
The LATEX3 kernel: style guide for code authors∗

The LATEX3 Project†

Released 2011/05/08

Contents

1 Introduction 1

2 Documentation style 1

3 Format of the code itself 2

4 Code conventions 3

1 Introduction

This document is intended as a style guide for authors of code and documentation for
the LATEX3 kernel. It covers both aspects of coding style and the formatting of the
sources. The aim of providing these guidelines is help ensure consistency of the code
and sources from different authors. Experience suggests that in the long-term this helps
with maintenance. There will of course be places where there are exceptions to these
guidelines: common sense should always be applied!

2 Documentation style

LATEX3 source and documentation should be written using the document class l3doc in
dtx format. This class provides a number of logical mark up elements, which should be
used where possible. In the main, this is standard LATEX practice, but there are a few
points to highlight:
∗This file describes v2328, last revised 2011/05/08.
†E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org


• Where possible, use \cs to mark up control sequences rather than using a verbatim
environment.

• Arguments which are given in braces should be marked using \Arg when code-level
functions are discussed, but using \marg for document functions.

• The names TEX, LATEX, etc. use the normal logical mark up followed by an empty
group ({}), with the exception of \LaTeX3, where the number should follow directly.

• Where in line verbatim text is used, it should be marked up using the |...|
construct (i.e. vertical bars delimit the verbatim text).

• In line quotes should be marked up using the \enquote function.

• Where numbers in the source have a mathematical meaning, they should be in-
cluded in math mode. Such in-line math mode material should be marked up using
$...$ and not \(...\).

Line length in the source files should to be under 80 characters where possible, as this
helps keep everything on the screen when editing files. In the dtx format, documentation
lines start with a %, which is usually followed by a space to leave a “comment margin” at
the start of each line.

As with code indenting (see later), nested environments and arguments should be in-
dented by (at least) two spaces to make the nature of the nesting clear. Thus for example
a typical arrangement for the function environment might be

\begin{function}{\seq_gclear:N,␣\seq_gclear:c}
␣␣\begin{syntax}
␣␣␣␣\cs{seq_gclear:N}␣\meta{sequence}
␣␣\end{syntax}
␣␣Clears␣all␣entries␣from␣the␣\meta{sequence}␣globally.
\end{function}

The “outer” %␣\begin{function} should have the customary space after the % character
at the start of the line.

In general, a single function or macro environment should be used for a group of closely-
related functions, for example argument specification variants. In such cases, a comma-
separated list should be used, as shown in the preceding example.

3 Format of the code itself

The requirement for less than 80 characters per line applies to the code itself as well
as the surrounding documentation. A number of the general style principals for LATEX3
code apply: these are described in the following paragraph and an example is then given.

2



With the exception of simple runs of parameter ({#1}, #1#2, etc.), everything should
divided up using spaces to make the code more readable. In general, these will be single
spaces, but in some places it makes more sense to align parts of the code to emphasise
similarity. (Tabs should not be used for introducing white space.)

Each conceptually-separate step in a function should be on a separate line, to make the
meaning clearer. Hence the false branch in the example uses two lines for the two
auxiliary function uses.

Within the definition, a two-space indent should be used to show each “level” of code.
Thus in the example \tl_if_empty:nTF is indented by two spaces, but the two branches
are indented by four spaces. Within the false branch, the need for multiple lines means
that an additional two-space indent should be used to show that these lines are all part
of the brace group.

The result of these lay-out conventions is code which will in general look like the example:

\cs_new_nopar:Npn␣\module_foo:nn␣#1#2
␣␣{
␣␣␣␣\tl_if_empty:nTF␣{#1}
␣␣␣␣␣␣{␣\module_foo_aux:n␣{␣X␣#2␣}␣}
␣␣␣␣␣␣{
␣␣␣␣␣␣␣␣\module_foo_aux:nn␣{#1}␣{#2}
␣␣␣␣␣␣␣␣\module_foo_aux:n␣{#1#2}
␣␣␣␣␣␣}
␣␣}

4 Code conventions

When using \cs_generate_variant:Nn, group related variants together to make the
pattern clearer. A common example is variants of a function which has an N-type first
argument:

\cs_generate_variant:Nn␣\foo:Nn␣{␣␣␣␣␣NV␣,␣No␣}
\cs_generate_variant:Nn␣\foo:Nn␣{␣c␣,␣cV␣,␣co␣}

There are cases where omitting braces from o-type arguments is desirable for performance
reasons. This should only be done if the argument is a single token, thus for example

\tl_set:No \l_some_tl \l_some_other_tl

remains clear and can be used where appropriate.

3


	Contents
	1 Introduction
	2 Documentation style
	3 Format of the code itself
	4 Code conventions

