The IXTEX3 Interfaces

The BTEX3 Project”
September 15, 2011

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for ITEX commands, which
allow the BTEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level IXTEX3 programming
language.

At present, the expl3 modules are designed to be loaded on top of N TEX 2¢. In time,
a ITEX3 format will be produced based on this code. This allows the code to be
used in BTEX 2¢ packages now while a stand-alone ¥TEX3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly
stable. The syntax conventions and functions provided are now ready
for wider use. There may still be changes to some functions, but these
will be minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they
reach maturity.

*E-mail: latex-team@Ilatex-project.org

mailto:latex-team@latex-project.org

Contents

I Introduction to expl3 and this document

1 Naming functions and variables
1.1 Terminological inexactitude

2 Documentation conventions

3 Formal language conventions which apply generally

II The I3bootstrap package: Bootstrap code

4 Using the BTEX3 modules

IIT The I3names package: Namespace for primitives

5 Setting up the BTEX3 programming language

IV The I3basics package: Basic definitions

6 No operation functions
7 Grouping material
8 Control sequences and functions

8.1 Defining functions Lo
8.2 Defining new functions using primitive parameter text
8.3 Defining new functions using the signature
8.4 Copying control sequences L oL
8.5 Deleting control sequences L Lo
8.6 Showing control sequenceso
8.7 Converting to and from control sequences

9 Using or removing tokens and arguments
9.1 Selecting tokens from delimited arguments
9.2 Decomposing control sequences Lo Lo

10 Predicates and conditionals
10.1 Tests on control sequences v v v v i i e
10.2 Testing string equalityo Lo
10.3 Engine-specific conditionals 0oL
10.4 Primitive conditionals oo

ii

10
10
10
12
14
15
15
15

17
18
19

11

\%
12
13
14
15
16
17
18
19

20

V1
21
22
23
24
25
26
27
28

29

Internal kernel functions

The I3expan package: Argument expansion
Defining new variants

Methods for defining variants

Introducing the variants

Manipulating the first argument

Manipulating two arguments

Manipulating three arguments

Unbraced expansion

Preventing expansion

Internal functions and variables

The 13prg package: Control structures
Defining a set of conditional functions

The boolean data type

Boolean expressions

Logical loops

Switching by case

Producing n copies

Detecting TEX’s mode

Internal programming functions

Experimental programmings functions

VII The I13quark package: Quarks

30

Defining quarks

iii

23

24
24
25
25
26
27
28
28
29

30

32
32
34
36
37
38
39
40
41

42

43

43

31

32

33

VIII The I13token package

34
35
36
37
38
39
40

41

IX
42
43
44
45
46
47
48
49
50
51

52

Quark tests
Recursion

Internal quark functions

All possible tokens

Character tokens

Generic tokens

Converting tokens

Token conditionals

Peeking ahead at the next token
Decomposing a macro definition

Experimental token functions

The 13int package: Integers
Integer expressions

Creating and initialising integers
Setting and incrementing integers
Using integers

Integer expression conditionals
Integer expression loops

Formatting integers

Converting from other formats to integers

Viewing integers
Constant integers

Scratch integers

iv

: Token manipulation

44
44

45

46
46
47
50
50
51
54
56

57

59
59
60
61
62
62
63
64
66
66
67

67

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Internal functions

The 13skip package: Dimensions and skips

Creating and initialising dim variables
Setting dim variables

Utilities for dimension calculations
Dimension expression conditionals
Dimension expression loops

Using dim expressions and variables
Viewing dim variables

Constant dimensions

Scratch dimensions

Creating and initialising skip variables
Setting skip variables

Skip expression conditionals

Using skip expressions and variables
Viewing skip variables

Constant skips

Scratch skips

Creating and initialising muskip variables
Setting muskip variables

Using muskip expressions and variables
Inserting skips into the output
Viewing muskip variables

Internal functions

68

70
70
70
72
72
73
74
74
74
75
75
75
76
77
T
7
77
78
78
79
79
80

80

76

XI
77
78
79
80
81
82
83
84
85
86
87
88
89
90

91

XII The I13seq package: Sequences and stacks

92

93

94

95

96

97

Experimental skip functions

The 13tl package: Token lists

Creating and initialising token list variables

Adding data to token list variables
Modifying token list variables
Reassigning token list category codes
Reassigning token list character codes
Token list conditionals

Mapping to token lists

Using token lists

Working with the content of token lists
The first token from a token list
Viewing token lists

Constant token lists

Scratch token lists

Experimental token list functions

Internal functions

Creating and initialising sequences
Appending data to sequences
Recovering items from sequences
Modifying sequences

Sequence conditionals

Mapping to sequences

vi

80

81
81
82
83
84
85
85
87
88
89
90
92
93
93
93

94

95
95
96
96
97
98

99

98 Sequences as stacks 100

99 Viewing sequences 101
100 Experimental sequence functions 101
101 Internal sequence functions 103
XIII The 13clist package: Comma separated lists 105
102 Creating and initialising comma lists 105
103 Adding data to comma lists 106
104 Using comma lists 107
105 Modifying comma lists 107
106 Comma list conditionals 108
107 Mapping to comma lists 109
108 Comma lists as stacks 111
109 Viewing comma lists 112
110 Scratch comma lists 112
111 Experimental comma list functions 112
112 Internal comma-list functions 113
XIV The I3prop package: Property lists 114
113 Creating and initialising property lists 114
114 Adding entries to property lists 115
115 Recovering values from property lists 116
116 Modifying property lists 116
117 Property list conditionals 117
118 Recovering values from property lists with branching 117

119 Mapping to property lists 118

vii

120

121

122

Viewing property lists
Experimental property list functions

Internal property list functions

XV The I3box package: Boxes

123

124

125

126

127

128

129

130

131

132

133

134

XVI The I3coffins package: Coffin code layer

135

136

137

138

139

XVII The I3color package: Colour support

Creating and initialising boxes
Using boxes

Measuring and setting box dimensions
Affine transformations

Box conditionals

The last box inserted
Constant boxes

Scratch boxes

Viewing box contents
Horizontal mode boxes
Vertical mode boxes

Primitive box conditionals

Creating and initialising coffins
Setting coffin content and poles
Coffin transformations

Joining and using coffins

Coffin diagnostics

viii

119
119

119

121
121
122
123
123
125
125
125
125
126
126
127

130

131
131
132
133

134

135

140 Colour in boxes 135

XVIII The I3io package: Input—output operations 136
141 Opening and closing streams 136
142 Writing to files 137
143 Wrapping lines in output 138
144 Reading from files 139
145 Internal input—output functions 140
XIX The I3msg package: Messages 141
146 Creating new messages 141
147 Contextual information for messages 142
148 Issuing messages 143
149 Redirecting messages 145
150 Low-level message functions 146
151 Kernel-specific functions 147
152 Expandable errors 148
XX The I3keys package: Key—value interfaces 149
153 Creating keys 150
154 Sub-dividing keys 154
155 Choice and multiple choice keys 155
156 Setting keys 157
157 Setting known keys only 157
158 Utility functions for keys 158

159 Low-level interface for parsing key—val lists 158

ix

XXI The I3file package: File operations

160

161

File operation functions

Internal file functions

XXII The I3fp package: Floating-point operations

162

163

164

165

166

167

168

169

170

171

172

Floating-point variables

Conversion of floating point values to other formats
Rounding floating point values

Floating-point conditionals

Unary floating-point operations

Floating-point arithmetic

Floating-point power operations

Exponential and logarithm functions

Trigonometric functions

Constant floating point values

Notes on the floating point unit

XXIII The I3luatex package: LuaTeX-specific functions

173

174

Breaking out to Lua

Category code tables

Index

160
160

161

162
162
164
164
165
166
166
167
168
168
169

169

171
171

172

174

Part I
Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the INTEX3 programming language is found in expl3.pdf.

1 Naming functions and variables

ITREX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

D The D specifier means do not use. All of the TEX primitives are initially \let to a D
name, and some are then given a second name. Only the kernel team should use
anything with a D specifier!

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument though exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So So \foo:c {ArgumentOne} will act in the same way as
\foo:N \ArgumentOne.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example
\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: the plain TEX \edef.

f The £ specifier stands for full expansion, and in contrast to x stops at the first non-
expandable item without trying to execute it.

T and F For logic tests, there are the branch specifiers T (¢rue) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some arbitrary string).

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

c Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module' name and then a descriptive part. Variables end with a short
identifier to show the variable type:

bool Either true or false.
box Box register.
clist Comma separated list.

coffin a “box with handles” — a higher-level data type for carrying out box alignment
operations.

dim “Rigid” lengths.
fp floating-point values;
int Integer-valued count register.

prop Property list.

IThe module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

\ExplSyntaxOn
\ExplSyntax0ff

seq “Sequence”: a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.
stream An input or output stream (for reading from or writing to, respectively).

t1l Token list variables: placeholder for a token list.

1.1 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and a
“token list variable” are in truth one and the same. On the other hand, some “variables”
are actually registers that must be initialised and their values set and retrieved with
specific functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntaxOff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the

function takes no arguments and so the name of the function is simply reprinted.
For programming functions, which use _ and : in their name there are a few addi-

tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are

\seq_new:N
ic

\cs_to_str:N %

\seq_map_function:NN v

\xetex_if_engineTF *

\1_tmpa_tl

printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

\seq_new:N (sequence)

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows it
to be used within an x-type argument (in plain TEX terms, inside an \edef), as well
as within an f-type argument. These fully expandable functions are indicated in the
documentation by a star:

\cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a (control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN (seq) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\xetex_if_engine:TF {(true code)} {(false code)}

The underlining and italic of TF indicates that \xetex_if_engine:T, \xetex_if_-
engine:F and \xetex_if_engine:TF are all available. Usually, the illustration will use
the TF variant, and so both (true code) and (false code) will be shown. The two variant
forms T and F take only (true code) and (false code), respectively. Here, the star also
shows that this function is expandable. With some minor exceptions, all conditional

functions in the expl3 modules should be defined in this way.
Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.
In some cases, the function is similar to one in IXTEX 2¢ or plain TEX. In these cases,
the text will include an extra “TEXhackers note” section:

\token_to_str:N «*

\token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or BTEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

3 Formal language conventions which apply generally

As this is a formal reference guide for X TEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left

in the input stream: this will typically be part of a larger logical construct.

Part 11
The 13bootstrap package
Bootstrap code

4 Using the KTEX3 modules

The modules documented in source3 are designed to be used on top of BTEX 2 and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions. These modules will also form the basis of the KTEX3 format, but work in
this area is incomplete and not included in this documentation at present.

As the modules use a coding syntax different from standard ETEX 2¢ it provides a
few functions for setting it up.

\ExplSyntax0On \ExplSyntaxOn (code) \ExplSyntaxOff

M The \ExplSyntaxOn function switches to a category code régime in which spaces are

Updated: 2011-08-13 ignored and in which the colon (:) and underscore (_) are treated as “letters”, thus
allowing access to the names of code functions and variables. Within this environment,
~ is used to input a space. The \ExplSyntax0ff reverts to the document category code
regimé.

\ExplSyntaxNamesOn \ExplSyntaxNamesOn (code) \ExplSyntaxNamesOff

\ExplSyntaxNames0ff The \ExplSyntaxOn function switches to a category code regimé in which the colon (:)

and underscore (_) are treated as “letters”, thus allowing access to the names of code
functions and variables. In contrast to \ExplSyntax0On, using \ExplSyntaxNamesOn does
not cause spaces to be ignored. The \ExplSyntaxNamesOff reverts to the document
category code regimé.

\ProvidesExplPackage \RequirePackage{expl3}

\ProvidesExplClass \ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

\ProvidesExplFile These functions act broadly in the same way as the IXTEX 2¢ kernel functions \ProvidesPackage,
\ProvidesClass and \ProvidesFile. However, they also implicitly switch \ExplSyntaxOn
for the remainder of the code with the file. At the end of the file, \ExplSyntax0ff will
be called to reverse this. (This is the same concept as BTEX 2¢ provides in turning on
\makeatletter within package and class code.)

\GetIdInfo \RequirePackage{l3names}
—— \GetIdInfo $Id: (SVN info field) $ {(description)}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \Exp1FileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion
for version and \ExplFileDescription for the description.

To summarize: Every single package using this syntax should identify itself using
one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or alike are loaded with usual I TEX 2¢ category codes and the
IXTREX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescript

Part III
The 13names package
Namespace for primitives

5 Setting up the RTEX3 programming language

This module is at the core of the A TEX3 programming language. It performs the following
tasks:

o defines new names for all TEX primitives;
o switches to the category code regime for programming;
e provides support settings for building the code as a TEX format.

This module is entirely dedicated to primitives, which should not be used directly
within I¥TEX3 code (outside of “kernel-level” code). As such, the primitives are not
documented here: The TgXbook, TgX by Topic and the manuals for pdfTEX, X7TEX and
LuaTEX should be consulted for details of the primitives. These are named based on the
engine which first introduced them:

\tex_... Introduced by TEX itself;
\etex_... Introduced by the e-TEX extensions;
\pdftex_... Introduced by pdfTEX;
\xetex_... Introduced by XHTEX;
\luatex_... Introduced by LuaTgX.

\prg_do_nothing *

\scan_stop

\group_begin
\group_end

\group_insert_after:N

Part IV
The I13basics package
Basic definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

6 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

7 Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends. The
list of (tokens) to be inserted will be empty at the beginning of a group: multiple appli-
cations of \group_insert_after:N may be used to build the inserted list one (token)
at a time. The current group level may be closed by a \group_end: function or by a
token with category code 2 (close-group). The later will be a } if standard category codes

apply.

8 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” will be fully expanded inside an x expansion.
In contrast, “protected” functions are not expanded within x expansions.

8.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen will be checked and an error raised if it is already in
use. The name of a function can be checked at the point of definition using the \cs_-
new... functions: this is recommended for all functions which are defined for the first
time.

8.2 Defining new functions using primitive parameter text

\cs_new:Npn \cs_new:Npn (function) (parameters) {(code)}
: (cpn|Npx|cpx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error will result if the (function) is already defined.

\cs_new_nopar:Npn \cs_new_nopar:Npn (function) (parameters) {({code)}

: (cpnlipx|cpx) Creates (function) to expand to (code) as replacement text. Within the (code), the

(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error will result if the (function) is already defined.

\cs_new_protected:Npn \cs_new_protected:Npn (function) (parameters)
: (cpn|Npx|cpx) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error will result if the (function) is already defined.

10

\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npn (function) (parameters) {(code)}
: (cpn|Npx|cpx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type argument. The definition is global and an error will
result if the (function) is already defined.

\cs_set:Npn \cs_set:Npn (function) (parameters) {(code)}

+ (cpn|Npx|cpx) Sets (function) to expand to (code) as replacement text. Within the (code), the

(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to (function) is restricted to the current TEX group level.

\cs_set_nopar:Npn \cs_set_nopar:Npn (function) (parameters) {({code)}

: (cpnlipx|cpx) Sets (function) to expand to (code) as replacement text. Within the (code), the

(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The assignment
of a meaning to (function) is restricted to the current TEX group level.

\cs_set_protected:Npn \cs_set_protected:Npn (function) (parameters) {(code)}
: (cpn|Npx|cpx)

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to (function) is restricted to the current TEX group level. The
(function) will not expand within an x-type argument.

\cs_set_protected_nopar:Npn \cs_set_protected_nopar:Npn (function) (parameters) {(code)}
:(cpn|Npx|cpx)

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The as-
signment of a meaning to (function) is restricted to the current TEX group level. The
(function) will not expand within an x-type argument.

\cs_gset:Npn \cs_gset:Npn (function) (parameters) {(code)}
: (cpn|Npx|cpx)

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to {function) is not restricted to the current TEX group level:
the assignment is global.

11

\cs_gset_nopar:Npn
: (cpn|Npx|cpx)

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to {function) is not restricted to the current TEX group level:
the assignment is global.

\cs_gset_protected:Npn

\cs_gset_protected:Npn (function) (parameters) {{code)}

: (cpn|Npx|cpx)

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to {function) is not restricted to the current TEX group level:
the assignment is global. The (function) will not expand within an x-type argument.

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {(code)}

: (cpn|Npx|cpx)

\cs_new:Nn
: (cn|Nx|cx)

\cs_new_nopar:Nn
: (cn|Nx|cx)

\cs_new_protected:Nn
: (cn|Nx|cx)

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to {function) is not restricted to the current TEX group level:
the assignment is global. The (function) will not expand within an x-type argument.

8.3 Defining new functions using the signature

\cs_new:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error will result if the (function) is already defined.

\cs_new_nopar:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error will result if the (function) is already defined.

\cs_new_protected:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error will result if the (function) is already defined.

12

\cs_new_protected_nopar:Nn \cs_new_protected_nopar:Nn (function) {(code)}

: (cn|Nx|cx)

\cs_set:Nn
: (cn|Nx|cx)

\cs_set_nopar:Nn
: (cn|Nx|cx)

\cs_set_protected:Nn
: (cn|Nx|cx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type argument. The definition is global and an error will
result if the (function) is already defined.

\cs_set:Nn (function) {({code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to (function) is restricted to the current TEX group level.

\cs_set_nopar:Nn (function) {({code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to (function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to (function) is
restricted to the current TEX group level.

\cs_set_protected_nopar:Nn \cs_set_protected_nopar:Nn (function) {(code)}

: (cn|Nx|cx)

\cs_gset:Nn
: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function) is
used the (parameters) absorbed cannot contain \par tokens. The (function) will not ex-
pand within an x-type argument. The assignment of a meaning to (function) is restricted
to the current TEX group level.

\cs_gset:Nn (function) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to (function) is global.

13

\cs_gset_nopar:Nn
: (cn|Nx|cx)

\cs_gset_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to (function) is global.

\cs_gset_protected:Nn

\cs_gset_protected:Nn (function) {(code)}

: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will not
expand within an x-type argument. The assignment of a meaning to (function) is global.

\cs_gset_protected_nopar:Nn \cs_gset_protected_nopar:Nn (function) {{code)}

: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type argument. The assignment of a meaning to (function) is global.

\cs_generate_from_arg_count:NNnn \cs_generate_from_arg_count:NNnn (function) (creator) (number) (code)

:cNnn

Updated: 2011-09-05

\cs_new_eq:NN
:(Nc|cN|ec)

Uses the (creator) function (which should have signature Npn, for example \cs_new:Npn)
to define a (function) which takes (number) arguments and has (code) as replacement
text. The (number) of arguments is an integer expression, evaluated as detailed for
\int_eval:n.

8.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tided together: changes to one are
not reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN (cs 1) (cs 2)
\cs_new_eq:NN (cs 1) (token)

Globally creates (control sequence 1) and sets it to have the same meaning as (control
sequence 2) or (token). The second control sequence may subsequently be altered without
affecting the copy.

14

\cs_set_eq:NN
:(Nc|cN|ec)

\cs_gset_eq:NN
: (Nc|cN|cc)

=

\cs_undefine:

*

\cs_meaning:N
ico*

\cs_show:N

\use:c *

\cs_set_eq:NN (cs 1) (cs 2)
\cs_set_eq:NN (cs 1) (token)

Sets (control sequence 1) to have the same meaning as (control sequence 2) (or (token)).
The second control sequence may subsequently be altered without affecting the copy.
The assignment of a meaning to (control sequence 1) is restricted to the current TEX
group level.

\cs_gset_eq:NN (cs 1) (cs 2)
\cs_gset_eq:NN (cs 1) (token)

Globally sets (control sequence 1) to have the same meaning as (control sequence 2) (or
(token)). The second control sequence may subsequently be altered without affecting
the copy. The assignment of a meaning to (control sequence 1) is not restricted to the
current TEX group level: the assignment is global.

8.5 Deleting control sequences

There are occasions where control sequences need to be deleted. This is handled in a
very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

8.6 Showing control sequences

\cs_meaning:N (control sequence)

This function expands to the meaning of the (control sequence) control sequence. This
will show the (replacement text) for a macro.

TEXhackers note: This is TEX’s \meaning primitive.

\cs_show:N (control sequence)

Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is the TEX primitive \show.

8.7 Converting to and from control sequences

\use:c {(control sequence name)}

Converts the given (control sequence name) into a single control sequence token. This
process requires two expansions. The content for (control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically, they will be
of category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

15

\cs:w *
\cs_end *

\cs_to_str:N «*

As an example of the \use:c function, both
\use:c { abc}
and

\tl_new:N \l_my_tl
\tl_set:Nn \1_my_tl { abc}
\use:c { \tl_use:N \l_my_t1l }

would be equivalent to
\abc

after two expansions of \use:c.

\cs:w {control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for (control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically, they will be
of category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TgXhackers note: These are the TEX primitives \csname and \endcsname.
As an example of the \cs:w and \cs_end: functions, both
\cs:w a b ¢ \cs_end:

and

\tl_new:N \l_my_tl
\tl_set:Nn \1_my_tl { a b c }
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to
\abc

after one expansion of \cs:w.

\cs_to_str:N {(control sequence)}

Converts the given (control sequence) into a series of characters with category code 12
(other), except spaces, of category code 10. The sequence will not include the current
escape token, cf. \token_to_str:N. Full expansion of this function requires a variable
number of expansion steps (either 3 or 4), and so an £- or x-type expansion will be required
to convert the (control sequence) to a sequence of characters in the input stream.

16

\use:n *
:(nn|nnn|nnnn) *
\use_i:nn *
\use_ii:nn x
\use_i:nnn *
\use_ii:nnn «
\use_iii:nnn «*
\use_i:nnnn *
\use_ii:nnnn *
\use_iii:nnnn x
\use_iv:nnnn *

9 Using or removing tokens and arguments

Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then in absorbing them the outer set will be removed. At the same
time, the category code of each token is set when the token is read by a function (if it is
read more than once, the category code is determined by the the situation in force when
first function absorbs the token).

\use:n {(group1)?}

\use:nn {(group1)} {(groups:)}

\use:nnn {(groupi)} {(groups:)} {(groups)}

\use:nnnn {(group1)} {(group2)} {(groups)} {(groupi)?}

As illustrated, these functions will absorb between one and four arguments, as indicated
by the argument specifier. The braces surrounding each argument will be removed leaving
the remaining tokens in the input stream. The category code of these tokens will also be
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } }
will result in the input stream containing
abc { def }

i.e. only the outer braces will be removed.

\use_i:nn {(groupi)} {(group2)}

These functions will absorb two groups and leave only the first or the second in the input
stream. The braces surrounding the arguments will be removed as part of this process.
The category code of these tokens will also be fixed (if it has not already been by some
other absorption). A single expansion is needed for the functions to take effect.

\use_i:nnn {(group1)} {(groupq)} {(groups)}

These functions will absorb three groups and leave only of these in the input stream.
The braces surrounding the arguments will be removed as part of this process. The
category code of these tokens will also be fixed (if it has not already been by some other
absorption). A single expansion is needed for the functions to take effect.

\use_i:nnnn {(groupi)} {(groups:)} {(groups)} {(group4)}

These functions will absorb four groups and leave only of these in the input stream.
The braces surrounding the arguments will be removed as part of this process. The
category code of these tokens will also be fixed (if it has not already been by some other
absorption). A single expansion is needed for the functions to take effect.

17

\use_i_ii:nnn * \use_i_ii:nnn {(groupi.)} {(group2)} {(groups)}

This functions will absorb three groups and leave the first and second in the input stream.
The braces surrounding the arguments will be removed as part of this process. The
category code of these tokens will also be fixed (if it has not already been by some other
absorption). A single expansion is needed for the functions to take effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
will result in the input stream containing
abc { def }

i.e. the outer braces will be removed and the third group will be removed.

\use_none:n * \use_none:n {(groupi)}
: (nn|nnn|nnnn|nnnnn|nnnnnn|nnnnnnn nnnnnnnn [nnnnnnnnn)

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

\use:x \use:x {(expandable tokens)}

Fully expands the (expandable tokens) and inserts the result into the input stream at the
current location. Any hash characters (#) in the argument must be doubled.
9.1 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q_nil:w * \use_none_delimit_by_q_nil:w (balanced text) \q_nil
\use_none_delimit_by_q_stop:w *
\use_none_delimit_by_q_recursion_stop:w *

Absorb the (balanced) text form the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.

\use_i_delimit_by_q_nil:nw % \use_i_delimit_by_q_nil:nw {(inserted tokens)}
\use_i_delimit_by_q_stop:nw * (balanced text) \g_nil
\use_i_delimit_by_q_recursion_stop:nw *

Absorb the (balanced) text form the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

18

9.2 Decomposing control sequences

\cs_get_arg_count_from_signature:N * \cs_get_arg_count_from_signature:N (function)

\cs_get_function_name:N x

Splits the (function) into the name (i.e. the part before the colon) and the signature
(i.e. after the colon). The (number) of tokens in the (signature) is then left in the input
stream. If there was no (signature) then the result is the marker value —1.

\cs_get_function_name:N (function)

Splits the (function) into the name (i.e. the part before the colon) and the signature
(i.e. after the colon). The (name) is then left in the input stream without the escape
character present made up of tokens with category code 12 (other).

\cs_get_function_signature:N x \cs_get_function_signature:N <function>

\cs_split_function:NN *

Splits the (function) into the name (i.e. the part before the colon) and the signature
(i.e. after the colon). The (signature) is then left in the input stream made up of tokens
with category code 12 (other).

\cs_split_function:NN (function) (processor)

Splits the (function) into the name (i.e. the part before the colon) and the signature
(i.e. after the colon). This information is then placed in the input stream after the
(processor) function in three parts: the (name), the (signature) and a logic token indi-
cating if a colon was found (to differentiate variables from function names). The (name)
will not include the escape character, and both the (name) and (signature) are made
up of tokens with category code 12 (other). The (processor) should be a function with
argument specification :nnN (plus any trailing arguments needed).

10 Predicates and conditionals

XTEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending
on its result, either the code supplied in the (true arg) or the (false arg). These
arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF{abc} {(true code)} {(false code)}

a function that will turn the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carry out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it will usually be accompanied by T and F functions as well. These are
provided for convenience when the branch only needs to go a single way. Package

19

\c_true_bool
\c_false_bool

>

\cs_if_eq_p:NN
\cs_if_eq:NNTF

*

\cs_if_exist_p:N
e
\cs_if_exist:NTF
:cTF

X % X

writers are free to choose which types to define but the kernel definitions will always
provide all three versions.

Important to note is that these branching conditionals with (true code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they will be accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which
can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {(false code)}

For each predicate defined, a “branching conditional” will also exist that behaves
like a conditional described above.

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and BTEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

Constants that represent true and false, respectively. Used to implement predicates.

10.1 Tests on control sequences

\cs_if_eq_p:NN {(cs1)} {(cs2)}
\cs_if_eq:NNTF {(cs1)} {(cs2)} {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true if the two are
the same.

\cs_if_exist_p:N (control sequence)

\cs_if_exist:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type). Any valid definition of (control sequence) will evaluate as true.

20

\cs_if_free_p:N (control sequence)
\cs_if_free:NTF (control sequence) {(true code)} {(false code)}

\cs_if_free_p:N
e
\cs_if_free:NTF
:cTF

* ot % %

Tests whether the (control sequence) is currently free to be defined. This test will be
false if the (control sequence) currently exists (as defined by \cs_if_exist:N).

10.2 Testing string equality

\str_if_eq_p:nn {(tl:)

\str_if_eq_p:nn 1
\str_if_eq:nnTF {(tl:)

: (Vn|on|no|nV|VV|xx)
\str_if_eq:nnTF
: (Vn|on|no|nV|VV|xx)TF

* } {(t12)}

* } {(t12)} {(true code)} {(false code)}
*

*

Compares the two (token lists) on a character by character basis, and is true if the two
lists contain the same characters in the same order. Thus for example

\str_if_eq_p:xx { abc } { \tl_to_str:n { abc } }

is logically true. All versions of these functions are fully expandable (including those
involving an x-type expansion).

10.3 Engine-specific conditionals

\luatex_if_engine_p x \luatex_if_luatex:TF {(true code)} {(false code)}
\luatex_if_engineTF *

Detects is the document is being compiled using LuaTgX.
Updated: 2011-09-06

\pdftex_if_engine_p * \pdftex_if_engine:TF {(true code)} {(false code)}

\pdftex_if_enginelF * Detects is the document is being compiled using pdfTEX.

Updated: 2011-09-06

\xetex_if_engine_p * \xetex_if_engine:TF {(true code)} {(false code)}
\xetex_if_engineTF *

Detects is the document is being compiled using XHIEX.

Updated: 2011-09-06

10.4 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions will
often contain a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if _num:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We will prefix primitive conditionals with \if_.

21

\if _true
\if_false

\or

\else

\fi
\reverse_if:N

* ok o X Xk

\if _meaning:w

\if:w
\if_charcode:w
\if_catcode:w

>

\if _predicate:w

\if_bool:N

\if_cs_exist:N
W

>*

\if_mode_horizontal
\if_mode_vertical
\if_mode_math
\if_mode_inner

\if_true: (true code) \else: (false code) \fi:
\if_false: (true code) \else: (false code) \fi:
\reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false code).
\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. \or: is used in case switches, see [3int for more.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is e-TEX’s \unless.

\if_meaning:w (argi) (argq) (true code) \else: (false code) \fi:

\if_meaning:w executes (true code) when (arg) and (args) are the same, otherwise it
executes (false code). (arg1) and (args) could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TEXhackers note: This is TEX’s \ifx.

\if:w (tokeni) (tokems) (true code) \else: (false code) \fi:
\if_catcode:w (tokeni) (tokeni) (true code) \else: (false code) \fi:

These conditionals will expand any following tokens until two unexpandable tokens are
left. If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if_catcode:w tests if the category codes of the two tokens are the same whereas \if :w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if :w.

\if_predicate:w (predicate) (true code) \else: (false code) \fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the (predicate) but
to make the coding clearer this should be done through \if_bool:N.)

\if_bool:N (boolean) (true code) \else: (false code) \fi:

This function takes a boolean variable and branches according to the result.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:
\if_cs_exist:w (tokens) \cs_end: (true code) \else: (false code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

\if_mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Sim-
ilar for the other functions.

22

11 Internal kernel functions

\chk_if_exist_cs:N \chk_if_exist_cs:N (cs)
ic

This function checks that (cs) exists according to the criteria for \cs_if_exist_p:N, and
if not raises a kernel-level error.

\chk_if_free_cs:N \chk_if_free_cs:N (cs)
“° This function checks that (es) is free according to the criteria for \cs_if_free_p:N, and
if not raises a kernel-level error.

23

Part V
The 13expan package
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the I¥TEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

12 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions from the \exp_ module.
They all look alike, an example would be \exp_args:NNo. This function has three argu-
ments, the first and the second are a single tokens the third argument gets expanded once.
If \seq_gpush:No was not defined the example above could be coded in the following
way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
\1_tmpa_tl

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_new_nopar:Npn\seq_gpush:No{\exp_args:NNo\seq_gpush:Nn}

Providing variants in this way in style files is uncritical as the \cs_new_nopar:Npn func-
tion will silently accept definitions whenever the new definition is identical to an already
given one. Therefore adding such definition to later releases of the kernel will not make
such style files obsolete.

The steps above may be automated by using the function \cs_generate_variant:Nn,
described next.

24

\cs_generate_variant:Nn

13 Methods for defining variants

\cs_generate_variant:Nn (parent control sequence) {(variant argument specifiers)}

This function is used to define argument-specifier variants of the (parent control sequence)
for XTEX3 code-level macros. The (parent control sequence) is first separated into the
(base name) and (original argument specifier). The comma-separated list of (variant
argument specifiers) is then used to define variants of the (original argument specifier)
where these are not already defined. For each (variant) given, a function is created which
will expand its arguments as detailed and pass them to the (parent control sequence). So
for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { c }

will create a new function \foo:cn which will expand its first argument into a control
sequence name and pass the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

would generate the functions \foo:NV and \foo:cV in the same way. The \cs_-
generate_variant:Nn function can only be applied if the (parent control sequence) is
already defined. If the (parent control sequence) is protected then the new sequence will
also be protected. The (variant) is created globally, as is any \exp_args:N(variant)
function needed to carry out the expansion.

14 Introducing the variants

The available internal functions for argument expansion come in two flavours, some of
them are faster then others. Therefore it is usually best to follow the following guidelines
when defining new functions that are supposed to come with variant forms:

¢ Arguments that might need expansion should come first in the list of arguments to
make processing faster.

e Arguments that should consist of single tokens should come first.

e Arguments that need full expansion (i.e., are denoted with x) should be avoided if
possible as they can not be processed expandably, i.e., functions of this type will
not work correctly in arguments that are itself subject to x expansion.

e In general, unless in the last position, multi-token arguments n, £, and o will need
special processing which is not fast. Therefore it is best to use the optimized
functions, namely those that contain only N, c, V, and v, and, in the last position,
o, £, with possible trailing N or n, which are not expanded.

The V type returns the value of a register, which can be one of t1, num, int, skip,
dim, toks, or built-in TEX registers. The v type is the same except it first creates a

25

\exp_args:No *

\exp_args:Nc *
icc %

control sequence out of its argument before returning the value. This recent addition to
the argument specifiers may shake things up a bit as most places where o is used will be
replaced by V. The documentation you are currently reading will therefore require a fair
bit of re-writing.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only
when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The £ type is so special that it deserves an example. Let’s pretend we want to set
\aaa equal to the control sequence stemming from turning b \1_tmpa_t1l b into a control
sequence. Furthermore we want to store the execution of it in a (¢l var). In this example
we assume \1_tmpa_t1 contains the text string lur. The straightforward approach is

\tl_set:No \1_tmpb_tl {\cs_set_eq:Nc \aaa { b \1_tmpa_tl b } }

Unfortunately this only puts \exp_args:NNc \cs_set_eq:NN \aaa {b \1_tmpa_tl b}
into \1_tmpb_t1 and not \cs_set_eq:NN \aaa = \blurb as we probably wanted. Using
\tl_set:Nx is not an option as that will die horribly. Instead we can do a

\tl_set:Nf \1_tmpb_tl {\cs_set_eq:Nc \aaa { b \1_tmpa_tl b } }
which puts the desired result in \1_tmpb_t1. It requires \toks_set:Nf to be defined as
\cs_set_nopar:Npn \tl_set:Nf { \exp_args:NNf \tl_set:Nn }

If you use this type of expansion in conditional processing then you should stick to using
TF type functions only as it does not try to finish any \if... \fi: itself!

15 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

\exp_args:No (function) {(tokens)} {(tokens2)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded once, and the result is inserted in braces into the input stream af-
ter reinsertion of the (function). Thus the (function) may take more than one argument:
all others will be left unchanged.

\exp_args:Nc (function) {(tokens)} {(tokens2)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. (An internal error will occur if such a conversion is not possible). The
result is inserted into the input stream after reinsertion of the (function). Thus the
(function) may take more than one argument: all others will be left unchanged.

The :cc variant constructs the (function) name in the same manner as described for
the (tokens).

26

\exp_args:NV * \exp_args:NV (function) (variable) {(tokens2)} ...

This function absorbs two arguments (the names of the (function) and the the (variable)).
The content of the (variable) are recovered and placed inside braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one argument:
all others will be left unchanged.

\exp_args:Nv * \exp_args:Nv (function) {(tokens)} {(tokens2)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. (An internal error will occur if such a conversion is not possible). This
control sequence should be the name of a (variable). The content of the (variable) are re-
covered and placed inside braces into the input stream after reinsertion of the (function).
Thus the (function) may take more than one argument: all others will be left unchanged.

\exp_args:Nf * \exp_args:Nf (function) {(tokens)} {(tokensa)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are fully expanded until the first non-expandable token or space is found, and
the result is inserted in braces into the input stream after reinsertion of the (function).
Thus the {function) may take more than one argument: all others will be left unchanged.

\exp_args:Nx \exp_args:Nx (function) {(tokens)} {(tokens:)} ...

This function absorbs two arguments (the (function) name and the (tokens)) and ex-
haustively expands the (tokens) second. The result is inserted in braces into the input
stream after reinsertion of the (function). Thus the (function) may take more than one
argument: all others will be left unchanged.

16 Manipulating two arguments

\exp_args:NNo * \exp_args:NNc (tokenl) (token2) {(tokens)}
: (NNc|NNv|NNV|NN£ |Nco|Ncf|Ncc|NVV) «

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Nno * \exp_args:Noo (token) {(tokensi)} {(tokens2)}
: (NnV|Nnf |Noo|Noc|Nff|Nfo|Nnc) *

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions need special (slower) processing.

27

\exp_args:NNx \exp_args:NNx (tokenl) (token2) {(tokens)}
: (Nnx|Ncx|Nox|Nxo|Nxx)

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable.

17 Manipulating three arguments

\exp_args:NNNo * \exp_args:NNNo (token1) (token2) (token3) {(tokens)}
: (NNNV|Ncee|NeNe|NeNo|Neco) *

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

\exp_args:NNoo * \exp_args:NNNo (tokenl) (token2) (token3) {(tokens)}
: (NNno|Nnno|Nnnc|Nooo) *

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc. These
functions need special (slower) processing.

\exp_args:NNnx \exp_args:NNnx (tokenl) (token2) (tokens1) {(tokensz)}
: (NNox|Nnnx|Nnox|Noox|Ncnx|Ncex)

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

18 Unbraced expansion

\exp_last_unbraced:Nf % \exp_last_unbraced:Nno (token) (tokensi)
: (NV|No|Nv|NcV|NNV|NNo|Nno|Noo|Nfo|NNNV|NNNo) + (tokens2)

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the the results in the input stream, with the last
argument not surrounded by the usual braces. Of these, the :Nno, :Noo, and :Nfo
variants need special (slower) processing.

28

\exp_last_two_unbraced:Noo * \exp_last_two_unbraced:Noo (token) (tokensl) {(tokensa)}

\exp_after:wN

*

\exp_not:N

\exp_not:c

\exp_not:n

\exp_not:V

*

*

This function absorbs three arguments and expand the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

\exp_after:wN (tokenl) (token2)

Carries out a single expansion of (token2) prior to expansion of (tokenl). If (token2)
is a TEX primitive, it will be executed rather than expanded, while if (token2) has not
expansion (for example, if it is a character) then it will be left unchanged. It is important
to notice that (tokenl) may be any single token, including group-opening and -closing
tokens ({ or }" assuming normal TEX category codes). Unless specifically required,
expansion should be carried out using an appropriate argument specifier variant or the
appropriate \exp_arg:N function.

TEXhackers note: This is the TEX primitive \expandafter renamed.

19 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves will not appear after the expansion has completed.

\exp_not:N (token)

Prevents expansion of the (token) in a context where it would otherwise be expanded,
for example an x-type argument.

TEXhackers note: This is the TEX \noexpand primitive.

\exp_not:c {(tokens)}

Expands the (tokens) until only unexpandable content remains, and then converts this
into a control sequence. Further expansion of this control sequence is then inhibited.
\exp_not:n {(tokens)}

Prevents expansion of the (tokens) in a context where they would otherwise be expanded,
for example an x-type argument.

TEXhackers note: This is the e-TEX \unexpanded primitive.

\exp_not:V (variable)

Recovers the content of the (variable), then prevents expansion of the this material in a
context where it would otherwise be expanded, for example an x-type argument.

29

\exp_not:v *

\exp_not:o *

\exp_not:f x

\exp_stop_f *

Updated: 2011-06-03

\1_exp_tl

\exp_eval_register:N x
ic o

P A g e
S <Ko o =B

\exp_not:v {(tokens)}

Expands the (tokens) until only unexpandable content remains, and then converts this
into a control sequence (which should be a (variable) name). The content of the (variable)
is recovered, and further expansion is prevented in a context where it would otherwise
be expanded, for example an x-type argument.

\exp_not:o {(tokens)}

Expands the (tokens) once, then prevents any further expansion in a context where they
would otherwise be expanded, for example an x-type argument.

\exp_not:f {(tokens)}

Expands (tokens) fully until the first unexpandable token is found. Expansion then
stops, and the result of the expansion (including any tokens which were not expanded)
is protected from further expansion.

\function:f (tokens) \exp_stop_f: (more tokens)

This function terminates an f-type expansion. Thus if a function \function:f starts
an f-type expansion and all of (tokens) are expandable \exp_stop:f will terminate the
expansion of tokens even if (more tokens) are also expandable. The function itself is an
implicit space token. Inside an x-type expansion, it will retain its form, but when typeset
it produces the underlying space ().

20 Internal functions and variables

The \exp_ module has its private variables to temporarily store results of the argument
expansion. This is done to avoid interference with other functions using temporary
variables.

\exp_eval_register:N (variable)

These functions evaluates a (variable) as part of a V or v expansion (respectively), pre-
ceeded by \c_zero which stops the expansion of a previous \romannumeral. A (variable)
might exist as one of two things: a parameter-less non-long, non-protected macro or a
built-in TEX register such as \count.

\cs_set_nopar:Npn \exp_args:Ncof { \::c \::o \::f \::: }

Internal forms for the base expansion types. These names do not conform to the general
IXTREX3 approach as this makes them more readily visible in the log and so forth.

30

\cs_generate_internal_variant:n \cs_generate_internal_variant:n (arg spec)

Tests if the function \exp_args:N{arg spec) exists, and defines it if it does not. The
(arg spec) should be a series of one or more of the letters N, ¢, n, o, V, v, £ and x.

31

\prg_new_conditional:Npnn
:Nnn

\prg_set_conditional:Npnn
:Nnn

Part VI
The 13prg package
Control structures

Conditional processing in IATEX3 is defined as something that performs a series of tests,
possibly involving assignments and calling other functions that do not read further ahead
in the input stream. After processing the input, a state is returned. The typical states
returned are (true) and (false) but other states are possible, say an (error) state for
erroneous input, e.g., text as input in a function comparing integers.

ITREX3 has two primary forms of conditional flow processing based on these states.
One type is predicate functions that turn the returned state into a boolean (true) or
(false). For example, the function \cs_if_free_p:N checks whether the control sequence
given as its argument is free and then returns the boolean (true) or (false) values to be
used in testing with \if predicate:w or in functions to be described below. The other
type is the kind of functions choosing a particular argument from the input stream based
on the result of the testing as in \cs_if_free:NTF which also takes one argument (the N)
and then executes either (true) or (false) depending on the result. Important to note here
is that the arguments are executed after exiting the underlying \if...\fi: structure.

21 Defining a set of conditional functions

\prg_set_conditional:Npnn \(name):(arg spec) (parameters) {(conditions)} {(code)}
\prg_set_conditional:Nnn \(name):(arg spec) {(conditions)} {(code)}

These functions creates a family of conditionals using the same {(code)} to perform the
test created. The new version will check for existing definitions (c¢f. \cs_new:Npn) whereas
the set version will not (¢f. \cs_set:Npn). The conditionals created are dependent on

the comma-separated list of (conditions), which should be one or more of p, T, F and TF.
The conditionals are defined by \prg_new_conditional:Npnn and friends as:

e \(name)_p:{arg spec) — a predicate function which will supply either a logical
true or logical false. This function is intended for use in cases where one or more
logical tests are combined to lead to a final outcome.

e \(name):(arg spec)T — a function with one more argument than the original {arg
spec) demands. The (true branch) code in this additional argument will be left on
the input stream only if the test is true.

e \(name):(arg spec)F — a function with one more argument than the original {arg
spec) demands. The (false branch) code in this additional argument will be left on
the input stream only if the test is false.

e \(name):(arg spec)TF — a function with two more argument than the original
(arg spec) demands. The (true branch) code in the first additional argument will

32

be left on the input stream if the test is true, while the (false branch) code in the
second argument will be left on the input stream if the test is false.

The (code) of the test may use (parameters) as specified by the second argument to \prg_-
set_conditional:Npnn: this should match the (argument specification) but this is not
enforced. The Nnn versions infer the number of arguments from the argument specification
given (cf. \cs_new:Nn, efc.). Within the (code), the functions \prg_return_true: and
\prg_return_false: are used to indicate the logical outcomes of the test. If (code)
is expandable then \prg_set_conditional:Npnn will generate a family of conditionals
which are also expandable. All of the functions are created globally.
An example can easily clarify matters here:

\prg_set_conditional:Nnn \foo_if_bar:NN { p , T , TF }
{
\if _meaning:w \1_tmpa_tl #1
\prg_return_true:
\else:
\if_meaning:w \1_tmpa_tl #2
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:
}

This defines the function \foo_if_bar_p:NN, \foo_if_bar:NNTF, \foo_if_bar:NNT but
not \foo_if_bar:NNF (because F is missing from the (conds) list). The return statements
take care of resolving the remaining \else: and \fi: before returning the state. There
must be a return statement for each branch, failing to do so will result in an error if that
branch is executed.

\prg_new_protected_conditional:Npnn \prg_set_protected_conditional:Npnn

:Nonn \(name): (arg spec) (parameters) (conditions) {({code)}
\prg_set_protected_conditional:Npnn \prg_set_protected_conditional:Nnn
:Nnn \(name): (arg spec) (conditions) {(code)}

These functions creates a family of conditionals using the same {(code)} to perform the
test created. The new version will check for existing definitions (¢f. \cs_new:Npn) whereas
the set version will not (¢f. \cs_set:Npn). The conditionals created are depended on

the comma-separated list of {conditions), which should be one or more of T, F and TF.
The conditionals are defined by \prg_new_protected_conditional:Npnn and
friends as:

e \(name):(arg spec)T — a function with one more argument than the original (arg
spec) demands. The (true branch) code in this additional argument will be left on
the input stream only if the test is true.

33

e \(name):(arg spec)F — a function with one more argument than the original {arg
spec) demands. The (false branch) code in this additional argument will be left on
the input stream only if the test is false.

e \(name):(arg spec)TF — a function with two more argument than the original
(arg spec) demands. The (true branch) code in the first additional argument will
be left on the input stream if the test is true, while the (false branch) code in the
second argument will be left on the input stream if the test is false.

The (code) of the test may use (parameters) as specified by the second argument to \prg_-
set_conditional:Npn: this should match the (argument specification) but this is not
enforced. The Nnn versions infer the number of arguments from the argument specification
given (cf. \cs_new:Nn, etc.). Within the (code), the functions \prg_return_true: and
\prg_return_false: are used to indicate the logical outcomes of the test. \prg_set_-
protected_conditional:Npn will generate a family of protected conditional functions,
and so (code) does not need to be expandable. All of the functions are created globally.

\prg_new_eq_conditional:NN \prg_new_eq_conditional:NN \(namel):(arg specl) \(name2):(arg spec2)

\prg_set_eq_conditional:NN These will set the definitions of the functions

e \(namel)_p:{arg specl)
e \(namel):(arg speci)T
e \(namel):({arg specl)F
e \(namel):(arg specl)TF

equal to those for

\(name2)_p:{arg spec2)
\(name2):(arg spec2)T
\(name2):(arg spec2)F

e \(name2):(arg spec2)TF

In most cases, the two (arg specs) will be identical, although this is not enforced. In the
case of the new function, a check is made for any existing definitions for (namel). The
functions are set globally.

\prg_return_true * \prg_return_true:

\prg_return_false * \prg_return_false:
These functions define the logical state at the end of a conditional. As such, they
should appear within the code for a conditional statement generated by \prg_set_-
conditional:Npnn, etc.

22 The boolean data type

This section describes a boolean data type which is closely connected to conditional
processing as sometimes you want to execute some code depending on the value of a

34

\bool_new:N

\bool_set_false:N

\bool_gset_false:N

\bool_set_true:N

\bool_gset_true:N

\bool_set_eq:NN
: (cN|Nc|ec)

\bool_gset_eq:NN
:(cN|N¢|ec)

\bool_set:Nn
icn

switch (e.g., draft/final) and other times you perhaps want to use it as a predicate
function in an \if_predicate:w test. The problem of the primitive \if_false: and
\if_true: tokens is that it is not always safe to pass them around as they may interfere
with scanning for termination of primitive conditional processing. Therefore, we employ
two canonical booleans: \c_true_bool or \c_false_bool. Besides preventing problems
as described above, it also allows us to implement a simple boolean parser supporting
the logical operations And, Or, Not, etc. which can then be used on both the boolean
type and predicate functions.

All conditional \bool_ functions are expandable and expect the input to also be
fully expandable (which will generally mean being constructed from predicate functions,
possibly nested).

\bool_new:N (boolean)

Creates a new (boolean) or raises an error if the name is already taken. The declaration
is global. The (boolean) will initially be false.

\bool_set_false:N (boolean)

Sets (boolean) logically false within the current TEX group.

\bool_sget_false:N (boolean)

Sets (boolean) logically false globally.

\bool_set_true:N (boolean)

Sets (boolean) logically true within the current TEX group.

\bool_gset_true:N (boolean)

Sets (boolean) logically true globally.

\bool_set_eq:NN (booleanl) (boolean2)

Sets the content of (booleanl) equal to that of (boolean2). This assignment is restricted
to the current TEX group level.

\bool_gset_eq:NN (boolean1) (boolean2)

Sets the content of (boolean) equal to that of (boolean2). This assignment is global and
so is not limited by the current TEX group level.

\bool_set:Nn (boolean) {(boolexpr)}

Evaluates the (boolean expression) as described for \bool_if:n(TF), and sets the
(boolean) variable to the logical truth of this evaluation. This assignment is local.

35

\bool_gset:Nn
rcn

\bool_if_p:N
:c
\bool if:NTF
:cTF

X % X

\1_tmpa_bool

\g_tmpa_bool

\bool_gset:Nn (boolean) {(boolexpr)}

Evaluates the (boolean expression) as described for \bool_if:n(TF), and sets the
(boolean) variable to the logical truth of this evaluation. This assignment is global.

\bool_if_p:N {(boolean)}
\bool_if:NTF {(boolean)} {(true code)} {(false code)}

Tests the current truth of (boolean), and continues expansion based on this result.

A scratch boolean for local assignment. It is never used by the kernel code, and so is
safe for use with any I#TEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

A scratch boolean for global assignment. It is never used by the kernel code, and so is
safe for use with any I#TEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

23 Boolean expressions

As we have a boolean datatype and predicate functions returning boolean (true) or (false)
values, it seems only fitting that we also provide a parser for (boolean expressions).

A boolean expression is an expression which given input in the form of predicate
functions and boolean variables, return boolean (true) or (false). It supports the logical
operations And, Or and Not as the well-known infix operators &&, || and !. In addition
to this, parentheses can be used to isolate sub-expressions. For example,

\int_compare_p:n { 1 = 1 } &&
(
\int_compare_p:n { 2 = 3 } ||
\int_compare_p:n { 4 = 4 } ||
\int_compare_p:n { 1 = \error } 7 is skipped

) &&
! (\int_compare_p:n { 2 =4 })

is a valid boolean expression. Note that minimal evaluation is carried out whenever
possible so that whenever a truth value cannot be changed any more, the remaining tests
within the current group are skipped.

36

\bool_if_p:n + \bool_if_p:n {(boolean expression)}
\bool_if:nTF + \bool_if:nTF {(boolean expression)} {(true code)} {(false code)}

Tests the current truth of (boolean expression), and continues expansion based on this
result. The (boolean expression) should consist of a series of predicates or boolean vari-
ables with the logical relationship between these defined using && (“And”), || (“Or”), !
(“Not”) and parentheses. Minimal evaluation is used in the processing, so that once a
result is defined there is not further expansion of the tests. For example

\bool_if_p:n

{

\int_compare_p:nNn { 1 } = { 1 }

&&

(
\int_compare_p:nNn { 2 } = { 3 } ||
\int_compare_p:nNn { 4 } = { 4 } ||
\int_compare_p:nNn { 1 } = { \error } % is skipped

)

&&

[
]

! (\int_compare_p:nNn { 2 {41})

3

will be true and will not evaluate \int_compare_p:nNn { 1 } = { \error }. The
logical Not applies to the next single predicate or group. As shown above, this means
that any predicates requiring an argument have to be given within parentheses.

\bool_not_p:n x \bool_not_p:n {(boolean expression)}

Function version of ! ({boolean expression)) within a boolean expression.

\bool_xor_p:nn x \bool_xor_p:nn {(boolexpri)} {(boolexpri)}

Implements an “exclusive or” operation between two boolean expressions. There is no
infix operation for this logical operator.

24 Logical loops

Loops using either boolean expressions or stored boolean values.

\bool_until_do:Nn % \bool_until_do:Nn {(boolean)} {(code)}
ien W

This function firsts checks the logical value of the (boolean). If it is false the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process will then loop until the (boolean) is true.

\bool_while_do:Nn
:cn

\bool_while_do:Nn {(boolean)} {(code)}

DD

This function firsts checks the logical value of the (boolean). If it is true the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process will then loop until the (boolean) is false.

37

\bool_until_do:nn 3

\bool_while_do:nn 3¢

\prg_case_int:nnn *

Updated: 2011-07-06

\bool_until_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is false the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process will then loop until the (boolean expression) is true.

\bool_while_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is true the (code) is placed in the input stream and expanded. After
the completion of the (code) the truth of the (boolean expression) is re-evaluated. The
process will then loop until the (boolean expression) is false.

25 Switching by case

For cases where a number of cases need to be considered a family of case-selecting func-
tions are available.

\prg_case_int:nnn {(test integer expression)}
{

{(intexpr casei)

{(intexpr cases)

(code case1)}
(code case2)}

o
o

{(intexpr case,)} {{code case,)}
}

{(else case)}

This function evaluates the (test integer expression) and compares this in turn to each
of the (integer expression cases). If the two are equal then the associated (code) is left
in the input stream. If none of the tests are true then the else code will be left in the

input stream.
As an example of \prg_case_int:nnn:

\prg_case_int:nnn

{2%57%

{

{51} { Small }

{4+672} { Medium }
{ -2 * 10 } { Negative }

}
{ No idea! }

will leave “Medium” in the input stream.

38

\prg_case_dim:nnn *

Updated: 2011-07-06

\prg_case_str:nnn *
:(onn|xxn) *

Updated: 2011-08-12

\prg_case_tl:Nnn *
rcon %

Updated: 2011-07-06

\prg_replicate:nn *

Updated: 2011-07-04

\prg_case_dim:nnn {(test dimension expression)}
{

{(dimexpr casei)

{(dimexpr cases)

} {(code case:)}
} {(code cases)}

{(dimexpr case,)} {{code case,)}
}

{(else case)}

This function evaluates the (test dimension expression) and compares this in turn to each
of the (dimension expression cases). If the two are equal then the associated (code) is
left in the input stream. If none of the tests are true then the else code will be left in
the input stream.

\prg_case_str:nnn {(test string)}
{

{(string case1)

{(string cases)

} {(code case1)}
} {(code case2)}

%éétring casen)} {(code case,)?}
}

{(else case)}

This function compares the (test string) in turn with each of the (string cases). If the
two are equal (as described for \str_if_eq:nnTF then the associated (code) is left in
the input stream. If none of the tests are true then the else code will be left in the
input stream. The xx variant is fully expandable, in the same way as the underlying
\str_if_eq:xxTF test.

\prg_case_t1l:Nnn (test token list variable)
{

(token list variable casel)

(token list variable case2)

(code case1)}
(code case2)}

{
{

(token list variable case,) {{code case,)}
3
{(else case)}
This function compares the (test token list variable) in turn with each of the (token list
variable cases). If the two are equal (as described for \t1_if_eq:nnTF then the associated
(code) is left in the input stream. If none of the tests are true then the else code will
be left in the input stream.

26 Producing n copies

\prg_replicate:nn {(integer expression)} {(tokens)}

Evaluates the (integer expression) (which should be zero or positive) and creates the
resulting number of copies of the (tokens). The function is both expandable and safe for
nesting. It yields its result after two expansion steps.

39

\prg_stepwise_function:nnnN 7 \prg_stepwise_function:nnnN {(initial value)} {(step)} {(final value)}

(function)

Updated: 2011-09-06

\prg_stepwise_inline:nnnn

Updated: 2011-09-06

This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. The (function) is then placed in front of each (value) from
the (initial value) to the (final value) in turn (using (step) between each (value)). Thus
(function) should absorb one numerical argument. For example

\cs_set_nopar:Npn \my_func:n #1 { [I~saw~#1] \quad }
\prg_stepwise_function:nnnN { 1 } { 5 } { 1 } \my_func:n

would print

[[saw 1] [Isaw 2] [Isaw 3] [Isaw 4] [Isaw 5

\prg_stepwise_inline:nnnn {(initial value)} {(step)} {(final value)} {{code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. The (code) is then placed in front of each (value) from the
(initial value) to the (final value) in turn (using (step) between each (value)). Thus the
(code) should define a function of one argument (#1).

\prg_stepwise_variable:nnnNn \Prg_stepwise_variable:nnnNn

Updated: 2011-09-06

{(initial value)} {(step)} {(final value)} (tl var) {(code)}

\mode_if_horizontal_p
\mode_if_horizontalTF

*

*

\mode_if_inner_p
\mode_if_innerTF *

*

\mode_if _math_p
\mode_if_mathTF x

*

Updated: 2011-09-05

This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. The (code) is inserted into the input stream, with the
(tl var) defined as the current (value). Thus the (code) should make use of the (tl var).

27 Detecting TEX’s mode

\mode_if_horizontal_p:
\mode_if_horizontal:TF {(true code)} {(false code)}

Detects if TEX is currently in horizontal mode.
\mode_if_inner_p:
\mode_if_inner:TF {(true code)} {(false code)}

Detects if TEX is currently in inner mode.

\mode_if_math:TF {(true code)} {(false code)}

Detects if TEX is currently in maths mode.

40

\mode_if_vertical_p «*
\mode_if_verticalTF x*

\group_align_safe_begin *
\group_align_safe_end *

Updated: 2011-08-11

\scan_align_safe_stop

Updated: 2011-09-06

\mode_if_vertical_p:
\mode_if_vertical:TF {(true code)} {(false code)}

Detects if TEX is currently in vertical mode.

28 Internal programming functions

\group_align_safe_begin:

\group_align_safe_end:

These functions are used to enclose material in a TEX alignment environment within a
specially-constructed group. This group is designed in such a way that it does not add
brace groups to the output but does act as a group for the & token inside \halign. This
is necessary to allow grabbing of tokens for testing purposes, as TEX uses group level
to determine the effect of alignment tokens. Without the special grouping, the use of a
function such as \peek_after:Nw will result in a forbidden comparison of the internal
\endtemplate token, yielding a fatal error. Each \group_align_safe_begin: must be
matched by a \group_align_safe_end:, although this does not have to occur within
the same function.

\scan_align_safe_stop:

Stops TEX’s scanner looking for expandable control sequences at the beginning of an
alignment cell. This function is required, for example, to obtain the expected output
when testing \mode_if_math:TF at the start of a math array cell: placing \scan_-
align_safe_stop: before \mode_if_math:TF will give the correct result. This function
does not destroy any kerning if used in other locations, but does render functions non-
expandable.

TEXhackers note: This is a protected version of \prg_do_nothing:, which therefore stops
TEX’s scanner in the circumstances described without producing any affect on the output.

\prg_variable_get_scope:N * \prg_variable_get_scope:N (variable)

\prg_variable_get_type:N *

Returns the scope (g for global, blank otherwise) for the (variable).

\prg_variable_get_type:N (variable)
Returns the type of (variable) (t1, int, etc.)

41

29 Experimental programmings functions

\prg_quicksort:n \prg_quicksort:n { {(item:)} {(item2)} ... {(item m)} }

Performs a quicksort on the token list. The comparisons are performed by the function
\prg_quicksort_compare:nnTF which is up to the programmer to define. When the
sorting process is over, all items are given as argument to the function \prg_quicksort_-
function:n which the programmer also controls.

\prg_quicksort_function:n \prg_quicksort_function:n {(element)}
\prg_quicksort_compare:nnTF \prg_quicksort_compare:nnTF {(element)} {(elementy)}

The two functions the programmer must define before calling \prg_quicksort:n. As an
example we could define

\cs_set_nopar:Npn\prg_quicksort_function:n #1{{#1}}
\cs_set_nopar:Npn\prg_quicksort_compare:nnTF #1#2 {\int_compare:nNnTF{#1}>{#2}}

Then the function call
\prg_quicksort:n {876234520}

would return {0}{2}{2}{3}{4}{5}{6}{7}{8}. An alternative example where one sorts
a list of words, \prg_quicksort_compare:nnTF could be defined as

\cs_set_nopar:Npn\prg_quicksort_compare:nnTF #1#2 {
\int_compare:nNnTF{\t1l_compare:nn{#1}{#2}}>\c_zero }

42

\quark_new:N

\q_stop

\q_mark

\q_no_value

Part VII
The 13quark package
Quarks

A special type of constants in ITEX3 are “quarks”. These are control sequences that
expand to themselves and should therefore never be executed directly in the code. This
would result in an endless loop!

They are meant to be used as delimiter is weird functions (for example as the stop
token (i.e. \gq_stop). They also permit the following ingenious trick: when you pick up
a token in a temporary, and you want to know whether you have picked up a particular
quark, all you have to do is compare the temporary to the quark using \if _meaning:w.
A set of special quark testing functions is set up below. All the quark testing functions
are expandable although the ones testing only single tokens are much faster.

By convention all constants of type quark start out with \q_.

30 Defining quarks

\quark_new:N (quark)

Creates a new (quark) which expands only to (quark). The (quark) will be defined
globally, and an error message will be raised if the name was already taken.

Used as a marker for delimited arguments, such as

\cs_set:Npn \tmp:w #1#2 \q_stop {#1}

Used as a marker for delimited arguments when \q_stop is already in use.

Quark to mark a null value in structured variables or functions. Used as an end delimiter
when this may itself may need to be tested (in contrast to \q_stop, which is only ever
used as a delimiter).

A canonical value for a missing value, when one is requested from a data structure. This
is therefore used as a “return” value by functions such as \prop_get:NnN if there is no
data to return.

43

*

\quark_if_nil_p:N
\quark_if_nil:NTF =%

\quark_if_nil_p:n
:(o]V)

\quark_if_nil:nTF
:(o|V)TF

D R S

\quark_if_no_value_p:N
:c
\quark_if_no_value:NTF
:cTF

X % X

*

\quark_if_no_value_p:n
\quark_if_no_value:nTF *

\g_recursion_stop

31 Quark tests

The method used to define quarks means that the single token (N) tests are faster than
the multi-token (n) tests. The later should therefore only be used when the argument
can definitely take more than a single token.

\quark_if_nil_p:N (token)
\quark_if_nil:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_nil.

\quark_if_nil_p:n {(token list)}
\quark_if_nil:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_nil (distinct from (token list) being empty or
containing \q_nil plus one or more other tokens).

\quark_if_no_value_p:N (token)
\quark_if_no_value:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_no_value.

\quark_if_no_value_p:n {(token list)}
\quark_if_no_value:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_no_value (distinct from (token list) being empty
or containing \q_no_value plus one or more other tokens).

32 Recursion

This module provides a uniform interface to intercepting and terminating loops as when
one is doing tail recursion. The building blocks follow below.

This quark is appended to the data structure in question and appears as a real element
there. This means it gets any list separators around it.

This quark is added after the data structure. Its purpose is to make it possible to
terminate the recursion at any point easily.

\quark_if_recursion_tail_stop:N \quark_if_recursion_tail_stop:N {(token)}

Tests if (token) contains only the marker \q_recursion_tail, and if so terminates the
recursion this is part of using \use_none_delimit_by_q_recursion_stop:w. The recur-
sion input must include the marker tokens \q_recursion_tail and \q_recursion_stop
as the last two items.

44

\quark_if_recursion_tail_stop:n \quark_if_recursion_tail_stop:n {(token list)}
‘0

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so terminates the recur-
sion this is part of using \use_none_delimit_by_q_recursion_stop:w. The recursion
input must include the marker tokens \q_recursion_tail and \q_recursion_stop as
the last two items.

\quark_if_recursion_tail_stop_do:Nn \quark_if_recursion_tail_stop_do:Nn {(token)} {(insertion)}

Tests if (token) contains only the marker \q_recursion_tail, and if so terminates the
recursion this is part of using \use_none_delimit_by_q_recursion_stop:w. The recur-
sion input must include the marker tokens \q_recursion_tail and \q_recursion_stop
as the last two items. The (insertion) code is then added to the input stream after the
recursion has ended.

\quark_if_recursion_tail_stop_do:nn \quark_if_recursion_tail_stop_do:nn {(token list)} {(insertion)}
:on

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so terminates the recur-
sion this is part of using \use_none_delimit_by_q_recursion_stop:w. The recursion
input must include the marker tokens \q_recursion_tail and \q_recursion_stop as
the last two items. The (insertion) code is then added to the input stream after the
recursion has ended.

33 Internal quark functions

\use_none_delimit_by_q_recursion_stop:w \use_none_delimit_by_q_recursion_stop:w (tokens)
\g_recursion_stop

Used to prematurely terminate a recursion using \q_recursion_stop as the end marker,
removing any remaining (tokens) from the input stream.

\use_i_delimit_by_q_recursion_stop:nw \use_i_delimit_by_q_recursion_stop:nw {(insertion)}
(tokens) \q_recursion_stop

Used to prematurely terminate a recursion using \q_recursion_stop as the end marker,
removing any remaining (tokens) from the input stream. The (insertion) is then made
into the input stream after the end of the recursion.

45

Part VIII
The 13token package
Token manipulation

This module deals with tokens. Now this is perhaps not the most precise description so
let’s try with a better description: When programming in TgX, it is often desirable to
know just what a certain token is: is it a control sequence or something else. Similarly
one often needs to know if a control sequence is expandable or not, a macro or a primitive,
how many arguments it takes etc. Another thing of great importance (especially when it
comes to document commands) is looking ahead in the token stream to see if a certain
character is present and maybe even remove it or disregard other tokens while scanning.
This module provides functions for both and as such will have two primary function
categories: \token for anything that deals with tokens and \peek for looking ahead in
the token stream.

Most of the time we will be using the term “token” but most of the time the function
we’re describing can equally well by used on a control sequence as such one is one token
as well.

We shall refer to list of tokens as t1lists and such lists represented by a single control
sequence is a “token list variable” t1 var. Functions for these two types are found in
the 13tl module.

34 All possible tokens

Let us start by reviewing every case that a given token can fall into. It is very important
to distinguish two aspects of a token: its meaning, and what it looks like.

For instance, \if :w, \if_charcode:w, and \tex_if:D are three for the same internal
operation of TEX, namely the primitive testing the next two characters for equality of their
character code. They behave identically in many situations. However, TEX distinguishes
them when searching for a delimited argument. Namely, the example function \show_-
until_if:w defined below will take everything until \if :w as an argument, despite the
presence of other copies of \if :w under different names.

\cs_new:Npn \show_until_if:w #1 \if:w { \tl_show:n {#1} }
\show_until_if:w \tex_if:D \if_charcode:w \if:w

46

35 Character tokens

\char_set_catcode_escape:N \char_set_catcode_letter:N (character)
\char_set_catcode_group_begin:N
\char_set_catcode_group_end:N
\char_set_catcode_math_toggle:N
\char_set_catcode_alignment:N
\char_set_catcode_end_line:N
\char_set_catcode_parameter:N
\char_set_catcode_math_superscript:N
\char_set_catcode_math_subscript:N
\char_set_catcode_ignore:N
\char_set_catcode_space:N
\char_set_catcode_letter:N
\char_set_catcode_other:N
\char_set_catcode_active:N
\char_set_catcode_comment:N
\char_set_catcode_invalid:N

Sets the category code of the (character) to that indicated in the function name. De-
pending on the current category code of the (token) the escape token may also be needed:

\char_set_catcode_other:N \%

The assignment is local.

\char_set_catcode_escape:n \char_set_catcode_letter:n {(integer expression)}
\char_set_catcode_group_begin:n
\char_set_catcode_group_end:n
\char_set_catcode_math_toggle:n
\char_set_catcode_alignment:n
\char_set_catcode_end_line:n
\char_set_catcode_parameter:n
\char_set_catcode_math_superscript:n
\char_set_catcode_math_subscript:n
\char_set_catcode_ignore:n
\char_set_catcode_space:n
\char_set_catcode_letter:n
\char_set_catcode_other:n
\char_set_catcode_active:n
\char_set_catcode_comment:n
\char_set_catcode_invalid:n

Sets the category code of the (character) which has character code as given by the (integer
expression). This version can be used to set up characters which cannot otherwise be
given (cf. the N-type variants). The assignment is local.

47

\char_set_catcode:nn

\char_value_catcode:n *

\char_show_value_catcode:n

\char_set_lccode:nn

\char_value_lccode:n *

\char_show_value_lccode:n

\char_set_catcode:nn {(intexpri)} {(intexprs)}

These functions set the category code of the (character) which has character code as
given by the (integer expression). The first (integer expression) is the character code
and the second is the category code to apply. The setting applies within the current
TEX group. In general, the symbolic functions \char_set_catcode_{type) should be
preferred, but there are cases where these lower-level functions may be useful.

\char_value_catcode:n {(integer expression)}

Expands to the current category code of the {character) with character code given by
the (integer expression).

\char_show_value_catcode:n {(integer expression)}

Displays the current category code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_lcode:nn {(intexpri)} {(intexprsa)}

This function set up the behaviour of (character) when found inside \t1_to_lowercase:n,
such that (character?) will be converted into (character2). The two (characters) may
be specified using an (integer expression) for the character code concerned. This may
include the TEX ¢(character) method for converting a single character into its character
code:

\char_set_lccode:nn { ‘\A } { ‘\a } % Standard behaviour
\char_set_lccode:nn { ‘\A } { ‘\A + 32 }
\char_set_lccode:nn { 50 } { 60 }

The setting applies within the current TEX group.

\char_value_lccode:n {(integer expression)}

Expands to the current lower case code of the (character) with character code given by
the (integer expression).

\char_show_value_lccode:n {(integer expression)}

Displays the current lower case code of the {character) with character code given by the
(integer expression) on the terminal.

48

\char_set_uccode:nn \char_set_uccode:nn {(intexpri)} {(intexpra)}

This function set up the behaviour of (character) when found inside \t1_to_uppeercase:n,
such that (character?) will be converted into (character2). The two (characters) may
be specified using an (integer expression) for the character code concerned. This may
include the TEX ¢(character) method for converting a single character into its character
code:

\char_set_uccode:nn { ‘\a } { ‘\A } % Standard behaviour
\char_set_uccode:nn { ‘\A } { ‘\A - 32 }
\char_set_uccode:nn { 60 } { 50 }

The setting applies within the current TEX group.

\char_value_uccode:n x \char_value_uccode:n {(integer expression)}

Expands to the current upper case code of the (character) with character code given by
the (integer expression).

\char_show_value_uccode:n \char_show_value_uccode:n {(integer expression)}

Displays the current upper case code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_mathcode:nn \char_set_mathcode:nn {(intexpri)} {(intexpr:)}

This function sets up the math code of (character). The (character) is specified as an
(integer expression) which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

\char_value_mathcode:n * \char_value_mathcode:n {(integer expression)}

Expands to the current math code of the (character) with character code given by the
(integer expression).

\char_show_value_mathcode:n \char_show_value_mathcode:n {(integer expression)}

Displays the current math code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_sfcode:nn \char_set_sfcode:nn {(intexpr:)} {(intexprs)}

This function sets up the space factor for the {character). The (character) is specified as
an (integer expression) which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

\char_value_sfcode:n x \char_value_sfcode:n {(integer expression)}

Expands to the current space factor for the (character) with character code given by the
(integer expression).

49

\char_show_value_sfcode:n

\token_new:Nn

\c_group_begin_token
\c_group_end_token
\c_math_toggle_token
\c_alignment_token
\c_parameter_token
\c_math_superscript_token
\c_math_subscript_token
\c_space_token

\c_catcode_letter_token
\c_catcode_other_token

\c_catcode_active_tl

\token_to_meaning:N *

\char_show_value_sfcode:n {(integer expression)}

Displays the current space factor for the (character) with character code given by the
(integer expression) on the terminal.

36 Generic tokens

\token_new:Nn (tokeni) {(tokens)}

Defines (token!) to globally be a snapshot of (token2). This will be an implicit repre-
sentation of (token2).

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes but are also available to the programmer for other
uses.

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes and should not be used other than for category code
tests.

A token list containing an active token. This is used internally for test purposes and
should not be used other than in appropriately-constructed category code tests.

37 Converting tokens

\token_to_meaning:N (token)

Inserts the current meaning of the (token) into the input stream as a series of characters
of category code 12 (other). This will be the primitive TEX description of the (token),
thus for example both functions defined by \cs_set_nopar:Npn and token list variables
defined using \t1l_new:N will be described as macros.

TEXhackers note: This is the TEX primitive \meaning.

90

\token_to_str:N «*
ic ox

\token_to_str:N (token)

Converts the given (token) into a series of characters with category code 12 (other). The
current escape character will be the first character in the sequence, although this will
also have category code 12 (the escape character is part of the (token)). This function
requires only a single expansion.

TEXhackers note: \token_to_str:N is the TEX primitive \string renamed.

38 Token conditionals

\token_if_group_begin_p:N » \token_if_group_begin_p:N (token)
\token_if_group_begin:NTF * \token_if_group_begin:NTF (token) {(true code)} {(false code)}

\token_if_group_end_p:N *
\token_if_group_end:NTF x

Tests if (token) has the category code of a begin group token ({ when normal TEX
category codes are in force). Note that an explicit begin group token cannot be tested in
this way, as it is not a valid N-type argument.

\token_if_group_end_p:N (token)
\token_if_group_end:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an end group token (} when normal TEX category
codes are in force). Note that an explicit end group token cannot be tested in this way,
as it is not a valid N-type argument.

\token_if_math_toggle_p:N * \token_if_math_toggle_p:N (token)
\token_if_math_toggle:NTF » \token_if_math_toggle:NTF (token) {(true code)} {(false code)}

\token_if_alignment_p:N *
\token_if_alignment:NTF x

\token_if_parameter_p:N x
\token_if_parameter:NTF x

Tests if (token) has the category code of a math shift token ($ when normal TEX category
codes are in force).

\token_if_alignment_p:N (token)
\token_if_alignment:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an alignment token (& when normal TEX category
codes are in force).

\token_if_parameter_p:N (token)
\token_if_alignment:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a macro parameter token (# when normal TEX
category codes are in force).

\token_if_math_superscript_p:N = \token_if math_superscript_p:N (token)
\token_if_math_superscript:NTF x \token_if_math_superscript:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a superscript token (= when normal TEX category
codes are in force).

ol

\token_if_math_subscript_p:N % \token_if math_subscript_p:N (token)
\token_if_math_subscript:NTF % \token_if_math_subscript:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a subscript token (_ when normal TEX category
codes are in force).

\token_if_space_p:N (token)

\token_if_space_p:N *
\token_if_space:NTF % \token_if_space:NTF (token) {(true code)} {(false code)}
Tests if (token) has the category code of a space token. Note that an explicit space token
with character code 32 cannot be tested in this way, as it is not a valid N-type argument.
\token_if_letter_p:N + \token_if_ letter_p:N (token)

\token_if_letter:NTF \token_if_letter:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a letter token.

\token_if_other_p:N % \token_if_other_p:N (token)
\token_if_ other:NTF x \token_if_other:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an “other” token.

\token_if_active_p:N + \token_if_active_p:N (token)
\token_if_active:NTF \token_if_active:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an active character.

\token_if_eq_catcode_p:NN » \token_if_eq_catcode_p:NN (tokenl) (token2)
\token_if_eq_catcode:NNTF \token_if_eq_catcode:NNTF (tokenl) (token2) {(true code)} {(false code)}

Tests if the two (tokens) have the same category code.

\token_if_eq_charcode_p:NN % \token_if_eq charcode_p:NN (tokenl) (token2)
\token_if_eq_charcode:NNTF + \token_if_eq_charcode:NNTF (tokenl) (token2) {(true code)} {(false code)}

Tests if the two (tokens) have the same character code.

\token_if_eq meaning p:NN * \token_if_eq meaning p:NN (tokenl) (token2)
\token_if_eq_meaning:NNTF * \token_if_eq_meaning:NNTF (tokenl) (token2) {(true code)} {(false code)}

Tests if the two (tokens) have the same meaning when expanded.

\token_if_macro_p:N % \token_if_macro_p:N (token)
\token_if macro:NTF x \token_if_macro:NTF (token) {(true code)} {(false code)}

Updated: 2001-05-23 Lests if the (token) is a TEX macro.

\token_if_cs_p:N * \token_if_cs_p:N (token)
\token_if_cs:NTF % \token_if_cs:NTF (token) {(true code)} {(false code)}

Tests if the (token) is a control sequence.

92

\token_if_expandable_p:N \token_if_expandable_p:N (token)
\token_if_expandable:NTF » \token_if_expandable:NTF (token) {(true code)} {(false code)}

*

Tests if the (token) is expandable. This test returns (false) for an undefined token.

\token_if_long_macro_p:N » \token_if_long _macro_p:N (token)
\token_if_long_macro:NTF \token_if_long_macro:NTF (token) {(true code)} {(false code)}

Tests if the (token) is a long macro.

\token_if_protected_macro_p:N % \token_if_protected_macro_p:N (token)
\token_if_protected_macro:NTF x \token_if_protected_macro:NTF (token) {(true code)} {(false code)}

Tests if the (token) is a protected macro: a macro which is both protected and long will
return logical false.

\token_if_protected_long_macro_p:N \token_if_protected_long_macro_p:N (token)
\token_if_protected_long_macro:NTF % \token_if_ protected_long_macro:NTF (token) {(true code)} {(false
code)}

Tests if the (token) is a protected long macro.

\token_if_chardef_p:N % \token_if_chardef _p:N (token)
\token_if_chardef:NTF + \token_if_chardef:NTF (token) {(true code)} {(false code)}

Tests if the (token) is defined to be a chardef.

\token_if_mathchardef_p:N * \token_if_mathchardef_p:N (token)
\token_if_mathchardef:NTF % \token_if_mathchardef:NTF (token) {(true code)} {(false code)}

Tests if the (token) is defined to be a mathchardef.

\token_if_dim_register_p:N % \token_if_dim_register_p:N (token)
\token_if_dim_register:NTF % \token_if_dim_register:NTF (token) {(true code)} {(false code)}

Tests if the (token) is defined to be a dimension register.

\token_if_int_register_p:N % \token_ if_ int_register p:N (token)
\token_if_int_register:NTF \token_if_int_register:NTF (token) {(true code)} {(false code)}

Tests if the (token) is defined to be a integer register.

\token_if_skip_register_p:N \token_if_skip_register_p:N (token)
\token_if_skip_register:NTF % \token_if_skip_register:NTF (token) {(true code)} {(false code)}

Tests if the (token) is defined to be a skip register.

\token_if_toks_register_p:N % \token_if_toks_register_p:N (token)
\token_if_toks_register:NTF \token_if_toks_register:NTF (token) {(true code)} {(false code)}

Tests if the (token) is defined to be a toks register (not used byKTEX3).

93

\token_if_primitive_p:N x
\token_if_primitive:NTF x

Updated: 2001-05-23

\peek_after:Nw

\peek_gafter:Nw

\1_peek_token

\g_peek_token

\peek_catcode:NTF

Updated: 2011-07-02

\token_if_primitive_p:N (token)
\token_if_primitive:NTF (token) {(true code)} {(false code)}

Tests if the (token) is an engine primitive.

39 Peeking ahead at the next token

There is often a need to look ahead at the next token in the input stream while leaving
it in place. This is handled using the “peek” functions. The generic \peek_after:Nw is
provided along with a family of predefined tests for common cases. As peeking ahead does
not skip spaces the predefined tests include both a space-respecting and space-skipping
version.

\peek_after:Nw (function) (token)

Locally sets the test variable \1_peek_token equal to (token) (as an implicit token, not
as a token list), and then expands the (function). The (token) will remain in the input
stream as the next item after the (function). The (token) here may be ., { or } (assuming
normal TEX category codes), i.e. it is not necessarily the next argument which would be
grabbed by a normal function.

\peek_gafter:Nw (function) (token)

Globally sets the test variable \g_peek_token equal to (token) (as an implicit token,
not as a token list), and then expands the (function). The (token) will remain in the
input stream as the next item after the (function). The (token) here may be ., { or }
(assuming normal TEX category codes), i.e. it is not necessarily the next argument which
would be grabbed by a normal function.

Token set by \peek_after:Nw and available for testing as described above.

Token set by \peek_gafter:Nw and available for testing as described above.

\peek_catcode:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the (token) will be left in the input stream after the (true code) or (false
code) (as appropriate to the result of the test).

\peek_catcode_ignore_spaces:NTF \peek_catcode_ignore_spaces:NTF (test token) {(true code)} {(false

code)?}

Updated: 2011-07-02

Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are ignored by the
test and the (token) will be left in the input stream after the (true code) or {false code)
(as appropriate to the result of the test).

o4

\peek_catcode_remove:NTF

Updated: 2011-07-02

\peek_catcode_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the (token) will be removed from the input stream if the test is true. The
function will then place either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

\peek_catcode_remove_ignore_spaces:NTF \peek_catcode_remove_ignore_spaces:NTF (test token) {(true

code)} {(false code)}
Updated: 2011-07-02

\peek_charcode:NTF

Updated: 2011-07-02

Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are ignored by the
test and the (token) will be removed from the input stream if the test is true. The
function will then place either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

\peek_charcode:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the (token) will be left in the input stream after the (true code) or (false
code) (as appropriate to the result of the test).

\peek_charcode_ignore_spaces:NTF \peek_charcode_ignore_spaces:NTF (test token) {(true code)} {(false

code)}

Updated: 2011-07-02

\peek_charcode_remove:NTF

Updated: 2011-07-02

Tests if the next (token) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are ignored by the
test and the (token) will be left in the input stream after the (true code) or {false code)
(as appropriate to the result of the test).

\peek_charcode_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the (token) will be removed from the input stream if the test is true. The
function will then place either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

\peek_charcode_remove_ignore_spaces:NTF \peek_charcode_remove_ignore_spaces:NTF (test token)

{(true code)} {(false code)}
Updated: 2011-07-02

Tests if the next (token) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are ignored by
the test and the (token) will be removed from the input stream if the test is true. The
function will then place either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

%3]

\peek_meaning:NTF

Updated: 2011-07-02

\peek_meaning:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same meaning as the (test token)
(as defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test
and the (token) will be left in the input stream after the (true code) or (false code) (as
appropriate to the result of the test).

\peek_meaning_ignore_spaces:NTF \peek_meaning_ignore_spaces:NTF (test token) {(true code)} {(false

code)?}

Updated: 2011-07-02

\peek_meaning_remove:NTF

Updated: 2011-07-02

Tests if the next (token) in the input stream has the same meaning as the (test token)
(as defined by the test \token_if_eq meaning:NNTF). Spaces are ignored by the test
and the (token) will be left in the input stream after the (true code) or (false code) (as
appropriate to the result of the test).

\peek_meaning_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same meaning as the (test token)
(as defined by the test \token_if_eq _meaning:NNTF). Spaces are respected by the test
and the (token) will be removed from the input stream if the test is true. The function
will then place either the (true code) or (false code) in the input stream (as appropriate
to the result of the test).

\peek_meaning_remove_ignore_spaces:NTF \peek_meaning remove_ignore_spaces:NTF (test token)

{(true code)} {(false code)}
Updated: 2011-07-02

Tests if the next (token) in the input stream has the same meaning as the (test token) (as
defined by the test \token_if_eq_meaning:NNTF). Spaces are ignored by the test and
the (token) will be removed from the input stream if the test is true. The function will
then place either the (true code) or (false code) in the input stream (as appropriate to
the result of the test).

40 Decomposing a macro definition
These functions decompose TEX macros into their constituent parts: if the (token) passed

is not a macro then no decomposition can occur. In the later case, all three functions
leave \scan_stop: in the input stream.

96

\token_get_arg_spec:N *

\token_get_arg_spec:N (token)

If the (token) is a macro, this function will leave the primitive TEX argument specification
in input stream as a string of tokens of category code 12 (with spaces having category
code 10). Thus for example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1 y #2 }

will leave #1#2 in the input stream. If the (token) is not a macro then \scan_stop: will
be left in the input stream

TEXhackers note: If the arg spec. contains the string ->, then the spec function will
produce incorrect results.

\token_get_replacement_text:N * \token_get_replacement_text:N <token)

\token_get_prefix_spec:N *

\char_active_set:Npn
:Npx

\char_active_gset:Npn
:Npx

If the (token) is a macro, this function will leave the replacement text in input stream as
a string of tokens of category code 12 (with spaces having category code 10). Thus for
example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1~y #2 }

will leave x#1 y#2 in the input stream. If the (token) is not a macro then \scan_stop:
will be left in the input stream

\token_get_prefix_spec:N (token)

If the (token) is a macro, this function will leave the TEX prefixes applicable in input
stream as a string of tokens of category code 12 (with spaces having category code 10).
Thus for example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1~y #2 }

will leave \long in the input stream. If the (token) is not a macro then \scan_stop:
will be left in the input stream

41 Experimental token functions

\char_active_set:Npn (char) (parameters) {(code)}

Makes (char) an active character to expand to (code) as replacement text. Within the
(code), the (parameters) (#1, #2, etc.) will be replaced by those absorbed This definition
is local to the current TEX group.

\char_active_gset:Npn (char) (parameters) {{code)}

Makes (char) an active character to expand to (code) as replacement text. Within the
(code), the (parameters) (#1, #2, etc.) will be replaced by those absorbed This definition
is global.

o7

\char_active_set_eq:NN

\char_active_gset_eq:NN

\peek_N_typeTF

New: 2011-08-14

\char_active_set_eq:NN (char) (function)

Makes (char) an active character equivalent in meaning to the (fiucntion) (which may
itself be an active character). This definition is local to the current TEX group.

\char_active_gset_eq:NN (char) (function)

Makes (char) an active character equivalent in meaning to the (fiucntion) (which may
itself be an active character). This definition is global.

\peek_N_type:TF {(true code)} {(false code)}

Tests if the next (token) in the input stream can be safely grabbed as an N-type argument.
The test will be (false) if the next (token) is either an explicit or implicit begin-group
or end-group token (with any character code), or an explicit or implicit space character
(with character code 32 and category code 10), and (true) in all other cases. Note that
a (true) result ensures that the next (token) is a valid N-type argument. However, if the
next (token) is for instance \c_space_token, the test will take the (false) branch, even
though the next (token) is in fact a valid N-type argument. The (token) will be left in
the input stream after the (true code) or (false code) (as appropriate to the result of the
test).

98

\int_eval:n *

\int_abs:n x

\int_div_round:nn *

Part IX
The 13int package
Integers

Calculation and comparison of integer values can be carried out using literal numbers, int
registers, constants and integers stored in token list variables. The standard operators
+, -, / and * and parentheses can be used within such expressions to carry arithmetic
operations. This module carries out these functions on integer expressions (“int expr”).

42 Integer expressions

\int_eval:n {(integer expression)}

Evaluates the (integer expression), expanding any integer and token list variables within
the (expression) to their content (without requiring \int_use:N/\t1l_use:N) and apply-
ing the standard mathematical rules. For example both

\int_eval:n { 6+ 4 %3 - (3+4x*x5)}
and

\tl_new:N \l_my_tl

\tl_set:Nn \1_my_tl { 5 }

\int_new:N \1l_my_int

\int\set:Nn \1_my_int { 4 }

\int_eval:n { \1_my_tl + \l_my_int * 3 - (3 +4 %5) }

both evaluate to —6. The {(integer ezpression)} may contain the operators +, -, * and
/, along with parenthesis (and). After two expansions, \int_eval:n yields a (integer
denotation) which is left in the input stream. This is not an (internal integer), and
therefore requires suitable termination if used in a TEX-style integer assignment.

\int_abs:n {(integer expression)}

Evaluates the (integer expression) as described for \int_eval:n and leaves the absolute
value of the result in the input stream as an (integer denotation) after two expansions.

\int_div_round:nn {(intexpri)} {(intexpra)}

Evaluates the two (integer expressions) as described earlier, then calculates the result of
dividing the first value by the second, round any remainder. Note that this is identical
to using / directly in an (integer expression). The result is left in the input stream as a
(integer denotation) after two expansions.

99

\int_div_truncate:nn *

\int_max:nn *
\int_min:nn *

\int_mod:nn *

\int_new:N
e

\int_const:Nn
:cn

\int_zero:N
c

\int_gzero:N
:c

\int_set_eq:NN
: (cN|Nc|ec)

\int_gset_eq:NN
:(cN|N¢|ec)

\int_div_truncate:nn {(intexpri)} {(intexprs)}

Evaluates the two (integer expressions) as described earlier, then calculates the result
of dividing the first value by the second, truncating any remainder. Note that division
using / rounds the result. The result is left in the input stream as a (integer denotation)
after two expansions.

\int_max:nn {(intexpri)} {(intexpr2)}
\int_min:nn {(intexpri)} {(intexpr2)}

Evaluates the (integer expressions) as described for \int_eval:n and leaves either the
larger or smaller value in the input stream as an (integer denotation) after two expansions.

\int_mod:nn {(intexpri)} {(intexpr2)}

Evaluates the two (integer expressions) as described earlier, then calculates the integer
remainder of dividing the first expression by the second. This is left in the input stream
as an (integer denotation) after two expansions.

43 Creating and initialising integers

\int_new:N (integer)

Creates a new (integer) or raises an error if the name is already taken. The declaration
is global. The (integer) will initially be equal to 0.

\int_const:Nn (integer) {(integer expression)}

Creates a new constant (integer) or raises an error if the name is already taken. The
value of the (integer) will be set globally to the (integer expression).

\int_zero:N (integer)

Sets (integer) to 0 within the scope of the current TEX group.

\int_gzero:N (integer)

Sets (integer) to 0 globally, 7.e. not restricted by the current TEX group level.

\int_set_eq:NN (integerl) (integer2)

Sets the content of (integer!) equal to that of (integer2). This assignment is restricted
to the current TEX group level.

\int_gset_eq:NN (integerl) (integer2)

Sets the content of (integer!) equal to that of (integer2). This assignment is global and
so is not limited by the current TEX group level.

60

\int_add:

Nn

:cn

\int_gadd:

Nn

:cn

\int_decr:N

\int_gdecr:N

\int_incr:N

\int_gincr:N

\int_set:

Nn

:cn

\int_gset:

Nn

:cn

\int_sub:

Nn

:cn

\int_gsub:

Nn

:cn

44 Setting and incrementing integers

\int_add:Nn (integer) {(integer expression)}

Adds the result of the (integer expression) to the current content of the (integer). This
assignment is local.

\int_gadd:Nn (integer) {(integer expression)}

Adds the result of the (integer expression) to the current content of the (integer). This
assignment is global.

\int_decr:N (integer)

Decreases the value stored in (integer) by 1 within the scope of the current TEX group.

\int_incr:N (integer)

Decreases the value stored in (integer) by 1 globally (i.e. not limited by the current group
level).

\int_incr:N (integer)

Increases the value stored in (integer) by 1 within the scope of the current TEX group.

\int_incr:N (integer)

Increases the value stored in (integer) by 1 globally (i.e. not limited by the current group
level).

\int_set:Nn (integer) {(integer expression)}

Sets (integer) to the value of (integer expression), which must evaluate to an integer (as
described for \int_eval:n). This assignment is restricted to the current TEX group.

\int_gset:Nn (integer) {(integer expression)}

Sets (integer) to the value of (integer expression), which must evaluate to an integer (as
described for \int_eval:n). This assignment is global and is not limited to the current

TEX group level.

\int_sub:Nn (integer) {(integer expression)}

Subtracts the result of the (integer expression) to the current content of the (integer).
This assignment is local.

\int_gsub:Nn (integer) {(integer expression)}

Subtracts the result of the (integer expression) to the current content of the (integer).
This assignment is global.

61

\int_use:N
e

*
*

\int_compare_p:nNn
\int_compare:nNnTF

*
*

\int_compare_p:n
\int_compare:nTF

*
*

\int_if_even_p:n
\int_if_even:nTF
\int_if_odd_p:n
\int_if_odd:nTF

b I S

45 Using integers

\int_use:N (integer)

Recovers the content of a (integer) and places it directly in the input stream. An error will
be raised if the variable does not exist or if it is invalid. Can be omitted in places where a
(integer) is required (such as in the first and third arguments of \int_compare:nNnTF).

TEXhackers note: \int_use:N is the TEX primitive \the: this is one of several IKXTEX3
names for this primitive.

46 Integer expression conditionals

\int_compare_p:nNn {(intexpri)} (relation) {(intexpra)}
\int_compare:nNnTF

{(intexpr1)} (relation) {(intexpra)}

{(true code)} {(false code)}

This function first evaluates each of the (integer expressions) as described for \int_-
eval:n. The two results are then compared using the (relation):

Equal
Greater than
Less than

ANV

\int_compare_p:n { (intexprl) (relation) (intexpr2) }
\int_compare:nTF

{ (intexprl) (relation) (intexpr2) }

{(true code)} {(false code)}

This function first evaluates each of the (integer expressions) as described for \int_-
eval:n. The two results are then compared using the (relation):

Equal =or ==
Greater than or equal to =>
Greater than >

Less than or equal to =<
Less than <

Not equal 1=

\int_if_odd_p:n {(integer expression)}
\int_if_odd:nTF {(integer expression)}
{(true code)} {(false code)}

This function first evaluates the (integer expression) as described for \int_eval:n. It
then evaluates if this is odd or even, as appropriate.

62

\int_do_while:nNnn

\int_do_until:nNnn

\int_until_do:nNnn

W

\int_while_do:nNnn

o
W

\int_do_while:nn

\int_do_until:nn

47 Integer expression loops

\int_do_while:nNnn

{(intexpr1)} (relation) {(intexpr2)} {(code)}
Evaluates the relationship between the two (integer expressions) as described for \int_-
compare:nNnTF, and then places the (code) in the input stream if the (relation) is true.
After the (code) has been processed by TEX the test will be repeated, and a loop will
occur until the test is false.

\int_do_until:nNnn

{(intexpr1)} (relation) {(intexpr2)} {(code)}
Evaluates the relationship between the two (integer expressions) as described for \int_-
compare :nNnTF, and then places the (code) in the input stream if the (relation) is false.
After the (code) has been processed by TEX the test will be repeated, and a loop will
occur until the test is true.

\int_until_do:nNnn

{(intexpr.)} (relation) {(intexpr2)} {(code)}
Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (integer expressions) as described for \int_compare :nNnTF. If
the test is false then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is true.

\int_while_do:nNnn {(intexpr.)} (relation) {(intexpr2)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (integer expressions) as described for \int_compare :nNnTF. If
the test is true then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is false.

\int_do_while:nNnn

{ (intexpril) (relation) (intexpr2) } {(code)}
Evaluates the relationship between the two (integer expressions) as described for \int_-
compare:nTF, and then places the (code) in the input stream if the (relation) is true.
After the (code) has been processed by TEX the test will be repeated, and a loop will
occur until the test is false.

\int_do_until:nn

{ (intexprl) (relation) (intexpr2) } {(code)}
Evaluates the relationship between the two (integer expressions) as described for \int_-
compare:nTF, and then places the (code) in the input stream if the (relation) is false.
After the (code) has been processed by TgX the test will be repeated, and a loop will
occur until the test is true.

63

\int_until_do:nn 7

\int_while_do:nn 3¢

\int_to_arabic:n x

\int_to_alph:n
\int_to_Alph:n ¥

\int_until_do:nn
{ (intexpril) (relation) (intexpr2) } {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (integer expressions) as described for \int_compare:nTF. If the
test is false then the (code) will be inserted into the input stream again and a loop will
occur until the (relation) is true.

\int_while_do:nn { (intexpr1) (relation) (intexpr2) } {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (integer expressions) as described for \int_compare:nTF. If the
test is true then the (code) will be inserted into the input stream again and a loop will
occur until the (relation) is false.

48 Formatting integers

Integers can be placed into the output stream with formatting. These conversions apply
to any integer expressions.

\int_to_arabic:n {(integer expression)}

Places the value of the (integer expression) in the input stream as digits, with category
code 12 (other).

\int_to_alph:n {(integer expression)}

Evaluates the (integer expression) and converts the result into a series of letters, which
are then left in the input stream. The conversion rule uses the 26 letters of the English
alphabet, in order, adding letters when necessary to increase the total possible range of
representable numbers. Thus

\int_to_alph:n { 1 }
places a in the input stream,

\int_to_alph:n { 26 }
is represented as z and

\int_to_alph:n { 27 }

is converted to aa. For conversions using other alphabets, use \int_convert_to_-
symbols:nnn to define an alphabet-specific function. The basic \int_to_alph:n and
\int_to_Alph:n functions should not be modified.

64

\int_to_symbols:nnn 3

\int_to_binary:n

Updated: 2011-08-16

\int_to_hexadecimal:n ¥

Updated: 2011-08-16

\int_to_octal:n

Updated: 2011-08-16

\int_to_base:nn

Updated: 2011-08-16

\int_to_symbols:nnn
{(integer expression)} {(total symbols)}
(value to symbol mapping)

This is the low-level function for conversion of an (integer expression) into a symbolic
form (which will often be letters). The (total symbols) available should be given as an
integer expression. Values are actually converted to symbols according to the (value to
symbol mapping). This should be given as (total symbols) pairs of entries, a number and
the appropriate symbol. Thus the \int_to_alph:n function is defined as

\cs_new:Npn \int_to_alph:n #1

{
\int_convert_to_sybols:nnn {#1} { 26 }
{
{ 1}r{al}
{ 2}y{bv1}
{26ry{z1}
}
}

\int_to_binary:n {(integer expression)}

Calculates the value of the (integer expression) and places the binary representation of
the result in the input stream.

\int_to_binary:n {(integer expression)}

Calculates the value of the (integer expression) and places the hexadecimal (base 16)
representation of the result in the input stream. Upper case letters are used for digits
beyond 9.

\int_to_octal:n {(integer expression)}

Calculates the value of the (integer expression) and places the octal (base 8) representa-
tion of the result in the input stream.

\int_to_base:nn {(integer expression)} {(base)}

Calculates the value of the (integer expression) and converts it into the appropriate
representation in the (base); the later may be given as an integer expression. For bases
greater than 10 the higher “digits” are represented by the upper case letters from the
English alphabet. The maximum (base) value is 36.

TEXhackers note: This is a generic version of \int_to_binary:n, etc.

65

\int_to_roman:n 3
\int_to_Roman:n 7

Pte

\int_from_alph:n *

\int_from_binary:n x

\int_from_hexadecimal:n x

\int_from_octal:n *

\int_from_roman:n x

\int_from_base:nn x

\int_show:N

\int_to_roman:n {(integer expression)}

Places the value of the (integer expression) in the input stream as Roman numerals,
either lower case (\int_to_roman:n) or upper case (\int_to_Roman:n). The Roman
numerals are letters with category code 11 (letter).

49 Converting from other formats to integers

\int_from_alpa:n {(letters)}

Converts the (letters) into the integer (base 10) representation and leaves this in the
input stream. The (letters) are treated using the English alphabet only, with “a” equal
to 1 through to “z” equal to 26. Either lower or upper case letters may be used. This is
the inverse function of \int_to_alph:n.

\int_from_binary:n {(binary number)}

Converts the (binary number) into the integer (base 10) representation and leaves this in
the input stream.

\int_from_binary:n {(hexadecimal number)}

Converts the (hezadecimal number) into the integer (base 10) representation and leaves
this in the input stream. Digits greater than 9 may be represented in the (hezadecimal
number) by upper or lower case letters.

\int_from_octal:n {({octal number)}

Converts the (octal number) into the integer (base 10) representation and leaves this in
the input stream.

\int_from_roman:n {(roman numeral)}

Converts the (roman numeral) into the integer (base 10) representation and leaves this
in the input stream. The (roman numeral) may be in upper or lower case; if the numeral
is not valid then the resulting value will be —1.

\int_from_base:nn {(number)} {(base)}

Converts the (number) in (base) into the appropriate value in base 10. The (number)
should consist of digits and letters (either lower or upper case), plus optionally a leading
sign. The maximum (base) value is 36.

50 Viewing integers
\int_show:N (integer)
Displays the value of the (integer) on the terminal.

66

\c_minus_one
\c_zero
\c_one
\c_two
\c_three
\c_four
\c_five
\c_six
\c_seven
\c_eight
\c_nine
\c_ten
\c_eleven
\c_twelve
\c_thirteen
\c_fourteen
\c_fifteen
\c_sixteen
\c_thirty_two

\c_one_hundred
\c_two_hundred_fifty_five
\c_two_hundred_fifty_six
\c_one_thousand
\c_ten_thousand

\c_max_int

\c_max_register_int

\1_tmpa_int

\1_tmpb_int

\1_tmpc_int

\g_tmpa_int
\g_tmpb_int

51 Constant integers

Integer values used with primitive tests and assignments: self-terminating nature makes
these more convenient and faster than literal numbers.

The maximum value that can be stored as an integer.
Maximum number of registers.

52 Scratch integers

Scratch integer for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch integer for global assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

67

\int_get_digits:n *

\int_get_sign:n ¥

\int_to_letter:n «*

\int_to_roman:w *

\if _num:w *
\if_int_compare:w *

53 Internal functions

\int_get_digits:n (value)

Parses the (value) to leave the absolute (value) in the input stream. This may therefore
be used to remove multiple sign tokens from the (value) (which may be symbolic).

\int_get_sign:n (value)

Parses the (value) to leave a single sign token (either + or -) in the input stream. This
may therefore be used to sanitise sign tokens from the (value) (which may be symbolic).

\int_to_letter:n (integer value)

For (integer values) from 0 to 9, leaves the (value) in the input stream unchanged. For
(integer values) from 10 to 35, leaves the appropriate upper case letter (from the standard
English alphabet) in the input stream: for example, 10 is converted to A, 11 to B, etc.

\int_to_roman:w (integer) (space) or (non-expandable token)

Converts (integer) to it lower case Roman representation. Expansion ends when a space
or non-expandable token is found. Note that this function produces a string of letters with
category code 12 and that protected functions are expanded by this process. Negative
(integer) values result in no output, although the function does not terminate expansion
until a suitable endpoint is found in the same way as for positive numbers.

TEXhackers note: This is the TEX primitive \romannumeral renamed.

\if_num:w (integerl) (relation) (integer2)
(true code)
\else:
(false code)
\fi:
Compare two integers using (relation), which must be one of =, < or > with category code
12. The \else: branch is optional.

TEXhackers note: These are both names for the TEX primitive \ifnum.

68

\if_case:w *
\or *

\int_value:w *

\int_eval:w *
\int_eval_end x

\if_int_odd:w x

\if_case:w (integer) (caseO)

\or: (casel)

\or:

\else: (default)
\fi:
Selects a case to execute based on the value of the (integer). The first case ({case0)) is
executed if (integer) is 0, the second ({casel)) if the (integer) is 1, etc. The (integer)
may be a literal, a constant or an integer expression (e.g. using \int_eval:n).

TEXhackers note: These are the TEX primitives \ifcase and \or.

\int_value:w (integer)
\int_value:w (tokens) (optional space)

Expands (tokens) until an (integer) is formed. One space may be gobbled in the process.

TEXhackers note: This is the TEX primitive \number.

\int_eval:w (intexpr) \int_eval_end:

Evaluates (integer expression) as described for \int_eval:n. The evaluation stops when
an unexpandable token which is not a valid part of an integer is read or when \int_-
eval_end: is reached. The latter is gobbled by the scanner mechanism: \int_eval_end:
itself is unexpandable but used correctly the entire construct is expandable.

TEXhackers note: This is the e-TEX primitive \numexpr.

\if_int_odd:w (tokens) (optional space)
(true code)
\else:
(true code)
\fi:
Expands (tokens) until a non-numeric token or a space is found, and tests whether the
resulting (integer) is odd. If so, (true code) is executed. The \else: branch is optional.

TEXhackers note: This is the TEX primitive \ifodd.

69

\dim_new:N
:c

\dim_zero:N
e

\dim_gzero:N
ic

\dim_add:Nn
:cn

\dim_gadd:Nn
icn

\dim_set:Nn
tcn

Part X
The 13skip package
Dimensions and skips

ITREX3 provides two general length variables: dim and skip. Lengths stored as dim
variables have a fixed length, whereas skip lengths have a rubber (stretch/shrink) com-
ponent. In addition, the muskip type is available for use in math mode: this is a special
form of skip where the lengths involved are determined by the current math font (in
mu). There are common features in the creation and setting of length variables, but for
clarity the functions are grouped by variable type.

54 Creating and initialising dim variables

\dim_new:N (dimension)

Creates a new (dimension) or raises an error if the name is already taken. The declaration
is global. The (dimension) will initially be equal to 0pt.

\dim_zero:N (dimension)

Sets (dimension) to 0 pt within the scope of the current TEX group.

\dim_gzero:N (dimension)

Sets (dimension) to 0pt globally, i.e. not restricted by the current TEX group level.

55 Setting dim variables

\dim_add:Nn (dimension) {(dimension expression)}

Adds the result of the (dimension expression) to the current content of the (dimension).
This assignment is local.

\dim_gadd:Nn (dimension) {(dimension expression)}

Adds the result of the (dimension expression) to the current content of the (dimension).
This assignment is global.

\dim_set:Nn (dimension) {(dimension expression)}

Sets (dimension) to the value of (dimension expression), which must evaluate to a length
with units. This assignment is restricted to the current TEX group.

70

\dim_gset:
rcn

Nn

\dim_set_eq:NN

:(cN|N¢|ec)

\dim_gset_eq:NN

: (cN|Nc|ec)

\dim_set_max:
:cn

Nn

\dim_gset_max:
:cn

Nn

\dim_set_min:
:cn

Nn

\dim_gset_min:Nn
:cn

\dim_sub:Nn

:cn

\dim_gsub:Nn

:cn

\dim_gset:Nn (dimension) {(dimension expression)}

Sets (dimension) to the value of {dimension expression), which must evaluate to a length
with units and may include a rubber component (for example 1 cm plus 0.5 cm. This
assignment is global and is not limited to the current TEX group level.

\dim_set_eq:NN (dimensionl) (dimension2)

Sets the content of (dimensionl) equal to that of (dimension2). This assignment is
restricted to the current TEX group level.

\dim_gset_eq:NN (dimensionl) (dimension2)

Sets the content of {dimensionl) equal to that of (dimension2). This assignment is global
and so is not limited by the current TEX group level.

\dim_set_max:Nn (dimension) {(dimension expression)}

Compares the current value of the (dimension) with that of the (dimension expression),
and sets the (dimension) to the larger of these two value. This assignment is local to the

current TEX group.

\dim_gset_max:Nn (dimension) {(dimension expression)}

Compares the current value of the (dimension) with that of the (dimension expression),
and sets the (dimension) to the larger of these two value. This assignment is global.

\dim_set_min:Nn (dimension) {(dimension expression)}

Compares the current value of the (dimension) with that of the (dimension expression),
and sets the (dimension) to the smaller of these two value. This assignment is local to
the current TEX group.

\dim_gset_min:Nn (dimension) {(dimension expression)}

Compares the current value of the (dimension) with that of the (dimension expression),
and sets the (dimension) to the smaller of these two value. This assignment is global.

\dim_sub:Nn (dimension) {(dimension expression)}

Subtracts the result of the (dimension expression) to the current content of the
(dimension). This assignment is local.

\dim_gsub:Nn (dimension) {(dimension expression)}

Subtracts the result of the (dimension expression) to the current content of the
(dimension). This assignment is global.

71

\dim_ratio:nn *

\dim_compare_p:nNn *
\dim_compare:nNnTF x

\dim_compare_p:n *
\dim_compare:nTF *

56 Utilities for dimension calculations

\dim_ratio:nn {(dimexpri)} {(dimexpr)}

Parses the two (dimension expressions) and converts the ratio of the two to a form
suitable for use inside a (dimension expression). This ratio is then left in the input
stream, allowing syntax such as

\dim_set:Nn \1_my_dim
{ 10 pt * \dim_ratio:nn { 5 pt } { 10 pt } }

The output of \dim_ratio:nn on full expansion is a ration expression between two
integers, with all distances converted to scaled points. Thus

\tl_set:Nx \1_my_tl { \dim_ratio:nn { 5 pt } { 10 pt } }
\tl_show:N \1_my_tl

will display 327680/655360 on the terminal.

57 Dimension expression conditionals

\dim_compare_p:nNn {(dimexpri)} (relation) {(dimexpra)}
\dim_compare :nNnTF

{(dimexpr1)} (relation) {(dimexpra)}

{(true code)} {(false code)}

This function first evaluates each of the (dimension expressions) as described for \dim_-
eval:n. The two results are then compared using the (relation):

Equal
Greater than
Less than

NV

\dim_compare_p:n { (dimexprl) (relation) (dimexpr2) }
\dim_compare:nTF
{ (dimexprl) (relation) (dimexpr2) }
{(true code)} {(false code)}
This function first evaluates each of the (dimension expressions) as described for \dim_-
eval:n. The two results are then compared using the (relation):

Equal =or ==
Greater than or equal to =>
Greater than

Less than or equal to =<
Less than <

Not equal !

72

\dim_do_while:nNnn

\dim_do_until:nNnn

\dim_until_do:nNnn -

\dim_while_do:nNnn

\dim_do_while:nn

\dim_do_until:nn

2

\dim_until_do:nn

58 Dimension expression loops

\dim_do_while:nNnn {(dimexpri)} (relation) {(dimexpra)} {(code)}

Evaluates the relationship between the two (dimension expressions) as described for
\dim_compare:nNnTF, and then places the (code) in the input stream if the (relation) is
true. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is false.

\dim_do_until:nNnn {(dimexpri)} (relation) {(dimexpr2)} {(code)}

Evaluates the relationship between the two (dimension expressions) as described for
\dim_compare:nNnTF, and then places the (code) in the input stream if the (relation) is
false. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is true.

\dim_until_do:nNnn {(dimexpri)} (relation) {(dimexpr2)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (dimension expressions) as described for \dim_compare:nNnTF. If
the test is false then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is true.

\dim_while_do:nNnn {(dimexpri)} (relation) {(dimexpr2)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (dimension expressions) as described for \dim_compare :nNnTF. If
the test is true then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is false.

\dim_do_while:nNnn { (dimexpri) (relation) (dimexpr2) } {(code)}

Evaluates the relationship between the two (dimension expressions) as described for
\dim_compare:nTF, and then places the (code) in the input stream if the (relation) is
true. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is false.

\dim_do_until:nn { (dimexprl) (relation) (dimexpr2) } {(code)}

Evaluates the relationship between the two (dimension expressions) as described for
\dim_compare:nTF, and then places the (code) in the input stream if the (relation) is
false. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is true.

\dim_until_do:nn { (dimexprl) (relation) (dimexpr2) } {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (dimension expressions) as described for \dim_compare:nTF.
If the test is false then the (code) will be inserted into the input stream again and a
loop will occur until the (relation) is true.

73

\dim_while_do:nn 3

\dim_eval:n *

\dim_use:N x
iC %

\dim_show:N
e

\c_max_dim

\c_zero_dim

\dim_while_do:nn { (dimexprl) (relation) (dimexpr2) } {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (dimension expressions) as described for \dim_compare:nTF.
If the test is true then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is false.

59 Using dim expressions and variables

\dim_eval:n {(dimension expression)}

Evaluates the (dimension expression), expanding any dimensions and token list variables
within the (expression) to their content (without requiring \dim_use:N/\t1_use:N) and
applying the standard mathematical rules. The result of the calculation is left in the
input stream as a {dimension denotation) after two expansions. This will be expressed
in points (pt), and will require suitable termination if used in a TEX-style assignment as
it is not an (internal dimension).

\dim_use:N (dimension)
Recovers the content of a (dimension) and places it directly in the input stream. An

error will be raised if the variable does not exist or if it is invalid. Can be omitted in
places where a (dimension) is required (such as in the argument of \dim_eval:n).

TEXhackers note: \dim_use:N is the TEX primitive \the: this is one of several IXTEX3
names for this primitive.

60 Viewing dim variables

\dim_show:N (dimension)

Displays the value of the (dimension) on the terminal.

61 Constant dimensions

The maximum value that can be stored as a dimension or skip (these are equivalent).

A zero length as a dimension or a skip (these are equivalent).

74

\1_tmpa_dim
\1_tmpb_dim
\1_tmpc_dim

\g_tmpa_dim
\g_tmpb_dim

\skip_new:N
e

\skip_zero:N
ic

\skip_gzero:N
c

\skip_add:Nn

:cn

\skip_gadd:Nn
icn

\skip_set:Nn
:cn

62 Scratch dimensions

Scratch dimension for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch dimension for global assignment. These are never used by the kernel code, and
so are safe for use with any ITEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

63 Creating and initialising skip variables

\skip_new:N (skip)

Creates a new (skip) or raises an error if the name is already taken. The declaration is
global. The (skip) will initially be equal to 0 pt.

\skip_zero:N (skip)
Sets (skip) to 0pt within the scope of the current TEX group.

\skip_gzero:N (skip)
Sets (skip) to 0pt globally, i.e. not restricted by the current TEX group level.

64 Setting skip variables

\skip_add:Nn (skip) {(skip expression)}

Adds the result of the (skip expression) to the current content of the (skip). This assign-
ment is local.

\skip_gadd:Nn (skip) {(skip expression)}

Adds the result of the (skip expression) to the current content of the (skip). This assign-
ment is global.

\skip_set:Nn (skip) {(skip expression)}

Sets (skip) to the value of (skip expression), which must evaluate to a length with units
and may include a rubber component (for example 1 cm plus 0.5 cm. This assignment
is restricted to the current TEX group.

()

\skip_gset:Nn

:cn
\skip_set_eq:NN
:(cN|N¢|ec)
\skip_gset_eq:NN
: (cN|Nc|ec)

\skip_sub:Nn
rcn

\skip_gsub:Nn
icn

\skip_if_eq_p:nn *
\skip_if_eq:nnTF *

\skip_gset:Nn (skip) {(skip expression)}

Sets (skip) to the value of (skip expression), which must evaluate to a length with units
and may include a rubber component (for example 1 cm plus 0.5 cm. This assignment
is global and is not limited to the current TEX group level.

\skip_set_eq:NN (skipl) (skip2)

Sets the content of (skipl) equal to that of (skip2). This assignment is restricted to the
current TEX group level.

\skip_gset_eq:NN (skipl) (skip2)

Sets the content of (skipl) equal to that of (skip2). This assignment is global and so is
not limited by the current TEX group level.

\skip_sub:Nn (skip) {(skip expression)}

Subtracts the result of the (skip expression) to the current content of the (skip). This
assignment is local.

\skip_gsub:Nn (skip) {(skip expression)}

Subtracts the result of the (skip expression) to the current content of the (skip). This
assignment is global.

65 Skip expression conditionals

\skip_if_eq_p:nn {(skipexpri)} {(skipexpra)}
\dim_compare:nTF

{(skip expr1)} {(skip exprs)}

{(true code)} {(false code)}
This function first evaluates each of the (skip expressions) as described for \skip_-
eval:n. The two results are then compared for exact equality, i.e. both the fixed and
rubber components must be the same for the test to be true.

\skip_if_infinite_glue_p:n + \skip_if_infinite_glue_p:n {(skipexpr)}
\skip_if_infinite_glue:nTF % \skip_if_infinite_glue:nTF {(skipexpr)} {(true code)} {(false code)}

Evaluates the (skip expression) as described for \skip_eval:n, and then tests if this
contains an infinite stretch or shrink component (or both).

76

\skip_eval:n *

\skip_use:N «*
ic &

\skip_show:N
e

\c_max_skip

\c_zero_skip

\1_tmpa_skip
\1_tmpb_skip
\1_tmpc_skip

\g_tmpa_skip
\g_tmpb_skip

66 Using skip expressions and variables

\skip_eval:n {(skip expression)}

Evaluates the (skip expression), expanding any skips and token list variables within the
(expression) to their content (without requiring \skip_use:N/\t1l_use:N) and applying
the standard mathematical rules. The result of the calculation is left in the input stream
as a (glue denotation) after two expansions. This will be expressed in points (pt), and
will require suitable termination if used in a TEX-style assignment as it is not an (internal
glue).

\skip_use:N (skip)

Recovers the content of a (skip) and places it directly in the input stream. An error will
be raised if the variable does not exist or if it is invalid. Can be omitted in places where
a (dimension) is required (such as in the argument of \skip_eval:n).

TEXhackers note: \skip_use:N is the TEX primitive \the: this is one of several IXTEX3
names for this primitive.

67 Viewing skip variables

\skip_show:N (skip)
Displays the value of the (skip) on the terminal.

68 Constant skips

The maximum value that can be stored as a dimension or skip (these are equivalent).

A zero length as a dimension or a skip (these are equivalent).

69 Scratch skips

Scratch skip for local assignment. These are never used by the kernel code, and so are
safe for use with any I¥TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch skip for global assignment. These are never used by the kernel code, and so are

safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

(i

\muskip_new:N
i

\muskip_zero:N
ic

\muskip_gzero:N
ic

\muskip_add:Nn
:cn

\muskip_gadd:Nn
rcn

\muskip_set:Nn
icn

\muskip_gset:Nn

icn
\muskip_set_eq:NN
:(cN|Nc|ec)
\muskip_gset_eq:NN
: (cN|Nc|ec)

70 Creating and initialising muskip variables

\muskip_new:N (muskip)

Creates a new (muskip) or raises an error if the name is already taken. The declaration
is global. The (muskip) will initially be equal to 0 mu.

\skip_zero:N (muskip)
Sets (muskip) to 0 mu within the scope of the current TEX group.

\muskip_gzero:N (muskip)
Sets (muskip) to 0mu globally, i.e. not restricted by the current TEX group level.

71 Setting muskip variables

\muskip_add:Nn (muskip) {(muskip expression)}

Adds the result of the (muskip expression) to the current content of the (muskip). This
assignment is local.

\muskip_gadd:Nn (muskip) {(muskip expression)}

Adds the result of the (muskip expression) to the current content of the (muskip). This
assignment is global.

\muskip_set:Nn (muskip) {(muskip expression)}

Sets (muskip) to the value of (muskip expression), which must evaluate to a math length
with units and may include a rubber component (for example 1 mu plus 0.5 mu. This
assignment is restricted to the current TEX group.

\muskip_gset:Nn (muskip) {(muskip expression)}

Sets (muskip) to the value of (muskip expression), which must evaluate to a math length
with units and may include a rubber component (for example 1 mu plus 0.5 mu. This
assignment is global and is not limited to the current TEX group level.

\muskip_set_eq:NN (muskipl) (muskip2)

Sets the content of (muskipl) equal to that of (muskip2). This assignment is restricted
to the current TEX group level.

\muskip_gset_eq:NN (muskipl) (muskip2)

Sets the content of (muskipl) equal to that of (muskip2). This assignment is global and
so is not limited by the current TEX group level.

78

\muskip_sub:Nn
rcn

\muskip_gsub:Nn
:cn

\muskip_eval:n *

\muskip_use:N x
icox

\skip_horizontal:N

:(cln)

\skip_vertical:N

:(cln)

\muskip_sub:Nn (muskip) {(muskip expression)}

Subtracts the result of the (muskip expression) to the current content of the (skip). This
assignment is local.

\muskip_gsub:Nn (muskip) {(muskip expression)}

Subtracts the result of the (muskip expression) to the current content of the (muskip).
This assignment is global.

72 Using muskip expressions and variables

\muskip_eval:n {(muskip expression)}

Evaluates the (muskip expression), expanding any skips and token list variables within
the (expression) to their content (without requiring \muskip_use:N/\tl_use:N) and
applying the standard mathematical rules. The result of the calculation is left in the
input stream as a (muglue denotation) after two expansions. This will be expressed in
mu, and will require suitable termination if used in a TEX-style assignment as it is not an
(internal muglue).

\muskip_use:N (muskip)

Recovers the content of a (skip) and places it directly in the input stream. An error will
be raised if the variable does not exist or if it is invalid. Can be omitted in places where
a (dimension) is required (such as in the argument of \muskip_eval:n).

TEXhackers note: \muskip_use:N is the TEX primitive \the: this is one of several IXTEX3
names for this primitive.

73 Inserting skips into the output

\skip_horizontal:N (skip)
\skip_horizontal:n {(skipexpr)}

Inserts a horizontal (skip) into the current list.

TEXhackers note: \skip_horizontal:N is the TEX primitive \hskip renamed.

\skip_vertical:N (skip)
\skip_vertical:n {(skipexpr)}

Inserts a vertical (skip) into the current list.

TEXhackers note: \skip_vertical:N is the TEX primitive \vskip renamed.

79

\muskip_show:N
:c

\if_dim:w

\dim_eval:w *
\dim_eval_end *

74 Viewing muskip variables

\muskip_show:N (muskip)
Displays the value of the (muskip) on the terminal.

75 Internal functions

\if_dim:w (dimen1) (relation) (dimenl)
(true code)
\else:
(false)
\fi:
Compare two dimensions. The (relation) is one of <, = or > with category code 12.

TEXhackers note: This is the TEX primitive \ifdim.

\dim_eval:w (dimexpr) \dim_eval_end:

Evaluates (dimension expression) as described for \dim_eval:n. The evaluation stops
when an unexpandable token which is not a valid part of a dimension is read or when
\dim_eval_end: is reached. The latter is gobbled by the scanner mechanism: \dim_-
eval_end: itself is unexpandable but used correctly the entire construct is expandable.

TgXhackers note: This is the e-TEX primitive \dimexpr.

76 Experimental skip functions

\skip_split_finite_else_action:nnNN \skip_split_finite_else_action:nnNN {(skipexpr)} {(action)}

(dimen1) (dimen2)

Checks if the (skipexpr) contains finite glue. If it does then it assigns (dimenl) the
stretch component and (dimen2) the shrink component. If it contains infinite glue set
(dimenl) and (dimen2) to Opt and place #2 into the input stream: this is usually an
error or warning message of some sort.

80

\tl_new:N
e

\tl_const:Nn
:(Nx|cn|cx)

\tl_clear:N
e

Part XI
The 13tl package
Token lists

TEX works with tokens, and IATEX3 therefore provides a number of functions to deal with
token lists. Token lists may be present direct in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored for processing in a so-called “token list variable”, which have the suffix
t1l: the argument to a function:

\foo:N \1_some_t1

In both cases, functions are available to test an manipulate the lists of tokens, and these
have the module prefix t1. In many cases, function which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list can be seen either as a list of “items”, or a list of “tokens”. An item
is whatever \use_none:n grabs as its argument: either a single token or a brace group,
with optional leading explicit space characters (each item is thus itself a token list). A
token is either a normal N argument, or , {, or } (assuming normal TEX category codes).
Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, 1 and d), but thirteen tokens ({, H, e, 1, 1, o, }, o, w,
o, r, 1 and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

77 Creating and initialising token list variables

\tl_new:N (tl var)

Creates a new (tl var) or raises an error if the name is already taken. The declaration is
global. The (tl var) will initially be empty.

\tl_const:Nn (tl var) {(token list)}

Creates a new constant (t/ var) or raises an error if the name is already taken. The value
of the (¢l var) will be set globally to the (token list).

\tl_clear:N (tl var)

Clears all entries from the (¢l var) within the scope of the current TEX group.

81

\tl_gclear:N
ic

\tl_clear_new:N
:c

\tl_gclear_new:N
e

\tl_set_eq:NN
:(cN|N¢|ec)

\tl_gset_eq:NN
: (cN|Nc|ec)

\tl_gclear:N (tl var)

Clears all entries from the (¢ var) globally.

\tl_clear_new:N (tl var)

If the (tl var) already exists, clears it within the scope of the current TEX group. If
the (tl var) is not defined, it will be created (using \t1l_new:N). Thus the sequence is
guaranteed to be available and clear within the current TEX group. The (# var) will
exist globally, but the content outside of the current TEX group is not specified.

\tl_gclear_new:N (tl var)

If the (tl var) already exists, clears it globally. If the (¢ var) is not defined, it will be
created (using \t1_new:N). Thus the sequence is guaranteed to be available and globally
clear.

\tl_set_eq:NN (t1 varl) (tl var2)

Sets the content of (¢l varl) equal to that of (¢l var2). This assignment is restricted to
the current TEX group level.

\tl_gset_eq:NN (t1 varl) (tl var2)

Sets the content of (¢l varl) equal to that of (] var2). This assignment is global and so
is not limited by the current TEX group level.

78 Adding data to token list variables

\tl_set:Nn

\tl_set:Nn (tl1 var) {(tokens)}

: (NV|Nv|No|Nf |Nx|cn|NV|Nv|co|cf|cx)

Sets (tl var) to contain (tokens), removing any previous content from the variable. This
assignment is restricted to the current TEX group.

\tl_gset:Nn

\tl_gset:Nn (tl var) {(tokens)}

: (NV|Nv|No|Nf|Nx|cn|cV|cv|co|cf|cx)

Sets (tl var) to contain (tokens), removing any previous content from the variable. This
assignment is global and is not limited to the current TEX group level.

\tl_put_left:Nn

\tl_put_left:Nn (tl1 var) {(tokens)}

: (NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the left side of the current content of (¢l var). This modification is
restricted to the current TEX group level.

82

\tl_gput_left:Nn

\tl_gput_left:Nn (tl1 var) {(tokens)}

: (NV|No|Nx|cn|cV|co|cx)

Globally appends (tokens) to the left side of the current content of (¢ var). This modi-
fication is not limited by TEX grouping.

\tl_put_right:Nn

\tl_put_right:Nn (tl var) {(tokens)}

: (NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the right side of the current content of (¢ var). This modification
is restricted to the current TEX group level.

\tl_gput_right:Nn

\tl_gput_right:Nn (t1 var) {(tokens)}

: (NV|No|Nx|cn|cV|co|cx)

\tl_replace_once:Nnn
:cnn

Updated: 2011-08-11

\tl_greplace_once:Nnn
:cnn

Updated: 2011-08-11

\tl_replace_all:Nnn
:cnn

Updated: 2011-08-11

\tl_greplace_all:Nnn
:cnn

Updated: 2011-08-11

Globally appends (tokens) to the right side of the current content of (¢ war). This

modification is not limited by TEX grouping.

79 Modifying token list variables

\tl_replace_once:Nnn (tl var) {(old tokens)} {(new tokens)}

Replaces the first (leftmost) occurrence of (old tokens) in the (tl var) with (new tokens).
(Old tokens) cannot contain {, } or # (assuming normal TEX category codes). The
assignment is restricted to the current TEX group.

\tl_greplace_once:Nnn (tl var) {({old tokens)} {(new tokens)}

Replaces the first (leftmost) occurrence of (old tokens) in the (¢ var) with (new tokens).
(Old tokens) cannot contain {, } or # (assuming normal TEX category codes). The
assignment is applied globally.

\tl_replace_all:Nnn (t1 var) {(old tokens)} {(new tokens)}

Replaces all occurrences of (old tokens) in the (tl var) with (new tokens). (Old tokens)
cannot contain {, } or # (assuming normal TEX category codes). As this function operates
from left to right, the pattern (old tokens) may remain after the replacement (see \t1l_-
remove_all:Nn for an example). The assignment is restricted to the current TEX group.

\tl_greplace_all:Nnn (tl var) {(old tokens)} {(new tokens)}

Replaces all occurrences of (old tokens) in the (tl var) with (new tokens). (Old tokens)
cannot contain {, } or # (assuming normal TEX category codes). As this function operates
from left to right, the pattern (old tokens) may remain after the replacement (see \t1_-
remove_all:Nn for an example). The assignment is applied globally.

83

\tl_remove_once:Nn
:cn

Updated: 2011-08-11

\tl_gremove_once:Nn
icn

Updated: 2011-08-11

\tl_remove_all:Nn
icn

Updated: 2011-08-11

\tl_gremove_all:Nn
icn

Updated: 2011-08-11

\tl_remove_once:Nn (tl1 var) {(tokens)}

Removes the first (leftmost) occurrence of (tokens) from the (¢l var). (Tokens) cannot
contain {, } or # (assuming normal TEX category codes). The assignment is restricted
to the current TEX group.

\tl_gremove_once:Nn (t1 var) {(tokens)}

Removes the first (leftmost) occurrence of (tokens) from the (¢l var). (Tokens) cannot
contain {, } or # (assuming normal TEX category codes). The assignment is applied
globally.

\tl_remove_all:Nn (tl var) {(tokens)}

Removes all occurrences of (tokens) from the (¢l var). (Tokens) cannot contain {, } or #
(assuming normal TEX category codes). As this function operates from left to right, the
pattern (fokens) may remain after the removal, for instance,

\tl_set:Nn \1_tmpa_t1l {abbccd} \tl_remove_all:Nn \1_tmpa_t1l {bc}

will result in \1_tmpa_t1 containing abcd. The assignment is restricted to the current

TEX group.

\tl_gremove_all:Nn (t1 var) {(tokens)}

Removes all occurrences of (tokens) from the (¢l var). (Tokens) cannot contain {, } or #
(assuming normal TEX category codes). As this function operates from left to right, the
pattern (tokens) may remain after the removal (see \t1_remove_all:Nn for an example).
The assignment is applied globally.

80 Reassigning token list category codes

\tl_set_rescan:Nnn

\tl_set_rescan:Nnn (t1 var) {(setup)} {(tokens)}

: (Nno|Nnx|cnn|cno|cnx)

Updated: 2011-08-11

Sets (tl var) to contain (tokens), applying the category code régime specified in the {setup)
before carrying out the assignment. This allows the (¢l var) to contain material with
category codes other than those that apply when (tokens) are absorbed. The assignment
is local to the current TEX group. See also \tl_rescan:nn.

84

\tl_gset_rescan:Nnn

\tl_gset_rescan:Nnn (t1 var) {(setup)} {(tokens)}

: (Nno|Nnx|cnn|cno|cnx)

Updated: 2011-08-11

\tl_rescan:nn

Updated: 2011-08-11

\tl_to_lowercase:

n

\tl_to_uppercase:

n

\tl_if_blank_p:n
:(V]o)

\tl_if_blank:nTF
:(V|o)TF

*
*
*
*

Sets (tl var) to contain (tokens), applying the category code régime specified in the (setup)
before carrying out the assignment. This allows the (¢l var) to contain material with
category codes other than those that apply when (tokens) are absorbed. The assignment
is global. See also \tl_rescan:nn.

\tl_rescan:nn {(setup)} {(tokens)}

Rescans (tokens) applying the category code régime specified in the (setup), and leaves
the resulting tokens in the input stream. See also \t1_set_rescan:Nnn.

81 Reassigning token list character codes

\tl_to_lowercase:n {(tokens)}

Works through all of the (tokens), replacing each character with the lower case equivalent
as defined by \char_set_lccode:nn. Characters with no defined lower case character
code are left unchanged. This process does not alter the category code assigned to the
(tokens).

TEXhackers note: This is the TEX primitive \lowercase renamed. As a result, this
function takes place on execution and not on expansion.

\tl_to_uppercase:n {(tokens)}

Works through all of the (tokens), replacing each character with the upper case equivalent
as defined by \char_set_uccode:nn. Characters with no defined lower case character
code are left unchanged. This process does not alter the category code assigned to the
(tokens).

TEXhackers note: This is the TEX primitive \uppercase renamed. As a result, this
function takes place on execution and not on expansion.

82 Token list conditionals

\tl_if_blank_p:n {(token list)}
\tl_if_blank:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) consists only of blank spaces (i.e. contains no item). The test
is true if (token list) is zero or more explicit tokens of character code 32 and category
code 10, and is false otherwise.

85

\tl_if_empty_p:N *
ic &
\tl_if_empty:NTF *
:cTF *

\tl_if_empty_p:n *
:(V]o) *
\tl_if_empty:nTF *
:(V|o)TF *
\tl_if_eq_p:NN *
:(Nc|eNjec) *
\tl_if_eq:NNTF *
:(Nc|eN|ce)TF *

\tl_if_eq:nnTF

\tl_if_in:NnTF
:cnTF

\tl_if_in:nnTF
:(Vn|on|no) TF

\tl_if_single_p:N *
ic oK
\tl_if_single:NTF *
:cTF *

Updated: 2011-08-13

\tl_if_empty_p:N (tl var)
\tl_if_empty:NTF (tl var) {(true code)} {(false code)}

Tests if the (token list variable) is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:n {(token list)}
\tl_if_empty:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) is entirely empty (i.e. contains no tokens at all).

\tl_if_eq_p:NN {(t1 varq)} {(tl vars)}
\tl_if_eq:NNTF {(t1 vari)} {(tl vars)} {(true code)} {(false code)}

Compares the content of two (token list variables) and is logically true if the two contain
the same list of tokens (i.e. identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \1_tmpa_tl { abc }
\tl_set:Nx \1_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq_p:NN \1_tmpa_tl \1_tmpb_tl

is logically false.

\tl_if_eq:nnTF (token list1) {(token list2)} {(true code)} {(false code)}

Tests if (token list1) and (token list2) are equal, both in respect of character codes and
category codes.

\tl_if_in:NnTF (t1 var) {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) is found in the content of the (token list variable). The (token
list) cannot contain the tokens {, } or # (assuming the usual TEX category codes apply).

\tl_if_in:nnTF {(token listi1)} {(token lists)} {(true code)} {(false code)}

Tests if (token lists) is found inside (token list1). The (token list) cannot contain the
tokens {, } or # (assuming the usual TEX category codes apply).

\tl_if_single_p:N {(tI var)}

\tl_if_single:NTF {(tl1 var)} {(true code)} {(false code)}

Tests if the content of the (¢ var) consists of a single item, i.e. is either a single normal
token (excluding spaces, and brace tokens) or a single brace group, surrounded by optional
spaces on both sides. In other words, such a token list has length 1 according to \t1_-
length:N.

86

\tl_if_single_p:n *
\tl_if_single:nTF *

Updated: 2011-08-13

\tl_if_single_token_p:n *
\tl_if_single_token:nTF x

New: 2011-08-11

X

\tl_map_function:NN 3
:cN

S
=X

A
Xr

\tl_map_function:nN

\tl_map_inline:Nn
:cn

\tl_map_inline:nn

\tl_map_variable:NNn
:cNn

\tl_if_single_p:n {(token list)}

\tl_if_single:nTF {(token list)} {(true code)} {(false code)}

Tests if the token list has exactly one item, i.e. is either a single normal token or a single
brace group, surrounded by optional spaces on both sides. In other words, such a token
list has length 1 according to \t1l_length:n.

\tl_if_single_token_p:n {(token list)}
\tl_if_single_token:nTF {(token list)} {(true code)} {(false code)}

Tests if the token list consists of exactly one token, i.e. is either a single space character
or a single “normal” token. Token groups ({...}) are not single tokens.

83 Mapping to token lists

\tl_map_function:NN (tl1 var) (function)

Applies (function) to every (item) in the (¢l var). The (function) will receive one ar-
gument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:nN.

\tl_map_function:nN (token list) (function)

Applies (function) to every (item) in the (token list), The (function) will receive one
argument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:NN.

\tl_map_inline:Nn (tl1 var) {(inline function)}

Applies the (inline function) to every (item) stored within the (¢l var). The (inline
function) should consist of code which will receive the (item) as #1. One in line mapping
can be nested inside another. See also \t1_map_function:Nn.

\tl_map_inline:nn (token list) {(inline function)}

Applies the (inline function) to every (item) stored within the (token list). The (inline
function) should consist of code which will receive the (item) as #1. One in line mapping
can be nested inside another. See also \t1_map_function:nn.

\tl_map_variable:NNn (tl1 var) (variable) {(function)}

Applies the (function) to every (item) stored within the (¢l var). The (function) should
consist of code which will receive the (item) stored in the (variable). One variable map-
ping can be nested inside another. See also \t1l_map_inline:Nn.

87

\tl_map_variable:nNn \tl_map_variable:nNn (token list) (variable) {(function)}

Applies the (function) to every (item) stored within the (token list). The (function)
should consist of code which will receive the (item) stored in the (variable). One variable
mapping can be nested inside another. See also \t1l_map_inline:nn.

\tl_map_break 7 \tl_map_break:

Used to terminate a \tl_map_... function before all entries in the (token list variable)
have been processed. This will normally take place within a conditional statement, for
example

\tl_map_inline:Nn \1_my_tl
{
\str_if_eq:nnTF { #1 } { bingo }
{ \tl_map_break: }

{
% Do something useful
}
}
Use outside of a \t1_map_... scenario will lead low level TEX errors.

84 Using token lists

\tl_to_str: \tl_to_str:N (tl var)

=
>*

Converts the content of the (tl var) into a series of characters with category code 12
(other) with the exception of spaces, which retain category code 10 (space). This (string)
is then left in the input stream.

\tl_to_str:n * \tl_to_str:n {(tokens)}

Converts the given (tokens) into a series of characters with category code 12 (other) with
the exception of spaces, which retain category code 10 (space). This (string) is then left
in the input stream. Note that this function requires only a single expansion.

TEXhackers note: This is the e-TEX primitive \detokenize.

=
*

\tl_use: \tl_use:N (tl var)

Recovers the content of a (¢l var) and places it directly in the input stream. An error
will be raised if the variable does not exist or if it is invalid. Note that it is possible to
use a (tl var) directly without an accessor function.

88

\tl_length:n *
:(V]o) *

Updated: 2011-08-13

\tl_length:N «*
cox

Updated: 2011-08-13

\tl_reverse:n *
:(Vlo) *

Updated: 2011-08-13

\tl_reverse:N
e

Updated: 2011-08-13

\tl_reverse_items:n *

New: 2011-08-13

\tl_trim_spaces:n *

New: 2011-07-09
Updated: 2011-08-13

85 Working with the content of token lists

\tl_length:n {(tokens)}

Counts the number of (items) in (tokens) and leaves this information in the input stream.
Unbraced tokens count as one element as do each token group ({...}). This process will
ignore any unprotected spaces within (tokens). See also \tl_length:N. This function
requires three expansions, giving an (integer denotation).

\tl_length:N {(t1 var)}

Counts the number of token groups in the (¢l var) and leaves this information in the
input stream. Unbraced tokens count as one element as do each token group ({...}).
This process will ignore any unprotected spaces within (tokens). See also \t1_length:n.
This function requires three expansions, giving an (integer denotation).

\tl_reverse:n {(token list)}

Reverses the order of the (items) in the (token list), so that (item1)(item2) (item3)
... {itemy,) becomes (itemy,). .. (item3)(item2)(item1). This process will preserve unpro-
tected space within the (token list). Tokens are not reversed within braced token groups,
which keep their outer set of braces. In situations where performance is important,
consider \t1_reverse_items:n. See also \t1l_reverse:N.

\tl_reverse:N {(tl var)}

Reverses the order of the (items) stored in (tl var), so that (item1){item?2) (item3)
... {itemy,) becomes (item,)... (item3)(item2)(item1). This process will preserve un-
protected spaces within the (token list variable). Braced token groups are copied without
reversing the order of tokens, but keep the outer set of braces. The reversal is local to
the current TEX group. See also \tl_reverse:n.

\tl_reverse_items:n {(token list)}

Reverses the order of the (items) stored in (¢l var), so that {(item1)}{(item) }{(item3)}
... {(item,,)} becomes {(item,)} ... {(itemsz)}{(items)3{(item1)}. This process will
remove any unprotected space within the (token list). Braced token groups are copied
without reversing the order of tokens, and keep the outer set of braces. Items which are
initially not braced are copied with braces in the result. In cases where preserving spaces
is important, consider \t1l_reverse:n or \tl_reverse_tokens:n.

\tl_trim_spaces:n (token list)
Removes any leading and trailing explicit space characters from the (token list) and leaves

the result in the input stream. This process requires two expansions.

TgXhackers note: The result is return within the \unexpanded primitive (\exp_not:n),
which means that the token list will not expand further when appearing in an x-type argument
expansion.

89

\tl_trim_spaces:N
:c

New: 2011-07-09

\tl_gtrim_spaces:N
e

New: 2011-07-09

\tl_head:n *
:(V|v]f) *

Updated: 2011-08-09

\tl_head:w *

\tl_trim_spaces:N (tl var)

Removes any leading and trailing explicit space characters from the content of the (¢l var)
within the current TEX group.

\tl_gtrim_spaces:N (tl1 var)

Removes any leading and trailing explicit space characters from the content of the (¢ var)
globally.

86 The first token from a token list

Functions which deal with either only the very first token of a token list or everything
except the first token.

\tl_head:n {(tokens)}

Leaves in the input stream the first non-space token from the (tokens). Any leading space
tokens will be discarded, and thus for example

\tl_head:n { abc }
and
\tl_head:n { ~ abc }

will both leave a in the input stream. An empty list of (tokens) or one which consists
only of space (category code 10) tokens will result in \t1_head:n leaving nothing in the
input stream.

\tl_head:w (tokens) \g_stop

Leaves in the input stream the first non-space token from the (tokens). An empty list of
(tokens) or one which consists only of space (category code 10) tokens will result in an
error, and thus (tokens) must not be “blank” as determined by \tl_if_blank:n(TF).
This function requires only a single expansion, and thus is suitable for use within an o-
type expansion. In general, \t1_head:n should be preferred if the number of expansions
is not critical.

90

\tl_tail:n % \tl_tail:n {(tokens)}

H(Vlvie) Discards the all leading space tokens and the first non-space token in the (tokens), and

Updated: 2011-08-09 Jeaves the remaining tokens in the input stream. Thus for example

\tl_tail:n { abc }
and
\tl_tail:n { ~ abc }

will both leave bc in the input stream. An empty list of (fokens) or one which consists
only of space (category code 10) tokens will result in \t1_tail:n leaving nothing in the
input stream.

\tl_tail:w x \tl_tail:w {(tokens)} \g_stop

Discards the all leading space tokens and the first non-space token in the (tokens), and
leaves the remaining tokens in the input stream. An empty list of (tokens) or one which
consists only of space (category code 10) tokens will result in an error, and thus (tokens)
must not be “blank” as determined by \t1l_if_blank:n(TF). This function requires only
a single expansion, and thus is suitable for use within an o-type expansion. In general,
\tl_tail:n should be preferred if the number of expansions is not critical.

\str_head:n * \str_head:n {(tokens)}
\str_tail:n + \str_tail:n {(tokens)}

New: 2011-08-10 Converts the (tokens) into a string, as described for \t1_to_str:n. The \str_head:n
function then leaves the first character of this string in the input stream. The \str_-
tail:n function leaves all characters except the first in the input stream. The first
character may be a space. If the (tokens) argument is entirely empty, nothing is left in
the input stream.

(test token)
(test token)

\tl_if_head_eq_catcode_p:nN + \tl_if_head_eq_catcode_p:nN {(token list)
\t1l_if_head_eq_catcode:nNTF % \tl_if_head_eq_catcode:nNTF {(token list)
{(true code)} {(false code)}

}
}

Updated: 2011-08-10

Tests if the first (token) in the (token list) has the same category code as the (test token).
In the case where (token list) is empty, its head is considered to be \g_nil, and the test
will be true if (test token) is a control sequence.

\tl_if_head_eq_charcode_p:nN % \tl_if_head_eq_charcode_p:nN {(token list)} (test token)
:fN + \tl_if_head_eq_charcode:nNTF {(token list)} (test token)
\tl_if_head_eq_charcode:nNTF * {(true code)} {(false code)}
fNTF %

Updated: 2011-08-10

Tests if the first (token) in the (token list) has the same character code as the (test token).
In the case where (token list) is empty, its head is considered to be \g_nil, and the test
will be true if (test token) is a control sequence.

91

\t1l_if_head_eq meaning_p:nN % \tl_if_head_eq meaning_p:nN {(token list)
\t1l_if_head_eq meaning:nNTF % \tl_if_head_eq_meaning:nNTF {(token list)

(test token)

}
} (test token)

{(true code)} {(false code)}

Updated: 2011-08-10

\tl_if_head_group_p:n *
\tl_if_head_group:nTF *

Updated: 2011-08-11

\tl_if_head_N_type_p:n =*
\tl_if_head_N_type:nTF *

New: 2011-08-11

\tl_if_head_space_p:n *
\tl_if_head_space:nTF x

Updated: 2011-08-11

\tl_show:N

Tests if the first (token) in the (token list) has the same meaning as the (test token). In
the case where (token list) is empty, its head is considered to be \q_nil, and the test
will be true if (test token) has the same meaning as \q_nil.

\tl_if_head_group_p:n {(token list)}

\tl_if_head_group:nTF {(token 1ist)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit begin-group character (with
category code 1 and any character code), in other words, if the (token list) starts with a
brace group. In particular, the test is false if the (token list) starts with an implicit token
such as \c_group_begin_token, or if it empty. This function is useful to implement
actions on token lists on a token by token basis.

\tl_if_head_N_type_p:n {(token list)}

\tl_if_head_N_type:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is a normal N-type argument. In other words,
it is neither an explicit space character (with category code 10 and character code 32)
nor an explicit begin-group character (with category code 1 and any character code). An
empty argument yields false, as it does not have a “normal” first token. This function is
useful to implement actions on token lists on a token by token basis.

\tl_if_head_space_p:n {(token list)}
\tl_if_head_space:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit space character (with category
code 10 and character code 32). If (token list) starts with an implicit token such as \c_-
space_token, the test will yield false, as well as if the argument is empty. This function
is useful to implement actions on token lists on a token by token basis.

TEXhackers note: When TEX reads a character of category code 10 for the first time, it
is converted to an explicit space token, with character code 32, regardless of the initial charac-
ter code. “Funny” spaces with a different category code, can be produced using \lowercase.
Explicit spaces are also produced as a result of \token_to_str:N, \tl_to_str:n, etc.

87 Viewing token lists
\tl_show:N (tl var)

Displays the content of the (¢l var) on the terminal.

TEXhackers note: \tl_show:N is the TEX primitive \show.

92

\tl_show:n

\c_job_name_t1

Updated: 2011-08-18

\c_empty_tl

\c_space_tl

\1_tmpa_tl
\1_tmpb_tl

\g_tmpa_t1l
\g_tmpb_t1

\tl_reverse_tokens:n *

New: 2011-08-11

\tl_show:n (token list)

Displays the (token list) on the terminal.

TEXhackers note: \tl_show:n is the e-TEX primitive \showtokens.

88 Constant token lists

Constant that gets the “job name” assigned when TEX starts.

TEXhackers note: This is the new name for the primitive \ jobname. It is a constant that
is set by TEX and should not be overwritten by the package.

Constant that is always empty.

A space token contained in a token list (compare this with \c_space_token). For use
where an explicit space is required.

89 Scratch token lists

Scratch token lists for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch token lists for global assignment. These are never used by the kernel code, and
so are safe for use with any I¥TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

90 Experimental token list functions

\tl_reverse_tokens:n {(tokens)}

This function, which works directly on TEX tokens, reverses the order of the (tokens):
the first will be the last and the last will become first. Spaces are preserved. The reversal
also operates within brace groups, but the braces themselves are not exchanged, as this
would lead to an unbalanced token list. For instance, \t1_reverse_tokens:n {a~{b()}}
leaves {) (b}~a in the input stream. This function requires two steps of expansion.

93

\tl_length_tokens:n *

New: 2011-08-11

\tl_length_tokens:n {(tokens)}

Counts the number of TEX tokens in the (tokens) and leaves this information in the input
stream. Every token, including spaces and braces, contributes one to the total; thus for
instance, the length of a~{bc} is 6. This function requires three expansions, giving an
(integer denotation).

\t1_expandable_uppercase:n * \tl_expandable_uppercase:n {(tokens)}
\t1l_expandable_lowercase:n * \tl_expandable_lowercase:n {(tokens)}

New: 2011-08-13

\q_t1l_act_mark
\g_t1l_act_stop

The \t1_expandable_uppercase:n function works through all of the (tokens), replacing
characters in the range a—z (with arbitrary category code) by the corresponding letter in
the range A-Z, with category code 11 (letter). Similarly, \t1_expandable_lowercase:n
replaces characters in the range A-Z by letters in the range a-z, and leaves other tokens
unchanged. This function requires two steps of expansion.

TEXhackers note: Begin-group and end-group characters are normalized and become {
and }, respectively.

91 Internal functions

Quarks which are only used for the particular purposes of \tl_act_... functions.

94

\seq_new:N

\seq_clear:N

\seq_gclear:N

\seq_clear_new:N

\seq_gclear_new:N

\seq_set_eq:NN
: (cN|Nc|cc)

Part XII
The 13seq package
Sequences and stacks

ETREX3 implements a “sequence” data type, which contain an ordered list of entries which
may contain any (balanced text). It is possible to map functions to sequences such that
the function is applied to every item in the sequence.

Sequences are also used to implement stack functions in IXTEX3. This is achieved
using a number of dedicated stack functions.

92 Creating and initialising sequences

\seq_new:N (sequence)

Creates a new (sequence) or raises an error if the name is already taken. The declaration
is global. The (sequence) will initially contain no items.

\seq_clear:N (sequence)

Clears all items from the (sequence) within the scope of the current TEX group.

\seq_gclear:N (sequence)

Clears all entries from the {sequence) globally.

\seq_clear_new:N (sequence)

If the (sequence) already exists, clears it within the scope of the current TgX group. If
the (sequence) is not defined, it will be created (using \seq_new:N). Thus the sequence
is guaranteed to be available and clear within the current TEX group. The (sequence)
will exist globally, but the content outside of the current TEX group is not specified.

\seq_gclear_new:N (sequence)

If the (sequence) already exists, clears it globally. If the (sequence) is not defined, it
will be created (using \seq_new:N). Thus the sequence is guaranteed to be available and
globally clear.

\seq_set_eq:NN (sequencel) (sequence2)

Sets the content of (sequencel) equal to that of (sequence2). This assignment is restricted
to the current TEX group level.

95

\seq_gset_eq:NN \seq_gset_eq:NN (sequencel) (sequence2)

+ (cN|Ne|ce) Sets the content of (sequencel) equal to that of (sequence2). This assignment is global

and so is not limited by the current TEX group level.

\seq_concat:NNN \seq_concat:NNN (sequencel) (sequence2) (sequence3)

“°CC Concatenates the content of (sequence2) and (sequence3) together and saves the result in

(sequencel). The items in (sequence2) will be placed at the left side of the new sequence.
This operation is local to the current TEX group and will remove any existing content in
(sequencel).

\seq_gconcat:NNN \seq_gconcat:NNN (sequencel) (sequence2) (sequence3)

" Concatenates the content of (sequence2) and (sequence3) together and saves the result in

(sequencel). The items in (sequence2) will be placed at the left side of the new sequence.
This operation is global and will remove any existing content in (sequencel).

93 Appending data to sequences

\seq_put_left:Nn \seq_put_left:Nn (sequence) {(item)}
: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

Appends the (item) to the left of the (sequence). The assignment is restricted to the
current TEX group.

\seq_gput_left:Nn \seq_gput_left:Nn (sequence) {(item)}
: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

Appends the (item) to the left of the (sequence). The assignment is global.

\seq_put_right:Nn \seq_put_right:Nn (sequence) {(item)}
: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

Appends the (item) to the right of the (sequence). The assignment is restricted to the
current TEX group.

\seq_gput_right:Nn \seq_gput_right:Nn (sequence) {(item)}
: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

Appends the (item) to the right of the (sequence). The assignment is global.

94 Recovering items from sequences

Items can be recovered from either the left or the right of sequences. For implementa-
tion reasons, the actions at the left of the sequence are faster than those acting on the

96

\seq_get_left:
:cN

NN

\seq_get_right:
:cN

NN

\seq_pop_left:
:cN

NN

\seq_gpop_left:
:cN

NN

\seq_pop_right:
:cN

NN

\seq_gpop_right:
:cN

NN

right. These functions all assign the recovered material locally, i.e. setting the (token list
variable) used with \t1_set:Nn and never \t1l_gset:Nn.

\seq_get_left:NN (sequence) (token list variable)

Stores the left-most item from a (sequence) in the (token list variable) without removing
it from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
an error will be raised.

\seq_get_right:NN (sequence) (token list variable)

Stores the right-most item from a (sequence) in the (token list variable) without removing
it from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
an error will be raised.

\seq_pop_left:NN (sequence) (token list variable)

Pops the left-most item from a (sequence) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). Both of the variables
are assigned locally. If (sequence) is empty an error will be raised.

\seq_gpop_left:NN (sequence) (token list variable)

Pops the left-most item from a (sequence) into the (token list variable), i.e. removes
the item from the sequence and stores it in the (token list variable). The (sequence) is
modified globally, while the assignment of the (token list variable) is local. If (sequence)
is empty an error will be raised.

\seq_pop_right:NN (sequence) (token list variable)

Pops the right-most item from a (sequence) into the (token list variable), i.e. removes the
item from the sequence and stores it in in the (token list variable). Both of the variables
are assigned locally. If (sequence) is empty an error will be raised.

\seq_gpop_right:NN (sequence) (token list variable)

Pops the right-most item from a (sequence) into the (token list variable), i.e. removes
the item from the sequence and stores it in the (token list variable). The (sequence) is
modified globally, while the assignment of the (token list variable) is local. If (sequence)
is empty an error will be raised.

95 Modifying sequences
While sequences are normally used as ordered lists, it may be necessary to modify the

content. The functions here may be used to update sequences, while retaining the order
of the unaffected entries.

97

\seq_remove_duplicates:N
:c

\seq_gremove_duplicates:N
:c

\seq_remove_all:Nn
icn

\seq_gremove_all:Nn
icn

\seq_if_empty_p:N
ic
\seq_if_empty:NTF
:cTF

* o o o

\seq_remove_duplicates:N (sequence)

Removes duplicate items from the (sequence), leaving the left most copy of each item
in the (sequence). The (item) comparison takes place on a token basis, as for \t1_if_-
eq:nn(TF). The removal is local to the current TEX group.

TgXhackers note: This function iterates through every item in the (sequence) and does a
comparison with the (items) already checked. It is therefore relatively slow with large sequences.

\seq_gremove_duplicates:N (sequence)

Removes duplicate items from the (sequence), leaving the left most copy of each item
in the (sequence). The (item) comparison takes place on a token basis, as for \t1_if_-
eq:nn(TF). The removal is applied globally.

TgXhackers note: This function iterates through every item in the (sequence) and does a
comparison with the (items) already checked. It is therefore relatively slow with large sequences.

\seq_remove_all:Nn (sequence) {(item)}

Removes every occurrence of (item) from the (sequence). The (item) comparison takes
place on a token basis, as for \t1_if_eq:nn(TF). The removal is local to the current

TEX group.

\seq_gremove_all:Nn (sequence) {(item)}

Removes each occurrence of (item) from the (sequence). The (item) comparison takes
place on a token basis, as for \t1_if_eq:nn(TF). The removal is applied globally.

96 Sequence conditionals

\seq_if_empty_p:N (sequence)
\seq_if_empty:NTF (sequence) {(true code)} {(false code)}

Tests if the (sequence) is empty (containing no items).

\seq_if_in:NnTF

\seq_if_in:NnTF (sequence) {(item)} {(true code)} {(false code)}

: (NV|Nv|No|Nx|cn|cV|cv|co|cx) TF

Tests if the (item) is present in the (sequence).

98

97 Mapping to sequences

\seq_map_function:NN 3 \seq_map_function:NN (sequence) (function)
icN ¢

Applies (function) to every (item) stored in the (sequence). The (function) will receive
one argument for each iteration. The (items) are returned from left to right. The
function \seq_map_inline:Nn is in general more efficient than \seq_map_function:NN.
One mapping may be nested inside another.

\seq_map_inline:Nn \seq_map_inline:Nn (sequence) {(inline function)}

% Applies (inline function) to every (item) stored within the (sequence). The (inline
function) should consist of code which will receive the (item) as #1. One in line mapping
can be nested inside another. The (items) are returned from left to right.

\seq_map_variable:NNn \seq_map_variable:NNn (sequence) (tl1 var.) {(function using tl var.)}

:(Ncn|cNn|cen)

Stores each entry in the (sequence) in turn in the (¢l var.) and applies the (function using
tl var.) The (function) will usually consist of code making use of the (¢l var.), but this
is not enforced. Onme variable mapping can be nested inside another. The (items) are
returned from left to right.

\seq_map_break 3 \seq_map_break:

Used to terminate a \seq_map_