxi_o:nNww (with all the appropriate arguments). This
computes what we want thanks to acsc(x) = asin(1/x) and asec(x) = acos(1/x).

15934 \cs_new:Npn __fp_acsc_normal_o:NfwNnw #1#2#3 \s__fp __fp_chk:w 1#4#5#6;
15935 {
15936 \int_compare:nNnTF {#5} < \c_one
15937 {
15938 __fp_invalid_operation_o:fw {#2}
15939 \s__fp __fp_chk:w 1#4{#5}#6;
15940 }
15941 {
15942 __fp_ep_div:wwwwn
15943 1,{1000}{0000}{0000}{0000}{0000}{0000};
15944 #5,#6{0000}{0000};
15945 { __fp_asin_auxi_o:NnNww #1 {#3} #4 }
15946 }
15947 }

(End definition for __fp_acsc_normal_o:NfwNnw.)

15948 〈/initex | package〉

33 l3fp-convert implementation
15949 〈*initex | package〉

15950 〈@@=fp〉

33.1 Trimming trailing zeros
__fp_trim_zeros:w

__fp_trim_zeros_loop:w
__fp_trim_zeros_dot:w
__fp_trim_zeros_end:w

If #1 ends with a 0, the loop auxiliary takes that zero as an end-delimiter for its first
argument, and the second argument is the same loop auxiliary. Once the last trailing
zero is reached, the second argument will be the dot auxiliary, which removes a trailing
dot if any. We then clean-up with the end auxiliary, keeping only the number.

15951 \cs_new:Npn __fp_trim_zeros:w #1 ;
15952 {
15953 __fp_trim_zeros_loop:w #1
15954 ; __fp_trim_zeros_loop:w 0; __fp_trim_zeros_dot:w .; \s__stop
15955 }
15956 \cs_new:Npn __fp_trim_zeros_loop:w #1 0; #2 { #2 #1 ; #2 }
15957 \cs_new:Npn __fp_trim_zeros_dot:w #1 .; { __fp_trim_zeros_end:w #1 ; }
15958 \cs_new:Npn __fp_trim_zeros_end:w #1 ; #2 \s__stop { #1 }

(End definition for __fp_trim_zeros:w.)

33.2 Scientific notation
\fp_to_scientific:N
\fp_to_scientific:c
\fp_to_scientific:n

The three public functions evaluate their argument, then pass it to __fp_to_-
scientific_dispatch:w.

15959 \cs_new:Npn \fp_to_scientific:N #1
15960 { \exp_after:wN __fp_to_scientific_dispatch:w #1 }

757

15961 \cs_generate_variant:Nn \fp_to_scientific:N { c }
15962 \cs_new_nopar:Npn \fp_to_scientific:n
15963 {
15964 \exp_after:wN __fp_to_scientific_dispatch:w
15965 \exp:w \exp_end_continue_f:w __fp_parse:n
15966 }

(End definition for \fp_to_scientific:N , \fp_to_scientific:c , and \fp_to_scientific:n. These
functions are documented on page 195.)

__fp_to_scientific_dispatch:w
__fp_to_scientific_normal:wnnnnn

__fp_to_scientific_normal:wNw

Expressing an internal floating point number in scientific notation is quite easy: no
rounding, and the format is very well defined. First cater for the sign: negative numbers
(#2 = 2) start with -; we then only need to care about positive numbers and nan. Then
filter the special cases: ±0 are represented as 0; infinities are converted to a number
slightly larger than the largest after an “invalid_operation” exception; nan is represented
as 0 after an “invalid_operation” exception. In the normal case, decrement the exponent
and unbrace the 4 brace groups, then in a second step grab the first digit (previously
hidden in braces) to order the various parts correctly. Finally trim zeros.

15967 \cs_new:Npn __fp_to_scientific_dispatch:w \s__fp __fp_chk:w #1#2
15968 {
15969 \if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi:
15970 \if_case:w #1 \exp_stop_f:
15971 __fp_case_return:nw { 0 }
15972 \or: \exp_after:wN __fp_to_scientific_normal:wnnnnn
15973 \or:
15974 __fp_case_use:nw
15975 {
15976 __fp_invalid_operation:nnw
15977 {
15978 \exp_after:wN 1
15979 \exp_after:wN e
15980 \int_use:N \c__fp_max_exponent_int
15981 }
15982 { fp_to_scientific }
15983 }
15984 \or:
15985 __fp_case_use:nw
15986 {
15987 __fp_invalid_operation:nnw
15988 { 0 }
15989 { fp_to_scientific }
15990 }
15991 \fi:
15992 \s__fp __fp_chk:w #1 #2
15993 }
15994 \cs_new:Npn __fp_to_scientific_normal:wnnnnn
15995 \s__fp __fp_chk:w 1 #1 #2 #3#4#5#6 ;
15996 {
15997 \if_int_compare:w #2 = \c_one

758

15998 \exp_after:wN __fp_to_scientific_normal:wNw
15999 \else:
16000 \exp_after:wN __fp_to_scientific_normal:wNw
16001 \exp_after:wN e
16002 __int_value:w __int_eval:w #2 - \c_one
16003 \fi:
16004 ; #3 #4 #5 #6 ;
16005 }
16006 \cs_new:Npn __fp_to_scientific_normal:wNw #1 ; #2#3;
16007 { __fp_trim_zeros:w #2.#3 ; #1 }

(End definition for __fp_to_scientific_dispatch:w , __fp_to_scientific_normal:wnnnnn , and __-
fp_to_scientific_normal:wNw.)

33.3 Decimal representation
\fp_to_decimal:N
\fp_to_decimal:c
\fp_to_decimal:n

All three public variants are based on the same __fp_to_decimal_dispatch:w after
evaluating their argument to an internal floating point.

16008 \cs_new:Npn \fp_to_decimal:N #1
16009 { \exp_after:wN __fp_to_decimal_dispatch:w #1 }
16010 \cs_generate_variant:Nn \fp_to_decimal:N { c }
16011 \cs_new_nopar:Npn \fp_to_decimal:n
16012 {
16013 \exp_after:wN __fp_to_decimal_dispatch:w
16014 \exp:w \exp_end_continue_f:w __fp_parse:n
16015 }

(End definition for \fp_to_decimal:N , \fp_to_decimal:c , and \fp_to_decimal:n. These functions are
documented on page 194.)

__fp_to_decimal_dispatch:w
__fp_to_decimal_normal:wnnnnn

__fp_to_decimal_large:Nnnw
__fp_to_decimal_huge:wnnnn

The structure is similar to __fp_to_scientific_dispatch:w. Insert - for negative
numbers. Zero gives 0, ±∞ and NaN yield an “invalid operation” exception; note that
±∞ produces a very large output, which we don’t expand now since it most likely won’t
be needed. Normal numbers with an exponent in the range [1, 15] have that number
of digits before the decimal separator: “decimate” them, and remove leading zeros with
__int_value:w, then trim trailing zeros and dot. Normal numbers with an exponent
16 or larger have no decimal separator, we only need to add trailing zeros. When the
exponent is non-positive, the result should be 0.〈zeros〉〈digits〉, trimmed.

16016 \cs_new:Npn __fp_to_decimal_dispatch:w \s__fp __fp_chk:w #1#2
16017 {
16018 \if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi:
16019 \if_case:w #1 \exp_stop_f:
16020 __fp_case_return:nw { 0 }
16021 \or: \exp_after:wN __fp_to_decimal_normal:wnnnnn
16022 \or:
16023 __fp_case_use:nw
16024 {
16025 __fp_invalid_operation:nnw
16026 {

759

16027 \exp_after:wN \exp_after:wN \exp_after:wN 1
16028 \prg_replicate:nn \c__fp_max_exponent_int 0
16029 }
16030 { fp_to_decimal }
16031 }
16032 \or:
16033 __fp_case_use:nw
16034 {
16035 __fp_invalid_operation:nnw
16036 { 0 }
16037 { fp_to_decimal }
16038 }
16039 \fi:
16040 \s__fp __fp_chk:w #1 #2
16041 }
16042 \cs_new:Npn __fp_to_decimal_normal:wnnnnn
16043 \s__fp __fp_chk:w 1 #1 #2 #3#4#5#6 ;
16044 {
16045 \int_compare:nNnTF {#2} > \c_zero
16046 {
16047 \int_compare:nNnTF {#2} < \c_sixteen
16048 {
16049 __fp_decimate:nNnnnn { \c_sixteen - #2 }
16050 __fp_to_decimal_large:Nnnw
16051 }
16052 {
16053 \exp_after:wN \exp_after:wN
16054 \exp_after:wN __fp_to_decimal_huge:wnnnn
16055 \prg_replicate:nn { #2 - \c_sixteen } { 0 } ;
16056 }
16057 {#3} {#4} {#5} {#6}
16058 }
16059 {
16060 \exp_after:wN __fp_trim_zeros:w
16061 \exp_after:wN 0
16062 \exp_after:wN .
16063 \exp:w \exp_end_continue_f:w \prg_replicate:nn { - #2 } { 0 }
16064 #3#4#5#6 ;
16065 }
16066 }
16067 \cs_new:Npn __fp_to_decimal_large:Nnnw #1#2#3#4;
16068 {
16069 \exp_after:wN __fp_trim_zeros:w __int_value:w
16070 \if_int_compare:w #2 > \c_zero
16071 #2
16072 \fi:
16073 \exp_stop_f:
16074 #3.#4 ;
16075 }
16076 \cs_new:Npn __fp_to_decimal_huge:wnnnn #1; #2#3#4#5 { #2#3#4#5 #1 }

760

(End definition for __fp_to_decimal_dispatch:w and others.)

33.4 Token list representation
\fp_to_tl:N
\fp_to_tl:c
\fp_to_tl:n

These three public functions evaluate their argument, then pass it to __fp_to_tl_-
dispatch:w.

16077 \cs_new:Npn \fp_to_tl:N #1 { \exp_after:wN __fp_to_tl_dispatch:w #1 }
16078 \cs_generate_variant:Nn \fp_to_tl:N { c }
16079 \cs_new_nopar:Npn \fp_to_tl:n
16080 {
16081 \exp_after:wN __fp_to_tl_dispatch:w
16082 \exp:w \exp_end_continue_f:w __fp_parse:n
16083 }

(End definition for \fp_to_tl:N , \fp_to_tl:c , and \fp_to_tl:n. These functions are documented on
page 195.)

__fp_to_tl_dispatch:w
__fp_to_tl_normal:nnnnn

A structure similar to __fp_to_scientific_dispatch:w and __fp_to_decimal_-
dispatch:w, but without the “invalid operation” exception. First filter special cases.
We express normal numbers in decimal notation if the exponent is in the range [−2, 16],
and otherwise use scientific notation.

16084 \cs_new:Npn __fp_to_tl_dispatch:w \s__fp __fp_chk:w #1#2
16085 {
16086 \if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi:
16087 \if_case:w #1 \exp_stop_f:
16088 __fp_case_return:nw { 0 }
16089 \or: \exp_after:wN __fp_to_tl_normal:nnnnn
16090 \or: __fp_case_return:nw { inf }
16091 \else: __fp_case_return:nw { nan }
16092 \fi:
16093 }
16094 \cs_new:Npn __fp_to_tl_normal:nnnnn #1
16095 {
16096 \if_int_compare:w #1 > \c_sixteen
16097 \exp_after:wN __fp_to_scientific_normal:wnnnnn
16098 \else:
16099 \if_int_compare:w #1 < - \c_two
16100 \exp_after:wN \exp_after:wN
16101 \exp_after:wN __fp_to_scientific_normal:wnnnnn
16102 \else:
16103 \exp_after:wN \exp_after:wN
16104 \exp_after:wN __fp_to_decimal_normal:wnnnnn
16105 \fi:
16106 \fi:
16107 \s__fp __fp_chk:w 1 0 {#1}
16108 }

(End definition for __fp_to_tl_dispatch:w and __fp_to_tl_normal:nnnnn.)

761

33.5 Formatting
This is not implemented yet, as it is not yet clear what a correct interface would be, for
this kind of structured conversion from a floating point (or other types of variables) to a
string. Ideas welcome.

33.6 Convert to dimension or integer
\fp_to_dim:N
\fp_to_dim:c
\fp_to_dim:n

These three public functions rely on \fp_to_decimal:n internally. We make sure to
produce pt with category other.

16109 \cs_new:Npn \fp_to_dim:N #1
16110 { \fp_to_decimal:N #1 pt }
16111 \cs_generate_variant:Nn \fp_to_dim:N { c }
16112 \cs_new:Npn \fp_to_dim:n #1
16113 { \fp_to_decimal:n {#1} pt }

(End definition for \fp_to_dim:N , \fp_to_dim:c , and \fp_to_dim:n. These functions are documented
on page 195.)

\fp_to_int:N
\fp_to_int:c
\fp_to_int:n

These three public functions evaluate their argument, then pass it to \fp_to_int_-
dispatch:w.

16114 \cs_new:Npn \fp_to_int:N #1 { \exp_after:wN __fp_to_int_dispatch:w #1 }
16115 \cs_generate_variant:Nn \fp_to_int:N { c }
16116 \cs_new_nopar:Npn \fp_to_int:n
16117 {
16118 \exp_after:wN __fp_to_int_dispatch:w
16119 \exp:w \exp_end_continue_f:w __fp_parse:n
16120 }

(End definition for \fp_to_int:N , \fp_to_int:c , and \fp_to_int:n. These functions are documented
on page 195.)

__fp_to_int_dispatch:w To convert to an integer, first round to 0 places (to the nearest integer), then express
the result as a decimal number: the definition of __fp_to_decimal_dispatch:w is such
that there will be no trailing dot nor zero.

16121 \cs_new:Npn __fp_to_int_dispatch:w #1;
16122 {
16123 \exp_after:wN __fp_to_decimal_dispatch:w \exp:w \exp_end_continue_f:w
16124 __fp_round:Nwn __fp_round_to_nearest:NNN #1; { 0 }
16125 }

(End definition for __fp_to_int_dispatch:w.)

762

33.7 Convert from a dimension
\dim_to_fp:n

__fp_from_dim_test:ww
__fp_from_dim:wNw

__fp_from_dim:wNNnnnnnn
__fp_from_dim:wnnnnwNw

The dimension expression (which can in fact be a glue expression) is evaluated, con-
verted to a number (i.e., expressed in scaled points), then multiplied by 2−16 =
0.0000152587890625 to give a value expressed in points. The auxiliary __fp_mul_-
npos_o:Nww expects the desired 〈final sign〉 and two floating point operands (of the form
\s__fp . . . ;) as arguments. This set of functions is also used to convert dimension reg-
isters to floating points while parsing expressions: in this context there is an additional
exponent, which is the first argument of __fp_from_dim_test:ww, and is combined with
the exponent −4 of 2−16. There is also a need to expand afterwards: this is performed
by __fp_mul_npos_o:Nww, and cancelled by \prg_do_nothing: in \dim_to_fp:n.

16126 \cs_new:Npn \dim_to_fp:n #1
16127 {
16128 \exp_after:wN __fp_from_dim_test:ww
16129 \exp_after:wN 0
16130 \exp_after:wN ,
16131 __int_value:w \etex_glueexpr:D #1 ;
16132 }
16133 \cs_new:Npn __fp_from_dim_test:ww #1, #2
16134 {
16135 \if_meaning:w 0 #2
16136 __fp_case_return:nw { \exp_after:wN \c_zero_fp }
16137 \else:
16138 \exp_after:wN __fp_from_dim:wNw
16139 __int_value:w __int_eval:w #1 - \c_four
16140 \if_meaning:w - #2
16141 \exp_after:wN , \exp_after:wN 2 __int_value:w
16142 \else:
16143 \exp_after:wN , \exp_after:wN 0 __int_value:w #2
16144 \fi:
16145 \fi:
16146 }
16147 \cs_new:Npn __fp_from_dim:wNw #1,#2#3;
16148 {
16149 __fp_pack_twice_four:wNNNNNNNN __fp_from_dim:wNNnnnnnn ;
16150 #3 000 0000 00 {10}987654321; #2 {#1}
16151 }
16152 \cs_new:Npn __fp_from_dim:wNNnnnnnn #1; #2#3#4#5#6#7#8#9
16153 { __fp_from_dim:wnnnnwNn #1 {#2#300} {0000} ; }
16154 \cs_new:Npn __fp_from_dim:wnnnnwNn #1; #2#3#4#5#6; #7#8
16155 {
16156 __fp_mul_npos_o:Nww #7
16157 \s__fp __fp_chk:w 1 #7 {#5} #1 ;
16158 \s__fp __fp_chk:w 1 0 {#8} {1525} {8789} {0625} {0000} ;
16159 \prg_do_nothing:
16160 }

(End definition for \dim_to_fp:n. This function is documented on page 87.)

763

33.8 Use and eval
\fp_use:N
\fp_use:c
\fp_eval:n

Those public functions are simple copies of the decimal conversions.
16161 \cs_new_eq:NN \fp_use:N \fp_to_decimal:N
16162 \cs_generate_variant:Nn \fp_use:N { c }
16163 \cs_new_eq:NN \fp_eval:n \fp_to_decimal:n

(End definition for \fp_use:N , \fp_use:c , and \fp_eval:n. These functions are documented on page
195.)

\fp_abs:n Trivial but useful. See the implementation of \fp_add:Nn for an explanation of why to
use __fp_parse:n, namely, for better error reporting.

16164 \cs_new:Npn \fp_abs:n #1
16165 { \fp_to_decimal:n { abs __fp_parse:n {#1} } }

(End definition for \fp_abs:n. This function is documented on page 208.)

\fp_max:nn
\fp_min:nn

Similar to \fp_abs:n, for consistency with \int_max:nn, etc.
16166 \cs_new:Npn \fp_max:nn #1#2
16167 { \fp_to_decimal:n { max (__fp_parse:n {#1} , __fp_parse:n {#2}) } }
16168 \cs_new:Npn \fp_min:nn #1#2
16169 { \fp_to_decimal:n { min (__fp_parse:n {#1} , __fp_parse:n {#2}) } }

(End definition for \fp_max:nn and \fp_min:nn. These functions are documented on page 209.)

33.9 Convert an array of floating points to a comma list
__fp_array_to_clist:n

__fp_array_to_clist_loop:Nw
Converts an array of floating point numbers to a comma-list. If speed here ends up
irrelevant, we can simplify the code for the auxiliary to become

\cs_new:Npn __fp_array_to_clist_loop:Nw #1#2;
{
\use_none:n #1
{ , ~ } \fp_to_tl:n { #1 #2 ; }
__fp_array_to_clist_loop:Nw

}

The \use_ii:nn function is expanded after __fp_expand:n is done, and it removes ,~
from the start of the representation.

16170 \cs_new:Npn __fp_array_to_clist:n #1
16171 {
16172 \tl_if_empty:nF {#1}
16173 {
16174 __fp_expand:n
16175 {
16176 { \use_ii:nn }
16177 __fp_array_to_clist_loop:Nw #1 { ? __prg_break: } ;
16178 __prg_break_point:
16179 }
16180 }

764

16181 }
16182 \cs_new:Npx __fp_array_to_clist_loop:Nw #1#2;
16183 {
16184 \exp_not:N \use_none:n #1
16185 \exp_not:N \exp_after:wN
16186 {
16187 \exp_not:N \exp_after:wN ,
16188 \exp_not:N \exp_after:wN \c_space_tl
16189 \exp_not:N \exp:w
16190 \exp_not:N \exp_end_continue_f:w
16191 \exp_not:N __fp_to_tl_dispatch:w #1 #2 ;
16192 }
16193 \exp_not:N __fp_array_to_clist_loop:Nw
16194 }

(End definition for __fp_array_to_clist:n.)

16195 〈/initex | package〉

34 l3fp-assign implementation
16196 〈*initex | package〉
16197 〈@@=fp〉

34.1 Assigning values
\fp_new:N Floating point variables are initialized to be +0.

16198 \cs_new_protected:Npn \fp_new:N #1
16199 { \cs_new_eq:NN #1 \c_zero_fp }
16200 \cs_generate_variant:Nn \fp_new:N {c}

(End definition for \fp_new:N. This function is documented on page 193.)

\fp_set:Nn
\fp_set:cn
\fp_gset:Nn
\fp_gset:cn
\fp_const:Nn
\fp_const:cn

Simply use __fp_parse:n within various f-expanding assignments.
16201 \cs_new_protected:Npn \fp_set:Nn #1#2
16202 { \tl_set:Nx #1 { \exp_not:f { __fp_parse:n {#2} } } }
16203 \cs_new_protected:Npn \fp_gset:Nn #1#2
16204 { \tl_gset:Nx #1 { \exp_not:f { __fp_parse:n {#2} } } }
16205 \cs_new_protected:Npn \fp_const:Nn #1#2
16206 { \tl_const:Nx #1 { \exp_not:f { __fp_parse:n {#2} } } }
16207 \cs_generate_variant:Nn \fp_set:Nn {c}
16208 \cs_generate_variant:Nn \fp_gset:Nn {c}
16209 \cs_generate_variant:Nn \fp_const:Nn {c}

(End definition for \fp_set:Nn and others. These functions are documented on page 194.)

\fp_set_eq:NN
\fp_set_eq:cN
\fp_set_eq:Nc
\fp_set_eq:cc
\fp_gset_eq:NN
\fp_gset_eq:cN
\fp_gset_eq:Nc
\fp_gset_eq:cc

Copying a floating point is the same as copying the underlying token list.
16210 \cs_new_eq:NN \fp_set_eq:NN \tl_set_eq:NN
16211 \cs_new_eq:NN \fp_gset_eq:NN \tl_gset_eq:NN
16212 \cs_generate_variant:Nn \fp_set_eq:NN { c , Nc , cc }
16213 \cs_generate_variant:Nn \fp_gset_eq:NN { c , Nc , cc }

765

(End definition for \fp_set_eq:NN and others. These functions are documented on page 194.)

\fp_zero:N
\fp_zero:c
\fp_gzero:N
\fp_gzero:c

Setting a floating point to zero: copy \c_zero_fp.
16214 \cs_new_protected:Npn \fp_zero:N #1 { \fp_set_eq:NN #1 \c_zero_fp }
16215 \cs_new_protected:Npn \fp_gzero:N #1 { \fp_gset_eq:NN #1 \c_zero_fp }
16216 \cs_generate_variant:Nn \fp_zero:N { c }
16217 \cs_generate_variant:Nn \fp_gzero:N { c }

(End definition for \fp_zero:N and others. These functions are documented on page 193.)

\fp_zero_new:N
\fp_zero_new:c
\fp_gzero_new:N
\fp_gzero_new:c

Set the floating point to zero, or define it if needed.
16218 \cs_new_protected:Npn \fp_zero_new:N #1
16219 { \fp_if_exist:NTF #1 { \fp_zero:N #1 } { \fp_new:N #1 } }
16220 \cs_new_protected:Npn \fp_gzero_new:N #1
16221 { \fp_if_exist:NTF #1 { \fp_gzero:N #1 } { \fp_new:N #1 } }
16222 \cs_generate_variant:Nn \fp_zero_new:N { c }
16223 \cs_generate_variant:Nn \fp_gzero_new:N { c }

(End definition for \fp_zero_new:N and others. These functions are documented on page 193.)

34.2 Updating values
These match the equivalent functions in l3int and l3skip.

\fp_add:Nn
\fp_add:cn
\fp_gadd:Nn
\fp_gadd:cn
\fp_sub:Nn
\fp_sub:cn
\fp_gsub:Nn
\fp_gsub:cn

__fp_add:NNNn

For the sake of error recovery we should not simply set #1 to #1± (#2): for instance, if #2
is 0)+2, the parsing error would be raised at the last closing parenthesis rather than at
the closing parenthesis in the user argument. Thus we evaluate #2 instead of just putting
parentheses. As an optimization we use __fp_parse:n rather than \fp_eval:n, which
would convert the result away from the internal representation and back.

16224 \cs_new_protected_nopar:Npn \fp_add:Nn { __fp_add:NNNn \fp_set:Nn + }
16225 \cs_new_protected_nopar:Npn \fp_gadd:Nn { __fp_add:NNNn \fp_gset:Nn + }
16226 \cs_new_protected_nopar:Npn \fp_sub:Nn { __fp_add:NNNn \fp_set:Nn - }
16227 \cs_new_protected_nopar:Npn \fp_gsub:Nn { __fp_add:NNNn \fp_gset:Nn - }
16228 \cs_new_protected:Npn __fp_add:NNNn #1#2#3#4
16229 { #1 #3 { #3 #2 __fp_parse:n {#4} } }
16230 \cs_generate_variant:Nn \fp_add:Nn { c }
16231 \cs_generate_variant:Nn \fp_gadd:Nn { c }
16232 \cs_generate_variant:Nn \fp_sub:Nn { c }
16233 \cs_generate_variant:Nn \fp_gsub:Nn { c }

(End definition for \fp_add:Nn and others. These functions are documented on page 194.)

766

34.3 Showing values
\fp_show:N
\fp_show:c
\fp_show:n

This shows the result of computing its argument. The input of __msg_show_-
variable:NNNnn must start with >~ (or be empty).

16234 \cs_new_protected:Npn \fp_show:N #1
16235 {
16236 __msg_show_variable:NNNnn #1 \fp_if_exist:NTF ? { }
16237 { > ~ \token_to_str:N #1 = \fp_to_tl:N #1 }
16238 }
16239 \cs_new_protected_nopar:Npn \fp_show:n
16240 { __msg_show_wrap:Nn \fp_to_tl:n }
16241 \cs_generate_variant:Nn \fp_show:N { c }

(End definition for \fp_show:N , \fp_show:c , and \fp_show:n. These functions are documented on page
201.)

34.4 Some useful constants and scratch variables
\c_one_fp
\c_e_fp

Some constants.
16242 \fp_const:Nn \c_e_fp { 2.718 2818 2845 9045 }
16243 \fp_const:Nn \c_one_fp { 1 }

(End definition for \c_one_fp and \c_e_fp. These variables are documented on page 199.)

\c_pi_fp
\c_one_degree_fp

We simply round π to the closest multiple of 10−15.
16244 \fp_const:Nn \c_pi_fp { 3.141 5926 5358 9793 }
16245 \fp_const:Nn \c_one_degree_fp { 0.0 1745 3292 5199 4330 }

(End definition for \c_pi_fp and \c_one_degree_fp. These variables are documented on page 199.)

\l_tmpa_fp
\l_tmpb_fp
\g_tmpa_fp
\g_tmpb_fp

Scratch variables are simply initialized there.
16246 \fp_new:N \l_tmpa_fp
16247 \fp_new:N \l_tmpb_fp
16248 \fp_new:N \g_tmpa_fp
16249 \fp_new:N \g_tmpb_fp

(End definition for \l_tmpa_fp and others. These variables are documented on page 199.)

16250 〈/initex | package〉

35 l3candidates Implementation
16251 〈*initex | package〉

35.1 Additions to l3basics
16252 〈@@=cs〉

\cs_log:N
\cs_log:c

Use \cs_show:N or \cs_show:c after calling __msg_log_next: to redirect their output
to the log file only. Note that \cs_log:c is not just a variant of \cs_log:N as the csname
should be turned to a control sequence within a group (see \cs_show:c).

767

16253 \cs_new_protected_nopar:Npn \cs_log:N
16254 { __msg_log_next: \cs_show:N }
16255 \cs_new_protected_nopar:Npn \cs_log:c
16256 { __msg_log_next: \cs_show:c }

(End definition for \cs_log:N and \cs_log:c. These functions are documented on page 212.)

__kernel_register_log:N
__kernel_register_log:c

Redirect the output of __kernel_register_show:N to the log.
16257 \cs_new_protected_nopar:Npn __kernel_register_log:N
16258 { __msg_log_next: __kernel_register_show:N }
16259 \cs_generate_variant:Nn __kernel_register_log:N { c }

(End definition for __kernel_register_log:N and __kernel_register_log:c.)

35.2 Additions to l3box
16260 〈@@=box〉

35.3 Affine transformations
\l__box_angle_fp When rotating boxes, the angle itself may be needed by the engine-dependent code. This

is done using the fp module so that the value is tidied up properly.
16261 \fp_new:N \l__box_angle_fp

(End definition for \l__box_angle_fp. This variable is documented on page 215.)

\l__box_cos_fp
\l__box_sin_fp

These are used to hold the calculated sine and cosine values while carrying out a rotation.
16262 \fp_new:N \l__box_cos_fp
16263 \fp_new:N \l__box_sin_fp

(End definition for \l__box_cos_fp and \l__box_sin_fp. These variables are documented on page 215.)

\l__box_top_dim
\l__box_bottom_dim

\l__box_left_dim
\l__box_right_dim

These are the positions of the four edges of a box before manipulation.
16264 \dim_new:N \l__box_top_dim
16265 \dim_new:N \l__box_bottom_dim
16266 \dim_new:N \l__box_left_dim
16267 \dim_new:N \l__box_right_dim

(End definition for \l__box_top_dim and others. These variables are documented on page ??.)

\l__box_top_new_dim
\l__box_bottom_new_dim

\l__box_left_new_dim
\l__box_right_new_dim

These are the positions of the four edges of a box after manipulation.
16268 \dim_new:N \l__box_top_new_dim
16269 \dim_new:N \l__box_bottom_new_dim
16270 \dim_new:N \l__box_left_new_dim
16271 \dim_new:N \l__box_right_new_dim

(End definition for \l__box_top_new_dim and others. These variables are documented on page ??.)

\l__box_internal_box Scratch space, but also needed by some parts of the driver.
16272 \box_new:N \l__box_internal_box

(End definition for \l__box_internal_box. This variable is documented on page 216.)

768

A

BC

D E

O

Figure 1: Co-ordinates of a box prior to rotation.

\box_rotate:Nn
__box_rotate:N

__box_rotate_x:nnN
__box_rotate_y:nnN

__box_rotate_quadrant_one:
__box_rotate_quadrant_two:

__box_rotate_quadrant_three:
__box_rotate_quadrant_four:

Rotation of a box starts with working out the relevant sine and cosine. The actual
rotation is in an auxiliary to keep the flow slightly clearer

16273 \cs_new_protected:Npn \box_rotate:Nn #1#2
16274 {
16275 \hbox_set:Nn #1
16276 {
16277 \group_begin:
16278 \fp_set:Nn \l__box_angle_fp {#2}
16279 \fp_set:Nn \l__box_sin_fp { sind (\l__box_angle_fp) }
16280 \fp_set:Nn \l__box_cos_fp { cosd (\l__box_angle_fp) }
16281 __box_rotate:N #1
16282 \group_end:
16283 }
16284 }

The edges of the box are then recorded: the left edge will always be at zero. Rotation of
the four edges then takes place: this is most efficiently done on a quadrant by quadrant
basis.

16285 \cs_new_protected:Npn __box_rotate:N #1
16286 {
16287 \dim_set:Nn \l__box_top_dim { \box_ht:N #1 }
16288 \dim_set:Nn \l__box_bottom_dim { -\box_dp:N #1 }
16289 \dim_set:Nn \l__box_right_dim { \box_wd:N #1 }
16290 \dim_zero:N \l__box_left_dim

The next step is to work out the x and y coordinates of vertices of the rotated box in
relation to its original coordinates. The box can be visualized with vertices B, C, D and
E is illustrated (Figure 1). The vertex O is the reference point on the baseline, and in
this implementation is also the centre of rotation. The formulae are, for a point P and
angle α:

P ′x = Px −Ox
P ′y = Py −Oy
P ′′x = (P ′x cos(α))− (P ′y sin(α))
P ′′y = (P ′x sin(α)) + (P ′y cos(α))
P ′′′x = P ′′x +Ox + Lx
P ′′′y = P ′′y +Oy

769

The “extra” horizontal translation Lx at the end is calculated so that the leftmost point
of the resulting box has x-coordinate 0. This is desirable as TEX boxes must have the
reference point at the left edge of the box. (As O is always (0, 0), this part of the
calculation is omitted here.)

16291 \fp_compare:nNnTF \l__box_sin_fp > \c_zero_fp
16292 {
16293 \fp_compare:nNnTF \l__box_cos_fp > \c_zero_fp
16294 { __box_rotate_quadrant_one: }
16295 { __box_rotate_quadrant_two: }
16296 }
16297 {
16298 \fp_compare:nNnTF \l__box_cos_fp < \c_zero_fp
16299 { __box_rotate_quadrant_three: }
16300 { __box_rotate_quadrant_four: }
16301 }

The position of the box edges are now known, but the box at this stage be misplaced
relative to the current TEX reference point. So the content of the box is moved such that
the reference point of the rotated box will be in the same place as the original.

16302 \hbox_set:Nn \l__box_internal_box { \box_use:N #1 }
16303 \hbox_set:Nn \l__box_internal_box
16304 {
16305 \tex_kern:D -\l__box_left_new_dim
16306 \hbox:n
16307 {
16308 __driver_box_rotate_begin:
16309 \box_use:N \l__box_internal_box
16310 __driver_box_rotate_end:
16311 }
16312 }

Tidy up the size of the box so that the material is actually inside the bounding box. The
result can then be used to reset the original box.

16313 \box_set_ht:Nn \l__box_internal_box { \l__box_top_new_dim }
16314 \box_set_dp:Nn \l__box_internal_box { -\l__box_bottom_new_dim }
16315 \box_set_wd:Nn \l__box_internal_box
16316 { \l__box_right_new_dim - \l__box_left_new_dim }
16317 \box_use:N \l__box_internal_box
16318 }

These functions take a general point (#1, #2) and rotate its location about the origin,
using the previously-set sine and cosine values. Each function gives only one component
of the location of the updated point. This is because for rotation of a box each step needs
only one value, and so performance is gained by avoiding working out both x′ and y′ at
the same time. Contrast this with the equivalent function in the l3coffins module, where
both parts are needed.

16319 \cs_new_protected:Npn __box_rotate_x:nnN #1#2#3
16320 {
16321 \dim_set:Nn #3
16322 {

770

16323 \fp_to_dim:n
16324 {
16325 \l__box_cos_fp * \dim_to_fp:n {#1}
16326 - \l__box_sin_fp * \dim_to_fp:n {#2}
16327 }
16328 }
16329 }
16330 \cs_new_protected:Npn __box_rotate_y:nnN #1#2#3
16331 {
16332 \dim_set:Nn #3
16333 {
16334 \fp_to_dim:n
16335 {
16336 \l__box_sin_fp * \dim_to_fp:n {#1}
16337 + \l__box_cos_fp * \dim_to_fp:n {#2}
16338 }
16339 }
16340 }

Rotation of the edges is done using a different formula for each quadrant. In every case,
the top and bottom edges only need the resulting y-values, whereas the left and right
edges need the x-values. Each case is a question of picking out which corner ends up at
with the maximum top, bottom, left and right value. Doing this by hand means a lot
less calculating and avoids lots of comparisons.

16341 \cs_new_protected:Npn __box_rotate_quadrant_one:
16342 {
16343 __box_rotate_y:nnN \l__box_right_dim \l__box_top_dim
16344 \l__box_top_new_dim
16345 __box_rotate_y:nnN \l__box_left_dim \l__box_bottom_dim
16346 \l__box_bottom_new_dim
16347 __box_rotate_x:nnN \l__box_left_dim \l__box_top_dim
16348 \l__box_left_new_dim
16349 __box_rotate_x:nnN \l__box_right_dim \l__box_bottom_dim
16350 \l__box_right_new_dim
16351 }
16352 \cs_new_protected:Npn __box_rotate_quadrant_two:
16353 {
16354 __box_rotate_y:nnN \l__box_right_dim \l__box_bottom_dim
16355 \l__box_top_new_dim
16356 __box_rotate_y:nnN \l__box_left_dim \l__box_top_dim
16357 \l__box_bottom_new_dim
16358 __box_rotate_x:nnN \l__box_right_dim \l__box_top_dim
16359 \l__box_left_new_dim
16360 __box_rotate_x:nnN \l__box_left_dim \l__box_bottom_dim
16361 \l__box_right_new_dim
16362 }
16363 \cs_new_protected:Npn __box_rotate_quadrant_three:
16364 {
16365 __box_rotate_y:nnN \l__box_left_dim \l__box_bottom_dim
16366 \l__box_top_new_dim

771

16367 __box_rotate_y:nnN \l__box_right_dim \l__box_top_dim
16368 \l__box_bottom_new_dim
16369 __box_rotate_x:nnN \l__box_right_dim \l__box_bottom_dim
16370 \l__box_left_new_dim
16371 __box_rotate_x:nnN \l__box_left_dim \l__box_top_dim
16372 \l__box_right_new_dim
16373 }
16374 \cs_new_protected:Npn __box_rotate_quadrant_four:
16375 {
16376 __box_rotate_y:nnN \l__box_left_dim \l__box_top_dim
16377 \l__box_top_new_dim
16378 __box_rotate_y:nnN \l__box_right_dim \l__box_bottom_dim
16379 \l__box_bottom_new_dim
16380 __box_rotate_x:nnN \l__box_left_dim \l__box_bottom_dim
16381 \l__box_left_new_dim
16382 __box_rotate_x:nnN \l__box_right_dim \l__box_top_dim
16383 \l__box_right_new_dim
16384 }

(End definition for \box_rotate:Nn. This function is documented on page 214.)

\l__box_scale_x_fp
\l__box_scale_y_fp

Scaling is potentially-different in the two axes.
16385 \fp_new:N \l__box_scale_x_fp
16386 \fp_new:N \l__box_scale_y_fp

(End definition for \l__box_scale_x_fp and \l__box_scale_y_fp. These variables are documented on
page 216.)

\box_resize:Nnn
\box_resize:cnn

__box_resize_set_corners:N
__box_resize:N

__box_resize:NNN

Resizing a box starts by working out the various dimensions of the existing box.
16387 \cs_new_protected:Npn \box_resize:Nnn #1#2#3
16388 {
16389 \hbox_set:Nn #1
16390 {
16391 \group_begin:
16392 __box_resize_set_corners:N #1

The x-scaling and resulting box size is easy enough to work out: the dimension is that
given as #2, and the scale is simply the new width divided by the old one.

16393 \fp_set:Nn \l__box_scale_x_fp
16394 { \dim_to_fp:n {#2} / \dim_to_fp:n { \l__box_right_dim } }

The y-scaling needs both the height and the depth of the current box.
16395 \fp_set:Nn \l__box_scale_y_fp
16396 {
16397 \dim_to_fp:n {#3}
16398 / \dim_to_fp:n { \l__box_top_dim - \l__box_bottom_dim }
16399 }

Hand off to the auxiliary which does the rest of the work.
16400 __box_resize:N #1
16401 \group_end:

772

16402 }
16403 }
16404 \cs_generate_variant:Nn \box_resize:Nnn { c }
16405 \cs_new_protected:Npn __box_resize_set_corners:N #1
16406 {
16407 \dim_set:Nn \l__box_top_dim { \box_ht:N #1 }
16408 \dim_set:Nn \l__box_bottom_dim { -\box_dp:N #1 }
16409 \dim_set:Nn \l__box_right_dim { \box_wd:N #1 }
16410 \dim_zero:N \l__box_left_dim
16411 }

With at least one real scaling to do, the next phase is to find the new edge co-ordinates.
In the x direction this is relatively easy: just scale the right edge. In the y direction,
both dimensions have to be scaled, and this again needs the absolute scale value. Once
that is all done, the common resize/rescale code can be employed.

16412 \cs_new_protected:Npn __box_resize:N #1
16413 {
16414 __box_resize:NNN \l__box_right_new_dim
16415 \l__box_scale_x_fp \l__box_right_dim
16416 __box_resize:NNN \l__box_bottom_new_dim
16417 \l__box_scale_y_fp \l__box_bottom_dim
16418 __box_resize:NNN \l__box_top_new_dim
16419 \l__box_scale_y_fp \l__box_top_dim
16420 __box_resize_common:N #1
16421 }
16422 \cs_new_protected:Npn __box_resize:NNN #1#2#3
16423 {
16424 \dim_set:Nn #1
16425 { \fp_to_dim:n { \fp_abs:n { #2 } * \dim_to_fp:n { #3 } } }
16426 }

(End definition for \box_resize:Nnn and \box_resize:cnn. These functions are documented on page
213.)

\box_resize_to_ht:Nn
\box_resize_to_ht:cn

\box_resize_to_ht_plus_dp:Nn
\box_resize_to_ht_plus_dp:cn

\box_resize_to_wd:Nn
\box_resize_to_wd:cn

\box_resize_to_wd_and_ht:Nnn
\box_resize_to_wd_and_ht:cnn

Scaling to a (total) height or to a width is a simplified version of the main resizing
operation, with the scale simply copied between the two parts. The internal auxiliary is
called using the scaling value twice, as the sign for both parts is needed (as this allows
the same internal code to be used as for the general case).

16427 \cs_new_protected:Npn \box_resize_to_ht:Nn #1#2
16428 {
16429 \hbox_set:Nn #1
16430 {
16431 \group_begin:
16432 __box_resize_set_corners:N #1
16433 \fp_set:Nn \l__box_scale_y_fp
16434 {
16435 \dim_to_fp:n {#2}
16436 / \dim_to_fp:n { \l__box_top_dim }
16437 }
16438 \fp_set_eq:NN \l__box_scale_x_fp \l__box_scale_y_fp

773

16439 __box_resize:N #1
16440 \group_end:
16441 }
16442 }
16443 \cs_generate_variant:Nn \box_resize_to_ht:Nn { c }
16444 \cs_new_protected:Npn \box_resize_to_ht_plus_dp:Nn #1#2
16445 {
16446 \hbox_set:Nn #1
16447 {
16448 \group_begin:
16449 __box_resize_set_corners:N #1
16450 \fp_set:Nn \l__box_scale_y_fp
16451 {
16452 \dim_to_fp:n {#2}
16453 / \dim_to_fp:n { \l__box_top_dim - \l__box_bottom_dim }
16454 }
16455 \fp_set_eq:NN \l__box_scale_x_fp \l__box_scale_y_fp
16456 __box_resize:N #1
16457 \group_end:
16458 }
16459 }
16460 \cs_generate_variant:Nn \box_resize_to_ht_plus_dp:Nn { c }
16461 \cs_new_protected:Npn \box_resize_to_wd:Nn #1#2
16462 {
16463 \hbox_set:Nn #1
16464 {
16465 \group_begin:
16466 __box_resize_set_corners:N #1
16467 \fp_set:Nn \l__box_scale_x_fp
16468 { \dim_to_fp:n {#2} / \dim_to_fp:n { \l__box_right_dim } }
16469 \fp_set_eq:NN \l__box_scale_y_fp \l__box_scale_x_fp
16470 __box_resize:N #1
16471 \group_end:
16472 }
16473 }
16474 \cs_generate_variant:Nn \box_resize_to_wd:Nn { c }
16475 \cs_new_protected:Npn \box_resize_to_wd_and_ht:Nnn #1#2#3
16476 {
16477 \hbox_set:Nn #1
16478 {
16479 \group_begin:
16480 __box_resize_set_corners:N #1
16481 \fp_set:Nn \l__box_scale_x_fp
16482 { \dim_to_fp:n {#2} / \dim_to_fp:n { \l__box_right_dim } }
16483 \fp_set:Nn \l__box_scale_y_fp
16484 {
16485 \dim_to_fp:n {#3}
16486 / \dim_to_fp:n { \l__box_top_dim }
16487 }
16488 __box_resize:N #1

774

16489 \group_end:
16490 }
16491 }
16492 \cs_generate_variant:Nn \box_resize_to_wd_and_ht:Nnn { c }

(End definition for \box_resize_to_ht:Nn and \box_resize_to_ht:cn. These functions are documented
on page 213.)

\box_scale:Nnn
\box_scale:cnn

When scaling a box, setting the scaling itself is easy enough. The new dimensions are
also relatively easy to find, allowing only for the need to keep them positive in all cases.
Once that is done then after a check for the trivial scaling a hand-off can be made
to the common code. The dimension scaling operations are carried out using the TEX
mechanism as it avoids needing to use too many fp operations.

16493 \cs_new_protected:Npn \box_scale:Nnn #1#2#3
16494 {
16495 \hbox_set:Nn #1
16496 {
16497 \group_begin:
16498 \fp_set:Nn \l__box_scale_x_fp {#2}
16499 \fp_set:Nn \l__box_scale_y_fp {#3}
16500 \dim_set:Nn \l__box_top_dim { \box_ht:N #1 }
16501 \dim_set:Nn \l__box_bottom_dim { -\box_dp:N #1 }
16502 \dim_set:Nn \l__box_right_dim { \box_wd:N #1 }
16503 \dim_zero:N \l__box_left_dim
16504 \dim_set:Nn \l__box_top_new_dim
16505 { \fp_abs:n { \l__box_scale_y_fp } \l__box_top_dim }
16506 \dim_set:Nn \l__box_bottom_new_dim
16507 { \fp_abs:n { \l__box_scale_y_fp } \l__box_bottom_dim }
16508 \dim_set:Nn \l__box_right_new_dim
16509 { \fp_abs:n { \l__box_scale_x_fp } \l__box_right_dim }
16510 __box_resize_common:N #1
16511 \group_end:
16512 }
16513 }
16514 \cs_generate_variant:Nn \box_scale:Nnn { c }

(End definition for \box_scale:Nnn and \box_scale:cnn. These functions are documented on page 214.)

__box_resize_common:N The main resize function places in input into a box which will start of with zero width,
and includes the handles for engine rescaling.

16515 \cs_new_protected:Npn __box_resize_common:N #1
16516 {
16517 \hbox_set:Nn \l__box_internal_box
16518 {
16519 __driver_box_scale_begin:
16520 \hbox_overlap_right:n { \box_use:N #1 }
16521 __driver_box_scale_end:
16522 }

775

The new height and depth can be applied directly.
16523 \fp_compare:nNnTF \l__box_scale_y_fp > \c_zero_fp
16524 {
16525 \box_set_ht:Nn \l__box_internal_box { \l__box_top_new_dim }
16526 \box_set_dp:Nn \l__box_internal_box { -\l__box_bottom_new_dim }
16527 }
16528 {
16529 \box_set_dp:Nn \l__box_internal_box { \l__box_top_new_dim }
16530 \box_set_ht:Nn \l__box_internal_box { -\l__box_bottom_new_dim }
16531 }

Things are not quite as obvious for the width, as the reference point needs to remain
unchanged. For positive scaling factors resizing the box is all that is needed. However,
for case of a negative scaling the material must be shifted such that the reference point
ends up in the right place.

16532 \fp_compare:nNnTF \l__box_scale_x_fp < \c_zero_fp
16533 {
16534 \hbox_to_wd:nn { \l__box_right_new_dim }
16535 {
16536 \tex_kern:D \l__box_right_new_dim
16537 \box_use:N \l__box_internal_box
16538 \tex_hss:D
16539 }
16540 }
16541 {
16542 \box_set_wd:Nn \l__box_internal_box { \l__box_right_new_dim }
16543 \hbox:n
16544 {
16545 \tex_kern:D \c_zero_dim
16546 \box_use:N \l__box_internal_box
16547 \tex_hss:D
16548 }
16549 }
16550 }

(End definition for __box_resize_common:N.)

35.4 Viewing part of a box
\box_clip:N
\box_clip:c

A wrapper around the driver-dependent code.
16551 \cs_new_protected:Npn \box_clip:N #1
16552 { \hbox_set:Nn #1 { __driver_box_use_clip:N #1 } }
16553 \cs_generate_variant:Nn \box_clip:N { c }

(End definition for \box_clip:N and \box_clip:c. These functions are documented on page 215.)

\box_trim:Nnnnn
\box_trim:cnnnn

Trimming from the left- and right-hand edges of the box is easy: kern the appropriate
parts off each side.

16554 \cs_new_protected:Npn \box_trim:Nnnnn #1#2#3#4#5
16555 {

776

16556 \hbox_set:Nn \l__box_internal_box
16557 {
16558 \tex_kern:D -__dim_eval:w #2 __dim_eval_end:
16559 \box_use:N #1
16560 \tex_kern:D -__dim_eval:w #4 __dim_eval_end:
16561 }

For the height and depth, there is a need to watch the baseline is respected. Material
always has to stay on the correct side, so trimming has to check that there is enough
material to trim. First, the bottom edge. If there is enough depth, simply set the depth,
or if not move down so the result is zero depth. \box_move_down:nn is used in both
cases so the resulting box always contains a \lower primitive. The internal box is used
here as it allows safe use of \box_set_dp:Nn.

16562 \dim_compare:nNnTF { \box_dp:N #1 } > {#3}
16563 {
16564 \hbox_set:Nn \l__box_internal_box
16565 {
16566 \box_move_down:nn \c_zero_dim
16567 { \box_use:N \l__box_internal_box }
16568 }
16569 \box_set_dp:Nn \l__box_internal_box { \box_dp:N #1 - (#3) }
16570 }
16571 {
16572 \hbox_set:Nn \l__box_internal_box
16573 {
16574 \box_move_down:nn { #3 - \box_dp:N #1 }
16575 { \box_use:N \l__box_internal_box }
16576 }
16577 \box_set_dp:Nn \l__box_internal_box \c_zero_dim
16578 }

Same thing, this time from the top of the box.
16579 \dim_compare:nNnTF { \box_ht:N \l__box_internal_box } > {#5}
16580 {
16581 \hbox_set:Nn \l__box_internal_box
16582 {
16583 \box_move_up:nn \c_zero_dim
16584 { \box_use:N \l__box_internal_box }
16585 }
16586 \box_set_ht:Nn \l__box_internal_box
16587 { \box_ht:N \l__box_internal_box - (#5) }
16588 }
16589 {
16590 \hbox_set:Nn \l__box_internal_box
16591 {
16592 \box_move_up:nn { #5 - \box_ht:N \l__box_internal_box }
16593 { \box_use:N \l__box_internal_box }
16594 }
16595 \box_set_ht:Nn \l__box_internal_box \c_zero_dim
16596 }

777

16597 \box_set_eq:NN #1 \l__box_internal_box
16598 }
16599 \cs_generate_variant:Nn \box_trim:Nnnnn { c }

(End definition for \box_trim:Nnnnn and \box_trim:cnnnn. These functions are documented on page
215.)

\box_viewport:Nnnnn
\box_viewport:cnnnn

The same general logic as for the trim operation, but with absolute dimensions. As a
result, there are some things to watch out for in the vertical direction.

16600 \cs_new_protected:Npn \box_viewport:Nnnnn #1#2#3#4#5
16601 {
16602 \hbox_set:Nn \l__box_internal_box
16603 {
16604 \tex_kern:D -__dim_eval:w #2 __dim_eval_end:
16605 \box_use:N #1
16606 \tex_kern:D __dim_eval:w #4 - \box_wd:N #1 __dim_eval_end:
16607 }
16608 \dim_compare:nNnTF {#3} < \c_zero_dim
16609 {
16610 \hbox_set:Nn \l__box_internal_box
16611 {
16612 \box_move_down:nn \c_zero_dim
16613 { \box_use:N \l__box_internal_box }
16614 }
16615 \box_set_dp:Nn \l__box_internal_box { -\dim_eval:n {#3} }
16616 }
16617 {
16618 \hbox_set:Nn \l__box_internal_box
16619 { \box_move_down:nn {#3} { \box_use:N \l__box_internal_box } }
16620 \box_set_dp:Nn \l__box_internal_box \c_zero_dim
16621 }
16622 \dim_compare:nNnTF {#5} > \c_zero_dim
16623 {
16624 \hbox_set:Nn \l__box_internal_box
16625 {
16626 \box_move_up:nn \c_zero_dim
16627 { \box_use:N \l__box_internal_box }
16628 }
16629 \box_set_ht:Nn \l__box_internal_box
16630 {
16631 #5
16632 \dim_compare:nNnT {#3} > \c_zero_dim
16633 { - (#3) }
16634 }
16635 }
16636 {
16637 \hbox_set:Nn \l__box_internal_box
16638 {
16639 \box_move_up:nn { -\dim_eval:n {#5} }
16640 { \box_use:N \l__box_internal_box }

778

16641 }
16642 \box_set_ht:Nn \l__box_internal_box \c_zero_dim
16643 }
16644 \box_set_eq:NN #1 \l__box_internal_box
16645 }
16646 \cs_generate_variant:Nn \box_viewport:Nnnnn { c }

(End definition for \box_viewport:Nnnnn and \box_viewport:cnnnn. These functions are documented
on page 215.)

35.5 Additions to l3clist
16647 〈@@=clist〉

\clist_log:N
\clist_log:c
\clist_log:n

Redirect output of \clist_show:N to the log.
16648 \cs_new_protected_nopar:Npn \clist_log:N
16649 { __msg_log_next: \clist_show:N }
16650 \cs_new_protected_nopar:Npn \clist_log:n
16651 { __msg_log_next: \clist_show:n }
16652 \cs_generate_variant:Nn \clist_log:N { c }

(End definition for \clist_log:N , \clist_log:c , and \clist_log:n. These functions are documented
on page 216.)

35.6 Additions to l3coffins
16653 〈@@=coffin〉

35.7 Rotating coffins
\l__coffin_sin_fp
\l__coffin_cos_fp

Used for rotations to get the sine and cosine values.
16654 \fp_new:N \l__coffin_sin_fp
16655 \fp_new:N \l__coffin_cos_fp

(End definition for \l__coffin_sin_fp. This variable is documented on page ??.)

\l__coffin_bounding_prop A property list for the bounding box of a coffin. This is only needed during the rotation,
so there is just the one.

16656 \prop_new:N \l__coffin_bounding_prop

(End definition for \l__coffin_bounding_prop. This variable is documented on page ??.)

\l__coffin_bounding_shift_dim The shift of the bounding box of a coffin from the real content.
16657 \dim_new:N \l__coffin_bounding_shift_dim

(End definition for \l__coffin_bounding_shift_dim. This variable is documented on page ??.)

\l__coffin_left_corner_dim
\l__coffin_right_corner_dim
\l__coffin_bottom_corner_dim

\l__coffin_top_corner_dim

These are used to hold maxima for the various corner values: these thus define the
minimum size of the bounding box after rotation.

16658 \dim_new:N \l__coffin_left_corner_dim
16659 \dim_new:N \l__coffin_right_corner_dim
16660 \dim_new:N \l__coffin_bottom_corner_dim
16661 \dim_new:N \l__coffin_top_corner_dim

779

(End definition for \l__coffin_left_corner_dim. This variable is documented on page ??.)

\coffin_rotate:Nn
\coffin_rotate:cn

Rotating a coffin requires several steps which can be conveniently run together. The sine
and cosine of the angle in degrees are computed. This is then used to set \l__coffin_-
sin_fp and \l__coffin_cos_fp, which are carried through unchanged for the rest of
the procedure.

16662 \cs_new_protected:Npn \coffin_rotate:Nn #1#2
16663 {
16664 \fp_set:Nn \l__coffin_sin_fp { sind (#2) }
16665 \fp_set:Nn \l__coffin_cos_fp { cosd (#2) }

The corners and poles of the coffin can now be rotated around the origin. This is best
achieved using mapping functions.

16666 \prop_map_inline:cn { l__coffin_corners_ __int_value:w #1 _prop }
16667 { __coffin_rotate_corner:Nnnn #1 {##1} ##2 }
16668 \prop_map_inline:cn { l__coffin_poles_ __int_value:w #1 _prop }
16669 { __coffin_rotate_pole:Nnnnnn #1 {##1} ##2 }

The bounding box of the coffin needs to be rotated, and to do this the corners have to be
found first. They are then rotated in the same way as the corners of the coffin material
itself.

16670 __coffin_set_bounding:N #1
16671 \prop_map_inline:Nn \l__coffin_bounding_prop
16672 { __coffin_rotate_bounding:nnn {##1} ##2 }

At this stage, there needs to be a calculation to find where the corners of the content
and the box itself will end up.

16673 __coffin_find_corner_maxima:N #1
16674 __coffin_find_bounding_shift:
16675 \box_rotate:Nn #1 {#2}

The correction of the box position itself takes place here. The idea is that the bounding
box for a coffin is tight up to the content, and has the reference point at the bottom-left.
The x-direction is handled by moving the content by the difference in the positions of
the bounding box and the content left edge. The y-direction is dealt with by moving the
box down by any depth it has acquired. The internal box is used here to allow for the
next step.

16676 \hbox_set:Nn \l__coffin_internal_box
16677 {
16678 \tex_kern:D
16679 __dim_eval:w
16680 \l__coffin_bounding_shift_dim - \l__coffin_left_corner_dim
16681 __dim_eval_end:
16682 \box_move_down:nn { \l__coffin_bottom_corner_dim }
16683 { \box_use:N #1 }
16684 }

If there have been any previous rotations then the size of the bounding box will be bigger
than the contents. This can be corrected easily by setting the size of the box to the
height and width of the content. As this operation requires setting box dimensions and

780

these transcend grouping, the safe way to do this is to use the internal box and to reset
the result into the target box.

16685 \box_set_ht:Nn \l__coffin_internal_box
16686 { \l__coffin_top_corner_dim - \l__coffin_bottom_corner_dim }
16687 \box_set_dp:Nn \l__coffin_internal_box { 0 pt }
16688 \box_set_wd:Nn \l__coffin_internal_box
16689 { \l__coffin_right_corner_dim - \l__coffin_left_corner_dim }
16690 \hbox_set:Nn #1 { \box_use:N \l__coffin_internal_box }

The final task is to move the poles and corners such that they are back in alignment with
the box reference point.

16691 \prop_map_inline:cn { l__coffin_corners_ __int_value:w #1 _prop }
16692 { __coffin_shift_corner:Nnnn #1 {##1} ##2 }
16693 \prop_map_inline:cn { l__coffin_poles_ __int_value:w #1 _prop }
16694 { __coffin_shift_pole:Nnnnnn #1 {##1} ##2 }
16695 }
16696 \cs_generate_variant:Nn \coffin_rotate:Nn { c }

(End definition for \coffin_rotate:Nn and \coffin_rotate:cn. These functions are documented on
page 216.)

__coffin_set_bounding:N The bounding box corners for a coffin are easy enough to find: this is the same code as
for the corners of the material itself, but using a dedicated property list.

16697 \cs_new_protected:Npn __coffin_set_bounding:N #1
16698 {
16699 \prop_put:Nnx \l__coffin_bounding_prop { tl }
16700 { { 0 pt } { \dim_eval:n { \box_ht:N #1 } } }
16701 \prop_put:Nnx \l__coffin_bounding_prop { tr }
16702 { { \dim_eval:n { \box_wd:N #1 } } { \dim_eval:n { \box_ht:N #1 } } }
16703 \dim_set:Nn \l__coffin_internal_dim { -\box_dp:N #1 }
16704 \prop_put:Nnx \l__coffin_bounding_prop { bl }
16705 { { 0 pt } { \dim_use:N \l__coffin_internal_dim } }
16706 \prop_put:Nnx \l__coffin_bounding_prop { br }
16707 { { \dim_eval:n { \box_wd:N #1 } } { \dim_use:N \l__coffin_internal_dim } }
16708 }

(End definition for __coffin_set_bounding:N. This function is documented on page ??.)

__coffin_rotate_bounding:nnn
__coffin_rotate_corner:Nnnn

Rotating the position of the corner of the coffin is just a case of treating this as a vector
from the reference point. The same treatment is used for the corners of the material itself
and the bounding box.

16709 \cs_new_protected:Npn __coffin_rotate_bounding:nnn #1#2#3
16710 {
16711 __coffin_rotate_vector:nnNN {#2} {#3} \l__coffin_x_dim \l__coffin_y_dim
16712 \prop_put:Nnx \l__coffin_bounding_prop {#1}
16713 { { \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim } }
16714 }
16715 \cs_new_protected:Npn __coffin_rotate_corner:Nnnn #1#2#3#4
16716 {
16717 __coffin_rotate_vector:nnNN {#3} {#4} \l__coffin_x_dim \l__coffin_y_dim

781

16718 \prop_put:cnx { l__coffin_corners_ __int_value:w #1 _prop } {#2}
16719 { { \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim } }
16720 }

(End definition for __coffin_rotate_bounding:nnn. This function is documented on page ??.)

__coffin_rotate_pole:Nnnnnn Rotating a single pole simply means shifting the co-ordinate of the pole and its direction.
The rotation here is about the bottom-left corner of the coffin.

16721 \cs_new_protected:Npn __coffin_rotate_pole:Nnnnnn #1#2#3#4#5#6
16722 {
16723 __coffin_rotate_vector:nnNN {#3} {#4} \l__coffin_x_dim \l__coffin_y_dim
16724 __coffin_rotate_vector:nnNN {#5} {#6}
16725 \l__coffin_x_prime_dim \l__coffin_y_prime_dim
16726 __coffin_set_pole:Nnx #1 {#2}
16727 {
16728 { \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim }
16729 { \dim_use:N \l__coffin_x_prime_dim }
16730 { \dim_use:N \l__coffin_y_prime_dim }
16731 }
16732 }

(End definition for __coffin_rotate_pole:Nnnnnn. This function is documented on page ??.)

__coffin_rotate_vector:nnNN A rotation function, which needs only an input vector (as dimensions) and an output
space. The values \l__coffin_cos_fp and \l__coffin_sin_fp should previously have
been set up correctly. Working this way means that the floating point work is kept to a
minimum: for any given rotation the sin and cosine values do no change, after all.

16733 \cs_new_protected:Npn __coffin_rotate_vector:nnNN #1#2#3#4
16734 {
16735 \dim_set:Nn #3
16736 {
16737 \fp_to_dim:n
16738 {
16739 \dim_to_fp:n {#1} * \l__coffin_cos_fp
16740 - \dim_to_fp:n {#2} * \l__coffin_sin_fp
16741 }
16742 }
16743 \dim_set:Nn #4
16744 {
16745 \fp_to_dim:n
16746 {
16747 \dim_to_fp:n {#1} * \l__coffin_sin_fp
16748 + \dim_to_fp:n {#2} * \l__coffin_cos_fp
16749 }
16750 }
16751 }

(End definition for __coffin_rotate_vector:nnNN. This function is documented on page ??.)

782

__coffin_find_corner_maxima:N
__coffin_find_corner_maxima_aux:nn

The idea here is to find the extremities of the content of the coffin. This is done by
looking for the smallest values for the bottom and left corners, and the largest values for
the top and right corners. The values start at the maximum dimensions so that the case
where all are positive or all are negative works out correctly.

16752 \cs_new_protected:Npn __coffin_find_corner_maxima:N #1
16753 {
16754 \dim_set:Nn \l__coffin_top_corner_dim { -\c_max_dim }
16755 \dim_set:Nn \l__coffin_right_corner_dim { -\c_max_dim }
16756 \dim_set:Nn \l__coffin_bottom_corner_dim { \c_max_dim }
16757 \dim_set:Nn \l__coffin_left_corner_dim { \c_max_dim }
16758 \prop_map_inline:cn { l__coffin_corners_ __int_value:w #1 _prop }
16759 { __coffin_find_corner_maxima_aux:nn ##2 }
16760 }
16761 \cs_new_protected:Npn __coffin_find_corner_maxima_aux:nn #1#2
16762 {
16763 \dim_set:Nn \l__coffin_left_corner_dim
16764 { \dim_min:nn { \l__coffin_left_corner_dim } {#1} }
16765 \dim_set:Nn \l__coffin_right_corner_dim
16766 { \dim_max:nn { \l__coffin_right_corner_dim } {#1} }
16767 \dim_set:Nn \l__coffin_bottom_corner_dim
16768 { \dim_min:nn { \l__coffin_bottom_corner_dim } {#2} }
16769 \dim_set:Nn \l__coffin_top_corner_dim
16770 { \dim_max:nn { \l__coffin_top_corner_dim } {#2} }
16771 }

(End definition for __coffin_find_corner_maxima:N. This function is documented on page ??.)

__coffin_find_bounding_shift:
__coffin_find_bounding_shift_aux:nn

The approach to finding the shift for the bounding box is similar to that for the corners.
However, there is only one value needed here and a fixed input property list, so things
are a bit clearer.

16772 \cs_new_protected_nopar:Npn __coffin_find_bounding_shift:
16773 {
16774 \dim_set:Nn \l__coffin_bounding_shift_dim { \c_max_dim }
16775 \prop_map_inline:Nn \l__coffin_bounding_prop
16776 { __coffin_find_bounding_shift_aux:nn ##2 }
16777 }
16778 \cs_new_protected:Npn __coffin_find_bounding_shift_aux:nn #1#2
16779 {
16780 \dim_set:Nn \l__coffin_bounding_shift_dim
16781 { \dim_min:nn { \l__coffin_bounding_shift_dim } {#1} }
16782 }

(End definition for __coffin_find_bounding_shift:. This function is documented on page ??.)

__coffin_shift_corner:Nnnn
__coffin_shift_pole:Nnnnnn

Shifting the corners and poles of a coffin means subtracting the appropriate values from
the x- and y-components. For the poles, this means that the direction vector is un-
changed.

16783 \cs_new_protected:Npn __coffin_shift_corner:Nnnn #1#2#3#4
16784 {

783

16785 \prop_put:cnx { l__coffin_corners_ __int_value:w #1 _ prop } {#2}
16786 {
16787 { \dim_eval:n { #3 - \l__coffin_left_corner_dim } }
16788 { \dim_eval:n { #4 - \l__coffin_bottom_corner_dim } }
16789 }
16790 }
16791 \cs_new_protected:Npn __coffin_shift_pole:Nnnnnn #1#2#3#4#5#6
16792 {
16793 \prop_put:cnx { l__coffin_poles_ __int_value:w #1 _ prop } {#2}
16794 {
16795 { \dim_eval:n { #3 - \l__coffin_left_corner_dim } }
16796 { \dim_eval:n { #4 - \l__coffin_bottom_corner_dim } }
16797 {#5} {#6}
16798 }
16799 }

(End definition for __coffin_shift_corner:Nnnn. This function is documented on page ??.)

35.8 Resizing coffins
\l__coffin_scale_x_fp
\l__coffin_scale_y_fp

Storage for the scaling factors in x and y, respectively.
16800 \fp_new:N \l__coffin_scale_x_fp
16801 \fp_new:N \l__coffin_scale_y_fp

(End definition for \l__coffin_scale_x_fp. This variable is documented on page ??.)

\l__coffin_scaled_total_height_dim
\l__coffin_scaled_width_dim

When scaling, the values given have to be turned into absolute values.
16802 \dim_new:N \l__coffin_scaled_total_height_dim
16803 \dim_new:N \l__coffin_scaled_width_dim

(End definition for \l__coffin_scaled_total_height_dim. This variable is documented on page ??.)

\coffin_resize:Nnn
\coffin_resize:cnn

Resizing a coffin begins by setting up the user-friendly names for the dimensions of the
coffin box. The new sizes are then turned into scale factor. This is the same operation
as takes place for the underlying box, but that operation is grouped and so the same
calculation is done here.

16804 \cs_new_protected:Npn \coffin_resize:Nnn #1#2#3
16805 {
16806 \fp_set:Nn \l__coffin_scale_x_fp
16807 { \dim_to_fp:n {#2} / \dim_to_fp:n { \coffin_wd:N #1 } }
16808 \fp_set:Nn \l__coffin_scale_y_fp
16809 {
16810 \dim_to_fp:n {#3}
16811 / \dim_to_fp:n { \coffin_ht:N #1 + \coffin_dp:N #1 }
16812 }
16813 \box_resize:Nnn #1 {#2} {#3}
16814 __coffin_resize_common:Nnn #1 {#2} {#3}
16815 }
16816 \cs_generate_variant:Nn \coffin_resize:Nnn { c }

784

(End definition for \coffin_resize:Nnn and \coffin_resize:cnn. These functions are documented on
page 216.)

__coffin_resize_common:Nnn The poles and corners of the coffin are scaled to the appropriate places before actually
resizing the underlying box.

16817 \cs_new_protected:Npn __coffin_resize_common:Nnn #1#2#3
16818 {
16819 \prop_map_inline:cn { l__coffin_corners_ __int_value:w #1 _prop }
16820 { __coffin_scale_corner:Nnnn #1 {##1} ##2 }
16821 \prop_map_inline:cn { l__coffin_poles_ __int_value:w #1 _prop }
16822 { __coffin_scale_pole:Nnnnnn #1 {##1} ##2 }

Negative x-scaling values will place the poles in the wrong location: this is corrected
here.

16823 \fp_compare:nNnT \l__coffin_scale_x_fp < \c_zero_fp
16824 {
16825 \prop_map_inline:cn { l__coffin_corners_ __int_value:w #1 _prop }
16826 { __coffin_x_shift_corner:Nnnn #1 {##1} ##2 }
16827 \prop_map_inline:cn { l__coffin_poles_ __int_value:w #1 _prop }
16828 { __coffin_x_shift_pole:Nnnnnn #1 {##1} ##2 }
16829 }
16830 }

(End definition for __coffin_resize_common:Nnn. This function is documented on page ??.)

\coffin_scale:Nnn
\coffin_scale:cnn

For scaling, the opposite calculation is done to find the new dimensions for the coffin.
Only the total height is needed, as this is the shift required for corners and poles. The
scaling is done the TEX way as this works properly with floating point values without
needing to use the fp module.

16831 \cs_new_protected:Npn \coffin_scale:Nnn #1#2#3
16832 {
16833 \fp_set:Nn \l__coffin_scale_x_fp {#2}
16834 \fp_set:Nn \l__coffin_scale_y_fp {#3}
16835 \box_scale:Nnn #1 { \l__coffin_scale_x_fp } { \l__coffin_scale_y_fp }
16836 \dim_set:Nn \l__coffin_internal_dim
16837 { \coffin_ht:N #1 + \coffin_dp:N #1 }
16838 \dim_set:Nn \l__coffin_scaled_total_height_dim
16839 { \fp_abs:n { \l__coffin_scale_y_fp } \l__coffin_internal_dim }
16840 \dim_set:Nn \l__coffin_scaled_width_dim
16841 { -\fp_abs:n { \l__coffin_scale_x_fp } \coffin_wd:N #1 }
16842 __coffin_resize_common:Nnn #1
16843 { \l__coffin_scaled_width_dim } { \l__coffin_scaled_total_height_dim }
16844 }
16845 \cs_generate_variant:Nn \coffin_scale:Nnn { c }

(End definition for \coffin_scale:Nnn and \coffin_scale:cnn. These functions are documented on
page 216.)

785

__coffin_scale_vector:nnNN This functions scales a vector from the origin using the pre-set scale factors in x and y.
This is a much less complex operation than rotation, and as a result the code is a lot
clearer.

16846 \cs_new_protected:Npn __coffin_scale_vector:nnNN #1#2#3#4
16847 {
16848 \dim_set:Nn #3
16849 { \fp_to_dim:n { \dim_to_fp:n {#1} * \l__coffin_scale_x_fp } }
16850 \dim_set:Nn #4
16851 { \fp_to_dim:n { \dim_to_fp:n {#2} * \l__coffin_scale_y_fp } }
16852 }

(End definition for __coffin_scale_vector:nnNN. This function is documented on page ??.)

__coffin_scale_corner:Nnnn
__coffin_scale_pole:Nnnnnn

Scaling both corners and poles is a simple calculation using the preceding vector scaling.
16853 \cs_new_protected:Npn __coffin_scale_corner:Nnnn #1#2#3#4
16854 {
16855 __coffin_scale_vector:nnNN {#3} {#4} \l__coffin_x_dim \l__coffin_y_dim
16856 \prop_put:cnx { l__coffin_corners_ __int_value:w #1 _prop } {#2}
16857 { { \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim } }
16858 }
16859 \cs_new_protected:Npn __coffin_scale_pole:Nnnnnn #1#2#3#4#5#6
16860 {
16861 __coffin_scale_vector:nnNN {#3} {#4} \l__coffin_x_dim \l__coffin_y_dim
16862 __coffin_set_pole:Nnx #1 {#2}
16863 {
16864 { \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim }
16865 {#5} {#6}
16866 }
16867 }

(End definition for __coffin_scale_corner:Nnnn. This function is documented on page ??.)

__coffin_x_shift_corner:Nnnn
__coffin_x_shift_pole:Nnnnnn

These functions correct for the x displacement that takes place with a negative horizontal
scaling.

16868 \cs_new_protected:Npn __coffin_x_shift_corner:Nnnn #1#2#3#4
16869 {
16870 \prop_put:cnx { l__coffin_corners_ __int_value:w #1 _prop } {#2}
16871 {
16872 { \dim_eval:n { #3 + \box_wd:N #1 } } {#4}
16873 }
16874 }
16875 \cs_new_protected:Npn __coffin_x_shift_pole:Nnnnnn #1#2#3#4#5#6
16876 {
16877 \prop_put:cnx { l__coffin_poles_ __int_value:w #1 _prop } {#2}
16878 {
16879 { \dim_eval:n #3 + \box_wd:N #1 } {#4}
16880 {#5} {#6}
16881 }
16882 }

(End definition for __coffin_x_shift_corner:Nnnn. This function is documented on page ??.)

786

35.9 Coffin diagnostics
\coffin_log_structure:N
\coffin_log_structure:c

Redirect output of \coffin_show_structure:N to the log.
16883 \cs_new_protected_nopar:Npn \coffin_log_structure:N
16884 { __msg_log_next: \coffin_show_structure:N }
16885 \cs_generate_variant:Nn \coffin_log_structure:N { c }

(End definition for \coffin_log_structure:N and \coffin_log_structure:c. These functions are doc-
umented on page 216.)

35.10 Additions to l3file
16886 〈@@=file〉

\file_if_exist_input:nTF Input of a file with a test for existence cannot be done the usual way as the tokens to
insert are in an odd place.

16887 \cs_new_protected:Npn \file_if_exist_input:n #1
16888 {
16889 \file_if_exist:nT {#1}
16890 { __file_input:V \l__file_internal_name_tl }
16891 }
16892 \cs_new_protected:Npn \file_if_exist_input:nT #1#2
16893 {
16894 \file_if_exist:nT {#1}
16895 {
16896 #2
16897 __file_input:V \l__file_internal_name_tl
16898 }
16899 }
16900 \cs_new_protected:Npn \file_if_exist_input:nF #1
16901 {
16902 \file_if_exist:nTF {#1}
16903 { __file_input:V \l__file_internal_name_tl }
16904 }
16905 \cs_new_protected:Npn \file_if_exist_input:nTF #1#2
16906 {
16907 \file_if_exist:nTF {#1}
16908 {
16909 #2
16910 __file_input:V \l__file_internal_name_tl
16911 }
16912 }

(End definition for \file_if_exist_input:nTF. This function is documented on page 217.)

16913 〈@@=ior〉

\ior_map_break:
\ior_map_break:n

Usual map breaking functions. Those are not yet in l3kernel proper since the mapping
below is the first of its kind.

16914 \cs_new_nopar:Npn \ior_map_break:
16915 { __prg_map_break:Nn \ior_map_break: { } }

787

16916 \cs_new_nopar:Npn \ior_map_break:n
16917 { __prg_map_break:Nn \ior_map_break: }

(End definition for \ior_map_break: and \ior_map_break:n. These functions are documented on page
217.)

\ior_map_inline:Nn
\ior_str_map_inline:Nn
__ior_map_inline:NNn
__ior_map_inline:NNNn

__ior_map_inline_loop:NNN
\l__ior_internal_tl

Mapping to an input stream can be done on either a token or a string basis, hence the
set up. Within that, there is a check to avoid reading past the end of a file, hence the
two applications of \ior_if_eof:N. This mapping cannot be nested as the stream has
only one “current line”.

16918 \cs_new_protected_nopar:Npn \ior_map_inline:Nn
16919 { __ior_map_inline:NNn \ior_get:NN }
16920 \cs_new_protected_nopar:Npn \ior_str_map_inline:Nn
16921 { __ior_map_inline:NNn \ior_get_str:NN }
16922 \cs_new_protected_nopar:Npn __ior_map_inline:NNn
16923 {
16924 \int_gincr:N \g__prg_map_int
16925 \exp_args:Nc __ior_map_inline:NNNn
16926 { __prg_map_ \int_use:N \g__prg_map_int :n }
16927 }
16928 \cs_new_protected:Npn __ior_map_inline:NNNn #1#2#3#4
16929 {
16930 \cs_set:Npn #1 ##1 {#4}
16931 \ior_if_eof:NF #3 { __ior_map_inline_loop:NNN #1#2#3 }
16932 __prg_break_point:Nn \ior_map_break:
16933 { \int_gdecr:N \g__prg_map_int }
16934 }
16935 \cs_new_protected:Npn __ior_map_inline_loop:NNN #1#2#3
16936 {
16937 #2 #3 \l__ior_internal_tl
16938 \ior_if_eof:NF #3
16939 {
16940 \exp_args:No #1 \l__ior_internal_tl
16941 __ior_map_inline_loop:NNN #1#2#3
16942 }
16943 }
16944 \tl_new:N \l__ior_internal_tl

(End definition for \ior_map_inline:Nn and \ior_str_map_inline:Nn. These functions are documented
on page 217.)

\ior_log_streams: Redirect output of \ior_list_streams: to the log.
16945 \cs_new_protected_nopar:Npn \ior_log_streams:
16946 { __msg_log_next: \ior_list_streams: }

(End definition for \ior_log_streams:. This function is documented on page 218.)

16947 〈@@=iow〉

\iow_log_streams: Redirect output of \iow_list_streams: to the log.
16948 \cs_new_protected_nopar:Npn \iow_log_streams:
16949 { __msg_log_next: \iow_list_streams: }

788

(End definition for \iow_log_streams:. This function is documented on page 218.)

35.11 Additions to l3fp-assign
16950 〈@@=fp〉

\fp_log:N
\fp_log:c
\fp_log:n

Redirect output of \fp_show:N to the log.
16951 \cs_new_protected_nopar:Npn \fp_log:N
16952 { __msg_log_next: \fp_show:N }
16953 \cs_new_protected_nopar:Npn \fp_log:n
16954 { __msg_log_next: \fp_show:n }
16955 \cs_generate_variant:Nn \fp_log:N { c }

(End definition for \fp_log:N , \fp_log:c , and \fp_log:n. These functions are documented on page
218.)

35.12 Additions to l3int
\int_log:N
\int_log:c

Redirect output of \int_show:N to the log. This is not just a copy of __kernel_-
register_log:N because of subtleties involving \currentgrouplevel and \currentgrouptype.
See \int_show:N for details.

16956 \cs_new_protected_nopar:Npn \int_log:N
16957 { __msg_log_next: \int_show:N }
16958 \cs_generate_variant:Nn \int_log:N { c }

(End definition for \int_log:N and \int_log:c. These functions are documented on page 218.)

\int_log:n Redirect output of \int_show:n to the log.
16959 \cs_new_protected_nopar:Npn \int_log:n
16960 { __msg_log_next: \int_show:n }

(End definition for \int_log:n. This function is documented on page 219.)

35.13 Additions to l3keys
16961 〈@@=keys〉

\keys_log:nn Redirect output of \keys_show:nn to the log.
16962 \cs_new_protected_nopar:Npn \keys_log:nn
16963 { __msg_log_next: \keys_show:nn }

(End definition for \keys_log:nn. This function is documented on page 219.)

789

35.14 Additions to l3msg
16964 〈@@=msg〉

\msg_expandable_error:nnnnnn
\msg_expandable_error:nnnnn
\msg_expandable_error:nnnn
\msg_expandable_error:nnn
\msg_expandable_error:nn

\msg_expandable_error:nnffff
\msg_expandable_error:nnfff
\msg_expandable_error:nnff
\msg_expandable_error:nnf

__msg_expandable_error_module:nn

Pass to an auxiliary the message to display and the module name
16965 \cs_new:Npn \msg_expandable_error:nnnnnn #1#2#3#4#5#6
16966 {
16967 \exp_args:Nf __msg_expandable_error_module:nn
16968 {
16969 \exp_args:Nf \tl_to_str:n
16970 { \use:c { \c__msg_text_prefix_tl #1 / #2 } {#3} {#4} {#5} {#6} }
16971 }
16972 {#1}
16973 }
16974 \cs_new:Npn \msg_expandable_error:nnnnn #1#2#3#4#5
16975 { \msg_expandable_error:nnnnnn {#1} {#2} {#3} {#4} {#5} { } }
16976 \cs_new:Npn \msg_expandable_error:nnnn #1#2#3#4
16977 { \msg_expandable_error:nnnnnn {#1} {#2} {#3} {#4} { } { } }
16978 \cs_new:Npn \msg_expandable_error:nnn #1#2#3
16979 { \msg_expandable_error:nnnnnn {#1} {#2} {#3} { } { } { } }
16980 \cs_new:Npn \msg_expandable_error:nn #1#2
16981 { \msg_expandable_error:nnnnnn {#1} {#2} { } { } { } { } }
16982 \cs_generate_variant:Nn \msg_expandable_error:nnnnnn { nnffff }
16983 \cs_generate_variant:Nn \msg_expandable_error:nnnnn { nnfff }
16984 \cs_generate_variant:Nn \msg_expandable_error:nnnn { nnff }
16985 \cs_generate_variant:Nn \msg_expandable_error:nnn { nnf }
16986 \cs_new:Npn __msg_expandable_error_module:nn #1#2
16987 {
16988 \exp_after:wN \exp_after:wN
16989 \exp_after:wN \use_none_delimit_by_q_stop:w
16990 \use:n { \::error ! ~ #2 : ~ #1 } \q_stop
16991 }

(End definition for \msg_expandable_error:nnnnnn and others. These functions are documented on
page 219.)

35.15 Additions to l3prg
16992 〈@@=bool〉

\bool_lazy_all_p:n
\bool_lazy_all:nTF
__bool_lazy_all:n

Go through the list of expressions, stopping whenever an expression is false. If the end
is reached without finding any false expression, then the result is true.

16993 \prg_new_conditional:Npnn \bool_lazy_all:n #1 { p , T , F , TF }
16994 { __bool_lazy_all:n #1 \q_recursion_tail \q_recursion_stop }
16995 \cs_new:Npn __bool_lazy_all:n #1
16996 {
16997 \quark_if_recursion_tail_stop_do:nn {#1} { \prg_return_true: }
16998 \bool_if:nF {#1}
16999 { \use_i_delimit_by_q_recursion_stop:nw { \prg_return_false: } }
17000 __bool_lazy_all:n
17001 }

790

(End definition for \bool_lazy_all:nTF. This function is documented on page 220.)

\bool_lazy_and_p:nn
\bool_lazy_and:nnTF

Only evaluate the second expression if the first is true.
17002 \prg_new_conditional:Npnn \bool_lazy_and:nn #1#2 { p , T , F , TF }
17003 {
17004 \bool_if:nTF {#1}
17005 { \bool_if:nTF {#2} { \prg_return_true: } { \prg_return_false: } }
17006 { \prg_return_false: }
17007 }

(End definition for \bool_lazy_and:nnTF. This function is documented on page 220.)

\bool_lazy_any_p:n
\bool_lazy_any:nTF
__bool_lazy_any:n

Go through the list of expressions, stopping whenever an expression is true. If the end
is reached without finding any true expression, then the result is false.

17008 \prg_new_conditional:Npnn \bool_lazy_any:n #1 { p , T , F , TF }
17009 { __bool_lazy_any:n #1 \q_recursion_tail \q_recursion_stop }
17010 \cs_new:Npn __bool_lazy_any:n #1
17011 {
17012 \quark_if_recursion_tail_stop_do:nn {#1} { \prg_return_false: }
17013 \bool_if:nT {#1}
17014 { \use_i_delimit_by_q_recursion_stop:nw { \prg_return_true: } }
17015 __bool_lazy_any:n
17016 }

(End definition for \bool_lazy_any:nTF. This function is documented on page 220.)

\bool_lazy_or_p:nn
\bool_lazy_or:nnTF

Only evaluate the second expression if the first is false.
17017 \prg_new_conditional:Npnn \bool_lazy_or:nn #1#2 { p , T , F , TF }
17018 {
17019 \bool_if:nTF {#1}
17020 { \prg_return_true: }
17021 { \bool_if:nTF {#2} { \prg_return_true: } { \prg_return_false: } }
17022 }

(End definition for \bool_lazy_or:nnTF. This function is documented on page 221.)

\bool_log:N
\bool_log:c
\bool_log:n

Redirect output of \bool_show:N to the log.
17023 \cs_new_protected_nopar:Npn \bool_log:N
17024 { __msg_log_next: \bool_show:N }
17025 \cs_new_protected_nopar:Npn \bool_log:n
17026 { __msg_log_next: \bool_show:n }
17027 \cs_generate_variant:Nn \bool_log:N { c }

(End definition for \bool_log:N , \bool_log:c , and \bool_log:n. These functions are documented on
page 221.)

791

35.16 Additions to l3prop
17028 〈@@=prop〉

\prop_map_tokens:Nn
\prop_map_tokens:cn

__prop_map_tokens:nwwn

The mapping is very similar to \prop_map_function:NN. It grabs one key–value pair
at a time, and stops when reaching the marker key \q_recursion_tail, which cannot
appear in normal keys since those are strings. The odd construction \use:n {#1} allows
#1 to contain any token without interfering with \prop_map_break:. Argument #2 of
__prop_map_tokens:nwwn is \s__prop the first time, and is otherwise empty.

17029 \cs_new:Npn \prop_map_tokens:Nn #1#2
17030 {
17031 \exp_last_unbraced:Nno __prop_map_tokens:nwwn {#2} #1
17032 __prop_pair:wn \q_recursion_tail \s__prop { }
17033 __prg_break_point:Nn \prop_map_break: { }
17034 }
17035 \cs_new:Npn __prop_map_tokens:nwwn #1#2 __prop_pair:wn #3 \s__prop #4
17036 {
17037 \if_meaning:w \q_recursion_tail #3
17038 \exp_after:wN \prop_map_break:
17039 \fi:
17040 \use:n {#1} {#3} {#4}
17041 __prop_map_tokens:nwwn {#1}
17042 }
17043 \cs_generate_variant:Nn \prop_map_tokens:Nn { c }

(End definition for \prop_map_tokens:Nn and \prop_map_tokens:cn. These functions are documented
on page 221.)

\prop_log:N
\prop_log:c

Redirect output of \prop_show:N to the log.
17044 \cs_new_protected_nopar:Npn \prop_log:N
17045 { __msg_log_next: \prop_show:N }
17046 \cs_generate_variant:Nn \prop_log:N { c }

(End definition for \prop_log:N and \prop_log:c. These functions are documented on page 221.)

35.17 Additions to l3seq
17047 〈@@=seq〉

\seq_mapthread_function:NNN
\seq_mapthread_function:NcN
\seq_mapthread_function:cNN
\seq_mapthread_function:ccN

__seq_mapthread_function:wNN
__seq_mapthread_function:wNw

__seq_mapthread_function:Nnnwnn

The idea is to first expand both sequences, adding the usual { ? __prg_break: } { }
to the end of each one. This is most conveniently done in two steps using an auxiliary
function. The mapping then throws away the first tokens of #2 and #5, which for items
in the sequences will both be \s__seq __seq_item:n. The function to be mapped will
then be applied to the two entries. When the code hits the end of one of the sequences,
the break material will stop the entire loop and tidy up. This avoids needing to find the
count of the two sequences, or worrying about which is longer.

17048 \cs_new:Npn \seq_mapthread_function:NNN #1#2#3
17049 { \exp_after:wN __seq_mapthread_function:wNN #2 \q_stop #1 #3 }
17050 \cs_new:Npn __seq_mapthread_function:wNN \s__seq #1 \q_stop #2#3
17051 {

792

17052 \exp_after:wN __seq_mapthread_function:wNw #2 \q_stop #3
17053 #1 { ? __prg_break: } { }
17054 __prg_break_point:
17055 }
17056 \cs_new:Npn __seq_mapthread_function:wNw \s__seq #1 \q_stop #2
17057 {
17058 __seq_mapthread_function:Nnnwnn #2
17059 #1 { ? __prg_break: } { }
17060 \q_stop
17061 }
17062 \cs_new:Npn __seq_mapthread_function:Nnnwnn #1#2#3#4 \q_stop #5#6
17063 {
17064 \use_none:n #2
17065 \use_none:n #5
17066 #1 {#3} {#6}
17067 __seq_mapthread_function:Nnnwnn #1 #4 \q_stop
17068 }
17069 \cs_generate_variant:Nn \seq_mapthread_function:NNN { Nc }
17070 \cs_generate_variant:Nn \seq_mapthread_function:NNN { c , cc }

(End definition for \seq_mapthread_function:NNN and others. These functions are documented on page
221.)

\seq_set_filter:NNn
\seq_gset_filter:NNn

__seq_set_filter:NNNn

Similar to \seq_map_inline:Nn, without a __prg_break_point: because the user’s
code is performed within the evaluation of a boolean expression, and skipping out of that
would break horribly. The __seq_wrap_item:n function inserts the relevant __seq_-
item:n without expansion in the input stream, hence in the x-expanding assignment.

17071 \cs_new_protected_nopar:Npn \seq_set_filter:NNn
17072 { __seq_set_filter:NNNn \tl_set:Nx }
17073 \cs_new_protected_nopar:Npn \seq_gset_filter:NNn
17074 { __seq_set_filter:NNNn \tl_gset:Nx }
17075 \cs_new_protected:Npn __seq_set_filter:NNNn #1#2#3#4
17076 {
17077 __seq_push_item_def:n { \bool_if:nT {#4} { __seq_wrap_item:n {##1} } }
17078 #1 #2 { #3 }
17079 __seq_pop_item_def:
17080 }

(End definition for \seq_set_filter:NNn and \seq_gset_filter:NNn. These functions are documented
on page 222.)

\seq_set_map:NNn
\seq_gset_map:NNn

__seq_set_map:NNNn

Very similar to \seq_set_filter:NNn. We could actually merge the two within a single
function, but it would have weird semantics.

17081 \cs_new_protected_nopar:Npn \seq_set_map:NNn
17082 { __seq_set_map:NNNn \tl_set:Nx }
17083 \cs_new_protected_nopar:Npn \seq_gset_map:NNn
17084 { __seq_set_map:NNNn \tl_gset:Nx }
17085 \cs_new_protected:Npn __seq_set_map:NNNn #1#2#3#4
17086 {
17087 __seq_push_item_def:n { \exp_not:N __seq_item:n {#4} }

793

17088 #1 #2 { #3 }
17089 __seq_pop_item_def:
17090 }

(End definition for \seq_set_map:NNn and \seq_gset_map:NNn. These functions are documented on page
222.)

\seq_log:N
\seq_log:c

Redirect output of \seq_show:N to the log.
17091 \cs_new_protected_nopar:Npn \seq_log:N
17092 { __msg_log_next: \seq_show:N }
17093 \cs_generate_variant:Nn \seq_log:N { c }

(End definition for \seq_log:N and \seq_log:c. These functions are documented on page 222.)

35.18 Additions to l3skip
17094 〈@@=skip〉

\skip_split_finite_else_action:nnNN This macro is useful when performing error checking in certain circumstances. If the
〈skip〉 register holds finite glue it sets #3 and #4 to the stretch and shrink component,
resp. If it holds infinite glue set #3 and #4 to zero and issue the special action #2 which
is probably an error message. Assignments are local.

17095 \cs_new:Npn \skip_split_finite_else_action:nnNN #1#2#3#4
17096 {
17097 \skip_if_finite:nTF {#1}
17098 {
17099 #3 = \etex_gluestretch:D #1 \scan_stop:
17100 #4 = \etex_glueshrink:D #1 \scan_stop:
17101 }
17102 {
17103 #3 = \c_zero_skip
17104 #4 = \c_zero_skip
17105 #2
17106 }
17107 }

(End definition for \skip_split_finite_else_action:nnNN. This function is documented on page 222.)

\dim_log:N
\dim_log:c
\dim_log:n

Diagnostics. Redirect output of \dim_show:n to the log.
17108 \cs_new_eq:NN \dim_log:N __kernel_register_log:N
17109 \cs_new_eq:NN \dim_log:c __kernel_register_log:c
17110 \cs_new_protected_nopar:Npn \dim_log:n
17111 { __msg_log_next: \dim_show:n }

(End definition for \dim_log:N , \dim_log:c , and \dim_log:n. These functions are documented on page
222.)

\skip_log:N
\skip_log:c
\skip_log:n

Diagnostics. Redirect output of \skip_show:n to the log.
17112 \cs_new_eq:NN \skip_log:N __kernel_register_log:N
17113 \cs_new_eq:NN \skip_log:c __kernel_register_log:c
17114 \cs_new_protected_nopar:Npn \skip_log:n
17115 { __msg_log_next: \skip_show:n }

794

(End definition for \skip_log:N , \skip_log:c , and \skip_log:n. These functions are documented on
page 223.)

\muskip_log:N
\muskip_log:c
\muskip_log:n

Diagnostics. Redirect output of \muskip_show:n to the log.
17116 \cs_new_eq:NN \muskip_log:N __kernel_register_log:N
17117 \cs_new_eq:NN \muskip_log:c __kernel_register_log:c
17118 \cs_new_protected_nopar:Npn \muskip_log:n
17119 { __msg_log_next: \muskip_show:n }

(End definition for \muskip_log:N , \muskip_log:c , and \muskip_log:n. These functions are docu-
mented on page 223.)

35.19 Additions to l3tl
17120 〈@@=tl〉

\tl_if_single_token_p:n
\tl_if_single_token:nTF

There are four cases: empty token list, token list starting with a normal token, with a
brace group, or with a space token. If the token list starts with a normal token, remove
it and check for emptiness. For the next case, an empty token list is not a single token.
Finally, we have a non-empty token list starting with a space or a brace group. Applying
f-expansion yields an empty result if and only if the token list is a single space.

17121 \prg_new_conditional:Npnn \tl_if_single_token:n #1 { p , T , F , TF }
17122 {
17123 \tl_if_head_is_N_type:nTF {#1}
17124 { __tl_if_empty_return:o { \use_none:n #1 } }
17125 {
17126 \tl_if_empty:nTF {#1}
17127 { \prg_return_false: }
17128 { __tl_if_empty_return:o { \exp:w \exp_end_continue_f:w #1 } }
17129 }
17130 }

(End definition for \tl_if_single_token:nTF. This function is documented on page 223.)

\tl_reverse_tokens:n
__tl_reverse_group:nn

The same as \tl_reverse:n but with recursion within brace groups.
17131 \cs_new:Npn \tl_reverse_tokens:n #1
17132 {
17133 \etex_unexpanded:D \exp_after:wN
17134 {
17135 \exp:w
17136 __tl_act:NNNnn
17137 __tl_reverse_normal:nN
17138 __tl_reverse_group:nn
17139 __tl_reverse_space:n
17140 { }
17141 {#1}
17142 }
17143 }
17144 \cs_new:Npn __tl_reverse_group:nn #1
17145 {

795

17146 __tl_act_group_recurse:Nnn
17147 __tl_act_reverse_output:n
17148 { \tl_reverse_tokens:n }
17149 }

__tl_act_group_recurse:Nnn
In many applications of __tl_act:NNNnn, we need to recursively apply some transfor-
mation within brace groups, then output. In this code, #1 is the output function, #2 is
the transformation, which should expand in two steps, and #3 is the group.

17150 \cs_new:Npn __tl_act_group_recurse:Nnn #1#2#3
17151 {
17152 \exp_args:Nf #1
17153 { \exp_after:wN \exp_after:wN \exp_after:wN { #2 {#3} } }
17154 }

(End definition for \tl_reverse_tokens:n. This function is documented on page 223.)

\tl_count_tokens:n
__tl_act_count_normal:nN
__tl_act_count_group:nn
__tl_act_count_space:n

The token count is computed through an \int_eval:n construction. Each 1+ is output
to the left, into the integer expression, and the sum is ended by the \exp_end: inserted by
__tl_act_end:wn (which is technically implemented as \c_zero). Somewhat a hack!

17155 \cs_new:Npn \tl_count_tokens:n #1
17156 {
17157 \int_eval:n
17158 {
17159 __tl_act:NNNnn
17160 __tl_act_count_normal:nN
17161 __tl_act_count_group:nn
17162 __tl_act_count_space:n
17163 { }
17164 {#1}
17165 }
17166 }
17167 \cs_new:Npn __tl_act_count_normal:nN #1 #2 { 1 + }
17168 \cs_new:Npn __tl_act_count_space:n #1 { 1 + }
17169 \cs_new:Npn __tl_act_count_group:nn #1 #2
17170 { 2 + \tl_count_tokens:n {#2} + }

(End definition for \tl_count_tokens:n. This function is documented on page 223.)

\tl_set_from_file:Nnn
\tl_set_from_file:cnn
\tl_gset_from_file:Nnn
\tl_gset_from_file:cnn

__tl_set_from_file:NNnn
__tl_from_file_do:w

The approach here is similar to that for doing a rescan, and so the same internals can
be reused. Thus the plan is to insert a pair of tokens of the same charcode but different
catcodes after the file has been read. This plus \exp_not:N allows the primitive to be
used to carry out a set operation.

17171 \cs_new_protected_nopar:Npn \tl_set_from_file:Nnn
17172 { __tl_set_from_file:NNnn \tl_set:Nn }
17173 \cs_new_protected_nopar:Npn \tl_gset_from_file:Nnn
17174 { __tl_set_from_file:NNnn \tl_gset:Nn }
17175 \cs_generate_variant:Nn \tl_set_from_file:Nnn { c }
17176 \cs_generate_variant:Nn \tl_gset_from_file:Nnn { c }
17177 \cs_new_protected:Npn __tl_set_from_file:NNnn #1#2#3#4

796

17178 {
17179 __file_if_exist:nT {#4}
17180 {
17181 \group_begin:
17182 \exp_args:No \etex_everyeof:D
17183 { \c__tl_rescan_marker_tl \exp_not:N }
17184 #3 \scan_stop:
17185 \exp_after:wN __tl_from_file_do:w
17186 \exp_after:wN \prg_do_nothing:
17187 \tex_input:D \l__file_internal_name_tl \scan_stop:
17188 \exp_args:NNNo \group_end:
17189 #1 #2 \l__tl_internal_a_tl
17190 }
17191 }
17192 \exp_args:Nno \use:nn
17193 { \cs_set_protected:Npn __tl_from_file_do:w #1 }
17194 { \c__tl_rescan_marker_tl }
17195 { \tl_set:No \l__tl_internal_a_tl {#1} }

(End definition for \tl_set_from_file:Nnn and others. These functions are documented on page 227.)

\tl_set_from_file_x:Nnn
\tl_set_from_file_x:cnn
\tl_gset_from_file_x:Nnn
\tl_gset_from_file_x:cnn

__tl_set_from_file_x:NNnn

When reading a file and allowing expansion of the content, the set up only needs to
prevent TEX complaining about the end of the file. That is done simply, with a group
then used to trap the definition needed. Once the business is done using some scratch
space, the tokens can be transferred to the real target.

17196 \cs_new_protected_nopar:Npn \tl_set_from_file_x:Nnn
17197 { __tl_set_from_file_x:NNnn \tl_set:Nn }
17198 \cs_new_protected_nopar:Npn \tl_gset_from_file_x:Nnn
17199 { __tl_set_from_file_x:NNnn \tl_gset:Nn }
17200 \cs_generate_variant:Nn \tl_set_from_file_x:Nnn { c }
17201 \cs_generate_variant:Nn \tl_gset_from_file_x:Nnn { c }
17202 \cs_new_protected:Npn __tl_set_from_file_x:NNnn #1#2#3#4
17203 {
17204 __file_if_exist:nT {#4}
17205 {
17206 \group_begin:
17207 \etex_everyeof:D { \exp_not:N }
17208 #3 \scan_stop:
17209 \tl_set:Nx \l__tl_internal_a_tl
17210 { \tex_input:D \l__file_internal_name_tl \c_space_token }
17211 \exp_args:NNNo \group_end:
17212 #1 #2 \l__tl_internal_a_tl
17213 }
17214 }

(End definition for \tl_set_from_file_x:Nnn and others. These functions are documented on page
227.)

797

35.19.1 Unicode case changing

The mechanisms needed for case changing are somewhat involved, particularly to allow
for all of the special cases. These functions also require the appropriate data extracted
from the Unicode documentation (either manually or automatically).

\tl_if_head_eq_catcode:oNTF Extra variants.
17215 \cs_generate_variant:Nn \tl_if_head_eq_catcode:nNTF { o }

(End definition for \tl_if_head_eq_catcode:oNTF. This function is documented on page ??.)

\tl_lower_case:n
\tl_upper_case:n
\tl_mixed_case:n
\tl_lower_case:nn
\tl_upper_case:nn
\tl_mixed_case:nn

The user level functions here are all wrappers around the internal functions for case
changing. Note that \tl_mixed_case:nn could be done without an internal, but this
way the logic is slightly clearer as everything essentially follows the same path.

17216 \cs_new_nopar:Npn \tl_lower_case:n { __tl_change_case:nnn { lower } { } }
17217 \cs_new_nopar:Npn \tl_upper_case:n { __tl_change_case:nnn { upper } { } }
17218 \cs_new_nopar:Npn \tl_mixed_case:n { __tl_mixed_case:nn { } }
17219 \cs_new_nopar:Npn \tl_lower_case:nn { __tl_change_case:nnn { lower } }
17220 \cs_new_nopar:Npn \tl_upper_case:nn { __tl_change_case:nnn { upper } }
17221 \cs_new_nopar:Npn \tl_mixed_case:nn { __tl_mixed_case:nn }

(End definition for \tl_lower_case:n , \tl_upper_case:n , and \tl_mixed_case:n. These functions are
documented on page 224.)

__tl_change_case:nnn
__tl_change_case_aux:nnn

__tl_change_case_loop:wnn
__tl_change_case_output:nwn
__tl_change_case_output:Vwn
__tl_change_case_output:own
__tl_change_case_output:vwn
__tl_change_case_output:fwn

__tl_change_case_end:wn
__tl_change_case_group:nwnn
__tl_change_case_space:wnn

__tl_change_case_N_type:Nwnn
__tl_change_case_N_type:NNNnnn

__tl_change_case_math:NNNnnn
__tl_change_case_math_loop:wNNnn

__tl_change_case_math:NwNNnn
__tl_change_case_math_group:nwNNnn
__tl_change_case_math_space:wNNnn

__tl_change_case_N_type:Nnnn
__tl_change_case_char:Nnn
__tl_change_case_char:nN

__tl_change_case_char_auxi:nN
__tl_change_case_char_auxii:nN
__tl_lookup_lower:N
__tl_lookup_upper:N
__tl_lookup_title:N

__tl_change_case_char_UTFviii:nNN
__tl_change_case_char_UTFviii:nNNN

__tl_change_case_char_UTFviii:nNNNN
__tl_change_case_char_UTFviii:nn

__tl_change_case_cs_letterlike:Nnn
__tl_change_case_cs_accents:NN

__tl_change_case_cs:N
__tl_change_case_cs:NN
__tl_change_case_cs:NNn
__tl_change_case_if_expandable:NTF

__tl_change_case_cs_expand:Nnw
__tl_change_case_cs_expand:NN

The mechanism for the core conversion of case is based on the idea that we can use a
loop to grab the entire token list plus a quark: the latter is used as an end marker and
to avoid any brace stripping. Depending on the nature of the first item in the grabbed
argument, it can either processed as a single token, treated as a group or treated as a
space. These different cases all work by re-reading #1 in the appropriate way, hence the
repetition of #1 \q_recursion_stop.

17222 \cs_new:Npn __tl_change_case:nnn #1#2#3
17223 {
17224 \etex_unexpanded:D \exp_after:wN
17225 {
17226 \exp:w
17227 __tl_change_case_aux:nnn {#1} {#2} {#3}
17228 }
17229 }
17230 \cs_new:Npn __tl_change_case_aux:nnn #1#2#3
17231 {
17232 \group_align_safe_begin:
17233 __tl_change_case_loop:wnn
17234 #3 \q_recursion_tail \q_recursion_stop {#1} {#2}
17235 __tl_change_case_result:n { }
17236 }
17237 \cs_new:Npn __tl_change_case_loop:wnn #1 \q_recursion_stop
17238 {
17239 \tl_if_head_is_N_type:nTF {#1}
17240 { __tl_change_case_N_type:Nwnn }
17241 {

798

17242 \tl_if_head_is_group:nTF {#1}
17243 { __tl_change_case_group:nwnn }
17244 { __tl_change_case_space:wnn }
17245 }
17246 #1 \q_recursion_stop
17247 }

Earlier versions of the code where only x-type expandable rather than f-type: this causes
issues with nesting and so the slight performance hit is taken for a better outcome in
usability terms. Setting up for f-type expandability has two requirements: a marker
token after the main loop (see above) and a mechanism to “load” and finalise the result.
That is handled in the code below, which includes the necessary material to end the
\exp:w expansion.

17248 \cs_new:Npn __tl_change_case_output:nwn #1#2 __tl_change_case_result:n #3
17249 { #2 __tl_change_case_result:n { #3 #1 } }
17250 \cs_generate_variant:Nn __tl_change_case_output:nwn { V , o , v , f }
17251 \cs_new:Npn __tl_change_case_end:wn #1 __tl_change_case_result:n #2
17252 {
17253 \group_align_safe_end:
17254 \exp_end:
17255 #2
17256 }

Handling for the cases where the current argument is a brace group or a space is relatively
easy. For the brace case, the routine works recursively, using the expandability of the
mechanism to ensure that the result is finalised before storage. For the space case it is
simply a question of removing the space in the input and storing it in the output. In
both cases, and indeed for the N-type grabber, after removing the current item from the
input __tl_change_case_loop:wnn is inserted in front of the remaining tokens.

17257 \cs_new:Npn __tl_change_case_group:nwnn #1#2 \q_recursion_stop #3#4
17258 {
17259 __tl_change_case_output:own
17260 {
17261 \exp_after:wN
17262 {
17263 \exp:w
17264 __tl_change_case_aux:nnn {#3} {#4} {#1}
17265 }
17266 }
17267 __tl_change_case_loop:wnn #2 \q_recursion_stop {#3} {#4}
17268 }
17269 \exp_last_unbraced:NNo \cs_new:Npn __tl_change_case_space:wnn \c_space_tl
17270 {
17271 __tl_change_case_output:nwn { ~ }
17272 __tl_change_case_loop:wnn
17273 }

For N-type arguments there are several stages to the approach. First, a simply check
for the end-of-input marker, which if found triggers the final clean up and output step.

799

Assuming that is not the case, the first check is for math-mode escaping: this test can
encompass control sequences or other N-type tokens so is handled up front.

17274 \cs_new:Npn __tl_change_case_N_type:Nwnn #1#2 \q_recursion_stop
17275 {
17276 \quark_if_recursion_tail_stop_do:Nn #1
17277 { __tl_change_case_end:wn }
17278 \exp_after:wN __tl_change_case_N_type:NNNnnn
17279 \exp_after:wN #1 \l_tl_case_change_math_tl
17280 \q_recursion_tail ? \q_recursion_stop {#2}
17281 }

Looking for math mode escape first requires a loop over the possible token pairs to see
if the current input (#1) matches an open-math case (#2). If if does then this test loop
is ended and a new input-gathering one is begun. The latter simply transfers material
from the input to the output without any expansion, testing each N-type token to see if it
matches the close-math case required. If that is the situation then the “math loop” stops
and resumes the main loop: as that might be either the standard case-changing one or
the mixed-case alternative, it is not hard-coded into the math loop but is rather passed
as argument #3 to __tl_change_case_math:NNNnnn. If no close-math token is found
then the final clean-up will be forced (i.e. there is no assumption of “well-behaved” code
in terms of math mode).

17282 \cs_new:Npn __tl_change_case_N_type:NNNnnn #1#2#3
17283 {
17284 \quark_if_recursion_tail_stop_do:Nn #2
17285 { __tl_change_case_N_type:Nnnn #1 }
17286 \token_if_eq_meaning:NNTF #1 #2
17287 {
17288 \use_i_delimit_by_q_recursion_stop:nw
17289 {
17290 __tl_change_case_math:NNNnnn
17291 #1 #3 __tl_change_case_loop:wnn
17292 }
17293 }
17294 { __tl_change_case_N_type:NNNnnn #1 }
17295 }
17296 \cs_new:Npn __tl_change_case_math:NNNnnn #1#2#3#4
17297 {
17298 __tl_change_case_output:nwn {#1}
17299 __tl_change_case_math_loop:wNNnn #4 \q_recursion_stop #2 #3
17300 }
17301 \cs_new:Npn __tl_change_case_math_loop:wNNnn #1 \q_recursion_stop
17302 {
17303 \tl_if_head_is_N_type:nTF {#1}
17304 { __tl_change_case_math:NwNNnn }
17305 {
17306 \tl_if_head_is_group:nTF {#1}
17307 { __tl_change_case_math_group:nwNNnn }
17308 { __tl_change_case_math_space:wNNnn }
17309 }

800

17310 #1 \q_recursion_stop
17311 }
17312 \cs_new:Npn __tl_change_case_math:NwNNnn #1#2 \q_recursion_stop #3#4
17313 {
17314 \token_if_eq_meaning:NNTF \q_recursion_tail #1
17315 { __tl_change_case_end:wn }
17316 {
17317 __tl_change_case_output:nwn {#1}
17318 \token_if_eq_meaning:NNTF #1 #3
17319 { #4 #2 \q_recursion_stop }
17320 { __tl_change_case_math_loop:wNNnn #2 \q_recursion_stop #3#4 }
17321 }
17322 }
17323 \cs_new:Npn __tl_change_case_math_group:nwNNnn #1#2 \q_recursion_stop
17324 {
17325 __tl_change_case_output:nwn { {#1} }
17326 __tl_change_case_math_loop:wNNnn #2 \q_recursion_stop
17327 }
17328 \exp_last_unbraced:NNo
17329 \cs_new:Npn __tl_change_case_math_space:wNNnn \c_space_tl
17330 {
17331 __tl_change_case_output:nwn { ~ }
17332 __tl_change_case_math_loop:wNNnn
17333 }

Once potential math-mode cases are filtered out the next stage is to test if the token
grabbed is a control sequence: they cannot be used in the lookup table and also may
require expansion. At this stage the loop code starting __tl_change_case_loop:wnn
is inserted: all subsequent steps in the code which need a look-ahead are coded to rely
on this and thus have w-type arguments if they may do a look-ahead.

17334 \cs_new:Npn __tl_change_case_N_type:Nnnn #1#2#3#4
17335 {
17336 \token_if_cs:NTF #1
17337 { __tl_change_case_cs_letterlike:Nnn #1 {#3} { } }
17338 { __tl_change_case_char:Nnn #1 {#3} {#4} }
17339 __tl_change_case_loop:wnn #2 \q_recursion_stop {#3} {#4}
17340 }

For character tokens there are some special cases to deal with then the majority of
changes are covered by using the TEX data as a lookup along with expandable character
generation. This avoids needing a very large number of macros or (as seen in earlier
versions) a somewhat tricky split of the characters into various blocks. Notice that the
special case code may do a look-ahead so requires a final w-type argument whereas the
core lookup table does not and also guarantees an output so f-type expansion may be
used to obtain the case-changed result.

17341 \cs_new:Npn __tl_change_case_char:Nnn #1#2#3
17342 {
17343 \cs_if_exist_use:cF { __tl_change_case_ #2 _ #3 :Nnw }
17344 { \use_ii:nn }
17345 #1

801

17346 {
17347 \use:c { __tl_change_case_ #2 _ sigma:Nnw } #1
17348 { __tl_change_case_char:nN {#2} #1 }
17349 }
17350 }

For Unicode engines we can handle all characters directly. However, for the 8-bit engines
the aim is to deal with (a subset of) Unicode (UTF-8) input. They deal with that by
making the upper half of the range active, so we look for that and if found work out how
many UTF-8 octets there are to deal with. Those can then be grabbed to reconstruct the
full Unicode character, which is then used in a lookup. (As will become obvious below,
there is no intention here of covering all of Unicode.)

17351 \cs_if_exist:NTF \utex_char:D
17352 {
17353 \cs_new:Npn __tl_change_case_char:nN #1#2
17354 { __tl_change_case_char_auxi:nN {#1} #2 }
17355 }
17356 {
17357 \cs_new:Npn __tl_change_case_char:nN #1#2
17358 {
17359 \int_compare:nNnTF { ‘#2 } > { "80 }
17360 {
17361 \int_compare:nNnTF { ‘#2 } < { "E0 }
17362 { __tl_change_case_char_UTFviii:nNNN {#1} #2 }
17363 {
17364 \int_compare:nNnTF { ‘#2 } < { "F0 }
17365 { __tl_change_case_char_UTFviii:nNNNN {#1} #2 }
17366 { __tl_change_case_char_UTFviii:nNNNNN {#1} #2 }
17367 }
17368 }
17369 { __tl_change_case_char_auxi:nN {#1} #2 }
17370 }
17371 }
17372 \cs_new:Npn __tl_change_case_char_auxi:nN #1#2
17373 {
17374 __tl_change_case_output:fwn
17375 {
17376 \cs_if_exist_use:cF { c__unicode_ #1 _ \token_to_str:N #2 _tl }
17377 { __tl_change_case_char_auxii:nN {#1} #2 }
17378 }
17379 }
17380 \cs_if_exist:NTF \utex_char:D
17381 {
17382 \cs_new:Npn __tl_change_case_char_auxii:nN #1#2
17383 {
17384 \int_compare:nNnTF { \use:c { __tl_lookup_ #1 :N } #2 } = { 0 }
17385 { \exp_stop_f: #2 }
17386 {
17387 \char_generate:nn
17388 { \use:c { __tl_lookup_ #1 :N } #2 }

802

17389 { \char_value_catcode:n { \use:c { __tl_lookup_ #1 :N } #2 } }
17390 }
17391 }
17392 \cs_new_protected:Npn __tl_lookup_lower:N #1 { \tex_lccode:D ‘#1 }
17393 \cs_new_protected:Npn __tl_lookup_upper:N #1 { \tex_uccode:D ‘#1 }
17394 \cs_new_eq:NN __tl_lookup_title:N __tl_lookup_upper:N
17395 }
17396 {
17397 \cs_new:Npn __tl_change_case_char_auxii:nN #1#2 { \exp_stop_f: #2 }
17398 \cs_new:Npn __tl_change_case_char_UTFviii:nNNN #1#2#3#4
17399 { __tl_change_case_char_UTFviii:nnN {#1} {#2#4} #3 }
17400 \cs_new:Npn __tl_change_case_char_UTFviii:nNNNN #1#2#3#4#5
17401 { __tl_change_case_char_UTFviii:nnN {#1} {#2#4#5} #3 }
17402 \cs_new:Npn __tl_change_case_char_UTFviii:nNNNNN #1#2#3#4#5#6
17403 { __tl_change_case_char_UTFviii:nnN {#1} {#2#4#5#6} #3 }
17404 \cs_new:Npn __tl_change_case_char_UTFviii:nnN #1#2#3
17405 {
17406 \cs_if_exist:cTF { c__unicode_ #1 _ \tl_to_str:n {#2} _tl }
17407 {
17408 __tl_change_case_output:vwn
17409 { c__unicode_ #1 _ \tl_to_str:n {#2} _tl }
17410 }
17411 { __tl_change_case_output:nwn {#2} }
17412 #3
17413 }
17414 }

Before dealing with general control sequences there are the special ones to deal with.
Letter-like control sequences are a simple look-up, while for accents the loop is much as
done elsewhere. Notice that we have a no-op test to make sure there is no unexpected
expansion of letter-like input. The third argument here is needed for mixed casing, where
it if there is a hit there has to be a change-of-path.

17415 \cs_new:Npn __tl_change_case_cs_letterlike:Nnn #1#2#3
17416 {
17417 \cs_if_exist:cTF { c__tl_change_case_ #2 _ \token_to_str:N #1 _tl }
17418 {
17419 __tl_change_case_output:vwn
17420 { c__tl_change_case_ #2 _ \token_to_str:N #1 _tl }
17421 #3
17422 }
17423 {
17424 \cs_if_exist:cTF
17425 {
17426 c__tl_change_case_
17427 \str_if_eq:nnTF {#2} { lower } { upper } { lower }
17428 _ \token_to_str:N #1 _tl
17429 }
17430 {
17431 __tl_change_case_output:nwn {#1}
17432 #3

803

17433 }
17434 {
17435 \exp_after:wN __tl_change_case_cs_accents:NN
17436 \exp_after:wN #1 \l_tl_case_change_accents_tl
17437 \q_recursion_tail \q_recursion_stop
17438 }
17439 }
17440 }
17441 \cs_new:Npn __tl_change_case_cs_accents:NN #1#2
17442 {
17443 \quark_if_recursion_tail_stop_do:Nn #2
17444 { __tl_change_case_cs:N #1 }
17445 \str_if_eq:nnTF {#1} {#2}
17446 {
17447 \use_i_delimit_by_q_recursion_stop:nw
17448 { __tl_change_case_output:nwn {#1} }
17449 }
17450 { __tl_change_case_cs_accents:NN #1 }
17451 }

To deal with a control sequence there is first a need to test if it is on the list which
indicate that case changing should be skipped. That’s done using a loop as for the other
special cases. If a hit is found then the argument is grabbed: that comes after the loop
function which is therefore rearranged.

17452 \cs_new:Npn __tl_change_case_cs:N #1
17453 {
17454 \exp_after:wN __tl_change_case_cs:NN
17455 \exp_after:wN #1 \l_tl_case_change_exclude_tl
17456 \q_recursion_tail \q_recursion_stop
17457 }
17458 \cs_new:Npn __tl_change_case_cs:NN #1#2
17459 {
17460 \quark_if_recursion_tail_stop_do:Nn #2
17461 {
17462 __tl_change_case_cs_expand:Nnw #1
17463 { __tl_change_case_output:nwn {#1} }
17464 }
17465 \str_if_eq:nnTF {#1} {#2}
17466 {
17467 \use_i_delimit_by_q_recursion_stop:nw
17468 { __tl_change_case_cs:NNn #1 }
17469 }
17470 { __tl_change_case_cs:NN #1 }
17471 }
17472 \cs_new:Npn __tl_change_case_cs:NNn #1#2#3
17473 {
17474 __tl_change_case_output:nwn { #1 {#3} }
17475 #2
17476 }

When a control sequence is not on the exclude list the other test if to see if it is expandable.

804

Once again, if there is a hit then the loop function is grabbed as part of the clean-up and
reinserted before the now expanded material. The test for expandablity has to check for
end-of-recursion as it is needed by the look-ahead code which might hit the end of the
input. The test is done in two parts as \bool_if:nTF will choke if #1 is (!

17477 \cs_new:Npn __tl_change_case_if_expandable:NTF #1
17478 {
17479 \token_if_expandable:NTF #1
17480 {
17481 \bool_if:nTF
17482 {
17483 \token_if_protected_macro_p:N #1
17484 || \token_if_protected_long_macro_p:N #1
17485 || \token_if_eq_meaning_p:NN \q_recursion_tail #1
17486 }
17487 { \use_ii:nn }
17488 { \use_i:nn }
17489 }
17490 { \use_ii:nn }
17491 }
17492 \cs_new:Npn __tl_change_case_cs_expand:Nnw #1#2
17493 {
17494 __tl_change_case_if_expandable:NTF #1
17495 { __tl_change_case_cs_expand:NN #1 }
17496 { #2 }
17497 }
17498 \cs_new:Npn __tl_change_case_cs_expand:NN #1#2
17499 { \exp_after:wN #2 #1 }

(End definition for __tl_change_case:nnn.)

__tl_change_case_lower_sigma:Nnw
__tl_change_case_lower_sigma:w

__tl_change_case_lower_sigma:Nw
__tl_change_case_upper_sigma:Nnw

If the current char is an upper case sigma, the a check is made on the next item in the
input. If it is N-type and not a control sequence then there is a look-ahead phase.

17500 \cs_new:Npn __tl_change_case_lower_sigma:Nnw #1#2#3#4 \q_recursion_stop
17501 {
17502 \int_compare:nNnTF { ‘#1 } = { "03A3 }
17503 {
17504 __tl_change_case_output:fwn
17505 { __tl_change_case_lower_sigma:w #4 \q_recursion_stop }
17506 }
17507 {#2}
17508 #3 #4 \q_recursion_stop
17509 }
17510 \cs_new:Npn __tl_change_case_lower_sigma:w #1 \q_recursion_stop
17511 {
17512 \tl_if_head_is_N_type:nTF {#1}
17513 { __tl_change_case_lower_sigma:Nw #1 \q_recursion_stop }
17514 { \c__unicode_final_sigma_tl }
17515 }
17516 \cs_new:Npn __tl_change_case_lower_sigma:Nw #1#2 \q_recursion_stop

805

17517 {
17518 __tl_change_case_if_expandable:NTF #1
17519 {
17520 \exp_after:wN __tl_change_case_lower_sigma:w #1
17521 #2 \q_recursion_stop
17522 }
17523 {
17524 \token_if_letter:NTF #1
17525 { \c__unicode_std_sigma_tl }
17526 { \c__unicode_final_sigma_tl }
17527 }
17528 }

Simply skip to the final step for upper casing.
17529 \cs_new_eq:NN __tl_change_case_upper_sigma:Nnw \use_ii:nn

(End definition for __tl_change_case_lower_sigma:Nnw.)

__tl_change_case_lower_tr:Nnw
__tl_change_case_lower_tr_auxi:Nw

__tl_change_case_lower_tr_auxii:Nw
__tl_change_case_upper_tr:Nnw
__tl_change_case_lower_az:Nnw
__tl_change_case_upper_az:Nnw

The Turkic languages need special treatment for dotted-i and dotless-i. The lower casing
rule can be expressed in terms of searching first for either a dotless-I or a dotted-I. In
the latter case the mapping is easy, but in the former there is a second stage search.

17530 \cs_if_exist:NTF \utex_char:D
17531 {
17532 \cs_new:Npn __tl_change_case_lower_tr:Nnw #1#2
17533 {
17534 \int_compare:nNnTF { ‘#1 } = { "0049 }
17535 { __tl_change_case_lower_tr_auxi:Nw }
17536 {
17537 \int_compare:nNnTF { ‘#1 } = { "0130 }
17538 { __tl_change_case_output:nwn { i } }
17539 {#2}
17540 }
17541 }

After a dotless-I there may be a dot-above character. If there is then a dotted-i should be
produced, otherwise output a dotless-i. When the combination is found both the dotless-I
and the dot-above char have to be removed from the input, which is done by the \use_-
i:nn (it grabs __tl_change_case_loop:wn and the dot-above char and discards the
latter).

17542 \cs_new:Npn __tl_change_case_lower_tr_auxi:Nw #1#2 \q_recursion_stop
17543 {
17544 \tl_if_head_is_N_type:nTF {#2}
17545 { __tl_change_case_lower_tr_auxii:Nw #2 \q_recursion_stop }
17546 { __tl_change_case_output:Vwn \c__unicode_dotless_i_tl }
17547 #1 #2 \q_recursion_stop
17548 }
17549 \cs_new:Npn __tl_change_case_lower_tr_auxii:Nw #1#2 \q_recursion_stop
17550 {
17551 __tl_change_case_if_expandable:NTF #1
17552 {

806

17553 \exp_after:wN __tl_change_case_lower_tr_auxi:Nw #1
17554 #2 \q_recursion_stop
17555 }
17556 {
17557 \bool_if:nTF
17558 {
17559 \token_if_cs_p:N #1
17560 || ! (\int_compare_p:nNn { ‘#1 } = { "0307 })
17561 }
17562 { __tl_change_case_output:Vwn \c__unicode_dotless_i_tl }
17563 {
17564 __tl_change_case_output:nwn { i }
17565 \use_i:nn
17566 }
17567 }
17568 }
17569 }

For 8-bit engines, dot-above is not available so there is a simple test for an upper-case
I. Then we can look for the UTF-8 representation of an upper case dotted-I without the
combining char. If it’s not there, preserve the UTF-8 sequence as-is.

17570 {
17571 \cs_new:Npn __tl_change_case_lower_tr:Nnw #1#2
17572 {
17573 \int_compare:nNnTF { ‘#1 } = { "0049 }
17574 { __tl_change_case_output:Vwn \c__unicode_dotless_i_tl }
17575 {
17576 \int_compare:nNnTF { ‘#1 } = { 196 }
17577 { __tl_change_case_lower_tr_auxi:Nw #1 {#2} }
17578 {#2}
17579 }
17580 }
17581 \cs_new:Npn __tl_change_case_lower_tr_auxi:Nw #1#2#3#4
17582 {
17583 \int_compare:nNnTF { ‘#4 } = { 176 }
17584 {
17585 __tl_change_case_output:nwn { i }
17586 #3
17587 }
17588 {
17589 #2
17590 #3 #4
17591 }
17592 }
17593 }

Upper casing is easier: just one exception with no context.
17594 \cs_new:Npn __tl_change_case_upper_tr:Nnw #1#2
17595 {
17596 \int_compare:nNnTF { ‘#1 } = { "0069 }

807

17597 { __tl_change_case_output:Vwn \c__unicode_dotted_I_tl }
17598 {#2}
17599 }

Straight copies.
17600 \cs_new_eq:NN __tl_change_case_lower_az:Nnw __tl_change_case_lower_tr:Nnw
17601 \cs_new_eq:NN __tl_change_case_upper_az:Nnw __tl_change_case_upper_tr:Nnw

(End definition for __tl_change_case_lower_tr:Nnw.)

__tl_change_case_lower_lt:Nnw
__tl_change_case_lower_lt:nNnw
__tl_change_case_lower_lt:nnw
__tl_change_case_lower_lt:Nw

__tl_change_case_lower_lt:NNw
__tl_change_case_upper_lt:Nnw
__tl_change_case_upper_lt:nnw
__tl_change_case_upper_lt:Nw

__tl_change_case_upper_lt:NNw

For Lithuanian, the issue to be dealt with is dots over lower case letters: these should
be present if there is another accent. That means that there is some work to do when
lower casing I and J. The first step is a simple match attempt: \c__tl_accents_lt_tl
contains accented upper case letters which should gain a dot-above char in their lower
case form. This is done using f-type expansion so only one pass is needed to find if it
works or not. If there was no hit, the second stage is to check for I, J and I-ogonek, and
if the current char is a match to look for a following accent.

17602 \cs_new:Npn __tl_change_case_lower_lt:Nnw #1
17603 {
17604 \exp_args:Nf __tl_change_case_lower_lt:nNnw
17605 { \str_case:nVF #1 \c__unicode_accents_lt_tl \exp_stop_f: }
17606 #1
17607 }
17608 \cs_new:Npn __tl_change_case_lower_lt:nNnw #1#2
17609 {
17610 \tl_if_blank:nTF {#1}
17611 {
17612 \exp_args:Nf __tl_change_case_lower_lt:nnw
17613 {
17614 \int_case:nnF {‘#2}
17615 {
17616 { "0049 } i
17617 { "004A } j
17618 { "012E } \c__unicode_i_ogonek_tl
17619 }
17620 \exp_stop_f:
17621 }
17622 }
17623 {
17624 __tl_change_case_output:nwn {#1}
17625 \use_none:n
17626 }
17627 }
17628 \cs_new:Npn __tl_change_case_lower_lt:nnw #1#2
17629 {
17630 \tl_if_blank:nTF {#1}
17631 {#2}
17632 {
17633 __tl_change_case_output:nwn {#1}
17634 __tl_change_case_lower_lt:Nw

808

17635 }
17636 }

Grab the next char and see if it is one of the accents used in Lithuanian: if it is, add the
dot-above char into the output.

17637 \cs_new:Npn __tl_change_case_lower_lt:Nw #1#2 \q_recursion_stop
17638 {
17639 \tl_if_head_is_N_type:nT {#2}
17640 { __tl_change_case_lower_lt:NNw }
17641 #1 #2 \q_recursion_stop
17642 }
17643 \cs_new:Npn __tl_change_case_lower_lt:NNw #1#2#3 \q_recursion_stop
17644 {
17645 __tl_change_case_if_expandable:NTF #2
17646 {
17647 \exp_after:wN __tl_change_case_lower_lt:Nw \exp_after:wN #1 #2
17648 #3 \q_recursion_stop
17649 }
17650 {
17651 \bool_if:nT
17652 {
17653 ! \token_if_cs_p:N #2
17654 &&
17655 (
17656 \int_compare_p:nNn { ‘#2 } = { "0300 }
17657 || \int_compare_p:nNn { ‘#2 } = { "0301 }
17658 || \int_compare_p:nNn { ‘#2 } = { "0303 }
17659)
17660 }
17661 { __tl_change_case_output:Vwn \c__unicode_dot_above_tl }
17662 #1 #2#3 \q_recursion_stop
17663 }
17664 }

For upper casing, the test required is for a dot-above char after an I, J or I-ogonek. First
a test for the appropriate letter, and if found a look-ahead and potentially one token
dropped.

17665 \cs_new:Npn __tl_change_case_upper_lt:Nnw #1
17666 {
17667 \exp_args:Nf __tl_change_case_upper_lt:nnw
17668 {
17669 \int_case:nnF {‘#1}
17670 {
17671 { "0069 } I
17672 { "006A } J
17673 { "012F } \c__unicode_I_ogonek_tl
17674 }
17675 \exp_stop_f:
17676 }
17677 }

809

17678 \cs_new:Npn __tl_change_case_upper_lt:nnw #1#2
17679 {
17680 \tl_if_blank:nTF {#1}
17681 {#2}
17682 {
17683 __tl_change_case_output:nwn {#1}
17684 __tl_change_case_upper_lt:Nw
17685 }
17686 }
17687 \cs_new:Npn __tl_change_case_upper_lt:Nw #1#2 \q_recursion_stop
17688 {
17689 \tl_if_head_is_N_type:nT {#2}
17690 { __tl_change_case_upper_lt:NNw }
17691 #1 #2 \q_recursion_stop
17692 }
17693 \cs_new:Npn __tl_change_case_upper_lt:NNw #1#2#3 \q_recursion_stop
17694 {
17695 __tl_change_case_if_expandable:NTF #2
17696 {
17697 \exp_after:wN __tl_change_case_upper_lt:Nw \exp_after:wN #1 #2
17698 #3 \q_recursion_stop
17699 }
17700 {
17701 \bool_if:nTF
17702 {
17703 ! \token_if_cs_p:N #2
17704 && \int_compare_p:nNn { ‘#2 } = { "0307 }
17705 }
17706 { #1 }
17707 { #1 #2 }
17708 #3 \q_recursion_stop
17709 }
17710 }

(End definition for __tl_change_case_lower_lt:Nnw.)

__tl_change_case_upper_de-alt:Nnw A simple alternative version for German.
17711 \cs_new:cpn { __tl_change_case_upper_de-alt:Nnw } #1#2
17712 {
17713 \int_compare:nNnTF { ‘#1 } = { 223 }
17714 { __tl_change_case_output:Vwn \c__unicode_upper_Eszett_tl }
17715 {#2}
17716 }

(End definition for __tl_change_case_upper_de-alt:Nnw. This function is documented on page ??.)

__unicode_codepoint_to_UTFviii:n
__unicode_codepoint_to_UTFviii_auxi:n

__unicode_codepoint_to_UTFviii_auxii:Nnn
__unicode_codepoint_to_UTFviii_auxiii:n

This code will convert a codepoint into the correct UTF-8 representation. As there are a
variable number of octets, the result starts with the numeral 1–4 to indicate the nature
of the returned value. Note that this code will cover the full range even though at this
stage it is not required here. Also note that longer-term this is likely to need a public

810

interface and/or moving to l3str (see experimental string conversions). In terms of the
algorithm itself, see https://en.wikipedia.org/wiki/UTF-8 for the octet pattern.

17717 \cs_new:Npn __unicode_codepoint_to_UTFviii:n #1
17718 {
17719 \exp_args:Nf __unicode_codepoint_to_UTFviii_auxi:n
17720 { \int_eval:n {#1} }
17721 }
17722 \cs_new:Npn __unicode_codepoint_to_UTFviii_auxi:n #1
17723 {
17724 \if_int_compare:w #1 > "80 ~
17725 \if_int_compare:w #1 < "800 ~
17726 2
17727 __unicode_codepoint_to_UTFviii_auxii:Nnn C {#1} { 64 }
17728 __unicode_codepoint_to_UTFviii_auxiii:n {#1}
17729 \else:
17730 \if_int_compare:w #1 < "10000 ~
17731 3
17732 __unicode_codepoint_to_UTFviii_auxii:Nnn E {#1} { 64 * 64 }
17733 __unicode_codepoint_to_UTFviii_auxiii:n {#1}
17734 __unicode_codepoint_to_UTFviii_auxiii:n
17735 { \int_div_truncate:nn {#1} { 64 } }
17736 \else:
17737 4
17738 __unicode_codepoint_to_UTFviii_auxii:Nnn F
17739 {#1} { 64 * 64 * 64 }
17740 __unicode_codepoint_to_UTFviii_auxiii:n
17741 { \int_div_truncate:nn {#1} { 64 * 64 } }
17742 __unicode_codepoint_to_UTFviii_auxiii:n
17743 { \int_div_truncate:nn {#1} { 64 } }
17744 __unicode_codepoint_to_UTFviii_auxiii:n {#1}
17745

17746 \fi:
17747 \fi:
17748 \else:
17749 1 {#1}
17750 \fi:
17751 }
17752 \cs_new:Npn __unicode_codepoint_to_UTFviii_auxii:Nnn #1#2#3
17753 { { \int_eval:n { "#10 + \int_div_truncate:nn {#2} {#3} } } }
17754 \cs_new:Npn __unicode_codepoint_to_UTFviii_auxiii:n #1
17755 { { \int_eval:n { \int_mod:nn {#1} { 64 } + 128 } } }

(End definition for __unicode_codepoint_to_UTFviii:n.)

\c__unicode_std_sigma_tl
\c__unicode_final_sigma_tl
\c__unicode_accents_lt_tl
\c__unicode_dot_above_tl

\c__unicode_upper_Eszett_tl

The above needs various special token lists containg pre-formed characters. This set are
only available in Unicode engines, with no-op definitions for 8-bit use.

17756 \cs_if_exist:NTF \utex_char:D
17757 {
17758 \tl_const:Nx \c__unicode_std_sigma_tl { \utex_char:D "03C3 ~ }
17759 \tl_const:Nx \c__unicode_final_sigma_tl { \utex_char:D "03C2 ~ }

811

https://en.wikipedia.org/wiki/UTF-8

17760 \tl_const:Nx \c__unicode_accents_lt_tl
17761 {
17762 \utex_char:D "00CC ~
17763 { \utex_char:D "0069 ~ \utex_char:D "0307 ~ \utex_char:D "0300 ~ }
17764 \utex_char:D "00CD ~
17765 { \utex_char:D "0069 ~ \utex_char:D "0307 ~ \utex_char:D "0301 ~ }
17766 \utex_char:D "0128 ~
17767 { \utex_char:D "0069 ~ \utex_char:D "0307 ~ \utex_char:D "0303 ~ }
17768 }
17769 \tl_const:Nx \c__unicode_dot_above_tl { \utex_char:D "0307 ~ }
17770 \tl_const:Nx \c__unicode_upper_Eszett_tl { \utex_char:D "1E9E ~ }
17771 }
17772 {
17773 \tl_const:Nn \c__unicode_std_sigma_tl { }
17774 \tl_const:Nn \c__unicode_final_sigma_tl { }
17775 \tl_const:Nn \c__unicode_accents_lt_tl { }
17776 \tl_const:Nn \c__unicode_dot_above_tl { }
17777 \tl_const:Nn \c__unicode_upper_Eszett_tl { }
17778 }

(End definition for \c__unicode_std_sigma_tl and others. These variables are documented on page
??.)

\c__unicode_dotless_i_tl
\c__unicode_dotted_I_tl
\c__unicode_i_ogonek_tl
\c__unicode_I_ogonek_tl

For cases where there is an 8-bit option in the T1 font set up, a variant is provided in
both cases.

17779 \group_begin:
17780 \cs_if_exist:NTF \utex_char:D
17781 {
17782 \cs_set_protected:Npn __tl_tmp:w #1#2
17783 { \tl_const:Nx #1 { \utex_char:D "#2 ~ } }
17784 }
17785 {
17786 \cs_set_protected:Npn __tl_tmp:w #1#2
17787 {
17788 \group_begin:
17789 \cs_set_protected:Npn __tl_tmp:w ##1##2##3
17790 {
17791 \tl_const:Nx #1
17792 {
17793 \exp_after:wN \exp_after:wN \exp_after:wN
17794 \exp_not:N __char_generate:nn {##2} { 13 }
17795 \exp_after:wN \exp_after:wN \exp_after:wN
17796 \exp_not:N __char_generate:nn {##3} { 13 }
17797 }
17798 }
17799 \tl_set:Nx \l__tl_internal_a_tl
17800 { __unicode_codepoint_to_UTFviii:n {"#2} }
17801 \exp_after:wN __tl_tmp:w \l__tl_internal_a_tl
17802 \group_end:
17803 }

812

17804 }
17805 __tl_tmp:w \c__unicode_dotless_i_tl { 0131 }
17806 __tl_tmp:w \c__unicode_dotted_I_tl { 0130 }
17807 __tl_tmp:w \c__unicode_i_ogonek_tl { 012F }
17808 __tl_tmp:w \c__unicode_I_ogonek_tl { 012E }
17809 \group_end:

(End definition for \c__unicode_dotless_i_tl and others. These variables are documented on page
??.)

For 8-bit engines we now need to define the case-change data for the multi-octet
mappings. These need a list of what code points are doable in T1 so the list is hard coded
(there’s no saving in loading the mappings dynamically). All of the straight-forward ones
have two octets, so that is taken as read.

17810 \group_begin:
17811 \bool_if:nT
17812 {
17813 \sys_if_engine_pdftex_p: || \sys_if_engine_uptex_p:
17814 }
17815 {
17816 \cs_set_protected:Npn __tl_loop:nn #1#2
17817 {
17818 \quark_if_recursion_tail_stop:n {#1}
17819 \tl_set:Nx \l__tl_internal_a_tl
17820 {
17821 __unicode_codepoint_to_UTFviii:n {"#1}
17822 __unicode_codepoint_to_UTFviii:n {"#2}
17823 }
17824 \exp_after:wN __tl_tmp:w \l__tl_internal_a_tl
17825 __tl_loop:nn
17826 }
17827 \cs_set_protected:Npn __tl_tmp:w #1#2#3#4#5#6
17828 {
17829 \tl_const:cx
17830 {
17831 c__unicode_lower_
17832 \char_generate:nn {#2} { 12 }
17833 \char_generate:nn {#3} { 12 }
17834 _tl
17835 }
17836 {
17837 \exp_after:wN \exp_after:wN \exp_after:wN
17838 \exp_not:N __char_generate:nn {#5} { 13 }
17839 \exp_after:wN \exp_after:wN \exp_after:wN
17840 \exp_not:N __char_generate:nn {#6} { 13 }
17841 }
17842 \tl_const:cx
17843 {
17844 c__unicode_upper_
17845 \char_generate:nn {#5} { 12 }
17846 \char_generate:nn {#6} { 12 }

813

17847 _tl
17848 }
17849 {
17850 \exp_after:wN \exp_after:wN \exp_after:wN
17851 \exp_not:N __char_generate:nn {#2} { 13 }
17852 \exp_after:wN \exp_after:wN \exp_after:wN
17853 \exp_not:N __char_generate:nn {#3} { 13 }
17854 }
17855 }
17856 __tl_loop:nn
17857 { 00C0 } { 00E0 }
17858 { 00C2 } { 00E2 }
17859 { 00C3 } { 00E3 }
17860 { 00C4 } { 00E4 }
17861 { 00C5 } { 00E5 }
17862 { 00C6 } { 00E6 }
17863 { 00C7 } { 00E7 }
17864 { 00C8 } { 00E8 }
17865 { 00C9 } { 00E9 }
17866 { 00CA } { 00EA }
17867 { 00CB } { 00EB }
17868 { 00CC } { 00EC }
17869 { 00CD } { 00ED }
17870 { 00CE } { 00EE }
17871 { 00CF } { 00EF }
17872 { 00D0 } { 00F0 }
17873 { 00D1 } { 00F1 }
17874 { 00D2 } { 00F2 }
17875 { 00D3 } { 00F3 }
17876 { 00D4 } { 00F4 }
17877 { 00D5 } { 00F5 }
17878 { 00D6 } { 00F6 }
17879 { 00D8 } { 00F8 }
17880 { 00D9 } { 00F9 }
17881 { 00DA } { 00FA }
17882 { 00DB } { 00FB }
17883 { 00DC } { 00FC }
17884 { 00DD } { 00FD }
17885 { 00DE } { 00FE }
17886 { 0100 } { 0101 }
17887 { 0102 } { 0103 }
17888 { 0104 } { 0105 }
17889 { 0106 } { 0107 }
17890 { 0108 } { 0109 }
17891 { 010A } { 010B }
17892 { 010C } { 010D }
17893 { 010E } { 010F }
17894 { 0110 } { 0111 }
17895 { 0112 } { 0113 }
17896 { 0114 } { 0115 }

814

17897 { 0116 } { 0117 }
17898 { 0118 } { 0119 }
17899 { 011A } { 011B }
17900 { 011C } { 011D }
17901 { 011E } { 011F }
17902 { 0120 } { 0121 }
17903 { 0122 } { 0123 }
17904 { 0124 } { 0125 }
17905 { 0128 } { 0129 }
17906 { 012A } { 012B }
17907 { 012C } { 012D }
17908 { 012E } { 012F }
17909 { 0132 } { 0133 }
17910 { 0134 } { 0135 }
17911 { 0136 } { 0137 }
17912 { 0139 } { 013A }
17913 { 013B } { 013C }
17914 { 013E } { 013F }
17915 { 0141 } { 0142 }
17916 { 0143 } { 0144 }
17917 { 0145 } { 0146 }
17918 { 0147 } { 0148 }
17919 { 014A } { 014B }
17920 { 014C } { 014D }
17921 { 014E } { 014F }
17922 { 0150 } { 0151 }
17923 { 0152 } { 0153 }
17924 { 0154 } { 0155 }
17925 { 0156 } { 0157 }
17926 { 0158 } { 0159 }
17927 { 015A } { 015B }
17928 { 015C } { 015D }
17929 { 015E } { 015F }
17930 { 0160 } { 0161 }
17931 { 0162 } { 0163 }
17932 { 0164 } { 0165 }
17933 { 0168 } { 0169 }
17934 { 016A } { 016B }
17935 { 016C } { 016D }
17936 { 016E } { 016F }
17937 { 0170 } { 0171 }
17938 { 0172 } { 0173 }
17939 { 0174 } { 0175 }
17940 { 0176 } { 0177 }
17941 { 0178 } { 00FF }
17942 { 0179 } { 017A }
17943 { 017B } { 017C }
17944 { 017D } { 017E }
17945 { 01CD } { 01CE }
17946 { 01CF } { 01D0 }

815

17947 { 01D1 } { 01D2 }
17948 { 01D3 } { 01D4 }
17949 { 01E2 } { 01E3 }
17950 { 01E6 } { 01E7 }
17951 { 01E8 } { 01E9 }
17952 { 01EA } { 01EB }
17953 { 01F4 } { 01F5 }
17954 { 0218 } { 0219 }
17955 { 021A } { 021B }
17956 \q_recursion_tail ?
17957 \q_recursion_stop
17958 \cs_set_protected:Npn __tl_tmp:w #1#2#3
17959 {
17960 \group_begin:
17961 \cs_set_protected:Npn __tl_tmp:w ##1##2##3
17962 {
17963 \tl_const:cx
17964 {
17965 c__unicode_ #3 _
17966 \char_generate:nn {##2} { 12 }
17967 \char_generate:nn {##3} { 12 }
17968 _tl
17969 }
17970 {#2}
17971 }
17972 \tl_set:Nx \l__tl_internal_a_tl
17973 { __unicode_codepoint_to_UTFviii:n { "#1 } }
17974 \exp_after:wN __tl_tmp:w \l__tl_internal_a_tl
17975 \group_end:
17976 }
17977 __tl_tmp:w { 00DF } { SS } { upper }
17978 __tl_tmp:w { 00DF } { Ss } { title }
17979 __tl_tmp:w { 0131 } { I } { upper }
17980 }
17981 \group_end:

The (fixed) look-up mappings for letter-like control sequences.
17982 \group_begin:
17983 \cs_set_protected:Npn __tl_change_case_setup:NN #1#2
17984 {
17985 \quark_if_recursion_tail_stop:N #1
17986 \tl_const:cn { c__tl_change_case_lower_ \token_to_str:N #1 _tl } { #2 }
17987 \tl_const:cn { c__tl_change_case_upper_ \token_to_str:N #2 _tl } { #1 }
17988 __tl_change_case_setup:NN
17989 }
17990 __tl_change_case_setup:NN
17991 \AA \aa
17992 \AE \ae
17993 \DH \dh
17994 \DJ \dj

816

17995 \IJ \ij
17996 \L \l
17997 \NG \ng
17998 \O \o
17999 \OE \oe
18000 \SS \ss
18001 \TH \th
18002 \q_recursion_tail ?
18003 \q_recursion_stop
18004 \tl_const:cn { c__tl_change_case_upper_ \token_to_str:N \i _tl } { I }
18005 \tl_const:cn { c__tl_change_case_upper_ \token_to_str:N \j _tl } { J }
18006 \group_end:

\l_tl_case_change_accents_tl A list of accents to leave alone.
18007 \tl_new:N \l_tl_case_change_accents_tl
18008 \tl_set:Nn \l_tl_case_change_accents_tl
18009 { \" \’ \. \^ \‘ \~ \c \H \k \r \t \u \v }

(End definition for \l_tl_case_change_accents_tl. This variable is documented on page 225.)

__tl_mixed_case:nn
__tl_mixed_case_aux:nn
__tl_mixed_case_loop:wn

__tl_mixed_case_group:nwn
__tl_mixed_case_space:wn

__tl_mixed_case_N_type:Nwn
__tl_mixed_case_N_type:NNNnn

__tl_mixed_case_N_type:Nnn
__tl_mixed_case_letterlike:Nw

__tl_mixed_case_char:N
__tl_mixed_case_skip:N
__tl_mixed_case_skip:NN

__tl_mixed_case_skip_tidy:Nwn
__tl_mixed_case_char:nN

Mixed (title) casing requires some custom handling of the case changing of the first letter
in the input followed by a switch to the normal lower casing routine. That could be
covered by passing a set of functions to generic routines, but at the cost of making the
process rather opaque. Instead, the approach taken here is to use a dedicated set of
functions which keep the different loop requirements clearly separate.

The main loop looks for the first “real” char in the input (skipping any pre-letter
chars). Once one is found, it is case changed to upper case but first checking that there
is not an entry in the exceptions list. Note that simply grabbing the first token in the
input is no good here: it can’t handle pre-letter tokens or any special treatment of the
first letter found (e.g. words starting with i in Turkish). Spaces at the start of the input
are passed through without counting as being the “start” of the first word, while a brace
group is assumed to be contain the first char with everything after the brace therefore
lower cased.

18010 \cs_new:Npn __tl_mixed_case:nn #1#2
18011 {
18012 \etex_unexpanded:D \exp_after:wN
18013 {
18014 \exp:w
18015 __tl_mixed_case_aux:nn {#1} {#2}
18016 }
18017 }
18018 \cs_new:Npn __tl_mixed_case_aux:nn #1#2
18019 {
18020 \group_align_safe_begin:
18021 __tl_mixed_case_loop:wn
18022 #2 \q_recursion_tail \q_recursion_stop {#1}
18023 __tl_change_case_result:n { }
18024 }
18025 \cs_new:Npn __tl_mixed_case_loop:wn #1 \q_recursion_stop

817

18026 {
18027 \tl_if_head_is_N_type:nTF {#1}
18028 { __tl_mixed_case_N_type:Nwn }
18029 {
18030 \tl_if_head_is_group:nTF {#1}
18031 { __tl_mixed_case_group:nwn }
18032 { __tl_mixed_case_space:wn }
18033 }
18034 #1 \q_recursion_stop
18035 }
18036 \cs_new:Npn __tl_mixed_case_group:nwn #1#2 \q_recursion_stop #3
18037 {
18038 __tl_change_case_output:own
18039 {
18040 \exp_after:wN
18041 {
18042 \exp:w
18043 __tl_mixed_case_aux:nn {#3} {#1}
18044 }
18045 }
18046 __tl_change_case_loop:wnn #2 \q_recursion_stop { lower } {#3}
18047 }
18048 \exp_last_unbraced:NNo \cs_new:Npn __tl_mixed_case_space:wn \c_space_tl
18049 {
18050 __tl_change_case_output:nwn { ~ }
18051 __tl_mixed_case_loop:wn
18052 }
18053 \cs_new:Npn __tl_mixed_case_N_type:Nwn #1#2 \q_recursion_stop
18054 {
18055 \quark_if_recursion_tail_stop_do:Nn #1
18056 { __tl_change_case_end:wn }
18057 \exp_after:wN __tl_mixed_case_N_type:NNNnn
18058 \exp_after:wN #1 \l_tl_case_change_math_tl
18059 \q_recursion_tail ? \q_recursion_stop {#2}
18060 }
18061 \cs_new:Npn __tl_mixed_case_N_type:NNNnn #1#2#3
18062 {
18063 \quark_if_recursion_tail_stop_do:Nn #2
18064 { __tl_mixed_case_N_type:Nnn #1 }
18065 \token_if_eq_meaning:NNTF #1 #2
18066 {
18067 \use_i_delimit_by_q_recursion_stop:nw
18068 {
18069 __tl_change_case_math:NNNnnn
18070 #1 #3 __tl_mixed_case_loop:wn
18071 }
18072 }
18073 { __tl_mixed_case_N_type:NNNnn #1 }
18074 }

818

The business end of the loop is here: there is first a need to deal with any control
sequence cases before looking for characters to skip. If there is a hit for a letter-like
control sequence, switch to lower casing.

18075 \cs_new:Npn __tl_mixed_case_N_type:Nnn #1#2#3
18076 {
18077 \token_if_cs:NTF #1
18078 {
18079 __tl_change_case_cs_letterlike:Nnn #1 { upper }
18080 { __tl_mixed_case_letterlike:Nw }
18081 __tl_mixed_case_loop:wn #2 \q_recursion_stop {#3}
18082 }
18083 {
18084 __tl_mixed_case_char:Nn #1 {#3}
18085 __tl_change_case_loop:wnn #2 \q_recursion_stop { lower } {#3}
18086 }
18087 }
18088 \cs_new:Npn __tl_mixed_case_letterlike:Nw #1#2 \q_recursion_stop
18089 { __tl_change_case_loop:wnn #2 \q_recursion_stop { lower } }

As detailed above, handling a mixed case char means first looking for exceptions then
treating as an upper cased letter, but with a list of tokens to skip over too.

18090 \cs_new:Npn __tl_mixed_case_char:Nn #1#2
18091 {
18092 \cs_if_exist_use:cF { __tl_change_case_mixed_ #2 :Nnw }
18093 {
18094 \cs_if_exist_use:cF { __tl_change_case_upper_ #2 :Nnw }
18095 { \use_ii:nn }
18096 }
18097 #1
18098 { __tl_mixed_case_skip:N #1 }
18099 }
18100 \cs_new:Npn __tl_mixed_case_skip:N #1
18101 {
18102 \exp_after:wN __tl_mixed_case_skip:NN
18103 \exp_after:wN #1 \l_tl_mixed_case_ignore_tl
18104 \q_recursion_tail \q_recursion_stop
18105 }
18106 \cs_new:Npn __tl_mixed_case_skip:NN #1#2
18107 {
18108 \quark_if_recursion_tail_stop_do:nn {#2}
18109 { __tl_mixed_case_char:N #1 }
18110 \int_compare:nNnT { ‘#1 } = { ‘#2 }
18111 {
18112 \use_i_delimit_by_q_recursion_stop:nw
18113 {
18114 __tl_change_case_output:nwn {#1}
18115 __tl_mixed_case_skip_tidy:Nwn
18116 }
18117 }
18118 __tl_mixed_case_skip:NN #1

819

18119 }
18120 \cs_new:Npn __tl_mixed_case_skip_tidy:Nwn #1#2 \q_recursion_stop #3
18121 {
18122 __tl_mixed_case_loop:wn #2 \q_recursion_stop
18123 }
18124 \cs_new:Npn __tl_mixed_case_char:N #1
18125 {
18126 \cs_if_exist:cTF { c__unicode_title_ #1 _tl }
18127 {
18128 __tl_change_case_output:fwn
18129 { \tl_use:c { c__unicode_title_ #1 _tl } }
18130 }
18131 { __tl_change_case_char:nN { upper } #1 }
18132 }

(End definition for __tl_mixed_case:nn.)

__tl_change_case_mixed_nl:Nnw
__tl_change_case_mixed_nl:Nw

__tl_change_case_mixed_nl:NNw

For Dutch, there is a single look-ahead test for ij when title casing. If the appropriate
letters are found, produce IJ and gobble the j/J.

18133 \cs_new:Npn __tl_change_case_mixed_nl:Nnw #1
18134 {
18135 \bool_if:nTF
18136 {
18137 \int_compare_p:nNn { ‘#1 } = { ‘i }
18138 || \int_compare_p:nNn { ‘#1 } = { ‘I }
18139 }
18140 {
18141 __tl_change_case_output:nwn { I }
18142 __tl_change_case_mixed_nl:Nw
18143 }
18144 }
18145 \cs_new:Npn __tl_change_case_mixed_nl:Nw #1#2 \q_recursion_stop
18146 {
18147 \tl_if_head_is_N_type:nT {#2}
18148 { __tl_change_case_mixed_nl:NNw }
18149 #1 #2 \q_recursion_stop
18150 }
18151 \cs_new:Npn __tl_change_case_mixed_nl:NNw #1#2#3 \q_recursion_stop
18152 {
18153 __tl_change_case_if_expandable:NTF #2
18154 {
18155 \exp_after:wN __tl_change_case_mixed_nl:Nw \exp_after:wN #1 #2
18156 #3 \q_recursion_stop
18157 }
18158 {
18159 \bool_if:nTF
18160 {
18161 ! (\token_if_cs_p:N #2)
18162 &&
18163 (

820

18164 \int_compare_p:nNn { ‘#2 } = { ‘j }
18165 || \int_compare_p:nNn { ‘#2 } = { ‘J }
18166)
18167 }
18168 {
18169 __tl_change_case_output:nwn { J }
18170 #1
18171 }
18172 { #1 #2 }
18173 #3 \q_recursion_stop
18174 }
18175 }

(End definition for __tl_change_case_mixed_nl:Nnw.)

\l_tl_case_change_math_tl The list of token pairs which are treated as math mode and so not case changed.
18176 \tl_new:N \l_tl_case_change_math_tl
18177 〈*package〉
18178 \tl_set:Nn \l_tl_case_change_math_tl
18179 { $ $ \(\) }
18180 〈/package〉

(End definition for \l_tl_case_change_math_tl. This variable is documented on page 224.)

\l_tl_case_change_exclude_tl The list of commands for which an argument is not case changed.
18181 \tl_new:N \l_tl_case_change_exclude_tl
18182 〈*package〉
18183 \tl_set:Nn \l_tl_case_change_exclude_tl
18184 { \cite \ensuremath \label \ref }
18185 〈/package〉

(End definition for \l_tl_case_change_exclude_tl. This variable is documented on page 225.)

\l_tl_mixed_case_ignore_tl Characters to skip over when finding the first letter in a word to be mixed cased.
18186 \tl_new:N \l_tl_mixed_case_ignore_tl
18187 \tl_set:Nx \l_tl_mixed_case_ignore_tl
18188 {
18189 (%)
18190 [%]
18191 \cs_to_str:N \{ % \}
18192 ‘
18193 -
18194 }

(End definition for \l_tl_mixed_case_ignore_tl. This variable is documented on page 226.)

\tl_log:N
\tl_log:c

Redirect output of \tl_show:N to the log.
18195 \cs_new_protected_nopar:Npn \tl_log:N
18196 { __msg_log_next: \tl_show:N }
18197 \cs_generate_variant:Nn \tl_log:N { c }

821

(End definition for \tl_log:N and \tl_log:c. These functions are documented on page 227.)

\tl_log:n Redirect output of \tl_show:n to the log.
18198 \cs_new_protected_nopar:Npn \tl_log:n
18199 { __msg_log_next: \tl_show:n }

(End definition for \tl_log:n. This function is documented on page 227.)

35.20 Additions to l3tokens
18200 〈@@=peek〉

\peek_N_type:TF
__peek_execute_branches_N_type:

__peek_N_type:w
__peek_N_type_aux:nnw

All tokens are N-type tokens, except in four cases: begin-group tokens, end-group tokens,
space tokens with character code 32, and outer tokens. Since \l_peek_token might be
outer, we cannot use the convenient \bool_if:nTF function, and must resort to the old
trick of using \ifodd to expand a set of tests. The false branch of this test is taken if
the token is one of the first three kinds of non-N-type tokens (explicit or implicit), thus
we call __peek_false:w. In the true branch, we must detect outer tokens, without
impacting performance too much for non-outer tokens. The first filter is to search for
outer in the \meaning of \l_peek_token. If that is absent, \use_none_delimit_by_q_-
stop:w cleans up, and we call __peek_true:w. Otherwise, the token can be a non-outer
macro or a primitive mark whose parameter or replacement text contains outer, it can
be the primitive \outer, or it can be an outer token. Macros and marks would have ma
in the part before the first occurrence of outer; the meaning of \outer has nothing after
outer, contrarily to outer macros; and that covers all cases, calling __peek_true:w or
__peek_false:w as appropriate. Here, there is no 〈search token〉, so we feed a dummy
\scan_stop: to the __peek_token_generic:NNTF function.

18201 \group_begin:
18202 \cs_set_protected:Npn __peek_tmp:w #1 \q_stop
18203 {
18204 \cs_new_protected_nopar:Npn __peek_execute_branches_N_type:
18205 {
18206 \if_int_odd:w
18207 \if_catcode:w \exp_not:N \l_peek_token { \c_two \fi:
18208 \if_catcode:w \exp_not:N \l_peek_token } \c_two \fi:
18209 \if_meaning:w \l_peek_token \c_space_token \c_two \fi:
18210 \c_one
18211 \exp_after:wN __peek_N_type:w
18212 \token_to_meaning:N \l_peek_token
18213 \q_mark __peek_N_type_aux:nnw
18214 #1 \q_mark \use_none_delimit_by_q_stop:w
18215 \q_stop
18216 \exp_after:wN __peek_true:w
18217 \else:
18218 \exp_after:wN __peek_false:w
18219 \fi:
18220 }
18221 \cs_new_protected:Npn __peek_N_type:w ##1 #1 ##2 \q_mark ##3
18222 { ##3 {##1} {##2} }

822

18223 }
18224 \exp_after:wN __peek_tmp:w \tl_to_str:n { outer } \q_stop
18225 \group_end:
18226 \cs_new_protected:Npn __peek_N_type_aux:nnw #1 #2 #3 \fi:
18227 {
18228 \fi:
18229 \tl_if_in:noTF {#1} { \tl_to_str:n {ma} }
18230 { __peek_true:w }
18231 { \tl_if_empty:nTF {#2} { __peek_true:w } { __peek_false:w } }
18232 }
18233 \cs_new_protected_nopar:Npn \peek_N_type:TF
18234 { __peek_token_generic:NNTF __peek_execute_branches_N_type: \scan_stop: }
18235 \cs_new_protected_nopar:Npn \peek_N_type:T
18236 { __peek_token_generic:NNT __peek_execute_branches_N_type: \scan_stop: }
18237 \cs_new_protected_nopar:Npn \peek_N_type:F
18238 { __peek_token_generic:NNF __peek_execute_branches_N_type: \scan_stop: }

(End definition for \peek_N_type:TF. This function is documented on page 227.)

18239 〈/initex | package〉

36 l3sys implementation
18240 〈*initex | package〉

36.1 The name of the job
\c_sys_jobname_str Inherited from the LATEX3 name for the primitive: this needs to actually contain the text

of the job name rather than the name of the primitive, of course.
18241 〈*initex〉
18242 \tex_everyjob:D \exp_after:wN
18243 {
18244 \tex_the:D \tex_everyjob:D
18245 \str_const:Nx \c_sys_jobname_str { \tex_jobname:D }
18246 }
18247 〈/initex〉
18248 〈*package〉
18249 \str_const:Nx \c_sys_jobname_str { \tex_jobname:D }
18250 〈/package〉

(End definition for \c_sys_jobname_str. This variable is documented on page 228.)

36.2 Time and date
\c_sys_minute_int

\c_sys_hour_int
\c_sys_day_int

\c_sys_month_int
\c_sys_year_int

Copies of the information provided by TEX
18251 \int_const:Nn \c_sys_minute_int
18252 { \int_mod:nn { \tex_time:D } { 60 } }
18253 \int_const:Nn \c_sys_hour_int
18254 { \int_div_truncate:nn { \tex_time:D } { 60 } }
18255 \int_const:Nn \c_sys_day_int { \tex_day:D }

823

18256 \int_const:Nn \c_sys_month_int { \tex_month:D }
18257 \int_const:Nn \c_sys_year_int { \tex_year:D }

(End definition for \c_sys_minute_int and others. These variables are documented on page 228.)

36.3 Detecting the engine
\sys_if_engine_luatex_p:
\sys_if_engine_pdftex_p:

\sys_if_engine_ptex_p:
\sys_if_engine_uptex_p:
\sys_if_engine_xetex_p:
\sys_if_engine_luatex:TF
\sys_if_engine_pdftex:TF

\sys_if_engine_ptex:TF
\sys_if_engine_uptex:TF
\sys_if_engine_xetex:TF

\c_sys_engine_str

Set up the engine tests on the basis exactly one test should be true. Mainly a case of
looking for the appropriate marker primitive. For upTEX, there is a complexity in that
setting -kanji-internal=sjis or -kanji-internal=euc effective makes it more like
pTEX. In those cases we therefore report pTEX rather than upTEX.

18258 \clist_map_inline:nn { lua , pdf , p , up , xe }
18259 {
18260 \cs_new_eq:cN { sys_if_engine_ #1 tex:T } \use_none:n
18261 \cs_new_eq:cN { sys_if_engine_ #1 tex:F } \use:n
18262 \cs_new_eq:cN { sys_if_engine_ #1 tex:TF } \use_ii:nn
18263 \cs_new_eq:cN { sys_if_engine_ #1 tex_p: } \c_false_bool
18264 }
18265 \cs_if_exist:NT \luatex_luatexversion:D
18266 {
18267 \cs_gset_eq:NN \sys_if_engine_luatex:T \use:n
18268 \cs_gset_eq:NN \sys_if_engine_luatex:F \use_none:n
18269 \cs_gset_eq:NN \sys_if_engine_luatex:TF \use_i:nn
18270 \cs_gset_eq:NN \sys_if_engine_luatex_p: \c_true_bool
18271 \str_const:Nn \c_sys_engine_str { luatex }
18272 }
18273 \cs_if_exist:NT \pdftex_pdftexversion:D
18274 {
18275 \cs_gset_eq:NN \sys_if_engine_pdftex:T \use:n
18276 \cs_gset_eq:NN \sys_if_engine_pdftex:F \use_none:n
18277 \cs_gset_eq:NN \sys_if_engine_pdftex:TF \use_i:nn
18278 \cs_gset_eq:NN \sys_if_engine_pdftex_p: \c_true_bool
18279 \str_const:Nn \c_sys_engine_str { pdftex }
18280 }
18281 \cs_if_exist:NT \ptex_kanjiskip:D
18282 {
18283 \bool_if:nTF
18284 {
18285 \cs_if_exist_p:N \uptex_disablecjktoken:D &&
18286 \int_compare_p:nNn { \ptex_jis:D "2121 } = { "3000 }
18287 }
18288 {
18289 \cs_gset_eq:NN \sys_if_engine_uptex:T \use:n
18290 \cs_gset_eq:NN \sys_if_engine_uptex:F \use_none:n
18291 \cs_gset_eq:NN \sys_if_engine_uptex:TF \use_i:nn
18292 \cs_gset_eq:NN \sys_if_engine_uptex_p: \c_true_bool
18293 \str_const:Nn \c_sys_engine_str { uptex }
18294 }
18295 {

824

18296 \cs_gset_eq:NN \sys_if_engine_ptex:T \use:n
18297 \cs_gset_eq:NN \sys_if_engine_ptex:F \use_none:n
18298 \cs_gset_eq:NN \sys_if_engine_ptex:TF \use_i:nn
18299 \cs_gset_eq:NN \sys_if_engine_ptex_p: \c_true_bool
18300 \str_const:Nn \c_sys_engine_str { ptex }
18301 }
18302 }
18303 \cs_if_exist:NT \xetex_XeTeXversion:D
18304 {
18305 \cs_gset_eq:NN \sys_if_engine_xetex:T \use:n
18306 \cs_gset_eq:NN \sys_if_engine_xetex:F \use_none:n
18307 \cs_gset_eq:NN \sys_if_engine_xetex:TF \use_i:nn
18308 \cs_gset_eq:NN \sys_if_engine_xetex_p: \c_true_bool
18309 \str_const:Nn \c_sys_engine_str { xetex }
18310 }

(End definition for \sys_if_engine_luatex:TF and others. These functions are documented on page
228.)

36.4 Detecting the output
\sys_if_output_dvi_p:
\sys_if_output_pdf_p:
\sys_if_output_dvi:TF
\sys_if_output_pdf:TF

\c_sys_output_str

This is a simple enough concept: the two views here are complementary.
18311 \bool_if:nTF
18312 {
18313 \cs_if_exist_p:N \pdftex_pdfoutput:D
18314 && \int_compare_p:nNn \pdftex_pdfoutput:D > \c_zero
18315 }
18316 {
18317 \cs_new_eq:NN \sys_if_output_dvi:T \use_none:n
18318 \cs_new_eq:NN \sys_if_output_dvi:F \use:n
18319 \cs_new_eq:NN \sys_if_output_dvi:TF \use_ii:nn
18320 \cs_new_eq:NN \sys_if_output_dvi_p: \c_false_bool
18321 \cs_new_eq:NN \sys_if_output_pdf:T \use:n
18322 \cs_new_eq:NN \sys_if_output_pdf:F \use_none:n
18323 \cs_new_eq:NN \sys_if_output_pdf:TF \use_i:nn
18324 \cs_new_eq:NN \sys_if_output_pdf_p: \c_true_bool
18325 \str_const:Nn \c_sys_output_str { pdf }
18326 }
18327 {
18328 \cs_new_eq:NN \sys_if_output_dvi:T \use:n
18329 \cs_new_eq:NN \sys_if_output_dvi:F \use_none:n
18330 \cs_new_eq:NN \sys_if_output_dvi:TF \use_i:nn
18331 \cs_new_eq:NN \sys_if_output_dvi_p: \c_true_bool
18332 \cs_new_eq:NN \sys_if_output_pdf:T \use_none:n
18333 \cs_new_eq:NN \sys_if_output_pdf:F \use:n
18334 \cs_new_eq:NN \sys_if_output_pdf:TF \use_ii:nn
18335 \cs_new_eq:NN \sys_if_output_pdf_p: \c_false_bool
18336 \str_const:Nn \c_sys_output_str { dvi }
18337 }

825

(End definition for \sys_if_output_dvi:TF and \sys_if_output_pdf:TF. These functions are docu-
mented on page 229.)

36.5 Deprecated functions
Deprecated 2015-09-07 for removal after 2016-12-31. The older logic supported only three
engines so that has to be allowed for.

18338 \prg_new_eq_conditional:NNn \luatex_if_engine: \sys_if_engine_luatex:
18339 { T , F , TF , p }
18340 \prg_new_eq_conditional:NNn \xetex_if_engine: \sys_if_engine_xetex:
18341 { T , F , TF , p }
18342 \bool_if:nTF
18343 {
18344 \sys_if_engine_luatex_p: ||
18345 \sys_if_engine_xetex_p:
18346 }
18347 {
18348 \cs_new_eq:NN \pdftex_if_engine:T \use_none:n
18349 \cs_new_eq:NN \pdftex_if_engine:F \use:n
18350 \cs_new_eq:NN \pdftex_if_engine:TF \use_ii:nn
18351 \cs_new_eq:NN \pdftex_if_engine_p: \c_false_bool
18352 }
18353 {
18354 \cs_new_eq:NN \pdftex_if_engine:T \use:n
18355 \cs_new_eq:NN \pdftex_if_engine:F \use_none:n
18356 \cs_new_eq:NN \pdftex_if_engine:TF \use_i:nn
18357 \cs_new_eq:NN \pdftex_if_engine_p: \c_true_bool
18358 }

Deprecated 2015-09-19 for removal after 2016-12-31.
18359 \cs_set_eq:NN \c_job_name_tl \c_sys_jobname_str

18360 〈/initex | package〉

37 l3luatex implementation
18361 〈*initex | package〉

37.1 Breaking out to Lua
18362 〈*tex〉

\lua_now_x:n
\lua_now:n

\lua_shipout_x:n
\lua_shipout:n
\lua_escape_x:n
\lua_escape:n

Wrappers around the primitives. As with engines other than LuaTEX these have to be
macros, we give them the same status in all cases. When LuaTEX is not in use, simply
give an error message/

18363 \cs_new:Npn \lua_now_x:n #1 { \luatex_directlua:D {#1} }
18364 \cs_new:Npn \lua_now:n #1 { \lua_now_x:n { \exp_not:n {#1} } }
18365 \cs_new_protected:Npn \lua_shipout_x:n #1 { \luatex_latelua:D {#1} }
18366 \cs_new_protected:Npn \lua_shipout:n #1
18367 { \lua_shipout_x:n { \exp_not:n {#1} } }

826

18368 \cs_new:Npn \lua_escape_x:n #1 { \luatex_luaescapestring:D {#1} }
18369 \cs_new:Npn \lua_escape:n #1 { \lua_escape_x:n { \exp_not:n {#1} } }
18370 \sys_if_engine_luatex:F
18371 {
18372 \clist_map_inline:nn
18373 { \lua_now_x:n , \lua_now:n , \lua_escape_x:n , \lua_escape:n }
18374 {
18375 \cs_set:Npn #1 ##1
18376 {
18377 __msg_kernel_expandable_error:nnn
18378 { kernel } { luatex-required } { #1 }
18379 }
18380 }
18381 \clist_map_inline:nn
18382 { \lua_shipout_x :n , \lua_shipout:n }
18383 {
18384 \cs_set_protected:Npn #1 ##1
18385 {
18386 __msg_kernel_error:nnn
18387 { kernel } { luatex-required } { #1 }
18388 }
18389 }
18390 }

(End definition for \lua_now_x:n and \lua_now:n. These functions are documented on page 230.)

37.2 Messages
18391 __msg_kernel_new:nnnn { kernel } { luatex-required }
18392 { LuaTeX~engine~not~in~use!~Ignoring~#1. }
18393 {
18394 The~feature~you~are~using~is~only~available~
18395 with~the~LuaTeX~engine.~LaTeX3~ignored~’#1’.
18396 }

18397 〈/tex〉

37.3 Lua functions for internal use
18398 〈*lua〉

l3kernel Create a table for the kernel’s own use.
18399 l3kernel = l3kernel or { }

(End definition for l3kernel. This function is documented on page ??.)
Various local copies of standard functions: naming convention is to retain the full

text but replace all . by _.
18400 local tex_setcatcode = tex.setcatcode
18401 local tex_sprint = tex.sprint
18402 local tex_write = tex.write
18403 local unicode_utf8_char = unicode.utf8.char

827

l3kernel.strcmp String comparison which gives the same results as pdfTEX’s \pdfstrcmp, although the
ordering should likely not be relied upon!

18404 local function strcmp (A, B)
18405 if A == B then
18406 tex_write("0")
18407 elseif A < B then
18408 tex_write("-1")
18409 else
18410 tex_write("1")
18411 end
18412 end
18413 l3kernel.strcmp = strcmp

(End definition for l3kernel.strcmp. This function is documented on page 231.)

l3kernel.charcat Creating arbitrary chars needs a category code table. As set up here, one may have been
assigned earlier (see l3bootstrap) or a hard-coded one is used. The latter is intended for
format mode and should be adjusted to match an eventual allocator.

18414 local charcat_table = l3kernel.charcat_table or 1
18415 local function charcat (charcode, catcode)
18416 tex_setcatcode(charcat_table, charcode, catcode)
18417 tex_sprint(charcat_table, unicode_utf8_char(charcode))
18418 end
18419 l3kernel.charcat = charcat

(End definition for l3kernel.charcat. This function is documented on page 231.)

18420 〈/lua〉

18421 〈/initex | package〉

37.4 Format mode code: font loader
18422 〈*fontloader〉

In format mode, there needs to be a font loader available to let us use OpenType
fonts. For testing, this is provided by fontloader.lua from the Speedata Publisher
system (https://github.com/speedata/publisher). The code there is designed to be
self-contained and has a certain number of build-in assumptions, so there is a small
amount of compatibility required.

The code we load looks up texmf tree files using kpse.filelist, which isn’t part
of the standard kpse library. The interface is emulated using metatable.

18423 kpse.filelist = setmetatable({}, {
18424 __index = function (t, key)
18425 return kpse.lookup(key)
18426 end
18427 })

There is a built-in assumption in fontloader.lua that various environmental variables
are set. We deal with that by intercepting the relevant names and returning something
sane.

828

https://github.com/speedata/publisher

18428 local os_getenv = os.getenv
18429 function os.getenv (var)
18430 if var == "SP_FONT_PATH" then return "" end
18431 return os_getenv(var)
18432 end

As detailed in https://github.com/speedata/publisher/blob/develop/COPYING, the
current license for Speedata Publisher is AGPLv3. We therefore only load the file and
use its public interfaces rather than copying/modifying the code itself. Note though
that we do have permission to use fontloader.lua as a public domain work (http:
//chat.stackexchange.com/transcript/message/27273687#27273687): if we want to
develop a richer loader we may want to take advantage of that (which also applies to the
simple shaper in the related fonts.lua file).

18433 local fontloader = require("fontloader.lua")

That done, register a callback which at present simply passes everything through. There’s
no attempt to pick up font settings (which presumably will be needed). Syntax is coerced
to the same as for X ETEX.

18434 callback.register("define_font",
18435 function (name, size, id)
18436 local opts, opttab, otfeatures = "", { }, { }
18437 if string.match(name, "^%[") then
18438 name, opts = string.match(name, "^%[([^%]]*)%][^:]*:?(.*)")
18439 end
18440 if opts ~= "" then
18441 for _,kv in ipairs(string.explode(opts,";")) do
18442 if string.match(kv, "=") then
18443 local k, v = string.match(kv, "([^=]*)=?(.*)")
18444 opttab[k] = v
18445 else
18446 if string.match(kv, "^+") then
18447 otfeatures[string.sub(kv,2,-1)] = "true"
18448 elseif string.match(kv, "^-") then
18449 otfeatures[string.sub(kv,2,-1)] = "false"
18450 else
18451 otfeatures[kv] = "true"
18452 end
18453 end
18454 end
18455 end
18456 if next(otfeatures) then
18457 opttab["otfeatures"] = otfeatures
18458 end
18459 return select(2, fontloader.define_font(name, size, opttab))
18460 end
18461)

18462 〈/fontloader〉

38 l3drivers Implementation

829

https://github.com/speedata/publisher/blob/develop/COPYING
http://chat.stackexchange.com/transcript/message/27273687#27273687
http://chat.stackexchange.com/transcript/message/27273687#27273687

18463 〈*initex | package〉
18464 〈@@=driver〉

18465 〈*package〉
18466 \ProvidesExplFile
18467 〈*dvipdfmx〉
18468 {l3dvidpfmx.def}{\ExplFileDate}{\ExplFileVersion}
18469 {L3 Experimental driver: dvipdfmx}
18470 〈/dvipdfmx〉
18471 〈*dvips〉
18472 {l3dvips.def}{\ExplFileDate}{\ExplFileVersion}
18473 {L3 Experimental driver: dvips}
18474 〈/dvips〉
18475 〈*pdfmode〉
18476 {l3pdfmode.def}{\ExplFileDate}{\ExplFileVersion}
18477 {L3 Experimental driver: PDF mode}
18478 〈/pdfmode〉
18479 〈*xdvipdfmx〉
18480 {l3xdvidpfmx.def}{\ExplFileDate}{\ExplFileVersion}
18481 {L3 Experimental driver: xdvipdfmx}
18482 〈/xdvipdfmx〉
18483 〈/package〉

38.1 Settings for direct PDF output
If the driver loaded is pdfmode then direct PDF output is required. (This may of course
alter: it might be that the driver is picked based on the value of \pdftex_pdfoutput:D.)

18484 〈*initex〉
18485 〈*pdfmode〉
18486 \pdftex_pdfoutput:D = 1 \scan_stop:
18487 〈/pdfmode〉
18488 〈/initex〉

Set up the driver for direct PDF output to set the PDF origin equal to TEX’s standard
origin. The other settings make use of PDF 1.5, which is standard in TEX Live 2011 and
should be a reasonable baseline for the future.

18489 〈*initex〉
18490 〈*pdfmode〉
18491 \group_begin:
18492 \cs_set_proteced:Npx __driver_tmp:w #1 =
18493 {
18494 \tex_global:D
18495 \cs_if_exist:NTF \luatex_pdfvariable:D
18496 { \exp_not:N \luatex_pdfvariable:D #1 }
18497 { \exp_not:c { pdftex_pdf #1 :D } }
18498 =
18499 }
18500 __driver_tmp:w horigin = 1 true in \scan_stop:
18501 __driver_tmp:w vorigin = 1 true in \scan_stop:
18502 __driver_tmp:w decimaldigits = 3 \scan_stop:
18503 __driver_tmp:w pkresolution = 600 \scan_stop:

830

18504 __driver_tmp:w minorversion = 5 \scan_stop:
18505 __driver_tmp:w compresslevel = 9 \scan_stop:
18506 __driver_tmp:w objcompresslevel = 2 \scan_stop:
18507 \group_end:
18508 〈/pdfmode〉
18509 〈/initex〉

38.2 Driver utility functions
__driver_state_save:

__driver_state_restore:
All of the drivers have a stack for saving the graphic state. These have slightly different
interfaces. For both dvips and (x)dvipdfmx this is done using an appropriate special.
Note that here and later, the dvipdfmx documentation does not cover the literal key
word but that this appears to behave in the same way as pdfTEX’s \pdfliteral (mak-
ing life easier all-round). For pdfTEX in direct PDF output mode there is a dedicated
primitive. LuaTEX is almost the same but with newer versions there is a compatibly step

18510 \cs_new_protected_nopar:Npx __driver_state_save:
18511 〈*dvips〉
18512 { \tex_special:D { ps:gsave } }
18513 〈/dvips〉
18514 〈*dvipdfmx | xdvipdfmx〉
18515 { \tex_special:D { pdf:literal~q } }
18516 〈/dvipdfmx | xdvipdfmx〉
18517 〈*pdfmode〉
18518 {
18519 \cs_if_exist:NTF \luatex_pdfextension:D
18520 { \luatex_pdfextension:D save \scan_stop: }
18521 { \pdftex_pdfsave:D }
18522 }
18523 〈/pdfmode〉
18524 \cs_new_protected_nopar:Npx __driver_state_restore:
18525 〈*dvips〉
18526 { \tex_special:D { ps:grestore } }
18527 〈/dvips〉
18528 〈*dvipdfmx | xdvipdfmx〉
18529 { \tex_special:D { pdf:literal~Q } }
18530 〈/dvipdfmx | xdvipdfmx〉
18531 〈*pdfmode〉
18532 {
18533 \cs_if_exist:NTF \luatex_pdfextension:D
18534 { \luatex_pdfextension:D restore \scan_stop: }
18535 { \pdftex_pdfrestore:D }
18536 }
18537 〈/pdfmode〉

(End definition for __driver_state_save: and __driver_state_restore:. These functions are doc-
umented on page ??.)

__driver_literal:n The driver code needs to pass on a lot of “raw” information to the underlying binary.
The exact command is driver-dependent but the concept is general enough to use a

831

single function. However, it is important to remember this is a convenient shortcut: the
arguments will be driver-specific. Note that these functions set the transformation matrix
to the current position: contrast with __driver_literal_direct:n.

18538 \cs_new_protected:Npx __driver_literal:n #1
18539 〈*dvipdfmx | xdvipdfmx〉
18540 { \tex_special:D { pdf:literal~ #1 } }
18541 〈/dvipdfmx | xdvipdfmx〉
In the case of dvips there is no build-in saving of the current position, and so some
additional PostScript is required to set up the transformation matrix and also to restore
it afterwards. Notice the use of the stack to save the current position “up front” and to
move back to it at the end of the process.

18542 〈*dvips〉
18543 {
18544 \tex_special:D
18545 {
18546 ps:
18547 currentpoint~
18548 currentpoint~translate~
18549 #1 ~
18550 neg~exch~neg~exch~translate
18551 }
18552 }
18553 〈/dvips〉
18554 〈*pdfmode〉
18555 {
18556 \cs_if_exist:NTF \luatex_pdfextension:D
18557 { \luatex_pdfextension:D literal }
18558 { \pdftex_pdfliteral:D }
18559 {#1}
18560 }
18561 〈/pdfmode〉

(End definition for __driver_literal:n.)

__driver_absolute_lengths:n The dvips driver scales all absolute dimensions based on the output resolution selected
and any TEX magnification. Thus for any operation involving absolute lengths there is a
correction to make. This is based on normalscale from special.pro.

18562 〈*dvips〉
18563 \cs_new:Npn __driver_absolute_lengths:n #1
18564 {
18565 /savedmatrix~matrix~currentmatrix~def~
18566 Resolution~72~div~VResolution~72~div~scale~
18567 DVImag~dup~scale~
18568 #1 ~
18569 savedmatrix~setmatrix
18570 }
18571 〈/dvips〉

(End definition for __driver_absolute_lengths:n.)

832

__driver_matrix:n Here the appropriate function is set up to insert an affine matrix into the PDF. With
pdfTEX and LuaTEX in direct PDF output mode there is a primitive for this, which only
needs the rotation/scaling/skew part. With (x)dvipdfmx the matrix also has to include
a translation part: that is always zero and so is built in here.

18572 〈*!dvips〉
18573 \cs_new_protected:Npx __driver_matrix:n #1
18574 〈*pdfmode〉
18575 {
18576 \cs_if_exist:NTF \luatex_pdfextension:D
18577 { \luatex_pdfextension:D setmatrix }
18578 { \pdftex_pdfsetmatrix:D }
18579 {#1}
18580 }
18581 〈/pdfmode〉
18582 〈*dvipdfmx | xdvipdfmx〉
18583 { __driver_literal:n { #1 \c_space_tl 0~0~cm } }
18584 〈/dvipdfmx | xdvipdfmx〉
18585 〈/!dvips〉

(End definition for __driver_matrix:n.)

38.3 Box clipping
__driver_box_use_clip:N The overall logic to clipping a box is the same in all cases. The general method is to save

the current location, define a clipping path equivalent to the bounding box, then insert
the content at the current position and in a zero width box. The “real” width is then
made up using a horizontal skip before tidying up. There are other approaches that can
be taken (for example using XForm objects), but the logic here shares as much code as
possible and uses the same conversions (and so same rounding errors) in all three cases.

18586 \cs_new_protected:Npn __driver_box_use_clip:N #1
18587 {
18588 __driver_state_save:
18589 〈*dvips〉
18590 __driver_literal:n
18591 {
18592 __driver_absolute_lengths:n
18593 {
18594 0~
18595 \dim_to_decimal_in_bp:n { \box_dp:N #1 } ~
18596 \dim_to_decimal_in_bp:n { \box_wd:N #1 } ~
18597 \dim_to_decimal_in_bp:n { -\box_ht:N #1 - \box_dp:N #1 } ~
18598 rectclip
18599 }
18600 }
18601 〈/dvips〉
18602 〈*dvipdfmx | pdfmode | xdvipdfmx〉
18603 __driver_literal:n
18604 {
18605 0~

833

18606 \dim_to_decimal_in_bp:n { -\box_dp:N #1 } ~
18607 \dim_to_decimal_in_bp:n { \box_wd:N #1 } ~
18608 \dim_to_decimal_in_bp:n { \box_ht:N #1 + \box_dp:N #1 } ~
18609 re~W~n
18610 }
18611 〈/dvipdfmx | pdfmode | xdvipdfmx〉
Insert the material in a box of no width, restore the graphic state and then insert the
necessary width.

18612 \hbox_overlap_right:n { \box_use:N #1 }
18613 __driver_state_restore:
18614 \skip_horizontal:n { \box_wd:N #1 }
18615 }

(End definition for __driver_box_use_clip:N. This function is documented on page 232.)

38.4 Box rotation and scaling
__driver_box_rotate_begin:

__driver_box_rotate_end:
The driver for dvips works with a simple rotation angle. In PDF mode, an affine matrix
is used instead. The transformation for (x)dvipdfmx can be done either way: the affine
approach is chosen here as where possible we pick the PDF-style route.

In both cases, some rounding code is included to limit the floating point values to
five decimal places. There is no point using any more as TEX’s dimensions are of that
precision, and the extra figures will simply bloat the PDF and make values harder to
trace. In the case where the sine and cosine are used, we store the rounded values to
avoid rounding twice. There are also a couple of comparisons to ensure that -0 is not
written to the output, as this avoids any issues with problematic display programs. Note
that numbers are compared to 0 after rounding.

18616 \cs_new_protected_nopar:Npn __driver_box_rotate_begin:
18617 {
18618 __driver_state_save:
18619 〈*dvipdfmx | pdfmode | xdvipdfmx〉
18620 \box_set_wd:Nn \l__box_internal_box \c_zero_dim
18621 \fp_set:Nn \l__box_cos_fp { round (\l__box_cos_fp , 5) }
18622 \fp_compare:nNnT \l__box_cos_fp = \c_zero_fp
18623 { \fp_zero:N \l__box_cos_fp }
18624 \fp_set:Nn \l__box_sin_fp { round (\l__box_sin_fp , 5) }
18625 __driver_matrix:n
18626 {
18627 \fp_use:N \l__box_cos_fp \c_space_tl
18628 \fp_compare:nNnTF \l__box_sin_fp = \c_zero_fp
18629 { 0~0 }
18630 {
18631 \fp_use:N \l__box_sin_fp
18632 \c_space_tl
18633 \fp_eval:n { -\l__box_sin_fp }
18634 }
18635 \c_space_tl
18636 \fp_use:N \l__box_cos_fp

834

18637 }
18638 〈/dvipdfmx | pdfmode | xdvipdfmx〉
18639 〈*dvips〉
18640 \fp_set:Nn \l__box_angle_fp { round (\l__box_angle_fp , 5) }
18641 __driver_literal:n
18642 {
18643 \fp_compare:nNnTF \l__box_angle_fp = \c_zero_fp
18644 { 0 }
18645 { \fp_eval:n { -\l__box_angle_fp } }
18646 \c_space_tl
18647 rotate
18648 }
18649 〈/dvips〉
18650 }

The end of a rotation means tidying up the output grouping.
18651 \cs_new_eq:NN __driver_box_rotate_end: __driver_state_restore:

(End definition for __driver_box_rotate_begin: and __driver_box_rotate_end:. These functions
are documented on page 233.)

__driver_box_scale_begin:
__driver_box_scale_end:

Scaling is not dissimilar to rotation, but the calculations are somewhat less complex.
18652 \cs_new_protected_nopar:Npn __driver_box_scale_begin:
18653 {
18654 __driver_state_save:
18655 \fp_set:Nn \l__box_scale_x_fp { round (\l__box_scale_x_fp , 5) }
18656 \fp_set:Nn \l__box_scale_y_fp { round (\l__box_scale_y_fp , 5) }
18657 〈*dvips〉
18658 __driver_literal:n
18659 {
18660 \fp_use:N \l__box_scale_x_fp \c_space_tl
18661 \fp_use:N \l__box_scale_y_fp \c_space_tl
18662 scale
18663 }
18664 〈/dvips〉
18665 〈*dvipdfmx | pdfmode | xdvipdfmx〉
18666 __driver_matrix:n
18667 {
18668 \fp_use:N \l__box_scale_x_fp \c_space_tl
18669 0~0~
18670 \fp_use:N \l__box_scale_y_fp
18671 }
18672 〈/dvipdfmx | pdfmode | xdvipdfmx〉
18673 }
18674 \cs_new_eq:NN __driver_box_scale_end: __driver_state_restore:

(End definition for __driver_box_scale_begin: and __driver_box_scale_end:. These functions are
documented on page 233.)

835

38.5 Color support
\l__driver_current_color_tl The current color is needed by all of the engines, but the way this is stored varies.

18675 \tl_new:N \l__driver_current_color_tl
18676 〈*dvipdfmx | dvips | xdvipdfmx〉
18677 \tl_set:Nn \l__driver_current_color_tl { gray~0 }
18678 〈/dvipdfmx | dvips | xdvipdfmx〉
18679 〈*pdfmode〉
18680 \tl_set:Nn \l__driver_current_color_tl { 0~g~0~G }
18681 〈/pdfmode〉

(End definition for \l__driver_current_color_tl. This variable is documented on page ??.)

\l__driver_color_stack_int pdfTEX and LuaTEX have multiple stacks available, and the color stack therefore needs
a number when in PDF mode.

18682 〈*pdfmode〉
18683 \int_new:N \l__driver_color_stack_int
18684 〈/pdfmode〉

(End definition for \l__driver_color_stack_int. This variable is documented on page ??.)

__driver_color_ensure_current:
__driver_color_reset:

Setting the current color depends on the nature of the color stack available. In all cases
there is a need to reset the color after the current group.

18685 \cs_new_protected_nopar:Npx __driver_color_ensure_current:
18686 〈*dvipdfmx | dvips | xdvipdfmx〉
18687 {
18688 \tex_special:D { color~push~\exp_not:N \l__driver_current_color_tl }
18689 \group_insert_after:N \exp_not:N __driver_color_reset:
18690 }
18691 〈/dvipdfmx | dvips | xdvipdfmx〉
18692 〈*pdfmode〉
18693 {
18694 \cs_if_exist:NTF \luatex_pdfextension:D
18695 { \luatex_pdfextension:D colorstack }
18696 { \pdftex_pdfcolorstack:D }
18697 \exp_not:N \l__driver_color_stack_int push
18698 { \exp_not:N \l__driver_current_color_tl }
18699 \group_insert_after:N \exp_not:N __driver_color_reset:
18700 }
18701 〈/pdfmode〉
18702 \cs_new_protected_nopar:Npx __driver_color_reset:
18703 〈*dvipdfmx | dvips | xdvipdfmx〉
18704 { \tex_special:D { color~pop } }
18705 〈/dvipdfmx | dvips | xdvipdfmx〉
18706 〈*pdfmode〉
18707 {
18708 \cs_if_exist:NTF \luatex_pdfextension:D
18709 { \luatex_pdfextension:D colorstack }
18710 { \pdftex_pdfcolorstack:D }
18711 \exp_not:N \l__driver_color_stack_int pop \scan_stop:

836

18712 }
18713 〈/pdfmode〉

(End definition for __driver_color_ensure_current:. This function is documented on page 233.)

18714 〈/initex | package〉

837

Index 838

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\! . 514
\" . 328, 328, 817
\# 234, 328, 430, 431, 575, 575
\$. 328, 328, 430
\% 328, 430, 575, 575
\& 328, 328, 430, 514, 514, 643, 645
&& . 203
\’ . 817
\(. 821
\(pdf)strcmp 418
\) . 642, 821
* . 204
* 333, 333, 333, 333, 421, 641
** . 204
+ . 204, 204
\+ 643, 643, 643, 644
\, . 533, 643
- . 204, 204
\- 240, 240, 242, 643
\. 817
.. commands:

\..._new 540
/ . 204
\/ . 242, 643
\: . 430
\::: 36, 291, 292, 292, 292, 292, 292, 292,

292, 292, 292, 292, 292, 292, 293,
293, 293, 293, 297, 297, 297, 297,
297, 297, 297, 297, 297, 297, 297,
297, 297, 297, 298, 298, 298, 298,
298, 298, 298, 298, 298, 298, 298,
298, 298, 298, 298, 298, 298, 298,
298, 298, 299, 299, 299, 299, 299, 308

\::N 36, 292, 292,
297, 298, 298, 298, 298, 298, 298, 299

\::V 36, 293, 293, 297
\::V_unbraced 298, 298
\::c . 36, 292,

292, 297, 297, 297, 298, 298, 298, 298
\::error 219, 790
\::f 36, 292, 293, 297, 297, 297, 297, 297, 299
\::f_unbraced 298, 298

\::n 36, 292, 292, 297, 297,
297, 297, 297, 298, 298, 298, 298,
298, 298, 298, 298, 298, 298, 299, 299

\::o 36, 292, 292, 297, 297, 297, 297, 297,
297, 297, 298, 298, 298, 298, 298,
298, 298, 298, 298, 298, 298, 298, 299

\::o_unbraced . 298, 298, 299, 299, 299, 299
\::p 36, 291, 292, 292
\::v . 36, 293, 293
\::v_unbraced 298, 298
\::x 36, 293, 293, 297,

297, 297, 297, 297, 298, 298, 298,
298, 298, 298, 298, 298, 298, 298, 298

\::x_unbraced 298, 298, 299
:N . 643
< . 204
= . 204
? . 204
\? . 646
? commands:

?: . 203
\\ 328, 430, 508, 508,

508, 508, 511, 511, 512, 512, 512,
512, 512, 512, 513, 513, 513, 513,
513, 513, 513, 513, 513, 513, 515,
515, 517, 517, 518, 518, 524, 524,
524, 524, 524, 525, 525, 525, 525,
525, 525, 526, 526, 526, 526, 526,
532, 532, 532, 556, 557, 557, 557,
557, 557, 557, 557, 557, 575, 579,
579, 599, 599, 599, 599, 599, 599, 599

\{ 4, 3005, 6222, 8909, 9376,
9572, 9576, 9577, 10924, 10924, 18191

\} 5, 3005, 6223, 8910, 9376,
9572, 9576, 9577, 10926, 10926, 18191

. . . commands:
\l_... 488
\..._open:Nn 185

〈name〉 commands:
\〈name〉:〈arg spec〉 37, 37, 38, 38
\〈name〉:〈arg spec〉F 38
\〈name〉:〈arg spec〉T 38
\〈name〉:〈arg spec〉TF 38
\〈name〉_p:〈arg spec〉 38

Index 839

〈type〉 commands:
\〈type〉_map_break:

. 44, 44, 44, 44, 44, 49, 49, 49
\〈type〉_map_break:n 44
\〈type〉_use:N 192

\^ 234, 234, 236,
239, 239, 239, 239, 239, 239, 281,
301, 301, 328, 328, 328, 328, 330,
394, 430, 514, 572, 574, 574, 574,
574, 574, 574, 574, 574, 643, 725, 817

^ . 204
_ . 328, 328, 430
\‘ . 817
\~ 328, 328, 394, 430, 575, 575, 817

\␣ . 242, 276,
328, 421, 431, 514, 514, 525, 525,
525, 526, 526, 526, 526, 529, 532,
532, 532, 532, 532, 532, 532, 532,
532, 532, 532, 532, 532, 532, 574, 575

A
\A . 421, 421
\AA . 816
\aa . 816
\above . 242
\abovedisplayshortskip 242
\abovedisplayskip 242
\abovewithdelims 242
abs . 204
\accent . 242
acos . 206
acosd . 207
acot . 207
acotd . 207
acsc . 206
acscd . 207
\adjdemerits 242
\adjustspacing 256
\advance 239, 239, 242
\AE . 816
\ae . 816
\afterassignment 242
\aftergroup . 242
\alignmark . 254
alignment commands:

\c_alignment_token
. 56, 333, 333, 334, 334

\aligntab . 254

ampersand commands:
\c_ampersand_str 117, 429, 430

asec . 206
asecd . 207
asin . 206
asind . 207
atan . 207
atand . 207
\AtBeginDocument 509, 563, 564
\atop . 242
\atopwithdelims 242
atsign commands:

\c_atsign_str 117, 429, 430
\attribute . 254
\attributedef 254
\autospacing 260
\autoxspacing 260

B
backslash commands:

\c_backslash_str 117, 429, 430
\badness . 242
\baselineskip 243
\batchmode . 243
\begincsname 254
\begingroup 234, 234,

235, 235, 235, 236, 238, 238, 242, 243
\beginL . 249
\beginR . 249
\belowdisplayshortskip 243
\belowdisplayskip 243
\binoppenalty 243
\bodydir . 256
bool commands:

__bool_&_0:w 315
__bool_&_1:w 315
__bool_(:Nw 314
__bool_)_0:w 315
__bool_)_1:w 315
__bool_:Nw 314
__bool_choose:NNN . 314, 314, 314, 314
\bool_do_until:cn 317
\bool_do_until:Nn

. 42, 42, 317, 317, 317, 317
\bool_do_until:nn 42, 42, 317, 318, 318
\bool_do_while:cn 317
\bool_do_while:Nn

. 42, 42, 317, 317, 317, 317
\bool_do_while:nn 42, 42, 317, 317, 318

Index 840

__bool_eval_skip_to_end_auxi:Nw
. 315, 315, 315, 316, 316

__bool_eval_skip_to_end_-
auxii:Nw 315, 316, 316

__bool_eval_skip_to_end_-
auxiii:Nw 315, 316, 316

__bool_get_next:NN
. . . . 313, 313, 313, 314, 314, 315, 315

.bool_gset:c 173, 545
\bool_gset:cn 309
.bool_gset:N 173, 545
\bool_gset:Nn . . 40, 309, 309, 309, 310
\bool_gset_eq:cc 309, 309
\bool_gset_eq:cN 309, 309
\bool_gset_eq:Nc 309, 309
\bool_gset_eq:NN . . . 40, 309, 309, 310
\bool_gset_false:c 309
\bool_gset_false:N

. 40, 309, 309, 309, 310, 531, 532
.bool_gset_inverse:c 173, 545
.bool_gset_inverse:N 173, 545
\bool_gset_true:c 309
\bool_gset_true:N

. 40, 309, 309, 309, 310, 529
\bool_if:cTF 310
\bool_if:N 310
\bool_if:n 312
\bool_if:n(TF) 40
\bool_if:NF 241, 310, 317, 317, 506, 554
\bool_if:nF 318, 318, 790
\bool_if:NT . . . 310, 317, 317, 495, 526
\bool_if:nT 317, 318, 791, 793, 809, 813
\bool_if:NTF 40, 40,

287, 310, 310, 530, 532, 539, 551,
552, 552, 553, 553, 553, 553, 554, 577

\bool_if:nTF 41,
41, 42, 42, 43, 43, 311, 311, 551,
552, 791, 791, 791, 791, 805, 805,
807, 810, 820, 820, 822, 824, 825, 826

\bool_if_exist:c 311
\bool_if_exist:cTF 311
\bool_if_exist:N 311
\bool_if_exist:NF 540, 541
\bool_if_exist:NTF . . 41, 41, 311, 311
\bool_if_exist_p:c 311
\bool_if_exist_p:N 41, 41, 311
__bool_if_left_parentheses:wwwn

. 312, 313, 313, 313
__bool_if_or:wwwn . 312, 313, 313, 313
\bool_if_p:c 310

\bool_if_p:N 40, 40, 310, 310
\bool_if_p:n

. 41, 41, 309, 309, 310, 310,
311, 312, 312, 313, 316, 316, 317, 317

__bool_if_parse:NNNww
. 313, 313, 313, 313

__bool_if_right_parentheses:wwwn
. 312, 313, 313, 313

__bool_lazy_all:n . 790, 790, 790, 790
\bool_lazy_all:n 790
\bool_lazy_all:nTF

. 219, 220, 220, 220, 220, 790
\bool_lazy_all_p:n 220, 220, 790
\bool_lazy_and:nn 791
\bool_lazy_and:nnTF

. 219, 220, 220, 220, 220, 791
\bool_lazy_and_p:nn 220, 220, 220, 791
__bool_lazy_any:n . 791, 791, 791, 791
\bool_lazy_any:n 791
\bool_lazy_any:nTF

. 219, 220, 220, 220, 221, 791
\bool_lazy_any_p:n . 220, 220, 220, 791
\bool_lazy_or:nn 791
\bool_lazy_or:nnTF

. 219, 220, 221, 221, 221, 791
\bool_lazy_or_p:nn 221, 221, 791
\bool_log:c 791
\bool_log:N . . . 221, 221, 791, 791, 791
\bool_log:n 221, 221, 791, 791
\bool_new:c 308
\bool_new:N 40, 40, 308, 308,

308, 311, 311, 311, 311, 486, 529,
537, 537, 537, 537, 537, 540, 541, 573

\bool_not_p:n 41, 41, 316, 316
__bool_p:Nw 314
__bool_S_0:w 315
__bool_S_1:w 315
.bool_set:c 173, 545
\bool_set:cn 309
.bool_set:N 173, 545
\bool_set:Nn 40, 40, 309, 309, 309, 310
\bool_set_eq:cc 309, 309
\bool_set_eq:cN 309, 309
\bool_set_eq:Nc 309, 309
\bool_set_eq:NN . 40, 40, 309, 309, 310
\bool_set_false:c 309
\bool_set_false:N 40, 40,

241, 309, 309, 309, 309, 494, 506,
538, 550, 550, 550, 550, 551, 552, 577

.bool_set_inverse:c 173, 545

Index 841

.bool_set_inverse:N 173, 545
\bool_set_true:c 309
\bool_set_true:N . 40, 40, 241, 309,

309, 309, 309, 495, 496, 496, 538,
550, 550, 550, 550, 551, 553, 575, 578

\bool_show:c 311
\bool_show:N

. 40, 40, 311, 311, 311, 791, 791
\bool_show:n 40, 40, 311, 311, 791
__bool_to_str:n . . . 311, 311, 311, 311
\bool_until_do:cn 317
\bool_until_do:Nn

. 42, 42, 317, 317, 317, 317
\bool_until_do:nn 43, 43, 317, 318, 318
\bool_while_do:cn 317
\bool_while_do:Nn

. 42, 42, 317, 317, 317, 317
\bool_while_do:nn 43, 43, 317, 317, 317
\bool_xor_p:nn 42, 42, 317, 317

\botmark . 243
\botmarks . 249
\box . 243
box commands:

\box_(g)clear:N 147
\l__box_angle_fp . . . 215, 233, 768,

768, 769, 769, 769, 835, 835, 835, 835
\l__box_bottom_dim 768, 768,

769, 771, 771, 771, 771, 771, 772,
772, 772, 772, 773, 773, 774, 775, 775

\l__box_bottom_new_dim
. 768, 768, 770,
771, 771, 772, 772, 773, 775, 776, 776

\box_clear:c 478
\box_clear:N 147,

147, 478, 478, 478, 478, 487, 489, 490
\box_clear_new:c 478
\box_clear_new:N 147, 147, 478, 478, 478
\box_clip:c 776
\box_clip:N

. . . . 215, 215, 215, 215, 776, 776, 776
\l__box_cos_fp

215, 233, 768, 768, 769, 770, 770,
771, 771, 834, 834, 834, 834, 834, 834

\box_dp:c 479, 491
\box_dp:N 148, 148, 479,

479, 479, 479, 491, 493, 493, 494,
494, 499, 499, 507, 769, 773, 775,
777, 777, 777, 781, 833, 833, 834, 834

\box_gclear:c 478
\box_gclear:N . 147, 478, 478, 478, 478

\box_gclear_new:c 478
\box_gclear_new:N . . 147, 478, 478, 478
\box_gset_eq:cc 478
\box_gset_eq:cN 478
\box_gset_eq:Nc 478
\box_gset_eq:NN 147, 478, 478, 478, 478
\box_gset_eq_clear:cc 478
\box_gset_eq_clear:cN 478
\box_gset_eq_clear:Nc 478
\box_gset_eq_clear:NN

. 147, 147, 478, 479, 479
\box_gset_to_last:c 480
\box_gset_to_last:N 150, 480, 480, 480
\box_ht:c 479, 491
\box_ht:N 149, 149, 479, 479, 479, 479,

489, 489, 490, 490, 491, 493, 493,
494, 494, 499, 499, 507, 769, 773,
775, 777, 777, 777, 781, 781, 833, 834

\box_if_empty:cTF 480
\box_if_empty:N 480
\box_if_empty:NF 480
\box_if_empty:NT 480
\box_if_empty:NTF . . 149, 149, 480, 480
\box_if_empty_p:c 480
\box_if_empty_p:N . . 149, 149, 480, 480
\box_if_exist:c 479
\box_if_exist:cTF 479
\box_if_exist:N 479
\box_if_exist:NTF

. 148, 148, 478, 478, 479, 482
\box_if_exist_p:c 479
\box_if_exist_p:N 148, 148, 479
\box_if_horizontal:cTF 480
\box_if_horizontal:N 480
\box_if_horizontal:NF 480
\box_if_horizontal:NT 480
\box_if_horizontal:NTF

. 149, 149, 480, 480
\box_if_horizontal_p:c 480
\box_if_horizontal_p:N

. 149, 149, 480, 480
\box_if_vertical:cTF 480
\box_if_vertical:N 480
\box_if_vertical:NF 480
\box_if_vertical:NT 480
\box_if_vertical:NTF 149, 149, 480, 480
\box_if_vertical_p:c 480
\box_if_vertical_p:N 149, 149, 480, 480
\l__box_internal_box . . 216, 233,

233, 768, 768, 770, 770, 770, 770,

Index 842

770, 770, 770, 775, 776, 776, 776,
776, 776, 776, 776, 777, 777, 777,
777, 777, 777, 777, 777, 777, 777,
777, 777, 777, 777, 777, 777, 778,
778, 778, 778, 778, 778, 778, 778,
778, 778, 778, 778, 778, 779, 779, 834

\l__box_left_dim
. 768, 768, 769, 771, 771,
771, 771, 771, 772, 772, 772, 773, 775

\l__box_left_new_dim
768, 768, 770, 770, 771, 771, 772, 772

\box_log:c 481
\box_log:cnn 481
\box_log:N 150, 150, 481, 481, 481
\box_log:Nnn 151, 151, 481, 481, 481, 481
\box_move_down:nn 148,

479, 480, 777, 777, 777, 778, 778, 780
\box_move_left:nn 148, 479, 479
\box_move_right:nn . 148, 148, 479, 479
\box_move_up:nn 148, 148,

479, 479, 500, 507, 777, 777, 778, 778
\box_new:c 478
\box_new:N 147,

147, 147, 478, 478, 478, 478, 478,
481, 481, 481, 481, 481, 485, 488, 768

\box_resize:cnn 772
__box_resize:N

. . . . 772, 772, 773, 774, 774, 774, 774
__box_resize:NNN

. 772, 773, 773, 773, 773
\box_resize:Nnn

. . . . 213, 213, 216, 772, 772, 773, 784
__box_resize_common:N

. 773, 775, 775, 775
__box_resize_set_corners:N

. . . . 772, 772, 773, 773, 774, 774, 774
\box_resize_to_ht:cn 773
\box_resize_to_ht:Nn

. 213, 213, 773, 773, 774
\box_resize_to_ht_plus_dp:cn . . 773
\box_resize_to_ht_plus_dp:Nn . . .

. 213, 213, 773, 774, 774
\box_resize_to_wd:cn 773
\box_resize_to_wd:Nn

. 214, 214, 773, 774, 774
\box_resize_to_wd_and_ht:cnn . . 773
\box_resize_to_wd_and_ht:Nnn . . .

. 214, 214, 773, 774, 775

\l__box_right_dim . . 768, 768, 769,
771, 771, 771, 771, 772, 772, 772,
772, 772, 773, 773, 774, 774, 775, 775

\l__box_right_new_dim
. 768, 768, 770, 771,
771, 772, 772, 773, 775, 776, 776, 776

__box_rotate:N 769, 769, 769
\box_rotate:Nn

214, 214, 215, 215, 216, 769, 769, 780
__box_rotate_quadrant_four: . . .

. 769, 770, 772
__box_rotate_quadrant_one:

. 769, 770, 771
__box_rotate_quadrant_three: . . .

. 769, 770, 771
__box_rotate_quadrant_two:

. 769, 770, 771
__box_rotate_x:nnN 769, 770,

771, 771, 771, 771, 772, 772, 772, 772
__box_rotate_y:nnN 769, 771,

771, 771, 771, 771, 771, 772, 772, 772
\box_scale:cnn 775
\box_scale:Nnn

. . . . 214, 214, 216, 775, 775, 775, 785
\l__box_scale_x_fp . 216, 233, 772,

772, 772, 773, 773, 774, 774, 774,
774, 775, 775, 776, 835, 835, 835, 835

\l__box_scale_y_fp
. . . . 216, 233, 772, 772, 772, 773,
773, 773, 773, 774, 774, 774, 774,
775, 775, 775, 776, 835, 835, 835, 835

\box_set_dp:cn 479
\box_set_dp:Nn 149, 149,

479, 479, 479, 499, 499, 507, 770,
776, 776, 777, 777, 777, 778, 778, 781

\box_set_eq:cc 478
\box_set_eq:cN 478
\box_set_eq:Nc 478
\box_set_eq:NN 147, 147, 478, 478,

478, 478, 478, 491, 499, 507, 778, 779
\box_set_eq_clear:cc 478
\box_set_eq_clear:cN 478
\box_set_eq_clear:Nc 478
\box_set_eq_clear:NN

. 147, 147, 478, 478, 479, 479
\box_set_ht:cn 479
\box_set_ht:Nn 149,

149, 479, 479, 479, 499, 499, 507,
770, 776, 776, 777, 777, 778, 779, 781

\box_set_to_last:c 480

Index 843

\box_set_to_last:N
. 150, 150, 480, 480, 480, 480

\box_set_wd:cn 479
\box_set_wd:Nn 149, 149, 479, 479,

479, 499, 499, 507, 770, 776, 781, 834
\box_show:c 481
\box_show:cnn 481
\box_show:N . . . 150, 150, 481, 481, 481
\box_show:Nnn

. 150, 150, 481, 481, 481, 481
__box_show:NNnn . . . 481, 481, 482, 482
\l__box_sin_fp

. 215, 233, 768, 768, 769,
770, 771, 771, 834, 834, 834, 834, 834

\l__box_top_dim 768, 768, 769, 771,
771, 771, 771, 772, 772, 772, 772,
772, 773, 773, 773, 774, 774, 775, 775

\l__box_top_new_dim 768, 768, 770,
771, 771, 771, 772, 773, 775, 776, 776

\box_trim:cnnnn 776
\box_trim:Nnnnn 215, 215, 776, 776, 778
\box_use:c 479
\box_use:N 148, 148, 233,

233, 479, 479, 479, 500, 500, 502,
506, 507, 507, 770, 770, 770, 775,
776, 776, 777, 777, 777, 777, 777,
778, 778, 778, 778, 778, 780, 781, 834

\box_use_clear:c 479
\box_use_clear:N 148, 148, 479, 479, 479
\box_viewport:cnnnn 778
\box_viewport:Nnnnn

. 215, 215, 778, 778, 779
\box_wd:c 479, 491
\box_wd:N .

149, 149, 479, 479, 479, 479, 491,
493, 493, 494, 494, 498, 498, 499,
499, 500, 507, 507, 769, 773, 775,
778, 781, 781, 786, 786, 833, 834, 834

\boxdir . 256
\boxmaxdepth 243
bp . 208
\brokenpenalty 243

C
\c . 817
\catcode 234, 234, 234, 234,

234, 240, 240, 240, 240, 240, 240,
240, 240, 240, 240, 240, 240, 240,
240, 240, 240, 240, 240, 240, 240,
240, 240, 240, 240, 240, 240, 240, 243

catcode commands:
\c_catcode_active_tl

. 56, 333, 333, 335, 335, 335
\c_catcode_letter_token

. 56, 333, 333, 335, 335
\c_catcode_other_space_tl

. . . . 190, 574, 574, 574, 574, 574, 575
\c_catcode_other_token

. 56, 333, 333, 335, 335
\catcodetable 254
cc . 208
ceil . 205
\char . 243, 339
char commands:

\l_char_active_seq
. 56, 184, 190, 328, 328, 560

__char_generate:nn 65, 65,
329, 329, 812, 812, 813, 813, 813, 814

\char_generate:nn
. 52, 52, 65, 329, 329, 529,
574, 802, 813, 813, 813, 813, 816, 816

__char_generate_aux:nn 329
__char_generate_aux:nnw

. 329, 329, 330, 330, 330, 332
__char_generate_aux:w 329, 329
__char_generate_invalid_-

catcode: 329
\char_gset_active_eq:Nc 328
\char_gset_active_eq:nc 52, 328
\char_gset_active_eq:NN . 51, 328, 329
\char_gset_active_eq:nN 328, 329
\c__char_max_int . . . 329, 330, 330, 331
\char_set:active:Npx 560
\char_set_active_eq:Nc 328
\char_set_active_eq:nc 328
\char_set_active_eq:nc␣␣␣␣␣\char_-

gset_active_eq:nN 52
\char_set_active_eq:NN 51, 51, 328, 329
\char_set_active_eq:nN 52, 52, 328, 329
\char_set_catcode:nn 54, 54,

241, 241, 241, 241, 241, 241, 241,
241, 241, 325, 325, 326, 326, 326,
326, 326, 326, 326, 326, 326, 326,
326, 326, 326, 326, 326, 326, 326,
326, 327, 327, 327, 327, 327, 327,
327, 327, 327, 327, 327, 327, 327, 327

\char_set_catcode_〈type〉 54
\char_set_catcode_active:N

. 53, 326, 326, 328, 330, 333, 514

Index 844

\char_set_catcode_active:n
. 53, 326, 327, 328, 331, 533, 533

\char_set_catcode_alignment:N . . .
. 53, 326, 326, 333

\char_set_catcode_alignment:n . . .
. 53, 241, 326, 327, 331

\char_set_catcode_comment:N
. 53, 326, 326

\char_set_catcode_comment:n
. 53, 326, 327

\char_set_catcode_end_line:N . . .
. 53, 326, 326

\char_set_catcode_end_line:n . . .
. 53, 326, 327

\char_set_catcode_escape:N
. 53, 326, 326

\char_set_catcode_escape:n
. 53, 326, 326

\char_set_catcode_group_begin:N .
. 53, 326, 326

\char_set_catcode_group_begin:n .
. 53, 326, 326, 331

\char_set_catcode_group_end:N . . .
. 53, 326, 326

\char_set_catcode_group_end:n . . .
. 53, 326, 327, 331

\char_set_catcode_ignore:N
. 53, 326, 326

\char_set_catcode_ignore:n
. 53, 241, 241, 326, 327

\char_set_catcode_invalid:N
. 53, 326, 326

\char_set_catcode_invalid:n
. 53, 326, 327

\char_set_catcode_letter:N
. 53, 53, 326, 326, 618,
636, 636, 641, 642, 643, 643, 643,
643, 644, 645, 645, 645, 646, 658, 658

\char_set_catcode_letter:n
. 53, 53, 241, 241, 326, 327, 331

\char_set_catcode_math_subscript:N
. 53, 326, 326, 333

\char_set_catcode_math_subscript:n
. 53, 326, 327, 331

\char_set_catcode_math_superscript:N
. 53, 326, 326

\char_set_catcode_math_superscript:n
. 53, 241, 326, 327, 331

\char_set_catcode_math_toggle:N .
. 53, 326, 326, 333

\char_set_catcode_math_toggle:n .
. 53, 326, 327, 331

\char_set_catcode_other:N
. 53, 326, 326, 643

\char_set_catcode_other:n
. 53, 241, 241, 326, 327, 330, 331

\char_set_catcode_parameter:N . . .
. 53, 326, 326

\char_set_catcode_parameter:n . . .
. 53, 326, 327, 331

\char_set_catcode_space:N 53, 326, 326
\char_set_catcode_space:n

. 53, 241, 326, 327, 331
\char_set_lccode:nn 54, 54, 327, 327,

328, 332, 332, 394, 394, 514, 514, 514
\char_set_mathcode:nn 55, 55, 327, 327
\char_set_sfcode:nn . 55, 55, 327, 328
\char_set_uccode:nn . 55, 55, 327, 328
\char_show_value_catcode:n

. 54, 54, 325, 326
\char_show_value_lccode:n

. 54, 54, 327, 327
\char_show_value_mathcode:n

. 55, 55, 327, 327
\char_show_value_sfcode:n

. 56, 56, 327, 328
\char_show_value_uccode:n

. 55, 55, 327, 328
\l_char_special_seq

. 56, 328, 328, 328, 328
__char_tmp:n . 332, 332, 332, 332, 332
__char_tmp:nN 328, 329, 329
\l__char_tmp_tl

. 329, 330, 331, 331, 331,
331, 331, 331, 331, 331, 331, 331,
331, 331, 331, 331, 331, 331, 332, 332

\char_value_catcode:n . . . 54, 54,
241, 241, 241, 241, 241, 241, 241,
241, 241, 325, 326, 326, 394, 395, 802

\char_value_lccode:n
. 54, 54, 327, 327, 328

\char_value_mathcode:n
. 55, 55, 327, 327, 327

\char_value_sfcode:n
. 55, 55, 327, 328, 328

\char_value_uccode:n
. 55, 55, 327, 328, 328

\chardef 240, 240, 243

Index 845

chk commands:
__chk_if_exist_cs:c

. 275, 275, 275, 275, 282, 282
__chk_if_exist_cs:N

. 24, 24, 282, 282, 282, 301
__chk_if_exist_var:N 24,

24, 282, 282, 309, 309, 310, 310,
310, 310, 310, 310, 390, 391, 391,
391, 391, 391, 391, 391, 391, 391, 391

__chk_if_free_cs:c 281, 282
__chk_if_free_cs:N 24, 24,

281, 281, 281, 282, 283, 284, 333,
333, 333, 333, 351, 351, 372, 380,
384, 387, 387, 387, 435, 469, 478, 510

__chk_if_free_msg:nn
. 510, 510, 510, 511

__chk_log:x
24, 24, 24, 24, 280, 280, 280, 280,

280, 280, 280, 282, 307, 511, 540, 540
__chk_resume_log:

. 24, 24, 24, 280, 280,
280, 280, 280, 280, 280, 280, 280, 488

__chk_suspend_log: 24,
24, 24, 280, 280, 280, 280, 280, 280, 488

choice commands:
.choice: 173, 546

choices commands:
.choices:nn 173, 546
.choices:on 173, 546
.choices:Vn 173, 546
.choices:xn 173, 546

circumflex commands:
\c_circumflex_str 117, 429, 430

\cite . 821
\cleaders . 243
\clearmarks . 255
clist commands:

\clist_(g)clear:N 132
\clist_clear:c 452, 452
\clist_clear:N

131, 131, 452, 452, 452, 458, 549, 550
\clist_clear_new:c 452, 452
\clist_clear_new:N . 132, 132, 452, 452
\clist_concat:ccc 453
\clist_concat:NNN

. . . . 132, 132, 453, 453, 453, 455, 455
__clist_concat:NNNN 453, 453, 453, 453
\clist_const:cn 452
\clist_const:cx 452
\clist_const:Nn 131, 131, 452, 452, 452

\clist_const:Nx 452
\clist_count:c 464
\clist_count:N

136, 136, 139, 464, 464, 464, 465, 466
__clist_count:n 464, 464, 464
\clist_count:n 136, 464, 464, 467
__clist_count:w . . . 464, 464, 464, 464
\clist_gclear:c 452, 452
\clist_gclear:N . . . 131, 452, 452, 453
\clist_gclear_new:c 452, 452
\clist_gclear_new:N . . . 132, 452, 452
\clist_gconcat:ccc 453
\clist_gconcat:NNN

. 132, 453, 453, 453, 455, 455
\clist_get:cN 456
\clist_get:cNTF 457
\clist_get:NN

. 138, 138, 456, 456, 456, 457
\clist_get:NNF 457
\clist_get:NNT 457
\clist_get:NNTF . . . 138, 138, 457, 457
__clist_get:wN . . . 456, 456, 456, 457
\clist_gpop:cN 456
\clist_gpop:cNTF 457
\clist_gpop:NN

. 138, 138, 456, 456, 456, 457
\clist_gpop:NNF 457
\clist_gpop:NNT 457
\clist_gpop:NNTF . . . 138, 138, 457, 457
\clist_gpush:cn 457, 458
\clist_gpush:co 457, 458
\clist_gpush:cV 457, 458
\clist_gpush:cx 457, 458
\clist_gpush:Nn 139, 457, 457
\clist_gpush:No 457, 457
\clist_gpush:NV 457, 457
\clist_gpush:Nx 457, 458
\clist_gput_left:cn 455, 458
\clist_gput_left:co 455, 458
\clist_gput_left:cV 455, 458
\clist_gput_left:cx 455, 458
\clist_gput_left:Nn

. 133, 455, 455, 455, 455, 457
\clist_gput_left:No 455, 457
\clist_gput_left:NV 455, 457
\clist_gput_left:Nx 455, 458
\clist_gput_right:cn 455
\clist_gput_right:co 455
\clist_gput_right:cV 455
\clist_gput_right:cx 455

Index 846

\clist_gput_right:Nn
. 133, 455, 455, 455, 455

\clist_gput_right:No 455
\clist_gput_right:NV 455
\clist_gput_right:Nx 455
\clist_gremove_all:cn 458
\clist_gremove_all:Nn

. 133, 458, 459, 459
\clist_gremove_duplicates:c . . . 458
\clist_gremove_duplicates:N

. 133, 458, 458, 458
\clist_greverse:c 459
\clist_greverse:N . . 134, 459, 459, 459
.clist_gset:c 174, 546
\clist_gset:cn 455
\clist_gset:co 455
\clist_gset:cV 455
\clist_gset:cx 455
.clist_gset:N 174, 546
\clist_gset:Nn 132, 452, 455, 455, 455
\clist_gset:No 455
\clist_gset:NV 455
\clist_gset:Nx 455
\clist_gset_eq:cc 452, 452
\clist_gset_eq:cN 452, 452
\clist_gset_eq:Nc 452, 452
\clist_gset_eq:NN . . 132, 452, 452, 458
\clist_gset_from_seq:cc 452
\clist_gset_from_seq:cN 452
\clist_gset_from_seq:Nc 452
\clist_gset_from_seq:NN

. 132, 452, 453, 453, 453
\clist_if_empty:c 460
\clist_if_empty:cTF 460
\clist_if_empty:N 460
\clist_if_empty:n 460
\clist_if_empty:NF

. 453, 453, 459, 462, 463, 463
\clist_if_empty:nF 467
\clist_if_empty:NTF

. 134, 134, 460, 467, 543
\clist_if_empty:nTF . . . 134, 134, 460
__clist_if_empty_n:w

. 460, 460, 461, 461
__clist_if_empty_n:wNw 460, 461, 461
\clist_if_empty_p:c 460
\clist_if_empty_p:N . . . 134, 134, 460
\clist_if_empty_p:n . . . 134, 134, 460
\clist_if_exist:c 454
\clist_if_exist:cTF 454

\clist_if_exist:N 454
\clist_if_exist:NT 563
\clist_if_exist:NTF

. 132, 132, 454, 465, 467, 562
\clist_if_exist_p:c 454
\clist_if_exist_p:N . . . 132, 132, 454
\clist_if_in:cnTF 461
\clist_if_in:coTF 461
\clist_if_in:cVTF 461
\clist_if_in:Nn 461
\clist_if_in:nn 461
\clist_if_in:NnF 458, 461, 461
\clist_if_in:nnF 461
\clist_if_in:NnT 461, 461
\clist_if_in:nnT 461
\clist_if_in:NnTF

. 134, 134, 461, 461, 461
\clist_if_in:nnTF . . 134, 461, 461, 596
\clist_if_in:NoTF 461
\clist_if_in:noTF 461
\clist_if_in:NVTF 461
\clist_if_in:nVTF 461
__clist_if_in_return:nn

. 461, 461, 461, 461
\l__clist_internal_clist

. 451, 451, 455, 455,
455, 455, 461, 461, 463, 463, 463, 463

\l__clist_internal_remove_clist .
. 458, 458, 458, 458, 458, 458

\clist_item:cn 466
\clist_item:Nn

. 139, 139, 466, 466, 466, 466
\clist_item:nn 139, 466, 467
__clist_item:nnNn . 466, 466, 466, 467
__clist_item_n:nw 466, 467, 467
__clist_item_n_end:n . 466, 467, 467
__clist_item_N_loop:nw

. 466, 466, 466, 466
__clist_item_n_loop:nw

. 466, 467, 467, 467, 467
__clist_item_n_strip:w 466, 467, 467
\clist_log:c 779
\clist_log:N . . 216, 216, 779, 779, 779
\clist_log:n 216, 216, 779, 779
\clist_map_break: 136, 136, 462, 462,

462, 462, 463, 463, 464, 464, 464, 464
\clist_map_break:n

. 136, 136, 464, 464, 553
\clist_map_function:cN 461

Index 847

\clist_map_function:NN
. 46, 131, 135, 135,
135, 436, 436, 461, 462, 462, 464, 467

\clist_map_function:Nn 463
\clist_map_function:nN

135, 436, 436, 462, 462, 464, 468, 555
__clist_map_function:Nw

. 461, 462, 462, 462, 462, 463
__clist_map_function_n:Nn

. 462, 462, 462, 462, 462
\clist_map_inline:cn 462
\clist_map_inline:Nn

. 135, 135, 135, 458,
462, 462, 463, 463, 463, 553, 563, 564

\clist_map_inline:nn
. . . . 135, 462, 463, 542, 824, 827, 827

__clist_map_unbrace:Nw
. 462, 462, 462, 462

\clist_map_variable:cNn 463
\clist_map_variable:NNn

. 135, 135, 463, 463, 463, 464
\clist_map_variable:nNn 135, 463, 463
__clist_map_variable:Nnw

. 463, 463, 463, 464
\clist_new:c 452, 452
\clist_new:N . . 131, 131, 132, 451,

452, 452, 458, 468, 468, 468, 468, 536
\clist_pop:cN 456
\clist_pop:cNTF 457
\clist_pop:NN

. 138, 138, 456, 456, 456, 457
\clist_pop:NNF 457
__clist_pop:NNN . . . 456, 456, 456, 456
\clist_pop:NNT 457
\clist_pop:NNTF . . . 138, 138, 457, 457
__clist_pop:wN 456, 456, 456
__clist_pop:wwNNN

. 456, 456, 456, 456, 457
__clist_pop_TF:NNN 457, 457, 457, 457
\clist_push:cn 457, 457
\clist_push:co 457, 457
\clist_push:cV 457, 457
\clist_push:cx 457, 457
\clist_push:Nn 139, 139, 457, 457
\clist_push:No 457, 457
\clist_push:NV 457, 457
\clist_push:Nx 457, 457
\clist_put_left:cn 455, 457
\clist_put_left:co 455, 457
\clist_put_left:cV 455, 457

\clist_put_left:cx 455, 457
\clist_put_left:Nn

. . . . 133, 133, 455, 455, 455, 455, 457
__clist_put_left:NNNn

. 455, 455, 455, 455
\clist_put_left:No 455, 457
\clist_put_left:NV 455, 457
\clist_put_left:Nx 455, 457
\clist_put_right:cn 455
\clist_put_right:co 455
\clist_put_right:cV 455
\clist_put_right:cx 455
\clist_put_right:Nn

. . . . 133, 133, 455, 455, 455, 455, 458
__clist_put_right:NNNn

. 455, 455, 455, 455
\clist_put_right:No 455
\clist_put_right:NV 455
\clist_put_right:Nx 455, 554
__clist_remove_all: 458, 459, 459, 459
\clist_remove_all:cn 458
\clist_remove_all:Nn

. 133, 133, 458, 459, 459
__clist_remove_all:NNn

. 458, 459, 459, 459
__clist_remove_all:w

. 458, 458, 458, 459, 459
\clist_remove_duplicates:c 458
\clist_remove_duplicates:N

. 133, 133, 458, 458, 458
__clist_remove_duplicates:NN . . .

. 458, 458, 458, 458
\clist_reverse:c 459
\clist_reverse:N 134, 134, 459, 459, 459
\clist_reverse:n

134, 134, 459, 459, 459, 459, 460, 460
__clist_reverse:wwNww

460, 460, 460, 460, 460, 460, 460, 460
__clist_reverse_end:ww

. 460, 460, 460, 460
.clist_set:c 174, 546
\clist_set:cn 455
\clist_set:co 455
\clist_set:cV 455
\clist_set:cx 455
.clist_set:N 174, 546
\clist_set:Nn

. . . . 132, 132, 452, 455, 455, 455,
455, 455, 455, 455, 461, 463, 463, 543

\clist_set:No 455

Index 848

\clist_set:NV 455
\clist_set:Nx 455
\clist_set_eq:cc 452, 452
\clist_set_eq:cN 452, 452
\clist_set_eq:Nc 452, 452
\clist_set_eq:NN 132, 132, 452, 452, 458
\clist_set_from_seq:cc 452
\clist_set_from_seq:cN 452
\clist_set_from_seq:Nc 452
\clist_set_from_seq:NN

. 132, 132, 452, 452, 453, 453
__clist_set_from_seq:NNNN

. 452, 452, 453, 453
__clist_set_from_seq:w 452, 453, 453
\clist_show:c 467
\clist_show:N

139, 139, 216, 467, 467, 468, 779, 779
\clist_show:n

. 139, 139, 216, 467, 467, 779
__clist_tmp:w 451,

451, 458, 458, 458, 459, 459, 461, 461
__clist_trim_spaces:n

. 452, 454, 454, 455, 455
__clist_trim_spaces:nn

. 454, 454, 454, 454, 454, 454
__clist_trim_spaces_generic:nn .

. 454, 454, 454, 454
__clist_trim_spaces_generic:nw .

454, 454, 454, 454, 454, 462, 462, 462
\clist_use:cn 465
\clist_use:cnnn 465
\clist_use:Nn . 137, 137, 465, 465, 466
\clist_use:Nnnn

. . . . 137, 137, 449, 465, 465, 465, 466
__clist_use:nwwn 465, 465, 465
__clist_use:nwwwwnwn

. 465, 465, 465, 465, 465
__clist_use:wwn . . . 465, 465, 465, 465
__clist_wrap_item:n . . 452, 453, 453

\closein . 243
\closeout . 243
\clubpenalties 249
\clubpenalty 243
cm . 208
code commands:

.code:n 174, 546
coffin commands:

__coffin_align:NnnNnnnnN
. 498, 499, 499, 499, 500, 502

\l__coffin_aligned_coffin
. 491, 491, 498, 498,
498, 498, 498, 498, 499, 499, 499,
499, 499, 499, 499, 499, 499, 499,
499, 499, 499, 499, 499, 499, 500,
501, 502, 502, 507, 507, 507, 507, 507

\l__coffin_aligned_internal_-
coffin 491, 491, 500, 500

\coffin_attach:cnncnnnn 499
\coffin_attach:cnnNnnnn 499
\coffin_attach:Nnncnnnn 499
\coffin_attach:NnnNnnnn

. 157, 157, 499, 499, 499, 507
\coffin_attach_mark:NnnNnnnn . . .

. 499, 499, 504, 504, 505
\l__coffin_bottom_corner_dim 779,

779, 780, 781, 783, 783, 783, 784, 784
\l__coffin_bounding_prop . . . 779,

779, 780, 781, 781, 781, 781, 781, 783
\l__coffin_bounding_shift_dim . . .

. 779, 779, 780, 783, 783, 783
__coffin_calculate_intersection:Nnn

. 494, 494, 500, 500, 507
__coffin_calculate_intersection:nnnnnnnn

. 494, 495, 495, 506
__coffin_calculate_intersection_-

aux:nnnnnN
. . . . 494, 495, 496, 496, 496, 497, 497

\coffin_clear:c 487
\coffin_clear:N 155, 155, 487, 487, 487
\c__coffin_corners_prop

485, 485, 485, 485, 485, 485, 488, 492
\l__coffin_cos_fp

. . . . 779, 779, 780, 780, 782, 782, 782
__coffin_display_attach:Nnnnn . .

. 505, 506, 506, 507, 507
\l__coffin_display_coffin 502, 502,

506, 506, 507, 507, 507, 507, 507, 507
\l__coffin_display_coord_coffin .

502, 502, 504, 505, 505, 506, 506, 507
\l__coffin_display_font_tl

. 504, 504, 504, 504, 504, 506
\coffin_display_handles:cn 505
\coffin_display_handles:Nn

. 158, 158, 505, 505, 507
__coffin_display_handles_-

aux:nnnn 505, 507, 507, 507
__coffin_display_handles_-

aux:nnnnnn 505, 506, 506

Index 849

\l__coffin_display_handles_prop .
. 502, 502,
502, 502, 502, 502, 502, 502, 503,
503, 503, 503, 503, 503, 503, 503,
503, 503, 503, 503, 504, 504, 506, 506

\l__coffin_display_offset_dim . . .
. . . . 503, 503, 503, 505, 505, 507, 507

\l__coffin_display_pole_coffin . .
. 502, 502, 504, 504, 505, 506

\l__coffin_display_poles_prop . . .
503, 503, 505, 505, 505, 506, 506, 506

\l__coffin_display_x_dim
. 503, 503, 506, 507

\l__coffin_display_y_dim
. 503, 503, 506, 507

\coffin_dp:c 491, 491
\coffin_dp:N

. . . . 157, 157, 491, 491, 508, 784, 785
\l__coffin_error_bool 486,

486, 494, 495, 495, 496, 496, 506, 506
__coffin_find_bounding_shift: . .

. 780, 783, 783
__coffin_find_bounding_shift_-

aux:nn 783, 783, 783
__coffin_find_corner_maxima:N . .

. 780, 783, 783
__coffin_find_corner_maxima_-

aux:nn 783, 783, 783
__coffin_get_pole:NnN

. 492, 492, 494,
494, 501, 501, 501, 501, 505, 505, 505

__coffin_gset_eq_structure:NN . .
. 492, 492

\coffin_ht:c 491, 491
\coffin_ht:N

. . . . 158, 158, 491, 491, 508, 784, 785
\coffin_if_exist:cTF 487
\coffin_if_exist:N 487
\coffin_if_exist:NF 487
__coffin_if_exist:NT 487, 487, 487,

488, 489, 489, 490, 491, 493, 493, 508
\coffin_if_exist:NT 487
\coffin_if_exist:NTF

. 155, 155, 487, 487, 487
\coffin_if_exist_p:c 487
\coffin_if_exist_p:N 155, 155, 487, 487
\l__coffin_internal_box

. 485, 485, 489, 489, 489,
490, 490, 490, 780, 781, 781, 781, 781

\l__coffin_internal_dim . 485, 485,
498, 498, 498, 781, 781, 781, 785, 785

\l__coffin_internal_tl
. . . . 485, 485, 486, 486, 486, 486,
486, 486, 486, 486, 486, 486, 486,
500, 500, 500, 504, 504, 504, 504,
505, 505, 506, 506, 506, 506, 507, 507

\coffin_join:cnncnnnn 498
\coffin_join:cnnNnnnn 498
\coffin_join:Nnncnnnn 498
\coffin_join:NnnNnnnn

. 157, 157, 498, 498, 499
\l__coffin_left_corner_dim . 779,

779, 780, 781, 783, 783, 783, 784, 784
\coffin_log_structure:c 787
\coffin_log_structure:N

. 216, 216, 787, 787, 787
\coffin_mark_handle:cnnn 504
\coffin_mark_handle:Nnnn

. 158, 158, 504, 504, 505
__coffin_mark_handle_aux:nnnnNnn

. 504, 505, 505, 505
\coffin_new:c 488
\coffin_new:N

. . . . 155, 155, 488, 488, 488, 491,
491, 491, 491, 491, 491, 502, 502, 502

__coffin_offset_corner:Nnnnn . . .
. 501, 501, 501

__coffin_offset_corners:Nnn . . .
. 498, 498, 498, 498, 501, 501

__coffin_offset_pole:Nnnnnnn . . .
. 500, 500, 500

__coffin_offset_poles:Nnn
498, 498, 498, 498, 499, 499, 500, 500

\l__coffin_offset_x_dim
. 486, 486, 498, 498, 498, 498, 498,
498, 498, 498, 499, 500, 500, 507, 507

\l__coffin_offset_y_dim
. 486, 486, 498,
498, 498, 498, 499, 500, 500, 507, 507

\l__coffin_pole_a_tl 486, 486, 494,
495, 501, 501, 501, 501, 505, 505, 505

\l__coffin_pole_b_tl
. 486, 486, 494, 495,
501, 501, 501, 501, 505, 505, 505, 505

\c__coffin_poles_prop
. 486, 486, 486, 486, 486,
486, 486, 486, 486, 486, 486, 488, 492

__coffin_reset_structure:N 487,
488, 489, 489, 490, 492, 492, 498, 499

Index 850

\coffin_resize:cnn 784
\coffin_resize:Nnn

. 216, 216, 784, 784, 784
__coffin_resize_common:Nnn

. 784, 785, 785, 785
\l__coffin_right_corner_dim

. 779, 779, 781, 783, 783, 783
\coffin_rotate:cn 780
\coffin_rotate:Nn

. 216, 216, 780, 780, 781
__coffin_rotate_bounding:nnn . . .

. 780, 781, 781
__coffin_rotate_corner:Nnnn . . .

. 780, 781, 781
__coffin_rotate_pole:Nnnnnn . . .

. 780, 782, 782
__coffin_rotate_vector:nnNN . . .

. 781, 781, 782, 782, 782, 782
\coffin_scale:cnn 785
\coffin_scale:Nnn

. 216, 216, 785, 785, 785
__coffin_scale_corner:Nnnn

. 785, 786, 786
__coffin_scale_pole:Nnnnnn

. 785, 786, 786
__coffin_scale_vector:nnNN

. 786, 786, 786, 786
\l__coffin_scale_x_fp

784, 784, 784, 785, 785, 785, 785, 786
\l__coffin_scale_y_fp

. . . . 784, 784, 784, 785, 785, 785, 786
\l__coffin_scaled_total_height_-

dim 784, 784, 785, 785
\l__coffin_scaled_width_dim

. 784, 784, 785, 785
__coffin_set_bounding:N 780, 781, 781
\coffin_set_eq:cc 491
\coffin_set_eq:cN 491
\coffin_set_eq:Nc 491
\coffin_set_eq:NN 155,

155, 491, 491, 491, 499, 499, 500, 506
__coffin_set_eq_structure:NN . . .

. 491, 492, 492
\coffin_set_horizontal_pole:cnn 492
\coffin_set_horizontal_pole:Nnn .

. 156, 156, 492, 493, 493
__coffin_set_pole:Nnn . 492, 493, 493
__coffin_set_pole:Nnx

. 489, 490, 492, 493,
493, 500, 501, 501, 502, 502, 782, 786

\coffin_set_vertical_pole:cnn . . 492
\coffin_set_vertical_pole:Nnn . . .

. 156, 156, 492, 493, 493
__coffin_shift_corner:Nnnn

. 781, 783, 783
__coffin_shift_pole:Nnnnnn

. 781, 783, 784
\coffin_show_structure:c 508
\coffin_show_structure:N

158, 158, 216, 508, 508, 508, 787, 787
\l__coffin_sin_fp

. . . . 779, 779, 780, 780, 782, 782, 782
\l__coffin_slope_x_fp

. 486, 486, 496, 496, 497, 497
\l__coffin_slope_y_fp

. 486, 486, 496, 496, 497, 497
\l__coffin_top_corner_dim

. 779, 779, 781, 783, 783, 783
\coffin_typeset:cnnnn 502
\coffin_typeset:Nnnnn

. 157, 157, 502, 502, 502
__coffin_update_B:nnnnnnnnN . . .

. 501, 501, 501
__coffin_update_corners:N

. 488, 489, 490, 490, 493, 493
__coffin_update_poles:N

488, 489, 490, 490, 493, 494, 498, 499
__coffin_update_T:nnnnnnnnN . . .

. 501, 501, 501
__coffin_update_vertical_-

poles:NNN 499, 499, 501, 501
\coffin_wd:c 491, 491
\coffin_wd:N

. . . . 158, 158, 491, 491, 508, 784, 785
\l__coffin_x_dim 486, 486, 495, 495,

496, 496, 496, 496, 497, 497, 500,
500, 500, 500, 506, 507, 781, 781,
781, 782, 782, 782, 786, 786, 786, 786

\l__coffin_x_prime_dim
486, 486, 500, 500, 507, 507, 782, 782

__coffin_x_shift_corner:Nnnn . . .
. 785, 786, 786

__coffin_x_shift_pole:Nnnnnn . . .
. 785, 786, 786

\l__coffin_y_dim . . . 486, 486, 495,
495, 495, 496, 496, 496, 497, 500,
500, 500, 500, 506, 507, 781, 781,
781, 782, 782, 782, 786, 786, 786, 786

\l__coffin_y_prime_dim
486, 486, 500, 500, 507, 507, 782, 782

Index 851

colon commands:
\c_colon_str 117, 337, 340, 340, 429, 430

\color 504, 504, 505, 506
color commands:

\color_ensure_current:
. 159, 159, 488,
488, 489, 490, 509, 509, 509, 509, 509

\color_group_begin: 159,
159, 159, 488, 489, 489, 490, 509, 509

\color_group_end: 159,
159, 159, 488, 489, 489, 490, 509, 509

\columnwidth 489, 490
\copy . 243
\copyfont . 256
cos . 206
cosd . 206
cot . 206
cotd . 206
\count 238, 238, 239,

239, 239, 239, 239, 239, 239, 239,
239, 239, 239, 239, 239, 239, 239,
239, 239, 239, 239, 239, 239, 243, 339

\countdef . 243
\cr . 243
\crampeddisplaystyle 255
\crampedscriptscriptstyle 255
\crampedscriptstyle 255
\crampedtextstyle 255
\crcr . 243
cs commands:

\cs:w 18, 18, 18, 19, 265,
265, 266, 266, 266, 268, 278, 279,
287, 288, 292, 294, 295, 295, 295,
295, 295, 295, 296, 296, 297, 297,
297, 297, 297, 299, 299, 300, 308,
319, 319, 351, 354, 372, 378, 380,
382, 384, 478, 586, 589, 618, 621,
627, 628, 638, 640, 641, 713, 722, 738

__cs_count_signature:c 286, 286
__cs_count_signature:N

. 25, 25, 286, 286, 286
__cs_count_signature:nnN

. 286, 286, 286
\cs_end: . 18, 18, 18, 265, 265, 266,

266, 266, 266, 268, 278, 278, 279,
279, 285, 287, 288, 292, 294, 295,
295, 295, 295, 295, 295, 296, 296,
297, 297, 297, 297, 297, 299, 299,
300, 308, 308, 318, 319, 319, 319,
319, 319, 319, 319, 319, 319, 319,

319, 351, 354, 372, 378, 380, 382,
384, 478, 586, 589, 594, 618, 621,
627, 628, 638, 640, 641, 713, 722, 741

\cs_generate_from_arg_count:cNnn
. 286, 287

\cs_generate_from_arg_count:Ncnn
. 286, 287

\cs_generate_from_arg_count:NNnn
. 16, 16, 286, 286, 287, 287, 287

__cs_generate_from_signature:NNn
. 287, 287

__cs_generate_from_signature:nnNNNn
. 287, 287

__cs_generate_internal_variant:n
. 307, 307, 307

__cs_generate_internal_variant:wwnNwnn
. 307, 307

__cs_generate_internal_variant:wwnw
. 307

__cs_generate_internal_variant_-
loop:n 307, 307, 308, 308

__cs_generate_variant:N 301, 301, 302
\cs_generate_variant:Nn 12,

26, 27, 27, 27, 28, 301, 301, 303,
303, 303, 303, 308, 309, 309, 309,
309, 309, 309, 310, 310, 310, 310,
311, 317, 317, 317, 317, 323, 323,
323, 323, 324, 324, 324, 324, 324,
324, 329, 329, 329, 329, 351, 351,
352, 352, 352, 352, 352, 352, 352,
352, 353, 353, 353, 353, 353, 353,
353, 353, 353, 353, 354, 370, 372,
372, 372, 372, 373, 373, 373, 373,
373, 373, 373, 373, 373, 373, 373,
373, 378, 379, 380, 380, 380, 380,
381, 381, 381, 381, 381, 381, 381,
381, 381, 381, 381, 381, 382, 383,
383, 383, 384, 384, 384, 384, 384,
384, 385, 385, 385, 385, 385, 385,
385, 385, 385, 385, 385, 386, 387,
387, 387, 387, 387, 387, 387, 388,
388, 389, 389, 389, 389, 389, 389,
389, 389, 389, 389, 389, 389, 389,
389, 390, 390, 390, 390, 390, 390,
390, 390, 393, 393, 393, 393, 395,
395, 395, 395, 398, 398, 398, 398,
399, 399, 399, 399, 399, 399, 399,
399, 399, 399, 399, 399, 400, 400,
400, 400, 400, 400, 400, 400, 401,
401, 401, 401, 401, 401, 403, 403,

Index 852

403, 403, 404, 404, 404, 405, 405,
405, 405, 406, 406, 409, 410, 410,
410, 411, 411, 412, 412, 412, 415,
415, 416, 417, 417, 417, 419, 419,
419, 419, 419, 419, 419, 419, 419,
419, 419, 419, 420, 420, 420, 420,
422, 423, 425, 426, 427, 428, 428,
428, 428, 428, 430, 435, 435, 435,
435, 435, 436, 436, 436, 436, 436,
436, 437, 437, 438, 438, 438, 438,
438, 438, 439, 439, 439, 439, 439,
439, 440, 440, 441, 441, 441, 441,
441, 441, 442, 442, 442, 442, 442,
442, 443, 443, 443, 444, 445, 445,
445, 445, 445, 445, 445, 445, 445,
445, 445, 445, 445, 445, 445, 445,
445, 445, 445, 445, 446, 447, 448,
448, 448, 448, 449, 449, 451, 452,
453, 453, 453, 453, 453, 453, 455,
455, 455, 455, 455, 455, 455, 455,
455, 455, 456, 456, 456, 457, 457,
457, 457, 457, 457, 457, 457, 457,
458, 458, 459, 459, 459, 459, 461,
461, 461, 461, 461, 461, 461, 461,
461, 462, 463, 464, 464, 465, 466,
466, 468, 469, 469, 469, 469, 469,
471, 471, 471, 471, 471, 471, 471,
472, 472, 472, 472, 473, 473, 473,
473, 473, 473, 473, 473, 473, 473,
474, 474, 474, 474, 474, 474, 475,
475, 475, 475, 475, 475, 475, 475,
476, 476, 476, 476, 476, 476, 476,
476, 477, 477, 478, 478, 478, 478,
478, 478, 478, 479, 479, 479, 479,
479, 479, 479, 479, 479, 479, 480,
480, 480, 480, 480, 480, 480, 480,
480, 480, 480, 480, 480, 480, 481,
481, 481, 481, 482, 482, 482, 482,
483, 483, 483, 483, 484, 484, 484,
484, 484, 484, 484, 484, 485, 485,
487, 487, 487, 487, 487, 488, 488,
489, 490, 490, 491, 493, 493, 493,
499, 499, 502, 505, 507, 508, 522,
530, 538, 540, 540, 541, 542, 542,
545, 549, 549, 549, 550, 550, 550,
550, 550, 550, 551, 562, 563, 565,
565, 565, 565, 565, 566, 567, 570,
570, 570, 571, 571, 571, 572, 599,
599, 650, 758, 759, 761, 762, 762,
764, 765, 765, 765, 765, 765, 765,

766, 766, 766, 766, 766, 766, 766,
766, 767, 768, 773, 774, 774, 774,
775, 775, 776, 778, 779, 779, 781,
784, 785, 787, 789, 789, 790, 790,
790, 790, 791, 792, 792, 793, 793,
794, 796, 796, 797, 797, 798, 799, 821

__cs_generate_variant:nnNN
. 301, 302, 303

__cs_generate_variant:Nnnw
. 303, 303, 304, 304

__cs_generate_variant:ww
. 301, 302, 302

__cs_generate_variant:wwNN
. . . . 303, 304, 304, 305, 305, 306, 306

__cs_generate_variant:wwNw
. 301, 302, 302

__cs_generate_variant_loop:nNwN
. 303, 304, 304, 304, 305, 305

__cs_generate_variant_loop_-
end:nwwwNNnn
. 303, 304, 304, 304, 305, 305

__cs_generate_variant_loop_-
invalid:NNwNNnn 304, 304, 305, 306

__cs_generate_variant_loop_-
long:wNNnn 304, 304, 305, 305

__cs_generate_variant_loop_-
same:w 304, 304, 305, 305

__cs_generate_variant_same:N . . .
. 304, 305, 306, 306

__cs_get_function_name:N
. 25, 25, 277, 277

__cs_get_function_signature:N . .
. 25, 25, 277, 277

\cs_gset:cn 288
\cs_gset:cpn

. . . . 283, 283, 404, 463, 511, 511, 618
\cs_gset:cpx 283, 283
\cs_gset:cx 288
\cs_gset:Nn 15, 15, 287
\cs_gset:Npn 11,

13, 13, 267, 267, 283, 283, 447, 477
\cs_gset:Npx 13, 267, 267, 283, 283, 447
\cs_gset:Nx 287
\cs_gset_eq:cc 284, 284, 309, 388
\cs_gset_eq:cN 284,

284, 285, 309, 388, 447, 477, 536, 536
\cs_gset_eq:Nc

. 284, 284, 309, 388, 447, 477
\cs_gset_eq:NN

. . . 17, 17, 17, 284, 284, 284, 284,

Index 853

284, 285, 309, 309, 309, 310, 310,
310, 329, 387, 388, 391, 435, 469,
567, 571, 824, 824, 824, 824, 824,
824, 824, 824, 824, 824, 824, 824,
824, 824, 824, 824, 825, 825, 825, 825

\cs_gset_nopar:cn 288
\cs_gset_nopar:cpn 283, 283
\cs_gset_nopar:cpx 283, 283
\cs_gset_nopar:cx 288
\cs_gset_nopar:Nn 15, 15, 287
\cs_gset_nopar:Npn . . . 13, 13, 267,

267, 267, 267, 268, 283, 283, 360, 512
\cs_gset_nopar:Npx

. 13, 267, 267, 267, 267, 268, 283,
283, 360, 387, 387, 388, 389, 389,
389, 389, 389, 389, 390, 390, 390, 390

\cs_gset_nopar:Nx 287
\cs_gset_protected:cn 288
\cs_gset_protected:cpn 284, 284
\cs_gset_protected:cpx 284, 284
\cs_gset_protected:cx 288
\cs_gset_protected:Nn . . . 16, 16, 287
\cs_gset_protected:Npn

. 13, 13, 267, 268, 283, 284, 510
\cs_gset_protected:Npx

. 13, 267, 268, 283, 284
\cs_gset_protected:Nx 287
\cs_gset_protected_nopar:cn . . . 288
\cs_gset_protected_nopar:cpn 283, 283
\cs_gset_protected_nopar:cpx 283, 283
\cs_gset_protected_nopar:cx . . . 288
\cs_gset_protected_nopar:Nn

. 16, 16, 287
\cs_gset_protected_nopar:Npn . . .

. 14, 14, 267, 267, 283, 283
\cs_gset_protected_nopar:Npx . . .

. 14, 267, 267, 283, 283
\cs_gset_protected_nopar:Nx . . . 287
\cs_if_eq:ccF 289
\cs_if_eq:ccT 289
\cs_if_eq:ccTF 289, 289
\cs_if_eq:cNF 289
\cs_if_eq:cNT 289
\cs_if_eq:cNTF 289, 289, 517
\cs_if_eq:NcF 289
\cs_if_eq:NcT 289
\cs_if_eq:NcTF 289, 289
\cs_if_eq:NN 289
\cs_if_eq:NNF 289, 289, 289
\cs_if_eq:NNT 289, 289, 289

\cs_if_eq:NNTF 23, 23, 289,
289, 289, 289, 604, 605, 605, 605, 619

\cs_if_eq_p:cc 289, 289
\cs_if_eq_p:cN 289, 289
\cs_if_eq_p:Nc 289, 289
\cs_if_eq_p:NN 23, 23, 289, 289, 289, 289
\cs_if_exist:c . 278, 311, 352, 373,

381, 384, 388, 438, 454, 474, 479, 652
\cs_if_exist:cF 540
\cs_if_exist:cT . . . 338, 339, 339, 651
\cs_if_exist:cTF . . . 277, 279, 279,

279, 279, 429, 487, 510, 518, 538,
554, 555, 555, 622, 803, 803, 803, 820

\cs_if_exist:N 23, 277, 311, 352, 373,
381, 384, 388, 438, 454, 474, 479, 652

\cs_if_exist:NF 282, 282, 433
\cs_if_exist:NT 330, 330, 351, 351,

351, 418, 431, 509, 558, 561, 561,
565, 569, 569, 618, 824, 824, 824, 825

\cs_if_exist:NTF . 23, 23, 169, 277,
279, 279, 279, 279, 289, 290, 330,
351, 370, 429, 431, 431, 487, 509,
564, 567, 569, 802, 802, 806, 811,
812, 830, 831, 831, 832, 833, 836, 836

\cs_if_exist_p:c 277
\cs_if_exist_p:N

. 23, 23, 24, 277, 824, 825
\cs_if_exist_use:... 279
\cs_if_exist_use:c 279, 279
\cs_if_exist_use:cF

. . . . 279, 596, 621, 801, 802, 819, 819
\cs_if_exist_use:cT 279
\cs_if_exist_use:cTF 279, 279
\cs_if_exist_use:N . . 18, 18, 279, 279
\cs_if_exist_use:NF 279
\cs_if_exist_use:NT 279
\cs_if_exist_use:NTF 18, 18, 279, 279
\cs_if_free:c 279
\cs_if_free:cT 307
\cs_if_free:cTF 278, 518, 518
\cs_if_free:N 278
\cs_if_free:NF 281, 281
\cs_if_free:NTF . . 23, 23, 37, 278, 307
\cs_if_free_p:c 278
\cs_if_free_p:N

. 22, 23, 23, 24, 24, 37, 278
\cs_log:c 767, 767, 768
\cs_log:N . . 169, 212, 212, 767, 767, 768
\cs_meaning:c 266, 266, 266, 266
\cs_meaning:N 17, 17, 265, 265, 266, 290

Index 854

\cs_new:cn 288
\cs_new:cpn 283, 283, 314,

314, 314, 319, 319, 319, 319, 319,
319, 319, 319, 319, 319, 319, 319,
319, 319, 319, 319, 319, 319, 319,
319, 319, 356, 356, 356, 356, 356,
356, 356, 356, 375, 375, 375, 376,
589, 616, 618, 635, 635, 644, 645,
647, 647, 647, 647, 657, 662, 725, 810

\cs_new:cpx 283, 283
\cs_new:cx 288
\cs_new:Nn 14, 14, 38, 287
\cs_new:Npn 11,

12, 12, 16, 37, 38, 39, 282, 283, 283,
286, 286, 290, 291, 291, 292, 292,
292, 292, 292, 292, 292, 292, 293,
293, 293, 294, 294, 294, 295, 295,
295, 295, 295, 295, 295, 295, 295,
296, 296, 296, 296, 296, 296, 296,
297, 297, 297, 298, 298, 298, 298,
298, 299, 299, 299, 299, 299, 299,
299, 299, 299, 299, 300, 300, 300,
300, 300, 300, 300, 301, 301, 305,
305, 305, 305, 306, 306, 308, 311,
313, 313, 313, 313, 313, 313, 314,
316, 316, 316, 316, 317, 317, 317,
317, 317, 317, 317, 318, 318, 318,
319, 319, 319, 322, 322, 322, 322,
323, 323, 323, 324, 324, 325, 326,
327, 327, 328, 328, 329, 329, 329,
330, 330, 332, 337, 338, 340, 341,
341, 341, 341, 341, 342, 344, 347,
347, 347, 348, 349, 349, 349, 349,
350, 350, 350, 350, 350, 354, 354,
355, 355, 355, 356, 357, 357, 357,
357, 357, 357, 358, 358, 358, 358,
358, 359, 359, 359, 359, 359, 360,
361, 361, 361, 362, 363, 363, 363,
363, 363, 363, 364, 364, 364, 365,
366, 366, 366, 366, 366, 366, 366,
366, 367, 367, 367, 367, 367, 367,
368, 368, 368, 368, 368, 368, 369,
369, 369, 374, 374, 374, 374, 374,
375, 375, 376, 376, 376, 376, 376,
376, 376, 378, 378, 378, 378, 379,
379, 379, 382, 382, 382, 383, 383,
385, 393, 400, 402, 402, 402, 402,
402, 402, 402, 403, 403, 403, 403,
403, 403, 404, 405, 405, 405, 405,
405, 406, 406, 406, 406, 407, 407,

407, 407, 407, 408, 408, 408, 408,
408, 408, 409, 409, 409, 409, 409,
409, 410, 410, 410, 410, 411, 412,
413, 413, 414, 415, 415, 418, 418,
418, 419, 419, 420, 420, 420, 420,
420, 420, 420, 420, 420, 420, 421,
421, 421, 422, 422, 422, 422, 423,
423, 423, 423, 423, 423, 423, 424,
424, 424, 425, 425, 425, 425, 425,
425, 425, 426, 426, 426, 426, 427,
427, 428, 428, 428, 428, 428, 428,
428, 428, 428, 428, 429, 429, 429,
429, 434, 437, 437, 438, 439, 441,
443, 445, 446, 446, 446, 447, 447,
448, 448, 449, 449, 449, 449, 449,
449, 453, 453, 454, 454, 454, 454,
456, 459, 459, 460, 460, 460, 461,
461, 462, 462, 462, 462, 462, 464,
464, 465, 465, 465, 465, 465, 466,
466, 466, 467, 467, 467, 467, 467,
468, 470, 472, 472, 475, 475, 476,
476, 515, 515, 515, 515, 515, 515,
517, 518, 522, 528, 528, 529, 529,
529, 529, 529, 532, 532, 532, 532,
542, 542, 554, 554, 555, 555, 555,
560, 574, 581, 581, 581, 581, 581,
581, 582, 582, 582, 582, 583, 583,
583, 583, 584, 584, 584, 584, 584,
585, 585, 585, 585, 586, 586, 586,
587, 587, 588, 588, 588, 588, 589,
589, 589, 590, 590, 591, 591, 591,
591, 591, 591, 591, 592, 592, 592,
592, 593, 593, 593, 593, 594, 598,
598, 598, 598, 598, 598, 598, 599,
601, 601, 601, 601, 601, 602, 602,
602, 603, 603, 603, 604, 604, 604,
605, 605, 605, 606, 606, 606, 606,
606, 607, 607, 616, 616, 616, 617,
618, 618, 619, 620, 620, 620, 620,
620, 620, 621, 621, 622, 622, 623,
623, 623, 624, 624, 624, 625, 625,
626, 626, 626, 626, 626, 627, 628,
628, 629, 629, 630, 630, 630, 631,
632, 632, 632, 632, 633, 634, 636,
636, 637, 638, 638, 639, 639, 640,
640, 640, 640, 640, 641, 641, 641,
642, 642, 642, 643, 643, 643, 644,
644, 645, 645, 646, 646, 646, 647,
647, 648, 648, 648, 648, 649, 649,
649, 650, 650, 651, 651, 651, 652,

Index 855

653, 653, 654, 654, 654, 655, 655,
655, 655, 655, 655, 655, 656, 656,
656, 657, 657, 657, 658, 658, 658,
659, 659, 659, 659, 659, 660, 660,
660, 660, 660, 662, 662, 663, 663,
664, 664, 664, 665, 665, 665, 665,
666, 666, 666, 666, 667, 667, 667,
667, 668, 668, 668, 668, 668, 669,
669, 670, 670, 670, 671, 672, 673,
673, 673, 673, 674, 674, 675, 679,
680, 680, 680, 681, 681, 682, 682,
682, 683, 683, 683, 683, 684, 684,
685, 685, 686, 686, 687, 688, 689,
689, 689, 689, 689, 689, 690, 690,
690, 691, 691, 691, 693, 693, 693,
693, 694, 695, 695, 695, 695, 695,
695, 696, 696, 696, 696, 697, 697,
698, 698, 699, 699, 700, 700, 700,
701, 701, 701, 701, 701, 702, 702,
702, 702, 702, 704, 705, 705, 705,
706, 706, 706, 707, 707, 707, 707,
708, 708, 708, 708, 708, 709, 709,
709, 709, 709, 709, 710, 710, 710,
710, 712, 712, 712, 713, 713, 713,
714, 715, 715, 715, 716, 716, 716,
717, 717, 717, 717, 717, 717, 718,
718, 718, 719, 719, 719, 720, 720,
721, 721, 721, 721, 722, 722, 722,
722, 722, 723, 723, 723, 724, 724,
726, 727, 727, 728, 728, 728, 729,
729, 729, 729, 729, 729, 730, 730,
730, 731, 731, 732, 733, 733, 734,
734, 734, 735, 735, 736, 736, 737,
737, 737, 737, 742, 742, 742, 742,
742, 742, 743, 743, 743, 743, 744,
744, 744, 745, 746, 746, 748, 749,
749, 750, 750, 751, 751, 751, 751,
752, 752, 752, 753, 753, 753, 754,
754, 755, 755, 756, 756, 757, 757,
757, 757, 757, 757, 758, 758, 759,
759, 759, 760, 760, 760, 761, 761,
761, 762, 762, 762, 762, 763, 763,
763, 763, 763, 764, 764, 764, 764,
790, 790, 790, 790, 790, 790, 790,
791, 792, 792, 792, 792, 793, 793,
794, 795, 795, 796, 796, 796, 796,
796, 798, 798, 798, 799, 799, 799,
799, 799, 800, 800, 800, 800, 801,
801, 801, 801, 802, 802, 802, 802,
803, 803, 803, 803, 803, 803, 804,

804, 804, 804, 805, 805, 805, 805,
805, 805, 806, 806, 806, 807, 807,
807, 808, 808, 808, 809, 809, 809,
809, 810, 810, 810, 811, 811, 811,
817, 817, 817, 818, 818, 818, 818,
818, 819, 819, 819, 819, 819, 820,
820, 820, 820, 826, 826, 826, 826, 832

\cs_new:Npx 12, 282,
283, 283, 464, 464, 574, 616, 619, 765

\cs_new:Nx 287
\cs_new... 11
\cs_new_eq:cc 274, 284, 284, 416
\cs_new_eq:cN

. . . . 284, 284, 634, 824, 824, 824, 824
\cs_new_eq:Nc 284, 284
\cs_new_eq:NN 16,

16, 16, 281, 284, 284, 284, 284,
284, 284, 290, 291, 293, 300, 300,
308, 308, 308, 309, 309, 309, 309,
309, 309, 309, 309, 325, 332, 333,
333, 333, 333, 333, 333, 333, 333,
333, 342, 342, 342, 348, 348, 348,
348, 348, 351, 351, 352, 353, 357,
361, 372, 372, 372, 376, 378, 379,
382, 383, 383, 383, 385, 386, 387,
387, 387, 387, 388, 388, 388, 388,
398, 398, 403, 417, 417, 421, 430,
430, 435, 436, 436, 436, 436, 436,
436, 436, 436, 450, 450, 450, 450,
450, 450, 450, 450, 450, 450, 450,
450, 450, 450, 450, 450, 450, 450,
450, 450, 450, 450, 450, 450, 450,
450, 451, 452, 452, 452, 452, 452,
452, 452, 452, 452, 452, 452, 452,
452, 452, 452, 452, 452, 452, 457,
457, 457, 457, 457, 457, 457, 457,
457, 457, 457, 458, 458, 458, 458,
458, 469, 469, 469, 469, 469, 469,
469, 469, 479, 479, 479, 479, 479,
480, 480, 480, 483, 483, 483, 483,
485, 485, 485, 491, 491, 491, 491,
491, 491, 509, 564, 565, 567, 568,
570, 571, 572, 576, 586, 595, 595,
595, 595, 602, 603, 604, 604, 604,
604, 604, 764, 764, 765, 765, 765,
794, 794, 794, 794, 795, 795, 803,
806, 808, 808, 825, 825, 825, 825,
825, 825, 825, 825, 825, 825, 825,
825, 825, 825, 825, 825, 826, 826,
826, 826, 826, 826, 826, 826, 835, 835

Index 856

\cs_new_nopar:cn 288
\cs_new_nopar:cpn 283, 283,

315, 315, 315, 315, 315, 315, 315,
315, 636, 637, 637, 639, 639, 671, 675

\cs_new_nopar:cpx . . 283, 283, 307, 661
\cs_new_nopar:cx 288
\cs_new_nopar:Nn 14, 14, 287
\cs_new_nopar:Npn

. 12, 12, 26, 281, 282, 283,
283, 283, 286, 289, 289, 289, 289,
289, 289, 289, 289, 289, 289, 289,
289, 290, 297, 297, 297, 297, 297,
297, 297, 297, 297, 298, 298, 298,
298, 298, 299, 299, 299, 299, 320,
320, 342, 342, 342, 344, 344, 344,
344, 345, 366, 366, 366, 366, 366,
366, 366, 366, 366, 366, 366, 366,
366, 366, 366, 403, 404, 405, 410,
411, 415, 422, 423, 425, 426, 427,
428, 442, 446, 446, 464, 464, 477,
477, 512, 572, 599, 617, 638, 638,
638, 638, 638, 638, 638, 638, 638,
639, 639, 639, 650, 658, 696, 696,
743, 748, 748, 758, 759, 761, 762,
787, 788, 798, 798, 798, 798, 798, 798

\cs_new_nopar:Npx
. 12, 282, 283, 283, 301, 302, 302, 738

\cs_new_nopar:Nx 287
\cs_new_protected:cn 288
\cs_new_protected:cpn

. 284, 284, 328, 515, 515, 523, 545,
545, 545, 545, 545, 545, 545, 545,
546, 546, 546, 546, 546, 546, 546,
546, 546, 546, 546, 546, 546, 547,
547, 547, 547, 547, 547, 547, 547,
547, 547, 547, 547, 547, 547, 547,
547, 547, 548, 548, 548, 548, 548,
548, 548, 548, 548, 548, 548, 548,
548, 548, 548, 549, 549, 549, 549, 549

\cs_new_protected:cpx
. 284, 284, 329, 417, 516,
516, 516, 516, 516, 516, 516, 516,
523, 523, 523, 523, 523, 523, 523, 523

\cs_new_protected:cx 288
\cs_new_protected:Nn 14, 14, 287
\cs_new_protected:Npn

. . 12, 12, 282, 283, 284, 284, 284,
285, 285, 286, 287, 287, 290, 290,
293, 298, 301, 301, 302, 302, 303,
304, 306, 307, 308, 309, 309, 309,

309, 309, 309, 311, 321, 325, 325,
326, 326, 326, 326, 326, 326, 326,
326, 326, 326, 326, 326, 326, 326,
326, 326, 326, 326, 326, 327, 327,
327, 327, 327, 327, 327, 327, 327,
327, 327, 327, 327, 327, 327, 327,
327, 327, 328, 328, 328, 328, 332,
342, 343, 343, 343, 343, 343, 343,
351, 351, 352, 352, 352, 352, 352,
352, 353, 353, 353, 353, 353, 360,
360, 370, 372, 372, 372, 372, 373,
373, 373, 373, 373, 373, 373, 373,
373, 373, 380, 380, 380, 380, 381,
381, 381, 381, 381, 381, 381, 381,
381, 381, 384, 384, 384, 384, 384,
384, 385, 385, 385, 385, 385, 385,
385, 385, 386, 387, 387, 387, 387,
387, 387, 388, 388, 388, 388, 388,
388, 388, 389, 389, 389, 389, 389,
389, 389, 389, 389, 389, 389, 389,
389, 389, 390, 390, 390, 392, 392,
394, 394, 394, 394, 396, 397, 397,
398, 398, 398, 398, 404, 404, 404,
404, 406, 406, 409, 409, 415, 415,
416, 416, 435, 435, 435, 435, 435,
436, 436, 436, 436, 437, 437, 438,
438, 438, 438, 438, 439, 439, 439,
440, 440, 440, 441, 442, 442, 443,
443, 443, 444, 444, 444, 447, 447,
447, 448, 448, 450, 451, 452, 452,
453, 453, 453, 455, 455, 455, 455,
456, 456, 456, 456, 457, 458, 458,
458, 459, 459, 459, 459, 459, 461,
463, 463, 463, 463, 463, 467, 467,
469, 469, 469, 469, 469, 470, 470,
470, 471, 471, 471, 471, 473, 474,
477, 477, 478, 478, 478, 478, 478,
478, 478, 478, 479, 479, 479, 479,
479, 479, 479, 480, 480, 480, 481,
481, 481, 482, 482, 482, 482, 482,
482, 483, 483, 483, 483, 483, 483,
483, 483, 484, 484, 484, 484, 484,
484, 484, 484, 484, 484, 485, 485,
487, 487, 488, 488, 489, 489, 490,
491, 492, 492, 492, 492, 493, 493,
493, 493, 494, 494, 495, 497, 498,
499, 499, 500, 500, 500, 501, 501,
501, 501, 501, 502, 504, 505, 505,
506, 507, 507, 508, 510, 511, 511,
511, 511, 511, 511, 512, 513, 513,

Index 857

514, 514, 515, 517, 519, 519, 520,
520, 521, 521, 521, 522, 522, 522,
522, 522, 530, 530, 530, 531, 532,
532, 534, 534, 535, 535, 535, 535,
535, 538, 538, 538, 538, 538, 538,
539, 539, 539, 540, 540, 540, 542,
542, 543, 543, 543, 543, 544, 544,
544, 545, 549, 549, 550, 550, 550,
550, 551, 551, 551, 551, 553, 555,
556, 560, 561, 561, 561, 562, 562,
562, 562, 563, 563, 563, 565, 565,
565, 565, 566, 566, 567, 567, 568,
568, 570, 570, 570, 570, 571, 571,
571, 571, 572, 572, 575, 577, 578,
582, 594, 596, 596, 597, 598, 598,
598, 650, 650, 750, 765, 765, 765,
765, 766, 766, 766, 766, 766, 767,
769, 769, 770, 771, 771, 771, 771,
772, 772, 773, 773, 773, 773, 774,
774, 774, 775, 775, 776, 776, 778,
780, 781, 781, 781, 782, 782, 783,
783, 783, 783, 784, 784, 785, 785,
786, 786, 786, 786, 786, 787, 787,
787, 787, 788, 788, 793, 793, 796,
797, 802, 803, 822, 822, 826, 826, 833

\cs_new_protected:Npx 12,
282, 283, 284, 302, 307, 533, 832, 833

\cs_new_protected:Nx 287
\cs_new_protected_nopar:cn 288
\cs_new_protected_nopar:cpn

. . . . 283, 284, 546, 548, 549, 558, 558
\cs_new_protected_nopar:cpx

. 283, 284, 287, 288, 307, 346
\cs_new_protected_nopar:cx 288
\cs_new_protected_nopar:Nn 14, 14, 287
\cs_new_protected_nopar:Npn

. 12, 12, 282, 283, 283, 284,
284, 284, 284, 284, 284, 284, 284,
284, 284, 284, 287, 287, 290, 290,
297, 297, 297, 297, 297, 298, 298,
298, 298, 298, 298, 298, 298, 298,
298, 299, 311, 321, 342, 342, 345,
353, 353, 353, 353, 353, 354, 360,
370, 379, 383, 386, 392, 392, 392,
395, 395, 395, 395, 401, 401, 401,
404, 437, 437, 441, 441, 443, 443,
444, 444, 447, 453, 453, 455, 455,
455, 455, 456, 456, 473, 473, 473,
474, 481, 490, 490, 509, 509, 509,
519, 521, 529, 530, 541, 541, 541,

541, 542, 542, 544, 549, 549, 550,
551, 552, 552, 554, 554, 554, 563,
566, 567, 570, 571, 572, 572, 574,
576, 577, 577, 577, 578, 578, 578,
596, 596, 596, 597, 597, 597, 598,
598, 598, 598, 598, 598, 766, 766,
766, 766, 767, 768, 768, 768, 779,
779, 783, 787, 788, 788, 788, 788,
788, 789, 789, 789, 789, 789, 791,
791, 792, 793, 793, 793, 793, 794,
794, 794, 795, 796, 796, 797, 797,
821, 821, 822, 823, 823, 823, 834, 835

\cs_new_protected_nopar:Npx
. 12, 282, 283, 284, 301, 302, 302,
302, 306, 307, 578, 831, 831, 836, 836

\cs_new_protected_nopar:Nx 287
__cs_parm_from_arg_count:nnF . . .

. 271, 285, 285, 286
__cs_parm_from_arg_count_-

test:nnF 285, 285, 286
\cs_set:cn 288
\cs_set:cpn . . . 283, 283, 511, 511, 598
\cs_set:cpx 283, 283
\cs_set:cx 288
\cs_set:Nn 15, 15, 287, 287, 287
\cs_set:Npn . 11, 12, 12, 37, 38, 39,

267, 267, 268, 268, 268, 268, 268,
268, 268, 269, 269, 269, 269, 269,
269, 269, 269, 269, 269, 269, 269,
269, 269, 269, 269, 269, 269, 269,
269, 269, 269, 269, 275, 275, 275,
275, 276, 276, 277, 277, 277, 277,
279, 279, 279, 279, 279, 279, 279,
279, 282, 283, 283, 283, 287, 287,
288, 345, 346, 349, 349, 349, 374,
374, 376, 377, 377, 377, 377, 377,
377, 378, 394, 398, 401, 407, 418,
427, 427, 428, 428, 459, 461, 470,
470, 596, 596, 597, 597, 597, 788, 827

\cs_set:Npx 12, 267, 267, 277, 283, 398
\cs_set:Nx 287
\cs_set_eq:cc . 274, 284, 284, 309, 387
\cs_set_eq:cN

. . . . 284, 284, 309, 387, 544, 544, 594
\cs_set_eq:Nc 284, 284, 309, 387
\cs_set_eq:NN

. 17, 17, 17, 284, 284, 284,
284, 284, 284, 284, 284, 292, 302,
302, 307, 309, 309, 309, 309, 310,
310, 329, 334, 342, 343, 343, 343,

Index 858

346, 387, 391, 429, 441, 441, 441,
444, 444, 445, 575, 575, 575, 575, 826

\cs_set_nopar:cn 288
\cs_set_nopar:cpn 283, 283, 283
\cs_set_nopar:cpx 283, 283
\cs_set_nopar:cx 288
\cs_set_nopar:Nn 15, 15, 287
\cs_set_nopar:Npn 11,

13, 13, 57, 267, 267, 267, 267, 267,
267, 267, 267, 267, 268, 270, 270,
276, 281, 283, 283, 283, 330, 432, 643

\cs_set_nopar:Npx 13, 267,
267, 267, 267, 267, 268, 283, 291,
293, 298, 343, 343, 343, 343, 388,
388, 388, 389, 389, 389, 389, 389,
389, 389, 389, 575, 575, 575, 575, 575

\cs_set_nopar:Nx 287
\cs_set_proteced:Npx 830
\cs_set_protected:cn 288
\cs_set_protected:cpn

. 284, 284, 540, 542
\cs_set_protected:cpx 284, 284
\cs_set_protected:cx 288
\cs_set_protected:Nn 15, 15, 287
\cs_set_protected:Npn 11,

13, 13, 267, 267, 268, 271, 271, 271,
272, 272, 273, 273, 273, 273, 274,
274, 274, 281, 281, 281, 281, 281,
282, 282, 282, 284, 284, 285, 286,
309, 309, 310, 310, 310, 310, 310,
310, 328, 332, 338, 339, 382, 390,
390, 391, 391, 391, 391, 416, 417,
429, 429, 431, 431, 432, 432, 432,
432, 432, 433, 433, 433, 433, 433,
442, 490, 515, 523, 523, 528, 616,
635, 636, 637, 644, 797, 812, 812,
812, 813, 813, 816, 816, 816, 822, 827

\cs_set_protected:Npx 13, 267, 267, 284
\cs_set_protected:Nx 287
\cs_set_protected_nopar:cn 288
\cs_set_protected_nopar:cpn 283, 283
\cs_set_protected_nopar:cpx 283, 283
\cs_set_protected_nopar:cx 288
\cs_set_protected_nopar:Nn 15, 15, 287
\cs_set_protected_nopar:Npn

. 13, 13, 241, 267, 267, 267,
267, 267, 267, 267, 267, 268, 268,
270, 270, 270, 271, 271, 271, 271,
271, 273, 274, 280, 280, 280, 280,
280, 280, 280, 280, 280, 280, 280,

280, 280, 280, 282, 282, 283, 283,
489, 509, 509, 514, 572, 572, 576, 576

\cs_set_protected_nopar:Npx
. 13, 241, 267, 267, 280, 283, 519

\cs_set_protected_nopar:Nx 287
\cs_show:c . 290, 290, 290, 767, 767, 768
\cs_show:N 17,

17, 23, 169, 212, 290, 290, 290, 767, 768
__cs_split_function:NN

. 25, 25, 271, 271, 274, 274,
276, 276, 277, 277, 277, 286, 287, 301

__cs_split_function_auxi:w
. 276, 277, 277

__cs_split_function_auxii:w . . .
. 276, 277, 277

__cs_tmp:w . 25, 282, 282, 283, 283,
283, 283, 283, 283, 283, 283, 283,
283, 283, 283, 283, 283, 283, 283,
283, 283, 283, 283, 283, 283, 283,
283, 283, 284, 284, 284, 284, 284,
284, 284, 284, 287, 288, 288, 288,
288, 288, 288, 288, 288, 288, 288,
288, 288, 288, 288, 288, 288, 288,
288, 288, 288, 288, 288, 288, 288,
288, 288, 288, 288, 288, 288, 288,
289, 289, 289, 289, 289, 289, 289,
289, 289, 289, 289, 289, 289, 289,
289, 289, 289, 289, 301, 302, 302,
306, 307, 307, 382, 382, 390, 390, 390

__cs_to_str:N 275, 276, 276, 276, 276
\cs_to_str:N . . 4, 19, 19, 103, 109,

275, 276, 276, 277, 277, 429, 430,
430, 430, 430, 430, 430, 430, 430,
430, 430, 430, 430, 560, 572, 650, 821

__cs_to_str:w 275, 276, 276, 276, 276
\cs_undefine:c 285, 285, 544
\cs_undefine:N

. 17, 17, 285, 285, 524, 524, 524
csc . 206
cscd . 206
\csname . . 234, 234, 235, 235, 235, 236,

236, 236, 236, 237, 238, 238, 240, 243
\currentgrouplevel 249
\currentgrouptype 249
\currentifbranch 249
\currentiflevel 249
\currentiftype 249

D
\day . 243

Index 859

dd . 208
\deadcycles . 243
\def . 236, 236,

236, 236, 237, 237, 237, 238, 238,
238, 238, 239, 240, 240, 241, 242, 243

default commands:
.default:n 174, 546
.default:o 174, 546
.default:V 174, 546
.default:x 174, 546

\defaulthyphenchar 243
\defaultskewchar 243
deg . 208
\delcode . 243
\delimiter . 243
\delimiterfactor 243
\delimitershortfall 243
\detokenize 236, 240, 249
\DH . 816
\dh . 816
dim commands:

\dim_(g)zero:N 80
__dim_abs:N 374, 374, 374
\dim_abs:n 81, 81, 374, 374
\dim_add:cn 373
\dim_add:Nn . 81, 81, 373, 373, 373, 373
\dim_case:nn 84, 376, 376
\dim_case:nnF 376
\dim_case:nnT 376
__dim_case:nnTF

. 376, 376, 376, 376, 376, 376
\dim_case:nnTF 84, 84, 376, 376
__dim_case:nw 376, 376, 376, 376
__dim_case_end:nw 376, 376, 376
\dim_compare:n 375
\dim_compare:n(TF) 79
\dim_compare:nF 377, 377
\dim_compare:nNn 375
\dim_compare:nNnF 377, 378
\dim_compare:nNnT

. 377, 377, 498, 498, 778
\dim_compare:nNnTF

. . 82, 82, 84, 84, 85, 85, 375, 376,
495, 495, 495, 495, 496, 496, 496,
496, 498, 501, 501, 777, 777, 778, 778

\dim_compare:nT 376, 377
\dim_compare:nTF

. 83, 83, 85, 85, 85, 85, 89, 375
__dim_compare:w 375, 375, 375

__dim_compare:wNN
. 375, 375, 375, 375, 375

dim_compare_
__dim_compare_>:w 375

__dim_compare_:w 375
__dim_compare_<:w 375
__dim_compare_end:w 375, 376
\dim_compare_p:n 83, 83, 375
\dim_compare_p:nNn 82, 82, 375
\dim_const:cn 372
\dim_const:Nn

. 80, 80, 372, 372, 372, 380, 380
\dim_do_until:nn . 85, 85, 376, 377, 377
\dim_do_until:nNnn 84, 84, 377, 378, 378
\dim_do_while:nn . 85, 85, 376, 377, 377
\dim_do_while:nNnn 84, 84, 377, 377, 377
\dim_eval:n 82,

83, 85, 85, 86, 94, 376, 376, 376,
376, 378, 378, 379, 489, 490, 493,
493, 493, 493, 493, 493, 493, 493,
494, 494, 494, 494, 494, 501, 501,
508, 508, 508, 778, 778, 781, 781,
781, 781, 784, 784, 784, 784, 786, 786

__dim_eval:w 94, 94,
372, 372, 373, 373, 373, 374, 374,
374, 374, 374, 374, 374, 374, 375,
375, 375, 375, 375, 375, 378, 378,
379, 379, 479, 479, 479, 479, 479,
479, 480, 482, 483, 484, 484, 485,
619, 620, 637, 777, 777, 778, 778, 780

__dim_eval_end: 94, 94, 94, 94, 372,
372, 373, 373, 373, 374, 374, 374,
374, 375, 378, 378, 379, 479, 479,
479, 479, 479, 479, 480, 482, 483,
484, 484, 485, 777, 777, 778, 778, 780

\dim_gadd:cn 373
\dim_gadd:Nn 81, 373, 373, 373
.dim_gset:c 174, 547
\dim_gset:cn 373
.dim_gset:N 174, 547
\dim_gset:Nn . . . 81, 372, 373, 373, 373
\dim_gset_eq:cc 373
\dim_gset_eq:cN 373
\dim_gset_eq:Nc 373
\dim_gset_eq:NN 81, 373, 373, 373, 373
\dim_gsub:cn 373
\dim_gsub:Nn 81, 373, 373, 373
\dim_gzero:c 372
\dim_gzero:N . . . 80, 372, 372, 372, 373
\dim_gzero_new:c 373

Index 860

\dim_gzero_new:N . . . 80, 373, 373, 373
\dim_if_exist:c 373
\dim_if_exist:cTF 373
\dim_if_exist:N 373
\dim_if_exist:NTF 80, 80, 373, 373, 373
\dim_if_exist_p:c 373
\dim_if_exist_p:N 80, 80, 373
\dim_log:c 794, 794
\dim_log:N 222, 222, 794, 794
\dim_log:n 222, 222, 794, 794
\dim_max:nn . 81, 81, 374, 374, 783, 783
__dim_maxmin:wwN . . 374, 374, 374, 374
\dim_min:nn

. 81, 81, 374, 374, 783, 783, 783
\dim_new:c 372
\dim_new:N 80,

80, 80, 372, 372, 372, 372, 373, 373,
380, 380, 380, 380, 485, 486, 486,
486, 486, 486, 486, 503, 503, 503,
768, 768, 768, 768, 768, 768, 768,
768, 779, 779, 779, 779, 779, 784, 784

__dim_ratio:n 374, 374, 374, 374
\dim_ratio:nn

. 82, 82, 82, 374, 374, 379, 379
.dim_set:c 174, 547
\dim_set:cn 373
.dim_set:N 174, 547
\dim_set:Nn 81, 81, 373, 373, 373, 373,

489, 490, 495, 495, 496, 496, 496,
496, 497, 497, 498, 500, 500, 500,
500, 500, 500, 503, 506, 506, 507,
507, 507, 507, 769, 769, 769, 770,
771, 773, 773, 773, 773, 775, 775,
775, 775, 775, 775, 781, 782, 782,
783, 783, 783, 783, 783, 783, 783,
783, 783, 783, 785, 785, 785, 786, 786

\dim_set_eq:cc 373
\dim_set_eq:cN 373
\dim_set_eq:Nc 373
\dim_set_eq:NN 81, 81,

373, 373, 373, 373, 489, 489, 490, 490
\dim_show:c 379
\dim_show:N 87, 87, 379, 379, 379
\dim_show:n . 87, 87, 379, 379, 794, 794
\dim_sub:cn 373
\dim_sub:Nn . 81, 81, 373, 373, 373, 373
\dim_to_decimal:n

. 86, 86, 378, 378, 379, 379
__dim_to_decimal:w . . . 378, 378, 378

\dim_to_decimal_in_bp:n 86, 86, 87,
379, 379, 833, 833, 833, 834, 834, 834

\dim_to_decimal_in_sp:n
. 86, 86, 87, 379, 379

\dim_to_decimal_in_unit:nn
. 87, 87, 87, 379, 379

\dim_to_fp:n 87,
87, 87, 379, 496, 496, 496, 496,
497, 497, 497, 497, 497, 497, 497,
497, 497, 619, 637, 763, 763, 763,
771, 771, 771, 771, 772, 772, 772,
772, 773, 773, 773, 774, 774, 774,
774, 774, 774, 774, 774, 782, 782,
782, 782, 784, 784, 784, 784, 786, 786

\dim_until_do:nn . 85, 85, 376, 377, 377
\dim_until_do:nNnn 85, 85, 377, 377, 377
\dim_use:c 378, 378
\dim_use:N 85, 86, 86, 86, 374,

374, 374, 374, 374, 374, 374, 375,
375, 378, 378, 378, 378, 378, 500,
500, 781, 781, 781, 781, 782, 782,
782, 782, 782, 782, 786, 786, 786, 786

\dim_while_do:nn . 85, 85, 376, 376, 377
\dim_while_do:nNnn 85, 85, 377, 377, 377
\dim_zero:c 372
\dim_zero:N 80, 80, 372, 372,

372, 372, 373, 495, 495, 769, 773, 775
\dim_zero_new:c 373
\dim_zero_new:N . 80, 80, 373, 373, 373

\dimen . 243, 339
\dimendef . 243
\dimexpr . 249
\directlua . . . 234, 234, 235, 235, 235, 255
\disablecjktoken 260
\discretionary 243
\displayindent 243
\displaylimits 243
\displaystyle 243
\displaywidowpenalties 249
\displaywidowpenalty 243
\displaywidth 243
\divide . 243
\DJ . 816
\dj . 816
dollar commands:

\c_dollar_str 117, 429, 430
\doublehyphendemerits 243
\dp . 243
\draftmode . 256

Index 861

driver commands:
__driver_absolute_lengths:n . . .

. 832, 832, 833
__driver_box_rotate_begin:

. 233, 233, 770, 834, 834
__driver_box_rotate_end:

. 233, 233, 770, 834, 835
__driver_box_scale_begin:

. 233, 233, 775, 835, 835
__driver_box_scale_end:

. 233, 233, 775, 835, 835
__driver_box_use_clip:N

. 232, 232, 776, 833, 833
__driver_color_ensure_current: .

. . . . 233, 233, 509, 509, 509, 836, 836
__driver_color_reset:

. 836, 836, 836, 836
\l__driver_color_stack_int

. 836, 836, 836, 836
\l__driver_current_color_tl

. 836, 836, 836, 836, 836, 836
__driver_literal:n

. . . . 831, 832, 833, 833, 833, 835, 835
__driver_literal_direct:n 832
__driver_matrix:n . 833, 833, 834, 835
__driver_state_restore:

. 831, 831, 834, 835, 835
__driver_state_save:

. 831, 831, 833, 834, 835
__driver_tmp:w

830, 830, 830, 830, 830, 830, 830, 831
\dtou . 260
\dump . 243
\dviextension 255
\dvifeedback 255
\dvivariable 255

E
e commands:

\c_e_fp 199, 202, 767, 767
\edef 4, 236, 237, 240, 243
\efcode . 252
eight commands:

\c_eight 77, 326, 327, 368,
370, 370, 423, 423, 426, 592, 627,
627, 720, 731, 731, 742, 742, 742, 744

eleven commands:
\c_eleven .

. 77, 326, 327, 370, 370, 667, 670, 671

\else 234, 234, 235, 235, 236,
236, 236, 236, 236, 238, 239, 239, 243

else commands:
\else: 23,

39, 44, 44, 78, 78, 78, 78, 78, 94,
154, 154, 154, 190, 190, 264, 264,
266, 270, 273, 277, 278, 278, 278,
278, 278, 278, 279, 279, 280, 285,
285, 286, 286, 289, 294, 302, 302,
305, 305, 305, 306, 306, 310, 312,
314, 314, 314, 320, 320, 320, 320,
322, 323, 323, 329, 329, 329, 330,
330, 331, 333, 334, 334, 334, 334,
335, 335, 335, 335, 335, 335, 336,
336, 336, 337, 337, 337, 337, 339,
339, 341, 341, 341, 341, 344, 344,
345, 345, 345, 349, 349, 350, 350,
352, 356, 356, 357, 358, 365, 365,
367, 374, 374, 375, 375, 376, 382,
399, 399, 399, 400, 400, 400, 401,
402, 410, 411, 412, 412, 412, 412,
413, 413, 413, 414, 418, 419, 419,
419, 423, 424, 424, 424, 425, 425,
431, 431, 432, 432, 433, 433, 433,
441, 442, 442, 456, 456, 457, 457,
475, 480, 480, 480, 568, 568, 584,
584, 584, 584, 585, 585, 585, 589,
592, 592, 592, 592, 593, 594, 602,
602, 602, 603, 603, 604, 605, 605,
606, 606, 607, 607, 617, 617, 617,
617, 617, 621, 621, 622, 623, 623,
623, 623, 624, 625, 625, 627, 627,
628, 628, 628, 628, 629, 629, 630,
630, 631, 632, 632, 632, 632, 633,
633, 634, 634, 634, 634, 635, 636,
639, 639, 641, 641, 641, 642, 642,
643, 643, 644, 645, 645, 645, 646,
646, 646, 647, 648, 648, 648, 649,
649, 649, 649, 652, 653, 653, 654,
654, 654, 654, 654, 654, 656, 657,
657, 657, 657, 658, 658, 658, 662,
662, 662, 662, 663, 663, 663, 664,
665, 666, 667, 668, 669, 669, 669,
669, 670, 671, 671, 671, 671, 673,
680, 682, 682, 683, 684, 688, 688,
688, 690, 701, 702, 702, 710, 710,
712, 712, 713, 713, 716, 718, 719,
719, 720, 720, 720, 720, 720, 725,
725, 726, 727, 727, 727, 728, 729,
729, 729, 729, 730, 731, 731, 731,

Index 862

731, 731, 731, 732, 733, 733, 734,
734, 735, 736, 737, 743, 745, 745,
745, 746, 749, 749, 749, 749, 753,
753, 754, 754, 756, 756, 759, 761,
761, 761, 763, 763, 811, 811, 811, 822

em . 208
\emergencystretch 243
empty commands:

\c_empty_box
. . . . 149, 150, 478, 478, 481, 481, 502

\c_empty_clist
. . . . 139, 451, 451, 456, 456, 457, 457

\c_empty_coffin 158, 491, 491, 491, 502
\c_empty_prop 146,

469, 469, 469, 469, 469, 469, 474, 540
\c_empty_seq 129, 435,

435, 435, 435, 435, 435, 441, 442, 442
\c_empty_tl . . . 108, 363, 363, 363,

387, 387, 387, 388, 388, 399, 431, 451
\enablecjktoken 260
\end 237, 243, 263
\endcsname 234, 234, 235, 235, 235, 236,

236, 236, 236, 237, 238, 238, 240, 243
\endgroup 234, 234, 235,

235, 235, 236, 237, 237, 238, 239, 243
\endinput 237, 244
\endL . 249
\endlinechar 240, 240, 240, 244
\endR . 249
\ensuremath . 821
\eqno . 244
\errhelp 236, 237, 244
\errmessage 237, 237, 244
\ERROR . 332
\errorcontextlines 244
\errorstopmode 244
\escapechar . 244
etex commands:

\etex_... 9
\etex_beginL:D 249
\etex_beginR:D 249
\etex_botmarks:D 249
\etex_clubpenalties:D 249
\etex_currentgrouplevel:D 249
\etex_currentgrouptype:D 249
\etex_currentifbranch:D 249
\etex_currentiflevel:D 249
\etex_currentiftype:D 249
\etex_detokenize:D

. 249, 265, 400, 400, 405, 418

\etex_dimexpr:D 249, 372
\etex_displaywidowpenalties:D . . 249
\etex_endL:D 249
\etex_endR:D 249
\etex_eTeXrevision:D 249
\etex_eTeXversion:D 249
\etex_everyeof:D . . . 249, 392, 797, 797
\etex_firstmarks:D 249
\etex_fontchardp:D 249
\etex_fontcharht:D 249
\etex_fontcharic:D 249
\etex_fontcharwd:D 249
\etex_glueexpr:D 249,

381, 381, 381, 382, 382, 383, 383, 763
\etex_glueshrink:D 249, 794
\etex_glueshrinkorder:D 249
\etex_gluestretch:D 249, 794
\etex_gluestretchorder:D 249
\etex_gluetomu:D 249
\etex_ifcsname:D 249, 265
\etex_ifdefined:D

. 249, 253, 261, 261, 261, 261, 263,
263, 263, 263, 263, 264, 264, 265, 267

\etex_iffontchar:D 249
\etex_interactionmode:D

. 249, 481, 481, 481
\etex_interlinepenalties:D 249
\etex_lastlinefit:D 249
\etex_lastnodetype:D 249
\etex_marks:D 249
\etex_middle:D 249
\etex_muexpr:D 250, 385, 385, 385, 385
\etex_mutoglue:D 250
\etex_numexpr:D 250, 348, 431
\etex_pagediscards:D 250
\etex_parshapedimen:D 250
\etex_parshapeindent:D 250
\etex_parshapelength:D 250
\etex_predisplaydirection:D . . . 250
\etex_protected:D

. 250, 267, 267, 267, 267,
267, 267, 267, 267, 267, 267, 268, 268

\etex_readline:D 250, 568
\etex_savinghyphcodes:D 250
\etex_savingvdiscards:D 250
\etex_scantokens:D . 250, 393, 394, 395
\etex_showgroups:D 250
\etex_showifs:D 250
\etex_showtokens:D

. 250, 264, 415, 532, 532

Index 863

\etex_splitbotmarks:D 250
\etex_splitdiscards:D 250
\etex_splitfirstmarks:D 250
\etex_TeXXeTstate:D 250
\etex_topmarks:D 250
\etex_tracingassigns:D 250
\etex_tracinggroups:D 250
\etex_tracingifs:D 250
\etex_tracingnesting:D 250
\etex_tracingscantokens:D 250
\etex_unexpanded:D

. . . . 250, 264, 265, 300, 300, 300,
300, 355, 409, 410, 411, 795, 798, 817

\etex_unless:D 250, 264
\etex_widowpenalties:D 250

\eTeXrevision 249
\eTeXversion 249
\etoksapp . 255
\etokspre . 255
\euc . 260
\everycr . 244
\everydisplay 244
\everyeof . 249
\everyhbox . 244
\everyjob 235, 235, 244
\everymath . 244
\everypar . 244
\everyvbox . 244
ex . 208
\exhyphenpenalty 244
exp . 204
exp commands:

\exp:w 34, 34,
34, 35, 35, 35, 35, 35, 35, 265, 270,
270, 270, 276, 292, 292, 293, 293,
293, 293, 294, 295, 295, 295, 296,
296, 296, 296, 296, 296, 296, 298,
298, 298, 299, 299, 299, 299, 299,
299, 300, 300, 300, 300, 300, 301,
318, 318, 318, 329, 329, 345, 357,
357, 357, 357, 375, 376, 376, 376,
376, 402, 402, 403, 403, 408, 408,
409, 414, 414, 419, 419, 420, 420,
420, 420, 420, 420, 422, 422, 422,
424, 528, 528, 585, 593, 601, 604,
604, 604, 606, 607, 609, 609, 609,
609, 611, 612, 612, 616, 617, 618,
618, 618, 619, 619, 619, 620, 621,
621, 621, 621, 621, 621, 622, 623,
623, 623, 624, 625, 625, 626, 627,

627, 628, 628, 628, 628, 629, 629,
630, 631, 632, 632, 633, 633, 633,
634, 634, 635, 635, 636, 636, 636,
637, 638, 638, 640, 640, 640, 640,
640, 640, 640, 640, 642, 642, 643,
643, 644, 645, 646, 646, 646, 647,
648, 648, 649, 649, 649, 649, 649,
650, 652, 653, 653, 658, 658, 659,
659, 659, 700, 720, 720, 721, 725,
730, 737, 749, 749, 749, 758, 758,
759, 759, 760, 761, 761, 762, 762,
765, 795, 795, 798, 799, 799, 817, 818

\exp_after:wN
. 32, 32, 34, 35, 35, 265, 265, 266,
266, 266, 266, 270, 270, 270, 272,
272, 273, 273, 274, 274, 274, 276,
276, 277, 277, 277, 278, 278, 278,
279, 279, 279, 285, 285, 285, 286,
286, 287, 288, 290, 291, 291, 292,
292, 292, 293, 293, 293, 293, 293,
293, 293, 293, 294, 294, 294, 294,
295, 295, 295, 295, 295, 295, 295,
295, 295, 295, 295, 295, 295, 295,
295, 295, 295, 295, 295, 295, 295,
295, 296, 296, 296, 296, 296, 296,
296, 296, 296, 296, 296, 296, 296,
296, 296, 296, 296, 296, 296, 296,
296, 296, 296, 296, 296, 297, 297,
297, 297, 297, 297, 297, 297, 297,
297, 297, 298, 298, 298, 298, 298,
298, 298, 298, 299, 299, 299, 299,
299, 299, 299, 299, 299, 299, 299,
299, 299, 299, 299, 299, 299, 299,
300, 300, 300, 300, 300, 300, 300,
300, 301, 301, 301, 301, 302, 302,
303, 304, 305, 308, 314, 314, 314,
314, 314, 318, 322, 322, 322, 323,
329, 329, 329, 329, 329, 330, 331,
332, 332, 332, 332, 332, 336, 337,
339, 340, 341, 341, 341, 341, 341,
344, 344, 344, 344, 344, 344, 344,
345, 345, 345, 345, 345, 345, 345,
345, 345, 347, 347, 348, 349, 349,
349, 349, 349, 349, 350, 350, 350,
350, 355, 355, 355, 356, 356, 359,
359, 359, 364, 364, 364, 365, 365,
365, 365, 366, 366, 367, 367, 367,
367, 368, 369, 374, 374, 374, 374,
374, 374, 375, 375, 375, 375, 378,
382, 390, 393, 393, 394, 394, 395,

Index 864

395, 398, 398, 398, 398, 398, 398,
398, 399, 399, 400, 400, 400, 402,
402, 405, 408, 409, 410, 410, 410,
410, 410, 410, 410, 411, 411, 412,
412, 413, 413, 413, 413, 413, 413,
413, 413, 414, 414, 414, 414, 414,
414, 414, 414, 414, 418, 421, 422,
422, 422, 422, 422, 423, 423, 423,
423, 423, 423, 423, 424, 424, 425,
425, 425, 425, 425, 426, 426, 427,
427, 427, 428, 428, 428, 428, 431,
431, 431, 434, 437, 437, 438, 438,
438, 438, 442, 443, 443, 444, 444,
444, 444, 444, 446, 447, 447, 447,
449, 449, 449, 456, 456, 457, 457,
459, 459, 459, 465, 465, 465, 465,
465, 470, 476, 476, 514, 528, 528,
528, 528, 528, 528, 529, 532, 532,
532, 532, 532, 533, 533, 534, 539,
543, 544, 544, 551, 555, 558, 559,
566, 570, 584, 584, 584, 584, 584,
584, 585, 585, 585, 585, 585, 585,
585, 585, 585, 585, 585, 585, 585,
586, 586, 586, 586, 586, 586, 586,
587, 587, 587, 589, 589, 591, 591,
592, 592, 592, 592, 593, 596, 597,
597, 597, 599, 601, 603, 603, 603,
605, 605, 606, 606, 606, 606, 606,
606, 606, 606, 606, 606, 607, 607,
607, 607, 607, 608, 608, 609, 609,
609, 609, 609, 609, 609, 611, 611,
612, 612, 616, 617, 617, 617, 617,
617, 617, 617, 617, 617, 617, 617,
617, 617, 617, 617, 618, 618, 618,
618, 619, 619, 619, 619, 619, 619,
619, 619, 619, 620, 620, 620, 620,
620, 620, 620, 621, 621, 621, 621,
621, 621, 621, 621, 621, 622, 622,
622, 623, 623, 623, 623, 623, 624,
624, 624, 624, 624, 624, 624, 625,
625, 625, 625, 625, 625, 626, 626,
627, 627, 627, 627, 627, 627, 627,
627, 627, 627, 627, 628, 628, 628,
628, 628, 629, 629, 629, 629, 629,
629, 629, 629, 630, 630, 630, 630,
630, 630, 630, 630, 630, 630, 630,
630, 631, 631, 631, 631, 631, 631,
632, 632, 632, 632, 632, 632, 632,
632, 633, 633, 633, 635, 635, 635,
635, 635, 635, 635, 636, 636, 636,

636, 636, 637, 637, 637, 637, 637,
638, 638, 638, 638, 638, 638, 638,
640, 640, 640, 640, 640, 640, 640,
641, 641, 641, 641, 641, 641, 641,
641, 641, 641, 641, 641, 641, 641,
642, 642, 642, 642, 642, 642, 642,
642, 642, 642, 642, 643, 643, 643,
643, 643, 643, 644, 644, 644, 644,
644, 644, 644, 644, 645, 645, 645,
645, 645, 645, 645, 645, 645, 645,
646, 646, 646, 646, 646, 646, 646,
646, 646, 646, 646, 646, 646, 646,
646, 646, 646, 646, 647, 647, 647,
647, 647, 647, 647, 647, 647, 647,
647, 647, 647, 648, 648, 648, 648,
648, 648, 648, 648, 648, 648, 648,
648, 648, 648, 648, 648, 648, 648,
648, 648, 649, 649, 649, 649, 649,
649, 649, 649, 649, 649, 649, 649,
650, 650, 650, 650, 650, 650, 652,
653, 653, 653, 653, 656, 656, 656,
656, 657, 657, 657, 658, 658, 658,
658, 658, 658, 659, 659, 659, 659,
659, 659, 659, 659, 659, 659, 662,
662, 662, 662, 662, 663, 663, 663,
663, 663, 663, 664, 664, 664, 664,
665, 665, 665, 665, 665, 665, 665,
666, 666, 666, 666, 666, 666, 666,
666, 666, 666, 666, 667, 667, 667,
667, 667, 667, 667, 667, 667, 667,
667, 668, 668, 668, 668, 668, 668,
668, 669, 669, 669, 669, 669, 669,
669, 669, 670, 670, 670, 670, 670,
670, 670, 670, 670, 670, 672, 672,
673, 673, 673, 673, 673, 673, 673,
673, 673, 673, 673, 673, 673, 674,
674, 674, 674, 674, 674, 674, 674,
674, 674, 675, 675, 675, 679, 679,
679, 679, 679, 679, 680, 680, 680,
680, 680, 680, 680, 680, 680, 680,
681, 681, 681, 682, 682, 682, 683,
683, 683, 683, 683, 684, 684, 684,
684, 684, 684, 684, 684, 684, 686,
686, 686, 687, 687, 687, 687, 687,
687, 687, 687, 687, 688, 688, 688,
688, 689, 689, 689, 689, 690, 690,
690, 691, 691, 691, 691, 691, 691,
691, 691, 692, 692, 692, 692, 693,
693, 693, 693, 694, 694, 694, 694,
694, 694, 695, 695, 695, 695, 695,

Index 865

696, 696, 696, 697, 697, 697, 697,
697, 697, 698, 698, 698, 698, 699,
699, 699, 699, 699, 700, 700, 700,
701, 701, 701, 703, 705, 705, 705,
706, 706, 706, 707, 707, 707, 708,
708, 709, 709, 709, 709, 709, 709,
709, 709, 709, 710, 710, 710, 710,
710, 710, 710, 710, 710, 710, 710,
712, 712, 712, 713, 713, 713, 713,
713, 715, 715, 715, 715, 715, 715,
715, 715, 715, 715, 716, 716, 716,
716, 716, 716, 716, 716, 716, 716,
716, 716, 716, 716, 716, 716, 716,
716, 716, 717, 717, 717, 717, 718,
718, 718, 718, 718, 718, 718, 718,
718, 719, 719, 719, 719, 719, 719,
719, 719, 719, 720, 720, 720, 720,
720, 720, 720, 720, 720, 720, 721,
721, 721, 721, 722, 722, 722, 722,
722, 722, 722, 723, 723, 723, 724,
725, 725, 725, 725, 726, 727, 727,
727, 727, 727, 727, 727, 727, 727,
727, 727, 727, 727, 728, 728, 728,
728, 728, 728, 728, 728, 728, 728,
728, 728, 728, 729, 729, 729, 729,
729, 729, 729, 729, 729, 729, 729,
729, 729, 729, 730, 730, 730, 730,
730, 730, 730, 730, 731, 731, 731,
731, 731, 731, 735, 735, 735, 735,
735, 735, 736, 736, 736, 736, 737,
737, 737, 737, 737, 737, 737, 737,
737, 737, 738, 742, 742, 742, 742,
742, 743, 743, 743, 743, 743, 743,
743, 743, 744, 744, 745, 745, 745,
745, 745, 745, 746, 746, 747, 747,
747, 749, 749, 749, 749, 750, 750,
750, 750, 750, 751, 751, 752, 752,
753, 753, 753, 753, 753, 753, 753,
755, 755, 755, 757, 758, 758, 758,
758, 758, 759, 759, 759, 759, 759,
759, 759, 760, 760, 760, 760, 760,
760, 760, 760, 760, 760, 761, 761,
761, 761, 761, 761, 761, 761, 761,
761, 761, 762, 762, 762, 763, 763,
763, 763, 763, 763, 763, 763, 763,
765, 765, 765, 790, 790, 790, 792,
792, 793, 795, 796, 796, 796, 797,
797, 798, 799, 800, 800, 803, 803,
804, 804, 805, 805, 806, 809, 809,
810, 810, 812, 812, 812, 812, 812,

812, 812, 813, 813, 813, 813, 813,
813, 813, 813, 813, 813, 814, 814,
814, 816, 817, 818, 818, 818, 819,
819, 820, 820, 822, 822, 822, 822, 823

\exp_arg:N 32
__exp_arg_last_unbraced:nn

. 298, 298, 298, 298, 298, 298
__exp_arg_next:Nnn . . . 291, 292, 292
__exp_arg_next:nnn

. . . . 291, 292, 292, 293, 293, 293, 293
\exp_args:cc

. . . . 266, 266, 273, 273, 273, 273, 295
\exp_args:N〈variant〉 27
\exp_args:Nc 29,

29, 266, 266, 266, 266, 282, 282,
283, 284, 284, 284, 286, 287, 288,
288, 289, 289, 289, 289, 290, 295,
397, 404, 416, 417, 554, 594, 605, 788

\exp_args:Ncc 284, 284,
284, 289, 289, 289, 289, 295, 295, 556

\exp_args:Nccc 31, 295, 295
\exp_args:Ncco 296, 297
\exp_args:Nccx 298, 298
\exp_args:Ncf 296, 296
\exp_args:NcNc 296, 297
\exp_args:NcNo 296, 297
\exp_args:Ncnx 298, 298
\exp_args:Nco 296, 296, 296
\exp_args:Ncx 297, 297, 529
\exp_args:Nf

. . 29, 29, 295, 295, 357, 357, 357,
357, 361, 363, 363, 363, 363, 364,
364, 367, 368, 376, 376, 376, 376,
415, 415, 422, 422, 423, 423, 424,
446, 446, 464, 466, 466, 467, 467,
529, 790, 790, 796, 808, 808, 809, 810

\exp_args:Nff 297, 297
\exp_args:Nfo 297, 297, 466
\exp_args:NNc . . . 30, 30, 266, 284,

284, 284, 287, 289, 289, 289, 289,
290, 295, 295, 360, 360, 529, 566, 570

\exp_args:Nnc 297, 297
\exp_args:NNf

. . . . 296, 296, 360, 566, 570, 735, 735
\exp_args:Nnf 297, 297
\exp_args:Nnnc 31, 298, 298
\exp_args:NNNo

. 31, 31, 295, 295, 392, 797, 797
\exp_args:NNno 298, 298
\exp_args:Nnno 31, 298, 298

Index 866

\exp_args:NNNV 296, 296
\exp_args:NNNx 31, 298, 298
\exp_args:NNnx 31, 31, 298, 298
\exp_args:Nnnx 31, 298, 298
\exp_args:NNo 26,

26, 26, 30, 295, 295, 361, 470, 576
\exp_args:Nno

. 30, 297, 297, 347, 375, 393,
463, 596, 596, 596, 597, 597, 598, 797

\exp_args:NNoo 31, 31, 298, 298
\exp_args:NNox 298, 298
\exp_args:Nnox 298, 298
\exp_args:NNV 296, 296
\exp_args:NNv 296, 296
\exp_args:NnV 297, 297
\exp_args:NNx 30, 30, 297, 297
\exp_args:Nnx 30, 297, 297
\exp_args:No 29, 29, 295,

295, 361, 363, 363, 382, 392, 392,
401, 401, 401, 402, 402, 402, 402,
403, 404, 404, 406, 406, 409, 409,
410, 411, 415, 422, 422, 423, 423,
425, 426, 427, 428, 437, 454, 459,
459, 459, 461, 461, 467, 467, 546,
546, 547, 548, 554, 572, 577, 788, 797

\exp_args:Noc 30, 297, 297
\exp_args:Nof 297, 297
\exp_args:Noo 30, 297, 297
\exp_args:Nooo 298, 298
\exp_args:Noox 298, 298
\exp_args:Nox 297, 297
\exp_args:NV

. . 29, 29, 295, 295, 546, 546, 547, 548
\exp_args:Nv 29, 29, 295, 295
\exp_args:NVV 30, 296, 296
\exp_args:Nx . 30, 30, 285, 297, 297,

332, 513, 530, 531, 546, 546, 547, 548
\exp_args:Nxo 297, 298
\exp_args:Nxx 297, 298
\exp_end: . 34, 34, 34, 34, 34, 34, 35,

265, 270, 273, 273, 273, 273, 273,
276, 293, 294, 294, 294, 300, 300,
319, 319, 319, 319, 319, 319, 319,
319, 319, 319, 319, 320, 329, 330,
330, 330, 330, 331, 332, 332, 403,
408, 408, 408, 414, 414, 414, 422,
423, 423, 528, 528, 640, 640, 796, 799

\exp_end_continue_f:nw 35, 35, 300, 301
\exp_end_continue_f:w

. 35, 35, 35, 35, 35, 35,

292, 292, 293, 295, 296, 296, 298,
299, 300, 300, 301, 345, 375, 585,
593, 604, 606, 607, 611, 612, 612,
616, 618, 618, 619, 619, 620, 621,
621, 622, 634, 635, 636, 637, 640,
640, 640, 640, 649, 649, 649, 649,
652, 653, 653, 658, 659, 659, 659,
700, 725, 730, 737, 758, 758, 759,
759, 760, 761, 761, 762, 762, 765, 795

__exp_eval_error_msg:w 293, 294, 294
__exp_eval_register:c

293, 293, 294, 295, 296, 298, 299, 300
__exp_eval_register:N

. 293, 293, 294, 294, 295, 296, 296,
296, 296, 298, 299, 299, 299, 299, 300

\l__exp_internal_tl . 35, 268, 268,
268, 268, 268, 291, 293, 293, 298, 298

__exp_last_two_unbraced:noN . . .
. 299, 300, 300

\exp_last_two_unbraced:Noo
. 32, 32, 299, 300, 495, 501, 501

\exp_last_unbraced:Nco
. 32, 299, 299, 463

\exp_last_unbraced:NcV 299, 299
\exp_last_unbraced:Nf

. . 32, 32, 299, 299, 363, 364, 395, 453
\exp_last_unbraced:Nfo 299, 299
\exp_last_unbraced:NNNo 299, 299
\exp_last_unbraced:NnNo . 32, 299, 299
\exp_last_unbraced:NNNV . 32, 299, 299
\exp_last_unbraced:NNo 299,

299, 408, 462, 476, 500, 799, 801, 818
\exp_last_unbraced:Nno

. 32, 32, 299, 299, 792
\exp_last_unbraced:NNV 299, 299
\exp_last_unbraced:No

. . . . 299, 299, 467, 505, 505, 506, 507
\exp_last_unbraced:Noo

. 299, 299, 472, 475
\exp_last_unbraced:NV 299, 299
\exp_last_unbraced:Nv . 299, 299, 332
\exp_last_unbraced:Nx 32, 32, 299, 299
\exp_not:c . . . 33, 33, 300, 300, 305,

307, 329, 332, 338, 339, 339, 339,
339, 346, 417, 516, 516, 516, 516,
516, 516, 516, 516, 523, 523, 523,
523, 523, 523, 523, 523, 530, 534,
535, 540, 540, 541, 541, 545, 661, 830

\exp_not:f 33,
33, 300, 300, 438, 438, 765, 765, 765

Index 867

\exp_not:N 33, 33,
189, 209, 265, 265, 272, 274, 274,
277, 277, 277, 277, 277, 277, 277,
277, 277, 277, 277, 287, 287, 288,
288, 291, 293, 293, 294, 300, 302,
302, 302, 302, 302, 302, 302, 302,
302, 302, 302, 302, 302, 302, 302,
302, 302, 302, 302, 304, 304, 305,
305, 305, 307, 307, 307, 307, 307,
307, 307, 307, 307, 307, 307, 308,
331, 331, 333, 333, 334, 334, 334,
334, 334, 335, 335, 335, 335, 335,
336, 336, 336, 336, 336, 336, 336,
337, 337, 337, 337, 337, 337, 337,
338, 339, 339, 339, 339, 339, 339,
339, 339, 339, 339, 339, 339, 340,
340, 340, 340, 340, 340, 340, 340,
340, 340, 340, 340, 340, 340, 343,
343, 343, 344, 344, 344, 345, 345,
345, 345, 360, 367, 367, 378, 392,
392, 393, 393, 394, 398, 411, 411,
411, 412, 412, 412, 413, 413, 417,
429, 437, 437, 448, 464, 464, 464,
464, 473, 474, 481, 516, 523, 533,
533, 533, 533, 533, 533, 533, 533,
533, 533, 533, 533, 534, 534, 534,
540, 540, 541, 541, 542, 542, 545,
556, 576, 578, 616, 616, 616, 616,
616, 616, 616, 616, 616, 617, 617,
617, 619, 619, 619, 619, 619, 620,
620, 620, 620, 620, 621, 623, 623,
623, 627, 628, 630, 630, 632, 632,
632, 633, 633, 641, 641, 645, 646,
646, 648, 765, 765, 765, 765, 765,
765, 765, 765, 793, 796, 797, 797,
812, 812, 813, 813, 813, 814, 822,
822, 830, 836, 836, 836, 836, 836, 836

\exp_not:n 33, 33, 105,
106, 107, 122, 126, 126, 137, 137,
139, 143, 189, 223, 225, 265, 265,
272, 272, 274, 285, 291, 298, 305,
306, 339, 343, 343, 343, 343, 346,
346, 360, 370, 387, 388, 388, 388,
389, 389, 389, 390, 390, 390, 392,
394, 397, 397, 397, 398, 398, 398,
398, 415, 419, 419, 432, 438, 438,
439, 441, 441, 441, 441, 443, 445,
446, 448, 449, 449, 452, 453, 453,
454, 456, 459, 460, 464, 464, 465,
465, 466, 467, 472, 472, 473, 473,

473, 474, 516, 516, 519, 523, 523,
530, 542, 545, 556, 560, 568, 571,
572, 576, 619, 661, 738, 826, 826, 826

\exp_not:o 33,
33, 108, 280, 280, 280, 300, 300,
332, 388, 388, 388, 388, 388, 389,
389, 389, 389, 389, 389, 389, 389,
389, 389, 389, 389, 389, 389, 389,
389, 390, 390, 390, 390, 390, 390,
391, 391, 391, 391, 392, 393, 395,
397, 398, 406, 406, 406, 440, 453,
453, 456, 459, 460, 460, 473, 474,
534, 535, 535, 535, 550, 550, 554, 554

\exp_not:V 33,
33, 300, 300, 389, 389, 389, 390, 560

\exp_not:v 33, 33, 300, 300
\exp_stop_f: 34, 34, 34, 35,

35, 35, 292, 292, 293, 330, 330, 330,
332, 349, 349, 349, 356, 356, 375,
409, 423, 424, 424, 425, 438, 440,
440, 440, 529, 566, 570, 581, 581,
592, 602, 603, 605, 617, 617, 623,
624, 625, 625, 627, 627, 628, 628,
629, 629, 630, 632, 632, 633, 649,
654, 654, 654, 654, 654, 654, 662,
662, 662, 664, 666, 667, 669, 669,
684, 686, 691, 692, 692, 702, 702,
707, 712, 712, 712, 719, 720, 722,
725, 727, 727, 729, 730, 731, 732,
733, 733, 734, 734, 735, 737, 743,
751, 753, 753, 754, 756, 756, 758,
759, 760, 761, 802, 803, 808, 808, 809

\expandafter 234, 234, 234, 234, 234, 235,
235, 235, 235, 235, 235, 235, 235,
235, 235, 235, 235, 235, 235, 236,
236, 236, 237, 238, 238, 239, 239, 244

\expanded . 255
\expandglyphsinfont 256
\expansionERROR 301
\ExplFileDate 7, 830, 830, 830, 830
\ExplFileDescription 7
\ExplFileName . 7
\ExplFileVersion . . . 7, 830, 830, 830, 830
\ExplSyntaxOff . . . 4, 7, 7, 7, 7, 8, 240,

240, 240, 240, 240, 241, 241, 241, 241
\ExplSyntaxOn 4, 7, 7, 7,

7, 8, 240, 241, 241, 241, 241, 328, 393

F
false . 208

Index 868

false commands:
\c_false_bool 22,

39, 272, 273, 274, 274, 275, 275,
277, 277, 285, 286, 303, 303, 308,
309, 309, 309, 310, 310, 313, 313,
315, 315, 315, 317, 824, 825, 825, 826

\fam . 244
\fi 234, 234, 235, 235, 236,

236, 236, 236, 236, 236, 236, 236,
237, 237, 238, 238, 239, 239, 239, 244

fi commands:
\fi: 23, 39,

44, 44, 78, 78, 78, 94, 154, 154, 154,
190, 264, 264, 266, 270, 272, 272,
273, 274, 274, 274, 276, 276, 276,
277, 278, 278, 278, 278, 278, 278,
279, 279, 280, 282, 282, 285, 285,
286, 286, 289, 290, 294, 294, 294,
294, 302, 303, 304, 304, 305, 305,
305, 305, 306, 306, 306, 306, 306,
306, 306, 306, 310, 310, 312, 314,
314, 314, 320, 320, 320, 320, 320,
320, 320, 320, 322, 322, 323, 323,
323, 329, 330, 330, 330, 330, 330,
330, 330, 330, 330, 330, 331, 332,
332, 333, 334, 334, 334, 334, 335,
335, 335, 335, 335, 335, 336, 336,
336, 337, 337, 337, 337, 339, 339,
341, 341, 341, 341, 344, 344, 345,
345, 345, 349, 349, 350, 350, 350,
351, 352, 354, 354, 354, 355, 356,
356, 357, 357, 358, 364, 365, 365,
367, 367, 374, 374, 375, 375, 375,
376, 382, 390, 397, 398, 398, 399,
399, 399, 400, 400, 400, 401, 401,
401, 402, 408, 410, 410, 410, 410,
411, 412, 413, 413, 413, 413, 413,
413, 414, 414, 414, 418, 419, 419,
419, 421, 421, 421, 423, 423, 423,
424, 424, 424, 424, 425, 425, 425,
426, 427, 427, 428, 431, 431, 432,
432, 432, 433, 433, 433, 433, 434,
440, 440, 441, 442, 442, 443, 444,
444, 456, 456, 457, 457, 475, 476,
480, 480, 480, 511, 568, 568, 584,
584, 584, 584, 584, 585, 585, 585,
589, 590, 591, 591, 591, 591, 591,
591, 591, 591, 591, 591, 591, 591,
591, 591, 592, 592, 592, 592, 593,
593, 595, 598, 601, 601, 601, 601,

602, 602, 602, 602, 602, 602, 602,
602, 602, 602, 603, 603, 603, 603,
603, 603, 603, 603, 604, 604, 604,
605, 605, 606, 606, 606, 606, 606,
607, 607, 616, 616, 616, 617, 617,
617, 617, 618, 620, 621, 621, 621,
622, 622, 623, 623, 623, 623, 623,
623, 623, 623, 624, 624, 624, 625,
625, 626, 626, 626, 626, 627, 627,
628, 628, 628, 628, 629, 629, 630,
630, 631, 631, 631, 632, 632, 632,
632, 632, 633, 633, 634, 634, 634,
634, 635, 636, 639, 639, 639, 641,
641, 641, 641, 642, 642, 643, 643,
644, 645, 645, 645, 646, 646, 646,
647, 648, 648, 648, 648, 648, 649,
649, 649, 649, 653, 653, 653, 653,
653, 654, 654, 654, 654, 654, 654,
654, 654, 654, 654, 654, 656, 657,
657, 657, 657, 657, 657, 657, 657,
657, 657, 657, 657, 657, 657, 657,
658, 658, 658, 658, 659, 659, 659,
659, 660, 660, 660, 660, 662, 662,
662, 662, 663, 663, 663, 664, 665,
665, 666, 667, 667, 668, 669, 669,
669, 669, 669, 669, 670, 671, 672,
672, 672, 672, 672, 673, 680, 682,
682, 682, 683, 684, 684, 684, 684,
686, 688, 688, 688, 689, 690, 690,
690, 690, 690, 691, 691, 691, 691,
691, 691, 691, 691, 691, 691, 691,
692, 701, 701, 701, 702, 702, 702,
702, 702, 702, 707, 710, 710, 710,
712, 712, 712, 713, 713, 716, 717,
718, 718, 718, 719, 719, 720, 720,
720, 720, 720, 721, 721, 721, 721,
722, 722, 722, 722, 723, 723, 723,
724, 724, 725, 725, 726, 726, 726,
726, 727, 727, 727, 727, 727, 727,
728, 728, 729, 729, 729, 729, 730,
730, 730, 731, 731, 731, 731, 731,
731, 732, 733, 733, 734, 734, 735,
735, 735, 736, 737, 743, 745, 745,
745, 746, 746, 747, 749, 749, 749,
749, 749, 749, 749, 750, 750, 751,
751, 751, 752, 752, 752, 753, 753,
754, 754, 755, 755, 756, 756, 756,
758, 758, 759, 759, 760, 760, 761,
761, 761, 761, 763, 763, 792, 811,
811, 811, 822, 822, 822, 822, 822, 822

Index 869

fifteen commands:
\c_fifteen

. 77, 326, 327, 370, 371, 638, 644
file commands:

\file_... 184
__file_add_path:nN . . . 560, 561, 561
\file_add_path:nN

184, 184, 191, 560, 561, 562, 565, 565
__file_add_path_search:nN

. 560, 561, 561
\g_file_current_name_tl 184, 512,

558, 558, 558, 558, 559, 562, 562, 563
\file_if_exist:n 562
\file_if_exist:n(TF) 190
__file_if_exist:nT

. 190, 562, 562, 562, 797, 797
\file_if_exist:nT 787, 787
\file_if_exist:nTF

184, 184, 184, 184, 561, 562, 787, 787
\file_if_exist_input:n . 217, 217, 787
\file_if_exist_input:nF 787
\file_if_exist_input:nT 787
\file_if_exist_input:nTF

. 217, 217, 787, 787
__file_input:n 562, 562
\file_input:n

184, 184, 184, 185, 217, 217, 562, 562
__file_input:n␣__file_input:V 562
__file_input:V 562, 787, 787, 787, 787
__file_input_aux:n 562, 562, 562, 563
__file_input_aux:o 562, 562
\g__file_internal_ior

190, 561, 561, 561, 561, 561, 568, 568
\l__file_internal_name_tl

190, 559, 559, 559, 560, 560, 560,
560, 560, 560, 560, 560, 560, 560,
562, 562, 562, 565, 565, 565, 565,
565, 566, 787, 787, 787, 787, 797, 797

\l__file_internal_seq
559, 559, 561, 561, 563, 563, 563, 563

\l__file_internal_tl 559, 559, 563, 563
\file_list: 185, 185, 563, 563
__file_name_sanitize:nn

. 190, 190, 560,
560, 561, 562, 563, 563, 565, 565, 570

__file_name_sanitize_aux:n
. 560, 560, 560

__file_path_include:n . 563, 563, 563
\file_path_include:n

. 184, 185, 185, 217, 563, 563

\file_path_remove:n 185, 185, 563, 563
\g__file_record_seq 559, 559,

559, 562, 562, 562, 563, 563, 563, 564
\l__file_saved_search_path_seq . .

. 559, 559, 561, 561
\l__file_search_path_seq 559, 559,

561, 561, 561, 561, 561, 563, 563, 563
\g__file_stack_seq

. 559, 559, 562, 562, 563
\finalhyphendemerits 244
\firstmark . 244
\firstmarks . 249
\firstvalidlanguage 255
five commands:

\c_five 77,
326, 327, 330, 370, 370, 426, 601,
602, 602, 602, 644, 644, 682, 708, 720

\floatingpenalty 244
floor . 205
\fmtname . 238
\font . 244
\fontchardp . 249
\fontcharht . 249
\fontcharic . 249
\fontcharwd . 249
\fontdimen . 244
\fontid . 255
\fontname . 244
\forcecjktoken 260
\formatname . 255
four commands:

\c_four 77, 326, 327, 370,
370, 394, 426, 578, 578, 604, 644,
644, 700, 701, 709, 710, 713, 719,
737, 737, 737, 745, 749, 754, 756, 763

fourteen commands:
\c_fourteen 77, 326, 327, 370, 371, 644

fp commands:
\s__fp 579, 580, 580, 580, 580,

580, 582, 582, 582, 582, 582, 582,
583, 583, 583, 583, 583, 583, 583,
583, 583, 583, 584, 584, 584, 585,
585, 585, 585, 586, 591, 591, 591,
591, 591, 591, 591, 591, 591, 591,
592, 598, 598, 604, 605, 606, 606,
613, 615, 618, 631, 631, 633, 633,
637, 652, 653, 653, 656, 656, 656,
656, 657, 657, 657, 657, 657, 657,
657, 657, 657, 657, 657, 658, 658,
658, 658, 659, 661, 661, 661, 661,

Index 870

662, 662, 662, 662, 662, 662, 662,
662, 663, 663, 663, 663, 663, 663,
663, 664, 664, 666, 666, 671, 671,
672, 672, 672, 672, 672, 672, 675,
675, 675, 675, 684, 684, 684, 691,
692, 712, 712, 712, 719, 720, 720,
725, 725, 726, 726, 726, 726, 726,
726, 726, 726, 727, 727, 727, 727,
727, 728, 730, 730, 730, 730, 730,
732, 732, 733, 733, 733, 733, 734,
734, 734, 734, 734, 735, 735, 749,
749, 749, 749, 750, 750, 750, 753,
754, 754, 754, 754, 755, 756, 756,
756, 756, 757, 757, 758, 758, 758,
759, 760, 760, 761, 761, 763, 763, 763

__fp_ 658, 658, 658
__fp_&_o:ww 652, 658
\fp_(g)zero:N 193
__fp_*_o:ww 671
__fp_+_o:ww

661, 661, 661, 661, 661, 661, 661, 691
__fp_-_o:ww 661, 661, 661, 661
\s__fp_... 580, 580,

581, 581, 581, 581, 581, 581, 583, 583
__fp_..._o:ww 609
__fp_/_o:ww 671, 671, 674, 713
__fp_&_o:ww 658
__fp_^_o:ww 725
\fp_abs:n 204, 208, 208, 764,

764, 764, 773, 775, 775, 775, 785, 785
__fp_acos_o:w 753, 754, 754, 756
__fp_acot_o:Nw . . . 638, 638, 748, 748
__fp_acotii_o:Nww . 748, 748, 749, 749
__fp_acotii_o:ww 749
__fp_acsc_normal_o:NfwNnw

. 756, 756, 756, 756, 757
__fp_acsc_o:w 756, 756
\fp_add:cn 766
\fp_add:Nn . 194, 194, 764, 766, 766, 766
__fp_add:NNNn

. 766, 766, 766, 766, 766, 766
__fp_add_big_i:wNww 664
__fp_add_big_i_o:wNww

. 661, 664, 664, 664, 664, 720
__fp_add_big_ii:wNww 664
__fp_add_big_ii_o:wNww 664, 664, 664
__fp_add_inf_o:Nww . . . 662, 663, 663
__fp_add_normal_o:Nww

. 662, 663, 663, 663

__fp_add_npos_o:NnwNnw
. 663, 664, 664, 664

__fp_add_return_ii_o:Nww
. 662, 662, 662, 662

__fp_add_significand_carry_-
o:wwwNN 665, 666, 666, 666

__fp_add_significand_no_carry_-
o:wwwNN 665, 665, 665, 665

__fp_add_significand_o:NnnwnnnnN
. 664, 664, 664, 665, 665, 665

__fp_add_significand_pack:NNNNNNN
. 665, 665, 665

__fp_add_significand_test_o:N . .
. 665, 665, 665

__fp_add_zeros_o:Nww . 662, 662, 662
__fp_and_return:wNw . . 658, 658, 658
__fp_array_count:n 593, 593, 604, 748
__fp_array_count_loop:Nw

. 593, 593, 593, 593
__fp_array_to_clist:n

. 605, 645, 645, 764, 764
__fp_array_to_clist_loop:Nw . . .

. 764, 764, 765, 765
__fp_asec_o:w 756, 756
__fp_asin_auxi_o:NnNww

. 755, 755, 755, 757
__fp_asin_auxi_o:nNww . 754, 754, 757
__fp_asin_isqrt:wn . . . 755, 755, 755
__fp_asin_normal_o:NfwNnnnnw . . .

. 754, 754, 754, 754
__fp_asin_o:w 753, 753
__fp_atan_auxi:ww . 751, 751, 751, 751
__fp_atan_auxii:w 751, 751, 752
__fp_atan_combine_aux:ww

. 752, 753, 753
__fp_atan_combine_o:NwwwwwN . . .

. 749, 750, 750, 750, 752, 753
__fp_atan_dispatch_o:NNnNw

. 748, 748, 748, 748
__fp_atan_div:wnwwnw

. 750, 751, 751, 751
__fp_atan_inf_o:NNNw 749,

749, 749, 749, 749, 749, 750, 754, 756
__fp_atan_near:wwwn . . 751, 751, 751
__fp_atan_near_aux:wwn 751, 751, 751
__fp_atan_normal_o:NNnwNnw

. 749, 749, 750, 750
__fp_atan_o:Nw . . . 638, 638, 748, 748
__fp_atan_Taylor_break:w

. 752, 752, 752

Index 871

__fp_atan_Taylor_loop:www
. 751, 752, 752, 752, 752

__fp_atan_test_o:NwwNwwN
. 750, 750, 750, 755, 755

__fp_atanii_o:Nww
. 748, 748, 749, 749, 749

__fp_basics_pack_high:NNNNNw . . .
. 660, 660, 665,
665, 670, 674, 674, 683, 683, 691, 710

__fp_basics_pack_high_carry:w . .
. 660, 660, 660, 660

__fp_basics_pack_low:NNNNNw . . .
. 660, 660, 665, 670, 673,
674, 674, 683, 683, 689, 689, 691, 710

__fp_basics_pack_weird_high:NNNNNNNNw
. 211, 660, 660, 666, 684

__fp_basics_pack_weird_low:NNNNw
. 211, 660, 660, 666, 684

\c__fp_big_leading_shift_int . . .
. 587, 587, 687, 698, 698, 699

\c__fp_big_middle_shift_int
. 587, 587, 687, 687, 687, 687, 687,
687, 687, 698, 699, 699, 699, 699, 699

\c__fp_big_trailing_shift_int . . .
. 587, 587, 687, 700

\c__fp_Bigg_leading_shift_int . . .
. 588, 588, 680, 680

\c__fp_Bigg_middle_shift_int . . .
. 588, 588, 680, 680, 680, 680

\c__fp_Bigg_trailing_shift_int . .
. 588, 588, 680, 680

__fp_case_return:nw 591,
591, 592, 592, 592, 607, 719, 749,
749, 749, 758, 759, 761, 761, 761, 763

__fp_case_return_i_o:ww
. . . . 591, 591, 662, 662, 663, 672, 749

__fp_case_return_ii_o:ww
. 591, 591, 672, 727, 727, 749

__fp_case_return_o:Nw
. . . . 591, 591, 591, 720, 720, 720,
725, 725, 726, 726, 733, 734, 756, 756

__fp_case_return_o:Nww 591,
591, 672, 672, 672, 672, 727, 727, 727

__fp_case_return_same_o:w
. . . . 591, 591, 591, 684, 684, 712,
720, 726, 732, 732, 733, 733, 734,
734, 734, 735, 754, 754, 754, 756, 756

__fp_case_use:nw . . 591, 591, 663,
672, 672, 672, 672, 675, 675, 684,
712, 712, 726, 732, 732, 733, 733,

733, 733, 734, 734, 734, 734, 735,
735, 754, 754, 754, 754, 754, 756,
756, 756, 756, 756, 758, 758, 759, 760

__fp_chk:w
. 579, 580, 580, 580, 580, 582, 582,
582, 582, 582, 582, 582, 583, 583,
583, 583, 583, 583, 583, 583, 583,
583, 584, 584, 584, 585, 585, 585,
585, 586, 592, 598, 598, 604, 605,
606, 606, 631, 631, 637, 652, 653,
653, 656, 656, 656, 656, 657, 657,
657, 657, 657, 658, 658, 658, 659,
661, 662, 662, 662, 662, 662, 662,
662, 662, 663, 663, 663, 663, 663,
663, 663, 664, 664, 666, 666, 671,
671, 672, 672, 672, 672, 672, 672,
675, 675, 675, 675, 684, 684, 684,
691, 692, 712, 712, 712, 719, 720,
720, 725, 725, 726, 726, 726, 726,
726, 726, 726, 726, 727, 727, 727,
727, 727, 728, 730, 730, 730, 730,
730, 732, 732, 733, 733, 733, 733,
734, 734, 734, 734, 734, 735, 735,
749, 749, 749, 749, 750, 750, 750,
753, 754, 754, 754, 754, 755, 756,
756, 756, 756, 757, 757, 758, 758,
758, 759, 760, 760, 761, 761, 763, 763

\fp_compare:n 652
\fp_compare:nF 655, 655
\fp_compare:nNn 653
\fp_compare:nNnF 655, 656
\fp_compare:nNnT . . . 655, 656, 785, 834
\fp_compare:nNnTF

196, 196, 197, 198, 198, 198, 496,
653, 770, 770, 770, 776, 776, 834, 835

\fp_compare:nT 655, 655
\fp_compare:nTF

197, 197, 198, 198, 198, 198, 204, 652
__fp_compare:wNNNNw 647
__fp_compare_aux:wn . . 653, 653, 653
__fp_compare_back:ww

. . . . 649, 653, 653, 653, 653, 653, 657
__fp_compare_nan:w

. 653, 653, 653, 653, 654
__fp_compare_npos:nwnw

652, 653, 653, 654, 654, 654, 666, 702
\fp_compare_p:n 197, 197, 652
\fp_compare_p:nNn 196, 196, 653
__fp_compare_return:w . 652, 652, 652

Index 872

__fp_compare_significand:nnnnnnnn
. 654, 654, 654

\fp_const:cn 765
\fp_const:Nn 193,

193, 765, 765, 765, 767, 767, 767, 767
__fp_cos_o:w 732, 733
__fp_cot_o:w 734, 734, 734
__fp_cot_zero_o:Nfw

. 733, 733, 734, 734, 735, 735
__fp_csc_o:w 733, 733
__fp_decimate:nNnnnn . . 588, 588,

592, 606, 664, 664, 667, 721, 721, 760
__fp_decimate_:Nnnnn 589, 589
__fp_decimate_auxi:Nnnnn 589
__fp_decimate_auxii:Nnnnn 589
__fp_decimate_auxiii:Nnnnn . . . 589
__fp_decimate_auxiv:Nnnnn 589
__fp_decimate_auxix:Nnnnn 589
__fp_decimate_auxv:Nnnnn 589
__fp_decimate_auxvi:Nnnnn 589
__fp_decimate_auxvii:Nnnnn . . . 589
__fp_decimate_auxviii:Nnnnn . . 589
__fp_decimate_auxx:Nnnnn 589
__fp_decimate_auxxi:Nnnnn 589
__fp_decimate_auxxii:Nnnnn . . . 589
__fp_decimate_auxxiii:Nnnnn . . 589
__fp_decimate_auxxiv:Nnnnn . . . 589
__fp_decimate_auxxv:Nnnnn 589
__fp_decimate_auxxvi:Nnnnn . . . 589
__fp_decimate_pack:nnnnnnnnnnw .

. 589, 589, 590, 590
__fp_decimate_pack:nnnnnnw 590, 590
__fp_decimate_tiny:Nnnnn . . 589, 589
__fp_div_npos_o:Nww

. 674, 675, 675, 675, 675
__fp_div_significand_calc:wwnnnnnnn

679, 679, 679, 679, 680, 681, 715, 715
__fp_div_significand_calc_-

i:wwnnnnnnn 679, 680, 680
__fp_div_significand_calc_-

ii:wwnnnnnnn 679, 680, 680
__fp_div_significand_i_o:wnnw . .

. 675, 675, 679, 679, 679
__fp_div_significand_ii:wwn . . .

. 679, 679, 679, 681, 681, 681
__fp_div_significand_iii:wwnnnnn

. 679, 681, 681, 681
__fp_div_significand_iv:wwnnnnnnn

. 681, 681, 681, 682

__fp_div_significand_large_-
o:wwwNNNNwN 683, 683, 683, 683

__fp_div_significand_pack:NNN . .
. 681,
682, 682, 682, 682, 683, 715, 715,
715, 715, 715, 715, 715, 715, 715, 715

__fp_div_significand_small_-
o:wwwNNNNwN 683, 683, 683, 683

__fp_div_significand_test_o:w . .
. 679, 682, 683, 683, 683

__fp_div_significand_v:NN
. 682, 682, 682

__fp_div_significand_v:NNw . . . 681
__fp_div_significand_vi:Nw

. 681, 682, 682, 682
\s__fp_division 582, 582
\l__fp_division_by_zero_flag_-

token 595, 595
__fp_division_by_zero_o:Nnw . . .

. . . . 595, 597, 598, 598, 712, 735, 735
__fp_division_by_zero_o:NNww . . .

. . . . 595, 597, 598, 598, 675, 675, 726
\fp_do_until:nn 198, 198, 655, 655, 655
\fp_do_until:nNnn

. 197, 197, 655, 655, 655
\fp_do_while:nn 198, 198, 655, 655, 655
\fp_do_while:nNnn

. 198, 198, 655, 655, 655
__fp_ep_compare:wwww . 702, 702, 751
__fp_ep_compare_aux:wwww

. 702, 702, 702
__fp_ep_div:wwwwn 704,

704, 709, 746, 747, 751, 751, 751, 757
__fp_ep_div_eps_pack:NNNNNw . . .

. 705, 706, 706, 706
__fp_ep_div_epsi:wnNNNNn 705
__fp_ep_div_epsi:wnNNNNNn

. 705, 705, 706
__fp_ep_div_epsii:wwnNNNNNn . . .

. 705, 706, 706
__fp_ep_div_esti:wwwwn

. 704, 705, 705, 705
__fp_ep_div_estii:wwnnwwn

. 705, 705, 705
__fp_ep_div_estiii:NNNNNwwwn . . .

. 705, 705, 705
__fp_ep_inv_to_float:wN 735
__fp_ep_inv_to_float:wwN

. 708, 709, 709, 733, 734, 744
__fp_ep_isqrt:wwn 706, 707, 755

Index 873

__fp_ep_isqrt_aux:wwn 706
__fp_ep_isqrt_auxi:wwn 707, 707
__fp_ep_isqrt_auxii:wwnnnwn . . .

. 706, 707, 707
__fp_ep_isqrt_epsi:wN

. 707, 708, 708, 708
__fp_ep_isqrt_epsii:wwN

. 708, 708, 708, 708, 708
__fp_ep_isqrt_esti:wwwnnwn

. 707, 707, 707, 707
__fp_ep_isqrt_estii:wwwnnwn . . .

. 707, 707, 708
__fp_ep_isqrt_estiii:NNNNNwwwn .

. 707, 708, 708
__fp_ep_mul:wwwwn

. 702, 702, 745, 746, 755, 755
__fp_ep_mul_raw:wwwwN

. 702, 702, 702, 736, 744
__fp_ep_to_ep:wwN

701, 701, 702, 702, 704, 705, 707, 755
__fp_ep_to_ep_end:www . 701, 701, 701
__fp_ep_to_ep_loop:N

. . . . 701, 701, 701, 701, 701, 743, 744
__fp_ep_to_ep_zero:ww . 701, 702, 702
__fp_ep_to_fixed:wwn

. 700, 700, 736, 751, 751, 755
__fp_ep_to_fixed_auxi:www

. 700, 700, 701
__fp_ep_to_fixed_auxii:nnnnnnnwn

. 700, 701, 701
__fp_ep_to_float:wN 735
__fp_ep_to_float:wwN 708,

708, 709, 709, 732, 732, 733, 744, 747
__fp_error:nffn

. . . . 596, 597, 597, 598, 599, 605, 645
__fp_error:nnfn 596, 597, 599
__fp_error:nnnn . . . 599, 599, 599, 605
\fp_eval:n 194, 194, 197,

203, 203, 203, 204, 204, 204, 204,
204, 204, 204, 204, 204, 204, 204,
204, 205, 205, 205, 205, 205, 205,
206, 206, 206, 206, 206, 206, 206,
206, 206, 206, 206, 206, 206, 206,
206, 206, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207,
208, 208, 209, 764, 764, 766, 834, 835

\s__fp_exact
582, 582, 583, 583, 583, 583, 583, 656

__fp_exp_after_?_f:nw 618, 618

__fp_exp_after_array_f:w
586, 586, 586, 636, 658, 659, 659, 659

__fp_exp_after_f:nw
. 585, 585, 618, 637, 641

__fp_exp_after_mark_f:nw
. 618, 618, 618

__fp_exp_after_normal:nNNw
. 585, 585, 585, 586, 586

__fp_exp_after_normal:Nwwwww . . .
. 586, 586

__fp_exp_after_o:nw 585, 585
__fp_exp_after_o:w 585,

585, 585, 591, 591, 591, 606, 606,
607, 649, 657, 658, 662, 692, 730, 730

__fp_exp_after_special:nNNw . . .
. 585, 585, 585, 585, 585

__fp_exp_after_stop_f:nw . . 586, 586
__fp_exp_large:w

. . . . 722, 722, 722, 722, 722, 722,
722, 722, 722, 722, 722, 723, 723,
723, 723, 723, 723, 723, 723, 723,
723, 723, 723, 723, 723, 723, 723,
723, 723, 723, 723, 723, 723, 723,
723, 723, 723, 723, 723, 723, 724,
724, 724, 724, 724, 724, 724, 724,
724, 724, 724, 724, 724, 724, 724, 724

__fp_exp_large_:wN . . . 722, 724, 724
__fp_exp_large_after:wwn

. 722, 724, 724
__fp_exp_large_i:wN . . 722, 723, 723
__fp_exp_large_ii:wN . 722, 723, 723
__fp_exp_large_iii:wN . 722, 723, 723
__fp_exp_large_iv:wN . 722, 722, 722
__fp_exp_large_v:wN . . 722, 722, 729
__fp_exp_normal:w 720, 720, 720
__fp_exp_o:w 719, 719
__fp_exp_overflow: 720, 721
__fp_exp_pos:NNwnw . . . 720, 720, 720
__fp_exp_pos:Nnwnw 720
__fp_exp_pos_large:NnnNwn

. 721, 722, 722
__fp_exp_Taylor:Nnnwn

. 721, 721, 721, 724
__fp_exp_Taylor_break:Nww

. 721, 721, 722
__fp_exp_Taylor_ii:ww 721, 721
__fp_exp_Taylor_loop:www

. 721, 721, 721, 721
__fp_expand:n 593, 593, 764, 764

Index 874

__fp_expand_loop:nwnN
. 593, 593, 593, 593

__fp_exponent:w 584, 584
__fp_fixed_add:nnNnnnwn 696, 696, 696
__fp_fixed_add:Nnnnnwnn

. 696, 696, 696, 696
__fp_fixed_add:wwn 692, 692, 696,

696, 706, 717, 718, 718, 719, 751, 753
__fp_fixed_add_after:NNNNNwn . . .

. 696, 696, 696
__fp_fixed_add_one:wN

. 693, 693, 706, 721, 722, 755
__fp_fixed_add_pack:NNNNNwn . . .

. 696, 696, 696, 696
__fp_fixed_continue:wn 693,

693, 702, 702, 704, 722, 722, 723,
723, 723, 724, 729, 737, 745, 755, 755

__fp_fixed_div_int:wnN
. 694, 695, 695, 695

__fp_fixed_div_int:wwN
. 694, 695, 717, 721, 752

__fp_fixed_div_int_after:Nw . . .
. 694, 694, 695, 695

__fp_fixed_div_int_auxi:wnn . . .
. . . . 694, 695, 695, 695, 695, 695, 695

__fp_fixed_div_int_auxii:wnn . . .
. 694, 695, 695, 695

__fp_fixed_div_int_pack:Nw
694, 695, 695, 695, 695, 695, 695, 695

__fp_fixed_div_myriad:wn
. 693, 693, 706

__fp_fixed_inv_to_float:wN
. 709, 709, 720, 728

__fp_fixed_mul:nnnnnnnw 696, 697, 697
__fp_fixed_mul:wwn

. 692, 694, 696, 697,
703, 705, 706, 706, 706, 708, 708,
709, 717, 718, 719, 721, 722, 724,
728, 742, 744, 745, 746, 752, 753, 753

__fp_fixed_mul_add:nnnnwnnnn . . .
. 699, 699, 700

__fp_fixed_mul_add:nnnnwnnwN . . .
. 700, 700, 700

__fp_fixed_mul_add:Nwnnnwnnn . . .
. 698, 699, 699, 699, 699

__fp_fixed_mul_add:wwwn . . . 698, 698
__fp_fixed_mul_after:wwn 693, 693,

693, 694, 697, 697, 698, 698, 699, 728
__fp_fixed_mul_one_minus_-

mul:wwn 698

__fp_fixed_mul_short:wwn
. . . . 694, 694, 705, 706, 708, 708, 753

__fp_fixed_mul_sub_back:wwwn . . .
. 698, 698, 708,
745, 745, 745, 745, 745, 745, 745,
745, 745, 745, 745, 745, 745, 745,
745, 745, 745, 746, 746, 746, 746,
746, 746, 747, 747, 747, 747, 752, 752

__fp_fixed_one_minus_mul:wwn . . .
. 698, 699, 699

__fp_fixed_sub:wwn 696, 696,
708, 718, 719, 719, 737, 751, 753, 755

__fp_fixed_to_float:Nw 709, 709, 719
__fp_fixed_to_float:wN

. 693, 709, 709,
709, 709, 719, 719, 720, 727, 753, 753

__fp_fixed_to_float_pack:ww 710, 710
__fp_fixed_to_float_rad:wN

. 709, 709, 753
__fp_fixed_to_float_round_-

up:wnnnnw 710, 710
__fp_fixed_to_float_zero:w 710, 710
__fp_fixed_to_loop:N . 709, 709, 710
__fp_fixed_to_loop_end:w . . 710, 710
\fp_flag_off:n 200, 200, 594, 594
\fp_flag_on:n 200, 200,

594, 594, 596, 596, 597, 597, 597, 598
\fp_format:nn 209
__fp_from_dim:wNNnnnnnn 763, 763, 763
__fp_from_dim:wnnnnwNn 763, 763
__fp_from_dim:wnnnnwNw 763
__fp_from_dim:wNw 763, 763, 763
__fp_from_dim_test:ww

. 620, 637, 763, 763, 763, 763
\fp_function:Nw 649, 649
__fp_function_apply:nw

. . . . 649, 649, 650, 650, 650, 650, 651
__fp_function_args:Nwn

. 650, 650, 650, 650
__fp_function_store:wwNwnn

. 650, 651, 651, 651, 651
__fp_function_store_end:wnnn . . .

. 650, 651, 651, 651
\fp_gadd:cn 766
\fp_gadd:Nn 194, 766, 766, 766
.fp_gset:c 174, 547
\fp_gset:cn 765
.fp_gset:N 174, 547
\fp_gset:Nn 194, 765, 765, 765, 766, 766
\fp_gset_eq:cc 765

Index 875

\fp_gset_eq:cN 765
\fp_gset_eq:Nc 765
\fp_gset_eq:NN 194, 765, 765, 765, 766
\fp_gsub:cn 766
\fp_gsub:Nn 194, 766, 766, 766
\fp_gzero:c 766
\fp_gzero:N . . . 193, 766, 766, 766, 766
\fp_gzero_new:c 766
\fp_gzero_new:N . . . 193, 766, 766, 766
\fp_if_exist:c 652
\fp_if_exist:cTF 652
\fp_if_exist:N 652
\fp_if_exist:NTF

. 196, 196, 652, 766, 766, 767
\fp_if_exist_p:c 652
\fp_if_exist_p:N 196, 196, 652
\fp_if_flag_on:n 594
\fp_if_flag_on:nTF 200, 200, 594
\fp_if_flag_on_p:n 200, 200, 594
\fp_if_nan:nTF 209
__fp_inf_fp:N 583, 583, 598
\s__fp_invalid 582, 582
__fp_invalid_operation:nnw

. 595, 595,
596, 598, 598, 599, 758, 758, 759, 760

\l__fp_invalid_operation_flag_-
token 595, 595

__fp_invalid_operation_o:fw . . .
. 599, 732, 733, 733, 734,
734, 735, 754, 754, 755, 756, 756, 757

__fp_invalid_operation_o:nw . . .
. 595, 599, 599, 599, 684, 712

__fp_invalid_operation_o:Nww . . .
. 595,
596, 598, 598, 663, 663, 672, 672, 730

__fp_invalid_operation_tl_o:ff .
. 595, 597, 598, 598, 605

\c__fp_leading_shift_int
587, 587, 693, 694, 697, 728, 742, 743

__fp_ln_c:NwNn 717
__fp_ln_c:NwNw . . . 717, 718, 718, 718
__fp_ln_div_after:Nw

. 713, 715, 715, 716
__fp_ln_div_i:w 715, 715
__fp_ln_div_ii:wwn

. 715, 715, 715, 715, 715
__fp_ln_div_vi:wwn 715, 715
__fp_ln_exponent:wn 712, 718, 718, 718
__fp_ln_exponent_one:ww . . . 719, 719

__fp_ln_exponent_small:NNww . . .
. 719, 719, 719

\c__fp_ln_i_fixed_tl 711, 711
\c__fp_ln_ii_fixed_tl 711, 711
\c__fp_ln_iii_fixed_tl 711, 711
\c__fp_ln_iv_fixed_tl 711, 711
\c__fp_ln_ix_fixed_tl 711, 711
__fp_ln_npos_o:w

. 711, 711, 712, 712, 712
__fp_ln_o:w 711, 711, 712, 727
__fp_ln_significand:NNNNnnnN . . .

. 712, 712, 712, 712, 728
__fp_ln_square_t_after:w . . 716, 717
__fp_ln_square_t_pack:NNNNNw . . .

. 716, 716, 716, 716, 717
__fp_ln_t_large:NNw 716, 716, 716, 716
__fp_ln_t_small:Nw 716, 716
__fp_ln_t_small:w 716
__fp_ln_Taylor:wwNw 717, 717, 717, 717
__fp_ln_Taylor_break:w 717, 718
__fp_ln_Taylor_loop:www 717, 717, 718
__fp_ln_twice_t_after:w . . . 716, 717
__fp_ln_twice_t_pack:Nw

. 716, 716, 717, 717, 717, 717
\c__fp_ln_vi_fixed_tl 711, 711
\c__fp_ln_vii_fixed_tl 711, 711
\c__fp_ln_viii_fixed_tl 711, 711
\c__fp_ln_x_fixed_tl 711, 711, 719, 719
__fp_ln_x_ii:wnnnn . . . 712, 713, 713
__fp_ln_x_iii:NNNNNNw 713, 713
__fp_ln_x_iii_var:NNNNNw . . 713, 713
__fp_ln_x_iv:wnnnnnnnn 713, 714, 714
\fp_log:c 789
\fp_log:N 218, 218, 789, 789, 789
\fp_log:n 218, 218, 789, 789
\s__fp_mark 582, 582, 593, 593, 593,

593, 593, 613, 614, 618, 640, 640,
641, 642, 651, 651, 651, 651, 651, 651

\fp_max:nn 209, 209, 764, 764
\c__fp_max_exponent_int

. 580, 581, 583, 583, 583, 583, 584,
584, 702, 710, 720, 721, 729, 758, 760

__fp_max_fp:N 583, 583
\c__fp_middle_shift_int

. 587, 587, 694,
694, 694, 694, 697, 697, 697, 697,
728, 728, 728, 728, 742, 743, 744, 744

\fp_min:nn 209, 764, 764
__fp_min_fp:N 583, 583
__fp_minmax_auxi:ww 657, 657, 657, 657

Index 876

__fp_minmax_auxii:ww
. 657, 657, 657, 657

__fp_minmax_break_o:w . 656, 657, 657
__fp_minmax_loop:Nww

. 656, 656, 656, 656, 656, 657
__fp_minmax_o:Nw

. 638, 638, 652, 656, 656
__fp_mul_cases_o:NnNnww

. 671, 671, 675, 675
__fp_mul_cases_o:nNnnww 671
__fp_mul_npos_o:Nww 671,

671, 672, 672, 672, 674, 763, 763, 763
__fp_mul_significand_drop:NNNNNw

. . . . 672, 672, 673, 673, 673, 673, 673
__fp_mul_significand_keep:NNNNNw

. 672, 673, 673, 673
__fp_mul_significand_large_-

f:NwwNNNN 673, 674, 674
__fp_mul_significand_o:nnnnNnnnn

. 672, 672, 672, 672, 673
__fp_mul_significand_small_-

f:NNwwwN 673, 674, 674
__fp_mul_significand_test_f:NNN

. 673, 673, 673, 673
__fp_neg_sign:N . . . 584, 584, 661, 661
\fp_new:N 193,

193, 193, 486, 486, 765, 765, 765,
766, 766, 767, 767, 767, 767, 768,
768, 768, 772, 772, 779, 779, 784, 784

__fp_new_function:Ncfnn . . . 650, 650
__fp_new_function:NNnnn 650, 650, 650
\fp_new_function:Npn 650, 650
__fp_not_o:w 635, 652, 657
\c__fp_one_fixed_tl 693,

693, 717, 722, 729, 729, 750, 752, 755
\s__fp_overflow 582, 582, 583
__fp_overflow:w

. . . . 584, 584, 595, 597, 598, 598, 598
\l__fp_overflow_flag_token . 595, 595
__fp_pack:NNNNNw . . 587, 587, 693,

694, 694, 694, 694, 694, 697, 697,
697, 697, 697, 728, 728, 728, 728, 728

__fp_pack_big:NNNNNNw . . 587, 587,
687, 687, 687, 687, 687, 687, 687,
687, 698, 698, 699, 699, 699, 699, 700

__fp_pack_Bigg:NNNNNNw
588, 588, 680, 680, 680, 680, 680, 680

__fp_pack_eight:wNNNNNNNN
588, 588, 668, 670, 685, 701, 737, 737

__fp_pack_twice_four:wNNNNNNNN .
. . . . 588, 588, 606, 606, 668, 668,
701, 701, 701, 702, 702, 702, 710,
710, 721, 721, 721, 737, 737, 742, 763

__fp_parse:n . . 607, 620, 640, 640,
640, 651, 651, 652, 653, 653, 758,
759, 761, 762, 764, 764, 764, 764,
764, 764, 765, 765, 765, 765, 766, 766

\fp_parse:n 619
__fp_parse_after:ww . . 640, 640, 640
__fp_parse_apply_binary:NwNwN . .

. 611,
611, 612, 612, 640, 640, 644, 644, 645

__fp_parse_apply_compare:NwNNNNNwN
. 648, 648

__fp_parse_apply_compare_-
aux:NNwN 649, 649, 649

__fp_parse_apply_juxtapose:NwwN
. 644, 644, 645, 645

__fp_parse_apply_unary:NNNwN . . .
. 634, 634, 635, 637, 638

__fp_parse_compare:NNNNNNN
647, 647, 647, 647, 647, 647, 648, 649

__fp_parse_compare_auxi:NNNNNNN
. 647, 648, 648, 648

__fp_parse_compare_auxii:NNNNN .
. 647, 648, 648, 648, 648, 648

__fp_parse_compare_end:NNNNw . . .
. 647, 648, 648

__fp_parse_continue 640
__fp_parse_continue:NwN

. 611, 611, 611, 612, 612,
640, 640, 640, 640, 649, 659, 659, 659

__fp_parse_continue_compare:NNwNN
. 649, 649

__fp_parse_digits_:N . 616, 617, 617
__fp_parse_digits_i:N 616, 617
__fp_parse_digits_ii:N 616, 617
__fp_parse_digits_iii:N . . . 616, 617
__fp_parse_digits_iv:N 616, 617
__fp_parse_digits_v:N 616, 617
__fp_parse_digits_vi:N

. 616, 617, 625, 627
__fp_parse_digits_vii:N

. 616, 624, 624, 626
__fp_parse_excl_error: 647, 647, 648
__fp_parse_expand:w

. 615, 616, 616, 616, 616, 617, 618,
619, 621, 622, 623, 623, 623, 624,
624, 625, 625, 626, 627, 628, 628,

Index 877

629, 630, 630, 631, 631, 632, 632,
633, 633, 635, 636, 636, 638, 638,
640, 642, 642, 643, 644, 645, 646,
646, 646, 647, 648, 648, 649, 650, 658

__fp_parse_exponent:N
. . . . 619, 624, 629, 629, 631, 632, 632

__fp_parse_exponent:Nw
625, 625, 627, 628, 629, 630, 631, 631

__fp_parse_exponent_aux:N
. 632, 632, 632

__fp_parse_exponent_body:N
. 632, 632, 632

__fp_parse_exponent_digits:N . . .
. 633, 633, 633, 633

__fp_parse_exponent_keep:N . . . 633
__fp_parse_exponent_keep:NTF . . .

. 633, 633
__fp_parse_exponent_sign:N

. 632, 632, 632, 632
__fp_parse_function:NNN

. 637, 638, 638, 638,
638, 638, 638, 638, 639, 639, 639, 639

__fp_parse_infix:NN
. 618, 618, 620, 621, 622, 636, 636,
636, 637, 637, 641, 641, 642, 642, 651

fp_parse_infix_
__fp_parse_infix_>:N 647

__fp_parse_infix_ . 636, 641, 642,
642, 643, 643, 643, 644, 644, 644,
644, 645, 645, 646, 646, 646, 646, 646

__fp_parse_infix_&:Nw 645
__fp_parse_infix_(:N 644
__fp_parse_infix_):N 642
__fp_parse_infix_*:N 645
__fp_parse_infix_+:N . 615, 643, 650
__fp_parse_infix_-:N 643
__fp_parse_infix_/:N 643
__fp_parse_infix_::N

. 646, 646, 647, 658
__fp_parse_infix_:N 647
__fp_parse_infix_<:N 647
__fp_parse_infix_?:N 646
__fp_parse_infix_^:N 643
__fp_parse_infix_after_operand:NwN

. 619, 620, 620, 635, 641, 641
__fp_parse_infix_and:N 643, 644, 646
__fp_parse_infix_check:NNN 641, 641
__fp_parse_infix_comma:w . . 643, 643
__fp_parse_infix_comma_gobble:w

. 643, 643

__fp_parse_infix_end:N
. . . . 640, 640, 640, 642, 642, 642, 642

__fp_parse_infix_juxtapose:N . . .
. . . . 641, 641, 644, 644, 644, 644, 645

__fp_parse_infix_mark:NNN
. 641, 642, 642

__fp_parse_infix_mul:N 643, 644, 645
__fp_parse_infix_or:N . 643, 644, 646
__fp_parse_large:N 623, 623, 626, 626
__fp_parse_large_leading:wwNN . .

. 626, 626, 626
__fp_parse_large_round:NN

. 627, 627, 630, 630
__fp_parse_large_round_aux:wNN .

. 630, 630, 630
__fp_parse_large_round_test:NN .

. 630, 630, 630
__fp_parse_large_trailing:wwNN .

. 627, 627, 627
__fp_parse_letters:N

. 620, 621, 621, 621, 621, 621
__fp_parse_lparen_after:NwN . . .

. 635, 636, 636
__fp_parse_one 640
__fp_parse_one:Nw 610,

611, 611, 612, 612, 613, 613, 614,
615, 617, 617, 622, 622, 634, 636, 640

__fp_parse_one_digit:NN
. 617, 620, 620, 635

__fp_parse_one_fp:NN
. 617, 617, 618, 618

__fp_parse_one_other:NN 617, 620, 620
__fp_parse_one_register:NN

. 617, 619, 619
__fp_parse_one_register_aux:Nw .

. 619, 619, 619
__fp_parse_one_register_-

auxii:wwwNw 619, 619, 620
__fp_parse_one_register_dim:ww .

. 619, 619, 620, 620
__fp_parse_one_register_int:www

. 619, 619, 620
__fp_parse_one_register_mu:www .

. 619, 619, 620
__fp_parse_operand 640
__fp_parse_operand:Nw . . 610, 610,

611, 611, 613, 613, 613, 614, 614,
615, 635, 635, 636, 636, 638, 638,
640, 640, 640, 640, 643, 644, 645,
646, 647, 648, 649, 649, 650, 650, 658

Index 878

__fp_parse_pack_carry:w
. 625, 626, 626, 626

__fp_parse_pack_leading:NNNNNww
. 624, 625, 626, 627

__fp_parse_pack_trailing:NNNNNNww
. 625, 625, 626, 627, 627, 628

__fp_parse_prefix:NNN . 621, 622, 622
__fp_parse_prefix_ 636
__fp_parse_prefix_(:Nw 635
__fp_parse_prefix_+:Nw 634
__fp_parse_prefix_-:Nw 635
__fp_parse_prefix_.:Nw 635
__fp_parse_prefix_:Nw 635
__fp_parse_prefix_unknown:NNN . .

. 622, 622, 622
__fp_parse_return_semicolon:w . .

. 616,
616, 617, 622, 628, 629, 632, 633, 633

__fp_parse_round:Nw
. 639, 639, 639, 639, 639

__fp_parse_round_after:wN
. 629, 629, 629, 629, 629, 630

__fp_parse_round_loop:N 628, 628,
628, 629, 629, 629, 629, 630, 630, 631

__fp_parse_round_up:N
. 628, 628, 628, 629

__fp_parse_small:N 623, 624, 624, 624
__fp_parse_small_leading:wwNN . .

. 624, 624, 625, 627
__fp_parse_small_round:NN

. 625, 629, 629, 630
__fp_parse_small_trailing:wwNN .

. 625, 625, 625, 628
__fp_parse_strim_end:w 623, 623, 624
__fp_parse_strim_zeros:N

. . . . 623, 623, 623, 623, 623, 635, 635
__fp_parse_trim_end:w . 623, 623, 623
__fp_parse_trim_zeros:N

. 620, 623, 623, 623
__fp_parse_unary_function:nNN . .

637, 637, 638, 638, 638, 638, 639, 639
__fp_parse_word:Nw 620, 620, 621, 621
__fp_parse_word_abs:N 638, 638
__fp_parse_word_acos:N 638
__fp_parse_word_acosd:N 638
__fp_parse_word_acot:N 638, 638
__fp_parse_word_acotd:N . . . 638, 638
__fp_parse_word_acsc:N 638
__fp_parse_word_acscd:N 638
__fp_parse_word_asec:N 638

__fp_parse_word_asecd:N 638
__fp_parse_word_asin:N 638
__fp_parse_word_asind:N 638
__fp_parse_word_atan:N 638, 638
__fp_parse_word_atand:N . . . 638, 638
__fp_parse_word_bp:N 637
__fp_parse_word_cc:N 637
__fp_parse_word_ceil:N 639, 639
__fp_parse_word_cm:N 637
__fp_parse_word_cos:N 638
__fp_parse_word_cosd:N 638
__fp_parse_word_cot:N 638
__fp_parse_word_cotd:N 638
__fp_parse_word_csc:N 638
__fp_parse_word_cscd:N 638
__fp_parse_word_dd:N 637
__fp_parse_word_deg:N 636
__fp_parse_word_em:N 637
__fp_parse_word_ex:N 637
__fp_parse_word_exp:N 638, 638
__fp_parse_word_false:N 636
__fp_parse_word_floor:N . . . 639, 639
__fp_parse_word_in:N 637
__fp_parse_word_inf:N 636
__fp_parse_word_ln:N 638, 638
__fp_parse_word_max:N 638, 638
__fp_parse_word_min:N 638, 638
__fp_parse_word_mm:N 637
__fp_parse_word_nan:N 636
__fp_parse_word_nc:N 637
__fp_parse_word_nd:N 637
__fp_parse_word_pc:N 637
__fp_parse_word_pi:N 636
__fp_parse_word_pt:N 637
__fp_parse_word_round:N . . . 639, 639
__fp_parse_word_sec:N 638
__fp_parse_word_secd:N 638
__fp_parse_word_sin:N 638
__fp_parse_word_sind:N 638
__fp_parse_word_sp:N 637
__fp_parse_word_sqrt:N 638, 638
__fp_parse_word_tan:N 638
__fp_parse_word_tand:N 638
__fp_parse_word_true:N 636
__fp_parse_word_trunc:N . . . 639, 639
__fp_parse_zero:

. 623, 623, 624, 624, 624
__fp_pow_B:wwN 728, 729
__fp_pow_C_neg:w 729, 729
__fp_pow_C_overflow:w . 729, 729, 729

Index 879

__fp_pow_C_pack:w 729, 729, 729
__fp_pow_C_pos:w 729, 729
__fp_pow_C_pos_loop:wN 729, 729, 729
__fp_pow_exponent:Nwnnnnnw

. 728, 728, 728
__fp_pow_exponent:wnN 728, 728
__fp_pow_neg:www . . 725, 729, 730, 730
__fp_pow_neg_aux:wNN

. 729, 730, 730, 730
__fp_pow_neg_case:w . . 730, 730, 730
__fp_pow_neg_case_aux:nnnnn . . .

. 730, 730, 731
__fp_pow_neg_case_aux:NNNNNNNNw

. 730, 731, 731, 731
__fp_pow_normal:ww

. 725, 725, 725, 726, 727
__fp_pow_npos:Nww 727, 727, 727
__fp_pow_npos:ww 726
__fp_pow_npos_aux:NNnww

. 727, 728, 728, 728
__fp_pow_zero_or_inf:ww

. 725, 726, 726, 726
__fp_reverse_args:Nww

582, 582, 747, 751, 754, 755, 756, 756
__fp_round:NNN

. 600, 601, 601, 602, 602, 603, 665,
666, 674, 674, 674, 683, 684, 691, 691

__fp_round:Nwn 604, 605, 605, 605, 762
__fp_round:Nww . . . 604, 605, 605, 605
__fp_round:Nwww 604, 604, 604
__fp_round_digit:Nw 589,

589, 590, 590, 590, 603, 603, 666,
670, 672, 674, 674, 674, 684, 691, 691

__fp_round_name_from_cs:N
. 605, 605, 605, 605

__fp_round_neg:NNN
601, 603, 604, 669, 669, 670, 670, 670

__fp_round_normal:NnnwNNnn
. 605, 606, 606

__fp_round_normal:NNwNnn
. 605, 606, 606

__fp_round_normal:NwNNnw
. 605, 606, 606

__fp_round_normal_end:wwNnn . . .
. 605, 606, 606

__fp_round_o:Nw
. 604, 604, 639, 639, 639, 639

__fp_round_pack:Nw . . . 605, 606, 606

__fp_round_return_one:
. 601, 601, 601, 601, 602,
602, 602, 602, 602, 602, 602, 604, 604

__fp_round_s:NNNw
. 601, 602, 603, 629, 629, 630

__fp_round_special:NwwNnn
. 605, 606, 607

__fp_round_special_aux:Nw
. 605, 607, 607

__fp_round_to_nearest:NNN
. 601, 601,
602, 604, 604, 604, 604, 639, 639, 762

__fp_round_to_nearest_neg:NNN . .
. 603, 604, 604

__fp_round_to_nearest_ninf:NNN .
. 601, 602, 604, 604

__fp_round_to_nearest_ninf_-
neg:NNN 603, 604

__fp_round_to_nearest_pinf:NNN .
. 601, 602, 604, 604

__fp_round_to_nearest_pinf_-
neg:NNN 603, 604

__fp_round_to_nearest_zero:NNN .
. 601, 602, 604

__fp_round_to_nearest_zero_-
neg:NNN 603, 604

__fp_round_to_ninf:NNN
. 601, 601, 604, 605, 639, 639

__fp_round_to_ninf_neg:NNN 603, 603
__fp_round_to_pinf:NNN

. 601, 601, 603, 605, 639, 639
__fp_round_to_pinf_neg:NNN 603, 604
__fp_round_to_zero:NNN

. 601, 601, 605, 639, 639
__fp_round_to_zero_neg:NNN 603, 603
__fp_rrot:www 582, 582, 752
__fp_sanitize:Nw 584, 584,

584, 607, 607, 664, 664, 667, 667,
672, 672, 675, 675, 684, 684, 712,
720, 727, 744, 745, 747, 752, 752, 753

__fp_sanitize:wN
. 584, 584, 620, 620, 624, 635

__fp_sanitize_zero:w . 584, 584, 584
__fp_sec_o:w 733, 734
.fp_set:c 174, 547
\fp_set:cn 765
.fp_set:N 174, 547
\fp_set:Nn 194, 194, 209, 496,

496, 765, 765, 765, 766, 766, 769,
769, 769, 772, 772, 773, 774, 774,

Index 880

774, 774, 775, 775, 780, 780, 784,
784, 785, 785, 834, 834, 835, 835, 835

\fp_set_eq:cc 765
\fp_set_eq:cN 765
\fp_set_eq:Nc 765
\fp_set_eq:NN 194,

194, 765, 765, 765, 766, 773, 774, 774
__fp_set_sign_o:w 635, 691, 691
\fp_show:c 767
\fp_show:N

. . . . 201, 201, 767, 767, 767, 789, 789
\fp_show:n 201, 201, 767, 767, 789
__fp_sin_o:w 634, 732, 732, 754
__fp_sin_series_aux_o:NNnwww . . .

. 744, 745, 745
__fp_sin_series_o:NNwwww

732, 732, 733, 733, 734, 744, 744, 746
__fp_small_int:wTF . . . 592, 592, 605
__fp_small_int_normal:NnwTF . . .

. 592, 592, 592, 592
__fp_small_int_test:NnnwNnw 592, 592
__fp_small_int_test:NnnwNTF 592, 592
__fp_small_int_true:wTF

. 592, 592, 592, 592, 592, 592
__fp_sqrt_auxi_o:NNNNwnnN

. 686, 686, 686
__fp_sqrt_auxii_o:NnnnnnnnN . . .

686, 686, 686, 687, 688, 688, 689, 690
__fp_sqrt_auxiii_o:wnnnnnnnn . . .

. 686, 688, 688, 689
__fp_sqrt_auxiv_o:NNNNNw

. 688, 688, 689
__fp_sqrt_auxix_o:wnwnw 689, 689, 689
__fp_sqrt_auxv_o:NNNNNw 688, 688, 689
__fp_sqrt_auxvi_o:NNNNNw

. 688, 688, 689
__fp_sqrt_auxvii_o:NNNNNw

. 688, 688, 689
__fp_sqrt_auxviii_o:nnnnnnn . . .

. 689, 689, 689, 689, 689, 689
__fp_sqrt_auxx_o:Nnnnnnnn

. 689, 689, 690
__fp_sqrt_auxxi_o:wwnnN 689, 690, 690
__fp_sqrt_auxxii_o:nnnnnnnnw . . .

. 690, 690, 690
__fp_sqrt_auxxiii_o:w . 690, 690, 691
__fp_sqrt_auxxiv_o:wnnnnnnnN . . .

. 690, 690, 691, 691, 691
__fp_sqrt_Newton_o:wwn

. 684, 685, 685, 686, 686, 686

__fp_sqrt_npos_auxi_o:wwnnN . . .
. 684, 684, 685

__fp_sqrt_npos_auxii_o:wNNNNNNNN
. 684, 685, 685

__fp_sqrt_npos_o:w . . . 684, 684, 684
__fp_sqrt_o:w 684, 684
\s__fp_stop 582, 582, 636, 640, 640,

651, 651, 651, 651, 658, 659, 659, 659
\fp_sub:cn 766
\fp_sub:Nn 194, 194, 766, 766, 766
__fp_sub_back_far_o:NnnwnnnnN . .

. 667, 668, 668, 668
__fp_sub_back_near_after:wNNNNw

. 667, 667, 667, 670
__fp_sub_back_near_o:nnnnnnnnN .

. 667, 667, 667, 667
__fp_sub_back_near_pack:NNNNNNw

. 667, 667, 667, 670
__fp_sub_back_not_far_o:wwwwNN .

. 669, 669, 670
__fp_sub_back_quite_far_ii:NN . .

. 669, 669, 669
__fp_sub_back_quite_far_o:wwNN .

. 669, 669, 669
__fp_sub_back_shift:wnnnn

. 667, 668, 668, 668
__fp_sub_back_shift_ii:ww

. 668, 668, 668
__fp_sub_back_shift_iii:NNNNNNNNw

. 668, 668, 668, 668
__fp_sub_back_shift_iv:nnnnw . . .

. 668, 668, 668
__fp_sub_back_very_far_ii_-

o:nnNwwNN 670, 670, 670
__fp_sub_back_very_far_o:wwwwNN

. 669, 670, 670
__fp_sub_eq_o:Nnwnw . . 666, 666, 666
__fp_sub_npos_i_o:Nnwnw

. 666, 666, 666, 667, 667
__fp_sub_npos_ii_o:Nnwnw

. 666, 666, 666
__fp_sub_npos_o:NnwNnw

. 663, 666, 666, 666
__fp_tan_o:w 734, 734
__fp_tan_series_aux_o:Nnwww . . .

. 746, 746, 746
__fp_tan_series_o:NNwwww

. 734, 734, 734, 735, 746, 746
__fp_ternary:NwwN . 646, 652, 658, 658

Index 881

__fp_ternary_auxi:NwwN
. 652, 658, 658, 659

__fp_ternary_auxii:NwwN
. 647, 652, 658, 659, 659

__fp_ternary_break_point:n
. 658, 658, 659, 659

__fp_ternary_loop:Nw
. 658, 658, 659, 659

__fp_ternary_loop_break:w
. 658, 658, 659

__fp_ternary_map_break: 658, 659, 659
__fp_tmp:w

. 589, 589, 589, 589, 589, 589, 589,
589, 590, 590, 590, 590, 590, 590,
590, 590, 590, 590, 616, 617, 617,
617, 617, 617, 617, 617, 635, 635,
635, 636, 636, 636, 636, 636, 637,
637, 637, 637, 637, 637, 637, 637,
637, 637, 637, 637, 637, 637, 643,
644, 644, 644, 644, 644, 644, 644, 644

\fp_to_decimal:c 759
\fp_to_decimal:N 194,

194, 195, 594, 759, 759, 759, 762, 764
\fp_to_decimal:n

. 194, 194, 194, 195, 195,
759, 759, 762, 762, 764, 764, 764, 764

__fp_to_decimal_dispatch:w
759, 759, 759, 759, 759, 761, 762, 762

__fp_to_decimal_huge:wnnnn
. 759, 760, 760

__fp_to_decimal_large:Nnnw
. 759, 760, 760

__fp_to_decimal_normal:wnnnnn . .
. 759, 759, 760, 761

\fp_to_dim:c 762
\fp_to_dim:N . . 195, 195, 762, 762, 762
\fp_to_dim:n

. . . . 195, 195, 200, 497, 497, 762,
762, 771, 771, 773, 782, 782, 786, 786

\fp_to_int:c 762
\fp_to_int:N . . 195, 195, 762, 762, 762
\fp_to_int:n 195, 195, 762, 762
__fp_to_int_dispatch:w

. 762, 762, 762, 762
\fp_to_int_dispatch:w 762
\fp_to_scientific:c 757
\fp_to_scientific:N

. 195, 195, 594, 757, 757, 758
\fp_to_scientific:n

. 195, 195, 195, 757, 758

__fp_to_scientific_dispatch:w . .
. . . . 757, 757, 758, 758, 758, 759, 761

__fp_to_scientific_normal:wnnnnn
. 758, 758, 758, 761, 761

__fp_to_scientific_normal:wNw . .
. 758, 759, 759, 759

\fp_to_tl:c 761
\fp_to_tl:N 195, 195, 761, 761, 761, 767
\fp_to_tl:n 195, 195, 582, 596, 596,

596, 597, 597, 597, 598, 761, 761, 767
__fp_to_tl_dispatch:w

. 761, 761, 761, 761, 761, 765
__fp_to_tl_normal:nnnnn 761, 761, 761
\c__fp_trailing_shift_int

587, 587, 693, 694, 697, 728, 742, 744
\fp_trap:nn 200, 201,

201, 595, 596, 596, 598, 598, 599, 599
__fp_trap_division_by_zero_-

set:N 597, 597, 597, 597, 597
__fp_trap_division_by_zero_set_-

error: 597, 597
__fp_trap_division_by_zero_set_-

flag: 597, 597
__fp_trap_division_by_zero_set_-

none: 597, 597
__fp_trap_invalid_operation_-

set:N 596, 596, 596, 596, 596
__fp_trap_invalid_operation_-

set_error: 596, 596
__fp_trap_invalid_operation_-

set_flag: 596, 596
__fp_trap_invalid_operation_-

set_none: 596, 596
__fp_trap_overflow_set:N

. 597, 598, 598, 598, 598
__fp_trap_overflow_set:NnNn . . .

. 597, 598, 598, 598
__fp_trap_overflow_set_error: . .

. 597, 598
__fp_trap_overflow_set_flag: . . .

. 597, 598
__fp_trap_overflow_set_none: . . .

. 597, 598
__fp_trap_underflow_set:N

. 597, 598, 598, 598, 598
__fp_trap_underflow_set_error: .

. 597, 598
__fp_trap_underflow_set_flag: . .

. 597, 598

Index 882

__fp_trap_underflow_set_none: . .
. 597, 598

__fp_trig:NNNNNwn
732, 733, 733, 734, 734, 735, 735, 735

__fp_trig_inverse_two_pi:
. 738, 738, 741, 742

__fp_trig_large:ww . . . 736, 741, 742
__fp_trig_large_auxi:wwwwww . . .

. 741, 742, 742
__fp_trig_large_auxii:ww

. 741, 742, 742
__fp_trig_large_auxiii:wNNNNNNNN

. 741, 742, 742
__fp_trig_large_auxiv:wN

. 741, 742, 742
__fp_trig_large_auxix:Nw

. 743, 743, 743, 743
__fp_trig_large_auxv:www

. 742, 742, 742
__fp_trig_large_auxvi:wnnnnnnnn

. 742, 742, 743
__fp_trig_large_auxvii:w

. 742, 743, 743
__fp_trig_large_auxviii:w 743
__fp_trig_large_auxviii:ww 743, 743
__fp_trig_large_auxx:wNNNNN . . .

. 743, 743, 744
__fp_trig_large_auxxi:w 743, 743, 744
__fp_trig_large_pack:NNNNNw . . .

. 742, 743, 743, 744
__fp_trig_small:ww

. . . . 736, 736, 736, 736, 736, 743, 744
__fp_trigd_large:ww . . 736, 736, 737
__fp_trigd_large_auxi:nnnnwNNNN

. 736, 737, 737
__fp_trigd_large_auxii:wNw

. 736, 737, 737
__fp_trigd_large_auxiii:www . . .

. 736, 737, 737
__fp_trigd_small:ww

. 736, 736, 736, 737, 737
__fp_trim_zeros:w

. 757, 757, 759, 760, 760
__fp_trim_zeros_dot:w . 757, 757, 757
__fp_trim_zeros_end:w . 757, 757, 757
__fp_trim_zeros_loop:w

. 757, 757, 757, 757
__fp_type_from_scan:N

. 586, 616, 616, 618, 618
__fp_type_from_scan:w . 616, 616, 616

\s__fp_underflow 582, 582, 583
__fp_underflow:w

. . . . 584, 584, 595, 597, 598, 598, 598
\l__fp_underflow_flag_token 595, 595
\fp_until_do:nn 198, 198, 655, 655, 655
\fp_until_do:nNnn

. 198, 198, 655, 655, 656
\fp_use:c 764
\fp_use:N 195, 195, 764, 764,

764, 834, 834, 834, 835, 835, 835, 835
__fp_use_i:ww

. 582, 582, 701, 702, 754, 755
__fp_use_i:www 582, 582
__fp_use_i_until_s:nw 581,

581, 584, 593, 737, 742, 742, 743, 743
__fp_use_ii_until_s:nnw 581, 581, 584
__fp_use_none_stop_f:n

. 581, 581, 709, 709, 709
__fp_use_none_until_s:w

. 581, 581, 686, 730, 755, 755
__fp_use_s:n 581, 581
__fp_use_s:nn 581, 581
\fp_while_do:nn 198, 198, 655, 655, 655
\fp_while_do:nNnn

. 198, 198, 655, 656, 656
\fp_zero:c 766
\fp_zero:N

. . . . 193, 193, 766, 766, 766, 766, 834
__fp_zero_fp:N . . . 583, 583, 598, 607
\fp_zero_new:c 766
\fp_zero_new:N 193, 193, 766, 766, 766

\futurelet . 244

G
\gdef . 244
\GetIdInfo 7, 7, 7
\gleaders . 255
\global 239, 239,

239, 239, 239, 239, 239, 239, 239,
239, 239, 239, 239, 239, 240, 242, 244

\globaldefs . 244
\glueexpr . 249
\glueshrink . 249
\glueshrinkorder 249
\gluestretch 249
\gluestretchorder 249
\gluetomu . 249
group commands:

\group_align_safe_begin/end: . . 320

Index 883

\group_align_safe_begin:
. . . 44, 44, 44, 312, 313, 320, 320,
343, 343, 397, 398, 401, 408, 798, 817

\group_align_safe_end: 44,
44, 44, 315, 315, 320, 320, 342,
343, 343, 343, 397, 398, 401, 408, 799

\group_begin: 10,
10, 10, 265, 265, 290, 307, 328, 328,
330, 332, 333, 333, 334, 337, 339,
345, 392, 392, 394, 401, 416, 417,
421, 430, 431, 442, 482, 509, 509,
514, 514, 515, 523, 528, 533, 533,
560, 574, 575, 618, 636, 641, 642,
643, 643, 645, 645, 646, 658, 769,
772, 773, 774, 774, 774, 775, 797,
797, 812, 812, 813, 816, 816, 822, 830

\c_group_begin_token
. 56, 106, 333, 333,
333, 333, 333, 412, 412, 413, 483, 484

\group_end: 10, 10, 10, 10, 265, 265,
290, 307, 328, 329, 332, 332, 333,
333, 334, 338, 339, 347, 392, 392,
395, 401, 401, 417, 417, 421, 431,
434, 441, 442, 442, 482, 509, 509,
514, 514, 518, 524, 529, 534, 534,
560, 574, 576, 619, 636, 642, 642,
643, 644, 645, 646, 647, 658, 769,
772, 774, 774, 774, 775, 775, 797,
797, 812, 813, 816, 816, 817, 822, 831

\c_group_end_token 56,
333, 333, 333, 334, 334, 483, 483, 485

\group_insert_after:N
. 10, 10, 10, 266, 266, 836, 836

groups commands:
.groups:n 174, 547

H
\H . 817
\halign . 244
\hangafter . 244
\hangindent . 244
hash commands:

\c_hash_str 117, 429, 430, 432
\hbadness . 244
\hbox . 244
hbox commands:

\hbox:n 151,
151, 233, 482, 482, 504, 505, 770, 776

\hbox_gset:cn 482
\hbox_gset:cw 483

\hbox_gset:Nn 151, 482, 482, 482
\hbox_gset:Nw 151, 483, 483, 483
\hbox_gset_end: 151, 483, 483
\hbox_gset_to_wd:cnn 482
\hbox_gset_to_wd:Nnn 151, 482, 482, 482
\hbox_overlap_left:n 151, 151, 483, 483
\hbox_overlap_right:n

. 151, 151, 483, 483, 775, 834
\hbox_set:cn 482
\hbox_set:cw 483
\hbox_set:Nn

. . . . 151, 151, 151, 482, 482, 482,
482, 488, 491, 498, 500, 507, 769,
770, 770, 772, 773, 774, 774, 774,
775, 775, 776, 777, 777, 777, 777,
777, 778, 778, 778, 778, 778, 780, 781

\hbox_set:Nw
. . . . 151, 151, 483, 483, 483, 483, 489

\hbox_set_end: 151, 151, 483, 483, 489
\hbox_set_to_wd:cnn 482
\hbox_set_to_wd:Nnn

. 151, 151, 482, 482, 482, 482
\hbox_to_wd:nn 151, 151, 483, 483, 776
\hbox_to_zero:n

. 151, 151, 483, 483, 483, 483
\hbox_unpack:c 483
\hbox_unpack:N

. . . . 152, 152, 483, 483, 483, 498, 502
\hbox_unpack_clear:c 483
\hbox_unpack_clear:N

. 152, 152, 483, 483, 483
hcoffin commands:

\hcoffin_set:cn 488
\hcoffin_set:cw 489
\hcoffin_set:Nn 155,

155, 488, 488, 488, 504, 504, 505, 506
\hcoffin_set:Nw 156, 156, 489, 489, 490
\hcoffin_set_end:

. 156, 156, 489, 489, 490
\hfil . 244
\hfill . 244
\hfilneg . 244
\hfuzz . 244
\hjcode . 255
\hoffset . 244
\holdinginserts 244
\hpack . 255
\hrule . 244
\hsize . 244
\hskip . 244

Index 884

\hss . 244
\ht . 244
\hyphenation 244
\hyphenationmin 255
\hyphenchar . 244
\hyphenpenalty 244

I
\I . 239
\i . 239, 817
\if . 244
if commands:

\if:w . 24, 51, 51, 51, 264, 264, 275,
276, 276, 276, 276, 304, 305, 305,
305, 306, 306, 341, 367, 367, 432,
623, 623, 623, 627, 628, 628, 630,
630, 632, 632, 632, 645, 646, 646, 727

\if_bool:N 44, 44, 44, 308, 308, 309, 510
\if_box_empty:N 154, 154, 480, 480, 480
\if_case:w 78, 78, 285, 332,

348, 348, 364, 364, 365, 422, 423,
423, 424, 425, 584, 590, 592, 604,
605, 648, 649, 662, 666, 669, 669,
671, 675, 692, 702, 712, 712, 719,
720, 722, 722, 722, 722, 723, 723,
723, 724, 725, 727, 730, 730, 732,
733, 733, 734, 734, 735, 748, 749,
751, 753, 754, 756, 756, 758, 759, 761

\if_catcode:w
. 24, 264, 264, 333, 334, 334, 334,
334, 334, 335, 335, 335, 335, 335,
336, 337, 344, 344, 344, 402, 402,
412, 412, 413, 413, 413, 414, 617,
621, 632, 633, 641, 645, 648, 822, 822

\if_charcode:w 24, 51, 264, 264, 336,
344, 344, 411, 411, 412, 413, 427, 428

\if_cs_exist:N
. 24, 265, 265, 278, 278, 337, 341

\if_cs_exist:w
. 24, 265, 265, 266, 278, 279, 285, 594

\if_dim:w 94, 94, 372, 372, 374, 375, 375
\if_eof:w 190, 190, 567, 567, 568
\if_false:

. . 23, 39, 264, 264, 320, 320, 331,
355, 355, 375, 397, 398, 398, 401,
401, 401, 410, 410, 410, 410, 413,
413, 414, 414, 440, 440, 444, 444, 444

\if_hbox:N 154, 154, 480, 480, 480
\if_int_compare:w

. . . 23, 78, 78, 265, 265, 320, 320,

329, 329, 329, 330, 330, 330, 330,
330, 330, 337, 341, 348, 349, 351,
354, 354, 354, 356, 356, 356, 356,
356, 356, 356, 356, 356, 356, 382,
418, 419, 419, 419, 423, 424, 424,
424, 425, 425, 432, 432, 433, 433,
433, 433, 567, 584, 584, 589, 592,
592, 601, 601, 601, 602, 602, 602,
603, 603, 604, 604, 606, 606, 617,
617, 620, 620, 621, 621, 623, 624,
625, 625, 627, 627, 628, 629, 629,
630, 632, 632, 633, 633, 634, 635,
636, 641, 641, 641, 642, 643, 643,
644, 644, 646, 646, 648, 653, 654,
654, 654, 654, 654, 654, 654, 654,
657, 659, 662, 662, 664, 667, 669,
669, 669, 669, 671, 671, 682, 686,
688, 688, 688, 689, 690, 690, 690,
690, 690, 691, 702, 702, 707, 710,
712, 713, 717, 719, 720, 720, 720,
721, 727, 727, 727, 727, 728, 729,
729, 730, 731, 731, 731, 731, 731,
736, 737, 749, 750, 751, 752, 755,
755, 758, 760, 761, 761, 811, 811, 811

\if_int_odd:w 78, 78, 330,
330, 330, 348, 348, 351, 357, 358,
602, 603, 603, 649, 670, 684, 731,
743, 745, 745, 746, 746, 747, 753, 822

\if_meaning:w . . 23, 264, 264, 272,
272, 273, 274, 274, 274, 278, 278,
278, 279, 286, 286, 289, 290, 294,
294, 302, 303, 304, 310, 314, 314,
314, 322, 322, 323, 323, 323, 336,
337, 339, 339, 341, 344, 345, 349,
350, 350, 350, 355, 374, 375, 390,
399, 399, 399, 399, 400, 400, 401,
408, 410, 412, 412, 421, 426, 427,
431, 434, 441, 442, 442, 442, 456,
456, 457, 457, 475, 476, 476, 584,
584, 585, 585, 585, 592, 592, 592,
598, 601, 601, 602, 602, 602, 602,
602, 603, 603, 603, 603, 605, 606,
606, 606, 607, 607, 617, 617, 622,
626, 626, 633, 639, 639, 639, 641,
649, 649, 652, 653, 653, 653, 653,
653, 653, 656, 657, 657, 657, 657,
658, 658, 660, 660, 662, 663, 663,
663, 665, 665, 667, 668, 671, 671,
672, 673, 680, 682, 682, 683, 684,
684, 684, 701, 701, 710, 710, 712,

Index 885

716, 718, 720, 720, 725, 725, 726,
726, 726, 727, 729, 729, 745, 746,
749, 749, 749, 749, 750, 750, 753,
756, 758, 759, 761, 763, 763, 792, 822

\if_mode_horizontal: 24, 264, 265, 320
\if_mode_inner: . . . 24, 264, 265, 320
\if_mode_math: 24, 264, 264, 320
\if_mode_vertical: . 24, 264, 265, 320
\if_predicate:w

. 37, 39, 44, 44, 308, 308, 312
\if_true: . . . 23, 39, 264, 264, 399, 399
\if_vbox:N 154, 154, 480, 480, 480

\ifabsdim . 256
\ifabsnum . 256
\ifcase . 244
\ifcat . 245
\ifcsname . 249
\ifdbox . 260
\ifddir . 260
\ifdefined 238, 249
\ifdim . 245
\ifeof . 245
\iffalse . 245
\iffontchar . 249
\ifhbox . 245
\ifhmode . 245
\ifincsname . 252
\ifinner . 245
\ifmdir . 260
\ifmmode . 245
\ifnum 235, 235, 236, 236, 236, 238, 239, 245
\ifodd . 245
\ifpdfabsdim 252
\ifpdfabsnum 252
\ifpdfprimitive 252
\ifprimitive 254
\iftbox . 260
\iftdir . 260
\iftrue . 245
\ifvbox . 245
\ifvmode . 245
\ifvoid . 245
\ifx 234, 234, 235, 235,

235, 236, 236, 236, 237, 238, 238, 245
\ifybox . 260
\ifydir . 260
\ignoreligaturesinfont 256
\ignorespaces 245
\IJ . 816
\ij . 816

\immediate . 245
in . 208
\indent . 245
inf . 208
inf commands:

\c_inf_fp 199, 208, 583, 583,
636, 672, 675, 720, 726, 726, 727, 735

\inhibitglue 260
\inhibitxspcode 260
\initcatcodetable 255
initial commands:

.initial:n 175, 547

.initial:o 175, 547

.initial:V 175, 547

.initial:x 175, 547
\input 235, 238, 238, 245
\inputlineno 245
\insert . 245
\insertht . 256
\insertpenalties 245
int commands:

\int_(g)zero:N 68
__int_abs:N 349, 349, 349
\int_abs:n 66, 66, 349, 349
\int_add:cn 353
\int_add:Nn 68,

68, 353, 353, 353, 353, 577, 577, 578
\int_case:nn 71, 357, 357, 361, 361, 364
\int_case:nnF . 357, 449, 465, 808, 809
\int_case:nnT 357
__int_case:nnTF

. 357, 357, 357, 357, 357, 357
\int_case:nnTF . . . 25, 71, 71, 357, 357
__int_case:nw 357, 357, 357, 357
__int_case_end:nw 357, 357, 357
\int_compare:n 355
\int_compare:n(TF) 79
\int_compare:nF 358, 358
\int_compare:nNn 356
__int_compare:nnN 354, 356,

356, 356, 356, 356, 356, 356, 356, 356
\int_compare:nNnF 359, 359, 360
\int_compare:nNnT

358, 359, 392, 395, 415, 446, 569, 819
\int_compare:nNnTF

. 69, 69, 69, 71, 72, 72, 72,
317, 351, 351, 356, 357, 359, 359,
361, 363, 363, 363, 364, 367, 368,
368, 369, 378, 394, 394, 394, 415,
422, 422, 422, 429, 446, 466, 466,

Index 886

466, 466, 467, 560, 571, 577, 650,
757, 760, 760, 802, 802, 802, 802,
805, 806, 806, 807, 807, 807, 807, 810

__int_compare:NNw
. 354, 355, 355, 355, 356

\int_compare:nT . . . 358, 358, 567, 571
\int_compare:nTF

. . 70, 70, 72, 72, 72, 72, 197, 354, 375
__int_compare:Nw

. . . . 354, 354, 354, 355, 355, 356, 356
__int_compare:w . . . 354, 355, 355, 355
int_compare_

__int_compare_>:NNw 354
__int_compare_<:NNw 354
\int_compare_p:n 70, 70, 354
\int_compare_p:nNn

. . . 23, 69, 69, 356, 807, 809, 809,
809, 810, 820, 820, 820, 820, 824, 825

\int_const:cn
. 351, 368, 368, 368, 368, 368, 368,
368, 368, 369, 369, 369, 369, 369, 369

\int_const:Nn 67, 67,
330, 331, 351, 351, 351, 370, 370,
370, 370, 370, 370, 370, 370, 370,
370, 370, 371, 371, 371, 371, 371,
371, 371, 371, 371, 371, 371, 568,
583, 587, 587, 587, 587, 587, 587,
588, 588, 588, 823, 823, 823, 823, 823

__int_constdef:Nw
. 351, 351, 351, 351, 351, 352

\int_decr:c 353
\int_decr:N . 68, 68, 353, 353, 353, 353
\int_div_round:nn . . . 67, 67, 350, 350
\int_div_truncate:nn

. 67, 67, 67, 350, 350,
361, 363, 364, 811, 811, 811, 811, 823

__int_div_truncate:NwNw
. 350, 350, 350, 350

\int_do_until:nn . 72, 72, 358, 358, 358
\int_do_until:nNnn 71, 71, 358, 359, 359
\int_do_while:nn . 72, 72, 358, 358, 358
\int_do_while:nNnn 72, 72, 358, 359, 359
\int_eval:n 16, 28, 28, 66, 66,

66, 66, 66, 67, 68, 69, 70, 71, 78, 79,
170, 285, 286, 286, 349, 349, 349,
357, 357, 357, 357, 360, 361, 363,
363, 366, 366, 367, 367, 368, 368,
368, 369, 370, 379, 405, 405, 415,
415, 424, 425, 426, 446, 446, 448,
464, 464, 466, 466, 467, 481, 481,

531, 566, 570, 583, 608, 650, 653,
676, 676, 678, 796, 796, 811, 811, 811

__int_eval:w . . . 79, 79, 285, 318,
325, 325, 326, 327, 327, 327, 327,
327, 327, 328, 328, 328, 328, 328,
328, 329, 329, 329, 348, 348, 349,
349, 349, 349, 349, 349, 349, 349,
350, 350, 350, 350, 350, 350, 350,
350, 351, 353, 353, 353, 355, 355,
356, 356, 356, 357, 358, 359, 359,
359, 364, 365, 365, 365, 422, 422,
423, 423, 423, 423, 424, 425, 584,
589, 589, 590, 593, 601, 603, 603,
603, 603, 603, 603, 603, 604, 606,
606, 607, 616, 620, 620, 621, 624,
625, 627, 627, 628, 628, 629, 629,
629, 629, 630, 630, 630, 631, 631,
635, 641, 648, 653, 664, 664, 664,
665, 665, 665, 665, 666, 666, 666,
667, 667, 667, 667, 670, 670, 670,
670, 670, 671, 672, 672, 673, 673,
673, 673, 673, 673, 673, 673, 673,
674, 674, 674, 674, 675, 675, 676,
679, 679, 680, 680, 680, 680, 680,
680, 680, 680, 681, 681, 681, 681,
682, 682, 682, 682, 683, 683, 684,
684, 684, 686, 686, 687, 687, 687,
687, 687, 687, 687, 687, 687, 688,
688, 688, 688, 689, 689, 689, 690,
691, 691, 691, 693, 693, 693, 694,
694, 694, 694, 694, 694, 695, 695,
695, 695, 696, 696, 696, 697, 697,
697, 697, 697, 697, 698, 698, 698,
699, 699, 699, 699, 699, 699, 700,
700, 701, 701, 703, 705, 705, 705,
706, 706, 706, 707, 707, 708, 708,
709, 709, 709, 710, 710, 712, 713,
713, 713, 713, 715, 715, 715, 715,
715, 716, 716, 716, 716, 716, 716,
716, 716, 716, 716, 716, 716, 716,
716, 717, 717, 717, 718, 718, 720,
720, 721, 722, 728, 728, 728, 728,
728, 728, 728, 729, 729, 730, 730,
736, 737, 737, 742, 742, 742, 743,
743, 743, 744, 744, 745, 745, 745,
746, 747, 747, 748, 750, 750, 750,
751, 751, 752, 753, 753, 755, 759, 763

__int_eval_end:
. . . . 79, 79, 79, 79, 285, 318, 325,
325, 326, 327, 327, 327, 327, 327,

Index 887

327, 328, 328, 328, 328, 328, 328,
348, 348, 349, 349, 349, 350, 350,
350, 351, 353, 353, 353, 356, 357,
358, 364, 365, 365, 365, 584, 593,
604, 606, 606, 648, 653, 660, 666,
670, 672, 682, 695, 701, 729, 730,
737, 737, 745, 745, 746, 747, 748, 751

__int_from_alph:N . 367, 367, 367, 367
\int_from_alph:n 75, 75, 367, 367
__int_from_alph:nN

. 367, 367, 367, 367, 367
__int_from_base:N . 368, 368, 368, 368
\int_from_base:nn

. 76, 76, 368, 368, 368, 368, 368
__int_from_base:nnN

. 368, 368, 368, 368, 368
\int_from_bin:n 75, 75, 368, 368
\int_from_hex:n 76, 76, 368, 368
\int_from_oct:n 76, 76, 368, 368
\int_from_roman:n . . . 76, 76, 369, 369
__int_from_roman:NN

. 369, 369, 369, 369, 369
\c__int_from_roman_C_int 368
\c__int_from_roman_c_int 368
\c__int_from_roman_D_int 368
\c__int_from_roman_d_int 368
__int_from_roman_error:w

. 369, 369, 369, 369
\c__int_from_roman_I_int 368
\c__int_from_roman_i_int 368
\c__int_from_roman_L_int 368
\c__int_from_roman_l_int 368
\c__int_from_roman_M_int 368
\c__int_from_roman_m_int 368
\c__int_from_roman_V_int 368
\c__int_from_roman_v_int 368
\c__int_from_roman_X_int 368
\c__int_from_roman_x_int 368
\int_gadd:cn 353
\int_gadd:Nn 68, 353, 353, 353
\int_gdecr:c 353
\int_gdecr:N 68, 353, 353,

353, 360, 404, 447, 463, 477, 536, 788
\int_gincr:c 353
\int_gincr:N . . . 68, 353, 353, 353,

360, 360, 404, 447, 463, 477, 535, 788
.int_gset:c 175, 547
\int_gset:cn 353
.int_gset:N 175, 547
\int_gset:Nn 68, 351, 351, 353, 353, 353

\int_gset_eq:cc 352
\int_gset_eq:cN 352
\int_gset_eq:Nc 352
\int_gset_eq:NN

. 68, 352, 352, 352, 352, 515
\int_gsub:cn 353
\int_gsub:Nn 69, 353, 353, 353
\int_gzero:c 352
\int_gzero:N . . . 67, 352, 352, 352, 352
\int_gzero_new:c 352
\int_gzero_new:N . . . 68, 352, 352, 352
\int_if_even:n 357
\int_if_even:nTF 71, 357
\int_if_even_p:n 71, 357
\int_if_exist:c 352
\int_if_exist:cF 369, 369
\int_if_exist:cTF 352
\int_if_exist:N 352
\int_if_exist:NTF 68, 68, 352, 352, 352
\int_if_exist_p:c 352
\int_if_exist_p:N 68, 68, 352
\int_if_odd:n 357
\int_if_odd:nTF 71, 71, 357, 707
\int_if_odd_p:n 71, 71, 357
\int_incr:c 353
\int_incr:N

. . 68, 68, 353, 353, 353, 353, 542, 577
\int_log:c 789
\int_log:N 218, 218, 789, 789, 789
\int_log:n 219, 219, 789, 789
\int_max:nn

. 67, 67, 349, 349, 700, 737, 764
__int_maxmin:wwN . . 349, 349, 349, 349
\int_min:nn 67, 67, 349, 349
\int_mod:nn 67, 67,

350, 350, 361, 363, 364, 560, 811, 823
__int_mod:ww 350, 350, 350
\int_new:c 351
\int_new:N 67,

67, 68, 321, 351, 351, 351, 351,
351, 352, 352, 371, 371, 371, 371,
533, 536, 573, 573, 573, 573, 573, 836

__int_pass_signs:wn
. 367, 367, 367, 367, 367, 368

__int_pass_signs_end:wn 367, 367, 367
.int_set:c 175, 547
\int_set:cn 353
.int_set:N 175, 547

Index 888

\int_set:Nn 68, 68,
353, 353, 353, 353, 482, 482, 542,
568, 572, 572, 573, 575, 576, 577, 577

\int_set_eq:cc 352
\int_set_eq:cN 352
\int_set_eq:Nc 352
\int_set_eq:NN . . 68, 68, 352, 352,

352, 352, 482, 482, 568, 574, 575, 575
\int_show:c 370
\int_show:N

. . 76, 76, 370, 370, 370, 789, 789, 789
\int_show:n

. 76, 76, 370, 370, 531, 789, 789
__int_step:NnnnN

. 359, 359, 360, 360, 360
__int_step:NNnnnn . 360, 360, 360, 360
__int_step:wwwN 359, 359, 359
\int_step_function:nnnN 73,

73, 332, 332, 332, 359, 359, 360, 360
\int_step_inline:nnnn

. 73, 73, 360, 360, 564, 569, 569
\int_step_variable:nnnNn

. 73, 73, 360, 360
\int_sub:cn 353
\int_sub:Nn

. 69, 69, 353, 353, 353, 353, 578
\int_to_Alph:n . . . 74, 74, 75, 361, 362
\int_to_alph:n

. 74, 74, 74, 74, 75, 361, 361
\int_to_arabic:n 73, 73, 361, 361
\int_to_Base:n 75
\int_to_base:n 75
__int_to_Base:nn 363, 363, 363
\int_to_Base:nn . 75, 76, 363, 363, 366
__int_to_base:nn 363, 363, 363
\int_to_base:nn

. . . 75, 75, 76, 363, 363, 366, 366, 366
__int_to_Base:nnN

. 363, 363, 363, 364, 364
__int_to_base:nnN

. 363, 363, 363, 363, 363
__int_to_Base:nnnN . . . 363, 364, 364
__int_to_base:nnnN . . . 363, 363, 363
\int_to_bin:n . 74, 74, 75, 75, 365, 366
\int_to_Hex:n 75, 75, 76, 365, 366
\int_to_hex:n . 75, 75, 75, 76, 365, 366
__int_to_Letter:n . 363, 364, 364, 365
__int_to_letter:n . 363, 363, 363, 364
\int_to_oct:n 75, 75, 76, 365, 366
\int_to_Roman:n . . 75, 75, 76, 366, 366

__int_to_roman:N
. 366, 366, 366, 366, 366

\int_to_roman:n 75, 75, 75, 76, 366, 366
__int_to_roman:w 78, 78,

265, 265, 332, 332, 348, 355, 355,
366, 366, 366, 589, 627, 628, 713, 722

__int_to_Roman_aux:N . 366, 366, 366
__int_to_Roman_c:w 366, 366
__int_to_roman_c:w 366, 366
__int_to_Roman_d:w 366, 366
__int_to_roman_d:w 366, 366
__int_to_Roman_i:w 366, 366
__int_to_roman_i:w 366, 366
__int_to_Roman_l:w 366, 366
__int_to_roman_l:w 366, 366
__int_to_Roman_m:w 366, 366
__int_to_roman_m:w 366, 366
__int_to_Roman_Q:w 366, 367
__int_to_roman_Q:w 366, 366
__int_to_Roman_v:w 366, 366
__int_to_roman_v:w 366, 366
__int_to_Roman_x:w 366, 366
__int_to_roman_x:w 366, 366
\int_to_symbols:nnn

. . . 74, 74, 74, 361, 361, 361, 361, 362
__int_to_symbols:nnnn . 361, 361, 361
\int_until_do:nn . 72, 72, 358, 358, 358
\int_until_do:nNnn 72, 72, 358, 359, 359
\int_use:c 353, 354
\int_use:N 66,

69, 69, 69, 353, 353, 354, 360, 360,
404, 404, 447, 447, 463, 463, 477,
477, 512, 525, 534, 535, 536, 536,
542, 568, 572, 583, 603, 607, 758, 788

__int_value:w 79,
79, 79, 276, 314, 314, 314, 318,
329, 329, 329, 348, 348, 349, 349,
349, 349, 349, 349, 349, 349, 349,
349, 350, 350, 350, 350, 350, 350,
350, 355, 355, 355, 356, 359, 359,
359, 365, 365, 374, 374, 422, 422,
422, 423, 423, 423, 423, 423, 424,
425, 487, 488, 488, 488, 488, 492,
492, 492, 492, 492, 492, 492, 492,
492, 492, 492, 493, 493, 493, 493,
493, 494, 494, 494, 494, 494, 498,
499, 499, 500, 501, 501, 505, 508,
584, 586, 586, 586, 586, 586, 589,
590, 590, 592, 592, 592, 593, 603,
603, 606, 606, 606, 606, 606, 607,

Index 889

609, 609, 609, 609, 609, 609, 616,
619, 619, 620, 620, 620, 624, 624,
624, 624, 624, 625, 625, 626, 627,
627, 627, 627, 627, 628, 628, 628,
629, 629, 629, 630, 630, 630, 631,
632, 634, 634, 635, 637, 650, 653,
654, 662, 662, 662, 662, 662, 664,
664, 664, 665, 665, 665, 665, 666,
666, 666, 666, 667, 667, 667, 667,
668, 668, 668, 670, 670, 670, 670,
670, 670, 670, 672, 673, 673, 673,
673, 673, 673, 673, 674, 674, 674,
674, 674, 674, 675, 675, 679, 679,
679, 679, 679, 679, 679, 680, 680,
680, 680, 680, 680, 680, 680, 681,
681, 681, 682, 682, 682, 683, 683,
684, 684, 684, 684, 686, 686, 687,
687, 687, 687, 687, 687, 687, 687,
687, 688, 688, 688, 688, 689, 689,
689, 690, 690, 690, 691, 691, 691,
691, 692, 693, 693, 693, 694, 694,
694, 694, 694, 694, 695, 695, 695,
695, 696, 696, 696, 697, 697, 697,
697, 697, 697, 698, 698, 698, 699,
699, 699, 699, 699, 699, 700, 700,
701, 701, 703, 705, 705, 705, 706,
706, 706, 707, 707, 708, 708, 709,
709, 709, 709, 710, 710, 712, 712,
712, 713, 713, 713, 713, 715, 715,
715, 715, 715, 715, 715, 715, 715,
715, 716, 716, 716, 716, 716, 716,
716, 716, 716, 716, 716, 716, 716,
716, 717, 717, 717, 718, 718, 719,
719, 719, 720, 720, 721, 722, 727,
728, 728, 728, 728, 728, 728, 729,
729, 729, 729, 729, 729, 730, 736,
737, 737, 742, 742, 742, 742, 743,
743, 743, 744, 744, 745, 745, 746,
746, 747, 750, 750, 752, 753, 753,
759, 759, 760, 763, 763, 763, 763,
780, 780, 781, 781, 782, 783, 784,
784, 785, 785, 785, 785, 786, 786, 786

\int_while_do:nn . 72, 72, 358, 358, 358
\int_while_do:nNnn 72, 72, 358, 358, 359
\int_zero:c 352
\int_zero:N 67,

67, 352, 352, 352, 352, 542, 575, 578
\int_zero_new:c 352
\int_zero_new:N . 68, 68, 352, 352, 352

\interactionmode 249

\interlinepenalties 249
\interlinepenalty 245
ior commands:

\ior_... 184
\ior_close:c 567
\ior_close:N 185,

185, 186, 186, 561, 566, 567, 567, 567
\ior_get:NN

. . . . 186, 186, 187, 190, 568, 568, 788
\ior_get_str:NN

. 187, 187, 187, 568, 568, 788
\ior_if_eof:N 567, 788
\ior_if_eof:NF 561, 788, 788
\ior_if_eof:NTF . . . 187, 187, 561, 567
\ior_if_eof_p:N 187, 187, 567
\l__ior_internal_tl 788, 788, 788, 788
\ior_list_streams:

. 186, 186, 567, 567, 788, 788
__ior_list_streams:Nn

. 567, 567, 567, 571
\ior_log_streams: . . 218, 218, 788, 788
\ior_map_... 217, 217, 218, 218
\ior_map_break:

. . . . 217, 217, 787, 787, 787, 788, 788
\ior_map_break:n . . . 218, 218, 787, 788
\ior_map_inline:Nn . 217, 217, 788, 788
__ior_map_inline:NNn

. 788, 788, 788, 788
__ior_map_inline:NNNn . 788, 788, 788
__ior_map_inline_loop:NNN

. 788, 788, 788, 788
\ior_new:c 565
__ior_new:N 566, 566, 566, 566
\ior_new:N . 185, 185, 565, 565, 565, 568
\ior_open:cn 565
\ior_open:cnTF 565
__ior_open:Nn

. . . . 191, 191, 561, 561, 566, 566, 566
\ior_open:Nn 185, 185, 565, 565, 565, 565
\ior_open:NnF 565
\ior_open:NnT 565
\ior_open:NnTF 185, 185, 565, 565
__ior_open:No 565, 566, 566
__ior_open_aux:Nn 565, 565, 565
__ior_open_aux:NnTF . . 565, 565, 565
__ior_open_stream:Nn

. 566, 566, 566, 566
\ior_str_map_inline:Nn

. 217, 217, 788, 788

Index 890

\l__ior_stream_tl
. 564, 564, 566, 566, 566

\g__ior_streams_prop
. 564, 564, 565, 566, 567, 567

\g__ior_streams_seq
. . . . 564, 564, 564, 566, 567, 567, 569

iow commands:
\iow_... 184
\iow_char:N . . . 188, 188, 572, 572, 725
\iow_close:c 571
\iow_close:N

. . . . 186, 186, 186, 570, 571, 571, 571
\l__iow_current_indentation_int .

. . . . 573, 573, 577, 577, 578, 578, 578
\l__iow_current_indentation_tl . .

. . . . 573, 573, 575, 577, 578, 578, 578
\l__iow_current_line_int . . . 573,

573, 575, 577, 577, 577, 577, 577, 578
\l__iow_current_line_tl . 573, 573,

575, 577, 577, 577, 578, 578, 578, 578
\l__iow_current_word_int

. 573, 573, 577, 577, 577
\l__iow_current_word_tl

573, 573, 577, 577, 577, 577, 577, 578
__iow_indent:n 574, 574, 575
\iow_indent:n

189, 189, 189, 525, 557, 574, 574,
574, 575, 575, 575, 575, 579, 599, 599

__iow_indent_error:n
. 574, 574, 574, 575

\l_iow_line_count_int 189,
189, 189, 573, 573, 573, 575, 576, 576

\l__iow_line_start_bool
. 573, 573, 575, 577, 577, 578

\iow_list_streams:
. 186, 186, 571, 571, 788, 788

__iow_list_streams:Nn . 571, 571, 571
\iow_log:n 187, 187, 514, 515,

515, 518, 530, 563, 563, 563, 572, 572
\iow_log:x 24,

280, 280, 280, 280, 531, 532, 572, 572
\iow_log_streams: . . 218, 218, 788, 788
\iow_new:c 570
__iow_new:N 570, 570, 570
\iow_new:N 185, 185, 570, 570, 570
\iow_newline: 188,

188, 188, 188, 188, 191, 513, 513,
514, 514, 532, 572, 572, 572, 575, 576

\l__iow_newline_tl . 573, 573, 575,
575, 575, 575, 576, 576, 576, 577, 578

\iow_now:cn 572
\iow_now:cx 572
\iow_now:Nn . . . 187, 187, 187, 187,

187, 188, 188, 572, 572, 572, 572, 572
\iow_now:Nx 572, 572, 572
\iow_open:cn 570
__iow_open:Nn 570, 570, 570, 570
\iow_open:Nn . . 186, 186, 570, 570, 570
__iow_open_stream:Nn

. 570, 570, 570, 570
\iow_shipout:cn 571
\iow_shipout:cx 571
\iow_shipout:Nn 188,

188, 188, 188, 188, 571, 571, 571, 572
\iow_shipout:Nx 571
\iow_shipout_x:cn 571
\iow_shipout_x:cx 571
\iow_shipout_x:Nn

188, 188, 188, 188, 571, 571, 571, 572
\iow_shipout_x:Nx 571
\l__iow_stream_tl

. 569, 569, 570, 570, 570
\g__iow_streams_prop

. 569, 569, 569, 570, 571, 571
\g__iow_streams_seq

. . . . 569, 569, 569, 569, 570, 571, 571
\l__iow_target_count_int

. . . . 573, 573, 575, 575, 576, 576, 577
\iow_term:n

187, 187, 515, 515, 515, 530, 572, 572
\iow_term:x . . . 280, 280, 514, 572, 572
__iow_with:Nnn 191, 191, 513, 514,

514, 532, 532, 532, 571, 571, 572, 572
__iow_with_aux:nNnn . . 571, 572, 572
\iow_wrap:nnnN

. . . . 166, 166, 166, 188, 188, 189,
189, 189, 189, 189, 189, 290, 370,
513, 513, 515, 515, 518, 530, 530,
531, 531, 532, 575, 575, 575, 576, 579

__iow_wrap_end: 578
__iow_wrap_end:w 578
\c__iow_wrap_end_marker_tl . 574, 576
__iow_wrap_indent: 578
__iow_wrap_indent:w 578
\c__iow_wrap_indent_marker_tl . . .

. 574, 574
__iow_wrap_loop:w

. 576, 576, 577, 577, 578
\c__iow_wrap_marker_tl

. . . . 574, 574, 574, 574, 574, 577, 578

Index 891

__iow_wrap_newline: 578
__iow_wrap_newline:w 578
\c__iow_wrap_newline_marker_tl . .

. 574, 575, 576
__iow_wrap_set:Nx 575, 575, 576
__iow_wrap_set_target:

575, 576, 576, 576, 576, 576, 577, 578
__iow_wrap_special:w

. 577, 578, 578, 578
\l__iow_wrap_tl 573, 573,

575, 575, 576, 576, 576, 577, 578, 578
__iow_wrap_unindent: 578
__iow_wrap_unindent:w 578
\c__iow_wrap_unindent_marker_tl .

. 574, 574
__iow_wrap_word: 577, 577, 577
__iow_wrap_word_fits: . 577, 577, 577
__iow_wrap_word_newline:

. 577, 577, 577

J
\J . 239
\j . 817
\jcharwidowpenalty 260
\jfam . 260
\jfont . 260
\jis . 260
job commands:

\c_job_name_tl 826
\jobname . 245

K
\k . 817
\kanjiskip . 260
\kansuji . 260
\kansujichar 260
\kcatcode . 260
\kchar . 260
\kchardef . 261
\kern . 245
kernel commands:

\l__kernel_expl_bool
. 8, 240, 240, 241, 241, 241

__kernel_primitive:NN 242,
242, 242, 242, 242, 242, 242, 242,
242, 242, 242, 242, 242, 242, 242,
242, 242, 242, 243, 243, 243, 243,
243, 243, 243, 243, 243, 243, 243,
243, 243, 243, 243, 243, 243, 243,
243, 243, 243, 243, 243, 243, 243,

243, 243, 243, 243, 243, 243, 243,
243, 243, 243, 243, 243, 243, 243,
243, 243, 243, 243, 243, 243, 243,
243, 243, 243, 243, 244, 244, 244,
244, 244, 244, 244, 244, 244, 244,
244, 244, 244, 244, 244, 244, 244,
244, 244, 244, 244, 244, 244, 244,
244, 244, 244, 244, 244, 244, 244,
244, 244, 244, 244, 244, 244, 244,
244, 244, 244, 244, 244, 244, 244,
244, 244, 244, 244, 244, 245, 245,
245, 245, 245, 245, 245, 245, 245,
245, 245, 245, 245, 245, 245, 245,
245, 245, 245, 245, 245, 245, 245,
245, 245, 245, 245, 245, 245, 245,
245, 245, 245, 245, 245, 245, 245,
245, 245, 245, 245, 245, 245, 245,
245, 245, 245, 245, 245, 245, 246,
246, 246, 246, 246, 246, 246, 246,
246, 246, 246, 246, 246, 246, 246,
246, 246, 246, 246, 246, 246, 246,
246, 246, 246, 246, 246, 246, 246,
246, 246, 246, 246, 246, 246, 246,
246, 246, 246, 246, 246, 246, 246,
246, 246, 246, 246, 246, 246, 246,
247, 247, 247, 247, 247, 247, 247,
247, 247, 247, 247, 247, 247, 247,
247, 247, 247, 247, 247, 247, 247,
247, 247, 247, 247, 247, 247, 247,
247, 247, 247, 247, 247, 247, 247,
247, 247, 247, 247, 247, 247, 247,
247, 247, 247, 247, 247, 247, 247,
247, 248, 248, 248, 248, 248, 248,
248, 248, 248, 248, 248, 248, 248,
248, 248, 248, 248, 248, 248, 248,
248, 248, 248, 248, 248, 248, 248,
248, 248, 248, 248, 248, 248, 248,
248, 248, 248, 248, 248, 248, 248,
248, 248, 248, 248, 248, 248, 248,
248, 248, 249, 249, 249, 249, 249,
249, 249, 249, 249, 249, 249, 249,
249, 249, 249, 249, 249, 249, 249,
249, 249, 249, 249, 249, 249, 249,
249, 249, 249, 249, 249, 249, 249,
249, 249, 249, 249, 249, 249, 249,
249, 249, 249, 249, 249, 249, 249,
250, 250, 250, 250, 250, 250, 250,
250, 250, 250, 250, 250, 250, 250,
250, 250, 250, 250, 250, 250, 250,
250, 250, 250, 250, 250, 250, 250,

Index 892

250, 250, 250, 250, 250, 250, 250,
250, 250, 250, 250, 250, 250, 250,
250, 251, 251, 251, 251, 251, 251,
251, 251, 251, 251, 251, 251, 251,
251, 251, 251, 251, 251, 251, 251,
251, 251, 251, 251, 251, 251, 251,
251, 251, 251, 251, 251, 251, 251,
251, 251, 251, 251, 251, 251, 251,
251, 251, 251, 251, 251, 251, 251,
251, 251, 252, 252, 252, 252, 252,
252, 252, 252, 252, 252, 252, 252,
252, 252, 252, 252, 252, 252, 252,
252, 252, 252, 252, 252, 252, 252,
252, 252, 252, 252, 252, 252, 252,
252, 252, 252, 252, 252, 252, 252,
252, 252, 252, 253, 253, 253, 253,
253, 253, 253, 253, 253, 253, 253,
253, 253, 253, 253, 253, 253, 253,
253, 253, 253, 253, 253, 253, 253,
254, 254, 254, 254, 254, 254, 254,
254, 254, 254, 254, 254, 254, 254,
254, 254, 254, 254, 254, 254, 254,
254, 254, 254, 254, 254, 254, 254,
254, 254, 254, 254, 254, 254, 254,
254, 254, 254, 254, 254, 254, 254,
254, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255,
255, 255, 256, 256, 256, 256, 256,
256, 256, 256, 256, 256, 256, 256,
256, 256, 256, 256, 256, 256, 256,
256, 256, 256, 256, 256, 256, 256,
256, 256, 256, 256, 256, 256, 256,
256, 256, 256, 256, 256, 256, 256,
256, 256, 256, 256, 257, 257, 257,
257, 257, 257, 257, 257, 257, 257,
257, 257, 257, 257, 257, 257, 257,
257, 257, 257, 257, 257, 257, 257,
257, 257, 257, 257, 257, 257, 257,
257, 257, 257, 257, 257, 257, 257,
257, 257, 257, 257, 257, 258, 258,
258, 258, 258, 258, 258, 258, 258,
258, 258, 258, 258, 258, 258, 258,
258, 258, 258, 258, 258, 258, 258,
258, 258, 258, 258, 258, 258, 258,
258, 258, 258, 258, 258, 258, 258,

258, 258, 258, 258, 258, 258, 258,
258, 258, 258, 258, 258, 258, 259,
259, 259, 259, 259, 259, 259, 259,
259, 259, 259, 259, 259, 259, 259,
259, 259, 259, 259, 259, 259, 259,
259, 259, 259, 259, 259, 259, 259,
259, 259, 259, 259, 259, 259, 259,
259, 259, 259, 259, 259, 259, 259,
259, 259, 259, 259, 259, 259, 259,
260, 260, 260, 260, 260, 260, 260,
260, 260, 260, 260, 260, 260, 260,
260, 260, 260, 260, 260, 260, 260,
260, 260, 260, 260, 260, 260, 260,
260, 260, 260, 260, 260, 260, 260,
260, 260, 260, 260, 260, 260, 260,
260, 260, 260, 260, 260, 261, 261, 261

__kernel_register_log:c
. 768, 794, 794, 795

__kernel_register_log:N . . . 212,
212, 768, 768, 768, 789, 794, 794, 795

__kernel_register_show:c . . 289, 290
__kernel_register_show:N

. 25, 25, 212, 289, 290,
290, 370, 379, 383, 386, 415, 768, 768

keys commands:
__keys_bool_set:cn . . . 540, 545, 545
__keys_bool_set:Nn

. 540, 540, 540, 545, 545
__keys_bool_set_inverse:cn

. 540, 545, 545
__keys_bool_set_inverse:Nn

. 540, 540, 541, 545, 545
__keys_check_groups: 552, 552
__keys_choice_find:n

. 541, 554, 554, 555
\l_keys_choice_int

. 173, 175, 177, 177, 177,
177, 179, 536, 536, 542, 542, 542, 542

__keys_choice_make:
. 540, 541, 541, 541, 542, 546

__keys_choice_make:N
. 541, 541, 541, 541

__keys_choice_make_aux:N
. 541, 541, 541, 541

\l_keys_choice_tl 173,
175, 177, 177, 177, 179, 536, 536, 542

__keys_choices_make:nn
. 542, 542, 546, 546, 546, 546

__keys_choices_make:Nnn
. 542, 542, 542, 542

Index 893

__keys_cmd_set:nn
540, 541, 541, 541, 542, 542, 542, 546

__keys_cmd_set:nx
. . . . 540, 540, 541, 541, 542, 542, 545

__keys_cmd_set:Vn 542, 544
__keys_cmd_set:Vo 542, 544
\c__keys_code_root_tl 536, 536, 540,

540, 542, 544, 554, 554, 555, 555, 556
__keys_default_set:n

540, 541, 543, 543, 546, 546, 546, 546
\keys_define:nn

. 172, 172, 172, 538, 538, 557
__keys_define:nnn 538, 538, 538
__keys_define:onn 538, 538
__keys_define_elt:n . . 538, 538, 538
__keys_define_elt:nn . 538, 538, 538
__keys_define_elt_aux:nn

. 538, 538, 538, 538
__keys_define_key:n . . 538, 539, 539
__keys_define_key:w . . 539, 539, 539
__keys_ensure_exist:n . 540, 540, 540
__keys_ensure_exist:V

. 540, 542, 543, 543, 543, 544
__keys_execute: 552, 554, 554
__keys_execute:nn

. 554, 554, 554, 554, 554, 554
__keys_execute_unknown: 554, 554, 554
\l__keys_filtered_bool

537, 537, 550, 550, 552, 552, 553, 553
__keys_find_key_module:w

. 551, 551, 551, 551
\l__keys_groups_clist

. . . . 536, 536, 543, 543, 543, 552, 553
__keys_groups_set:n . . 543, 543, 547
\keys_if_choice_exist:nnn 555
\keys_if_choice_exist:nnnTF

. 182, 182, 555
\keys_if_choice_exist_p:nnn

. 182, 182, 555
\keys_if_exist:nn 555
\keys_if_exist:nn(TF) 555
\keys_if_exist:nnTF 181, 181, 555, 556
\keys_if_exist_p:nn . . . 181, 181, 555
__keys_if_value:n 553
__keys_if_value_p:n . . 551, 552, 553
\c__keys_info_root_tl

. . . . 536, 536, 540, 540, 541, 541,
541, 543, 543, 543, 543, 544, 544,
544, 544, 552, 552, 553, 553, 553, 556

__keys_initialise:n
. 543, 543, 547, 547, 547, 547

__keys_initialise:wn . 543, 543, 543
\l_keys_key_tl

179, 179, 536, 536, 540, 541, 551, 554
\keys_log:nn 219, 219, 789, 789
__keys_meta_make:n . . . 544, 544, 548
__keys_meta_make:nn . . 544, 544, 548
\l__keys_module_tl

. 537, 537, 538, 538,
538, 539, 544, 549, 549, 549, 551,
551, 551, 551, 551, 551, 551, 554, 554

__keys_multichoice_find:n
. 541, 554, 555

__keys_multichoice_make:
. 541, 541, 542, 548

__keys_multichoices_make:nn . . .
. 542, 542, 548, 548, 548, 548

\l__keys_no_value_bool
. 537, 537, 538,
538, 539, 551, 551, 552, 552, 553, 554

\l__keys_only_known_bool
. 537, 537, 550, 550, 554

__keys_parent:n 541, 542, 542
__keys_parent:o . . . 541, 541, 541, 541
__keys_parent:wn . . 541, 542, 542, 542
\l_keys_path_tl 179, 179,

537, 537, 538, 539, 539, 539, 539,
539, 539, 540, 540, 540, 541, 541,
541, 541, 541, 541, 541, 541, 541,
541, 541, 542, 542, 543, 543, 543,
543, 543, 543, 543, 543, 543, 544,
544, 544, 544, 544, 544, 544, 544,
545, 546, 551, 551, 552, 552, 552,
552, 553, 553, 553, 554, 554, 554, 554

__keys_property_find:n 538, 538, 538
__keys_property_find:w

. 538, 539, 539, 539
\l__keys_property_tl 537, 537, 538,

538, 538, 539, 539, 539, 539, 539, 539
\c__keys_props_root_tl

. 536, 536, 538, 539,
539, 545, 545, 545, 545, 545, 545,
545, 545, 546, 546, 546, 546, 546,
546, 546, 546, 546, 546, 546, 546,
546, 546, 547, 547, 547, 547, 547,
547, 547, 547, 547, 547, 547, 547,
547, 547, 547, 547, 547, 548, 548,
548, 548, 548, 548, 548, 548, 548,

Index 894

548, 548, 548, 548, 548, 548, 548,
549, 549, 549, 549, 549, 549, 558, 558

__keys_remove_spaces:n
. . . . 538, 539, 542, 549, 551, 554,
555, 555, 555, 555, 556, 556, 556, 556

__keys_remove_spaces:w
. 555, 555, 555, 555

\l__keys_selective_bool
. . . . 537, 537, 550, 550, 550, 550, 551

\l__keys_selective_seq
. 537, 537, 550, 550, 552

\keys_set:nn 171,
175, 179, 179, 179, 179, 180, 543,
544, 544, 549, 549, 549, 550, 550, 550

__keys_set:nnn 549, 549, 549
\keys_set:no 549
\keys_set:nV 549
\keys_set:nv 549
__keys_set:onn 549, 549
__keys_set_elt:n 549, 551, 551
__keys_set_elt:nn 549, 551, 551
__keys_set_elt_aux:

. . . . 551, 551, 551, 552, 552, 553, 553
__keys_set_elt_aux:nnn 551, 551, 551
__keys_set_elt_aux:onn 551, 551, 551
__keys_set_elt_selective:

. 551, 551, 552
\keys_set_filter:nnn

. 181, 181, 550, 550, 550, 550
\keys_set_filter:nnnN

. 181, 181, 181, 550, 550, 550
__keys_set_filter:nnnnN 550, 550, 550
\keys_set_filter:nnV 550
\keys_set_filter:nnv␣␣␣␣␣␣␣\keys_-

set_filter:nno 550
\keys_set_filter:nnVN 550
\keys_set_filter:nnvN␣␣␣␣␣␣␣\keys_-

set_filter:nnoN 550
__keys_set_filter:onnnN . . . 550, 550
\keys_set_groups:nnn

. 181, 181, 550, 550, 550
\keys_set_groups:nnV 550
\keys_set_groups:nnv␣␣␣␣␣␣␣\keys_-

set_groups:nno 550
\keys_set_known:nn

. 180, 180, 549, 550, 550, 550
\keys_set_known:nnN

180, 180, 180, 180, 549, 549, 549, 550
__keys_set_known:nnnN . 549, 549, 550
\keys_set_known:no 549

\keys_set_known:noN 549
\keys_set_known:nV 549
\keys_set_known:nv 549
\keys_set_known:nVN 549
\keys_set_known:nvN 549
__keys_set_known:onnN 549, 549
__keys_show:NN 555, 556, 556
\keys_show:nn

. 182, 182, 555, 555, 789, 789
__keys_store_unused:

. . . . 552, 552, 553, 553, 554, 554, 554
\l__keys_tmp_bool

. 537, 537, 552, 553, 553
__keys_undefine: 544, 544, 549
\l__keys_unused_clist

. 537, 537, 549, 549,
549, 550, 550, 550, 550, 550, 550, 554

__keys_value_or_default:n
. 551, 553, 553

__keys_value_requirement:nn . . .
. 544, 544, 549, 549, 558, 558

\l_keys_value_tl . . . 179, 179, 537,
537, 541, 552, 553, 553, 553, 554, 554

__keys_variable_set:cnnN
. 545, 546, 546, 547, 547, 547, 547,
547, 547, 548, 548, 548, 548, 549, 549

__keys_variable_set:NnnN 545, 545,
545, 546, 546, 547, 547, 547, 547,
547, 547, 548, 548, 548, 548, 549, 549

keyval commands:
\l__keyval_key_tl

. . . . 533, 533, 534, 534, 535, 535, 535
\g__keyval_level_int

533, 533, 534, 535, 535, 536, 536, 536
__keyval_parse:n 533, 533, 536
\keyval_parse:NNn

183, 183, 183, 533, 535, 535, 538, 549
__keyval_parse_elt:w

. 533, 534, 534, 534
\l__keyval_parse_tl

. 533, 533, 533, 534, 534, 535
\l__keyval_sanitise_tl

. 533, 533, 533, 533, 533, 533
__keyval_split:Nn

. 535, 535, 535, 535, 535, 535
__keyval_split:Nw 535, 535, 535
__keyval_split_key:w . 534, 534, 535
__keyval_split_key_value:w

. 534, 534, 534
__keyval_split_value:w 535, 535, 535

Index 895

\l__keyval_value_tl 533, 533, 535, 535
\kuten . 260, 261

L
\L . 816
\l . 816
l3kernel . 827
\l3kernel.charcat 231
l3kernel.charcat 231, 828
\l3kernel.strcmp 231
l3kernel.strcmp 231, 827
\label . 821
\language . 245
\lastallocatedread 431, 431
\lastbox . 245
\lastkern . 245
\lastlinefit 249
\lastnamedcs 255
\lastnodetype 249
\lastpenalty 245
\lastsavedboxresourceindex 256
\lastsavedimageresourceindex 256
\lastsavedimageresourcepages 256
\lastskip . 245
\lastxpos . 256
\lastypos . 256
\latelua . 255
LaTeX3 error commands:

\LaTeX3␣error: 528, 528
\lccode . 239,

239, 239, 239, 239, 239, 239, 240, 245
\leaders . 245
\left . 245
left commands:

\c_left_brace_str 117, 429, 430
\leftghost . 256
\lefthyphenmin 245
\leftmarginkern 252
\leftskip . 245
\leqno . 245
\let 1, 235, 242, 242, 242, 245
\letcharcode 255
\letterspacefont 253
\limits . 245
\LineBreak 236, 236, 236, 236, 236, 236,

236, 236, 236, 237, 237, 237, 237, 237
\linepenalty 245
\lineskip . 245
\lineskiplimit 245
\linewidth 489, 490

\ln 728, 728, 728, 728
ln . 205
\localbrokenpenalty 256
\localinterlinepenalty 256
\localleftbox 256
\localrightbox 256
\loccount 565, 569
log commands:

\c_log_iow . 190, 568, 568, 568, 572, 572
\long 242, 245, 339, 339
\LongText 236, 236, 237
\looseness . 245
\lower . 245
\lowercase . 245
\lpcode . 253
lua commands:

\lua_escape:n . 231, 231, 826, 826, 827
\lua_escape_x:n

. . . . 231, 231, 231, 826, 826, 826, 827
\lua_now:n . 230, 230, 230, 826, 826, 827
\lua_now_x:n

. . . . 230, 230, 230, 826, 826, 826, 827
\lua_shipout:n

. 230, 230, 230, 826, 826, 827
\lua_shipout_x 827
\lua_shipout_x:n 230, 230, 826, 826, 826

\luaescapestring 255
\luafunction 255
luatex commands:

\luatex_... 9
\luatex_alignmark:D 254, 261
\luatex_aligntab:D 254, 261
\luatex_attribute:D 254, 261
\luatex_attributedef:D 254, 261
\luatex_begincsname:D 254
\luatex_bodydir:D 256, 262, 264
\luatex_boxdir:D 256, 262
\luatex_catcodetable:D 254, 261
\luatex_clearmarks:D 255, 261
\luatex_crampeddisplaystyle:D . . .

. 255, 261
\luatex_crampedscriptscriptstyle:D

. 255, 262
\luatex_crampedscriptstyle:D 255, 262
\luatex_crampedtextstyle:D . 255, 262
\luatex_directlua:D 255,

261, 261, 330, 330, 330, 418, 569, 826
\luatex_dviextension:D 255
\luatex_dvifeedback:D 255
\luatex_dvivariable:D 255

Index 896

\luatex_etoksapp:D 255
\luatex_etokspre:D 255
\luatex_expanded:D 255, 264, 418
\luatex_firstvalidlanguage:D . . 255
\luatex_fontid:D 255, 262
\luatex_formatname:D 255, 262
\luatex_gleaders:D 255, 262
\luatex_hjcode:D 255
\luatex_hpack:D 255
\luatex_hypenationmin:D 255
\luatex_if_engine: 826
\luatex_initcatcodetable:D . 255, 262
\luatex_lastnamedcs:D 255
\luatex_latelua:D 255, 262, 826
\luatex_leftghost:D 256, 262
\luatex_letcharcode:D 255
\luatex_localbrokenpenalty:D 256, 262
\luatex_localinterlinepenalty:D .

. 256, 262
\luatex_localleftbox:D 256, 262
\luatex_localrightbox:D 256, 262
\luatex_luaescapestring:D

. 255, 262, 418, 418, 826
\luatex_luafunction:D 255, 262
\luatex_luatexdatestamp:D 255
\luatex_luatexrevision:D 255
\luatex_luatexversion:D

255, 263, 263, 267, 351, 418, 569, 824
\luatex_mathdir:D 256, 262
\luatex_mathdisplayskipmode:D . . 255
\luatex_matheqnogapstep:D 255
\luatex_mathoption:D 255
\luatex_mathscriptsmode:D 255
\luatex_mathstyle:D 255, 262
\luatex_mathsurroundskip:D 255
\luatex_nohrule:D 255
\luatex_nokerns:D 255, 262
\luatex_noligs:D 255, 262
\luatex_nospaces:D 255
\luatex_novrule:D 255
\luatex_outputbox:D 255, 262
\luatex_pagebottomoffset:D . 256, 262
\luatex_pagedir:D 256, 262, 264
\luatex_pageleftoffset:D . . . 255, 262
\luatex_pagerightoffset:D . . 256, 262
\luatex_pagetopoffset:D 255, 262
\luatex_pardir:D 256, 262
\luatex_pdfextension:D

. 255, 831, 831, 831, 831,
832, 832, 833, 833, 836, 836, 836, 836

\luatex_pdffeedback:D 255
\luatex_pdfvariable:D . 255, 830, 830
\luatex_postexhyphenchar:D . 255, 262
\luatex_posthyphenchar:D . . . 255, 262
\luatex_preexhyphenchar:D . . 255, 262
\luatex_prehyphenchar:D 255, 262
\luatex_rightghost:D 256, 262
\luatex_savecatcodetable:D . 255, 262
\luatex_scantextokens:D 256, 262
\luatex_setfontid:D 256
\luatex_suppressifcsnameerror:D .

. 256, 262
\luatex_suppresslongerror:D 256, 262
\luatex_suppressmathparerror:D . .

. 256, 262
\luatex_suppressoutererror:D 256, 262
\luatex_textdir:D 256, 262
\luatex_toksapp:D 256
\luatex_tokspre:D 256
\luatex_tpack:D 256
\luatex_vpack:D 256

\luatexalignmark 261
\luatexaligntab 261
\luatexattribute 261
\luatexattributedef 261
\luatexbodydir 262
\luatexboxdir 262
\luatexcatcodetable 261
\luatexclearmarks 261
\luatexcrampeddisplaystyle 261
\luatexcrampedscriptscriptstyle . . . 262
\luatexcrampedscriptstyle 262
\luatexcrampedtextstyle 262
\luatexdatestamp 255
\luatexfontid 262
\luatexformatname 262
\luatexgleaders 262
\luatexinitcatcodetable 262
\luatexlatelua 262
\luatexleftghost 262
\luatexlocalbrokenpenalty 262
\luatexlocalinterlinepenalty 262
\luatexlocalleftbox 262
\luatexlocalrightbox 262
\luatexluaescapestring 262
\luatexluafunction 262
\luatexmathdir 262
\luatexmathstyle 262
\luatexnokerns 262
\luatexnoligs 262

Index 897

\luatexoutputbox 262
\luatexpagebottomoffset 262
\luatexpagedir 262
\luatexpageheight 262
\luatexpageleftoffset 262
\luatexpagerightoffset 262
\luatexpagetopoffset 262
\luatexpagewidth 262
\luatexpardir 262
\luatexpostexhyphenchar 262
\luatexposthyphenchar 262
\luatexpreexhyphenchar 262
\luatexprehyphenchar 262
\luatexrevision 255
\luatexrightghost 262
\luatexsavecatcodetable 262
\luatexscantextokens 262
\luatexsuppressfontnotfounderror . . .

. 261, 262
\luatexsuppressifcsnameerror 262
\luatexsuppresslongerror 262
\luatexsuppressmathparerror 262
\luatexsuppressoutererror 262
\luatextextdir 262
\luatextracingfonts 261
\luatexUchar 262
\luatexversion 235, 236, 255

M
\mag . 245
\mark . 245
mark commands:

\q_mark 25,
25, 47, 108, 108, 277, 277, 277, 277,
277, 277, 277, 277, 302, 302, 302,
302, 302, 302, 303, 304, 305, 305,
305, 305, 305, 306, 306, 307, 307,
307, 313, 313, 313, 313, 313, 313,
313, 313, 313, 313, 313, 313, 321,
321, 355, 355, 357, 357, 376, 376,
395, 395, 395, 395, 396, 396, 403,
403, 403, 403, 403, 406, 406, 406,
406, 406, 406, 406, 406, 406, 406,
407, 407, 407, 407, 407, 407, 407,
407, 420, 420, 420, 420, 421, 421,
421, 421, 428, 428, 428, 428, 449,
449, 449, 449, 454, 454, 454, 454,
454, 456, 456, 456, 456, 456, 457,
458, 458, 458, 459, 459, 459, 460,
460, 460, 460, 460, 460, 460, 460,

460, 460, 461, 461, 461, 462, 462,
465, 465, 465, 465, 465, 465, 465,
467, 470, 470, 470, 470, 520, 520,
520, 520, 616, 616, 616, 822, 822, 822

\marks . 249
math commands:

\c_math_subscript_token
. 56, 333, 333, 335, 335

\c_math_superscript_token
. 56, 333, 333, 334, 334

\c_math_toggle_token
. 56, 333, 333, 334, 334

\mathaccent . 245
\mathbin . 245
\mathchar 245, 339
\mathchardef 246
\mathchoice . 246
\mathclose . 246
\mathcode . 246
\mathdir . 256
\mathdisplayskipmode 255
\matheqnogapstep 255
\mathinner . 246
\mathop . 246
\mathopen . 246
\mathoption . 255
\mathord . 246
\mathpunct . 246
\mathrel . 246
\mathscriptsmode 255
\mathstyle . 255
\mathsurround 246
\mathsurroundskip 255
max . 205
max commands:

\c__max_constdef_int 351, 351, 351, 352
\c_max_dim 87, 90,

380, 380, 383, 783, 783, 783, 783, 783
\c_max_int

. 77, 371, 371, 481, 481, 481, 481
\c_max_muskip 93, 386, 386
\c_max_register_int

. 77, 267, 267, 267, 348, 525
\c_max_skip 90, 383, 383

\maxdeadcycles 246
\maxdepth . 246
\meaning . 246
\medmuskip . 246
\message . 246
\MessageBreak 237

Index 898

meta commands:
.meta:n 175, 548
.meta:nn 175, 548

\middle . 249
min . 205
minus commands:

\c_minus_inf_fp
199, 208, 583, 583, 672, 675, 712, 735

\c_minus_one 77, 266, 266, 266, 266,
266, 280, 286, 351, 353, 370, 392,
394, 482, 514, 515, 532, 567, 568,
568, 571, 574, 575, 640, 640, 648,
656, 662, 695, 730, 730, 731, 731, 752

\c_minus_zero_fp 199, 583, 583, 672, 756
\mkern . 246
mm . 208
mode commands:

\mode_if_horizontal: 320
\mode_if_horizontal:TF . . . 43, 43, 320
\mode_if_horizontal_p: . . . 43, 43, 320
\mode_if_inner: 320
\mode_if_inner:TF 43, 43, 320
\mode_if_inner_p: 43, 43, 320
\mode_if_math: 320
\mode_if_math:TF 43, 43, 320
\mode_if_math_p: 43, 320
\mode_if_vertical: 320
\mode_if_vertical:TF 43, 43, 320
\mode_if_vertical_p: 43, 43, 320

\month . 246
\moveleft . 246
\moveright . 246
msg commands:

__msg_class_chk_exist:nT
. 518, 518, 519, 521, 521, 521

\l__msg_class_loop_seq 519,
519, 521, 521, 522, 522, 522, 522, 522

__msg_class_new:nn 515, 515, 516,
517, 517, 517, 518, 518, 518, 518, 523

\l__msg_class_tl
. . . . 518, 518, 519, 519, 519, 520,
520, 520, 520, 521, 522, 522, 522, 522

\c__msg_coding_error_text_tl . . .
170, 508, 508, 511, 511, 524, 524,

525, 525, 525, 525, 526, 526, 526,
526, 527, 527, 527, 557, 557, 557, 557

\c__msg_continue_text_tl 511, 511, 513
\msg_critical:nn 163, 516
\msg_critical:nnn 163, 516
\msg_critical:nnnn 163, 516

\msg_critical:nnnnn 163, 516
\msg_critical:nnnnnn . . 163, 163, 516
\msg_critical:nnx 516
\msg_critical:nnxx 516
\msg_critical:nnxxx 516
\msg_critical:nnxxxx 516
\msg_critical_text:n

. 161, 161, 515, 515, 517
\c__msg_critical_text_tl 511, 512, 517
\l__msg_current_class_tl 518, 518,

519, 520, 520, 520, 520, 521, 521, 522
__msg_error:cnnnnn . . . 517, 517, 517
\msg_error:nn 163, 517
\msg_error:nnn 163, 517
\msg_error:nnnn 163, 517
\msg_error:nnnnn 163, 517
\msg_error:nnnnnn . . 163, 163, 219, 517
\msg_error:nnx 517
\msg_error:nnxx 517
\msg_error:nnxxx 517
\msg_error:nnxxxx 517
__msg_error_code:nnnnnn 524
\msg_error_text:n

. 161, 161, 515, 515, 517
__msg_expandable_error:n

. 169, 169, 528, 528, 529, 529
\msg_expandable_error:nn 219, 790, 790
\msg_expandable_error:nnf 790
\msg_expandable_error:nnff 790
\msg_expandable_error:nnfff . . . 790
\msg_expandable_error:nnffff . . 790
\msg_expandable_error:nnn

. 219, 790, 790, 790
\msg_expandable_error:nnnn

. 219, 790, 790, 790
\msg_expandable_error:nnnnn

. 219, 790, 790, 790
\msg_expandable_error:nnnnnn 219,

219, 790, 790, 790, 790, 790, 790, 790
__msg_expandable_error:w

. 528, 528, 528, 528
__msg_expandable_error_module:nn

. 790, 790, 790
\msg_fatal:nn 162, 516
\msg_fatal:nnn 162, 516
\msg_fatal:nnnn 162, 516
\msg_fatal:nnnnn 162, 516
\msg_fatal:nnnnnn 162, 162, 516
\msg_fatal:nnx 516
\msg_fatal:nnxx 516

Index 899

\msg_fatal:nnxxx 516
\msg_fatal:nnxxxx 516
__msg_fatal_code:nnnnnn 523
\msg_fatal_text:n

. 161, 161, 515, 515, 516
\c__msg_fatal_text_tl . 511, 512, 516
\msg_gset:nnn 161, 511, 511
\msg_gset:nnnn 161, 511, 511, 511, 511
\c__msg_help_text_tl . . 511, 512, 513
\l__msg_hierarchy_seq

. . . . 519, 519, 519, 519, 520, 520, 520
\msg_if_exist:nn 510
\msg_if_exist:nnT 510, 510
\msg_if_exist:nnTF . 161, 161, 510, 519
\msg_if_exist_p:nn 161, 161, 510
\msg_info:nn 163, 518
\msg_info:nnn 163, 518
\msg_info:nnnn 163, 518
\msg_info:nnnnn 163, 518
\msg_info:nnnnnn . . . 163, 163, 164, 518
\msg_info:nnx 518
\msg_info:nnxx 518
\msg_info:nnxxx 518
\msg_info:nnxxxx 518, 524
\msg_info_text:n 162, 162, 515, 515, 518
\l__msg_internal_tl

. . . . 510, 510, 532, 532, 532, 532, 532
\msg_interrupt:nnn

. . . . 166, 166, 512, 512, 516, 517, 517
__msg_interrupt_more_text:n . . .

. 513, 513, 513, 513
__msg_interrupt_text:n 513, 513, 514
__msg_interrupt_wrap:nn

. 513, 513, 513, 513
__msg_kernel_class_new:nN

. . . . 523, 523, 523, 524, 524, 524, 524
__msg_kernel_class_new_aux:nN . .

. 523, 523, 523
__msg_kernel_error:nn

. . . . 167, 281, 281, 495, 523, 524, 535
__msg_kernel_error:nnn 167, 523, 827
__msg_kernel_error:nnnn . . . 167, 523
__msg_kernel_error:nnnnn . . 167, 523
__msg_kernel_error:nnnnnn

. 167, 167, 523
__msg_kernel_error:nnx

. . . . 272, 273, 274, 274, 281, 281,
282, 282, 288, 303, 325, 396, 482,
487, 518, 523, 524, 531, 539, 540,
541, 544, 552, 560, 562, 565, 582, 596

__msg_kernel_error:nnxx 271, 272,
274, 281, 281, 281, 281, 281, 282,
286, 306, 492, 510, 511, 519, 523,
524, 538, 539, 541, 541, 552, 554, 596

__msg_kernel_error:nnxxx 523
__msg_kernel_error:nnxxxx . 306, 523
__msg_kernel_expandable_-

error:nn
. . . . 168, 319, 329, 329, 329, 330,
330, 434, 468, 529, 529, 574, 618, 643

__msg_kernel_expandable_-
error:nnn 168,
294, 354, 359, 405, 449, 465, 529,
529, 618, 619, 619, 621, 622, 622,
634, 634, 634, 634, 636, 641, 642, 827

__msg_kernel_expandable_-
error:nnnn
. 168, 529, 529, 646, 647, 659

__msg_kernel_expandable_-
error:nnnnn
. 168, 529, 529, 599, 650, 749

__msg_kernel_expandable_-
error:nnnnnn 168,
168, 529, 529, 529, 529, 529, 529

__msg_kernel_fatal:nn
. 167, 523, 566, 570

__msg_kernel_fatal:nnn 167, 523
__msg_kernel_fatal:nnnn . . . 167, 523
__msg_kernel_fatal:nnnnn . . 167, 523
__msg_kernel_fatal:nnnnnn

. 167, 167, 523
__msg_kernel_fatal:nnx 523
__msg_kernel_fatal:nnxx 523
__msg_kernel_fatal:nnxxx 523
__msg_kernel_fatal:nnxxxx 523
__msg_kernel_info:nn 168, 524
__msg_kernel_info:nnn 168, 524
__msg_kernel_info:nnnn 168, 524
__msg_kernel_info:nnnnn . . . 168, 524
__msg_kernel_info:nnnnnn

. 168, 168, 524
__msg_kernel_info:nnx 524
__msg_kernel_info:nnxx 524
__msg_kernel_info:nnxxx 524
__msg_kernel_info:nnxxxx 524
__msg_kernel_new:nnn 167,

508, 522, 522, 525, 525, 525, 525,
525, 527, 527, 527, 527, 527, 527,
527, 527, 528, 528, 558, 579, 600,

Index 900

600, 600, 600, 600, 600, 651, 651,
651, 651, 651, 651, 651, 651, 651, 652

__msg_kernel_new:nnnn 167,
167, 508, 508, 508, 522, 522, 524,
524, 524, 524, 525, 525, 525, 525,
525, 526, 526, 526, 526, 526, 526,
527, 527, 536, 556, 556, 556, 556,
557, 557, 557, 557, 557, 557, 557,
579, 579, 579, 579, 594, 599, 599, 827

__msg_kernel_set:nnn . 167, 522, 522
__msg_kernel_set:nnnn

. 167, 167, 522, 522
__msg_kernel_warning:nn . . . 168, 524
__msg_kernel_warning:nnn . . 168, 524
__msg_kernel_warning:nnnn . 168, 524
__msg_kernel_warning:nnnnn 168, 524
__msg_kernel_warning:nnnnnn . . .

. 168, 168, 524
__msg_kernel_warning:nnx 524
__msg_kernel_warning:nnxx 524
__msg_kernel_warning:nnxxx . . . 524
__msg_kernel_warning:nnxxxx 522, 524
\msg_line_context:

. 161, 161, 281, 281,
282, 307, 511, 512, 512, 512, 526, 540

\msg_line_number:
. 161, 161, 512, 512, 512, 536

\msg_log:n 166, 166, 514, 514, 518
\msg_log:nn 164, 518
\msg_log:nnn 164, 518
\msg_log:nnnn 164, 518
\msg_log:nnnnn 164, 518
\msg_log:nnnnnn 164, 164, 518
\msg_log:nnx 518
\msg_log:nnxx 518
\msg_log:nnxxx 518
\msg_log:nnxxxx 518
__msg_log_next:

169, 169, 169, 169, 529, 529, 767,
768, 768, 768, 779, 779, 787, 788,
788, 789, 789, 789, 789, 789, 791,
791, 792, 794, 794, 794, 795, 821, 821

\g__msg_log_next_bool 529,
529, 529, 530, 530, 531, 532, 532, 532

__msg_log_wrap:n 530
\c__msg_more_text_prefix_tl

. 510, 510, 511, 511, 517
\msg_new:nnn 160, 511, 511, 522
\msg_new:nnnn

160, 160, 510, 510, 511, 511, 511, 522

\c__msg_no_info_text_tl 511, 512, 513
__msg_no_more_text:nnnn 517, 517, 517
\msg_none:nn 164, 518
\msg_none:nnn 164, 518
\msg_none:nnnn 164, 518
\msg_none:nnnnn 164, 518
\msg_none:nnnnnn 164, 164, 518
\msg_none:nnx 518
\msg_none:nnxx 518
\msg_none:nnxxx 518
\msg_none:nnxxxx 518
\c__msg_on_line_text_tl 511, 512, 512
__msg_redirect:nnn 521, 521, 521, 521
\msg_redirect_class:nn

. 165, 165, 521, 521
__msg_redirect_loop_chk:nnn . . .

. 521, 521, 522, 522
__msg_redirect_loop_chk:onn . . 522
__msg_redirect_loop_list:n

. 521, 522, 522
\msg_redirect_module:nnn

. 165, 165, 521, 521
\msg_redirect_name:nnn

. 165, 165, 521, 521
\l__msg_redirect_prop

. 518, 518, 519, 521, 521
\c__msg_return_text_tl

. 511, 512, 512, 524, 524, 524
\msg_see_documentation_text:n . . .

. . . . 162, 162, 515, 515, 516, 517, 517
\msg_set:nnn 161, 511, 511, 522
\msg_set:nnnn

. 161, 161, 511, 511, 511, 522
__msg_show_item:n 170, 170,

170, 451, 467, 468, 530, 531, 532, 532
__msg_show_item:nn

. . . . 170, 170, 170, 477, 477, 532, 532
__msg_show_item_unbraced:nn 170,

170, 508, 532, 532, 556, 556, 567, 567
__msg_show_pre:nnnnnn

. 169, 169, 530, 530, 530, 530
__msg_show_pre:nnnnnV 530
__msg_show_pre:nnxxxx

467, 508, 530, 530, 531, 556, 556, 567
__msg_show_pre_aux:n

. 530, 530, 530, 530
__msg_show_variable:NNNnn

. 169, 169, 169, 170, 289,
290, 311, 370, 415, 450, 450, 467,
467, 477, 477, 530, 530, 530, 767, 767

Index 901

__msg_show_wrap:n 169, 169,
170, 170, 170, 290, 326, 327, 328,
328, 328, 415, 415, 467, 508, 530,
530, 531, 531, 531, 531, 531, 531,
531, 531, 531, 532, 555, 556, 556, 567

__msg_show_wrap:Nn
. 169, 170, 170, 311,
370, 379, 383, 386, 531, 531, 531, 767

__msg_show_wrap_aux:n . 531, 532, 532
__msg_show_wrap_aux:w . 531, 532, 532
\msg_term:n . . . 166, 166, 514, 515, 517
\c__msg_text_prefix_tl

. . . . 510, 510, 510, 511, 511, 516,
517, 517, 517, 518, 518, 529, 530, 790

__msg_tmp:w 528, 529
\c__msg_trouble_text_tl 511, 512
__msg_use:nnnnnnn 516, 519, 519
__msg_use_code:

519, 519, 519, 519, 519, 519, 520, 520
__msg_use_hierarchy:nwwN

. 519, 520, 520, 520
__msg_use_redirect_module:n . . .

. 519, 520, 520, 520, 520
__msg_use_redirect_name:n

. 519, 519, 519
\msg_warning:nn 163, 517
\msg_warning:nnn 163, 517
\msg_warning:nnnn 163, 517
\msg_warning:nnnnn 163, 517
\msg_warning:nnnnnn 163, 517
\msg_warning:nnx 517
\msg_warning:nnxx 517
\msg_warning:nnxxx 517
\msg_warning:nnxxxx . . . 163, 517, 524
\msg_warning_text:n

. 162, 162, 515, 515, 517
\mskip . 246
\muexpr . 250
multichoice commands:

.multichoice: 175, 548
multichoices commands:

.multichoices:nn 175, 548

.multichoices:on 175, 548

.multichoices:Vn 175, 548

.multichoices:xn 175, 548
\multiply . 246
\muskip . 246, 339
muskip commands:

\muskip_(g)zero:N 92
\muskip_add:cn 385

\muskip_add:Nn 92, 92, 385, 385, 385, 385
\muskip_const:cn 384
\muskip_const:Nn

. 91, 91, 384, 384, 384, 386, 386
\muskip_eval:n 93, 93, 93, 385, 385, 386
\muskip_gadd:cn 385
\muskip_gadd:Nn . . . 92, 385, 385, 385
\muskip_gset:cn 385
\muskip_gset:Nn 92, 384, 385, 385, 385
\muskip_gset_eq:cc 385
\muskip_gset_eq:cN 385
\muskip_gset_eq:Nc 385
\muskip_gset_eq:NN

. 92, 385, 385, 385, 385
\muskip_gsub:cn 385
\muskip_gsub:Nn . . . 92, 385, 385, 385
\muskip_gzero:c 384
\muskip_gzero:N 91, 384, 384, 384, 384
\muskip_gzero_new:c 384
\muskip_gzero_new:N 92, 384, 384, 384
\muskip_if_exist:c 384
\muskip_if_exist:cTF 384
\muskip_if_exist:N 384
\muskip_if_exist:NTF

. 92, 92, 384, 384, 384
\muskip_if_exist_p:c 384
\muskip_if_exist_p:N 92, 92, 384
\muskip_log:c 795, 795
\muskip_log:N 223, 223, 795, 795
\muskip_log:n 223, 223, 795, 795
\muskip_new:c 384
\muskip_new:N 91, 91, 92, 384, 384,

384, 384, 384, 384, 386, 386, 386, 386
\muskip_set:cn 385
\muskip_set:Nn 92, 92, 385, 385, 385, 385
\muskip_set_eq:cc 385
\muskip_set_eq:cN 385
\muskip_set_eq:Nc 385
\muskip_set_eq:NN

. 92, 92, 385, 385, 385, 385
\muskip_show:c 386
\muskip_show:N . . 93, 93, 386, 386, 386
\muskip_show:n 93, 93, 386, 386, 795, 795
\muskip_sub:cn 385
\muskip_sub:Nn 92, 92, 385, 385, 385, 385
\muskip_use:c 385
\muskip_use:N

. . . 93, 93, 93, 93, 385, 385, 385, 385
\muskip_zero:c 384

Index 902

\muskip_zero:N
. 91, 384, 384, 384, 384, 384

\muskip_zero_new:c 384
\muskip_zero_new:N 92, 92, 384, 384, 384

\muskipdef . 246
\mutoglue . 250

N
nan . 208
nan commands:

\c_nan_fp 208, 583, 583, 596,
597, 599, 599, 605, 605, 618, 618,
619, 621, 621, 622, 636, 650, 725, 749

nc . 208
nd . 208
\newbox . 351
\newcatcodetable 235
\newcount . 351
\newdimen . 351
\newlinechar 236, 246
\next . 64,

64, 64, 236, 236, 237, 237, 238, 238, 238
\NG . 816
\ng . 816
nil commands:

\q_nil 21, 21, 47,
47, 47, 47, 269, 269, 269, 313, 313,
313, 313, 313, 313, 313, 313, 313,
313, 313, 313, 321, 321, 321, 323,
324, 324, 324, 324, 324, 396, 397,
399, 399, 399, 399, 399, 399, 400,
400, 406, 407, 407, 407, 407, 407,
410, 410, 533, 534, 534, 534, 534,
534, 534, 534, 534, 535, 535, 535,
535, 535, 535, 535, 535, 535, 535, 535

nine commands:
\c_nine 77, 326, 327, 330, 370,

370, 426, 427, 609, 614, 617, 617,
623, 624, 625, 625, 627, 627, 628,
629, 629, 630, 632, 633, 644, 644,
644, 644, 671, 737, 737, 737, 737, 737

no commands:
\q_no_value

. 46, 47, 47, 47, 47, 121, 121,
121, 121, 121, 121, 127, 127, 127,
138, 142, 142, 142, 184, 316, 321,
321, 321, 323, 323, 324, 324, 442,
442, 443, 443, 443, 444, 456, 456,
456, 471, 471, 471, 471, 471, 561, 561

\noalign . 246

\noautospacing 260
\noautoxspacing 260
\noboundary . 246
\noexpand 237, 237, 237, 237, 246
\nohrule . 255
\noindent . 246
\nokerns . 255
\noligs . 255
\nolimits . 246
\nonscript . 246
\nonstopmode 246
\normaldeviate 256
\normalend 263, 263, 564, 569
\normaleveryjob 263
\normalexpanded 264
\normalhoffset 264
\normalinput 263
\normalitaliccorrection 264, 264
\normallanguage 263
\normalleft 264, 264
\normalmathop 263
\normalmiddle 264
\normalmonth 263
\normalouter 263
\normalover . 263
\normalright 264
\normalshowtokens 264
\normalunexpanded 264
\normalvcenter 264
\normalvoffset 264
\nospaces . 255
\novrule . 255
\nulldelimiterspace 246
\nullfont . 246
\number . 235, 246
\numexpr 239, 239, 250

O
\O . 816
\o . 816
\OE . 816
\oe . 816
\omit . 246
one commands:

\c_one 77, 326, 326,
330, 350, 353, 369, 370, 370, 405,
415, 415, 423, 424, 426, 446, 446,
448, 464, 464, 466, 481, 522, 522,
560, 564, 565, 569, 569, 576, 584,
593, 600, 601, 601, 601, 601, 601,

Index 903

603, 603, 603, 603, 603, 604, 606,
607, 623, 626, 626, 628, 629, 629,
629, 630, 636, 643, 643, 643, 647,
647, 647, 647, 647, 647, 647, 656,
660, 660, 660, 665, 666, 667, 669,
669, 669, 670, 670, 671, 672, 674,
675, 682, 682, 684, 685, 688, 688,
688, 690, 690, 691, 695, 701, 705,
705, 707, 707, 710, 710, 712, 713,
717, 720, 720, 721, 729, 730, 730,
731, 731, 731, 734, 736, 737, 747,
748, 749, 751, 755, 757, 758, 759, 822

\c_one_degree_fp 199, 208, 636, 767, 767
\c_one_fp . . 199, 637, 648, 649, 657,

720, 725, 727, 733, 734, 749, 767, 767
\c_one_hundred 77, 371, 371
\c_one_thousand 77, 371, 371

\openin . 246
\openout . 246
\or . 246
or commands:

\or: . 78,
78, 78, 264, 264, 285, 285, 285, 285,
285, 285, 285, 285, 285, 331, 331,
331, 331, 331, 331, 331, 331, 331,
331, 331, 331, 331, 348, 364, 364,
364, 364, 364, 364, 364, 364, 364,
364, 364, 364, 364, 364, 364, 364,
365, 365, 365, 365, 365, 365, 365,
365, 365, 365, 365, 365, 365, 365,
365, 365, 365, 365, 365, 365, 365,
365, 365, 365, 365, 365, 365, 365,
365, 365, 365, 365, 365, 365, 422,
422, 423, 423, 423, 423, 423, 423,
423, 423, 423, 423, 424, 424, 425,
425, 425, 425, 425, 425, 584, 584,
584, 592, 592, 604, 605, 648, 648,
648, 649, 649, 662, 662, 662, 666,
669, 672, 672, 672, 672, 672, 672,
672, 672, 672, 675, 675, 692, 692,
702, 712, 712, 713, 713, 713, 713,
713, 719, 720, 720, 720, 722, 722,
722, 722, 722, 722, 722, 722, 722,
722, 722, 722, 722, 723, 723, 723,
723, 723, 723, 723, 723, 723, 723,
723, 723, 723, 723, 723, 723, 723,
723, 723, 723, 723, 723, 723, 723,
723, 723, 723, 723, 723, 723, 723,
723, 724, 724, 724, 724, 724, 724,
724, 724, 724, 724, 724, 724, 724,

724, 724, 724, 724, 725, 727, 727,
727, 730, 730, 732, 732, 733, 733,
733, 733, 734, 734, 734, 734, 735,
735, 749, 749, 749, 751, 754, 754,
754, 754, 756, 756, 756, 756, 756,
758, 758, 758, 759, 759, 760, 761, 761

\outer 6, 6, 246, 351, 643
\output . 246
\outputbox . 255
\outputmode . 256
\outputpenalty 246
\over . 246
\overfullrule 246
\overline . 246
\overwithdelims 246

P
\PackageError 237, 237
\pagebottomoffset 256
\pagedepth . 246
\pagedir . 256
\pagediscards 250
\pagefilllstretch 246
\pagefillstretch 246
\pagefilstretch 246
\pagegoal . 247
\pageheight . 256
\pageleftoffset 255
\pagerightoffset 256
\pageshrink . 247
\pagestretch 247
\pagetopoffset 255
\pagetotal . 247
\pagewidth . 256
\par . 11, 11,

12, 12, 13, 13, 13, 14, 14, 14, 15, 15,
15, 16, 186, 186, 247, 284, 284, 483,
483, 483, 484, 484, 484, 484, 484, 485

parameter commands:
\c_parameter_token

. 56, 333, 333, 334, 334, 334, 334
\pardir . 256
\parfillskip 247
\parindent . 247
\parshape . 247
\parshapedimen 250
\parshapeindent 250
\parshapelength 250
\parskip . 247
\patterns . 247

Index 904

\pausing . 247
pc . 208
\pdf... 250
\pdfadjustspacing 252
\pdfannot . 250
\pdfcatalog . 250
\pdfcolorstack 250
\pdfcolorstackinit 250
\pdfcompresslevel 250
\pdfcopyfont 252
\pdfcreationdate 250
\pdfdecimaldigits 250
\pdfdest . 250
\pdfdestmargin 250
\pdfdraftmode 252
\pdfeachlinedepth 252
\pdfeachlineheight 252
\pdfendlink . 250
\pdfendthread 250
\pdfextension 255
\pdffeedback 255
\pdffirstlineheight 252
\pdffontattr 250
\pdffontexpand 252
\pdffontname 250
\pdffontobjnum 250
\pdffontsize 252
\pdfgamma . 251
\pdfgentounicode 251
\pdfglyphtounicode 251
\pdfhorigin . 251
\pdfignoreddimen 252
\pdfimageapplygamma 251
\pdfimagegamma 251
\pdfimagehicolor 251
\pdfimageresolution 251
\pdfincludechars 251
\pdfinclusioncopyfonts 251
\pdfinclusionerrorlevel 251
\pdfinfo . 251
\pdfinsertht 252
\pdflastannot 251
\pdflastlinedepth 252
\pdflastlink 251
\pdflastobj . 251
\pdflastxform 251
\pdflastximage 251
\pdflastximagecolordepth 251
\pdflastximagepages 251
\pdflastxpos 252

\pdflastypos 252
\pdflinkmargin 251
\pdfliteral . 251
\pdfmapfile . 252
\pdfmapline . 252
\pdfminorversion 251
\pdfnames . 251
\pdfnoligatures 252
\pdfnormaldeviate 252
\pdfobj . 251
\pdfobjcompresslevel 251
\pdfoutline . 251
\pdfoutput . 251
\pdfpageattr 251
\pdfpagebox . 251
\pdfpageheight 252
\pdfpageref . 251
\pdfpageresources 251
\pdfpagesattr 251
\pdfpagewidth 252
\pdfpkmode . 252
\pdfpkresolution 252
\pdfprimitive 252
\pdfprotrudechars 252
\pdfpxdimen . 252
\pdfrandomseed 252
\pdfrefobj . 251
\pdfrefxform 251
\pdfrefximage 251
\pdfrestore . 251
\pdfretval . 251
\pdfsave . 251
\pdfsavepos . 252
\pdfsetmatrix 251
\pdfsetrandomseed 252
\pdfshellescape 252
\pdfstartlink 251
\pdfstartthread 251
\pdfstrcmp 235, 252
\pdfsuppressptexinfo 251
pdftex commands:

\pdftex_... 9
\pdftex_adjustspacing:D 252, 256
\pdftex_copyfont:D 252, 256
\pdftex_draftmode:D 252, 256
\pdftex_eachlinedepth:D 252
\pdftex_eachlineheight:D 252
\pdftex_efcode:D 252
\pdftex_firstlineheight:D 252
\pdftex_fontexpand:D 252, 256

Index 905

\pdftex_fontsize:D 252
\pdftex_if_engine:F 826, 826
\pdftex_if_engine:T 826, 826
\pdftex_if_engine:TF 826, 826
\pdftex_if_engine_p: 826, 826
\pdftex_ifabsdim:D 252, 256
\pdftex_ifabsnum:D 252, 256
\pdftex_ifincsname:D 252
\pdftex_ifprimitive:D 252
\pdftex_ignoreddimen:D 252
\pdftex_ignoreligaturesinfont:D 256
\pdftex_insertht:D 252, 256
\pdftex_lastlinedepth:D 252
\pdftex_lastxpos:D 252, 256
\pdftex_lastypos:D 252, 256
\pdftex_leftmarginkern:D 252
\pdftex_letterspacefont:D 253
\pdftex_lpcode:D 253
\pdftex_mapfile:D 252, 263
\pdftex_mapline:D 252, 263
\pdftex_noligatures:D 252
\pdftex_normaldeviate:D 252, 256
\pdftex_pageheight:D . . 252, 256, 262
\pdftex_pagewidth:D 252, 262
\pdftex_pagewith:D 256
\pdftex_pdfannot:D 250
\pdftex_pdfcatalog:D 250
\pdftex_pdfcolorstack:D 250, 836, 836
\pdftex_pdfcolorstackinit:D . . . 250
\pdftex_pdfcompresslevel:D 250
\pdftex_pdfcreationdate:D 250
\pdftex_pdfdecimaldigits:D 250
\pdftex_pdfdest:D 250
\pdftex_pdfdestmargin:D 250
\pdftex_pdfendlink:D 250
\pdftex_pdfendthread:D 250
\pdftex_pdffontattr:D 250
\pdftex_pdffontname:D 250
\pdftex_pdffontobjnum:D 250
\pdftex_pdfgamma:D 251
\pdftex_pdfgentounicode:D 251
\pdftex_pdfglyphtounicode:D . . . 251
\pdftex_pdfhorigin:D 251
\pdftex_pdfimageapplygamma:D . . 251
\pdftex_pdfimagegamma:D 251
\pdftex_pdfimagehicolor:D 251
\pdftex_pdfimageresolution:D . . 251
\pdftex_pdfincludechars:D 251
\pdftex_pdfinclusioncopyfonts:D 251
\pdftex_pdfinclusionerrorlevel:D 251

\pdftex_pdfinfo:D 251
\pdftex_pdflastannot:D 251
\pdftex_pdflastlink:D 251
\pdftex_pdflastobj:D 251
\pdftex_pdflastxform:D 251, 256
\pdftex_pdflastximage:D 251, 256
\pdftex_pdflastximagecolordepth:D

. 251
\pdftex_pdflastximagepages:D 251, 256
\pdftex_pdflinkmargin:D 251
\pdftex_pdfliteral:D 251, 832
\pdftex_pdfminorversion:D 251
\pdftex_pdfnames:D 251
\pdftex_pdfobj:D 251
\pdftex_pdfobjcompresslevel:D . . 251
\pdftex_pdfoutline:D 251
\pdftex_pdfoutput:D

. 251, 256, 825, 825, 830, 830
\pdftex_pdfpageattr:D 251
\pdftex_pdfpagebox:D 251
\pdftex_pdfpageref:D 251
\pdftex_pdfpageresources:D 251
\pdftex_pdfpagesattr:D 251
\pdftex_pdfrefobj:D 251
\pdftex_pdfrefxform:D 251, 257
\pdftex_pdfrefximage:D 251, 257
\pdftex_pdfrestore:D 251, 831
\pdftex_pdfretval:D 251
\pdftex_pdfsave:D 251, 831
\pdftex_pdfsetmatrix:D 251, 833
\pdftex_pdfstartlink:D 251
\pdftex_pdfstartthread:D 251
\pdftex_pdfsuppressptexinfo:D . . 251
\pdftex_pdftexbanner:D 252, 263
\pdftex_pdftexrevision:D . . . 252, 263
\pdftex_pdftexversion:D

. 252, 263, 263, 263, 824
\pdftex_pdfthread:D 251
\pdftex_pdfthreadmargin:D 251
\pdftex_pdftrailer:D 251
\pdftex_pdfuniqueresname:D 251
\pdftex_pdfvorigin:D 251
\pdftex_pdfxform:D 251, 257
\pdftex_pdfxformattr:D 251
\pdftex_pdfxformname:D 251
\pdftex_pdfxformresources:D . . . 252
\pdftex_pdfximage:D 252, 257
\pdftex_pdfximagebbox:D 252
\pdftex_pkmode:D 252
\pdftex_pkresolution:D 252

Index 906

\pdftex_primitive:D . . . 252, 254, 254
\pdftex_protrudechars:D 252, 256
\pdftex_pxdimen:D 252, 256
\pdftex_quitvmode:D 253
\pdftex_randomseed:D 252, 256
\pdftex_rightmarginkern:D 253
\pdftex_rpcode:D 253
\pdftex_savepos:D 252, 257
\pdftex_setrandomseed:D 252, 257
\pdftex_shellescape:D 252, 254
\pdftex_strcmp:D 252, 418
\pdftex_synctex:D 253
\pdftex_tagcode:D 253
\pdftex_tracingfonts:D

. 252, 257, 261, 261, 261
\pdftex_uniformdeviate:D . . . 252, 257

\pdftexbanner 252
\pdftexrevision 252
\pdftexversion 236, 252
\pdfthread . 251
\pdfthreadmargin 251
\pdftracingfonts 252, 261, 261
\pdftrailer . 251
\pdfuniformdeviate 252
\pdfuniqueresname 251
\pdfvariable 255
\pdfvorigin . 251
\pdfxform . 251
\pdfxformattr 251
\pdfxformname 251
\pdfxformresources 252
\pdfximage . 252
\pdfximagebbox 252
peek commands:

\peek_after:Nw 44,
61, 61, 61, 61, 342, 342, 343, 343, 345

\peek_catcode:NTF 61, 61, 346
\peek_catcode_ignore_spaces:NTF .

. 61, 61, 346
\peek_catcode_remove:NTF . 62, 62, 346
\peek_catcode_remove_ignore_-

spaces:NTF 62, 62, 346
\peek_charcode:NTF 62, 62, 346
\peek_charcode_ignore_spaces:NTF

. 62, 62, 346
\peek_charcode_remove:NTF 62, 62, 346
\peek_charcode_remove_ignore_-

spaces:NTF 63, 63, 346

__peek_def:nnnn
. . . . 345, 345, 346, 346, 346, 346,
346, 346, 346, 346, 347, 347, 347, 347

__peek_def:nnnnn
. 345, 345, 345, 345, 346

__peek_execute_branches:
. 345, 345, 346

__peek_execute_branches_-
catcode: 344, 344, 346, 346, 346, 346

__peek_execute_branches_-
catcode_aux: . . . 344, 344, 344, 344

__peek_execute_branches_-
catcode_auxii:N 344, 344, 344

__peek_execute_branches_-
catcode_auxiii: 344, 344, 345

__peek_execute_branches_-
charcode: 344, 344, 346, 346, 346, 346

__peek_execute_branches_-
meaning: 344, 344, 347, 347, 347, 347

__peek_execute_branches_N_type:
. 822, 822, 823, 823, 823

__peek_false:w . . . 342, 342, 343,
343, 344, 345, 345, 822, 822, 822, 823

\peek_gafter:Nw . . 61, 61, 61, 342, 342
__peek_get_prefix_arg_replacement:wN

. 347, 347, 347, 347, 348
__peek_ignore_spaces_execute_-

branches: 345,
345, 345, 346, 346, 346, 346, 347, 347

\peek_meaning:NTF 63, 63, 347
\peek_meaning_ignore_spaces:NTF .

. 63, 63, 347
\peek_meaning_remove:NTF . 63, 63, 347
\peek_meaning_remove_ignore_-

spaces:NTF 63, 63, 347
\peek_N_type:F 823
\peek_N_type:T 823
\peek_N_type:TF . . . 227, 227, 822, 823
__peek_N_type:w 822, 822, 822
__peek_N_type_aux:nnw . 822, 822, 822
\l__peek_search_tl

342, 342, 342, 343, 343, 344, 345, 345
\l__peek_search_token

. 342, 342, 342, 343, 343, 344
__peek_tmp:w . 342, 342, 342, 822, 822
\g_peek_token . . . 61, 61, 342, 342, 342
\l_peek_token 61, 61,

342, 342, 342, 344, 344, 344, 345,
345, 345, 822, 822, 822, 822, 822, 822

__peek_token_generic:NNF . . 343, 823

Index 907

__peek_token_generic:NNT . . 343, 823
__peek_token_generic:NNTF

. 343, 343, 343, 343, 822, 823
__peek_token_remove_generic:NNF 343
__peek_token_remove_generic:NNT 343
__peek_token_remove_generic:NNTF

. 343, 343, 343, 343
__peek_true:w . 342, 342, 343, 343,

344, 345, 345, 822, 822, 822, 822, 823
__peek_true_aux:w . 342, 342, 342, 343
__peek_true_remove:w . 342, 342, 343

\penalty . 247
percent commands:

\c_percent_str 117, 429, 430
pi . 208
pi commands:

\c_pi_fp . . 199, 208, 631, 636, 767, 767
\postbreakpenalty 260
\postdisplaypenalty 247
\postexhyphenchar 255
\posthyphenchar 255
\prebreakpenalty 260
\predisplaydirection 250
\predisplaypenalty 247
\predisplaysize 247
\preexhyphenchar 255
\prehyphenchar 255
\pretolerance 247
\prevdepth . 247
\prevgraf . 247
prg commands:

__prg_break: 45, 291, 291,
321, 415, 446, 475, 593, 764, 793, 793

__prg_break:n 45,
45, 45, 291, 291, 321, 415, 442, 446, 472

__prg_break_point: 45,
45, 291, 291, 291, 291, 321, 415,
442, 446, 472, 475, 593, 764, 793, 793

__prg_break_point:Nn
. . . . 44, 44, 44, 44, 102, 102, 125,
125, 136, 136, 217, 218, 290, 290,
290, 290, 290, 291, 321, 360, 360,
403, 404, 404, 446, 447, 448, 448,
462, 462, 463, 463, 476, 477, 788, 792

\prg_break_point:Nn 49
__prg_case_end:nw

. . 25, 25, 357, 376, 402, 403, 403, 421
__prg_compare_error:

. 79, 79, 354, 354,
354, 354, 355, 355, 355, 375, 375, 375

__prg_compare_error:Nw
. . 79, 79, 354, 354, 354, 355, 355, 356

\prg_do_nothing:
. . . 10, 10, 45, 274, 274, 290, 290,
291, 305, 305, 392, 392, 393, 394,
395, 436, 437, 437, 437, 445, 445,
456, 466, 467, 467, 467, 593, 596,
597, 597, 598, 598, 648, 763, 763, 797

__prg_generate_conditional:nnNnnnnn
. 271, 271, 272, 272

__prg_generate_conditional:nnnnnnw
. 272, 272, 272, 272

__prg_generate_conditional_-
count:nnNnn
. 271, 271, 271, 271, 271, 271

__prg_generate_conditional_-
count:nnNnnnn 271, 271, 271

__prg_generate_conditional_-
parm:nnNpnn
. 270, 270, 270, 271, 271, 271

__prg_generate_F_form:wnnnnnn . .
. 273, 273

__prg_generate_p_form:wnnnnnn . .
. 273, 273

__prg_generate_T_form:wnnnnnn . .
. 273, 273

__prg_generate_TF_form:wnnnnnn .
. 273, 273

__prg_map_1:w 44
__prg_map_2:w 44
__prg_map_break:Nn

. 44, 44, 290, 290, 290,
291, 321, 404, 405, 405, 446, 446,
464, 464, 464, 477, 477, 477, 787, 788

\g__prg_map_int 44,
44, 321, 321, 360, 360, 360, 360,
360, 360, 404, 404, 404, 404, 404,
447, 447, 447, 447, 463, 463, 463,
463, 477, 477, 477, 477, 788, 788, 788

\prg_new_conditional:Nnn . 37, 37,
271, 271, 308, 323, 323, 324, 324, 567

\prg_new_conditional:Npnn
. . . 37, 37, 38, 270, 270, 289, 308,
310, 312, 320, 320, 320, 320, 333,
334, 334, 334, 334, 334, 334, 335,
335, 335, 335, 335, 336, 336, 336,
336, 337, 337, 339, 340, 345, 355,
356, 357, 357, 375, 375, 382, 382,
399, 399, 399, 400, 400, 402, 411,
412, 412, 413, 414, 414, 419, 419,

Index 908

419, 441, 460, 474, 475, 480, 480,
480, 487, 510, 553, 555, 555, 594,
633, 652, 653, 790, 791, 791, 791, 795

\prg_new_eq_conditional:NNn
. 39, 39, 273, 274, 308,
311, 311, 352, 352, 373, 373, 381,
381, 384, 384, 388, 388, 417, 417,
417, 417, 438, 438, 450, 450, 450,
450, 450, 450, 454, 454, 460, 460,
474, 474, 479, 479, 652, 652, 826, 826

\prg_new_protected_conditional:Nnn
. 38, 38, 271, 271, 308

\prg_new_protected_conditional:Npnn
. 38, 38,
270, 271, 308, 400, 401, 442, 445,
445, 445, 445, 445, 445, 457, 457,
457, 461, 461, 472, 472, 476, 562, 565

__prg_replicate:N . 318, 319, 319, 319
\prg_replicate:nn 43, 43,

318, 318, 318, 318, 318, 527, 578,
578, 700, 729, 731, 731, 737, 742,
742, 742, 742, 742, 743, 760, 760, 760

__prg_replicate_ 318, 319
__prg_replicate_0:n 318
__prg_replicate_1:n 318
__prg_replicate_2:n 318
__prg_replicate_3:n 318
__prg_replicate_4:n 318
__prg_replicate_5:n 318
__prg_replicate_6:n 318
__prg_replicate_7:n 318
__prg_replicate_8:n 318
__prg_replicate_9:n 318
__prg_replicate_first:N 318, 318, 319
__prg_replicate_first_-:n 318
__prg_replicate_first_0:n 318
__prg_replicate_first_1:n 318
__prg_replicate_first_2:n 318
__prg_replicate_first_3:n 318
__prg_replicate_first_4:n 318
__prg_replicate_first_5:n 318
__prg_replicate_first_6:n 318
__prg_replicate_first_7:n 318
__prg_replicate_first_8:n 318
__prg_replicate_first_9:n 318
\prg_return_false:

. 38, 39, 39, 39, 117, 270,
270, 278, 278, 278, 278, 278, 279,
289, 308, 310, 312, 320, 320, 320,
320, 323, 323, 333, 334, 334, 334,

334, 335, 335, 335, 335, 335, 335,
336, 336, 336, 337, 337, 337, 337,
339, 339, 340, 341, 341, 341, 354,
354, 355, 356, 356, 357, 357, 358,
375, 375, 376, 376, 382, 382, 399,
400, 400, 400, 401, 401, 402, 411,
411, 412, 413, 413, 413, 413, 414,
414, 418, 419, 419, 419, 441, 442,
442, 442, 457, 457, 460, 461, 461,
472, 473, 474, 475, 476, 480, 480,
480, 487, 487, 510, 553, 553, 555,
555, 562, 565, 568, 595, 634, 634,
652, 653, 790, 791, 791, 791, 791, 795

\prg_return_true/false: 418
\prg_return_true:

38, 39, 39, 39, 117, 270, 270, 278,
278, 278, 278, 279, 279, 289, 308,
310, 312, 320, 320, 320, 320, 323,
323, 333, 334, 334, 334, 334, 335,
335, 335, 335, 335, 335, 336, 336,
336, 337, 337, 337, 341, 341, 356,
356, 357, 358, 375, 376, 382, 382,
399, 399, 400, 400, 401, 401, 402,
411, 412, 412, 412, 412, 413, 413,
414, 414, 418, 419, 419, 419, 441,
441, 442, 443, 457, 457, 461, 461,
472, 472, 472, 474, 475, 476, 480,
480, 480, 487, 510, 553, 555, 555,
562, 566, 568, 568, 568, 594, 634,
634, 653, 653, 790, 791, 791, 791, 791

\prg_set_conditional:Nnn
. 37, 271, 271, 308

\prg_set_conditional:Npnn . . . 37,
38, 39, 270, 270, 277, 278, 278, 279, 308

\prg_set_eq_conditional:NNn
. 39, 273, 273, 308

__prg_set_eq_conditional:NNNn . .
. 273, 274, 274, 274

__prg_set_eq_conditional:nnNnnNNw
. 274, 274, 274

__prg_set_eq_conditional_F_-
form:nnn 274

__prg_set_eq_conditional_F_-
form:wNnnnn 275

__prg_set_eq_conditional_-
loop:nnnnNw 274, 274, 274, 275

__prg_set_eq_conditional_p_-
form:nnn 274

__prg_set_eq_conditional_p_-
form:wNnnnn 275

Index 909

__prg_set_eq_conditional_T_-
form:nnn 274

__prg_set_eq_conditional_T_-
form:wNnnnn 275

__prg_set_eq_conditional_TF_-
form:nnn 274

__prg_set_eq_conditional_TF_-
form:wNnnnn 275

\prg_set_protected_conditional:Nnn
. 38, 271, 271, 308

\prg_set_protected_conditional:Npnn
. 38, 270, 270, 308

\primitive . 254
prop commands:

\s__prop 146, 146, 468, 468, 468, 468,
468, 468, 468, 469, 470, 470, 470,
470, 472, 472, 473, 474, 475, 475,
476, 476, 476, 477, 477, 792, 792, 792

\prop_(g)clear:N 141
\prop_clear:c 469, 498
\prop_clear:N

. 141, 141, 469, 469, 469, 469
\prop_clear_new:c . . 469, 488, 488, 540
\prop_clear_new:N

. 141, 141, 469, 469, 469
\prop_gclear:c 469
\prop_gclear:N 141, 469, 469, 469, 469
\prop_gclear_new:c 469
\prop_gclear_new:N . 141, 469, 469, 469
\prop_get:cnN 471
\prop_get:cnNF 492, 553
\prop_get:cnNT 522
\prop_get:cnNTF . . . 476, 520, 541, 552
\prop_get:coN 471
\prop_get:coNTF 476
\prop_get:cVN 471
\prop_get:cVNTF 476
\prop_get:Nn 45
\prop_get:NnN

. 46, 47, 142, 142, 143, 471,
471, 471, 471, 476, 504, 504, 506, 506

\prop_get:NnNF 476, 476
\prop_get:NnNT 476, 476
\prop_get:NnNTF

142, 143, 144, 144, 476, 476, 476, 519
\prop_get:NoN 471
\prop_get:NoNTF 476
\prop_get:NVN 471
\prop_get:NVNTF 476
\prop_gpop:cnN 471

\prop_gpop:cnNTF 472
\prop_gpop:coN 471
\prop_gpop:NnN

. . . . 142, 142, 471, 471, 472, 472, 472
\prop_gpop:NnNF 473
\prop_gpop:NnNT 473
\prop_gpop:NnNTF 142, 144, 144, 472, 473
\prop_gpop:NoN 471
\prop_gput:cnn 473
\prop_gput:cno 473
\prop_gput:cnV 473
\prop_gput:cnx 473
\prop_gput:con 473
\prop_gput:coo 473
\prop_gput:cVn 473
\prop_gput:cVV 473
\prop_gput:Nnn

. . . . 142, 473, 473, 473, 473, 565, 569
\prop_gput:Nno 473
\prop_gput:NnV 473
\prop_gput:Nnx 473
\prop_gput:Non 473
\prop_gput:Noo 473
\prop_gput:NVn 473, 566, 570
\prop_gput:NVV 473
\prop_gput_if_new:cnn 473
\prop_gput_if_new:Nnn

. 142, 473, 474, 474
\prop_gremove:cn 470
\prop_gremove:cV 470
\prop_gremove:Nn 143, 470, 471, 471, 471
\prop_gremove:NV 470, 567, 571
\prop_gset_eq:cc . . . 469, 469, 492, 492
\prop_gset_eq:cN . . . 469, 469, 488, 488
\prop_gset_eq:Nc 469, 469
\prop_gset_eq:NN . . . 141, 469, 469, 469
\prop_if_empty:cTF 474
\prop_if_empty:N 474
\prop_if_empty:NF 474, 567
\prop_if_empty:NT 474
\prop_if_empty:NTF

. 143, 143, 474, 474, 477
\prop_if_empty_p:c 474
\prop_if_empty_p:N . 143, 143, 474, 474
\prop_if_exist:c 474
\prop_if_exist:cF 540
\prop_if_exist:cTF . 474, 541, 552, 553
\prop_if_exist:N 474
\prop_if_exist:NTF

. 143, 143, 469, 469, 474, 477

Index 910

\prop_if_exist_p:c 474
\prop_if_exist_p:N 143, 143, 474
\prop_if_in:cnTF 474, 553
\prop_if_in:coTF 474
\prop_if_in:cVTF 474
__prop_if_in:N . . . 474, 475, 475, 475
\prop_if_in:Nn 475
\prop_if_in:NnF 475, 475
\prop_if_in:NnT 475, 475
\prop_if_in:NnTF 143, 143, 474, 475, 475
\prop_if_in:NoTF 474
\prop_if_in:NVTF 474
__prop_if_in:nwwn

. 474, 475, 475, 475, 475
\prop_if_in_p:cn 474
\prop_if_in_p:co 474
\prop_if_in_p:cV 474
\prop_if_in_p:Nn . . . 143, 474, 475, 475
\prop_if_in_p:No 474
\prop_if_in_p:NV 474
\l__prop_internal_tl . . 146, 468,

468, 473, 473, 473, 473, 473, 474, 474
\prop_item:cn 472
\prop_item:Nn

. 143, 143, 221, 472, 472, 472
__prop_item_Nn:nwn 472
__prop_item_Nn:nwwn 472, 472, 472, 472
\prop_log:c 792
\prop_log:N . . . 221, 221, 792, 792, 792
\prop_map_... 145, 145, 145, 145
\prop_map_break: 145, 145, 476, 476,

477, 477, 477, 477, 477, 792, 792, 792
\prop_map_break:n . . 145, 145, 477, 477
\prop_map_function:cc 476
\prop_map_function:cN 476, 508
\prop_map_function:Nc 476
\prop_map_function:NN

. 144, 144, 221, 475,
476, 476, 476, 476, 477, 556, 567, 792

__prop_map_function:Nwwn
. 476, 476, 476, 476

\prop_map_inline:cn
. 476, 500, 501, 780,
780, 781, 781, 783, 785, 785, 785, 785

\prop_map_inline:Nn 145,
145, 476, 477, 477, 506, 506, 780, 783

\prop_map_tokens:cn 792
\prop_map_tokens:Nn

. 221, 221, 792, 792, 792

__prop_map_tokens:nwwn
. 792, 792, 792, 792, 792

\prop_new:c 469, 515, 540
\prop_new:N 141, 141, 141, 469, 469,

469, 469, 469, 470, 470, 470, 470,
485, 486, 502, 503, 518, 564, 569, 779

__prop_pair:wn
. . . . 146, 146, 146, 468, 468, 468,
468, 468, 470, 470, 470, 470, 472,
472, 473, 474, 475, 475, 475, 476,
476, 476, 477, 477, 477, 477, 792, 792

\prop_pop:cnN 471
\prop_pop:cnNTF 472
\prop_pop:coN 471
\prop_pop:NnN

. . . . 142, 142, 471, 471, 471, 472, 472
\prop_pop:NnNF 473
\prop_pop:NnNT 473
\prop_pop:NnNTF 142, 144, 144, 472, 473
\prop_pop:NoN 471
\prop_put:cnn

. . . . 473, 493, 521, 522, 541, 543, 544
\prop_put:cno 473
\prop_put:cnV 473, 543
\prop_put:cnx 473, 493,

493, 493, 493, 494, 494, 494, 494,
494, 501, 782, 784, 784, 786, 786, 786

\prop_put:con 473
\prop_put:coo 473
\prop_put:cVn 473
\prop_put:cVV 473
\prop_put:Nnn 142, 142, 146,

303, 468, 473, 473, 473, 473, 485,
485, 485, 485, 502, 502, 502, 502,
502, 502, 503, 503, 503, 503, 503,
503, 503, 503, 503, 503, 503, 503, 521

__prop_put:NNnn . . . 473, 473, 473, 473
\prop_put:Nno 473, 486,

486, 486, 486, 486, 486, 486, 486, 486
\prop_put:NnV 473
\prop_put:Nnx

. 473, 781, 781, 781, 781, 781
\prop_put:Non 473
\prop_put:Noo 473
\prop_put:NVn 473
\prop_put:NVV 473
\prop_put_if_new:cnn 473
\prop_put_if_new:Nnn

. 142, 142, 473, 473, 474

Index 911

__prop_put_if_new:NNnn
. 473, 473, 474, 474

\prop_remove:cn
. 470, 521, 543, 543, 544, 544

\prop_remove:cV 470
\prop_remove:Nn 143, 143,

470, 470, 471, 471, 505, 505, 506, 521
\prop_remove:NV 470
\prop_set_eq:cc 469, 469, 492, 492, 499
\prop_set_eq:cN

. 469, 469, 492, 492, 540, 540
\prop_set_eq:Nc 469, 469, 505
\prop_set_eq:NN 141, 141, 469, 469, 469
\prop_show:c 477
\prop_show:N

. . . . 145, 145, 477, 477, 477, 792, 792
__prop_split:NnTF

. 146, 146, 470, 470,
470, 471, 471, 471, 471, 472, 472,
473, 473, 473, 473, 473, 474, 475, 476

__prop_split_aux:NnTF . 470, 470, 470
__prop_split_aux:w

. 470, 470, 470, 470, 470, 470
\protect 575, 619
\protected 240, 240, 240, 241, 250, 339, 339
\protrudechars 256
\ProvidesExplClass 7
\ProvidesExplFile 7, 830
\ProvidesExplPackage 7, 7
pt . 208
ptex commands:

\ptex_autospacing:D 260
\ptex_autoxspacing:D 260
\ptex_dtou:D 260
\ptex_euc:D 260
\ptex_ifdbox:D 260
\ptex_ifddir:D 260
\ptex_ifmdir:D 260
\ptex_iftbox:D 260
\ptex_iftdir:D 260
\ptex_ifybox:D 260
\ptex_ifydir:D 260
\ptex_inhibitglue:D 260
\ptex_inhibitxspcode:D 260
\ptex_jcharwidowpenalty:D 260
\ptex_jfam:D 260
\ptex_jfont:D 260
\ptex_jis:D 260, 351, 824
\ptex_kanjiskip:D 260, 824
\ptex_kansuji:D 260

\ptex_kansujichar:D 260
\ptex_kcatcode:D 260
\ptex_kuten:D 260
\ptex_noautospacing:D 260
\ptex_noautoxspacing:D 260
\ptex_postbreakpenalty:D 260
\ptex_prebreakpenalty:D 260
\ptex_showmode:D 260
\ptex_sjis:D 260
\ptex_tate:D 260
\ptex_tbaselineshift:D 260
\ptex_tfont:D 260
\ptex_xkanjiskip:D 260
\ptex_xspcode:D 260
\ptex_ybaselineshift:D 260
\ptex_yoko:D 260

\pxdimen . 256

Q
quark commands:

\quark_if_nil:N 323
\quark_if_nil:n . . . 324, 324, 324, 324
\quark_if_nil:nF 324
\quark_if_nil:nT 324
\quark_if_nil:NTF 47, 47, 323
\quark_if_nil:nTF

. 47, 47, 322, 324, 324, 397
\quark_if_nil:oTF 324, 535
\quark_if_nil:VTF 324
__quark_if_nil:w

. 324, 324, 324, 324, 324
\quark_if_nil_p:N 47, 47, 323
\quark_if_nil_p:n . . . 47, 47, 324, 324
\quark_if_nil_p:o 324
\quark_if_nil_p:V 324
\quark_if_no_value:cTF 323
\quark_if_no_value:N 323
\quark_if_no_value:n 324
\quark_if_no_value:NF 324
\quark_if_no_value:NT 323
\quark_if_no_value:NTF

. 47, 47, 316, 323,
324, 504, 504, 506, 506, 562, 565, 565

\quark_if_no_value:nTF . . . 47, 47, 324
__quark_if_no_value:w . 324, 324, 324
\quark_if_no_value_p:c 323
\quark_if_no_value_p:N 47, 47, 323, 323
\quark_if_no_value_p:n . . . 47, 47, 324
__quark_if_recursion_tail:w . . .

. 322, 322, 322, 322, 323, 323

Index 912

__quark_if_recursion_tail_-
break:NN 49, 323, 323, 404

__quark_if_recursion_tail_-
break:nN 49,
49, 323, 323, 404, 415, 462, 462

\quark_if_recursion_tail_stop:N .
. 48, 48, 322, 322, 369, 464, 816

\quark_if_recursion_tail_stop:n .
. 48,
48, 322, 322, 323, 414, 454, 464, 813

\quark_if_recursion_tail_stop:o .
. 322, 534

\quark_if_recursion_tail_stop... 323
\quark_if_recursion_tail_stop_-

do:Nn . 48, 48, 322, 322, 367, 368,
369, 429, 800, 800, 804, 804, 818, 818

\quark_if_recursion_tail_stop_-
do:nn 48,
48, 322, 322, 323, 790, 791, 819

\quark_if_recursion_tail_stop_-
do:on . 322

\quark_new:N 47, 47, 321, 321,
321, 321, 321, 321, 322, 322, 324, 324

\quitvmode . 253

R
\r . 817
\radical . 247
\raise . 247
\randomseed . 256
\read . 247
\readline . 250
recursion commands:

\q_recursion_stop 21,
21, 48, 48, 48, 48, 48, 49, 269,
269, 269, 272, 273, 274, 301, 322,
322, 322, 367, 368, 369, 369, 391,
428, 428, 429, 434, 454, 463, 464,
534, 790, 791, 798, 798, 799, 799,
799, 799, 800, 800, 800, 800, 800,
801, 801, 801, 801, 801, 804, 804,
805, 805, 805, 805, 805, 805, 806,
806, 806, 806, 806, 806, 809, 809,
809, 809, 809, 810, 810, 810, 810,
810, 816, 817, 817, 817, 818, 818,
818, 818, 818, 819, 819, 819, 819,
819, 819, 819, 820, 820, 820, 820, 821

\q_recursion_tail
. 48, 48, 48, 48, 48, 48,
48, 48, 48, 49, 49, 49, 272, 272, 273,

274, 274, 322, 322, 322, 322, 322,
322, 322, 322, 323, 323, 323, 367,
368, 369, 369, 390, 391, 403, 404,
404, 415, 428, 434, 434, 454, 462,
462, 462, 463, 463, 464, 475, 475,
475, 476, 476, 476, 476, 533, 790,
791, 792, 792, 792, 798, 800, 801,
804, 804, 805, 816, 817, 817, 818, 819

\ref . 821
\relax . . . 234, 234, 235, 235, 235, 236,

236, 236, 237, 238, 239, 239, 240,
240, 240, 240, 240, 240, 240, 240,
240, 240, 240, 240, 240, 240, 240,
240, 240, 240, 240, 240, 240, 240, 247

\relpenalty . 247
\RequirePackage 238
reverse commands:

\reverse_if:N 23,
23, 264, 264, 354, 354, 356, 356,
356, 356, 356, 375, 375, 376, 376,
427, 428, 432, 617, 617, 727, 746, 747

\right . 247
right commands:

\c_right_brace_str 117, 429, 430
\rightghost . 256
\righthyphenmin 247
\rightmarginkern 253
\rightskip . 247
\romannumeral 247
round . 205
\rpcode . 253
\rule . 504, 505

S
\saveboxresource 257
\savecatcodetable 255
\saveimageresource 257
\savepos . 257
\savinghyphcodes 250
\savingvdiscards 250
scan commands:

\scan_align_safe_stop: 321, 321
\g__scan_marks_tl . . 324, 324, 325, 325
__scan_new:N

. . 50, 50, 325, 325, 325, 325, 468,
582, 582, 582, 582, 582, 582, 582, 582

\scan_stop:
. . . . 10, 10, 50, 50, 64, 64, 64, 64,
130, 241, 241, 265, 265, 273, 273,
277, 277, 278, 278, 278, 278, 279,

Index 913

281, 293, 294, 294, 301, 304, 305,
305, 325, 325, 334, 337, 337, 337,
344, 344, 347, 347, 348, 348, 355,
360, 360, 381, 381, 381, 382, 383,
383, 385, 385, 385, 385, 391, 392,
392, 394, 405, 427, 427, 428, 431,
431, 431, 431, 433, 444, 468, 477,
481, 482, 504, 505, 528, 564, 565,
566, 566, 569, 569, 570, 570, 594,
613, 617, 617, 617, 618, 618, 619,
621, 622, 622, 632, 633, 633, 641,
641, 648, 794, 794, 797, 797, 797,
822, 823, 823, 823, 830, 830, 830,
830, 830, 830, 830, 831, 831, 831, 836

\scantextokens 256
\scantokens . 250
\scriptfont . 247
\scriptscriptfont 247
\scriptscriptstyle 247
\scriptspace 247
\scriptstyle 247
\scrollmode . 247
sec . 206
secd . 206
seq commands:

\s__seq 130, 325, 325,
434, 434, 435, 436, 436, 436, 436,
437, 437, 437, 438, 438, 438, 438,
443, 444, 446, 449, 449, 792, 792, 793

\seq_(g)clear:N 119
\seq_clear:c 435
\seq_clear:N 119, 119,

128, 435, 435, 435, 435, 439, 519, 521
\seq_clear_new:c 435
\seq_clear_new:N 119, 119, 435, 435, 435
\seq_concat:ccc 437
\seq_concat:NNN

120, 120, 128, 129, 437, 437, 438, 561
\seq_count:c 448
\seq_count:N 122,

125, 125, 128, 446, 448, 448, 448, 449
__seq_count:n 448, 448, 448
\seq_elt:w 434, 434
\seq_elt_end: 434, 434
\seq_gclear:c 435
\seq_gclear:N . 119, 435, 435, 435, 435
\seq_gclear_new:c 435
\seq_gclear_new:N . . 119, 435, 435, 435
\seq_gconcat:ccc 437
\seq_gconcat:NNN . . . 120, 437, 438, 438

\seq_get:cN 450, 450, 450
\seq_get:cNTF 450
\seq_get:NN . . . 127, 127, 450, 450, 450
\seq_get:NNTF 127, 127, 450
\seq_get_left:cN 443, 450, 450
\seq_get_left:cNTF 445
\seq_get_left:NN 121,

121, 443, 443, 443, 445, 445, 450, 450
\seq_get_left:NNF 445
\seq_get_left:NNT 445
\seq_get_left:NNTF . 122, 122, 445, 445
__seq_get_left:wnw . . . 443, 443, 443
\seq_get_right:cN 443
\seq_get_right:cNTF 445
\seq_get_right:NN

. . . . 121, 121, 443, 444, 444, 445, 445
\seq_get_right:NNF 445
\seq_get_right:NNT 445
\seq_get_right:NNTF 122, 122, 445, 445
__seq_get_right_loop:nn

. 443, 444, 444, 444, 444
\seq_gpop:cN 450, 450, 450
\seq_gpop:cNTF 450
\seq_gpop:NN 127, 127, 450, 450, 450, 563
\seq_gpop:NNTF 127, 127, 450, 566, 570
\seq_gpop_left:cN 443, 450, 450
\seq_gpop_left:cNTF 445
\seq_gpop_left:NN

121, 121, 443, 443, 443, 445, 450, 450
\seq_gpop_left:NNF 445
\seq_gpop_left:NNT 445
\seq_gpop_left:NNTF 122, 122, 445, 445
\seq_gpop_right:cN 444
\seq_gpop_right:cNTF 445
\seq_gpop_right:NN

. 121, 121, 444, 444, 445, 445
\seq_gpop_right:NNF 445
\seq_gpop_right:NNT 445
\seq_gpop_right:NNTF 123, 123, 445, 445
\seq_gpush:cn 449, 450
\seq_gpush:co 449, 450
\seq_gpush:cV 449, 450
\seq_gpush:cv 449, 450
\seq_gpush:cx 449, 450
\seq_gpush:Nn 127, 449, 450
\seq_gpush:No 26, 449, 450, 562
\seq_gpush:NV 449, 450, 567, 571
\seq_gpush:Nv 449, 450
\seq_gpush:Nx 449, 450
\seq_gput_left:cn 438, 450

Index 914

\seq_gput_left:co 438, 450
\seq_gput_left:cV 438, 450
\seq_gput_left:cv 438, 450
\seq_gput_left:cx 438, 450
\seq_gput_left:Nn

. 120, 438, 438, 438, 438, 450
\seq_gput_left:No 438, 450
\seq_gput_left:NV 438, 450
\seq_gput_left:Nv 438, 450
\seq_gput_left:Nx 438, 450
\seq_gput_right:cn 438
\seq_gput_right:co 438
\seq_gput_right:cV 438
\seq_gput_right:cv 438
\seq_gput_right:cx 438
\seq_gput_right:Nn

120, 438, 438, 439, 439, 562, 562, 569
\seq_gput_right:No 438, 564
\seq_gput_right:NV 438, 559
\seq_gput_right:Nv 438
\seq_gput_right:Nx 438
\seq_gremove_all:cn 439
\seq_gremove_all:Nn 123, 439, 440, 440
\seq_gremove_duplicates:c 439
\seq_gremove_duplicates:N

. 123, 439, 439, 439
\seq_greverse:c 440
\seq_greverse:N . . . 123, 440, 441, 441
\seq_gset_eq:cc 436, 436
\seq_gset_eq:cN 436, 436
\seq_gset_eq:Nc 436, 436
\seq_gset_eq:NN 119, 435, 436, 436, 439
\seq_gset_filter:NNn . . 222, 793, 793
\seq_gset_from_clist:cc 436
\seq_gset_from_clist:cN 436
\seq_gset_from_clist:cn 436
\seq_gset_from_clist:Nc 436
\seq_gset_from_clist:NN

. 119, 436, 436, 436, 436
\seq_gset_from_clist:Nn

. 119, 436, 436, 436
\seq_gset_map:NNn 222, 793, 793
\seq_gset_split:Nnn

. 120, 436, 437, 437, 564
\seq_gset_split:NnV 436
\seq_if_empty:cTF 441
\seq_if_empty:N 441
\seq_if_empty:NF 441
\seq_if_empty:NT 441

\seq_if_empty:NTF
. 124, 124, 441, 441, 451, 453

\seq_if_empty_p:c 441
\seq_if_empty_p:N . . 124, 124, 441, 441
\seq_if_exist:c 438
\seq_if_exist:cTF 438
\seq_if_exist:N 438
\seq_if_exist:NTF

. . . . 120, 120, 435, 435, 438, 449, 451
\seq_if_exist_p:c 438
\seq_if_exist_p:N 120, 120, 438
__seq_if_in: 441, 442, 442
\seq_if_in:cnTF 441
\seq_if_in:coTF 441
\seq_if_in:cVTF 441
\seq_if_in:cvTF 441
\seq_if_in:cxTF 441
\seq_if_in:Nn 442
\seq_if_in:Nn(TF) 128
\seq_if_in:NnF

. 128, 129, 439, 442, 442, 563
\seq_if_in:NnT 128, 442, 442
\seq_if_in:NnTF 124, 124, 441, 442, 442
\seq_if_in:NoTF 441
\seq_if_in:NVF 567, 571
\seq_if_in:NVTF 441
\seq_if_in:NvTF 441
\seq_if_in:NxTF 441
\l__seq_internal_a_tl

. 434, 434, 436, 437, 437,
437, 437, 437, 437, 440, 440, 442, 442

\l__seq_internal_b_tl
. 434, 434, 440, 440, 442, 442

\seq_item:cn 446
__seq_item:n 130,

130, 130, 130, 434, 434, 434, 434,
438, 438, 438, 438, 439, 439, 441,
441, 441, 441, 441, 442, 442, 443,
443, 443, 443, 443, 444, 444, 444,
445, 446, 447, 447, 447, 447, 447,
447, 448, 448, 449, 449, 449, 449,
449, 449, 449, 449, 449, 792, 793, 793

\seq_item:Nn
122, 122, 446, 446, 446, 522, 522, 522

__seq_item:nnn . . . 446, 446, 446, 446
__seq_item:wNn 446, 446, 446
\seq_log:c 794
\seq_log:N 222, 222, 794, 794, 794
\seq_map_... 125, 125, 125, 125

Index 915

\seq_map_break:
. . . . 125, 125, 222, 222, 446, 446,
446, 446, 447, 447, 448, 448, 553, 561

\seq_map_break:n
. . . . 125, 125, 446, 446, 446, 520, 520

\seq_map_function:cN 446
\seq_map_function:NN

. 4, 124, 124, 124, 446,
447, 447, 448, 451, 453, 522, 530, 531

__seq_map_function:NNn
. 446, 447, 447, 447

\seq_map_inline:cn 448
\seq_map_inline:Nn . 124, 124, 124,

128, 128, 129, 129, 129, 439, 448,
448, 448, 520, 552, 560, 561, 563, 793

\seq_map_variable:ccn 448
\seq_map_variable:cNn 448
\seq_map_variable:Ncn 448
\seq_map_variable:NNn

. 124, 124, 448, 448, 448, 448
\seq_mapthread_function:ccN . . . 792
\seq_mapthread_function:cNN . . . 792
\seq_mapthread_function:NcN . . . 792
\seq_mapthread_function:NNN

. 221, 221, 792, 792, 793, 793
__seq_mapthread_function:Nnnwnn

. 792, 793, 793, 793
__seq_mapthread_function:wNN . . .

. 792, 792, 792
__seq_mapthread_function:wNw . . .

. 792, 793, 793
\seq_new:c 435
\seq_new:N 4, 119, 119, 119,

328, 328, 435, 435, 435, 435, 435,
439, 451, 451, 451, 451, 519, 519,
537, 559, 559, 559, 559, 559, 564, 569

\seq_pop:cN 450, 450, 450
\seq_pop:cNTF 450
\seq_pop:NN . . . 127, 127, 450, 450, 450
__seq_pop:NNNN

. 442, 442, 443, 443, 444, 444
\seq_pop:NNTF 127, 127, 450
__seq_pop_item_def: . . 130, 130,

130, 440, 447, 447, 448, 448, 793, 794
\seq_pop_left:cN 443, 450, 450
\seq_pop_left:cNTF 445
\seq_pop_left:NN

121, 121, 443, 443, 443, 445, 450, 450
\seq_pop_left:NNF 445

__seq_pop_left:NNN
. 443, 443, 443, 443, 445, 445

\seq_pop_left:NNT 445
\seq_pop_left:NNTF . 122, 122, 445, 445
__seq_pop_left:wnwNNN . 443, 443, 443
\seq_pop_right:cN 444
\seq_pop_right:cNTF 445
\seq_pop_right:NN

. 121, 121, 444, 444, 445, 445
\seq_pop_right:NNF 445
__seq_pop_right:NNN

. . . . 439, 444, 444, 444, 444, 445, 445
\seq_pop_right:NNT 445
\seq_pop_right:NNTF 123, 123, 445, 445
__seq_pop_right_loop:nn

. 444, 444, 445, 445
__seq_pop_TF:NNNN 442,

442, 445, 445, 445, 445, 445, 445, 445
\seq_push:cn 449, 450
\seq_push:co 449, 450
\seq_push:cV 449, 449, 450
\seq_push:cv 450
\seq_push:cx 449, 450
\seq_push:Nn 127, 127, 449, 450
\seq_push:No 449, 450
\seq_push:NV 449, 450
\seq_push:Nv 449, 450
\seq_push:Nx 449, 450
__seq_push_item_def:

. 447, 447, 447, 447
__seq_push_item_def:n . 130, 130,

130, 130, 440, 447, 447, 448, 793, 793
__seq_push_item_def:x . 447, 447, 448
\seq_put_left:cn 438, 450
\seq_put_left:co 438, 450
\seq_put_left:cV 438, 450
\seq_put_left:cv 438, 450
\seq_put_left:cx 438, 450
\seq_put_left:Nn

120, 120, 438, 438, 438, 438, 450, 520
\seq_put_left:No 438, 450
\seq_put_left:NV 438, 450
\seq_put_left:Nv 438, 450
\seq_put_left:Nx 438, 450
__seq_put_left_aux:w

. 438, 438, 438, 438, 438
\seq_put_right:cn 438
\seq_put_right:co 438
\seq_put_right:cV 438
\seq_put_right:cv 438

Index 916

\seq_put_right:cx 438
\seq_put_right:Nn 120, 120, 128, 128,

129, 438, 438, 439, 439, 439, 522, 563
\seq_put_right:No 438, 563
\seq_put_right:NV 438
\seq_put_right:Nv 438
\seq_put_right:Nx 438
\seq_remove_all:cn 439
\seq_remove_all:Nn

. 120, 123, 123, 128,
128, 129, 129, 129, 439, 440, 440, 563

__seq_remove_all_aux:NNn
. 439, 440, 440, 440

\seq_remove_duplicates:c 439
\seq_remove_duplicates:N

123, 123, 128, 128, 439, 439, 439, 563
__seq_remove_duplicates:NN

. 439, 439, 439, 439
\l__seq_remove_seq

. 439, 439, 439, 439, 439, 439
\seq_reverse:c 440
\seq_reverse:N

. 123, 123, 440, 440, 441, 441
__seq_reverse:NN . . 440, 441, 441, 441
__seq_reverse_item:nw 440, 441
__seq_reverse_item:nwn 440, 441, 441
\seq_set_eq:cc 436, 436
\seq_set_eq:cN 436, 436
\seq_set_eq:Nc 436, 436
\seq_set_eq:NN

. . . . 119, 119, 128, 129, 129, 129,
435, 436, 436, 439, 561, 561, 563, 569

\seq_set_filter:NNn
. 222, 222, 793, 793, 793

__seq_set_filter:NNNn
. 793, 793, 793, 793

\seq_set_from_clist:cc 436
\seq_set_from_clist:cN 436
\seq_set_from_clist:cn 436
\seq_set_from_clist:Nc 436
\seq_set_from_clist:NN

. 119, 119, 436, 436, 436, 436
\seq_set_from_clist:Nn

. 119, 436, 436, 436, 550, 550
\seq_set_map:NNn . . . 222, 222, 793, 793
__seq_set_map:NNNn 793, 793, 793, 793
\seq_set_split:Nnn

120, 120, 120, 328, 328, 436, 437, 437
__seq_set_split:NNnn

. 436, 437, 437, 437

\seq_set_split:NnV 436, 561
__seq_set_split_auxi:w

. 436, 436, 436, 437, 437, 437
__seq_set_split_auxii:w

. 436, 437, 437, 437
__seq_set_split_end:

436, 436, 437, 437, 437, 437, 437, 437
\seq_show:c 450
\seq_show:N

. . . . 130, 130, 450, 450, 451, 794, 794
__seq_tmp:w 435, 435, 441, 441, 444, 445
\seq_use:cn 449
\seq_use:cnnn 449
\seq_use:Nn . . . 126, 126, 449, 449, 449
\seq_use:Nnnn

. 126, 126, 449, 449, 449, 449
__seq_use:NNnNnn . . 449, 449, 449, 449
__seq_use:nwwn 449, 449, 449
__seq_use:nwwwwnwn 449, 449, 449, 449
__seq_use_setup:w 449, 449, 449
__seq_wrap_item:n

. 436, 436, 436, 436,
436, 437, 437, 439, 439, 440, 793, 793

\setbox . 247
\setfontid . 256
\setlanguage 247
\setrandomseed 257
seven commands:

\c_seven .
. 77, 326, 327, 370, 370, 425, 425,
426, 628, 648, 648, 668, 671, 750, 750

\sfcode . 239, 247
\sffamily . 504
\shellescape 254
\shipout . 247
\ShortText 236, 237, 237
\show . 247
\showbox . 247
\showboxbreadth 247
\showboxdepth 247
\showgroups . 250
\showifs . 250
\showlists . 247
\showmode . 260
\showthe . 247
\showtokens . 250
sin . 206
sind . 206
six commands:

\c_six 77, 326, 327, 370, 370, 426

Index 917

sixteen commands:
\c_sixteen 77, 266, 266,

267, 280, 368, 370, 564, 567, 567,
571, 589, 592, 606, 636, 638, 649,
650, 721, 731, 731, 760, 760, 760, 761

\sjis . 260
\skewchar . 247
\skip . 247, 339
skip commands:

\skip_(g)zero:N 88
\skip_add:cn 381
\skip_add:Nn 89, 89, 381, 381, 381, 381
\skip_const:cn 380
\skip_const:Nn

. 88, 88, 380, 380, 380, 383, 383
\skip_eval:n 89,

89, 90, 90, 90, 382, 382, 382, 382, 383
\skip_gadd:cn 381
\skip_gadd:Nn 89, 381, 381, 381
.skip_gset:c 175, 548
\skip_gset:cn 381
.skip_gset:N 175, 548
\skip_gset:Nn . . 89, 380, 381, 381, 381
\skip_gset_eq:cc 381
\skip_gset_eq:cN 381
\skip_gset_eq:Nc 381
\skip_gset_eq:NN 89, 381, 381, 381, 381
\skip_gsub:cn 381
\skip_gsub:Nn 89, 381, 381, 381
\skip_gzero:c 380
\skip_gzero:N . . 88, 380, 380, 380, 381
\skip_gzero_new:c 381
\skip_gzero_new:N . . 88, 381, 381, 381
\skip_horizontal:c 383
\skip_horizontal:N

. 91, 91, 91, 383, 383, 383, 383
\skip_horizontal:n 91, 91, 383, 383, 834
\skip_if_eq:nn 382
\skip_if_eq:nnTF 89, 382
\skip_if_eq_p:nn 89, 89, 382
\skip_if_exist:c 381
\skip_if_exist:cTF 381
\skip_if_exist:N 381
\skip_if_exist:NTF 88, 88, 381, 381, 381
\skip_if_exist_p:c 381
\skip_if_exist_p:N 88, 88, 381
\skip_if_finite:n 382
\skip_if_finite:nTF . 89, 89, 382, 794
__skip_if_finite:wwNw . 382, 382, 382
\skip_if_finite_p:n 89, 89, 382

\skip_log:c 794, 794
\skip_log:N 223, 223, 794, 794
\skip_log:n 223, 223, 794, 794
\skip_new:c 380
\skip_new:N . . 88, 88, 88, 380, 380,

380, 380, 381, 381, 383, 383, 383, 383
.skip_set:c 175, 548
\skip_set:cn 381
.skip_set:N 175, 548
\skip_set:Nn 89, 89, 381, 381, 381, 381
\skip_set_eq:cc 381
\skip_set_eq:cN 381
\skip_set_eq:Nc 381
\skip_set_eq:NN

. 89, 89, 381, 381, 381, 381
\skip_show:c 383
\skip_show:N 90, 90, 383, 383, 383
\skip_show:n 90, 90, 383, 383, 794, 794
\skip_split_finite_else_action:nnNN

. 222, 222, 794, 794
\skip_sub:cn 381
\skip_sub:Nn 89, 89, 381, 381, 381, 381
\skip_use:c 382, 382
\skip_use:N 90,

90, 90, 90, 382, 382, 382, 382, 382
\skip_vertical:c 383
\skip_vertical:N

. 91, 91, 91, 383, 383, 383, 383
\skip_vertical:n 91, 91, 383, 383
\skip_zero:c 380
\skip_zero:N

. . . 88, 88, 91, 380, 380, 380, 380, 381
\skip_zero_new:c 381
\skip_zero_new:N . 88, 88, 381, 381, 381

\skipdef . 247
sp . 208
spac commands:

\spac_directions_normal_body_dir 264
\spac_directions_normal_page_dir 264

\space . 235
space commands:

\c_space_tl
. . . . 108, 388, 388, 408, 429, 464,
464, 512, 562, 576, 576, 576, 578,
578, 578, 578, 765, 799, 801, 818,
833, 834, 834, 834, 835, 835, 835, 835

\c_space_token
. 56, 107, 108, 227, 333, 333, 333,
335, 335, 345, 412, 412, 413, 797, 822

\spacefactor 247

Index 918

\spaceskip . 247
\span . 247
\special . 247
\splitbotmark 248
\splitbotmarks 250
\splitdiscards 250
\splitfirstmark 248
\splitfirstmarks 250
\splitmaxdepth 248
\splittopskip 248
sqrt . 208
sr commands:

\sr_if_empty_p:N 111
\SS . 817
\ss . 817
stop commands:

\q_stop 21, 21,
25, 25, 32, 46, 47, 47, 47, 105, 269,
269, 269, 272, 273, 273, 273, 273,
275, 275, 275, 275, 275, 277, 277,
277, 277, 277, 302, 302, 303, 304,
305, 305, 305, 306, 306, 306, 306,
307, 307, 313, 313, 316, 316, 321,
321, 321, 337, 337, 337, 338, 339,
340, 340, 340, 340, 341, 347, 347,
348, 348, 354, 355, 355, 355, 355,
356, 357, 367, 367, 367, 367, 368,
375, 376, 376, 382, 382, 396, 397,
402, 402, 403, 403, 406, 406, 406,
406, 406, 407, 407, 410, 410, 410,
411, 412, 412, 420, 420, 421, 421,
421, 421, 421, 422, 424, 424, 425,
425, 426, 427, 427, 428, 428, 428,
428, 431, 432, 432, 432, 432, 433,
433, 433, 433, 433, 433, 433, 433,
443, 443, 443, 443, 446, 446, 449,
449, 449, 449, 456, 456, 456, 456,
456, 456, 457, 457, 459, 460, 460,
460, 460, 460, 460, 461, 461, 465,
465, 465, 465, 465, 466, 467, 470,
470, 470, 520, 528, 532, 532, 534,
534, 534, 535, 535, 535, 535, 535,
539, 539, 539, 539, 539, 542, 542,
542, 543, 543, 551, 551, 551, 576,
616, 616, 620, 620, 790, 792, 792,
793, 793, 793, 793, 793, 822, 822, 822

\s__stop 50, 50,
50, 50, 325, 325, 325, 721, 722, 757, 757

str commands:
\str_(g)clear:N 110

\str_...:N 109
\str_...:n 109
\str_..._ignore_spaces:n 109
\str_...:N 109
\str_case:nn . . 112, 419, 419, 420, 528
\str_case:nn(TF) 357, 376
\str_case:nnF 420, 420
\str_case:nnT 419, 420
__str_case:nnTF

. 419, 419, 419, 420, 420, 420
\str_case:nnTF 112, 112, 419, 420, 420
\str_case:nV 419
\str_case:nv 419
\str_case:nVF 808
\str_case:nVTF 419
\str_case:nvTF 419
__str_case:nw 419, 420, 420, 420
\str_case:on 419
\str_case:onTF 419
__str_case_end:nw . 419, 420, 420, 421
\str_case_x:nn 112, 419, 420
\str_case_x:nnF 112, 420
\str_case_x:nnT 420
__str_case_x:nnTF

. 419, 420, 420, 420, 420, 420
\str_case_x:nnTF 112, 419, 420
__str_case_x:nw . . . 419, 420, 420, 420
__str_change_case:nn

. 428, 428, 428, 428, 428
__str_change_case_aux:nn

. 428, 428, 428
__str_change_case_char:nN

. 428, 429, 429
__str_change_case_char_aux:nN . .

. 429, 429, 429
__str_change_case_end:nw 428
__str_change_case_end:wn . . 428, 429
__str_change_case_loop:nw

. 428, 428, 428, 429, 429
__str_change_case_output:fw . . .

. 428, 429, 429
__str_change_case_output:nw . . .

. 428, 428, 428, 429, 429, 429
__str_change_case_result:n

. 428, 428, 428, 428, 428
__str_change_case_space:n

. 428, 428, 429
\str_clear:c 416
\str_clear:N 110, 110, 416
\str_clear_new:c 416

Index 919

\str_clear_new:N 110, 110, 416
__str_collect_delimit_by_q_-

stop:w 424, 424, 425
__str_collect_end:nnnnnnnnw . . .

. 424, 424, 425, 425
__str_collect_end:wn . 424, 425, 425
__str_collect_loop:wn

. 424, 425, 425, 425
__str_collect_loop:wnNNNNNNN . . .

. 424, 425, 425
\str_const:cn 417
\str_const:cx 417
\str_const:Nn 109, 109,

417, 824, 824, 824, 824, 825, 825, 825
\str_const:Nx

. 417, 430, 430, 430, 430, 430, 430,
430, 430, 430, 430, 430, 430, 823, 823

\str_count:c 426
\str_count:N . . 113, 113, 426, 426, 426
__str_count:n

. . . . 118, 118, 422, 423, 426, 426, 426
\str_count:n

. . . . 113, 113, 113, 118, 426, 426, 426
__str_count_aux:n

. 426, 426, 426, 426, 426
\str_count_ignore_spaces:n

. 113, 113, 426, 426, 426, 577
__str_count_loop:NNNNNNNNN

. 426, 426, 426, 426, 427, 427
\str_count_spaces:c 425
\str_count_spaces:N 113, 425, 425, 425
\str_count_spaces:n

. . . . 113, 113, 425, 425, 425, 426, 426
__str_count_spaces_loop:w

. 425, 425, 425, 426
__str_escape_x:n . . 418, 418, 418, 418
\str_fold_case:n . . . 115, 115, 116,

116, 116, 116, 116, 224, 428, 428, 428
\str_fold_case:V 428
\str_gclear:c 416
\str_gclear:N 110, 416
\str_gclear_new:c 416
\str_gclear_new:N 416
\str_gput_left:cn 417
\str_gput_left:cx 417
\str_gput_left:Nn 110, 417
\str_gput_left:Nx 417
\str_gput_right:cn 417
\str_gput_right:cx 417
\str_gput_right:Nn 110, 417

\str_gput_right:Nx 417
\str_gset:cn 417
\str_gset:cx 417
\str_gset:Nn 110, 417
\str_gset:Nx 417
\str_gset_eq:cc 416
\str_gset_eq:cN 416
\str_gset_eq:Nc 416
\str_gset_eq:NN . . . 110, 416, 417, 417
\str_head:c 427
\str_head:N 113, 113, 427, 427, 427, 427
\str_head:n 113, 113, 113, 394, 395,

411, 411, 413, 427, 427, 427, 427, 427
__str_head:w

. 427, 427, 427, 427, 427, 427
\str_head_ignore_spaces:n

. 113, 113, 427, 427
\str_if_empty:c 417
\str_if_empty:cTF 417
\str_if_empty:N 417
\str_if_empty:NTF 111, 111, 417
\str_if_empty_p:c 417
\str_if_empty_p:N 111, 417
\str_if_eq:ccTF 419
\str_if_eq:cNTF 419
\str_if_eq:NcTF 419
\str_if_eq:NN 419, 419
\str_if_eq:nn 141, 146, 419
\str_if_eq:NNF 419
\str_if_eq:nnF 419, 419, 544
\str_if_eq:NNT 419
\str_if_eq:nnT

. . . . 221, 419, 419, 439, 440, 520, 553
\str_if_eq:NNTF . . . 111, 111, 419, 419
\str_if_eq:nnTF 111, 111,

112, 112, 143, 418, 419, 419, 419,
420, 515, 544, 558, 619, 803, 804, 804

\str_if_eq:noTF 419
\str_if_eq:nVTF 419
\str_if_eq:onTF 419
\str_if_eq:VnTF 419
\str_if_eq:VVTF 419
\str_if_eq_p:cc 419
\str_if_eq_p:cN 419
\str_if_eq_p:Nc 419
\str_if_eq_p:NN . . . 111, 111, 419, 419
\str_if_eq_p:nn 111, 111, 419, 419, 419
\str_if_eq_p:no 419
\str_if_eq_p:nV 419
\str_if_eq_p:on 419

Index 920

\str_if_eq_p:Vn 419
\str_if_eq_p:VV 419
__str_if_eq_x:nn

. 117, 117, 337, 382, 418,
418, 418, 418, 419, 419, 419, 432,
432, 433, 433, 433, 633, 634, 641, 727

\str_if_eq_x:nn 419, 475, 475
\str_if_eq_x:nn(TF) 117
\str_if_eq_x:nnF 522, 538
\str_if_eq_x:nnTF

. . . . 111, 111, 419, 420, 472, 475, 578
\str_if_eq_x_p:nn 111, 111, 419
__str_if_eq_x_return:nn

. 117, 117, 338, 339, 418, 418
\str_if_exist:c 417
\str_if_exist:cTF 417
\str_if_exist:N 417
\str_if_exist:NTF 111, 111, 417
\str_if_exist_p:c 417
\str_if_exist_p:N 111, 111, 417
\str_item:cn 421
\str_item:Nn . . 114, 114, 421, 422, 422
__str_item:nn

. 421, 421, 421, 422, 422, 422
\str_item:nn

114, 114, 114, 421, 421, 422, 422, 426
__str_item:w 421, 421, 422, 422
\str_item_ignore_spaces:nn

. 114, 114, 421, 421, 422
__str_lookup_fold:N 428, 429
__str_lookup_lower:N . 428, 429, 429
__str_lookup_upper:N 428, 429
\str_lower_case:f 428
\str_lower_case:n

. 115, 115, 224, 428, 428, 428
\str_new:c 416
\str_new:N

109, 109, 110, 416, 430, 430, 430, 430
\str_put_left:cn 417
\str_put_left:cx 417
\str_put_left:Nn 110, 110, 417
\str_put_left:Nx 417
\str_put_right:cn 417
\str_put_right:cx 417
\str_put_right:Nn 110, 110, 417
\str_put_right:Nx 417
\str_range:Nnn 114, 423, 423, 423
__str_range:nnn

. 118, 118, 423, 423, 423, 423

\str_range:nnn
. . . . 114, 114, 118, 423, 423, 423, 426

__str_range:nnw 423, 424, 424
__str_range:w 423, 423, 424
\str_range_ignore_spaces:nnn . . .

. 114, 423, 423
__str_range_normalize:nn

. 424, 424, 424, 424
\str_set:cn 417
\str_set:cx 417
\str_set:Nn 110, 110, 417
\str_set:Nx 417
\str_set_eq:cc 416
\str_set_eq:cN 416
\str_set_eq:Nc 416
\str_set_eq:NN 110, 110, 416, 417, 417
\str_show:c 430
\str_show:N . . . 116, 116, 430, 430, 430
\str_show:n 116, 430, 430
__str_skip_end:NNNNNNNN

. 422, 422, 423, 423, 423
__str_skip_end:w 422, 423, 423
__str_skip_exp_end:w

422, 422, 422, 423, 423, 423, 424, 424
__str_skip_loop:wNNNNNNNN

. 422, 423, 423
\str_tail:c 427
\str_tail:N . . . 113, 113, 427, 428, 428
\str_tail:n 113, 113, 113, 427, 428, 428
__str_tail_auxi:w 427, 428, 428
__str_tail_auxii:w 427, 427, 428, 428
\str_tail_ignore_spaces:n

. 113, 113, 427, 428
__str_tmp:n 416, 416, 416, 417, 417, 417
__str_to_other:n 118,

118, 118, 118, 421, 421, 422, 423, 426
__str_to_other_end:w

. 421, 421, 421, 421
__str_to_other_loop:w

. 421, 421, 421, 421, 421
\str_upper_case:f 428
\str_upper_case:n

. 115, 115, 224, 428, 428, 428
\str_use:c 416
\str_use:N 112, 112, 416

\strcmp . 235
\string . 248
\suppressfontnotfounderror 253
\suppressifcsnameerror 256
\suppresslongerror 256

Index 921

\suppressmathparerror 256
\suppressoutererror 256
\synctex . 253
sys commands:

\c_sys_day_int 228, 823, 823
\c_sys_engine_str

. . . . 228, 824, 824, 824, 824, 824, 825
\c_sys_hour_int 228, 823, 823
\sys_if_engine_luatex: 826
\sys_if_engine_luatex:F 824, 826
\sys_if_engine_luatex:T 230, 824
\sys_if_engine_luatex:TF 228, 824, 824
\sys_if_engine_luatex_p:

. 228, 824, 824, 826
\sys_if_engine_pdftex:F 824
\sys_if_engine_pdftex:T 824
\sys_if_engine_pdftex:TF

. 228, 228, 824, 824
\sys_if_engine_pdftex_p:

. 228, 813, 824, 824
\sys_if_engine_ptex:F 824
\sys_if_engine_ptex:T 824
\sys_if_engine_ptex:TF . 228, 824, 824
\sys_if_engine_ptex_p: . 228, 824, 824
\sys_if_engine_uptex:F 824
\sys_if_engine_uptex:T 824
\sys_if_engine_uptex:TF 228, 824, 824
\sys_if_engine_uptex_p:

. 228, 813, 824, 824
\sys_if_engine_xetex: 826
\sys_if_engine_xetex:F 825
\sys_if_engine_xetex:T 825
\sys_if_engine_xetex:TF 228, 824, 825
\sys_if_engine_xetex_p:

. 228, 824, 825, 826
\sys_if_output_dvi:F 825, 825
\sys_if_output_dvi:T 825, 825
\sys_if_output_dvi:TF

. 229, 229, 825, 825, 825
\sys_if_output_dvi_p:

. 229, 825, 825, 825
\sys_if_output_pdf:F 825, 825
\sys_if_output_pdf:T 825, 825
\sys_if_output_pdf:TF

. 229, 825, 825, 825
\sys_if_output_pdf_p:

. 229, 825, 825, 825
\c_sys_jobname_str

. 184, 228, 823, 823, 823, 826
\c_sys_minute_int 228, 823, 823

\c_sys_month_int 228, 823, 823
\c_sys_output_str . . 229, 825, 825, 825
\c_sys_year_int 228, 823, 823

syst commands:
\c_syst_last_allocated_read 431, 431

T
\t . 817
\tabskip . 248
\tagcode . 253
tan . 206
tand . 206
\tate . 260
\tbaselineshift 260
\temp . 238, 239, 239, 239, 239, 239, 239, 239
ten commands:

\c_ten 77, 326, 327, 329,
364, 365, 370, 370, 395, 614, 644,
644, 644, 644, 644, 645, 671, 713, 749

\c_ten_thousand
. 77, 371, 371, 693, 694, 694, 697, 700

term commands:
\c_term_... 185
\c_term_ior 190, 564, 564, 565, 567, 571
\c_term_iow

. . . . 190, 568, 568, 568, 570, 572, 572
TEX and LATEX2ε commands:

\(pdf)tracingfonts 261
\...mark 336, 340
\@ . 430, 618
\@@end 261, 261, 261
\@@hyph . 261
\@@input 261
\@@italiccorr 261
\@@tracingfonts 261
\@@underline 261
\@addtofilelist 562
\@currname 558, 558, 558
\@filelist

559, 562, 562, 563, 563, 563, 563, 564
\@firstoftwo 268
\@secondoftwo 268
\@tempa 238, 238
\@unexpandable@protect . 618, 618, 619
\botmark 340
\box . 148
\chardef 351
\copy . 148
\cr . 320
\csname . 18

Index 922

\currentgrouplevel 370, 531, 789
\currentgrouptype 370, 531, 789
\detokenize 402
\dimen 338, 338
\dimendef 338
\dimexpr . 94
\directlua 230
\dp . 148
\edef . 2, 386
\endcsname 18
\endinput 163
\endlinechar

. . 98, 99, 340, 393, 393, 393, 393, 393
\endtemplate 44, 320
\errhelp 512, 513
\errmessage . . . 512, 513, 513, 513, 514
\errorcontextlines . 191, 482, 513, 532
\escapechar . . . 103, 103, 103, 276, 574
\everyeof 392, 393
\expandafter 32, 34
\expanded 254
\firstmark 302, 340
\frozen@everydisplay 261
\frozen@everymath 261
\futurelet 320, 342, 344
\global . 242
\halign 44, 320
\hskip . 91
\ht . 149
\hyphen 340, 340
\ifcase . 78
\ifdim . 94
\ifeof . 190
\iffalse . 40
\ifhbox . 154
\ifnum . 78
\ifodd 78, 822
\iftrue . 40
\ifvbox . 154
\ifvoid . 154
\ifx . 23, 238
\input@path 561, 561, 561
\italiccorr 340, 340
\jobname 228
\l@expl@check@declarations@bool .

. 282, 309, 390, 526
\l@expl@log@functions@bool

. 280, 281, 510
\lccode 238, 430
\let . 242

\lower . 777
\luaescapestring 231
\m@ne . 266
\makeatletter 7
\mathchardef 351
\meaning 17, 57,

337, 338, 338, 338, 338, 338, 344, 822
\newif . 40
\newlinechar . 98, 99, 191, 281, 393,

393, 393, 393, 393, 513, 532, 572, 572
\newread 566, 566, 566
\newwrite 570
\noexpand . 33
\nullfont 340, 340, 340
\number 79, 668
\numexpr . 79
\or . 78
\outer 237, 566, 566, 570, 822, 822
\par . 509
\pdfliteral 831
\pdfmapfile 262
\pdfmapline 262
\pdfstrcmp

. . . . 235, 235, 236, 237, 238, 253, 827
\protect 617, 618, 618, 618, 618
\protected@edef 576, 576
\ProvidesClass 7
\ProvidesFile 7
\ProvidesPackage 7
\read . 186
\readline 187
\relax 237,

272, 277, 290, 580, 582, 582, 603, 633
\RequirePackage 7, 237
\reserveinserts 237, 237
\robustify 224
\romannumeral 78
\scantokens 392, 393, 393
\set@color 509, 509, 509
\sfcode . 239
\show 17, 107, 290
\showbox 481
\showthe 289, 370, 379, 383, 386
\showtokens 108, 169, 530, 531, 531, 532
\space 340, 340
\splitbotmark 340
\splitfirstmark 340
\strcmp 235, 253
\string . 57
\synctex 252

Index 923

\tex_lowercase:D 95, 331
\tex_uppercase:D 95
\the 69, 86, 90, 93, 293, 293
\topmark 340
\tracingfonts 261
\tracingonline 482
\uccode . 430
\Ucharcat 329, 331, 331
\ucharcat@table 235, 235
\unexpanded 33, 104, 104,

104, 107, 122, 126, 126, 134, 137,
137, 139, 143, 223, 355, 386, 410, 411

\unhbox . 152
\unhcopy 152
\unless . 23
\unvbox . 153
\unvcopy 153
\valign . 320
\vbox . 152
\vskip . 91
\vsplit . 153
\vtop 152, 489
\wd . 149
\write 188, 572
\zap@space 555

tex commands:
\tex_... 9
\tex_above:D 242
\tex_abovedisplayshortskip:D . . 242
\tex_abovedisplayskip:D 242
\tex_abovewithdelims:D 242
\tex_accent:D 242
\tex_adjdemerits:D 242
\tex_advance:D 242, 353, 353,

353, 353, 373, 373, 381, 381, 385, 385
\tex_afterassignment:D 242, 342
\tex_aftergroup:D 242, 266
\tex_atop:D 242
\tex_atopwithdelims:D 242
\tex_badness:D 242
\tex_baselineskip:D 243
\tex_batchmode:D 243
\tex_begingroup:D 243, 265
\tex_belowdisplayshortskip:D . . 243
\tex_belowdisplayskip:D 243
\tex_binoppenalty:D 243
\tex_botmark:D 243
\tex_box:D 243, 478, 479
\tex_boxmaxdepth:D 243
\tex_brokenpenalty:D 243

\tex_catcode:D
243, 301, 301, 325, 326, 394, 431, 431

\tex_char:D 243
\tex_chardef:D 243, 265, 266,

267, 267, 267, 275, 275, 309, 309,
310, 310, 340, 351, 431, 431, 566, 570

\tex_cleaders:D 243
\tex_closein:D 243, 431, 567
\tex_closeout:D 243, 571
\tex_clubpenalty:D 243
\tex_copy:D 243, 478, 479
\tex_count:D 243, 431, 564, 565, 569, 569
\tex_countdef:D 243, 266
\tex_cr:D 243
\tex_crcr:D 243
\tex_csname:D 243, 265
\tex_day:D 243, 823
\tex_deadcycles:D 243
\tex_def:D 243,

253, 253, 253, 266, 266, 266, 266, 267
\tex_defaulthyphenchar:D 243
\tex_defaultskewchar:D 243
\tex_delcode:D 243
\tex_delimiter:D 243
\tex_delimiterfactor:D 243
\tex_delimitershortfall:D 243
\tex_dimen:D 243
\tex_dimendef:D 243
\tex_discretionary:D 243
\tex_displayindent:D 243
\tex_displaylimits:D 243
\tex_displaystyle:D 243
\tex_displaywidowpenalty:D 243
\tex_displaywidth:D 243
\tex_divide:D 243
\tex_doublehyphendemerits:D . . . 243
\tex_dp:D 243, 479
\tex_dump:D 243
\tex_edef:D 243, 267
\tex_else:D 243, 261, 264, 267
\tex_emergencystretch:D 243
\tex_end:D 243, 261, 263, 281, 516
\tex_endcsname:D 243, 265
\tex_endgroup:D 243, 261, 265
\tex_endinput:D 244, 517
\tex_endlinechar:D . 241, 241, 241,

244, 392, 392, 392, 394, 568, 568, 568
\tex_eqno:D 244
\tex_errhelp:D 244, 513
\tex_errmessage:D 244, 281, 514

Index 924

\tex_errorcontextlines:D
. 244, 482, 514, 515, 532

\tex_errorstopmode:D 244
\tex_escapechar:D . . 244, 574, 575, 575
\tex_everycr:D 244
\tex_everydisplay:D 244, 261
\tex_everyhbox:D 244
\tex_everyjob:D

244, 263, 558, 558, 559, 559, 823, 823
\tex_everymath:D 244, 261
\tex_everypar:D 244
\tex_everyvbox:D 244
\tex_exhyphenpenalty:D 244
\tex_expandafter:D 244, 253, 265
\tex_fam:D 244
\tex_fi:D 244, 253,

261, 261, 261, 262, 263, 263, 263,
263, 263, 264, 264, 264, 264, 267, 391

\tex_finalhyphendemerits:D 244
\tex_firstmark:D 244
\tex_floatingpenalty:D 244
\tex_font:D 244
\tex_fontdimen:D 244
\tex_fontname:D 244
\tex_futurelet:D 244, 342, 342
\tex_gdef:D 244, 267
\tex_global:D 242,

242, 242, 244, 253, 253, 284, 284,
295, 309, 310, 333, 333, 333, 342,
351, 352, 352, 353, 353, 353, 353,
353, 372, 373, 373, 373, 373, 380,
381, 381, 381, 381, 384, 385, 385,
385, 385, 478, 479, 480, 482, 482,
483, 484, 484, 484, 484, 566, 570, 830

\tex_globaldefs:D 244
\tex_halign:D 244
\tex_hangafter:D 244
\tex_hangindent:D 244
\tex_hbadness:D 244
\tex_hbox:D

. . . . 244, 482, 482, 482, 483, 483, 483
\tex_hfil:D 244
\tex_hfill:D 244
\tex_hfilneg:D 244
\tex_hfuzz:D 244
\tex_hoffset:D 244, 264
\tex_holdinginserts:D 244
\tex_hrule:D 244
\tex_hsize:D

. . . . 244, 489, 489, 489, 490, 490, 490

\tex_hskip:D 244, 383
\tex_hss:D 244, 483, 483, 776, 776
\tex_ht:D 244, 479
\tex_hyphen:D 242, 261
\tex_hyphenation:D 244
\tex_hyphenchar:D 244
\tex_hyphenpenalty:D 244
\tex_if:D 51, 244, 264, 264
\tex_ifcase:D 244, 348
\tex_ifcat:D 245, 264
\tex_ifdim:D 245, 372
\tex_ifeof:D 245, 431, 567
\tex_iffalse:D 245, 264
\tex_ifhbox:D 245, 480
\tex_ifhmode:D 245, 265
\tex_ifinner:D 245, 265
\tex_ifmmode:D 245, 264
\tex_ifnum:D 245, 263, 265
\tex_ifodd:D

245, 280, 281, 282, 308, 308, 348, 390
\tex_iftrue:D 245, 264
\tex_ifvbox:D 245, 480
\tex_ifvmode:D 245, 265
\tex_ifvoid:D 245, 480
\tex_ifx:D 245, 264
\tex_ignorespaces:D 245
\tex_immediate:D

. 245, 280, 280, 570, 571, 572
\tex_indent:D 245
\tex_input:D 245, 261, 263, 562, 797, 797
\tex_inputlineno:D 245, 281, 512
\tex_insert:D 245
\tex_insertpenalties:D 245
\tex_interlinepenalty:D 245
\tex_italiccorrection:D 242, 261, 264
\tex_jobname:D 245, 558, 823, 823
\tex_kern:D

. 245, 498, 498, 500, 500, 507, 507,
770, 776, 776, 777, 777, 778, 778, 780

\tex_language:D 245, 263
\tex_lastbox:D 245, 480
\tex_lastkern:D 245
\tex_lastpenalty:D 245
\tex_lastskip:D 245
\tex_lccode:D

245, 327, 327, 421, 421, 429, 433, 802
\tex_leaders:D 245
\tex_left:D 245, 264
\tex_lefthyphenmin:D 245
\tex_leftskip:D 245

Index 925

\tex_leqno:D 245
\tex_let:D 242, 242, 242,

245, 253, 253, 261, 261, 261, 261,
261, 261, 261, 261, 261, 261, 261,
261, 261, 261, 261, 261, 261, 262,
262, 262, 262, 262, 262, 262, 262,
262, 262, 262, 262, 262, 262, 262,
262, 262, 262, 262, 262, 262, 262,
262, 262, 262, 262, 262, 262, 262,
262, 262, 262, 262, 262, 262, 262,
262, 262, 262, 262, 262, 262, 262,
262, 263, 263, 263, 263, 263, 263,
263, 263, 263, 263, 263, 263, 263,
263, 263, 263, 263, 263, 263, 263,
263, 263, 263, 264, 264, 264, 264,
264, 264, 264, 264, 264, 264, 264,
264, 264, 264, 264, 264, 264, 264,
264, 264, 264, 264, 264, 265, 265,
265, 265, 265, 265, 265, 265, 265,
265, 265, 265, 265, 265, 265, 265,
265, 265, 265, 265, 266, 266, 266,
267, 267, 267, 267, 284, 333, 333, 333

\tex_limits:D 245
\tex_linepenalty:D 245
\tex_lineskip:D 245
\tex_lineskiplimit:D 245
\tex_long:D

. 245, 253, 253, 253, 266, 266, 266,
267, 267, 267, 267, 267, 267, 268, 268

\tex_looseness:D 245
\tex_lower:D 245, 480
\tex_lowercase:D

245, 328, 332, 394, 394, 416, 421, 514
\tex_mag:D 245
\tex_mark:D 245
\tex_mathaccent:D 245
\tex_mathbin:D 245
\tex_mathchar:D 245
\tex_mathchardef:D

. 246, 266, 267, 352, 352
\tex_mathchoice:D 246
\tex_mathclose:D 246
\tex_mathcode:D 246, 327, 327
\tex_mathinner:D 246
\tex_mathop:D 246, 263
\tex_mathopen:D 246
\tex_mathord:D 246
\tex_mathpunct:D 246
\tex_mathrel:D 246
\tex_mathsurround:D 246

\tex_maxdeadcycles:D 246
\tex_maxdepth:D 246
\tex_meaning:D 246, 265, 265
\tex_medmuskip:D 246
\tex_message:D 246
\tex_middle:D 264
\tex_mkern:D 246
\tex_month:D 246, 263, 823
\tex_moveleft:D 246, 479
\tex_moveright:D 246, 479
\tex_mskip:D 246
\tex_multiply:D 246
\tex_muskip:D 246
\tex_muskipdef:D 246
\tex_newlinechar:D

246, 281, 392, 394, 394, 514, 532, 572
\tex_noalign:D 246
\tex_noboundary:D 246
\tex_noexpand:D 246, 265
\tex_noindent:D 246
\tex_nolimits:D 246
\tex_nonscript:D 246
\tex_nonstopmode:D 246
\tex_nulldelimiterspace:D 246
\tex_nullfont:D 246, 341
\tex_number:D 246, 348
\tex_omit:D 246
\tex_openin:D 246, 431, 566
\tex_openout:D 246, 570
\tex_or:D 246, 264
\tex_outer:D 246, 263
\tex_output:D 246
\tex_outputpenalty:D 246
\tex_over:D 246, 263
\tex_overfullrule:D 246
\tex_overline:D 246
\tex_overwithdelims:D 246
\tex_pagedepth:D 246
\tex_pagefilllstretch:D 246
\tex_pagefillstretch:D 246
\tex_pagefilstretch:D 246
\tex_pagegoal:D 247
\tex_pageshrink:D 247
\tex_pagestretch:D 247
\tex_pagetotal:D 247
\tex_par:D 247, 509
\tex_parfillskip:D 247
\tex_parindent:D 247
\tex_parshape:D 247
\tex_parskip:D 247

Index 926

\tex_patterns:D 247
\tex_pausing:D 247
\tex_penalty:D 247
\tex_postdisplaypenalty:D 247
\tex_predisplaypenalty:D 247
\tex_predisplaysize:D 247
\tex_pretolerance:D 247
\tex_prevdepth:D 247
\tex_prevgraf:D 247
\tex_radical:D 247
\tex_raise:D 247, 479
\tex_read:D 247, 431, 568
\tex_relax:D 247, 265, 281, 348, 372, 582
\tex_relpenalty:D 247
\tex_right:D 247, 264
\tex_righthyphenmin:D 247
\tex_rightskip:D 247
\tex_romannumeral:D 247, 265, 265,

276, 276, 276, 276, 276, 276, 300, 300
\tex_romannumerl:D 300
\tex_scriptfont:D 247
\tex_scriptscriptfont:D 247
\tex_scriptscriptstyle:D 247
\tex_scriptspace:D 247
\tex_scriptstyle:D 247
\tex_scrollmode:D 247
\tex_setbox:D . . 247, 478, 478, 480,

482, 482, 483, 484, 484, 484, 484, 485
\tex_setlanguage:D 247
\tex_sfcode:D 247, 328, 328
\tex_shipout:D 247
\tex_show:D 247
\tex_showbox:D 247, 482
\tex_showboxbreadth:D 247, 482
\tex_showboxdepth:D 247, 482
\tex_showlists:D 247
\tex_showthe:D 247
\tex_skewchar:D 247
\tex_skip:D 247
\tex_skipdef:D 247
\tex_space:D 242
\tex_spacefactor:D 247
\tex_spaceskip:D 247
\tex_span:D 247
\tex_special:D 247,

831, 831, 831, 831, 832, 832, 836, 836
\tex_splitbotmark:D 248
\tex_splitfirstmark:D 248
\tex_splitmaxdepth:D 248
\tex_splittopskip:D 248

\tex_string:D 248, 265
\tex_tabskip:D 248
\tex_textfont:D 248
\tex_textstyle:D 248
\tex_the:D

. 241, 248, 281, 290, 294, 294, 294,
326, 327, 327, 328, 328, 353, 354,
370, 378, 378, 382, 382, 385, 481,
558, 559, 613, 619, 619, 619, 634, 823

\tex_thickmuskip:D 248
\tex_thinmuskip:D 248
\tex_time:D 248, 823, 823
\tex_toks:D 248
\tex_toksdef:D 248
\tex_tolerance:D 248
\tex_topmark:D 248
\tex_topskip:D 248
\tex_tracingcommands:D 248
\tex_tracinglostchars:D 248
\tex_tracingmacros:D 248
\tex_tracingonline:D 248, 482
\tex_tracingoutput:D 248
\tex_tracingpages:D 248
\tex_tracingparagraphs:D 248
\tex_tracingrestores:D 248
\tex_tracingstats:D 248
\tex_uccode:D . 248, 328, 328, 429, 803
\tex_uchyph:D 248
\tex_undefined:D

. . . . 242, 242, 253, 261, 263, 263,
263, 263, 263, 285, 285, 340, 340,
340, 544, 544, 594, 595, 595, 595, 595

\tex_underline:D 248, 261
\tex_unhbox:D 248, 483
\tex_unhcopy:D 248, 483
\tex_unkern:D 248
\tex_unpenalty:D 248
\tex_unskip:D 248
\tex_unvbox:D 248, 485
\tex_unvcopy:D 248, 485
\tex_uppercase:D 248, 416
\tex_vadjust:D 248
\tex_valign:D 248
\tex_vbadness:D 248
\tex_vbox:D

. . . . 248, 483, 484, 484, 484, 484, 484
\tex_vcenter:D 248, 264
\tex_vfil:D 248
\tex_vfill:D 248
\tex_vfilneg:D 248

Index 927

\tex_vfuzz:D 248
\tex_voffset:D 248, 264
\tex_vrule:D 248, 504, 505
\tex_vsize:D 248
\tex_vskip:D 248, 383
\tex_vsplit:D 249, 485
\tex_vss:D 249
\tex_vtop:D 249, 483, 484
\tex_wd:D 249, 479
\tex_widowpenalty:D 249
\tex_write:D 249, 280, 280, 571, 571, 572
\tex_xdef:D 249, 267
\tex_xleaders:D 249
\tex_xspaceskip:D 249
\tex_year:D 249, 823

tex. . . commands:
\tex...:D 264

\textdir . 256
\textfont . 248
\textstyle . 248
\TeXXeTstate 250
\tfont . 260
\TH . 817
\th . 817
\the 235, 240, 240, 240,

240, 240, 240, 240, 240, 240, 240, 248
\thickmuskip 248
\thinmuskip . 248
thirteen commands:

\c_thirteen 77,
326, 327, 329, 330, 370, 371, 742, 743

thirty commands:
\c_thirty_two 77, 371, 371, 620, 621, 641

three commands:
\c_three 77, 326, 327, 370,

370, 394, 426, 584, 609, 620, 621,
641, 646, 646, 646, 662, 671, 735, 751

tilde commands:
\c_tilde_str 117, 429, 430

\time . 248
\tiny . 504
tl commands:

\tl_(g)clear:N 96
\tl_...:N 109
\c__tl_accents_lt_tl 808
\tl_act . 407
__tl_act:NNNnn 407, 408,

408, 408, 409, 409, 409, 795, 796, 796
__tl_act_count_group:nn 796, 796, 796

__tl_act_count_normal:nN
. 796, 796, 796

__tl_act_count_space:n 796, 796, 796
__tl_act_end:w 408
__tl_act_end:wn 408, 408, 796
__tl_act_group:nwnNNN . 408, 408, 408
__tl_act_group_recurse:Nnn

. 796, 796, 796
__tl_act_loop:w

. 408, 408, 408, 408, 408, 409
\q__tl_act_mark

324, 324, 407, 407, 408, 408, 408, 408
__tl_act_normal:NwnNNN 408, 408, 408
__tl_act_output:n 408, 409, 409
__tl_act_result:n

. . . . 408, 408, 408, 409, 409, 409, 409
__tl_act_reverse 409
__tl_act_reverse_output:n

. 408, 409, 409, 409, 409, 796
__tl_act_space:wwnNNN

. 408, 408, 408, 408
\q__tl_act_stop

. 324, 324, 407, 407, 408,
408, 408, 408, 408, 408, 408, 408, 409

\tl_case:cn 402
\tl_case:cnTF 402
\tl_case:Nn 101, 402, 402, 403
\tl_case:nn(TF) 419
\tl_case:NnF 403, 403
\tl_case:NnT 402, 403
__tl_case:NnTF 402, 402, 403, 403, 403
\tl_case:NnTF . 101, 101, 402, 403, 403
__tl_case:nnTF 402
__tl_case:Nw 402, 403, 403, 403
\l_tl_case_change_accents_tl . . .

. 225, 803, 817, 817, 817
\l_tl_case_change_exclude_tl . . .

. . . . 225, 225, 225, 804, 821, 821, 821
\l_tl_case_change_math_tl

. . . . 224, 224, 800, 818, 821, 821, 821
__tl_case_end:nw 402, 403, 403
__tl_change_case:nnn

. 798, 798, 798, 798, 798, 798
__tl_change_case_aux:nnn

. 798, 798, 798, 799
__tl_change_case_char:nN

. 798, 801, 802, 802, 820
__tl_change_case_char:Nnn

. 798, 801, 801

Index 928

__tl_change_case_char_auxi:nN . .
. 798, 802, 802, 802

__tl_change_case_char_auxii:nN .
. 798, 802, 802, 803

__tl_change_case_char_UTFviii:nn
. 798

__tl_change_case_char_UTFviii:nNN
. 798

__tl_change_case_char_UTFviii:nnN
. 803, 803, 803, 803

__tl_change_case_char_UTFviii:nNNN
. 798, 802, 803

__tl_change_case_char_UTFviii:nNNNN
. 798, 802, 803

__tl_change_case_char_UTFviii:nNNNNN
. 802, 803

__tl_change_case_cs:N . 798, 804, 804
__tl_change_case_cs:NN

. 798, 804, 804, 804
__tl_change_case_cs:NNn 798, 804, 804
__tl_change_case_cs_accents:NN .

. 798, 803, 804, 804
__tl_change_case_cs_expand:NN . .

. 798, 805, 805
__tl_change_case_cs_expand:Nnw .

. 798, 804, 805
__tl_change_case_cs_letterlike:Nnn

. 798, 801, 803, 819
__tl_change_case_end:wn

. 798, 799, 800, 801, 818
__tl_change_case_group:nwnn . . .

. 798, 798, 799
__tl_change_case_if_expandable:NTF

798, 805, 805, 805, 806, 809, 810, 820
__tl_change_case_loop:wn 806
__tl_change_case_loop:wnn

. 798, 798, 798, 799,
799, 799, 800, 801, 801, 818, 819, 819

__tl_change_case_lower_az:Nnw . .
. 806, 808

__tl_change_case_lower_lt:nNnw .
. 808, 808, 808

__tl_change_case_lower_lt:NNw . .
. 808, 809, 809

__tl_change_case_lower_lt:Nnw . .
. 808, 808

__tl_change_case_lower_lt:nnw . .
. 808, 808, 808

__tl_change_case_lower_lt:Nw . . .
. 808, 808, 809, 809

__tl_change_case_lower_sigma:Nnw
. 805, 805

__tl_change_case_lower_sigma:Nw
. 805, 805, 805

__tl_change_case_lower_sigma:w .
. 805, 805, 805, 805

__tl_change_case_lower_tr:Nnw . .
. 806, 806, 807, 808

__tl_change_case_lower_tr_-
auxi:Nw 806, 806, 806, 806, 807, 807

__tl_change_case_lower_tr_-
auxii:Nw 806, 806, 806

__tl_change_case_math:NNNnnn . . .
. 798, 800, 800, 800, 818

__tl_change_case_math:NwNNnn . . .
. 798, 800, 800

__tl_change_case_math_group:nwNNnn
. 798, 800, 801

__tl_change_case_math_loop:wNNnn
. 798, 800, 800, 801, 801, 801

__tl_change_case_math_space:wNNnn
. 798, 800, 801

__tl_change_case_mixed_nl:NNw . .
. 820, 820, 820

__tl_change_case_mixed_nl:Nnw . .
. 820, 820

__tl_change_case_mixed_nl:Nw . . .
. 820, 820, 820, 820

__tl_change_case_N_type:Nnnn . . .
. 798, 800, 801

__tl_change_case_N_type:NNNnnn .
. 798, 800, 800, 800

__tl_change_case_N_type:Nwnn . . .
. 798, 798, 799

__tl_change_case_output:fwn . . .
. 798, 802, 805, 820

__tl_change_case_output:nwn 798,
799, 799, 799, 800, 801, 801, 801,
803, 803, 804, 804, 804, 806, 807,
807, 808, 808, 810, 818, 819, 820, 821

__tl_change_case_output:own . . .
. 798, 799, 818

__tl_change_case_output:Vwn . . .
. . . . 798, 806, 807, 807, 807, 809, 810

__tl_change_case_output:vwn . . .
. 798, 803, 803

__tl_change_case_result:n
. 798, 799, 799, 799, 817

__tl_change_case_setup:NN
. 816, 816, 816

Index 929

__tl_change_case_space:wnn
. 798, 798, 799

__tl_change_case_upper_az:Nnw . .
. 806, 808

__tl_change_case_upper_de-alt:Nnw
. 810

__tl_change_case_upper_lt:NNw . .
. 808, 810, 810

__tl_change_case_upper_lt:Nnw . .
. 808, 809

__tl_change_case_upper_lt:nnw . .
. 808, 809, 809

__tl_change_case_upper_lt:Nw . . .
. 808, 810, 810, 810

__tl_change_case_upper_sigma:Nnw
. 805, 806

__tl_change_case_upper_tr:Nnw . .
. 806, 807, 808

\tl_clear:c 387, 452
\tl_clear:N 96, 96, 387, 387, 387, 387,

452, 532, 533, 551, 553, 575, 576, 578
\tl_clear_new:c 387, 452
\tl_clear_new:N

. 96, 96, 387, 387, 387, 452
\tl_concat:ccc 388
\tl_concat:NNN 96, 96, 388, 388, 388, 391
\tl_const:cn

387, 434, 434, 434, 816, 816, 817, 817
\tl_const:cx

387, 432, 432, 433, 574, 813, 813, 816
\tl_const:Nn 96, 96, 321,

332, 333, 387, 387, 387, 388, 388,
435, 469, 510, 510, 511, 511, 512,
512, 512, 512, 512, 512, 512, 536,
536, 536, 583, 583, 583, 583, 583,
693, 711, 711, 711, 711, 711, 711,
711, 711, 711, 812, 812, 812, 812, 812

\tl_const:Nx
. 387, 387, 387, 391, 452, 574, 574,
765, 811, 811, 811, 812, 812, 812, 812

\tl_count:c 405
\tl_count:N

100, 103, 104, 104, 405, 405, 405, 576
__tl_count:n . 405, 405, 405, 405, 405
\tl_count:n . . . 100, 103, 103, 104,

271, 271, 286, 286, 287, 350, 405,
405, 405, 415, 426, 426, 593, 650, 650

\tl_count:o 405
\tl_count:V 405

\tl_count_tokens:n
. 223, 223, 796, 796, 796

__tl_from_file_do:w . . 796, 797, 797
\tl_gclear:c 387, 452
\tl_gclear:N 96, 387, 387, 387, 387, 452
\tl_gclear_new:c 387, 452
\tl_gclear_new:N 96, 387, 387, 387, 452
\tl_gconcat:ccc 388
\tl_gconcat:NNN 96, 388, 388, 388, 391
\tl_gput_left:cn 389
\tl_gput_left:co 389
\tl_gput_left:cV 389
\tl_gput_left:cx 389
\tl_gput_left:Nn 97, 389, 389, 389, 390
\tl_gput_left:No . . . 389, 389, 389, 390
\tl_gput_left:NV . . . 389, 389, 389, 390
\tl_gput_left:Nx . . . 389, 389, 389, 390
\tl_gput_right:cn 389
\tl_gput_right:co 389
\tl_gput_right:cV 389
\tl_gput_right:cx 389
\tl_gput_right:Nn

. 97, 325, 389, 389, 390, 390, 439
\tl_gput_right:No . . 389, 390, 390, 391
\tl_gput_right:NV . . 389, 390, 390, 390
\tl_gput_right:Nx . . 389, 390, 390, 391
\tl_gremove_all:cn 398
\tl_gremove_all:Nn . 98, 398, 398, 398
\tl_gremove_once:cn 398
\tl_gremove_once:Nn 97, 398, 398, 398
\tl_greplace_all:cnn 395
\tl_greplace_all:Nnn

. 97, 395, 395, 395, 398
\tl_greplace_once:cnn 395
\tl_greplace_once:Nnn

. 97, 395, 395, 395, 398
\tl_greverse:c 409
\tl_greverse:N 104, 409, 409, 410
.tl_gset:c 175, 548
\tl_gset:cf 388
\tl_gset:cn 388
\tl_gset:co 388
\tl_gset:cV 388
\tl_gset:cv 388
\tl_gset:cx 388
.tl_gset:N 175, 548
\tl_gset:Nf 388, 438
\tl_gset:Nn 97,

120, 388, 388, 389, 389, 390, 392,
443, 445, 471, 471, 472, 562, 796, 797

Index 930

\tl_gset:No 388, 388, 390
\tl_gset:NV 388
\tl_gset:Nv 388
\tl_gset:Nx 388, 388, 389,

389, 390, 391, 395, 395, 395, 406,
409, 436, 436, 437, 438, 440, 441,
444, 445, 453, 453, 455, 456, 457,
459, 459, 473, 474, 558, 765, 793, 793

\tl_gset_eq:cc 387, 388, 436, 452, 469
\tl_gset_eq:cN 387, 388, 436, 452, 469
\tl_gset_eq:Nc 387, 388, 436, 452, 469
\tl_gset_eq:NN . 96, 387, 387, 388,

391, 417, 436, 452, 469, 558, 563, 765
\tl_gset_from_file:cnn 796
\tl_gset_from_file:Nnn

. 227, 796, 796, 796
\tl_gset_from_file_x:cnn 797
\tl_gset_from_file_x:Nnn

. 227, 797, 797, 797
\tl_gset_rescan:cnn 392
\tl_gset_rescan:cno 392
\tl_gset_rescan:cnx 392
\tl_gset_rescan:Nnn

. 98, 392, 392, 393, 393
\tl_gset_rescan:Nno 392
\tl_gset_rescan:Nnx 392
.tl_gset_x:c 176, 548
.tl_gset_x:N 176, 548
\tl_gtrim_spaces:c 406
\tl_gtrim_spaces:N . 105, 406, 406, 406
\tl_head:f 410
\tl_head:N 105, 410, 410
\tl_head:n 105, 105,

105, 105, 410, 410, 410, 410, 410, 411
\tl_head:V 410
\tl_head:v 410
\tl_head:w 105, 105,

410, 410, 411, 411, 411, 412, 412, 412
__tl_head_auxi:nw . 410, 410, 410, 410
__tl_head_auxii:n 410, 410, 410
\tl_if_blank:n 399
\tl_if_blank:nF

105, 399, 399, 416, 417, 432, 432, 464
\tl_if_blank:nT 399, 399
\tl_if_blank:nTF

. . 99, 99, 105, 106, 399, 399, 399,
411, 467, 534, 542, 551, 808, 808, 809

\tl_if_blank:oF 534
\tl_if_blank:oTF 399, 535
\tl_if_blank:VTF 399

\tl_if_blank_p:n . 99, 99, 399, 399, 399
__tl_if_blank_p:NNw 399
\tl_if_blank_p:o 399
\tl_if_blank_p:V 399
\tl_if_empty:c 417, 460
\tl_if_empty:cTF 399
\tl_if_empty:N 399, 417, 460
\tl_if_empty:n 399
\tl_if_empty:n(TF) 400, 401
\tl_if_empty:NF 399, 551
\tl_if_empty:nF . . . 272, 274, 346,

400, 433, 462, 524, 524, 527, 531, 764
\tl_if_empty:NT 399
\tl_if_empty:nT 400
\tl_if_empty:NTF . 99, 99, 169, 399, 399
\tl_if_empty:nTF

. . 99, 99, 392, 396, 399, 400, 402,
437, 454, 513, 521, 521, 527, 527,
528, 528, 528, 539, 543, 604, 795, 823

\tl_if_empty:o 400
\tl_if_empty:oTF 322, 322, 323, 340,

400, 401, 413, 414, 453, 460, 461, 461
\tl_if_empty:VTF 399
\tl_if_empty_p:c 399
\tl_if_empty_p:N 99, 99, 399, 399
\tl_if_empty_p:n 99, 99, 399, 400
\tl_if_empty_p:o 400
\tl_if_empty_p:V 399
__tl_if_empty_return:o . 324, 324,

399, 399, 400, 400, 400, 400, 795, 795
\tl_if_eq:ccTF 400
\tl_if_eq:cNTF 400
\tl_if_eq:NcTF 400
\tl_if_eq:NN 400, 419
\tl_if_eq:nn 400
\tl_if_eq:nn(TF) . . . 123, 123, 133, 133
\tl_if_eq:NNF 400
\tl_if_eq:NNT . 400, 439, 440, 505, 505
\tl_if_eq:nnT 439
\tl_if_eq:NNTF 46, 100, 100,

101, 400, 400, 403, 474, 520, 522, 577
\tl_if_eq:nnTF 100, 100, 400
\tl_if_eq_p:cc 400
\tl_if_eq_p:cN 400
\tl_if_eq_p:Nc 400
\tl_if_eq_p:NN 100, 100, 400, 400
\tl_if_exist:c 388, 417
\tl_if_exist:cTF 388
\tl_if_exist:N 388, 417

Index 931

\tl_if_exist:NTF
. 96, 96, 387, 387, 388, 405, 415

\tl_if_exist_p:c 388
\tl_if_exist_p:N 96, 96, 388
\tl_if_head_eq_catcode:nN . . 412, 412
\tl_if_head_eq_catcode:nNTF

. 106, 106, 411, 798
\tl_if_head_eq_catcode:oNTF . . . 798
\tl_if_head_eq_catcode_p:nN

. 106, 106, 411
\tl_if_head_eq_charcode:fNTF . . 411
\tl_if_head_eq_charcode:nN . 411, 411
\tl_if_head_eq_charcode:nNF . . . 412
\tl_if_head_eq_charcode:nNT . . . 412
\tl_if_head_eq_charcode:nNTF . . .

. 106, 106, 411, 412
\tl_if_head_eq_charcode_p:fN . . 411
\tl_if_head_eq_charcode_p:nN . . .

. 106, 106, 411, 411
\tl_if_head_eq_meaning:nN . . 412, 412
\tl_if_head_eq_meaning:nNTF

. 106, 106, 411
__tl_if_head_eq_meaning_-

normal:nN 412, 412
\tl_if_head_eq_meaning_p:nN

. 106, 106, 411
__tl_if_head_eq_meaning_-

special:nN 412, 413
\tl_if_head_is_group:n 414
\tl_if_head_is_group:nTF . . . 106,

106, 408, 412, 413, 414, 798, 800, 817
\tl_if_head_is_group_p:n 106, 106, 414
\tl_if_head_is_N_type:n 412, 413
\tl_if_head_is_N_type:nT 809, 810, 820
\tl_if_head_is_N_type:nTF

. 107, 107, 408, 411, 412,
412, 413, 795, 798, 800, 805, 806, 817

__tl_if_head_is_N_type:w
. 413, 413, 413, 413

\tl_if_head_is_N_type_p:n
. 107, 107, 413

\tl_if_head_is_space:n 414
\tl_if_head_is_space:nTF

. 107, 107, 414, 428
__tl_if_head_is_space:w 414, 414, 414
\tl_if_head_is_space_p:n 107, 107, 414
\tl_if_in:cnTF 401
\tl_if_in:Nn 461
\tl_if_in:nn 401
\tl_if_in:nn(TF) 401, 401

\tl_if_in:NnF 401, 401
\tl_if_in:nnF 401, 401
\tl_if_in:NnT 401, 401, 560
\tl_if_in:nnT 401, 401
\tl_if_in:NnTF

. . . . 100, 100, 325, 397, 401, 401, 401
\tl_if_in:nnTF 100, 100, 394,

397, 401, 401, 401, 500, 539, 539, 562
\tl_if_in:noTF 401, 822
\tl_if_in:onTF 396, 401
\tl_if_in:VnTF 401
\tl_if_single:n 402, 402
\tl_if_single:NF 402
\tl_if_single:nF 402
__tl_if_single:nnw . . . 402, 402, 402
\tl_if_single:NT 402
\tl_if_single:nT 402
\tl_if_single:NTF . . 100, 100, 402, 402
__tl_if_single:nTF 402
\tl_if_single:nTF

. 100, 100, 402, 402, 532
\tl_if_single_p:N . . 100, 100, 402, 402
__tl_if_single_p:n 402
\tl_if_single_p:n . . 100, 100, 402, 402
\tl_if_single_token:n 795
\tl_if_single_token:nTF 223, 223, 795
\tl_if_single_token_p:n 223, 223, 795
\l__tl_internal_a_tl 392, 392, 393,

395, 400, 401, 401, 401, 797, 797,
797, 797, 812, 812, 813, 813, 816, 816

\l__tl_internal_b_tl 400, 401, 401, 401
\tl_item:cn 414
\tl_item:Nn 107, 414, 415, 415
__tl_item:nn 414, 415, 415, 415
\tl_item:nn . . . 107, 107, 414, 415, 415
\tl_log:c 821
\tl_log:N 227, 227, 821, 821, 821
\tl_log:n 227, 227, 821, 821
__tl_lookup_lower:N 798, 802
__tl_lookup_title:N 798, 803
__tl_lookup_upper:N . . 798, 803, 803
__tl_loop:nn 813, 813, 814
\tl_lower_case:n 224, 798, 798
\tl_lower_case:n(n) 115
\tl_lower_case:nn 224, 798, 798
\tl_map_... . . . 102, 102, 102, 102, 390
\tl_map_break: 102, 102, 403,

404, 404, 404, 404, 404, 404, 405, 405
\tl_map_break:n 102, 102, 102, 404, 405
\tl_map_function:cN 403

Index 932

\tl_map_function:NN 101,
101, 101, 101, 403, 403, 404, 405, 560

__tl_map_function:Nn
. 403, 403, 404, 404, 404, 404

\tl_map_function:nN 101,
101, 101, 101, 403, 403, 403, 405, 437

\tl_map_inline:cn 404
\tl_map_inline:Nn

. 101, 101, 101, 404, 404, 404
\tl_map_inline:nn 49, 101,

101, 102, 404, 404, 404, 574, 637, 638
\tl_map_variable:cNn 404
\tl_map_variable:NNn

. 101, 101, 404, 404, 404
__tl_map_variable:Nnn

. 404, 404, 404, 404
\tl_map_variable:nNn

. 102, 102, 404, 404, 404, 404
\tl_mixed_case:n 224, 798, 798
\tl_mixed_case:n(n) 115, 225
__tl_mixed_case:nn 798, 798, 817, 817
\tl_mixed_case:nn . . 224, 798, 798, 798
__tl_mixed_case_aux:nn

. 817, 817, 817, 818
__tl_mixed_case_char:N 817, 819, 820
__tl_mixed_case_char:Nn . . . 819, 819
__tl_mixed_case_char:nN 817
__tl_mixed_case_group:nwn

. 817, 818, 818
\l_tl_mixed_case_ignore_tl

. 226, 819, 821, 821, 821
__tl_mixed_case_letterlike:Nw . .

. 817, 819, 819
__tl_mixed_case_loop:wn

. . . . 817, 817, 817, 818, 818, 819, 819
__tl_mixed_case_N_type:Nnn

. 817, 818, 818
__tl_mixed_case_N_type:NNNnn . . .

. 817, 818, 818, 818
__tl_mixed_case_N_type:Nwn

. 817, 817, 818
__tl_mixed_case_skip:N 817, 819, 819
__tl_mixed_case_skip:NN

. 817, 819, 819, 819
__tl_mixed_case_skip_tidy:Nwn . .

. 817, 819, 819
__tl_mixed_case_space:wn

. 817, 818, 818
\l_tl_mixed_change_ignore_tl . . 226
\tl_new:c 386, 452

\tl_new:N 57,
96, 96, 96, 324, 330, 342, 386, 386,
387, 387, 387, 388, 401, 401, 416,
416, 416, 416, 434, 434, 451, 452,
468, 485, 486, 486, 504, 510, 518,
518, 526, 533, 533, 533, 533, 536,
536, 537, 537, 537, 537, 537, 558,
559, 559, 564, 569, 573, 573, 573,
573, 573, 788, 817, 821, 821, 821, 836

\tl_put_left:cn 389
\tl_put_left:co 389
\tl_put_left:cV 389
\tl_put_left:cx 389
\tl_put_left:Nn

. 97, 97, 389, 389, 389, 390
\tl_put_left:No . . . 389, 389, 389, 390
\tl_put_left:NV . . . 389, 389, 389, 390
\tl_put_left:Nx . . . 389, 389, 389, 390
\tl_put_right:cn 389
\tl_put_right:co 389
\tl_put_right:cV 389
\tl_put_right:cx 389
\tl_put_right:Nn . 97, 97, 331, 331,

331, 331, 331, 331, 331, 331, 331,
331, 331, 331, 389, 389, 390, 390, 438

\tl_put_right:No 331, 389, 389, 390, 390
\tl_put_right:NV . . . 389, 389, 390, 390
\tl_put_right:Nx

. 389, 389, 390, 390, 534,
535, 551, 577, 577, 577, 578, 578, 578

\tl_remove_all:cn 398
\tl_remove_all:Nn

. . . 97, 98, 98, 98, 398, 398, 398, 560
\tl_remove_once:cn 398
\tl_remove_once:Nn 97, 97, 398, 398, 398
__tl_replace:NnNNNnn 395,

395, 395, 395, 395, 395, 396, 396, 397
\tl_replace_all:cnn 395
\tl_replace_all:Nnn 97, 97, 395, 395,

395, 398, 436, 437, 458, 533, 533, 576
__tl_replace_auxi:NnnNNNnn

. 395, 396, 397, 397, 397, 397
__tl_replace_auxii:nNNNnn

. . . . 395, 395, 396, 397, 397, 397, 397
__tl_replace_next:w 395, 395, 395,

395, 397, 397, 397, 397, 398, 398, 398
\tl_replace_once:cnn 395
\tl_replace_once:Nnn

. 97, 97, 332, 395, 395, 395, 398

Index 933

__tl_replace_wrap:w
. 395, 395, 395, 395,
397, 397, 397, 397, 397, 398, 398, 398

\tl_rescan:nn 98, 99, 99, 99, 99, 392, 392
__tl_rescan:w

392, 393, 393, 393, 393, 394, 394, 395
\c__tl_rescan_marker_tl

391, 391, 392, 393, 394, 395, 797, 797
\tl_reverse:c 409
\tl_reverse:N

. 104, 104, 104, 409, 409, 410
\tl_reverse:n 104, 104,

104, 104, 409, 409, 409, 409, 409, 795
\tl_reverse:o 409
\tl_reverse:V 409
__tl_reverse_group:nn . 795, 795, 795
__tl_reverse_group_preserve:nn .

. 409, 409, 409
\tl_reverse_items:n

. 104, 104, 104, 104, 406, 406
__tl_reverse_items:nwNwn

. 406, 406, 406, 406, 406
__tl_reverse_items:wn

. 406, 406, 406, 406
__tl_reverse_normal:nN

. 409, 409, 409, 795
__tl_reverse_space:n

. 409, 409, 409, 795
\tl_reverse_tokens:n

. 223, 223, 223, 795, 795, 796
.tl_set:c 175, 548
\tl_set:cf 388
\tl_set:cn 388
\tl_set:co 388
\tl_set:cV 388
\tl_set:cv 388
\tl_set:cx 388
.tl_set:N 175, 548
\tl_set:Nf 388, 437, 532
\tl_set:Nn . 97, 97, 98, 99, 120, 301,

331, 343, 343, 360, 388, 388, 389,
389, 390, 392, 401, 401, 404, 437,
437, 440, 440, 442, 442, 442, 442,
443, 443, 444, 445, 448, 456, 456,
456, 456, 463, 470, 471, 471, 471,
471, 471, 471, 471, 472, 472, 472,
473, 474, 476, 486, 486, 492, 500,
500, 504, 504, 519, 519, 521, 526,
533, 538, 539, 539, 542, 549, 550,

550, 551, 551, 553, 561, 561, 575,
577, 796, 797, 817, 821, 821, 836, 836

\tl_set:No 388, 388, 388, 390, 797
\tl_set:NV 388
\tl_set:Nv 388
\tl_set:Nx

. 176, 331, 388, 388, 388, 389, 390,
391, 393, 395, 395, 395, 395, 406,
409, 436, 436, 437, 437, 438, 440,
441, 443, 444, 444, 445, 452, 453,
455, 456, 457, 459, 459, 473, 473,
535, 535, 538, 539, 539, 539, 549,
550, 550, 551, 560, 560, 560, 561,
566, 570, 575, 575, 575, 578, 578,
765, 793, 793, 797, 812, 813, 816, 821

\tl_set_eq:cc . 387, 387, 436, 452, 469
\tl_set_eq:cN . 387, 387, 436, 452, 469
\tl_set_eq:Nc . 387, 387, 436, 452, 469
\tl_set_eq:NN 96, 96, 387, 387, 387,

391, 417, 436, 452, 469, 520, 520, 765
\tl_set_from_file:cnn 796
\tl_set_from_file:Nnn

. 227, 227, 796, 796, 796
__tl_set_from_file:NNnn

. 796, 796, 796, 796
\tl_set_from_file_x:cnn 797
\tl_set_from_file_x:Nnn

. 227, 227, 797, 797, 797
__tl_set_from_file_x:NNnn

. 797, 797, 797, 797
\tl_set_rescan:cnn 392
\tl_set_rescan:cno 392
\tl_set_rescan:cnx 392
__tl_set_rescan:n

. 392, 392, 392, 393, 394
\tl_set_rescan:Nnn

. . . 98, 98, 98, 99, 392, 392, 393, 393
__tl_set_rescan:NNnn

. 392, 392, 392, 392, 392
\tl_set_rescan:Nno 392
__tl_set_rescan:NnTF . 393, 394, 394
\tl_set_rescan:Nnx 392
__tl_set_rescan_multi:n

. 392, 392, 392, 393, 394
__tl_set_rescan_multiple:n . . . 393
__tl_set_rescan_single:nn

. 393, 393, 394, 394, 394
__tl_set_rescan_single_aux:nn . .

. 393, 394, 394, 394
.tl_set_x:c 176, 548

Index 934

.tl_set_x:N 176, 548
\tl_show:c 415
\tl_show:N 107,

107, 227, 415, 415, 415, 430, 821, 821
\tl_show:n

108, 108, 227, 415, 415, 430, 821, 821
\tl_tail:f 410
\tl_tail:N 106, 410, 411
\tl_tail:n

. . . . 106, 106, 106, 410, 411, 411, 411
\tl_tail:V 410
\tl_tail:v 410
__tl_tmp:w

. 401, 401, 401, 406, 407, 407, 812,
812, 812, 812, 812, 812, 812, 812,
813, 813, 816, 816, 816, 816, 816, 816

\tl_to_lowercase:n 54, 416, 416
\tl_to_str:c 405, 429
\tl_to_str:N 103,

103, 109, 189, 405, 405, 405, 415,
419, 419, 560, 575, 575, 576, 576, 576

\tl_to_str:n 95, 98, 99,
103, 103, 103, 103, 109, 109, 115,
115, 116, 116, 142, 142, 170, 172,
179, 179, 189, 265, 265, 266, 272,
272, 274, 301, 302, 302, 302, 302,
337, 337, 338, 338, 338, 338, 339,
339, 339, 339, 340, 347, 367, 368,
369, 375, 378, 382, 392, 396, 399,
402, 402, 402, 402, 405, 410, 415,
415, 417, 421, 421, 422, 422, 423,
423, 425, 426, 426, 427, 427, 427,
428, 428, 428, 470, 472, 472, 473,
473, 474, 475, 475, 475, 504, 506,
516, 516, 516, 516, 523, 523, 523,
523, 530, 530, 530, 530, 531, 532,
532, 532, 532, 532, 555, 555, 562,
563, 564, 574, 616, 616, 619, 619,
620, 620, 645, 790, 803, 803, 822, 822

\tl_to_uppercase:n 55, 416, 416
\tl_trim_spaces:c 406
\tl_trim_spaces:N

. 105, 105, 406, 406, 406
\tl_trim_spaces:n 104,

104, 108, 406, 406, 406, 406, 437, 535
__tl_trim_spaces:nn

. . . . 108, 108, 406, 406, 407, 454, 467
__tl_trim_spaces_auxi:w

. 406, 406, 407, 407, 407, 407

__tl_trim_spaces_auxii:w
. 406, 406, 407, 407

__tl_trim_spaces_auxiii:w
. 406, 406, 407, 407, 407, 407

__tl_trim_spaces_auxiv:w
. 406, 406, 407, 407

\tl_trim_spacs:n 406
\tl_upper_case:n . . . 224, 224, 798, 798
\tl_upper_case:n(n) 115
\tl_upper_case:nn . . 224, 224, 798, 798
\tl_use:c 405, 820
\tl_use:N 66,

85, 90, 93, 103, 103, 405, 405, 405
tmpa commands:

\g_tmpa_bool 41, 311, 311
\l_tmpa_bool 41, 311, 311
\g_tmpa_box 150, 481, 481
\l_tmpa_box 150, 481, 481
\g_tmpa_clist 140, 468, 468
\l_tmpa_clist 139, 468, 468
\l_tmpa_coffin 158, 491, 491
\g_tmpa_dim 88, 380, 380
\l_tmpa_dim 88, 380, 380
\g_tmpa_fp 199, 767, 767
\l_tmpa_fp 199, 767, 767
\g_tmpa_int 77, 371, 371
\l_tmpa_int 2, 77, 371, 371
\g_tmpa_muskip 94, 386, 386
\l_tmpa_muskip 94, 386, 386
\g_tmpa_prop 146, 470, 470
\l_tmpa_prop 146, 470, 470
\g_tmpa_seq 129, 451, 451
\l_tmpa_seq 129, 451, 451
\g_tmpa_skip 91, 383, 383
\l_tmpa_skip 91, 383, 383
\g_tmpa_str 117, 430, 430
\l_tmpa_str 117, 430, 430
\g_tmpa_tl 108, 416, 416
\l_tmpa_tl . 5, 98, 98, 98, 108, 416, 416

tmpb commands:
\g_tmpb_bool 41, 311, 311
\l_tmpb_bool 41, 311, 311
\g_tmpb_box 150, 481, 481
\l_tmpb_box 150, 481, 481
\g_tmpb_clist 140, 468, 468
\l_tmpb_clist 139, 468, 468
\l_tmpb_coffin 158, 491, 491
\g_tmpb_dim 88, 380, 380
\l_tmpb_dim 88, 380, 380
\g_tmpb_fp 199, 767, 767

Index 935

\l_tmpb_fp 199, 767, 767
\g_tmpb_int 77, 371, 371
\l_tmpb_int 2, 77, 371, 371
\g_tmpb_muskip 94, 386, 386
\l_tmpb_muskip 94, 386, 386
\g_tmpb_prop 146, 470, 470
\l_tmpb_prop 146, 470, 470
\g_tmpb_seq 129, 451, 451
\l_tmpb_seq 129, 451, 451
\g_tmpb_skip 91, 383, 383
\l_tmpb_skip 91, 383, 383
\g_tmpb_str 117, 430, 430
\l_tmpb_str 117, 430, 430
\g_tmpb_tl 108, 416, 416
\l_tmpb_tl 108, 416, 416

token commands:
\c__token_A_int 340, 341
__token_delimit_by_char":w . . . 337
__token_delimit_by_count:w . . . 337
__token_delimit_by_dimen:w . . . 337
__token_delimit_by_macro:w . . . 337
__token_delimit_by_muskip:w . . 337
__token_delimit_by_skip:w 337
__token_delimit_by_toks:w 337
\token_get_arg_spec:N 64, 64, 347, 347
\token_get_prefix_spec:N

. 64, 64, 347, 347
\token_get_replacement_spec:N . . .

. 64, 64, 347, 348, 556
\token_if_active:N 335
\token_if_active:NTF 58, 58, 335
\token_if_active_p:N 58, 58, 335
\token_if_alignment:N 334
\token_if_alignment:NTF 57, 57, 58, 334
\token_if_alignment_p:N . . 57, 57, 334
\token_if_chardef:NTF . . . 59, 59, 338
\token_if_chardef_p:N . . . 59, 59, 338
\token_if_cs:N 337
\token_if_cs:NTF . 59, 59, 337, 801, 819
\token_if_cs_p:N

. 59, 59, 337, 807, 809, 810, 820
\token_if_dim_register:NTF 60, 60, 338
\token_if_dim_register_p:N 60, 60, 338
\token_if_eq_catcode:NN 336
\token_if_eq_catcode:NNTF

. 58, 58, 61, 61, 62, 62, 336
\token_if_eq_catcode_p:NN 58, 58, 336
\token_if_eq_charcode:NN 336
\token_if_eq_charcode:NNT 560

\token_if_eq_charcode:NNTF
. 58, 58, 62, 62, 62, 63, 336

\token_if_eq_charcode_p:NN 58, 58, 336
\token_if_eq_meaning:NN 336
\token_if_eq_meaning:NNF 598
\token_if_eq_meaning:NNTF

. 59, 59, 63, 63, 63, 63,
336, 345, 636, 735, 800, 801, 801, 818

\token_if_eq_meaning_p:NN
. 59, 59, 336, 805

\token_if_expandable:N 337
\token_if_expandable:NTF

. 59, 59, 337, 805
\token_if_expandable_p:N . 59, 59, 337
\token_if_group_begin:N 333
\token_if_group_begin:NTF 57, 57, 333
\token_if_group_begin_p:N 57, 57, 333
\token_if_group_end:N 334
\token_if_group_end:NTF . . 57, 57, 334
\token_if_group_end_p:N . . 57, 57, 334
\token_if_int_register:NTF 60, 60, 338
\token_if_int_register_p:N 60, 60, 338
\token_if_letter:N 335, 337
\token_if_letter:NTF 58, 58, 335, 806
\token_if_letter_p:N 58, 58, 335
\token_if_long_macro:NTF . 59, 59, 338
\token_if_long_macro_p:N . 59, 59, 338
\token_if_macro:N 336
\token_if_macro:NTF

. 59, 59, 336, 340, 347, 347, 348
\token_if_macro_p:N 59, 59, 336
__token_if_macro_p:w . 336, 336, 337
\token_if_math_subscript:N 335
\token_if_math_subscript:NTF . . .

. 58, 58, 335
\token_if_math_subscript_p:N . . .

. 58, 58, 335
\token_if_math_superscript:N . . 334
\token_if_math_superscript:NTF . .

. 58, 58, 334
\token_if_math_superscript_p:N . .

. 58, 58, 334
\token_if_math_toggle:N 334
\token_if_math_toggle:NTF 57, 57, 334
\token_if_math_toggle_p:N 57, 57, 334
\token_if_mathchardef:NTF 60, 60, 338
\token_if_mathchardef_p:N 60, 60, 338
\token_if_muskip_register:NTF . . .

. 60, 60, 338

Index 936

\token_if_muskip_register_p:N . . .
. 60, 60, 338

\token_if_other:N 335
\token_if_other:NTF 58, 58, 335
\token_if_other_p:N 58, 58, 335
\token_if_parameter:N 334
\token_if_parameter:NTF 58, 334
\token_if_parameter_p:N . . 58, 58, 334
\token_if_primitive:N 340
__token_if_primitive:NNw

. 339, 340, 340
\token_if_primitive:NTF . . 60, 60, 339
__token_if_primitive:Nw 339, 341, 341
__token_if_primitive_loop:N . . .

. 339, 340, 341, 341
__token_if_primitive_nullfont:N

. 339, 340, 341
\token_if_primitive_p:N . . 60, 60, 339
__token_if_primitive_space:w . . .

. 339, 340, 341
__token_if_primitive_undefined:N

. 339, 341, 341
\token_if_protected_long_-

macro:NTF 59, 59, 338
\token_if_protected_long_macro_-

p:N 59, 59, 338, 805
\token_if_protected_macro:NTF . . .

. 59, 59, 338
\token_if_protected_macro_p:N . . .

. 59, 59, 338, 805
\token_if_skip_register:NTF

. 60, 60, 338
\token_if_skip_register_p:N

. 60, 60, 338
\token_if_space:N 335
\token_if_space:NTF 58, 58, 335
\token_if_space_p:N 58, 58, 335
\token_if_toks_register:NTF

. 60, 60, 338
\token_if_toks_register_p:N

. 60, 60, 338
\token_new:Nn 56, 56, 332, 332
__token_tmp:w

. 338, 338, 338, 338, 338,
338, 338, 338, 338, 339, 339, 339,
339, 339, 339, 339, 339, 339, 339, 339

\token_to_meaning:c . . . 266, 266, 332
\token_to_meaning:N 57, 57,

265, 265, 281, 282, 302, 332, 336,
337, 339, 340, 340, 347, 348, 348, 822

\token_to_str:c . . . 266, 266, 271,
272, 272, 273, 274, 274, 275, 303, 332

\token_to_str:N 5, 19, 57, 57,
57, 95, 109, 169, 189, 265, 265, 266,
276, 276, 276, 277, 277, 281, 282,
282, 282, 282, 286, 288, 290, 290,
306, 306, 307, 307, 307, 311, 325,
332, 338, 338, 339, 339, 339, 339,
339, 339, 339, 339, 355, 355, 370,
391, 413, 414, 414, 415, 482, 487,
492, 508, 531, 531, 533, 533, 533,
534, 575, 575, 575, 575, 575, 594,
594, 614, 615, 616, 616, 617, 617,
617, 621, 622, 623, 624, 624, 625,
625, 625, 625, 626, 627, 627, 627,
627, 628, 628, 629, 629, 630, 632,
632, 633, 633, 633, 641, 738, 767,
802, 803, 803, 803, 816, 816, 817, 817

\toks . 248, 339
\toksapp . 256
\toksdef . 248
\tokspre . 256
\tolerance . 248
\topmark . 248
\topmarks . 250
\topskip . 248
\tpack . 256
\tracingassigns 250
\tracingcommands 248
\tracingfonts 257
\tracinggroups 250
\tracingifs . 250
\tracinglostchars 248
\tracingmacros 248
\tracingnesting 250
\tracingonline 248
\tracingoutput 248
\tracingpages 248
\tracingparagraphs 248
\tracingrestores 248
\tracingscantokens 250
\tracingstats 248
true . 208
true commands:

\c_true_bool 22,
39, 273, 275, 275, 277, 277, 277,
286, 309, 309, 309, 309, 310, 310,
313, 313, 315, 315, 315, 317, 400,
824, 824, 824, 824, 825, 825, 825, 826

trunc . 205

Index 937

twelve commands:
\c_twelve .

. 77, 326, 327, 370, 371, 635, 635, 635
two commands:

\c_two 77, 326, 327,
350, 368, 370, 370, 426, 522, 560,
584, 584, 647, 650, 654, 658, 666,
671, 671, 671, 671, 671, 681, 684,
685, 685, 686, 695, 702, 707, 707,
707, 710, 718, 721, 729, 730, 730,
733, 734, 737, 745, 745, 746, 747,
749, 749, 752, 753, 761, 822, 822, 822

\c_two_hundred_fifty_five 77, 371, 371
\c_two_hundred_fifty_six 77, 371, 371

U
\u . 817
\uccode . . 239, 239, 239, 239, 239, 239, 248
\Uchar . 257
\Ucharcat . 257
\uchyph . 248
\ucs . 261
\Udelcode . 257
\Udelcodenum 257
\Udelimiter . 257
\Udelimiterover 257
\Udelimiterunder 257
\Uhextensible 257
\Umathaccent 257
\Umathaxis . 257
\Umathbinbinspacing 257
\Umathbinclosespacing 257
\Umathbininnerspacing 257
\Umathbinopenspacing 257
\Umathbinopspacing 257
\Umathbinordspacing 257
\Umathbinpunctspacing 257
\Umathbinrelspacing 257
\Umathchar . 257
\Umathcharclass 257
\Umathchardef 257
\Umathcharfam 257
\Umathcharnum 257
\Umathcharnumdef 257
\Umathcharslot 257
\Umathclosebinspacing 257
\Umathcloseclosespacing 257
\Umathcloseinnerspacing 257
\Umathcloseopenspacing 257
\Umathcloseopspacing 257

\Umathcloseordspacing 257
\Umathclosepunctspacing 257
\Umathcloserelspacing 257
\Umathcode 238, 257
\Umathcodenum 257
\Umathconnectoroverlapmin 258
\Umathfractiondelsize 258
\Umathfractiondenomdown 258
\Umathfractiondenomvgap 258
\Umathfractionnumup 258
\Umathfractionnumvgap 258
\Umathfractionrule 258
\Umathinnerbinspacing 258
\Umathinnerclosespacing 258
\Umathinnerinnerspacing 258
\Umathinneropenspacing 258
\Umathinneropspacing 258
\Umathinnerordspacing 258
\Umathinnerpunctspacing 258
\Umathinnerrelspacing 258
\Umathlimitabovebgap 258
\Umathlimitabovekern 258
\Umathlimitabovevgap 258
\Umathlimitbelowbgap 258
\Umathlimitbelowkern 258
\Umathlimitbelowvgap 258
\Umathopbinspacing 258
\Umathopclosespacing 258
\Umathopenbinspacing 258
\Umathopenclosespacing 258
\Umathopeninnerspacing 258
\Umathopenopenspacing 258
\Umathopenopspacing 258
\Umathopenordspacing 258
\Umathopenpunctspacing 258
\Umathopenrelspacing 258
\Umathoperatorsize 258
\Umathopinnerspacing 258
\Umathopopenspacing 258
\Umathopopspacing 258
\Umathopordspacing 258
\Umathoppunctspacing 258
\Umathoprelspacing 258
\Umathordbinspacing 258
\Umathordclosespacing 258
\Umathordinnerspacing 258
\Umathordopenspacing 258
\Umathordopspacing 258
\Umathordordspacing 258
\Umathordpunctspacing 258

Index 938

\Umathordrelspacing 258
\Umathoverbarkern 258
\Umathoverbarrule 258
\Umathoverbarvgap 258
\Umathoverdelimiterbgap 258
\Umathoverdelimitervgap 259
\Umathpunctbinspacing 259
\Umathpunctclosespacing 259
\Umathpunctinnerspacing 259
\Umathpunctopenspacing 259
\Umathpunctopspacing 259
\Umathpunctordspacing 259
\Umathpunctpunctspacing 259
\Umathpunctrelspacing 259
\Umathquad . 259
\Umathradicaldegreeafter 259
\Umathradicaldegreebefore 259
\Umathradicaldegreeraise 259
\Umathradicalkern 259
\Umathradicalrule 259
\Umathradicalvgap 259
\Umathrelbinspacing 259
\Umathrelclosespacing 259
\Umathrelinnerspacing 259
\Umathrelopenspacing 259
\Umathrelopspacing 259
\Umathrelordspacing 259
\Umathrelpunctspacing 259
\Umathrelrelspacing 259
\Umathskewedfractionhgap 259
\Umathskewedfractionvgap 259
\Umathspaceafterscript 259
\Umathstackdenomdown 259
\Umathstacknumup 259
\Umathstackvgap 259
\Umathsubshiftdown 259
\Umathsubshiftdrop 259
\Umathsubsupshiftdown 259
\Umathsubsupvgap 259
\Umathsubtopmax 259
\Umathsupbottommin 259
\Umathsupshiftdrop 259
\Umathsupshiftup 259
\Umathsupsubbottommax 259
\Umathunderbarkern 259
\Umathunderbarrule 259
\Umathunderbarvgap 259
\Umathunderdelimiterbgap 259
\Umathunderdelimitervgap 259

undefine commands:
.undefine: 176, 549

\underline . 248
underscore commands:

\c_underscore_str 117, 429, 430
\unexpanded . 250
\unhbox . 248
\unhcopy . 248
unicode commands:

\c__unicode_accents_lt_tl
. 808, 811, 811, 812

__unicode_codepoint_to_UTFviii:n
. 810, 810, 812, 813, 813, 816

__unicode_codepoint_to_UTFviii_-
auxi:n 810, 810, 811

__unicode_codepoint_to_UTFviii_-
auxii:Nnn . . 810, 811, 811, 811, 811

__unicode_codepoint_to_UTFviii_-
auxiii:n 810,
811, 811, 811, 811, 811, 811, 811

\g__unicode_data_ior
. 431, 431, 431, 431, 431, 431

\c__unicode_dot_above_tl
. 809, 811, 812, 812

\c__unicode_dotless_i_tl
. 806, 807, 807, 812, 812

\c__unicode_dotted_I_tl 807, 812, 812
\c__unicode_final_sigma_tl

. 805, 806, 811, 811, 812
\c__unicode_I_ogonek_tl 809, 812, 812
\c__unicode_i_ogonek_tl 808, 812, 812
__unicode_map_inline:n

. 431, 433, 433, 433
__unicode_map_loop: . . 431, 431, 431
__unicode_parse:w 431, 432, 432
__unicode_parse_auxi:w

. 432, 432, 433, 433
__unicode_parse_auxii:w

432, 432, 433, 433, 433, 433, 433, 433
\c__unicode_std_sigma_tl

. 806, 811, 811, 812
__unicode_store:nnnnn . 432, 433, 433
__unicode_tmp:NN 433, 434, 434
\l__unicode_tmp_tl . 431, 431, 431, 432
\c__unicode_upper_Eszett_tl

. 810, 811, 812, 812
\uniformdeviate 257
\unkern . 248
\unless . 250
\unpenalty . 248

Index 939

\unskip . 248
\unvbox . 248
\unvcopy . 248
\Uoverdelimiter 259
\uppercase . 248
uptex commands:

\uptex_disablecjktoken:D
. 260, 351, 351, 824

\uptex_enablecjktoken:D 260
\uptex_forcecjktoken:D 260
\uptex_kchar:D 260
\uptex_kchardef:D 261, 351
\uptex_kuten:D 261
\uptex_ucs:D 261

\Uradical . 259
\Uroot . 259
use commands:

\use:c 18,
18, 18, 18, 268, 268, 272, 272, 274,
279, 279, 279, 279, 313, 314, 355,
366, 366, 369, 369, 369, 369, 369,
369, 375, 429, 429, 516, 517, 517,
517, 517, 518, 518, 519, 539, 539,
545, 545, 578, 790, 801, 802, 802, 802

\use:f . 615
\use:n 19, 19, 95, 225,

268, 268, 273, 285, 331, 333, 392,
393, 394, 404, 413, 431, 433, 433,
433, 464, 482, 482, 528, 528, 528,
571, 596, 596, 596, 597, 597, 598,
619, 790, 792, 824, 824, 824, 824,
824, 825, 825, 825, 825, 825, 826, 826

\use:nn 19, 19, 268, 268,
293, 347, 375, 393, 463, 619, 725, 797

\use:nnn 19, 19, 268, 268, 286
\use:nnnn 19, 19, 268, 268
\use:x 21, 21, 268, 268, 268,

272, 274, 277, 302, 302, 304, 307,
336, 338, 339, 340, 370, 378, 390,
394, 429, 481, 516, 516, 523, 523,
530, 556, 560, 568, 576, 593, 616, 620

\use_i:nn 20, 20, 20, 266, 266,
268, 268, 270, 270, 273, 278, 279,
286, 307, 313, 313, 314, 314, 314,
315, 315, 410, 437, 438, 470, 470,
592, 593, 619, 638, 638, 639, 669,
691, 701, 720, 725, 732, 735, 745,
748, 752, 753, 753, 805, 806, 807,
824, 824, 824, 824, 825, 825, 825, 826

\use_i:nnn 20,
20, 20, 269, 269, 277, 347, 444, 668

\use_i:nnnn
. . . 20, 20, 20, 269, 269, 669, 669, 675

\use_i_delimit_by_q_nil:nw
. 21, 21, 269, 269

\use_i_delimit_by_q_recursion_-
stop:nw . . 21, 21, 269, 269, 322,
322, 790, 791, 800, 804, 804, 818, 819

\use_i_delimit_by_q_stop:nw
. 21, 21, 269, 269,
422, 422, 426, 427, 427, 427, 427, 466

\use_i_ii:nnn
. 20, 20, 269, 269, 294, 444, 447

\use_ii:nn . . . 20, 20, 44, 253, 253,
266, 266, 268, 268, 270, 270, 273,
278, 279, 286, 290, 313, 314, 314,
314, 394, 410, 470, 470, 592, 638,
638, 639, 669, 721, 732, 735, 745,
748, 752, 753, 753, 764, 764, 801,
805, 805, 806, 819, 824, 825, 825, 826

\use_ii:nnn 20,
20, 269, 269, 277, 348, 530, 535, 535

\use_ii:nnnn 20, 20, 269, 269
\use_iii:nnn 20,

20, 269, 269, 290, 348, 592, 592, 592
\use_iii:nnnn 20, 20, 269, 269
\use_iv:nnnn 20, 20, 269, 269
\use_none:n 21, 21, 24, 108, 253, 253,

269, 269, 273, 280, 280, 280, 285,
286, 322, 322, 341, 363, 363, 398,
399, 399, 406, 406, 407, 410, 411,
413, 413, 413, 413, 414, 414, 414,
431, 434, 446, 447, 447, 453, 456,
456, 459, 460, 460, 513, 514, 524,
524, 534, 534, 535, 542, 575, 575,
576, 589, 590, 590, 590, 593, 594,
611, 611, 612, 612, 636, 642, 642,
643, 643, 643, 644, 645, 646, 647,
648, 669, 669, 709, 738, 765, 793,
793, 795, 808, 824, 824, 824, 824,
824, 825, 825, 825, 825, 825, 826, 826

\use_none:nn
. 21, 269, 269, 271, 272, 397, 398,
402, 402, 406, 411, 411, 412, 412,
440, 443, 443, 444, 444, 444, 444,
461, 555, 555, 586, 589, 589, 590, 590

\use_none:nnn 21, 269,
269, 412, 412, 535, 589, 589, 590, 590

Index 940

\use_none:nnnn
. 21, 269, 269, 303, 306, 306, 360

\use_none:nnnnn 21,
269, 269, 269, 596, 597, 597, 598, 598

\use_none:nnnnnn . . . 21, 269, 269, 275
\use_none:nnnnnnn 21, 269, 269, 272,

272, 596, 597, 597, 598, 598, 606, 670
\use_none:nnnnnnnn 21, 269, 269
\use_none:nnnnnnnnn 21, 269, 269
\use_none_delimit_by_q_nil:w . . .

. 21, 21, 269, 269
\use_none_delimit_by_q_recursion_-

stop:w 21, 21,
48, 48, 48, 48, 269, 269, 272, 274,
274, 274, 303, 304, 322, 322, 390, 434

\use_none_delimit_by_q_stop:w . . .
. 21, 21, 269, 269, 325,
356, 375, 422, 422, 427, 458, 458,
459, 466, 466, 520, 578, 790, 822, 822

__use_none_delimit_by_s__stop:w
. 50, 50, 50, 325, 325

\useboxresource 257
\useimageresource 257
\Uskewed . 259
\Uskewedwithdelims 259
\Ustack . 259
\Ustartdisplaymath 260
\Ustartmath . 260
\Ustopdisplaymath 260
\Ustopmath . 260
\Usubscript . 260
\Usuperscript 260
utex commands:

\utex_binbinspacing:D 257
\utex_binclosespacing:D 257
\utex_bininnerspacing:D 257
\utex_binopenspacing:D 257
\utex_binopspacing:D 257
\utex_binordspacing:D 257
\utex_binpunctspacing:D 257
\utex_binrelspacing:D 257
\utex_char:D 257,

262, 429, 429, 429, 431, 432, 432,
432, 432, 432, 432, 433, 433, 433,
802, 802, 806, 811, 811, 811, 811,
811, 811, 811, 811, 812, 812, 812,
812, 812, 812, 812, 812, 812, 812, 812

\utex_charcat:D 257, 330, 331
\utex_closebinspacing:D 257
\utex_closeclosespacing:D 257

\utex_closeinnerspacing:D 257
\utex_closeopenspacing:D 257
\utex_closeopspacing:D 257
\utex_closeordspacing:D 257
\utex_closepunctspacing:D 257
\utex_closerelspacing:D 257
\utex_connectoroverlapmin:D . . . 258
\utex_delcode:D 257, 263
\utex_delcodenum:D 257, 263
\utex_delimiter:D 257, 263
\utex_delimiterover:D 257
\utex_delimiterunder:D 257
\utex_fractiondelsize:D 258
\utex_fractiondenomdown:D 258
\utex_fractiondenomvgap:D 258
\utex_fractionnumup:D 258
\utex_fractionnumvgap:D 258
\utex_fractionrule:D 258
\utex_hextensible:D 257
\utex_innerbinspacing:D 258
\utex_innerclosespacing:D 258
\utex_innerinnerspacing:D 258
\utex_inneropenspacing:D 258
\utex_inneropspacing:D 258
\utex_innerordspacing:D 258
\utex_innerpunctspacing:D 258
\utex_innerrelspacing:D 258
\utex_limitabovebgap:D 258
\utex_limitabovekern:D 258
\utex_limitabovevgap:D 258
\utex_limitbelowbgap:D 258
\utex_limitbelowkern:D 258
\utex_limitbelowvgap:D 258
\utex_mathaccent:D 257, 263
\utex_mathaxis:D 257
\utex_mathchar:D 257, 263
\utex_mathcharclass:D 257
\utex_mathchardef:D 257, 263
\utex_mathcharfam:D 257
\utex_mathcharnum:D 257, 263
\utex_mathcharnumdef:D 257, 263
\utex_mathcharslot:D 257
\utex_mathcode:D 257, 263
\utex_mathcodenum:D 257, 263
\utex_opbinspacing:D 258
\utex_opclosespacing:D 258
\utex_openbinspacing:D 258
\utex_openclosespacing:D 258
\utex_openinnerspacing:D 258
\utex_openopenspacing:D 258

Index 941

\utex_openopspacing:D 258
\utex_openordspacing:D 258
\utex_openpunctspacing:D 258
\utex_openrelspacing:D 258
\utex_operatorsize:D 258
\utex_opinnerspacing:D 258
\utex_opopenspacing:D 258
\utex_opopspacing:D 258
\utex_opordspacing:D 258
\utex_oppunctspacing:D 258
\utex_oprelspacing:D 258
\utex_ordbinspacing:D 258
\utex_ordclosespacing:D 258
\utex_ordinnerspacing:D 258
\utex_ordopenspacing:D 258
\utex_ordopspacing:D 258
\utex_ordordspacing:D 258
\utex_ordpunctspacing:D 258
\utex_ordrelspacing:D 258
\utex_overbarkern:D 258
\utex_overbarrule:D 258
\utex_overbarvgap:D 258
\utex_overdelimiter:D 259
\utex_overdelimiterbgap:D 258
\utex_overdelimitervgap:D 259
\utex_punctbinspacing:D 259
\utex_punctclosespacing:D 259
\utex_punctinnerspacing:D 259
\utex_punctopenspacing:D 259
\utex_punctopspacing:D 259
\utex_punctordspacing:D 259
\utex_punctpunctspacing:D 259
\utex_punctrelspacing:D 259
\utex_quad:D 259
\utex_radical:D 259
\utex_radicaldegreeafter:D 259
\utex_radicaldegreebefore:D . . . 259
\utex_radicaldegreeraise:D 259
\utex_radicalkern:D 259
\utex_radicalrule:D 259
\utex_radicalvgap:D 259
\utex_relbinspacing:D 259
\utex_relclosespacing:D 259
\utex_relinnerspacing:D 259
\utex_relopenspacing:D 259
\utex_relopspacing:D 259
\utex_relordspacing:D 259
\utex_relpunctspacing:D 259
\utex_relrelspacing:D 259
\utex_root:D 259

\utex_skewed:D 259
\utex_skewedfractionhgap:D 259
\utex_skewedfractionvgap:D 259
\utex_skewedwithdelims:D 259
\utex_spaceafterscript:D 259
\utex_stack:D 259
\utex_stackdenomdown:D 259
\utex_stacknumup:D 259
\utex_stackvgap:D 259
\utex_startdisplaymath:D 260
\utex_startmath:D 260
\utex_stopdisplaymath:D 260
\utex_stopmath:D 260
\utex_subscript:D 260
\utex_subshiftdown:D 259
\utex_subshiftdrop:D 259
\utex_subsupshiftdown:D 259
\utex_subsupvgap:D 259
\utex_subtopmax:D 259
\utex_supbottommin:D 259
\utex_superscript:D 260
\utex_supshiftdrop:D 259
\utex_supshiftup:D 259
\utex_supsubbottommax:D 259
\utex_underbarkern:D 259
\utex_underbarrule:D 259
\utex_underbarvgap:D 259
\utex_underdelimiter:D 260
\utex_underdelimiterbgap:D 259
\utex_underdelimitervgap:D 259
\utex_vextensible:D 260

\Uunderdelimiter 260
\Uvextensible 260

V
\v . 817
\vadjust . 248
\valign . 248
value commands:

.value_forbidden: 558

.value_forbidden:n 176, 549

.value_required: 558

.value_required:n 176, 549
\vbadness . 248
\vbox . 248
vbox commands:

\vbox:n 152, 152, 483, 483
\vbox_gset:cn 484
\vbox_gset:cw 484
\vbox_gset:Nn 153, 484, 484, 484

Index 942

\vbox_gset:Nw 153, 484, 484, 484
\vbox_gset_end: 153, 484, 485
\vbox_gset_to_ht:cnn 484
\vbox_gset_to_ht:Nnn 153, 484, 484, 484
\vbox_gset_top:cn 484
\vbox_gset_top:Nn . . 153, 484, 484, 484
\vbox_set:cn 484
\vbox_set:cw 484
\vbox_set:Nn

153, 153, 153, 484, 484, 484, 484, 489
\vbox_set:Nw

. . . . 153, 153, 484, 484, 484, 484, 490
\vbox_set_end:

. 153, 153, 484, 485, 485, 490
\vbox_set_split_to_ht:NNn

. 153, 153, 485, 485
\vbox_set_to_ht:cnn 484
\vbox_set_to_ht:Nnn

. 153, 153, 484, 484, 484, 484
\vbox_set_top:cn 484
\vbox_set_top:Nn

153, 153, 484, 484, 484, 484, 489, 490
\vbox_to_ht:nn 152, 152, 484, 484, 484
\vbox_to_zero:n 152, 152, 484, 484, 484
\vbox_top:n 152, 152, 483, 483
\vbox_unpack:c 485
\vbox_unpack:N

153, 153, 153, 485, 485, 485, 489, 490
\vbox_unpack_clear:c 485
\vbox_unpack_clear:N 153, 485, 485, 485

\vcenter . 248
vcoffin commands:

\vcoffin_set:cnn 488
\vcoffin_set:cnw 490
\vcoffin_set:Nnn 156, 156, 488, 489, 489
\vcoffin_set:Nnw 156, 156, 490, 490, 490
\vcoffin_set_end:

. 156, 156, 490, 490, 490
\vfil . 248
\vfill . 248
\vfilneg . 248
\vfuzz . 248
\voffset . 248
void commands:

\c_void_box 147
\vpack . 256
\vrule . 248
\vsize . 248
\vskip . 248
\vsplit . 249

\vss . 249
\vtop . 249

W
\wd . 249
\widowpenalties 250
\widowpenalty 249
\write . 249

X
\xdef . 249
xetex commands:

\xetex_... 9
\xetex_charclass:D 253
\xetex_charglyph:D 253
\xetex_countfeatures:D 253
\xetex_countglyphs:D 253
\xetex_countselectors:D 253
\xetex_countvariations:D 253
\xetex_dashbreakstate:D 253
\xetex_defaultencoding:D 253
\xetex_featurecode:D 253
\xetex_featurename:D 253
\xetex_findfeaturebyname:D 253
\xetex_findselectorbyname:D . . . 253
\xetex_findvariationbyname:D . . 253
\xetex_firstfontchar:D 253
\xetex_fonttype:D 253
\xetex_generateactualtext:D . . . 253
\xetex_glyph:D 254
\xetex_glyphbounds:D 254
\xetex_glyphindex:D 254
\xetex_glyphname:D 254
\xetex_if_engine: 826
\xetex_if_engine:TF 5
\xetex_inputencoding:D 254
\xetex_inputnormalization:D . . . 254
\xetex_interchartokenstate:D . . 254
\xetex_interchartoks:D 254
\xetex_isdefaultselector:D 254
\xetex_isexclusivefeature:D . . . 254
\xetex_lastfontchar:D 254
\xetex_linebreaklocale:D 254
\xetex_linebreakpenalty:D 254
\xetex_linebreakskip:D 254
\xetex_OTcountfeatures:D 254
\xetex_OTcountlanguages:D 254
\xetex_OTcountscripts:D 254
\xetex_OTfeaturetag:D 254
\xetex_OTlanguagetag:D 254

Index 943

\xetex_OTscripttag:D 254
\xetex_pdffile:D 254
\xetex_pdfpagecount:D 254
\xetex_picfile:D 254
\xetex_selectorname:D 254
\xetex_suppressfontnotfounderror:D

. 253, 262
\xetex_tracingfonts:D 254
\xetex_upwardsmode:D 254
\xetex_useglyphmetrics:D 254
\xetex_variation:D 254
\xetex_variationdefault:D 254
\xetex_variationmax:D 254
\xetex_variationmin:D 254
\xetex_variationname:D 254
\xetex_XeTeXrevision:D 254
\xetex_XeTeXversion:D . 254, 351, 825

\XeTeXcharclass 253
\XeTeXcharglyph 253
\XeTeXcountfeatures 253
\XeTeXcountglyphs 253
\XeTeXcountselectors 253
\XeTeXcountvariations 253
\XeTeXdashbreakstate 253
\XeTeXdefaultencoding 253
\XeTeXdelcode 263, 263
\XeTeXdelcodenum 263
\XeTeXdelimiter 263
\XeTeXfeaturecode 253
\XeTeXfeaturename 253
\XeTeXfindfeaturebyname 253
\XeTeXfindselectorbyname 253
\XeTeXfindvariationbyname 253
\XeTeXfirstfontchar 253
\XeTeXfonttype 253
\XeTeXgenerateactualtext 253
\XeTeXglyph . 254
\XeTeXglyphbounds 254
\XeTeXglyphindex 254
\XeTeXglyphname 254
\XeTeXinputencoding 254
\XeTeXinputnormalization 254
\XeTeXinterchartokenstate 254
\XeTeXinterchartoks 254
\XeTeXisdefaultselector 254
\XeTeXisexclusivefeature 254
\XeTeXlastfontchar 254
\XeTeXlinebreaklocale 254
\XeTeXlinebreakpenalty 254
\XeTeXlinebreakskip 254

\XeTeXmathaccent 263
\XeTeXmathchar 263
\XeTeXmathchardef 263
\XeTeXmathcharnum 263
\XeTeXmathcharnumdef 263
\XeTeXmathcode 263
\XeTeXmathcodenum 263
\XeTeXOTcountfeatures 254
\XeTeXOTcountlanguages 254
\XeTeXOTcountscripts 254
\XeTeXOTfeaturetag 254
\XeTeXOTlanguagetag 254
\XeTeXOTscripttag 254
\XeTeXpdffile 254
\XeTeXpdfpagecount 254
\XeTeXpicfile 254
\XeTeXrevision 254
\XeTeXselectorname 254
\XeTeXtracingfonts 254
\XeTeXupwardsmode 254
\XeTeXuseglyphmetrics 254
\XeTeXvariation 254
\XeTeXvariationdefault 254
\XeTeXvariationmax 254
\XeTeXvariationmin 254
\XeTeXvariationname 254
\XeTeXversion 254
\xkanjiskip . 260
\xleaders . 249
\xspaceskip . 249
\xspcode . 260

Y
\ybaselineshift 260
\year . 249
\yoko . 260

Z
zero commands:

\c_zero 77, 266, 266,
267, 276, 276, 276, 276, 276, 276,
300, 300, 320, 320, 326, 326, 329,
330, 337, 350, 352, 352, 354, 354,
354, 359, 359, 363, 363, 369, 369,
370, 378, 382, 394, 415, 418, 419,
419, 419, 422, 424, 424, 425, 426,
431, 432, 432, 433, 433, 433, 446,
466, 466, 467, 481, 481, 560, 564,
569, 584, 592, 593, 600, 601, 601,
601, 601, 601, 601, 601, 601, 601,

Index 944

601, 602, 602, 602, 602, 603, 603,
603, 603, 603, 604, 604, 604, 606,
606, 609, 609, 609, 620, 621, 624,
625, 627, 628, 629, 629, 629, 631,
631, 631, 632, 633, 634, 635, 636,
641, 642, 647, 647, 647, 647, 647,
647, 647, 647, 647, 647, 647, 647,
647, 649, 654, 659, 659, 659, 669,
682, 689, 690, 690, 690, 690, 719,
719, 719, 720, 721, 721, 727, 727,
727, 728, 729, 730, 731, 731, 731,
731, 732, 733, 736, 744, 749, 749,
749, 751, 751, 751, 760, 760, 796, 825

\c_zero_dim 87, 372,
380, 380, 383, 483, 484, 495, 495,
495, 495, 496, 496, 496, 496, 498,
498, 498, 776, 777, 777, 777, 777,
778, 778, 778, 778, 778, 778, 779, 834

\c_zero_fp
199, 583, 583, 584, 637, 649, 649,

658, 662, 666, 672, 720, 726, 727,
756, 763, 765, 766, 766, 766, 770,
770, 770, 776, 776, 785, 834, 834, 835

\c_zero_muskip 93, 384, 386, 386
\c_zero_skip 90, 380, 383, 383, 794, 794

	Contents
	I Introduction to expl3 and this document
	1 Naming functions and variables
	1.1 Terminological inexactitude

	2 Documentation conventions
	3 Formal language conventions which apply generally
	4 TeX concepts not supported by LaTeX3

	II The l3bootstrap package Bootstrap code
	1 Using the LaTeX3 modules
	1.1 Internal functions and variables

	III The l3names package Namespace for primitives
	1 Setting up the LaTeX3 programming language

	IV The l3basics package Basic definitions
	1 No operation functions
	2 Grouping material
	3 Control sequences and functions
	3.1 Defining functions
	3.2 Defining new functions using parameter text
	3.3 Defining new functions using the signature
	3.4 Copying control sequences
	3.5 Deleting control sequences
	3.6 Showing control sequences
	3.7 Converting to and from control sequences

	4 Using or removing tokens and arguments
	4.1 Selecting tokens from delimited arguments

	5 Predicates and conditionals
	5.1 Tests on control sequences
	5.2 Primitive conditionals

	6 Internal kernel functions

	V The l3expan package Argument expansion
	1 Defining new variants
	2 Methods for defining variants
	3 Introducing the variants
	4 Manipulating the first argument
	5 Manipulating two arguments
	6 Manipulating three arguments
	7 Unbraced expansion
	8 Preventing expansion
	9 Controlled expansion
	10 Internal functions and variables

	VI The l3prg package Control structures
	1 Defining a set of conditional functions
	2 The boolean data type
	3 Boolean expressions
	4 Logical loops
	5 Producing multiple copies
	6 Detecting TeX's mode
	7 Primitive conditionals
	8 Internal programming functions

	VII The l3quark package Quarks
	1 Introduction to quarks and scan marks
	1.1 Quarks

	2 Defining quarks
	3 Quark tests
	4 Recursion
	5 An example of recursion with quarks
	6 Internal quark functions
	7 Scan marks

	VIII The l3token package Token manipulation
	1 All possible tokens
	2 Creating character tokens
	3 Manipulating and interrogating character tokens
	4 Generic tokens
	5 Converting tokens
	6 Token conditionals
	7 Peeking ahead at the next token
	8 Decomposing a macro definition
	9 Internal functions

	IX The l3int package Integers
	1 Integer expressions
	2 Creating and initialising integers
	3 Setting and incrementing integers
	4 Using integers
	5 Integer expression conditionals
	6 Integer expression loops
	7 Integer step functions
	8 Formatting integers
	9 Converting from other formats to integers
	10 Viewing integers
	11 Constant integers
	12 Scratch integers
	13 Primitive conditionals
	14 Internal functions

	X The l3skip package Dimensions and skips
	1 Creating and initialising dim variables
	2 Setting dim variables
	3 Utilities for dimension calculations
	4 Dimension expression conditionals
	5 Dimension expression loops
	6 Using dim expressions and variables
	7 Viewing dim variables
	8 Constant dimensions
	9 Scratch dimensions
	10 Creating and initialising skip variables
	11 Setting skip variables
	12 Skip expression conditionals
	13 Using skip expressions and variables
	14 Viewing skip variables
	15 Constant skips
	16 Scratch skips
	17 Inserting skips into the output
	18 Creating and initialising muskip variables
	19 Setting muskip variables
	20 Using muskip expressions and variables
	21 Viewing muskip variables
	22 Constant muskips
	23 Scratch muskips
	24 Primitive conditional
	25 Internal functions

	XI The l3tl package Token lists
	1 Creating and initialising token list variables
	2 Adding data to token list variables
	3 Modifying token list variables
	4 Reassigning token list category codes
	5 Token list conditionals
	6 Mapping to token lists
	7 Using token lists
	8 Working with the content of token lists
	9 The first token from a token list
	10 Using a single item
	11 Viewing token lists
	12 Constant token lists
	13 Scratch token lists
	14 Internal functions

	XII The l3str packageStrings
	1 Building strings
	2 Adding data to string variables
	2.1 String conditionals

	3 Working with the content of strings
	4 String manipulation
	5 Viewing strings
	6 Constant token lists
	7 Scratch strings
	7.1 Internal string functions

	XIII The l3seq package Sequences and stacks
	1 Creating and initialising sequences
	2 Appending data to sequences
	3 Recovering items from sequences
	4 Recovering values from sequences with branching
	5 Modifying sequences
	6 Sequence conditionals
	7 Mapping to sequences
	8 Using the content of sequences directly
	9 Sequences as stacks
	10 Sequences as sets
	11 Constant and scratch sequences
	12 Viewing sequences
	13 Internal sequence functions

	XIV The l3clist package Comma separated lists
	1 Creating and initialising comma lists
	2 Adding data to comma lists
	3 Modifying comma lists
	4 Comma list conditionals
	5 Mapping to comma lists
	6 Using the content of comma lists directly
	7 Comma lists as stacks
	8 Using a single item
	9 Viewing comma lists
	10 Constant and scratch comma lists

	XV The l3prop package Property lists
	1 Creating and initialising property lists
	2 Adding entries to property lists
	3 Recovering values from property lists
	4 Modifying property lists
	5 Property list conditionals
	6 Recovering values from property lists with branching
	7 Mapping to property lists
	8 Viewing property lists
	9 Scratch property lists
	10 Constants
	11 Internal property list functions

	XVI The l3box package Boxes
	1 Creating and initialising boxes
	2 Using boxes
	3 Measuring and setting box dimensions
	4 Box conditionals
	5 The last box inserted
	6 Constant boxes
	7 Scratch boxes
	8 Viewing box contents
	9 Horizontal mode boxes
	10 Vertical mode boxes
	11 Primitive box conditionals

	XVII The l3coffins package Coffin code layer
	1 Creating and initialising coffins
	2 Setting coffin content and poles
	3 Joining and using coffins
	4 Measuring coffins
	5 Coffin diagnostics
	5.1 Constants and variables

	XVIII The l3color package Color support
	1 Color in boxes

	XIX The l3msg package Messages
	1 Creating new messages
	2 Contextual information for messages
	3 Issuing messages
	4 Redirecting messages
	5 Low-level message functions
	6 Kernel-specific functions
	7 Expandable errors
	8 Internal l3msg functions

	XX The l3keys package Key–value interfaces
	1 Creating keys
	2 Sub-dividing keys
	3 Choice and multiple choice keys
	4 Setting keys
	5 Handling of unknown keys
	6 Selective key setting
	7 Utility functions for keys
	8 Low-level interface for parsing key–val lists

	XXI The l3file package File and I/O operations
	1 File operation functions
	1.1 Input–output stream management
	1.2 Reading from files

	2 Writing to files
	2.1 Wrapping lines in output
	2.2 Constant input–output streams
	2.3 Primitive conditionals
	2.4 Internal file functions and variables
	2.5 Internal input–output functions

	XXII The l3fp package: floating points
	1 Creating and initialising floating point variables
	2 Setting floating point variables
	3 Using floating point numbers
	4 Floating point conditionals
	5 Floating point expression loops
	6 Some useful constants, and scratch variables
	7 Floating point exceptions
	8 Viewing floating points
	9 Floating point expressions
	9.1 Input of floating point numbers
	9.2 Precedence of operators
	9.3 Operations

	10 Disclaimer and roadmap

	XXIII The l3candidates package Experimental additions to l3kernel
	1 Important notice
	2 Additions to l3basics
	3 Additions to l3box
	3.1 Affine transformations
	3.2 Viewing part of a box
	3.3 Internal variables

	4 Additions to l3clist
	5 Additions to l3coffins
	6 Additions to l3file
	7 Additions to l3fp
	8 Additions to l3int
	9 Additions to l3keys
	10 Additions to l3msg
	11 Additions to l3prg
	12 Additions to l3prop
	13 Additions to l3seq
	14 Additions to l3skip
	15 Additions to l3tl
	16 Additions to l3tokens

	XXIV The l3sys packageSystem/runtime functions
	1 The name of the job
	2 Date and time
	2.1 Engine
	2.2 Output format

	XXV The l3luatex packageLuaTeX-specific functions
	1 Breaking out to Lua
	1.1 TeX code interfaces
	1.2 Lua interfaces

	XXVI The l3drivers package Drivers
	1 Box clipping
	2 Box rotation and scaling
	3 Color support

	XXVII Implementation
	1 l3bootstrap implementation
	1.1 Format-specific code
	1.2 The pdfstrcmp primitive in XeTeX
	1.3 Loading support Lua code
	1.4 Engine requirements
	1.5 Extending allocators
	1.6 Character data
	1.7 The LaTeX3 code environment

	2 l3names implementation
	3 l3basics implementation
	3.1 Renaming some TeX primitives (again)
	3.2 Defining some constants
	3.3 Defining functions
	3.4 Selecting tokens
	3.5 Gobbling tokens from input
	3.6 Conditional processing and definitions
	3.7 Dissecting a control sequence
	3.8 Exist or free
	3.9 Defining and checking (new) functions
	3.10 More new definitions
	3.11 Copying definitions
	3.12 Undefining functions
	3.13 Generating parameter text from argument count
	3.14 Defining functions from a given number of arguments
	3.15 Using the signature to define functions
	3.16 Checking control sequence equality
	3.17 Diagnostic functions
	3.18 Doing nothing functions
	3.19 Breaking out of mapping functions

	4 l3expan implementation
	4.1 General expansion
	4.2 Hand-tuned definitions
	4.3 Definitions with the automated technique
	4.4 Last-unbraced versions
	4.5 Preventing expansion
	4.6 Controlled expansion
	4.7 Defining function variants

	5 l3prg implementation
	5.1 Primitive conditionals
	5.2 Defining a set of conditional functions
	5.3 The boolean data type
	5.4 Boolean expressions
	5.5 Logical loops
	5.6 Producing multiple copies
	5.7 Detecting TeX's mode
	5.8 Internal programming functions
	5.9 Deprecated functions

	6 l3quark implementation
	6.1 Quarks
	6.2 Scan marks

	7 l3token implementation
	8 Manipulating and interrogating character tokens
	9 Creating character tokens
	9.1 Generic tokens
	9.2 Token conditionals
	9.3 Peeking ahead at the next token
	9.4 Decomposing a macro definition

	10 l3int implementation
	10.1 Integer expressions
	10.2 Creating and initialising integers
	10.3 Setting and incrementing integers
	10.4 Using integers
	10.5 Integer expression conditionals
	10.6 Integer expression loops
	10.7 Integer step functions
	10.8 Formatting integers
	10.9 Converting from other formats to integers
	10.10 Viewing integer
	10.11 Constant integers
	10.12 Scratch integers

	11 l3skip implementation
	11.1 Length primitives renamed
	11.2 Creating and initialising dim variables
	11.3 Setting dim variables
	11.4 Utilities for dimension calculations
	11.5 Dimension expression conditionals
	11.6 Dimension expression loops
	11.7 Using dim expressions and variables
	11.8 Viewing dim variables
	11.9 Constant dimensions
	11.10 Scratch dimensions
	11.11 Creating and initialising skip variables
	11.12 Setting skip variables
	11.13 Skip expression conditionals
	11.14 Using skip expressions and variables
	11.15 Inserting skips into the output
	11.16 Viewing skip variables
	11.17 Constant skips
	11.18 Scratch skips
	11.19 Creating and initialising muskip variables
	11.20 Setting muskip variables
	11.21 Using muskip expressions and variables
	11.22 Viewing muskip variables
	11.23 Constant muskips
	11.24 Scratch muskips

	12 l3tl implementation
	12.1 Functions
	12.2 Constant token lists
	12.3 Adding to token list variables
	12.4 Reassigning token list category codes
	12.5 Modifying token list variables
	12.6 Token list conditionals
	12.7 Mapping to token lists
	12.8 Using token lists
	12.9 Working with the contents of token lists
	12.10 Token by token changes
	12.11 The first token from a token list
	12.12 Using a single item
	12.13 Viewing token lists
	12.14 Scratch token lists
	12.15 Deprecated functions

	13 l3str implementation
	13.1 Creating and setting string variables
	13.2 String comparisons
	13.3 Accessing specific characters in a string
	13.4 Counting characters
	13.5 The first character in a string
	13.6 String manipulation
	13.7 Viewing strings
	13.8 Unicode data for case changing

	14 l3seq implementation
	14.1 Allocation and initialisation
	14.2 Appending data to either end
	14.3 Modifying sequences
	14.4 Sequence conditionals
	14.5 Recovering data from sequences
	14.6 Mapping to sequences
	14.7 Using sequences
	14.8 Sequence stacks
	14.9 Viewing sequences
	14.10 Scratch sequences

	15 l3clist implementation
	15.1 Allocation and initialisation
	15.2 Removing spaces around items
	15.3 Adding data to comma lists
	15.4 Comma lists as stacks
	15.5 Modifying comma lists
	15.6 Comma list conditionals
	15.7 Mapping to comma lists
	15.8 Using comma lists
	15.9 Using a single item
	15.10 Viewing comma lists
	15.11 Scratch comma lists

	16 l3prop implementation
	16.1 Allocation and initialisation
	16.2 Accessing data in property lists
	16.3 Property list conditionals
	16.4 Recovering values from property lists with branching
	16.5 Mapping to property lists
	16.6 Viewing property lists

	17 l3box implementation
	17.1 Creating and initialising boxes
	17.2 Measuring and setting box dimensions
	17.3 Using boxes
	17.4 Box conditionals
	17.5 The last box inserted
	17.6 Constant boxes
	17.7 Scratch boxes
	17.8 Viewing box contents
	17.9 Horizontal mode boxes
	17.10 Vertical mode boxes

	18 l3coffins Implementation
	18.1 Coffins: data structures and general variables
	18.2 Basic coffin functions
	18.3 Measuring coffins
	18.4 Coffins: handle and pole management
	18.5 Coffins: calculation of pole intersections
	18.6 Aligning and typesetting of coffins
	18.7 Coffin diagnostics
	18.8 Messages

	19 l3color Implementation
	20 l3msg implementation
	20.1 Creating messages
	20.2 Messages: support functions and text
	20.3 Showing messages: low level mechanism
	20.4 Displaying messages
	20.5 Kernel-specific functions
	20.6 Expandable errors
	20.7 Showing variables

	21 l3keys Implementation
	21.1 Low-level interface
	21.2 Constants and variables
	21.3 The key defining mechanism
	21.4 Turning properties into actions
	21.5 Creating key properties
	21.6 Setting keys
	21.7 Utilities
	21.8 Messages
	21.9 Deprecated functions

	22 l3file implementation
	22.1 File operations
	22.2 Input operations
	22.2.1 Variables and constants
	22.2.2 Stream management
	22.2.3 Reading input

	22.3 Output operations
	22.3.1 Variables and constants

	22.4 Stream management
	22.4.1 Deferred writing
	22.4.2 Immediate writing
	22.4.3 Special characters for writing
	22.4.4 Hard-wrapping lines to a character count

	22.5 Messages

	23 l3fp implementation
	24 l3fp-aux implementation
	24.1 Internal representation
	24.2 Internal storage of floating points numbers
	24.3 Using arguments and semicolons
	24.4 Constants, and structure of floating points
	24.5 Overflow, underflow, and exact zero
	24.6 Expanding after a floating point number
	24.7 Packing digits
	24.8 Decimate (dividing by a power of 10)
	24.9 Functions for use within primitive conditional branches
	24.10 Small integer floating points
	24.11 Length of a floating point array
	24.12 x-like expansion expandably
	24.13 Messages

	25 l3fp-traps Implementation
	25.1 Flags
	25.2 Traps
	25.3 Errors
	25.4 Messages

	26 l3fp-round implementation
	26.1 Rounding tools
	26.2 The round function

	27 l3fp-parse implementation
	27.1 Work plan
	27.1.1 Storing results
	27.1.2 Precedence and infix operators
	27.1.3 Prefix operators, parentheses, and functions
	27.1.4 Numbers and reading tokens one by one

	27.2 Main auxiliary functions
	27.3 Helpers
	27.4 Parsing one number
	27.4.1 Numbers: trimming leading zeros
	27.4.2 Number: small significand
	27.4.3 Number: large significand
	27.4.4 Number: beyond 16 digits, rounding
	27.4.5 Number: finding the exponent

	27.5 Constants, functions and prefix operators
	27.5.1 Prefix operators
	27.5.2 Constants
	27.5.3 Functions

	27.6 Main functions
	27.7 Infix operators
	27.7.1 Closing parentheses and commas
	27.7.2 Usual infix operators
	27.7.3 Juxtaposition
	27.7.4 Multi-character cases
	27.7.5 Ternary operator
	27.7.6 Comparisons

	27.8 Candidate: defining new l3fp functions
	27.9 Messages

	28 l3fp-logic Implementation
	28.1 Syntax of internal functions
	28.2 Existence test
	28.3 Comparison
	28.4 Floating point expression loops
	28.5 Extrema
	28.6 Boolean operations
	28.7 Ternary operator

	29 l3fp-basics Implementation
	29.1 Common to several operations
	29.2 Addition and subtraction
	29.2.1 Sign, exponent, and special numbers
	29.2.2 Absolute addition
	29.2.3 Absolute subtraction

	29.3 Multiplication
	29.3.1 Signs, and special numbers
	29.3.2 Absolute multiplication

	29.4 Division
	29.4.1 Signs, and special numbers
	29.4.2 Work plan
	29.4.3 Implementing the significand division

	29.5 Square root
	29.6 Setting the sign

	30 l3fp-extended implementation
	30.1 Description of fixed point numbers
	30.2 Helpers for numbers with extended precision
	30.3 Multiplying a fixed point number by a short one
	30.4 Dividing a fixed point number by a small integer
	30.5 Adding and subtracting fixed points
	30.6 Multiplying fixed points
	30.7 Combining product and sum of fixed points
	30.8 Extended-precision floating point numbers
	30.9 Dividing extended-precision numbers
	30.10 Inverse square root of extended precision numbers
	30.11 Converting from fixed point to floating point

	31 l3fp-expo implementation
	31.1 Logarithm
	31.1.1 Work plan
	31.1.2 Some constants
	31.1.3 Sign, exponent, and special numbers
	31.1.4 Absolute ln

	31.2 Exponential
	31.2.1 Sign, exponent, and special numbers

	31.3 Power

	32 l3fp-trig Implementation
	32.1 Direct trigonometric functions
	32.1.1 Filtering special cases
	32.1.2 Distinguishing small and large arguments
	32.1.3 Small arguments
	32.1.4 Argument reduction in degrees
	32.1.5 Argument reduction in radians
	32.1.6 Computing the power series

	32.2 Inverse trigonometric functions
	32.2.1 Arctangent and arccotangent
	32.2.2 Arcsine and arccosine
	32.2.3 Arccosecant and arcsecant

	33 l3fp-convert implementation
	33.1 Trimming trailing zeros
	33.2 Scientific notation
	33.3 Decimal representation
	33.4 Token list representation
	33.5 Formatting
	33.6 Convert to dimension or integer
	33.7 Convert from a dimension
	33.8 Use and eval
	33.9 Convert an array of floating points to a comma list

	34 l3fp-assign implementation
	34.1 Assigning values
	34.2 Updating values
	34.3 Showing values
	34.4 Some useful constants and scratch variables

	35 l3candidates Implementation
	35.1 Additions to l3basics
	35.2 Additions to l3box
	35.3 Affine transformations
	35.4 Viewing part of a box
	35.5 Additions to l3clist
	35.6 Additions to l3coffins
	35.7 Rotating coffins
	35.8 Resizing coffins
	35.9 Coffin diagnostics
	35.10 Additions to l3file
	35.11 Additions to l3fp-assign
	35.12 Additions to l3int
	35.13 Additions to l3keys
	35.14 Additions to l3msg
	35.15 Additions to l3prg
	35.16 Additions to l3prop
	35.17 Additions to l3seq
	35.18 Additions to l3skip
	35.19 Additions to l3tl
	35.19.1 Unicode case changing

	35.20 Additions to l3tokens

	36 l3sys implementation
	36.1 The name of the job
	36.2 Time and date
	36.3 Detecting the engine
	36.4 Detecting the output
	36.5 Deprecated functions

	37 l3luatex implementation
	37.1 Breaking out to Lua
	37.2 Messages
	37.3 Lua functions for internal use
	37.4 Format mode code: font loader

	38 l3drivers Implementation
	38.1 Settings for direct PDF output
	38.2 Driver utility functions
	38.3 Box clipping
	38.4 Box rotation and scaling
	38.5 Color support

