
LATEX3 News
Issue 9, March 2014

Contents

Hiatus? 1

expl3 in the community 1

Logo for the LATEX3 Programming Language 2

Recent activity 2

Work in progress 2
Uppercasing and lowercasing 2
Space-skipping in xparse 3

. . . and for 2014 onwards 3

What can you do for The LATEX Project? 4
Programming Layer 4
Design Layer 4
Document Interface Layer 5
In Summary . 5
And something else 5

Hiatus?

Well, it’s been a busy couple of years. Work has slowed
on the LATEX3 codebase as all active members of the
team have been — shall we say — busily occupied with
more pressing concerns in their day-to-day activities.

Nonetheless, Joseph and Bruno have continued to
fine-tune the LATEX3 kernel and add-on packages.
Browsing through the commit history shows bug fixes
and improvements to documentation, test files, and in-
ternal code across the entire breadth of the codebase.

Members of the team have presented at two TUG
conferences since the last LATEX3 news. (Has it really
been so long?) In July 2012, Frank and Will travelled
to Boston; Frank discussed the challenges faced in the
past and continuing to the present day due to the limits
of the various TEX engines; and, Frank and Will to-
gether covered a brief history and recent developments
of the expl3 code.

In 2013, Joseph and Frank wrote a talk on complex
layouts, and the “layers” ideas discussed in LATEX3;
Frank went to Tokyo in October to present the work.
Slides of and recordings from these talks are available
on the LATEX3 website.

These conferences are good opportunities to intro-
duce the expl3 language to a wider group of people; in
many cases, explaining the rationale behind why expl3

looks a little strange at first helps to convince the audi-
ence that it’s not so weird after all. In our experience,
anyone that’s been exposed to some of the more awk-
ward expansion aspects of TEX programming appreci-
ates how expl3 makes life much easier for us.

expl3 in the community

While things have been slightly quieter for the team,
more and more people are adopting expl3 for their own
use. A search on the TEX Stack Exchange website for
either “expl3” or “latex3” at time of writing yield
around one thousand results each.

In order to help standardise the prefixes used in expl3
modules, we have developed a registration procedure
for package authors (which amounts to little more than
notifying us that their package uses a specific prefix,
which will often be the name of the package itself).
Please contact us via the latex-l mailing list to reg-
ister your module prefixes and package names; we ask
that you avoid using package names that begin with
l3... since expl3 packages use this internally. Some au-
thors have started using the package prefix lt3... as a
way of indicating their package builds on expl3 in some
way but is not maintained by the LATEX3 team.

In the prefix database at present, some thirty pack-
age prefixes are registered by fifteen separate individ-
uals (unrelated to The LATEX Project — the number of
course grows if you include packages by members of the
team). These packages cover a broad range of function-
ality:

acro Interface for creating (classes of) acronyms

hobby Hobby’s algorithm in PGF/TiKZ for drawing
optimally smooth curves.

chemmacros Typesetting in the field of chemistry.

classics Traditional-style citations for the classics.

conteq Continued (in)equalities in mathematics.

ctex A collection of macro packages and document
classes for Chinese typesetting.

endiagram Draw potential energy curve diagrams.

enotez Support for end-notes.

exsheets Question sheets and exams with metadata.

lt3graph A graph data structure.

newlfm The venerable class for memos and letters.

LATEX3 News, and the LATEX software, are brought to you by the LATEX Project Team; Copyright 2014, all rights reserved.

http://ctan.org/pkg/acro
http://ctan.org/pkg/hobby
http://ctan.org/pkg/chemmacros
http://ctan.org/pkg/classics
http://ctan.org/pkg/conteq
http://ctan.org/pkg/ctex
http://ctan.org/pkg/endiagram
http://ctan.org/pkg/enotez
http://ctan.org/pkg/exsheets
http://ctan.org/pkg/lt3graph
http://ctan.org/pkg/newlfm

fnpct Interaction between footnotes and punctuation.

GS1 Barcodes and so forth.

hobete Beamer theme for the Univ. of Hohenheim.

kantlipsum Generate sentences in Kant’s style.

lualatex-math Extended support for mathematics in
LuaLATEX.

media9 Multimedia inclusion for Adobe Reader.

pkgloader Managing the options and loading order of
other packages.

substances Lists of chemicals, etc., in a document.

withargs Ephemeral macro use.

xecjk Support for CJK documents in X ELATEX.

xpatch, regexpatch Patch command definitions.

xpeek Commands that peek ahead in the input stream.

xpinjin Automatically add pinyin to Chinese characters

zhnumber Typeset Chinese representations of numbers

zxjatype Standards-conforming typesetting of Japanese
for X ELATEX.

Some of these packages are marked by their authors as
experimental, but it is clear that these packages have
been developed to solve specific needs for typesetting
and document production.

The expl3 language has well and truly gained traction
after many years of waiting patiently.

A logo for the LATEX3 Programming Language

To show that expl3 is ready for general use Paulo
Cereda drew up a nice logo for us, showing a
hummingbird (agile and fast — but needs huge amounts
of energy) picking at “l3”. Big thanks to Paulo!

Recent activity

LATEX3 work has only slowed, not ground to a halt.
While changes have tended to be minor in recent times,
there are a number of improvements worth discussing
explicitly.

1. Bruno has extended the floating point code to
cover additional functions such as inverse trigono-
metric functions. These additions round out the
functionality well and make it viable for use in
most cases needing floating point mathematics.

2. Joseph’s refinement of the experimental galley code
now allows separation of paragraph shapes from
margins/cutouts. This still needs some testing!

3. For some time now expl3 has provided “native”
drivers although they have not been selected by
default in most cases. These have been revised to
improve robustness, which makes them probably
ready to enable by default. The improvements
made to the drivers have also fed back to more
“general” LATEX code.

Work in progress

We’re still actively discussing a variety of areas to
tackle next. We are aware of various “odds and ends”
in expl3 that still need sorting out. In particular, some
experimental functions have been working quite well
and it’s time to assess moving them into the “stable”
modules, in particular the l3str module for dealing with
catcode-twelve token lists more commonly known in
expl3 as strings.

Areas of active discussion including issues around up-
percasing and lowercasing (and the esoteric ways that
this can be achieved in TEX) and space skipping (or
not) in commands and environments with optional ar-
guments. These two issues are discussed next.

Uppercasing and lowercasing

The commands \tl_to_lowercase:n and
\tl_to_uppercase:n have long been overdue for a
good hard look. From a traditional TEX viewpoint,
these commands are simply the primitive \lowercase

and \uppercase, and in practice it’s well known that
there are various limitations and peculiarities associ-
ated with them. We know these commands are good, to
one extent or another, for three things:

1. Uppercasing text for typesetting purposes such as
all-uppercase titles.

2. Lowercasing text for normalisation in sorting and
other applications such as filename comparisons.

3. Achieving special effects, in concert with manipu-
lating \uccode and the like, such as defining com-
mands that contain characters with different cat-
codes than usual.

We are working on providing a set of commands to
achieve all three of these functions in a more direct and
easy-to-use fashion, including support for Unicode in
LuaLATEX and X ELATEX.

–2

http://ctan.org/pkg/fnpct
http://ctan.org/pkg/GS1
http://ctan.org/pkg/hobete
http://ctan.org/pkg/kantlipsum
http://ctan.org/pkg/lualatex-math
http://ctan.org/pkg/media9
http://ctan.org/pkg/pkgloader
http://ctan.org/pkg/substances
http://ctan.org/pkg/withargs
http://ctan.org/pkg/xecjk
http://ctan.org/pkg/xpatch
http://ctan.org/pkg/regexpatch
http://ctan.org/pkg/xpeek
http://ctan.org/pkg/xpinjin
http://ctan.org/pkg/zhnumber
http://ctan.org/pkg/zxjatype

Space-skipping in xparse

We have also re-considered the behaviour of space-
skipping in xparse. Consider the following examples:

\begin{dmath} \begin{dmath}[label=foo]

[x y z] = [1 2 3] x^2 + y^2 = z^2

\end{dmath} \end{dmath}

In the first case, we are typesetting some mathemat-
ics that contains square brackets. In the second, we are
assigning a label to the equation using an optional ar-
gument, which also uses brackets. The fact that both
work correctly is due to behaviour that is specifically
programmed into the workings of the dmath environ-
ment of breqn: spaces before an optional argument are
explicitly forbidden. At present, this is also how com-
mands and environments defined using xparse behave.
But consider a pgfplots environment:

\begin{pgfplot}

[

% plot options

]

\begin{axis}

[

% axis options

]

...

\end{axis}

\end{pgfplot}

This would seem like quite a natural way to write such
environments, but with the current state of xparse this
syntax would be incorrect. One would have to write
either of these instead:

\begin{pgfplot}%

[

% plot options

]

\begin{pgfplot}[

% plot options

]

Is this an acceptable compromise? We’re not entirely
sure here — we’re in a corner because the humble [has
ended up being part of both the syntax and semantics
of a LATEX document.

Despite the current design covering most regular use-
cases, we have considered adding a further option to
xparse to define the space-skipping behaviour as desired
by a package author. But at this very moment we’ve
rejected adding this additional complexity, because en-
vironments that change their parsing behaviour based
on their intended use make a LATEX-based language
more difficult to predict; one could imagine such be-
haviour causing difficulties down the road for automatic
syntax checkers and so forth. However, we don’t make
such decisions in a vacuum and we’re always happy to
continue to discuss such matters.

. . . and for 2014 onwards

There is one (understandable) misconception that
shows up once in a while with people claiming that

expl3 = LATEX3.

However, the correct relation would be a subset,

expl3 ⊂ LATEX3,

with expl3 forming the Core Language Layer on which
there will eventually be several other layers on top that
provide

� higher-level concepts for typesetting (Typesetting
Foundation Layer),

� a designer interface for specifying document struc-
tures and layouts (Designer Layer),

� and finally a Document Representation Layer that
implements document level syntax.

Of those four layers, the lowest one — expl3— is avail-
able for use and with xparse we have an instance of the
Document Representation Layer modeled largely after
LATEX 2ε syntax (there could be others). Both can be
successfully used within the current LATEX 2ε frame-
work and as mentioned above this is increasingly hap-
pening.

The middle layers, however, where the rubber meets
the road, are still at the level of prototypes and ideas
(templates, ldb, galley, xor and all the good stuff) that
need to be revised and further developed to arrive at a
LATEX3 environment that can stand on its own and that
is to where we want to return in 2014.

An overview on this can be found in the answer to
“What can *I* do to help The LATEX Project?” on
Stack Exchange,1 which is reproduced below in slightly
abridged form. This is of course not the first time that
we have discussed such matters, and you can find sim-
ilar material in other publications such as those at
http://latex-project.org; e.g., the architecture talk
given at the TUG 2011 conference.

1http://tex.stackexchange.com/questions/45838

–3

http://latex-project.org
http://tex.stackexchange.com/questions/45838

What can you do for The LATEX Project?

By Frank Mittelbach
My vision of LATEX3 is really a system with multiple

layers that provide interfaces for different kinds of roles.
These layers are

� the underlying engine (some TEX variant)

� the programming layer (the core language, i.e.,
expl3)

� the typesetting foundation layer (providing higher-
level concepts for typesetting)

� the typesetting element layer (templates for all
types of document elements)

� the designer interface foundation layer

� the class designer layer (where instances of docu-
ment elements with specific settings are defined)

� document representation layer (that provides the
input syntax, i.e., how the author uses elements)

If you look at it from the perspective of user roles
then there are at least three or four roles that you can
clearly distinguish:

� The Programmer (template and functionality
provider)

� The Document Type Designer (defines which el-
ements are available; abstract syntax and seman-
tics)

� The Designer (typography and layout)

� The Author (content)

As a consequence The LATEX Project needs different
kinds of help depending on what layer or role we are
looking at.

The “Author” is using, say, list structures by spec-
ifying something like \begin{itemize} \item in his
documents. Or perhaps by writing ... or
whatever the UI representation offers to him.

The “Document Type Designer” defines what kind
of abstract document elements are available, and what
attributes or arguments those elements provide at the
author level. E.g., he may specify that a certain class
of documents provides the display lists “enumerate”,
“itemize” and “description”.

The “Programmer” on the other hand implements
templates (that offer customizations) for such docu-
ment elements, e.g., for display lists. What kind of cus-
tomization possibilities should be provided by the “Pro-
grammer” is the domain of the “Document Designer”;
he drives what kind of flexibility he needs for the de-
sign. In most cases the “Document Designer” should be
able to simply select templates (already written) from
a template library and only focus on the design, i.e.,

instantiating the templates with values so that the de-
sired layout for “itemize” lists, etc., is created.

In real life a single person may end up playing more
than one role, but it is important to recognise that all
of them come with different requirements with respect
to interfaces and functionality.

Programming Layer

The programming layer consists of a core language
layer (called expl3 (EXP erimental L aTeX 3) for his-
torical reasons and now we are stuck with it :-))
and two more components: the “Typesetting Founda-
tion Layer” that we are currently working on and the
“Typesetting Element Layer” that is going to provide
customizable objects for the design layer. While expl3
is in many parts already fairly complete and usable the
other two are under construction.

Help is needed for the programming layer in

� helping by extending and completing the regression
test suite for expl3

� helping with providing good or better documenta-
tion, including tutorials

� possibly helping in coding additional core function-
ality — but that requires, in contrast to the first
two points, a good amount of commitment and ex-
perience with the core language as otherwise the
danger is too high that the final results will end up
being inconsistent

Once we are a bit further along with the “Typeset-
ting Foundation Layer” we would need help in pro-
viding higher-level functionality, perhaps rewriting ex-
isting packages/code for elements making use of ex-
tended possibilities. Two steps down the road (once the
“Designer Layer” is closer to being finalized) we would
need help with developing templates for all kinds of ele-
ments.

In summary for this part, we need help from people
interested in programming in TEX and expl3 and/or
interested in providing documentation (but for this a
thorough understanding of the programming concepts
is necessary too).

Design Layer

The intention of the design layer is to provide interfaces
that allow specifying layout and typography styles in
a declarative way. On the implementation side there
are a number of prototypes (most notably xtemplate
and the recent reimplementation of ldb). These need to
be unified into a common model which requires some
more experimentation and probably also some further
thoughts.

But the real importance of this layer is not the im-
plementation of its interfaces but the conceptual view

–4

of it: provisioning a rich declarative method (or meth-
ods) to describe design and layout. I.e., enabling a de-
signer to think not in programs but in visual represen-
tations and relationships.

So here is the big area where people who do not feel
they can or want to program TEX’s bowels can help.
What would be extremely helpful (and in fact not just
for LATEX3) would be

� collecting and classifying a huge set of layouts and
designs

– designs for individual document elements
(such as headings, TOCs, etc)

– document designs that include relationships
between document elements

� thinking about good, declarative ways to specify
such designs

– what needs to be specified
– to what extent and with what flexibility

I believe that this is a huge task (but rewarding in it-
self) and already the first part of collecting existing
design specifications will be a major undertaking and
will need coordination and probably a lot of work. But
it will be a huge asset towards testing any implementa-
tions and interfaces for this layer later on.

Document Interface Layer

If we get the separation done correctly, then this layer
should effectively offer nothing more than a front end
for parsing the document syntax and transforming it
into an internal standardised form. This means that on
this layer one should not see any (or not much) coding
or computation.

It is envisioned that alternative document syntax
models can be provided. At the moment we have a
draft solution in xparse. This package offers a docu-
ment syntax in the style of LATEX 2ε, that is with *-
forms, optional arguments in brackets, etc., but with a
few more bells and whistles such as a more generalized
concept of default values, support for additional delim-
iters for arguments, verbatim-style arguments, and so
on. It is fairly conventional though. In addition when
it was written the clear separation of layers wasn’t well-
defined and so the package also contains components
for conditional programming that I no longer think
should be there.

Bottom line on what is needed for this layer is to

� think about good syntax for providing document
content from “the author” perspective

� think about good syntax for providing document
content from an “application to typesetting” per-
spective, i.e., the syntax and structure for auto-
mated typesetting where the content is prepared
by a system/application rather than by a human

These two areas most likely need strict structure (as
automation works much better with structures that do
not have a lot of alternative possibilities and shortcuts,
etc.) and even when just looking at the human author
a lot of open questions need answering. And these an-
swers may or may not be to painfully stick with exist-
ing LATEX 2ε conventions in all cases (or perhaps with
any?).

None of this requires coding or expl3 experience.
What it requires is familiarity with existing input con-
cepts, a feel for where the pain points currently are and
the willingness to think and discuss what alternatives
and extensions could look like.

In Summary

Basically help is possible on any level and it doesn’t
need to involve programming. Thoughts are sprinkled
throughout this article, but here are a few more high-
lights:

� help with developing/improving the core program-
ming layer by

– joining the effort to improve the test suite
– help improving the existing (or not existing)

documentation
– joining the effort to produce core or auxiliary

code modules

� help on the design layer by

– collecting and classifying design tasks
– thinking and suggesting ways to describe lay-

out requirements in a declarative manner

� help on shaping the document interface layer

These concepts, as well as their implementation, are
under discussion on the list latex-l.2 The list has only
a fairly low level of traffic right now as actual imple-
mentation and development tasks are typically dis-
cussed directly among the few active implementors.
But this might change if more people join.

And something else . . .

The people on the LATEX3 team are also committed
to keeping LATEX 2ε stable and even while there isn’t
that much to do these days there remains the need to
resolve bug reports (if they concern the 2e core), pro-
vide new distributions once in a while, etc. All this is
work that takes effort or remains undone or incomplete.
Thus here too, it helps the LATEX3 efforts if we get help
to free up resources.

2Instructions for joining and browsing archives at:
http://latex-project.org/code.html

–5

http://latex-project.org/code.html

	Hiatus?
	expl3 in the community
	Logo for the LaTeX3 Programming Language
	Recent activity
	Work in progress
	Uppercasing and lowercasing
	Space-skipping in xparse

	…and for 2014 onwards
	What can you do for The LaTeX Project?
	Programming Layer
	Design Layer
	Document Interface Layer
	In Summary
	And something else …

