The IXTEX3 Interfaces

The BTEX3 Project™
May 29, 2017

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for KTEX commands, which
allow the BTEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level I¥TEX3 programming
language.

At present, the expl3 modules are designed to be loaded on top of I¥TEX 2¢. In time,
a IMTEX3 format will be produced based on this code. This allows the code to be
used in B TEX 2¢ packages now while a stand-alone I¥TEX3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly
stable. The syntax conventions and functions provided are now ready
for wider use. There may still be changes to some functions, but these
will be minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they
reach maturity.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

Contents

I Introduction to expl3 and this document

1

I1

II1

IV

Naming functions and variables

1.1 Terminological inexactitude

Documentation conventions
Formal language conventions which apply generally

TEX concepts not supported by BTEX3

The I13bootstrap package: Bootstrap code

Using the BTEX3 modules

1.1 Internal functions and variables.

The I13names package: Namespace for primitives

Setting up the B'TEX3 programming language

The I13basics package: Basic definitions
No operation functions
Grouping material

Control sequences and functions

3.1 Defining functionso oo
3.2 Defining new functions using parameter text
3.3 Defining new functions using the signature
3.4 Copying control sequences
3.5 Deleting control sequences
3.6 Showing control sequences L.
3.7 Converting to and from control sequences

Using or removing tokens and arguments

4.1 Selecting tokens from delimited arguments

Predicates and conditionals

5.1 Tests on control sequences
5.2 Primitive conditionals L L.

Internal kernel functions

The I3expan package: Argument expansion

ii

17
19

19
20
21

22

24

10

VI

10
11
12
13

14

Defining new variants

Methods for defining variants
Introducing the variants
Manipulating the first argument
Manipulating two arguments
Manipulating three arguments
Unbraced expansion

Preventing expansion
Controlled expansion

Internal functions and variables

The 13tl package: Token lists

Creating and initialising token list variables

Adding data to token list variables
Modifying token list variables
Reassigning token list category codes
Token list conditionals

Mapping to token lists

Using token lists

Working with the content of token lists
The first token from a token list
Using a single item

Viewing token lists

Constant token lists

Scratch token lists

Internal functions

VII The I3str package:Strings

iii

24
25
25
26
28
28
29
30
31

32

34
34
35
36
36
37
39
41
41
43
45
45
46
46

46

47

Building strings

Adding data to string variables
2.1 String conditionals L Lo

Working with the content of strings
String manipulation

Viewing strings

Constant token lists

Scratch strings
7.1 Internal string functions L oL L

VIII The I13seq package: Sequences and stacks

1

2

10
11
12

13

IX

Creating and initialising sequences
Appending data to sequences
Recovering items from sequences
Recovering values from sequences with branching
Modifying sequences

Sequence conditionals

Mapping to sequences

Using the content of sequences directly
Sequences as stacks

Sequences as sets

Constant and scratch sequences
Viewing sequences

Internal sequence functions

The 13int package: Integers
Integer expressions
Creating and initialising integers

Setting and incrementing integers

iv

47

48
48

50
53
54
55

55
95

57
57
58
58
59
60
61
61
63
64
65
66
67

67

68
68
69

70

4 Using integers

5 Integer expression conditionals

6 Integer expression loops

7 Integer step functions

8 Formatting integers

9 Converting from other formats to integers
10 Viewing integers

11 Constant integers

12 Scratch integers

13 Primitive conditionals

14 Internal functions

X The I3intarray package: low-level arrays of small integers

1 I13intarray documentation
1.1 Internal functions e

XI The I13flag package: expandable flags

1 Setting up flags

2 Expandable flag commands

XIT The I13quark package: Quarks

1 Introduction to quarks and scan marks
1.1 Quarks e

2 Defining quarks

3 Quark tests

4 Recursion

5 An example of recursion with quarks
6 Internal quark functions

7 Scan marks

70
71
72
74
74
76
77
78
78
79

79

81

81
81

82
82

83

84

84
84

84
85
85
86
87

87

XIIT The I3prg package: Control structures
1 Defining a set of conditional functions

2 The boolean data type

3 Boolean expressions

4 Logical loops

5 Producing multiple copies

6 Detecting TEX’s mode

7 Primitive conditionals

8 Internal programming functions

XIV The I3clist package: Comma separated lists
1 Creating and initialising comma lists
2 Adding data to comma lists

3 Modifying comma lists

4 Comma list conditionals

5 Mapping to comma lists

6 Using the content of comma lists directly
7 Comma lists as stacks

8 Using a single item

9 Viewing comma lists

10 Constant and scratch comma lists

XV The I3token package: Token manipulation

1 Creating character tokens
2 Manipulating and interrogating character tokens
3 Generic tokens

4 Converting tokens

5 Token conditionals

vi

89
89
91
93
95
96
96
96

97

98

98

99
100
101
101
103
104
105
105

106

107
107
108
111
112

112

Peeking ahead at the next token
Decomposing a macro definition
Description of all possible tokens

Internal functions

XVI The I3prop package: Property lists

1

2

10

11

Creating and initialising property lists

Adding entries to property lists

Recovering values from property lists

Modifying property lists

Property list conditionals

Recovering values from property lists with branching
Mapping to property lists

Viewing property lists

Scratch property lists

Constants

Internal property list functions

XVII The I3msg package: Messages

1

2

XVIII The I3file package: File and I/O operations

Creating new messages

Contextual information for messages
Issuing messages

Redirecting messages

Low-level message functions
Kernel-specific functions
Expandable errors

Internal I13msg functions

vii

115
118
119

121

122
122
123
123
124
124
125
125
126
127
127

127

128
128
129
130
132
133
134
136

136

138

1 File operation functions 138

1.1 Input—output stream management 139

1.2 Reading from files L o 140
2 Writing to files 142

2.1 Wrapping lines in output Lo 144

2.2 Constant input—output streams 145

2.3 Primitive conditionals oL L oL 145

2.4 Internal file functions and variables 145

2.5 Internal input—output functions 145
XIX The I3skip package: Dimensions and skips 147
1 Creating and initialising dim variables 147
2 Setting dim variables 148
3 Utilities for dimension calculations 148
4 Dimension expression conditionals 149
5 Dimension expression loops 151
6 Using dim expressions and variables 152
7 Viewing dim variables 154
8 Constant dimensions 154
9 Scratch dimensions 154
10 Creating and initialising skip variables 155
11 Setting skip variables 155
12 Skip expression conditionals 156
13 Using skip expressions and variables 156
14 Viewing skip variables 156
15 Constant skips 157
16 Scratch skips 157
17 Inserting skips into the output 157
18 Creating and initialising muskip variables 158
19 Setting muskip variables 158
20 Using muskip expressions and variables 159

viii

21

22

23

24

25

XX The I3keys package: Key—value interfaces

1

2

Viewing muskip variables
Constant muskips
Scratch muskips
Primitive conditional

Internal functions

Creating keys

Sub-dividing keys

Choice and multiple choice keys
Setting keys

Handling of unknown keys
Selective key setting

Utility functions for keys

Low-level interface for parsing key—val lists

XXI The I13fp package: floating points

1

2

Creating and initialising floating point variables

Setting floating point variables

Using floating point numbers

Floating point conditionals

Floating point expression loops

Some useful constants, and scratch variables
Floating point exceptions

Viewing floating points

Floating point expressions

9.1 Input of floating point numbers
9.2 Precedence of operators
9.3 Operations

ix

159

160

160

160

161

162

163

167

167

170

170

171

172

173

175

176

176

177

178

180

181

182

183

10 Disclaimer and roadmap

XXII The I3sort package: Sorting functions

1 Controlling sorting

XXIIT The I3tl-analysis package: analysing token lists

1 13tl-analysis documentation

XXIV The I3tl-build package: building token lists

1 13tl-build documentation

1.1 Internal functions

XXV The I3regex package: regular expressions in TpX

1 Regular expressions

1.1 Syntax of regular expressions oL
1.2 Syntax of the replacement text
1.3 Pre-compiling regular expressions
1.4 Matching e
1.5 Submatch extraction oL Lo
1.6 Replacement e
1.7 Bugs, misfeatures, future work, and other possibilities

XXVI The I3box package: Boxes

1 Creating and initialising boxes

2 Using boxes

3 Measuring and setting box dimensions
4 Box conditionals

5 The last box inserted

6 Constant boxes

7 Scratch boxes

8 Viewing box contents
9 Boxes and color

10 Horizontal mode boxes

191

194

194

195

195

196

196
196

197

197
197
201
203
203
204
205
205

208
208
209
209
210
210
211
211
211
211

212

11 Vertical mode boxes 213

11.1 Affine transformations oo 214
12 Primitive box conditionals 217
XXVII The I3coffins package: Coffin code layer 218
1 Creating and initialising coffins 218
2 Setting coffin content and poles 218
3 Joining and using coffins 219
4 Measuring coffins 220
5 Coffin diagnostics 220

5.1 Constants and variables oo oL 221
XXVIII The I3color package: Color support 222
1 Color in boxes 222
XXIX The I3sys package:System /runtime functions 223
1 The name of the job 223
2 Date and time 223
3 Engine 223
4 Output format 224
XXX The I13deprecation package: Deprecation errors 225
1 13deprecation documentation 225

XXXI The I3candidates package: Experimental additions to

13kernel 226
1 Important notice 226
2 Additions to 13box 226

2.1 Viewing part ofabox 226
3 Additions to 13clist 227

4 Additions to 13coffins 227

Xi

10

11

12

13

Additions to 13file
Additions to 13int
Additions to 13msg
Additions to 13prop
Additions to I3seq
Additions to 13skip
Additions to I3sys
Additions to 13tl

Additions to I3toke

ns

XXXII The I3luatex package:LuaTeX-specific functions

1

Breaking out to Lua
1.1 TgX code interfaces Lo

1.2 Lua interfaces

XXXIII The I3drivers package: Drivers

4.1 Path construction e e
4.2 Stroking and filling

4.5 Inserting TEX material L o oL
4.6 Coordinate system transformations.

1 Box clipping
2 Box rotation and scaling
3 Color support
4 Drawing

4.3 Stroke options

4.4 Color
Index

xii

228
228
228
229
230
230
231
232

237

238

238
238
239

240
240
240
241

241
242
242
243
244
245
245

246

Part 1
Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the IMTEX3 programming language is found in expl3.pdf.

1 Naming functions and variables

ETREX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

D The D specifier means do not use. All of the TEX primitives are initially \let to a D
name, and some are then given a second name. Only the kernel team should use
anything with a D specifier!

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example
\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are in
general not expandable, unless specifically noted.

f The f specifier stands for full expansion, and in contrast to x stops at the first non-
expandable item (reading the argument from left to right) without trying to expand
it. For example, when setting a token list variable (a macro used for storage), the
sequence

\tl_set:Nn \1_mya_tl { A }
\tl_set:Nn \1_myb_tl { B }
\tl_set:Nf \1_mya_tl { \1l_mya_tl \1_myb_tl }

will leave \1_mya_t1 with the content A\1_myb_t1, as A cannot be expanded and
so terminates expansion before \1_myb_t1 is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some arbitrary string).

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

c Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module! name and then a descriptive part. Variables end with a short
identifier to show the variable type:

bool Either true or false.
box Box register.
clist Comma separated list.

coffin a “box with handles” — a higher-level data type for carrying out box alignment
operations.

dim “Rigid” lengths.

fp floating-point values;

1The module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

\ExplSyntaxOn
\ExplSyntax0ff

int Integer-valued count register.
prop Property list.

seq “Sequence”: a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.
stream An input or output stream (for reading from or writing to, respectively).

t1l Token list variables: placeholder for a token list.

1.1 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and a
“token list variable” are in truth one and the same. On the other hand, some “variables”
are actually registers that must be initialised and their values set and retrieved with
specific functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntax0ff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the

function takes no arguments and so the name of the function is simply reprinted.
For programming functions, which use _ and : in their name there are a few addi-

tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

\seq_new:N \seq_new:N (sequence)
‘° When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration

should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type argument (in plain TEX terms, inside an \edef), as well
as within an f-type argument. These fully expandable functions are indicated in the
documentation by a star:

\cs_to_str:N * \cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a (control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN 3 \seq_map_function:NN (seq) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\sys_if_engine_xetex:TF x \sys_if_engine_xetex:TF {(true code)} {(false code)}

The underlining and italic of TF indicates that \sys_if_engine_xetex:T, \sys_if_engine_xetex:F
and \sys_if_engine_xetex:TF are all available. Usually, the illustration will use the TF
variant, and so both (true code) and (false code) will be shown. The two variant forms
T and F take only (true code) and (false code), respectively. Here, the star also shows
that this function is expandable. With some minor exceptions, all conditional functions

in the expl3 modules should be defined in this way.
Variables, constants and so on are described in a similar manner:

\1_tmpa_tl A short piece of text will describe the variable: there is no syntax illustration in this case.
In some cases, the function is similar to one in I#TEX 2¢ or plain TEX. In these cases,
the text will include an extra “TgpXhackers note” section:

\token_to_str:N x \token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or TEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way unless they impact on the
expected behaviour.

3 Formal language conventions which apply generally

As this is a formal reference guide for ITEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left

in the input stream: this will typically be part of a larger logical construct.

4 TEX concepts not supported by IBXTEX3

The TeX concept of an “\outer” macro is not supported at all by ITEX3. As such, the
functions provided here may break when used on top of IXTEX 2¢ if \outer tokens are
used in the arguments.

\ExplSyntax0On
\ExplSyntax0ff

Updated: 2011-08-13

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2017-03-19

\GetIdInfo

Updated: 2012-06-04

Part 11
The I13bootstrap package
Bootstrap code

1 Using the KTEX3 modules

The modules documented in source3 are designed to be used on top of KTEX 2¢ and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions. These modules will also form the basis of the IXTEX3 format, but work in
this area is incomplete and not included in this documentation at present.

As the modules use a coding syntax different from standard I¥TEX 2¢ it provides a
few functions for setting it up.

\ExplSyntaxOn (code) \ExplSyntax0ff

The \ExplSyntaxOn function switches to a category code régime in which spaces are
ignored and in which the colon (:) and underscore (_) are treated as “letters”, thus
allowing access to the names of code functions and variables. Within this environment,
~ is used to input a space. The \ExplSyntax0ff reverts to the document category code
régime.

\RequirePackage{expl3}

\ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

These functions act broadly in the same way as the corresponding IATEX 2¢ kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntaxOn for the remainder of the code with the file. At the end
of the file, \ExplSyntax0ff will be called to reverse this. (This is the same concept as
KTEX 2 provides in turning on \makeatletter within package and class code.) The
(date) should be given in the format (year)/{month)/(day). If the (version) is given then
it will be prefixed with v in the package identifier line.

\RequirePackage{13bootstrap}
\GetIdInfo $Id: (SVN info field) $ {(description)}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion

for version and \ExplFileDescription for the description.
To summarize: Every single package using this syntax should identify itself using

one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual IXTEX 2¢ category codes and the
I¥TREX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

1.1 Internal functions and variables

\1__kernel_expl bool A boolean which records the current code syntax status: true if currently inside a code
environment. This variable should only be set by \ExplSyntaxOn/\ExplSyntax0ff.

Part 111
The I13names package
Namespace for primitives

1 Setting up the KTEX3 programming language

This module is at the core of the M TEX3 programming language. It performs the following
tasks:

o defines new names for all TEX primitives;
o switches to the category code régime for programming;
e provides support settings for building the code as a TEX format.

This module is entirely dedicated to primitives, which should not be used directly
within ITEX3 code (outside of “kernel-level” code). As such, the primitives are not
documented here: The TpXbook, TgX by Topic and the manuals for pdfTEX, X#TEX and
LuaTgX should be consulted for details of the primitives. These are named based on the
engine which first introduced them:

\tex_... Introduced by TEX itself;
\etex_... Introduced by the e-TEX extensions;
\pdftex_... Introduced by pdfTEX;
\xetex_... Introduced by XHTEX;
\luatex_... Introduced by LuaTgX;
\utex_... Introduced by X#TEX and LuaTlgX;
\ptex_... Introduced by pTEX;
\uptex_. .. Introduced by upTEX.

\prg_do_nothing: x

\scan_stop:

\group_begin:
\group_end:

\group_insert_after:N

Part IV
The I3basics package
Basic definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

2 Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends.
The list of (tokens) to be inserted will be empty at the beginning of a group: multiple
applications of \group_insert_after:N may be used to build the inserted list one (token)
at a time. The current group level may be closed by a \group_end: function or by a
token with category code 2 (close-group). The later will be a } if standard category codes

apply.

3 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” will be fully expanded inside an x expansion.
In contrast, “protected” functions are not expanded within x expansions.

3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen will be checked and an error raised if it is already in
use. The name of a function can be checked at the point of definition using the \cs_-
new... functions: this is recommended for all functions which are defined for the first
time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, ...).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and will result in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and will not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset :Npn. The definition
is global and will not result in an error if the function is already defined.

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an x-type expansion.

Finally, the functions in Subsections 3.2 and 3.3 are primarily meant to define base
functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 2.

10

\cs_new:

Npn

:cpn

\cs_new:

Npx

1cpx

\cs_new_nopar:

Npn

:cpn

\cs_new_nopar:

Npx

1cpx

\cs_new_protected:

Npn

:cpn

\cs_new_protected:

Npx

1cpx

3.2 Defining new functions using parameter text

\cs_new:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error will result if the (function) is already defined.

\cs_new_nopar:Npn (function) (parameters) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error will result if the (function) is already defined.

\cs_new_protected:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error will result if the (function) is already defined.

\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npn (function) (parameters) {({code)}

:cpn

\cs_new_protected_nopar:Npx

1cpx

\cs_set:

Npn

:cpn

\cs_set:

Npx

1cpx

\cs_set_nopar:

Npn

:cpn

\cs_set_nopar:

Npx

1cpx

\cs_set_protected:

Npn

:cpn

\cs_set_protected

:Npx

1cpx

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type argument. The definition is global and an error will
result if the (function) is already defined.

\cs_set:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Npn (function) (parameters) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The assignment
of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an x-type argument.

11

\cs_set_protected_nopar:Npn \cs_set_protected_nopar:Npn (function) (parameters) {{code)}

:cpn

\cs_set_protected_nopar:Npx

1cpx

\cs_gset:Npn

:cpn

\cs_gset :Npx

1cpx
\cs_gset_nopar:Npn
:cpn
\cs_gset_nopar:Npx
1cpx
\cs_gset_protected:Npn
:cpn
\cs_gset_protected:Npx
1cpx

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The as-
signment of a meaning to the (function) is restricted to the current TEX group level. The
(function) will not expand within an x-type argument.

\cs_gset:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_protected:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group level:
the assignment is global. The (function) will not expand within an x-type argument.

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {{code)}

:cpn

\cs_gset_protected_nopar:Npx

1cpx

\cs_new:Nn

: (cn|Nx|cx)

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group level:
the assignment is global. The (function) will not expand within an x-type argument.

3.3 Defining new functions using the signature

\cs_new:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error will result if the (function) is already defined.

12

\cs_new_nopar:Nn
: (cn|Nx|cx)

\cs_new_protected:Nn
: (cn|Nx|cx)

\cs_new_nopar:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error will result if the (function) is already defined.

\cs_new_protected:Nn (function) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error will result if the (function) is already defined.

\cs_new_protected_nopar:Nn \cs_new_protected_nopar:Nn (function) {<code>}

: (cn|Nx|cx)

\cs_set:Nn
: (cn|Nx|cx)

\cs_set_nopar:Nn
: (cn|Nx|cx)

\cs_set_protected:Nn
: (cn|Nx|cx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type argument. The definition is global and an error will
result if the (function) is already defined.

\cs_set:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is restricted to the current TEX group level.

13

\cs_set_protected_nopar:Nn \cs_set_protected_nopar:Nn (function) {(code)}
: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type argument. The assignment of a meaning to the (function) is
restricted to the current TEX group level.

\cs_gset:Nn \cs_gset:Nn (function) {(code)}
: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is global.

\cs_gset_nopar:Nn \cs_gset_nopar:Nn (function) {(code)}
: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is global.

\cs_gset_protected:Nn \cs_gset_protected:Nn (function) {(code)}
: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is global.

\cs_gset_protected_nopar:Nn \cs_gset_protected_nopar:Nn (function) {(code)}
: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type argument. The assignment of a meaning to the (function) is
global.

\cs_generate_from_arg_count:NNnn \cs_generate_from_arg_count:NNnn (function) (creator) (number)
:(cNnn|Ncnn) (code)

Updated: 2012-01-14

Uses the (creator) function (which should have signature Npn, for example \cs_new:Npn)
to define a (function) which takes (number) arguments and has (code) as replacement
text. The (number) of arguments is an integer expression, evaluated as detailed for
\int_eval:n.

14

\cs_new_eq:NN
: (Nc|eNlcc)

\cs_set_eq:NN
: (Ne|eNlce)

\cs_gset_eq:NN
: (Nc|eNlcc)

\cs_undefine:N
ic

Updated: 2011-09-15

\cs_meaning:N *
icok

Updated: 2011-12-22

3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN (cs1) (cs2)
\cs_new_eq:NN (csi) (token)

Globally creates (control sequence;) and sets it to have the same meaning as (control
sequenceg) or (token). The second control sequence may subsequently be altered without
affecting the copy.

\cs_set_eq:NN (cs1) (cs2)
\cs_set_eq:NN (csi) (token)

Sets (control sequence;) to have the same meaning as (control sequences) (or (token)).
The second control sequence may subsequently be altered without affecting the copy.
The assignment of a meaning to the (control sequence;) is restricted to the current TEX
group level.

\cs_gset_eq:NN (cs1) (cs2)
\cs_gset_eq:NN (csi) (token)

Globally sets (control sequence;) to have the same meaning as (control sequences) (or
(token)). The second control sequence may subsequently be altered without affecting the
copy. The assignment of a meaning to the (control sequence;) is not restricted to the
current TEX group level: the assignment is global.

3.5 Deleting control sequences

There are occasions where control sequences need to be deleted. This is handled in a
very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

3.6 Showing control sequences

\cs_meaning:N (control sequence)

This function expands to the meaning of the (control sequence) control sequence. This
will show the (replacement text) for a macro.

TEXhackers note: This is TEX’s \meaning primitive. The c variant correctly reports
undefined arguments.

15

\cs_show:N
:c

Updated: 2017-02-14

\cs_log:N
ic

New: 2014-08-22
Updated: 2017-02-14

\use:c «*

\cs_if_exist_use:N «
:c *
\cs_if_exist_use:NTF x*
:cTF %

New: 2012-11-10

\cs:w *
\cs_end: «*

\cs_show:N (control sequence)
Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_log:N (control sequence)

Writes the definition of the (control sequence) in the log file. See also \cs_show:N which
displays the result in the terminal.

3.7 Converting to and from control sequences

\use:c {(control sequence name)}

Converts the given (control sequence name) into a single control sequence token. This
process requires two expansions. The content for (control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically, they will be
of category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

As an example of the \use:c function, both

\use:c { abc}
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc}
\use:c { \tl_use:N \1_my_tl1l }

would be equivalent to

\abc
after two expansions of \use:c.
\cs_if_exist_use:N (control sequence)

\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type), and if it is inserts the (control sequence) into the input stream
followed by the (true code). Otherwise the (false code) is used.

\cs:w (control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for {control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically, they will be
of category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TEXhackers note: These are the TEX primitives \csname and \endcsname.

As an example of the \cs:w and \cs_end: functions, both

16

\cs:w a b ¢ \cs_end:
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc}
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to
\abc

after one expansion of \cs:w.

\cs_to_str:N * \cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code 12
(other), except spaces, of category code 10. The sequence will not include the current
escape token, cf. \token_to_str:N. Full expansion of this function requires exactly 2
expansion steps, and so an x-type expansion, or two o-type expansions will be required
to convert the (control sequence) to a sequence of characters in the input stream. In most
cases, an f-expansion will be correct as well, but this loses a space at the start of the
result.

4 Using or removing tokens and arguments

Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then in absorbing them the outer set will be removed. At the same
time, the category code of each token is set when the token is read by a function (if it
is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

\use:n * \use:n {(group:)}

\use:nn * \use:nn {(group:)} {(group:)}

\use:nnn * \use:nnn {(group:)} {(group:)} {(groups)}

\use:nnnn * \use:nnnn {(group:)} {{(group:)} {(groups)} {(groups)}
As illustrated, these functions will absorb between one and four arguments, as indicated
by the argument specifier. The braces surrounding each argument will be removed leaving
the remaining tokens in the input stream. The category code of these tokens will also be
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } }
will result in the input stream containing
abc { def }

i.e. only the outer braces will be removed.

17

\use_i:nn *
\use_ii:nn *
\use_i:nnn %
\use_ii:nnn *
\use_iii:nnn *
\use_i:nnnn *
\use_ii:nnnn
\use_iii:nnnn *
\use_iv:nnnn *
\use_i_ii:nnn *
\use_none:n *
\use_none:nn *
\use_none:nnn *
\use_none:nnnn *
\use_none:nnnnn *
\use_none:nnnnnn *
\use_none:nnnnnnn = *
\use_none:nnnnnnnn *
\use_none:nnnnnnnnn *

\use_i:nn {(argi)} {(argz)}

These functions absorb two arguments from the input stream. The function \use_i:nn
discards the second argument, and leaves the content of the first argument in the input
stream. \use_ii:nn discards the first argument and leaves the content of the second
argument in the input stream. The category code of these tokens will also be fixed (if
it has not already been by some other absorption). A single expansion is needed for the
functions to take effect.

\use_i:nnn {(argi)} {(arg:)} {(args)}

These functions absorb three arguments from the input stream. The function \use_i:nnn
discards the second and third arguments, and leaves the content of the first argument in
the input stream. \use_ii:nnn and \use_iii:nnn work similarly, leaving the content of
second or third arguments in the input stream, respectively. The category code of these
tokens will also be fixed (if it has not already been by some other absorption). A single
expansion is needed for the functions to take effect.

\use_i:nnnn {(argi)} {(arg:)} {(args)} {(args)}

These functions absorb four arguments from the input stream. The function \use_-
i:nnnn discards the second, third and fourth arguments, and leaves the content of the
first argument in the input stream. \use_ii:nnnn, \use_iii:nnnn and \use_iv:nnnn
work similarly, leaving the content of second, third or fourth arguments in the input
stream, respectively. The category code of these tokens will also be fixed (if it has not
already been by some other absorption). A single expansion is needed for the functions
to take effect.

\use_i_ii:nnn {(argi)} {(arg:)} {(args)}

This functions will absorb three arguments and leave the content of the first and second
in the input stream. The category code of these tokens will also be fixed (if it has not
already been by some other absorption). A single expansion is needed for the functions
to take effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
will result in the input stream containing
abc { def }

i.e. the outer braces will be removed and the third group will be removed.

\use_none:n {(group:)}

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

18

\use:x \use:x {(expandable tokens)}

Updated: 2011-12-31 Fully

expands the (expandable tokens) and inserts the result into the input stream at the

current location. Any hash characters (#) in the argument must be doubled.

4.1

Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q_nil:w * \use_none_delimit_by_q_nil:w (balanced text) \q_nil

\use_none_delimit_by_q_stop

W * \use_none_delimit_by_q_stop:w (balanced text) \gq_stop

\use_none_delimit_by_q_recursion_stop:w * \use_none_delimit_by_q_recursion_stop:w (balanced text)

\q_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.

\use_i_delimit_by_q_nil:nw
\use_i_delimit_by_q_stop:nw

% \use_i_delimit_by_q_nil:nw {(inserted tokens)} (balanced text)
* \q_nil

\use_i_delimit_by_q_recursion_stop:nw * \use_i_delimit_by_q_stop:nw {(inserted tokens)} (balanced

text) \g_stop
\use_i_delimit_by_q_recursion_stop:nw {(inserted tokens)}
(balanced text) \g_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

5

Predicates and conditionals

I¥TEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending

on its result, either the code supplied as the (true code) or the (false code). These
arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abcl} {(true code)} {(false code)}

a function that will turn the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carry out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it will usually be accompanied by T and F functions as well. These are
provided for convenience when the branch only needs to go a single way. Package
writers are free to choose which types to define but the kernel definitions will always
provide all three versions.

Important to note is that these branching conditionals with (frue code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they will be accompanied by a “predicate” for the same test as described
below.

19

Predicates “Predicates” are functions that return a special type of boolean value which
can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {(false code)}

For each predicate defined, a “branching conditional” will also exist that behaves
like a conditional described above.

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and BTEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

\c_true_bool Constants that represent true and false, respectively. Used to implement predicates.
\c_false_bool

5.1 Tests on control sequences

\cs_if_eq_p:NN x \cs_if_eq_p:NN {(cs1)} {(cs2)}
\cs_if_eq:NNTF x \cs_if_eq:NNTF {(cs1)} {(cs2)} {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true if they are the
same, i.e. if they have exactly the same definition when examined with \cs_show:N.

\cs_if_exist_p:N x \cs_if_exist_p:N (control sequence)
:c % \cs_if_exist:NTF (control sequence) {(true code)} {(false code)}
\cs_if_exist:NTF x T . .
: ests whether the (control sequence) is currently defined (whether as a function or another
roIF * control sequence type). Any valid definition of (control sequence) will evaluate as true.
\cs_if_free_p:N x \cs_if_free_p:N (control sequence)
:c % \cs_if_free:NTF (control sequence) {{true code)} {(false code)}
\cs_if_free:NTF x T . . .
Corp . Tests whether the (control sequence) is currently free to be defined. This test will be

false if the (control sequence) currently exists (as defined by \cs_if_exist:N).

20

\if_true: *
\if_false: *
\else: *
\fi: *
\reverse_if:N *

\if _meaning:w *

\if:w *
\if_charcode:w
\if_catcode:w *

*

*

\if_cs_exist:N
\if_cs_exist:w *

\if_mode_horizontal:
\if _mode_vertical:
\if_mode_math:
\if_mode_inner:

5.2 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions will
often contain a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if _int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We will prefix primitive conditionals with \if_.

\if_true: (true code) \else: (false code) \fi:
\if_false: (true code) \else: (false code) \fi:
\reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false code).
\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. The function \or: is documented in 13int and used in
case switches.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is e-TEX’s \unless

\if_meaning:w (argi) (arge) (true code) \else: (false code) \fi:

\if_meaning:w executes (true code) when (arg;) and (arge) are the same, otherwise it
executes (false code). (arg;) and (arge) could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TEXhackers note: This is TEX’s \ifx.

\if:w (tokeni) (tokenz) (true code) \else: (false code) \fi:
\if _catcode:w (token;) (tokens) (true code) \else: (false code) \fi:

These conditionals will expand any following tokens until two unexpandable tokens are
left. If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if_catcode:w tests if the category codes of the two tokens are the same whereas \if :w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if :w.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:
\if _cs_exist:w (tokens) \cs_end: (true code) \else: (false code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

\if_mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Sim-
ilar for the other functions.

21

__chk_if_exist_cs:N

__chk_if_ free_cs:N

__chk_if_exist_var:N

__chk_log:x

__chk_suspend_log:
__chk_resume_log:

__cs_count_signature:N *
Cok
__cs_split_function:NN «

6 Internal kernel functions

__chk_if_exist_cs:N (cs)

This function checks that (cs) exists according to the criteria for \cs_if_exist_p:N, and
if not raises a kernel-level error.

__chk_if_free_cs:N (cs)

This function checks that (cs) is free according to the criteria for \cs_if_free_p:N, and
if not raises a kernel-level error.

__chk_if_exist_var:N (var)

This function checks that (var) is defined according to the criteria for \cs_if_free_p:N,
and if not raises a kernel-level error. This function is only created if the package option
check-declarations is active.

__chk_log:x {(message text)}

If the log-functions option is active, this function writes the (message text) to the log
file using \iow_log:x. Otherwise, the (message text) is ignored using \use_none:n.

__chk_suspend_log: ... __chk_log:x ... __chk_resume_log:

Any __chk_log:x command between __chk_suspend_log: and __chk_resume_log:
is suppressed. These commands can be nested.

\

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (number) of tokens in the (signature) is then left in the input
stream. If there was no (signature) then the result is the marker value —1.

cs_count_signature:N (function)

\

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). This information is then placed in the input stream after the
(processor) function in three parts: the (name), the (signature) and a logic token indi-
cating if a colon was found (to differentiate variables from function names). The (name)
will not include the escape character, and both the (name) and (signature) are made
up of tokens with category code 12 (other). The (processor) should be a function with
argument specification :nnN (plus any trailing arguments needed).

cs_split_function:NN (function) (processor)

__cs_get_function_name:N % __cs_get_function_name:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (name) is then left in the input stream without the escape
character present made up of tokens with category code 12 (other).

__cs_get_function_signature:N % __cs_get_function_signature:N <function>

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (signature) is then left in the input stream made up of tokens
with category code 12 (other).

22

__cs_tmp:w

__kernel_register_show:N
]

__kernel_register_log:N
:c

Updated: 2015-08-03

__prg_case_end:nw *

Function used for various short-term usages, for instance defining functions whose defini-
tion involves tokens which are hard to insert normally (spaces, characters with category
other).

__kernel _register_show:N (register)

Used to show the contents of a TEX register at the terminal, formatted such that internal
parts of the mechanism are not visible.

__kernel _register_log:N (register)

Used to write the contents of a TEX register to the log file in a form similar to __-
kernel_register_show:N.

__prg_case_end:nw {(code)} (tokens) \q_mark {(true code)} \q_mark {(false code)}
\q_stop

Used to terminate case statements (\int_case:nnTF, etc.) by removing trailing (tokens)
and the end marker \q_stop, inserting the (code) for the successful case (if one is found)
and either the true code or false code for the over all outcome, as appropriate.

23

Part V
The 13expan package
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the I¥TEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions from the \exp_ mod-
ule. They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo will expand the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
\1_tmpa_tl

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_generate_variant:Nn \seq_gpush:Nn { No }
results in the definition of \seq_gpush:No
\cs_new:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is uncritical as the \cs_generate_variant:Nn
function will only create new definitions if there is not already one available. Therefore
adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

24

\cs_generate_variant:Nn

Updated: 2015-08-06

2 Methods for defining variants

\cs_generate_variant:Nn (parent control sequence) {(variant argument specifiers)}

This function is used to define argument-specifier variants of the (parent control sequence)
for I¥TEX3 code-level macros. The (parent control sequence) is first separated into the
(base name) and (original argument specifier). The comma-separated list of (variant
argument specifiers) is then used to define variants of the (original argument specifier)
where these are not already defined. For each (variant) given, a function is created which
will expand its arguments as detailed and pass them to the (parent control sequence). So
for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { ¢ }

will create a new function \foo:cn which will expand its first argument into a control
sequence name and pass the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

would generate the functions \foo:NV and \foo:cV in the same way. The \cs_-
generate_variant:Nn function can only be applied if the (parent control sequence) is
already defined. Only n and N arguments can be changed to other types. If the (parent
control sequence) is protected or if the (variant) involves x arguments, then the (variant
control sequence) will also be protected. The (variant) is created globally, as is any
\exp_args:N(variant) function needed to carry out the expansion.

3 Introducing the variants

The available internal functions for argument expansion come in two flavours, some of
them are faster then others. Therefore (when speed is important) it is usually best to
follow the following guidelines when defining new functions that are supposed to come
with variant forms:

e Arguments that might need expansion should come first in the list of arguments to
make processing faster.

o Arguments that should consist of single tokens should come first.

o Arguments that need full expansion (i.e., are denoted with x) should be avoided if
possible as they can not be processed expandably, i.e., functions of this type will
not work correctly in arguments that are themselves subject to x expansion.

e In general, unless in the last position, multi-token arguments n, £, and o will need
special processing when more than one argument is being expanded. This special
processing is not fast. Therefore it is best to use the optimized functions, namely
those that contain only N, ¢, V, and v, and, in the last position, o, f, with possible
trailing N or n, which are not expanded.

The V type returns the value of a register, which can be one of t1, int, skip, dim,
toks, or built-in TEX registers. The v type is the same except it first creates a control
sequence out of its argument before returning the value.

25

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only
when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The £ type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and £-
expansion provides an alternative that expands as much as can be done in such contexts.
For instance, say that we want to evaluate the integer expression 3+4 and pass the result
7 as an argument to an expandable function \example:n. For this, one should define a
variant using \cs_generate_variant:Nn \example:n { f }, then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }

will result in the call \example:n { 3 , \int_eval:n { 3 + 4 } } while using \example:x
instead results in \example:n { 3 , 7 } at the cost of being protected. If you use this
type of expansion in conditional processing then you should stick to using TF type func-
tions only as it does not try to finish any \if... \fi: itself!

If is important to note that both f- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the emphfirst non-expandable token. This
means for example that both

\tl_set:No \1_tmpa_tl { { \g_tmpb_tl } }
and
\tl_set:Nf \1_tmpa_tl { { \g_tmpb_tl } }

leave \g_tmpb_t1 unchanged: { is the first token in the argument and is non-expandable.

4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

26

\exp_args:No *

\exp_args:Nc *
\exp_args:cc *

\exp_args:NV «*

\exp_args:Nv *

\exp_args:Nf

\exp_args:Nx

\exp_args:No (function) {(tokens)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded once, and the result is inserted in braces into the input stream af-
ter reinsertion of the (function). Thus the (function) may take more than one argument:
all others will be left unchanged.

\exp_args:Nc (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. (An internal error will occur if such a conversion is not possible). The
result is inserted into the input stream after reinsertion of the (function). Thus the
(function) may take more than one argument: all others will be left unchanged.

The :cc variant constructs the (function) name in the same manner as described for
the (tokens).

\exp_args:NV (function) (variable)

This function absorbs two arguments (the names of the (function) and the (variable)).
The content of the (variable) are recovered and placed inside braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one argument:
all others will be left unchanged.

\exp_args:Nv (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. (An internal error will occur if such a conversion is not possible). This
control sequence should be the name of a (variable). The content of the (variable) are re-
covered and placed inside braces into the input stream after reinsertion of the (function).
Thus the {function) may take more than one argument: all others will be left unchanged.

\exp_args:Nf (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are fully expanded until the first non-expandable token or space is found, and
the result is inserted in braces into the input stream after reinsertion of the (function).
Thus the (function) may take more than one argument: all others will be left unchanged.

\exp_args:Nx (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and ex-
haustively expands the (tokens) second. The result is inserted in braces into the input
stream after reinsertion of the (function). Thus the (function) may take more than one
argument: all others will be left unchanged.

27

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNo
NNc
NNv
NNV
NN
Nco
Ncf
Ncc
NVV

b S S S S S S I 3

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

Nno
NnV
Nnf
Noo
Nof
Noc
Nff
Nfo
Nnc

b S S R R e I

Updated: 20

12-01-14

\exp_args:NNx
\exp_args:Nnx
\exp_args:Ncx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNo
NNNV
Nccc
NcNc
NcNo
Ncco

L D S S

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNoo
NNno
Nnno
Nnnc
Nooo

* ok o A F

5 Manipulating two arguments

\exp_args:NNc (tokeni) (tokens) {(tokens)}

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Noo (token) {(tokensi)} {(tokenssz)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions need special (slower) processing.

\exp_args:NNx (tokeni) (tokens) {(tokens)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable.

6 Manipulating three arguments

\exp_args:NNNo (tokeni) (token:) (tokens) {(tokens)}

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

\exp_args:NNoo (token:) (tokens) {(tokens)} {(tokens)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc. These
functions need special (slower) processing.

28

\exp_args:NNNx
\exp_args:NNnx
\exp_args:NNox
\exp_args:Nnnx
\exp_args:Nnox
\exp_args:Noox
\exp_args:Ncnx
\exp_args:Nccx

New: 2015-08-12

\exp_args:NNnx (token:) (tokenz) {(tokensi)} {(tokensi)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

7 Unbraced expansion

\exp_last_unbraced:NV

: (N£|No|Nv)

\exp_last_unbraced:Nco

: (NcV|NNV|NNo)

\exp_last_unbraced:Nno

:(Noo|Nfo)
\exp_last_unbraced:NNNV

:NNNo
\exp_last_unbraced:NnNo

\exp_last_unbraced:Nno (token) (tokensi) (tokenss)

* Ok o b X ok X o X

Updated: 2012-02-12

\exp_last_unbraced:Nx

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, and :Nfo variants need
special (slower) processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \foo_bar:w { } \g_stop leads to an infinite loop, as the quark is f-
expanded.

\exp_last_unbraced:Nx (function) {(tokens)}

This functions fully expands the (tokens) and leaves the result in the input stream after
reinsertion of (function). This function is not expandable.

\exp_last_two_unbraced

:Noo * \exp_last_two_unbraced:Noo (token) (tokens:) {(tokensz)}

This function absorbs three arguments and expand the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

29

\exp_after:wN x

\exp_not:N *

\exp_not:c *

\exp_not:n *

\exp_not:V *

\exp_not:v *

\exp_after:wN (tokem) (tokens)

Carries out a single expansion of (tokens) (which may consume arguments) prior to
the expansion of (token;). If (tokens) is a TEX primitive, it will be executed rather
than expanded, while if (tokeny) has not expansion (for example, if it is a character)
then it will be left unchanged. It is important to notice that (token;) may be any single
token, including group-opening and -closing tokens ({ or } assuming normal TEX category
codes). Unless specifically required, expansion should be carried out using an appropriate
argument specifier variant or the appropriate \exp_arg:N function.

TEXhackers note: This is the TEX primitive \expandafter renamed.

8 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves will not appear after the expansion has completed.

\exp_not:N (token)
Prevents expansion of the (token) in a context where it would otherwise be expanded,

for example an x-type argument.

TEXhackers note: This is the TEX \noexpand primitive.

\exp_not:c {(tokens)}

Expands the (tokens) until only unexpandable content remains, and then converts this
into a control sequence. Further expansion of this control sequence is then inhibited.

\exp_not:n {(tokens)}
Prevents expansion of the (tokens) in a context where they would otherwise be expanded,

for example an x-type argument.

TgXhackers note: This is the e-TEX \unexpanded primitive. Hence its argument must
be surrounded by braces.

\exp_not:V (variable)

Recovers the content of the (variable), then prevents expansion of this material in a
context where it would otherwise be expanded, for example an x-type argument.

\exp_not:v {(tokens)}

Expands the (tokens) until only unexpandable content remains, and then converts this
into a control sequence (which should be a (variable) name). The content of the (variable)
is recovered, and further expansion is prevented in a context where it would otherwise
be expanded, for example an x-type argument.

30

\exp_not:o x \exp_not:o {(tokens)}

Expands the (tokens) once, then prevents any further expansion in a context where they
would otherwise be expanded, for example an x-type argument.

\exp_not:f * \exp_not:f {(tokens)}

Expands (tokens) fully until the first unexpandable token is found. Expansion then
stops, and the result of the expansion (including any tokens which were not expanded)
is protected from further expansion.

\exp_stop_f: x \foo_bar:f { (tokens) \exp_stop_f: (more tokens) }

Updated: 2011-06-03 This function terminates an f-type expansion. Thus if a function \foo_bar:f starts an

~ f-type expansion and all of (tokens) are expandable \exp_stop_f: will terminate the
expansion of tokens even if (more tokens) are also expandable. The function itself is an
implicit space token. Inside an x-type expansion, it will retain its form, but when typeset
it produces the underlying space ().

9 Controlled expansion

The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to
calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. You will find
these commands used throughout the kernel code, but we hope that outside the kernel
there will be little need to resort to them. Instead the argument manipulation methods
document above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to
expand several tokens in one go. The next set of commands provide this functionality.
Be aware that it is absolutely required that the programmer has full control over the
tokens to be expanded, i.e., it is not possible to use these functions to expand unknown
input as part of (expandable-tokens) as that will break badly if unexpandable tokens are
encountered in that place!

\exp:w * \exp:w (expandable-tokens) \exp_end:

w Expands (expandable-tokens) until reaching \exp_end: at which point expansion stops.

New: 2015-08-23 T'he full expansion of (expandable-tokens) has to be empty. If any token in (ezpandable-tokens)
or any token generated by expanding the tokens therein is not expandable the expansion
will end prematurely and as a result \exp_end: will be misinterpreted later on.>

In typical use cases the \exp_end: will be hidden somewhere in the replacement text
of {expandable-tokens) rather than being on the same expansion level than \exp:w, e.g.,
you may see code such as

\exp:w \@O_case:NnTF #1 {#2} { } { }

where somewhere during the expansion of \@@_case:NnTF the \exp_end: gets generated.

31

\exp:w *
\exp_end_continue_f:w *

New: 2015-08-23

\exp:w *
\exp_end_continue_f:nw *

New: 2015-08-23

\1__exp_internal_tl

\exp:w (expandable-tokens) \exp_end_continue_f:w (further-tokens)

Expands (ezpandable-tokens) until reaching \exp_end_continue_f :w at which point ex-
pansion continues as an f-type expansion expanding (further-tokens) until an unexpand-
able token is encountered (or the f-type expansion is explicitly terminated by \exp_-
stop_£f:). As with all f-type expansions a space ending the expansion will get removed.

The full expansion of (expandable-tokens) has to be empty. If any token in
(expandable-tokens) or any token generated by expanding the tokens therein is not ex-
pandable the expansion will end prematurely and as a result \exp_end_continue_f:w
will be misinterpreted later on.?

In typical use cases {expandable-tokens) contains no tokens at all, e.g., you will see
code such as

\exp_after:wN { \exp:w \exp_end_continue_f:w #2 }

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical
reasons this has to happen using two tokens (if they would be hidden inside another
command \exp_after:wN would only expand the command but not trigger any additional
f-expansion).

You might wonder why there are two different approaches available, after all the
effect of

\exp:w (expandable-tokens) \exp_end:
can be alternatively achieved through an f-type expansion by using \exp_stop_f:, i.e.
\exp:w \exp_end_continue_f:w (expandable-tokens) \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and
less expansion internally) so in places where such performance really matters and where
we want to explicitly stop the expansion at a defined point the first form is preferable.

\exp:w (expandable-tokens) \exp_end_continue_f:nw (further-tokens)

The difference to \exp_end_continue_f :w is that we first we pick up an argument which
is then returned to the input stream. If (further-tokens) starts with a brace group then
the braces are removed. If on the other hand it starts with space tokens then these space
tokens are removed while searching for the argument. Thus such space tokens will not
terminate the f-type expansion.

10 Internal functions and variables

The \exp_ module has its private variables to temporarily store results of the argument
expansion. This is done to avoid interference with other functions using temporary
variables.

2Due to the implementation you might get the character in position 0 in the current font (typically
“¢”) in the output without any error message!
3In this particular case you may get a character into the output as well as an error message.

32

PP A g G 4
S <d Mmoo ow =B

\cs_set:Npn \exp_args:Ncof { \::c \::o \::f \::: }

Internal forms for the base expansion types. These names do not conform to the general
XTREX3 approach as this makes them more readily visible in the log and so forth.

33

\tl_new:N

:C

\tl_const:Nn
: (Nx|cnlcx)

\tl_clear:N

:c
\tl_gclear:N
:c

Part VI
The 13tl package
Token lists

TEX works with tokens, and ITEX3 therefore provides a number of functions to deal with
lists of tokens. Token lists may be present directly in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored in a so-called “token list variable”, which have the suffix t1: a token
list variable can also be used as the argument to a function, for example

\foo:N \1_some_tl

In both cases, functions are available to test an manipulate the lists of tokens, and these
have the module prefix t1. In many cases, function which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”,
or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single
non-space token or a brace group, with optional leading explicit space characters (each
item is thus itself a token list). A token is either a normal N argument, or , {, or }
(assuming normal TEX category codes). Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, 1 and d), but thirteen tokens ({, H, e, 1, 1, o, },), w,
o, r, 1 and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

1 Creating and initialising token list variables

\tl_new:N (tl var)

Creates a new (tl var) or raises an error if the name is already taken. The declaration is
global. The (¢l var) will initially be empty.

\tl_const:Nn (t1 var) {(token list)}

Creates a new constant (¢l var) or raises an error if the name is already taken. The value
of the (¢l var) will be set globally to the (token list).

\tl_clear:N (tl var)

Clears all entries from the (t var).

34

\tl_clear_new:N

e
\tl_gclear_new:N
ic

\tl_set_eq:NN
:(cN|N¢|ec)
\tl_gset_eq:NN
: (cN|Nclcc)

\t1l_concat:NNN
iccc
\tl_gconcat :NNN
iccc

New: 2012-05-18

\tl_if_exist_p:N «*
ic oK
\tl_if_exist:NTF *
:cTF *

New: 2012-03-03

\tl_clear_new:N (tl var)

Ensures that the (¢l var) exists globally by applying \t1_new:N if necessary, then applies
\tl_(g)clear:N to leave the (¢ var) empty.

\tl_set_eq:NN (tl1 var;) (tl vars)

Sets the content of (¢l var;) equal to that of (tl vars).

\tl_concat:NNN (tl1 vari) (tl vars) (tl vars)

Concatenates the content of (tl vary) and (¢l vars) together and saves the result in
(tl vary). The (#l vary) will be placed at the left side of the new token list.

\tl_if_exist_p:N (tl var)
\tl_if_exist:NTF (tl var) {(true code)} {(false code)}

Tests whether the (tl var) is currently defined. This does not check that the (¢ var)
really is a token list variable.

2 Adding data to token list variables

\tl_set:Nn

\tl_set:Nn (tl var) {(tokens)}

: (NV|Nv|No|Nf |Nx|cn|cV|cv|co|cf|cx)

\tl_gset:Nn

: (NV|Nv|No|Nf|Nx|cn|cV|cv|co|cE|cx)

Sets (tl var) to contain (tokens), removing any previous content from the variable.

\tl_put_left:Nn

\tl_put_left:Nn (tl1 var) {(tokens)}

: (NV|No|Nx|cn|cV|co|cx)

\tl_gput_left:Nn

: (NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the left side of the current content of (¢ var).

\tl_put_right:Nn

\tl_put_right:Nn (tl1 var) {(tokens)}

: (NV|No|Nx|cn|cV|co|cx)

\tl_gput_right:Nn

: (NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the right side of the current content of (¢ var).

35

\tl_replace_once:Nnn

:cnn
\tl_greplace_once:Nnn
:cnn

Updated: 2011-08-11

\tl_replace_all:Nnn

:cnn
\tl_greplace_all:Nnn
:cnn

Updated: 2011-08-11

\tl_remove_once:Nn

icn
\tl_gremove_once:Nn
:cn

Updated: 2011-08-11

\tl_remove_all:Nn

:cn
\tl_gremove_all:Nn
:cn

Updated: 2011-08-11

3 Modifying token list variables

\tl_replace_once:Nnn (tl1 var) {(old tokens)} {(new tokens)}

Replaces the first (leftmost) occurrence of (old tokens) in the (tl var) with (new tokens).
(Old tokens) cannot contain {, } or # (more precisely, explicit character tokens with
category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_replace_all:Nnn (tl var) {(old tokens)} {(new tokens)}

Replaces all occurrences of (old tokens) in the (] var) with (new tokens). (Old tokens)
cannot contain {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function
operates from left to right, the pattern (old tokens) may remain after the replacement
(see \t1l_remove_all:Nn for an example).

\tl_remove_once:Nn (t1 var) {(tokens)}

Removes the first (leftmost) occurrence of (tokens) from the (¢ var). (Tokens) cannot
contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_remove_all:Nn (tl1 var) {(tokens)}

Removes all occurrences of (tokens) from the (¢ var). (Tokens) cannot contain {, } or #
(more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-
group), and tokens with category code 6). As this function operates from left to right,
the pattern (tokens) may remain after the removal, for instance,

\tl_set:Nn \1_tmpa_t1l {abbccd} \tl_remove_all:Nn \1_tmpa_t1l {bc}

will result in \1_tmpa_t1 containing abcd.

4 Reassigning token list category codes

These functions allow the rescanning of tokens: re-apply TEX'’s tokenization process to
apply category codes different from those in force when the tokens were absorbed. Whilst
this functionality is supported, it is often preferable to find alternative approaches to
achieving outcomes rather than rescanning tokens (for example construction of token
lists token-by-token with intervening category code changes).

36

\tl_set_rescan:Nnn

\tl_set_rescan:Nnn (t1 var) {(setup)} {(tokens)}

: (Nno|Nnx|cnn|cno|cnx)

\tl_gset_rescan:Nnn

: (Nno|Nnx|cnn|cno|cnx)

Updated: 2015-08-11

\tl_rescan:nn

Updated: 2015-08-11

\tl_if_blank_p:n
:(V]o)

\tl_if_blank:nTF
:(V|o)TF

* ok A

Sets (tl var) to contain (tokens), applying the category code régime specified in the (setup)
before carrying out the assignment. (Category codes applied to tokens not explicitly
covered by the (setup) will be those in force at the point of use of \t1_set_rescan:Nnn.)
This allows the (# var) to contain material with category codes other than those that
apply when (tokens) are absorbed. The (setup) is run within a group and may contain
any valid input, although only changes in category codes are relevant. See also \tl_-
rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \tl_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file. Only the case of a single line is supported in LuaTgX because
of a bug in this engine.

\tl_rescan:nn {(setup)} {(tokens)}

Rescans (tokens) applying the category code régime specified in the (setup), and leaves
the resulting tokens in the input stream. (Category codes applied to tokens not explicitly
covered by the (setup) will be those in force at the point of use of \t1_rescan:nn.) The
(setup) is run within a group and may contain any valid input, although only changes in
category codes are relevant. See also \t1l_set_rescan:Nnn, which is more robust than
using \t1l_set:Nn in the (tokens) argument of \t1_rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \t1l_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file. Only the case of a single line is supported in LuaTEX because
of a bug in this engine.

5 Token list conditionals

\tl_if_blank_p:n {(token list)}
\tl_if_blank:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) consists only of blank spaces (i.e. contains no item). The test is
true if (token list) is zero or more explicit space characters (explicit tokens with character
code 32 and category code 10), and is false otherwise.

37

\tl_if_empty_p:N
H
\tl_if_empty:NTF
:cTF

* o ot

\tl_if_empty_p:n
:(V]o)

\tl_if_empty:nTF
:(V|o)TF

*
*
*
*

New: 2012-05-24
Updated: 2012-06-05

\tl_if_eq_p:NN
:(Nc|eNlce)

\tl_if_eq:NNTF
: (Nc|cN|ce)TF

b S S

\tl_if_eq:nnTF

\tl_if_in:NnTF
:cnTF

\tl_if_in:nnTF
:(Vn|on|no)TF

\tl_if_single_p:N
e
\tl_if_single:NTF

*
*
*

:cTF %

Updated: 2011-08-13

\tl_if_empty_p:N (t1 var)
\tl_if_empty:NTF (tl var) {(true code)} {(false code)}

Tests if the (token list variable) is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:n {(token list)}
\tl_if_empty:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) is entirely empty (i.e. contains no tokens at all).

\tl_if_eq_p:NN (tl1 var;) (tl varp)

\tl_if_eq:NNTF (t1 vari) (tl vars) {(true code)} {(false code)}

Compares the content of two (token list variables) and is logically true if the two contain
the same list of tokens (i.e. identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \1_tmpa_tl { abc }
\tl_set:Nx \1_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NNTF \1_tmpa_tl \1_tmpb_tl { true } { false }

yields false.

\tl_if_eq:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token list;) and (token listy) contain the same list of tokens, both in respect of
character codes and category codes.

\tl_if_in:NnTF (t1 var) {(token list)} {(true code)} {(false code)}

Tests if the (token list) is found in the content of the (¢l var). The (token list) cannot
contain the tokens {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token listy) is found inside (token list;). The (token listy) cannot contain the
tokens {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_if_single_p:N (tl var)

\tl_if_single:NTF (t1 var) {(true code)} {(false code)}

Tests if the content of the (¢ var) consists of a single item, i.e. is a single normal token
(neither an explicit space character nor a begin-group character) or a single brace group,
surrounded by optional spaces on both sides. In other words, such a token list has token
count 1 according to \tl_count:N.

38

\tl_if_single_p:n *
\tl_if_single:nTF *

Updated: 2011-08-13

\tl_case:Nn *
:cn K
\tl_case:NnTF *
:enTF %

New: 2013-07-24

o

\t1l_map_function:NN 3¢
:cN %

Updated: 2012-06-29

\tl_map_function:nN 3

Updated: 2012-06-29

\tl_map_inline:Nn
:cn

Updated: 2012-06-29

\tl_map_inline:nn

Updated: 2012-06-29

\tl_if_single_p:n {(token list)}

\tl_if_single:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) has exactly one item, i.e. is a single normal token (neither an
explicit space character nor a begin-group character) or a single brace group, surrounded
by optional spaces on both sides. In other words, such a token list has token count 1
according to \t1l_count:n.

\tl_case:NnTF (test token list variable)
{
(token list variable casei) {(code casei)}
(token list variable cases) {(code casez)}

(token list variable case,) {{code case,)}

}
{(true code)}
{(false code)}

This function compares the (test token list variable) in turn with each of the (token
list variable cases). If the two are equal (as described for \t1_if_eq:NNTF) then the
associated (code) is left in the input stream. If any of the cases are matched, the (true
code) is also inserted into the input stream (after the code for the appropriate case),
while if none match then the (false code) is inserted. The function \tl_case:Nn, which
does nothing if there is no match, is also available.

6 Mapping to token lists

\tl_map_function:NN (tl1 var) (function)

Applies (function) to every (item) in the (tl var). The (function) will receive one ar-
gument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:nN.

\tl_map_function:nN (token list) (function)

Applies (function) to every (item) in the (token list), The (function) will receive one
argument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:NN.

\tl_map_inline:Nn (t1 var) {(inline function)}

Applies the (inline function) to every (item) stored within the (¢l var). The (inline
function) should consist of code which will receive the (item) as #1. One in line mapping
can be nested inside another. See also \t1_map_function:NN.

\tl_map_inline:nn (token list) {(inline function)}

Applies the (inline function) to every (item) stored within the (token list). The (inline
function) should consist of code which will receive the (item) as #1. One in line mapping
can be nested inside another. See also \t1_map_function:nN.

39

\tl_map_variable:NNn \tl_map_variable:NNn (tl var) (variable) {(function)}

clin Applies the (function) to every (item) stored within the (tl var). The (function) should

Updated: 2012-06-29 consist of code which will receive the (item) stored in the (variable). One variable map-
ping can be nested inside another. See also \t1_map_inline:Nn.

\tl_map_variable:nNn \tl_map_variable:nNn (token list) (variable) {(function)}

Updated: 2012-06-29 Applies the (function) to every (item) stored within the (token list). The (function)
should consist of code which will receive the (item) stored in the (variable). One variable
mapping can be nested inside another. See also \t1l_map_inline:nn.

\tl_map_break: 3 \tl_map_break:

Updated: 2012-06-29 Used to terminate a \tl_map_. .. function before all entries in the (token list variable)
have been processed. This will normally take place within a conditional statement, for
example

\tl_map_inline:Nn \1l_my_tl
{
\str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
% Do something useful

}

See also \t1_map_break:n. Use outside of a \t1_map_... scenario will lead to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the (tokens) are inserted into the input stream.
This will depend on the design of the mapping function.

\tl_map_break:n ¥ \tl_map_break:n {(tokens)}

Updated: 2012-06-29 Used to terminate a \t1_map_... function before all entries in the (token list variable)
have been processed, inserting the (tokens) after the mapping has ended. This will
normally take place within a conditional statement, for example

\tl_map_inline:Nn \1l_my_tl
{
\str_if_eq:nnT { #1 } { bingo }
{ \tl_map_break:n { <tokens> } }
% Do something useful

}
Use outside of a \t1_map_. .. scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the (tokens) are inserted into the input stream.
This will depend on the design of the mapping function.

40

\tl_to_str:n *
V%

\tl_to_str:N =%
ic %

\tl_use:N x

ic %
\tl_count:n *
:(V|o) *

New: 2012-05-13

7 Using token lists

\tl_to_str:n {(token list)}

Converts the (token list) to a (string), leaving the resulting character tokens in the input
stream. A (string) is a series of tokens with category code 12 (other) with the exception
of spaces, which retain category code 10 (space).

TgEXhackers note: Converting a (token list) to a (string) yields a concatenation of the
string representations of every token in the (token list). The string representation of a control
sequence is

o an escape character, whose character code is given by the internal parameter \escapechar,
absent if the \escapechar is negative or greater than the largest character code;

o the control sequence name, as defined by \cs_to_str:N;

e a space, unless the control sequence name is a single character whose category at the time
of expansion of \t1_to_str:n is not “letter”.

The string representation of an explicit character token is that character, doubled in the case
of (explicit) macro parameter characters (normally #). In particular, the string representation
of a token list may depend on the category codes in effect when it is evaluated, and the value
of the \escapechar: for instance \tl_to_str:n {\a} normally produces the three character
“backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the
escape character is negative and a is currently not a letter.

\tl_to_str:N (tl1 var)

Converts the content of the (¢l var) into a series of characters with category code 12
(other) with the exception of spaces, which retain category code 10 (space). This (string)
is then left in the input stream. For low-level details, see the notes given for \t1l_to_-
str:n.

\tl_use:N (tl var)

Recovers the content of a (tl var) and places it directly in the input stream. An error
will be raised if the variable does not exist or if it is invalid. Note that it is possible to
use a (tl var) directly without an accessor function.

8 Working with the content of token lists

\tl_count:n {(tokens)}

Counts the number of (items) in (tokens) and leaves this information in the input stream.
Unbraced tokens count as one element as do each token group ({...2}). This process will
ignore any unprotected spaces within (tokens). See also \tl_count:N. This function
requires three expansions, giving an (integer denotation,).

41

\tl_count:N *
icox

New: 2012-05-13

\tl_reverse:n *
:(V|o) *

Updated: 2012-01-08

\tl_reverse:N

e
\tl_greverse:N
:c

Updated: 2012-01-08

\tl_reverse_items:n *

New: 2012-01-08

\tl_trim_spaces:n *

New: 2011-07-09
Updated: 2012-06-25

\tl_trim_spaces:N

:c
\tl_gtrim_spaces:N
e

New: 2011-07-09

\tl_count:N (tl1 var)

Counts the number of token groups in the (¢l var) and leaves this information in the
input stream. Unbraced tokens count as one element as do each token group ({...}).
This process will ignore any unprotected spaces within the (¢ var). See also \t1_count:n.
This function requires three expansions, giving an (integer denotation).

\tl_reverse:n {(token list)}

Reverses the order of the (items) in the (token list), so that (itemy)(items) (items)
... (itemy,) becomes (item,,). .. (itemg){items){item;). This process will preserve unpro-
tected space within the (token list). Tokens are not reversed within braced token groups,
which keep their outer set of braces. In situations where performance is important,
consider \tl_reverse_items:n. See also \tl_reverse:N.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list will not expand further when appearing in an x-type argument expansion.

\tl_reverse:N (tl1 var)

Reverses the order of the (items) stored in (tl wvar), so that (item){itemz)(items)
... (itemy,) becomes (item,,). .. (items)(items)(item;). This process will preserve unpro-
tected spaces within the (token list variable). Braced token groups are copied without
reversing the order of tokens, but keep the outer set of braces. See also \t1_reverse:n,
and, for improved performance, \t1l_reverse_items:n.

\tl_reverse_items:n {(token list)}

Reverses the order of the (items) stored in (tl var), so that {(item) (itemsa) I (items)}
... {(item,)} becomes {(item,)} ... {(items)}{(itemo)}{(item1)}. This process will
remove any unprotected space within the (token list). Braced token groups are copied
without reversing the order of tokens, and keep the outer set of braces. Items which are
initially not braced are copied with braces in the result. In cases where preserving spaces
is important, consider the slower function \t1l_reverse:n.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list will not expand further when appearing in an x-type argument expansion.

\tl_trim_spaces:n {(token list)}

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and leaves the result in the input
stream.

TgXhackers note: The result is returned within \unexpanded, which means that the
token list will not expand further when appearing in an x-type argument expansion.

\tl_trim_spaces:N (tl1 var)

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the content of the (¢l var). Note that this therefore
resets the content of the variable.

42

\tl_sort:Nn

icn
\tl_gsort:Nn
icn

New: 2017-02-06

\tl_sort:nN *

New: 2017-02-06

\tl_head:N *
\tl_head:n *
((Vlv|E) *

Updated: 2012-09-09

\tl_sort:Nn (tl1 var) {(comparison code)}

Sorts the items in the (¢ var) according to the (comparison code), and assigns the result
to (¢l var). The details of sorting comparison are described in Section 1.

\tl_sort:nN {(token list)} (conditional)

Sorts the items in the (token list), using the (conditional) to compare items, and leaves
the result in the input stream. The (conditional) should have signature :nnTF, and return
true if the two items being compared should be left in the same order, and false if the
items should be swapped. The details of sorting comparison are described in Section 1.

TEXhackers note: The result is returned within \exp_not :n, which means that the token
list will not expand further when appearing in an x-type argument expansion.

9 The first token from a token list

Functions which deal with either only the very first item (balanced text or single normal
token) in a token list, or the remaining tokens.

\tl_head:n {(token list)}

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded; for example

\tl_head:n { abc }
and
\tl_head:n { ~ abc }

will both leave a in the input stream. If the “head” is a brace group, rather than a single
token, the braces will be removed, and so

\tl_head:n { ~ { ~ab } c }

yields ab. A blank (token list) (see \t1_if_blank:nTF) will result in \t1_head:n leaving
nothing in the input stream.

TgXhackers note: The result is returned within \exp_not:n, which means that the token
list will not expand further when appearing in an x-type argument expansion.

43

\tl_head:w x \tl_head:w (token list) { } \g_stop

Leaves in the input stream the first (item) in the (token list), discarding the rest of
the (token list). All leading explicit space characters (explicit tokens with character
code 32 and category code 10) are discarded. A blank (token list) (which consists only
of space characters) will result in a low-level TEX error, which may be avoided by the
inclusion of an empty group in the input (as shown), without the need for an explicit
test. Alternatively, \t1_if_blank:nF may be used to avoid using the function with a
“blank” argument. This function requires only a single expansion, and thus is suitable
for use within an o-type expansion. In general, \t1_head:n should be preferred if the
number of expansions is not critical.

\tl_tail:N * \tl_tail:n {(token list)}
\tl_tail:n *

(Vlv]E) « Discards all leading explicit space characters (explicit tokens with character code 32 and

category code 10) and the first (item) in the (token list), and leaves the remaining tokens
Updated: 2012-09-01 ip the input stream. Thus for example

\tl_tail:n { a ~ {bc} 4 }
and
\tl_tail:n { ~ a ~ {bc} d }

will both leave ,{bc}d in the input stream. A blank (token list) (see \t1_if_blank:nTF)
will result in \t1_tail:n leaving nothing in the input stream.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list will not expand further when appearing in an x-type argument expansion.

\tl_if_head_eq_catcode_p:nN * \tl_if_head_eq_catcode_p:nN {(token list)
\tl_if_head_eq_catcode:nNTF x \tl_if_head_eq_catcode:nNTF {(token list)
{(true code)} {(false code)}

(test token)

}
} (test token)

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same category code as the (test token).
In the case where the (token list) is empty, the test will always be false.

\tl_if_head_eq_charcode_p:nN \tl_if_head_eq_charcode_p:nN {(token list)

* (test token)
:fN % \tl_if_head_eq_charcode:nNTF {(token list)

*

*

}
} (test token)
\tl_if_head_eq_charcode:nNTF {(true code)} {(false code)}

ENTF

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same character code as the (test token).
In the case where the (token list) is empty, the test will always be false.

\tl_if_head_eq_meaning_p:nN + \tl_if_head_eq_meaning_p:nN {(token list)} (test token)
\tl_if_head_eq_meaning:nNTF * \tl_if_head_eq_meaning:nNTF {(token list)} (test token)
{(true code)} {(false code)}

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same meaning as the (test token). In
the case where (token list) is empty, the test will always be false.

44

\tl_if_head_is_group_p:n *
\tl_if_head_is_group:nTF *

New: 2012-07-08

\tl_if_head_is_group_p:n {(token list)}

\tl_if_head_is_group:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit begin-group character (with
category code 1 and any character code), in other words, if the (token list) starts with a
brace group. In particular, the test is false if the (token list) starts with an implicit token
such as \c_group_begin_token, or if it is empty. This function is useful to implement
actions on token lists on a token by token basis.

\tl_if_head_is_N_type_p:n % \tl_if_head_is_N_type_p:n {(token list)}
\tl_if_head_is_N_type:nTF * \tl_if_head_is_N_type:nTF {(token 1list)} {(true code)} {(false code)}

New: 2012-07-08

\tl_if_head_is_space_p:n *
\tl_if_head_is_space:nTF *

Updated: 2012-07-08

\tl_item:nn *
\tl_item:Nn *
icn o+

New: 2014-07-17

\tl_show:N
:c

Updated: 2015-08-01

Tests if the first (token) in the (token list) is a normal N-type argument. In other words, it
is neither an explicit space character (explicit token with character code 32 and category
code 10) nor an explicit begin-group character (with category code 1 and any character
code). An empty argument yields false, as it does not have a “normal” first token. This
function is useful to implement actions on token lists on a token by token basis.

\tl_if_head_is_space_p:n {(token list)}
\tl_if_head_is_space:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit space character (explicit token
with character code 12 and category code 10). In particular, the test is false if the
(token list) starts with an implicit token such as \c_space_token, or if it is empty. This
function is useful to implement actions on token lists on a token by token basis.

10 Using a single item

\tl_item:nn {(token list)} {(integer expression)}

Indexing items in the (token list) from 1 on the left, this function will evaluate the (integer
expression) and leave the appropriate item from the (token list) in the input stream. If
the (integer expression) is negative, indexing occurs from the right of the token list,
starting at —1 for the right-most item. If the index is out of bounds, then thr function
expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) will not expand further when appearing in an x-type argument
expansion.

11 Viewing token lists

\tl_show:N (t1 var)

Displays the content of the (¢ var) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

45

\tl_show:n

Updated: 2015-08-07

\tl_log:N
ic

New: 2014-08-22
Updated: 2015-08-01

\tl_log:n

New: 2014-08-22
Updated: 2015-08-07

\c_empty_tl

\c_space_tl

\1_tmpa_t1l
\1_tmpb_tl

\g_tmpa_t1l
\g_tmpb_t1l

__tl_trim_spaces:nn

\tl_show:n (token list)
Displays the (token list) on the terminal.

TEXhackers note: This is similar to the e-TEX primitive \showtokens, wrapped to a fixed
number of characters per line.

\tl_log:N (tl var)

Writes the content of the (¢ var) in the log file. See also \t1_show:N which displays the
result in the terminal.

\tl_log:n {(token list)}

Writes the (token list) in the log file. See also \t1l_show:n which displays the result in
the terminal.

12 Constant token lists

Constant that is always empty.

An explicit space character contained in a token list (compare this with \c_space_token).
For use where an explicit space is required.

13 Scratch token lists

Scratch token lists for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch token lists for global assignment. These are never used by the kernel code, and
so are safe for use with any I4TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

14 Internal functions

__tl_trim_spaces:nn { \q_mark (token list) } {(continuation)}

This function removes all leading and trailing explicit space characters from the (token
list), and expands to the (continuation), followed by a brace group containing \use_-
none:n \q_mark (trimmed token list). For instance, \t1_trim_spaces:n is implemented
by taking the (continuation) to be \exp_not:o, and the o-type expansion removes the
\gq_mark. This function is also used in I3clist and |3candidates.

46

\str_new:N

:C

New: 2015-09-18

\str_const:Nn
: (Nx|cn|cx)

New: 2015-09-18

Part VII
The 13str package
Strings

TEX associates each character with a category code: as such, there is no concept of
a “string” as commonly understood in many other programming languages. However,
there are places where we wish to manipulate token lists while in some sense “ignoring”
category codes: this is done by treating token lists as strings in a TEX sense.

A TgX string (and thus an expl3 string) is a series of characters which have category
code 12 (“other”) with the exception of space characters which have category code 10
(“space”). Thus at a technical level, a TEX string is a token list with the appropriate
category codes. In this documentation, these will simply be referred to as strings.

String variables are simply specialised token lists, but by convention should be named
with the suffix ...str. Such variables should contain characters with category code 12
(other), except spaces, which have category code 10 (blank space). All the functions in
this module which accept a token list argument first convert it to a string using \t1_to_-
str:n for internal processing, and will not treat a token list or the corresponding string
representation differently.

Note that as string variables are a special case of token list variables the coverage of
\str_...:N functions is somewhat smaller than \t1_...:N.

The functions \cs_to_str:N, \tl_to_str:n, \tl_to_str:N and \token_to_str:N
(and variants) will generate strings from the appropriate input: these are documented in
I3basics, 13tl and 13token, respectively.

Most expandable functions in this module come in three flavours:

e \str_...:N, which expect a token list or string variable as their argument;
e \str_...:n, taking any token list (or string) as an argument;
e \str_..._ignore_spaces:n, which ignores any space encountered during the op-

eration: these functions are typically faster than those which take care of escaping
spaces appropriately.

1 Building strings

\str_new:N (str var)

Creates a new (str var) or raises an error if the name is already taken. The declaration
is global. The (str var) will initially be empty.

\str_const:Nn (str var) {(token list)}

Creates a new constant (str var) or raises an error if the name is already taken. The
value of the (str var) will be set globally to the (token list), converted to a string.

47

\str_clear:N

c
\str_gclear:N
ic

New: 2015-09-18

\str_clear_new:N
ic

New: 2015-09-18

\str_set_eq:NN
: (cN|Nc|cc)
\str_gset_eq:NN
: (cN|Nclce)

New: 2015-09-18

\str_set:Nn

: (Nx|cn|ex)
\str_gset:Nn

: (Nx|cnlcx)

New: 2015-09-18

\str_put_left:Nn
: (Nx|cn|ex)
\str_gput_left:Nn
: (Nx|cnlcx)

New: 2015-09-18

\str_put_right:Nn

: (Nx|cn|cx)
\str_gput_right:Nn

: (Nx|cncx)

New: 2015-09-18

\str_if_exist_p:N *
ic &
\str_if_exist:NTF «*
:cTF %

New: 2015-09-18

\str_clear:N (str var)

Clears the content of the (str var).

\str_clear_new:N (str var)

Ensures that the (str var) exists globally by applying \str_new:N if necessary, then
applies \str_(g)clear:N to leave the (str var) empty.

\str_set_eq:NN (str vari) (str vars)

Sets the content of (str var) equal to that of (str vars).

2 Adding data to string variables

\str_set:Nn (str var) {(token list)}

Converts the (token list) to a (string), and stores the result in (str var).

\str_put_left:Nn (str var) {(token list)}

Converts the (token list) to a (string), and prepends the result to (str var). The current
contents of the (str var) are not automatically converted to a string.

\str_put_right:Nn (str var) {(token list)}

Converts the (token list) to a (string), and appends the result to (str var). The current
contents of the (str var) are not automatically converted to a string.

2.1 String conditionals

\str_if_exist_p:N (str var)
\str_if_exist:NTF (str var) {(true code)} {(false code)}

Tests whether the (str var) is currently defined. This does not check that the (str var)
really is a string.

48

\str_if_empty_p:N * \sr_if_empty_p:N (str var)
:c x \str_if_empty:NTF (str var) {(true code)} {(false code)}
\str_if_empty:NTF *

F . Tests if the (string variable) is entirely empty (i.e. contains no characters at all).
:cTF

New: 2015-09-18

\str_if_eq_p:NN * \str_if_eq_p:NN (str vari) (str vars)
:(Nc|eN|ce) * \str_if_eq:NNTF (str vari) (str vars) {(true code)} {(false code)}
\str_if_eq:NNTF *
Compares the content of two (str variables) and is logically true if the two contain the
:(Nc|eN|ce)TF «

same characters.

New: 2015-09-18

\str_if_eq_p:nn {(tl1)
\str_if_eq:nnTF {(tly)

(t12)}
(t12)} {(true code)} {(false code)}

\str_if_eq_p:nn
: (Vn|on|no|nV|VV)

\str_if_eq:nnTF
: (Vn|on|no|nV|VV)TF

F{
A

*
*
*
*

Compares the two (token lists) on a character by character basis, and is true if the two
lists contain the same characters in the same order. Thus for example

\str_if_eq_p:no { abc } { \tl_to_str:n { abc } }

is logically true.

\str_if_eq_x_p:nn * \str_if_eq_x_p:nn {(tI1:)} {(tl2)}
\str_if_eq_x:nnTF * \str_if_eq_x:nnTF {(t1:)} {(tl2)} {(true code)} {(false code)}

New: 2012-06-05 Compares the full expansion of two (token lists) on a character by character basis, and
is true if the two lists contain the same characters in the same order. Thus for example

\str_if_eq_x_p:nn { abc } { \tl_to_str:n { abc } }

is logically true.

\str_case:nnTF {(test string)}
{

{(string case;)}

{(string cases)}

\str_case:nn

: (on|nV|nv)
\str_case:nnTF

: (on|nV|nv)TF

(code case1)}
(code casez)}

* ot ot

{
{

New: 2013-07-24

string case code case
Updated: 2015-02-28 { g n)3 n)}

}
{(true code)}
{(false code)}

This function compares the (test string) in turn with each of the (string cases). If the
two are equal (as described for \str_if_eq:nnTF then the associated (code) is left in
the input stream. If any of the cases are matched, the (true code) is also inserted into
the input stream (after the code for the appropriate case), while if none match then the
(false code) is inserted. The function \str_case:nn, which does nothing if there is no
match, is also available.

49

\str_case_x:nnTF *

New: 2013-07-24

\str_use:N *
ic %

New: 2015-09-18

\str_case_x:nnTF {(test string)}
{
{(string casei)} {(code case:i)}
{(string cases)} {{code cases)}

%&;tring case,)} {(code case,)}
}
{(true code)}
{(false code)}

This function compares the full expansion of the (test string) in turn with the full ex-
pansion of the (string cases). If the two full expansions are equal (as described for
\str_if_eq:nnTF then the associated (code) is left in the input stream. If any of the
cases are matched, the (true code) is also inserted into the input stream (after the code
for the appropriate case), while if none match then the (false code) is inserted. The
function \str_case_x:nn, which does nothing if there is no match, is also available. The
(test string) is expanded in each comparison, and must always yield the same result: for
example, random numbers must not be used within this string.

3 Working with the content of strings

\str_use:N (str var)

Recovers the content of a (str var) and places it directly in the input stream. An error
will be raised if the variable does not exist or if it is invalid. Note that it is possible to
use a (str) directly without an accessor function.

\str_count:N
:c
\str_count:n

\str_count_ignore_spaces:n

\str_count:n {(token list)}

*
*
*
*

New: 2015-09-18

\str_count_spaces:N *
H
\str_count_spaces:n *

New: 2015-09-18

Leaves in the input stream the number of characters in the string representation of (token
list), as an integer denotation. The functions differ in their treatment of spaces. In the
case of \str_count:N and \str_count:n, all characters including spaces are counted.
The \str_count_ignore_spaces:n function leaves the number of non-space characters
in the input stream.

\str_count_spaces:n {(token list)}

Leaves in the input stream the number of space characters in the string representation of
(token list), as an integer denotation. Of course, this function has no _ignore_spaces
variant.

50

\str_head:N

H]
\str_head:n
\str_head_ignore_spaces:n

\str_head:n {(token list)}

*
*
*
*

New: 2015-09-18

Converts the (token list) into a (string). The first character in the (string) is then left in
the input stream, with category code “other”. The functions differ if the first character is a
space: \str_head:N and \str_head:n return a space token with category code 10 (blank
space), while the \str_head_ignore_spaces:n function ignores this space character and
leaves the first non-space character in the input stream. If the (string) is empty (or only
contains spaces in the case of the _ignore_spaces function), then nothing is left on the
input stream.

\str_tail:N *

e *
\str_tail:n *
\str_tail_ignore_spaces:n *

\str_tail:n {(token list)}

New: 2015-09-18

Converts the (token list) to a (string), removes the first character, and leaves the remain-
ing characters (if any) in the input stream, with category codes 12 and 10 (for spaces).
The functions differ in the case where the first character is a space: \str_tail:N and
\str_tail:n will trim only that space, while \str_tail_ignore_spaces:n removes the
first non-space character and any space before it. If the (token list) is empty (or blank
in the case of the _ignore_spaces variant), then nothing is left on the input stream.

\str_item:Nn * \str_item:nn {(token list)} {(integer expression)}
\str_item:nn *
\str_item_ignore_spaces:nn *

New: 2015-09-18

Converts the (token list) to a (string), and leaves in the input stream the character
in position (integer expression) of the (string), starting at 1 for the first (left-most)
character. In the case of \str_item:Nn and \str_item:nn, all characters including
spaces are taken into account. The \str_item_ignore_spaces:nn function skips spaces
when counting characters. If the (integer expression) is negative, characters are counted
from the end of the (string). Hence, —1 is the right-most character, etc.

o1

\str_range:Nnn *

:cnn *
\str_range:nnn *
\str_range_ignore_spaces:nnn *

New: 2015-09-18

\str_range:nnn {(token list)} {(start index)} {(end index)}

Converts the (token list) to a (string), and leaves in the input stream the characters from
the (start indez) to the (end indez) inclusive. Positive (indices) are counted from the
start of the string, 1 being the first character, and negative (indices) are counted from
the end of the string, —1 being the last character. If either of (start index) or (end index)
is 0, the result is empty. For instance,

\iow_term:
\iow_term:
\iow_term:
\iow_term:

will print bcde,

x { \str_range:nnn { abcdef } { 2} {52} }

x { \str_range:nnn { abcdef } { -4 } { -1 3} }
x { \str_range:nnn { abcdef } { -2 } { -1} }
x { \str_range:nnn { abcdef } { 0} { -1} }

cdef, ef, and an empty line to the terminal. The (start index) must

always be smaller than or equal to the (end index): if this is not the case then no output
is generated. Thus

\iow_term:
\iow_term:

x { \str_range:nnn { abcdef } { 5} {22} }
x { \str_range:nnn { abcdef } { -1 } { -4} }

both yield empty strings.

52

\str_lower_case:n x*
f %
\str_upper_case:n x
f %

New: 2015-03-01

4 String manipulation

\str_lower_case:n {(tokens)}

\str_upper_case:n {(tokens)}

Converts the input (tokens) to their string representation, as described for \tl_to_-
str:n, and then to the lower or upper case representation using a one-to-one mapping
as described by the Unicode Consortium file UnicodeData.txt.

These functions are intended for case changing programmatic data in places where
upper/lower case distinctions are meaningful. One example would be automatically gen-
erating a function name from user input where some case changing is needed. In this
situation the input is programmatic, not textual, case does have meaning and a language-
independent one-to-one mapping is appropriate. For example

\cs_new_protected:Npn \myfunc:nn #1#2

{
\cs_set_protected:cpn
{
user
\str_upper_case:f { \tl_head:n {#1} }
\str_lower_case:f { \tl_tail:n {#1} }
¥
{#2 7
}

would be used to generate a function with an auto-generated name consisting of the
upper case equivalent of the supplied name followed by the lower case equivalent of the
rest of the input.

These functions should not be used for

o Caseless comparisons: use \str_fold_case:n for this situation (case folding is
district from lower casing).

e Case changing text for typesetting: see the \tl_lower_case:n(n), \tl_upper_-
case:n(n) and \tl_mixed_case:n(n) functions which correctly deal with context-
dependence and other factors appropriate to text case changing.

TEXhackers note: As with all expl3 functions, the input supported by \str_fold_case:n
is engine-native characters which are or interoperate with UTF-8. As such, when used with
pdfTEX only the Latin alphabet characters A—Z will be case-folded (i.e. the Ascit range which
coincides with UTF-8). Full UTF-8 support is available with both X#TEX and LuaTgX, subject
only to the fact that XqIEX in particular has issues with characters of code above hexadecimal
0xFFFF when interacting with \t1l_to_str:n.

53

\str_fold_case:n *
Vox

New: 2014-06-19
Updated: 2016-03-07

\str_show:N

:C

\str_show:n

New: 2015-09-18

\str_fold_case:n {(tokens)}

Converts the input (tokens) to their string representation, as described for \t1_to_str:n,
and then folds the case of the resulting (string) to remove case information. The result
of this process is left in the input stream.

String folding is a process used for material such as identifiers rather than for “text”.
The folding provided by \str_fold_case:n follows the mappings provided by the Uni-
code Consortium, who state:

Case folding is primarily used for caseless comparison of text, such as iden-
tifiers in a computer program, rather than actual text transformation. Case
folding in Unicode is based on the lowercase mapping, but includes additional
changes to the source text to help make it language-insensitive and consistent.
As a result, case-folded text should be used solely for internal processing and
generally should not be stored or displayed to the end user.

The folding approach implemented by \str_fold_case:n follows the “full” scheme de-
fined by the Unicode Consortium (e.g. SSfolds to SS). As case-folding is a language-
insensitive process, there is no special treatment of Turkic input (i.e. I always folds to i
and not to 1).

TEXhackers note: As with all expl3 functions, the input supported by \str_fold_case:n
is engine-native characters which are or interoperate with UTF-8. As such, when used with
pdfTEX only the Latin alphabet characters A-Z will be case-folded (i.e. the ASCII range which
coincides with UTF-8). Full UTF-8 support is available with both X#TEX and LuaTgX, subject
only to the fact that XfTEX in particular has issues with characters of code above hexadecimal
0xFFFF when interacting with \t1l_to_str:n.

5 Viewing strings

\str_show:N (str var)

Displays the content of the (str var) on the terminal.

54

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org/faq/casemap_charprop.html#2

\c_ampersand_str
\c_atsign_str
\c_backslash_str
\c_left_brace_str
\c_right_brace_str
\c_circumflex_str
\c_colon_str
\c_dollar_str
\c_hash_str
\c_percent_str
\c_tilde_str
\c_underscore_str

New: 2015-09-19

\1_tmpa_str
\1_tmpb_str

\g_tmpa_str
\g_tmpb_str

__str_if_eq_x:nn *

__str_if_eq_x_return:nn

__str_to_other:n *

6 Constant token lists

Constant strings, containing a single character token, with category code 12.

7 Scratch strings

Scratch strings for local assignment. These are never used by the kernel code, and so
are safe for use with any IXTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch strings for global assignment. These are never used by the kernel code, and so
are safe for use with any TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

7.1 Internal string functions

__str_if_eq_x:nn {(t1:)} {(tl2)}

Compares the full expansion of two (token lists) on a character by character basis, and
is true if the two lists contain the same characters in the same order. Leaves 0 in the
input stream if the condition is true, and +1 or -1 otherwise.

__str_if_eq_x_return:nn {(t11)} {(tl2)}

Compares the full expansion of two (token lists) on a character by character basis, and
is true if the two lists contain the same characters in the same order. Either \prg_-
return_true: or \prg_return_false: is then left in the input stream. This is a version
of \str_if_eq_x:nnTF coded for speed.

__str_to_other:n {(token list)}

Converts the (token list) to a (other string), where spaces have category code “other”.
This function can be f-expanded without fear of losing a leading space, since spaces do
not have category code 10 in its result. It takes a time quadratic in the character count
of the string.

55

__str_to_other_fast:n ¥

__str_count:n «*

__str_range:nnn x

__str_to_other_fast:n {(token list)}

Same behaviour __str_to_other:n but only restricted-expandable. It takes a time
linear in the character count of the string. It is used for \iow_wrap:nnnN.

__str_count:n {({other string)}

This function expects an argument that is entirely made of characters with category
“other”, as produced by __str_to_other:n. It leaves in the input stream the number of
character tokens in the (other string), faster than the analogous \str_count :n function.

__str_range:nnn {(other string)} {(start index)} {(end index)}

Identical to \str_range:nnn except that the first argument is expected to be entirely
made of characters with category “other”, as produced by __str_to_other:n, and the
result is also an (other string).

56

Part VIII
The 13seq package
Sequences and stacks

ETREX3 implements a “sequence” data type, which contain an ordered list of entries which
may contain any (balanced text). It is possible to map functions to sequences such that
the function is applied to every item in the sequence.

Sequences are also used to implement stack functions in IXTEX3. This is achieved
using a number of dedicated stack functions.

1 Creating and initialising sequences

\seq_new:N \seq_new:N (sequence)

:C
Creates a new (sequence) or raises an error if the name is already taken. The declaration

is global. The (sequence) will initially contain no items.

\seq_clear:N \seq_clear:N (sequence)

ic
\seq_gclear:N
ic

Clears all items from the (sequence).

\seq_clear_new:N \seq_clear_new:N (sequence)
“° Ensures that the (sequence) exists globally by applying \seq_new:N if necessary, then

\se clea: :N .
d-ge-ear_new applies \seq_(g) clear:N to leave the (sequence) empty.

:C

\seq_set_eq:NN \seq_set_eq:NN (sequence;) (sequences)
: (cN|Nc|cc)
\seq_gset_eq:NN
: (cN|Nclce)

Sets the content of (sequence;) equal to that of (sequences).

\seq_set_from_clist:NN \seq_set_from_clist:NN (sequence) (comma-list)
: (cN|Nc|cc)
\seq_set_from_clist:Nn
:cn
\seq_gset_from_clist:NN
:(cN|Nclec)
\seq_gset_from_clist:Nn
1cn

New: 2014-07-17

Converts the data in the (comma list) into a (sequence): the original (comma list) is
unchanged.

57

\seq_set_split:Nnn

:NnV
\seq_gset_split:Nnn
:NnV

New: 2011-08-15
Updated: 2012-07-02

\seq_concat :NNN
icce
\seq_gconcat :NNN
1cce

\seq_if_exist_p:N *
ic oK
\seq_if_exist:NTF *
:cTF %

New: 2012-03-03

\seq_set_split:Nnn (sequence) {(delimiter)} {(token list)}

Splits the (token list) into (items) separated by (delimiter), and assigns the result to the
(sequence). Spaces on both sides of each (item) are ignored, then one set of outer braces
is removed (if any); this space trimming behaviour is identical to that of 13clist functions.
Empty (items) are preserved by \seq_set_split:Nnn, and can be removed afterwards
using \seq_remove_all:Nn (sequence) {()}. The (delimiter) may not contain {, } or #
(assuming TEX’s normal category code régime). If the (delimiter) is empty, the (token
list) is split into (items) as a (token list).

\seq_concat:NNN (sequence:) (sequences) (sequences)

Concatenates the content of (sequences) and (sequences) together and saves the result in
(sequencer). The items in (sequences) will be placed at the left side of the new sequence.

\seq_if_exist_p:N (sequence)
\seq_if_exist:NTF (sequence) {(true code)} {(false code)}

Tests whether the (sequence) is currently defined. This does not check that the (sequence)
really is a sequence variable.

2 Appending data to sequences

\seq_put_left:Nn

\seq_put_left:Nn (sequence) {(item)}

: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gput_left:Nn

: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

Appends the (item) to the left of the (sequence).

\seq_put_right:Nn

\seq_put_right:Nn (sequence) {(item)}

: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gput_right:Nn

: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_get_left:NN
:cN

Updated: 2012-05-14

Appends the (item) to the right of the (sequence).

3 Recovering items from sequences

Items can be recovered from either the left or the right of sequences. For implementa-
tion reasons, the actions at the left of the sequence are faster than those acting on the
right. These functions all assign the recovered material locally, i.e. setting the (token list
variable) used with \t1l_set:Nn and never \tl_gset:Nn.

\seq_get_left:NN (sequence) (token list variable)

Stores the left-most item from a (sequence) in the (token list variable) without removing
it from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) will contain the special marker \q_no_value.

58

\seq_get_right:NN
:cN

Updated: 2012-05-19

\seq_pop_left:NN
:cN

Updated: 2012-05-14

\seq_gpop_left:NN
:cN

Updated: 2012-05-14

\seq_pop_right:NN
:cN

Updated: 2012-05-19

\seq_gpop_right:NN
:cN

Updated: 2012-05-19

\seq_item:Nn *
icn %

New: 2014-07-17

\seq_get_right:NN (sequence) (token list variable)

Stores the right-most item from a (sequence) in the (token list variable) without removing
it from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) will contain the special marker \q_no_value.

\seq_pop_left:NN (sequence) (token list variable)

Pops the left-most item from a (sequence) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). Both of the variables are
assigned locally. If (sequence) is empty the (token list variable) will contain the special
marker \q_no_value.

\seq_gpop_left:NN (sequence) (token list variable)

Pops the left-most item from a (sequence) into the (token list variable), i.e. removes
the item from the sequence and stores it in the (token list variable). The (sequence) is
modified globally, while the assignment of the (token list variable) is local. If (sequence)
is empty the (token list variable) will contain the special marker \q_no_value.

\seq_pop_right:NN (sequence) (token list variable)

Pops the right-most item from a (sequence) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). Both of the variables are
assigned locally. If (sequence) is empty the (token list variable) will contain the special
marker \q_no_value.

\seq_gpop_right:NN (sequence) (token list variable)

Pops the right-most item from a (sequence) into the (token list variable), i.e. removes
the item from the sequence and stores it in the (token list variable). The (sequence) is
modified globally, while the assignment of the (token list variable) is local. If (sequence)
is empty the (token list variable) will contain the special marker \q_no_value.

\seq_item:Nn (sequence) {(integer expression)}

Indexing items in the (sequence) from 1 at the top (left), this function will evaluate
the (integer expression) and leave the appropriate item from the sequence in the input
stream. If the (integer expression) is negative, indexing occurs from the bottom (right)
of the sequence. When the (integer expression) is larger than the number of items in the
(sequence) (as calculated by \seq_count:N) then the function will expand to nothing.

TgEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) will not expand further when appearing in an x-type argument
expansion.

4 Recovering values from sequences with branching
The functions in this section combine tests for non-empty sequences with recovery of an

item from the sequence. They offer increased readability and performance over separate
testing and recovery phases.

59

\seq_get_left:NNTF
:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_get_right :NNTF
:cNTF

New: 2012-05-19

\seq_pop_left:NNTF
:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_gpop_left:NNTF
:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_pop_right :NNTF
:cNTF

New: 2012-05-19

\seq_gpop_right :NNTF
:cNTF

New: 2012-05-19

\seq_get_left:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, stores the left-most item from a (sequence) in the (token list
variable) without removing it from a (sequence). The (token list variable) is assigned
locally.

\seq_get_right:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, stores the right-most item from a (sequence) in the (token list
variable) without removing it from a (sequence). The (token list variable) is assigned
locally.

\seq_pop_left:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, pops the left-most item from a (sequence) in the (token list
variable), i.e. removes the item from a (sequence). Both the (sequence) and the (token
list variable) are assigned locally.

\seq_gpop_left:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, pops the left-most item from a (sequence) in the (token list
variable), i.e. removes the item from a (sequence). The (sequence) is modified globally,
while the (token list variable) is assigned locally.

\seq_pop_right:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, pops the right-most item from a (sequence) in the (token list
variable), i.e. removes the item from a (sequence). Both the (sequence) and the (token
list variable) are assigned locally.

\seq_gpop_right :NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, pops the right-most item from a (sequence) in the (token list
variable), i.e. removes the item from a (sequence). The (sequence) is modified globally,
while the (token list variable) is assigned locally.

5 Modifying sequences
While sequences are normally used as ordered lists, it may be necessary to modify the

content. The functions here may be used to update sequences, while retaining the order
of the unaffected entries.

60

\seq_remove_duplicates:N

:c
\seq_gremove_duplicates:N
:c

\seq_remove_all:Nn

:cn
\seq_gremove_all:Nn
:cn

\seq_reverse:N

ic
\seq_greverse:N
ic

New: 2014-07-18

\seq_sort:Nn

rcn
\seq_gsort:Nn
icn

New: 2017-02-06

\seq_if_empty_p:N
ic
\seq_if_empty:NTF
:cTF

b S S

\seq_remove_duplicates:N (sequence)

Removes duplicate items from the (sequence), leaving the left most copy of each item
in the (sequence). The (item) comparison takes place on a token basis, as for \t1_if_-
eq:nnTF.

TgXhackers note: This function iterates through every item in the (sequence) and does a
comparison with the (items) already checked. It is therefore relatively slow with large sequences.

\seq_remove_all:Nn (sequence) {(item)}

Removes every occurrence of (item) from the (sequence). The (item) comparison takes
place on a token basis, as for \t1_if_eq:nnTF.

\seq_reverse:N (sequence)

Reverses the order of the items stored in the (sequence).

\seq_sort:Nn (sequence) {(comparison code)}

Sorts the items in the (sequence) according to the (comparison code), and assigns the
result to (sequence). The details of sorting comparison are described in Section 1.

6 Sequence conditionals

\seq_if_empty_p:N (sequence)
\seq_if_empty:NTF (sequence) {(true code)} {(false code)}

Tests if the (sequence) is empty (containing no items).

\seq_if_in:NnTF

\seq_if_in:NnTF (sequence) {(item)} {(true code)} {(false code)}

: (NV|Nv|No|Nx|cn|cV|cv|co|cx) TF

\seq_map_function:NN v
:cN

Updated: 2012-06-29

Tests if the (item) is present in the (sequence).

7 Mapping to sequences

\seq_map_function:NN (sequence) (function)

Applies (function) to every (item) stored in the (sequence). The (function) will receive
one argument for each iteration. The (items) are returned from left to right. The function
\seq_map_inline:Nn is faster than \seq_map_function:NN for sequences with more
than about 10 items. One mapping may be nested inside another.

61

\seq_map_inline:Nn \seq_map_inline:Nn (sequence) {(inline function)}

"B Applies (inline function) to every (item) stored within the (sequence). The (inline

Updated: 2012-06-29 fynction) should consist of code which will receive the (item) as #1. One in line mapping
can be nested inside another. The (items) are returned from left to right.

\seq_map_variable:NNn \seq_map_variable:NNn (sequence) (tl var.) {(function using tl var.)}
:(Ncn|cNn|ccn)

Updated: 2012-06-29

Stores each entry in the (sequence) in turn in the (¢ var.) and applies the (function using
tl var.) The (function) will usually consist of code making use of the (¢l var.), but this
is not enforced. One variable mapping can be nested inside another. The (items) are
returned from left to right.

\seq_map_break: 3 \seq_map_break:

Updated: 2012-06-29 Used to terminate a \seq_map_. .. function before all entries in the (sequence) have been
processed. This will normally take place within a conditional statement, for example

\seq_map_inline:Nn \1l_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break: }

{
% Do something useful
}
}
Use outside of a \seq_map_. .. scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before further items are taken from the input stream.
This will depend on the design of the mapping function.

62

\seq_map_break:n

Updated: 2012-06-29

\seq_count:N *
ic oK

New: 2012-07-13

\seq_use:Nnnn *
scnnn

New: 2013-05-26

\seq_map_break:n {(tokens)}

Used to terminate a \seq_map_... function before all entries in the (sequence) have
been processed, inserting the (tokens) after the mapping has ended. This will normally
take place within a conditional statement, for example

\seq_map_inline:Nn \1_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break:n { <tokens> } }

{
% Do something useful
}
}
Use outside of a \seq_map_. .. scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the (tokens) are inserted into the input stream.
This will depend on the design of the mapping function.

\seq_count:N (sequence)

Leaves the number of items in the (sequence) in the input stream as an (integer
denotation). The total number of items in a (sequence) will include those which are
empty and duplicates, i.e. every item in a (sequence) is unique.

8 Using the content of sequences directly

\seq_use:Nnnn (seq var) {(separator between two)}
{(separator between more than two)} {(separator between final two)}

Places the contents of the (seq var) in the input stream, with the appropriate (separator)
between the items. Namely, if the sequence has more than two items, the (separator
between more than two) is placed between each pair of items except the last, for which
the (separator between final two) is used. If the sequence has exactly two items, then they
are placed in the input stream separated by the (separator between two). If the sequence
has a single item, it is placed in the input stream, and an empty sequence produces no
output. An error will be raised if the variable does not exist or if it is invalid.
For example,

\seq_set_split:Nnn \1_tmpa_seq { | } {a | b | c | {de} | £}
\seq_use:Nnnn \1_tmpa_seq { ~and~ } { ,~ } { ,~and~ }

will insert “a, b, c, de, and f” in the input stream. The first separator argument is
not used in this case because the sequence has more than 2 items.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) will not expand further when appearing in an x-type argument
expansion.

63

\seq_use:Nn *
icn %

New: 2013-05-26

\seq_get :NN
:cN

Updated: 2012-05-14

\seq_pop:NN

:cN

Updated: 2012-05-14

\seq_gpop: NN

:cN

Updated: 2012-05-14

\seq_get :NNTF

:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_use:Nn (seq var) {(separator)}

Places the contents of the (seq var) in the input stream, with the (separator) between
the items. If the sequence has a single item, it is placed in the input stream with no
(separator), and an empty sequence produces no output. An error will be raised if the
variable does not exist or if it is invalid.

For example,

\seq_set_split:Nnn \1l_tmpa_seq { | } {a | b | c | {de} | £}
\seq_use:Nn \1_tmpa_seq { ~and~ }

will insert “a and b and ¢ and de and f” in the input stream.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) will not expand further when appearing in an x-type argument
expansion.

9 Sequences as stacks

Sequences can be used as stacks, where data is pushed to and popped from the top of
the sequence. (The left of a sequence is the top, for performance reasons.) The stack
functions for sequences are not intended to be mixed with the general ordered data
functions detailed in the previous section: a sequence should either be used as an ordered
data type or as a stack, but not in both ways.

\seq_get:NN (sequence) (token list variable)

Reads the top item from a (sequence) into the (token list variable) without removing it
from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) will contain the special marker \q_no_value.

\seq_pop:NN (sequence) (token list variable)

Pops the top item from a (sequence) into the (token list variable). Both of the variables
are assigned locally. If (sequence) is empty the (token list variable) will contain the special
marker \g_no_value.

\seq_gpop:NN (sequence) (token list variable)

Pops the top item from a (sequence) into the (token list variable). The (sequence) is
modified globally, while the (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) will contain the special marker \q_no_value.

\seq_get :NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, stores the top item from a (sequence) in the (token list variable)
without removing it from the (sequence). The (token list variable) is assigned locally.

64

\seq_pop:NNTF
:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_gpop:NNTF
:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_pop:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (sequence) is non-empty, pops the top item from the (sequence) in the (token list
variable), i.e. removes the item from the (sequence). Both the (sequence) and the (token
list variable) are assigned locally.

\seq_gpop:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (sequence) is non-empty, pops the top item from the (sequence) in the (token list
variable), i.e. removes the item from the (sequence). The (sequence) is modified globally,
while the (token list variable) is assigned locally.

\seq_push:Nn

\seq_push:Nn (sequence) {(item)}

: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gpush:Nn

: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

Adds the {(item)} to the top of the (sequence).

10 Sequences as sets

Sequences can also be used as sets, such that all of their items are distinct. Usage of
sequences as sets is not currently widespread, hence no specific set function is provided.
Instead, it is explained here how common set operations can be performed by combining
several functions described in earlier sections. When using sequences to implement sets,
one should be careful not to rely on the order of items in the sequence representing the
set.

Sets should not contain several occurences of a given item. To make sure that a
(sequence variable) only has distinct items, use \seq_remove_duplicates:N (sequence
variable). This function is relatively slow, and to avoid performance issues one should
only use it when necessary.

Some operations on a set (seq var) are straightforward. For instance, \seq_count:N
(seq var) expands to the number of items, while \seq_if_in:NnTF (seq var) {{item)}
tests if the (item) is in the set.

Adding an (item) to a set (seq var) can be done by appending it to the (seq var) if
it is not already in the (seq var):

\seq_if_in:NnF (seq var) {(item)}
{ \seq_put_right:Nn (seq var) {(item)} }

Removing an (item) from a set (seq var) can be done using \seq_remove_all:Nn,
\seq_remove_all:Nn (seq var) {(item)}

The intersection of two sets (seq var;) and (seq vary) can be stored into (seq vars)
by collecting items of (seq vary) which are in (seq vars).

65

\seq_clear:N (seq vars)
\seq_map_inline:Nn (seq vari)

{

\seq_if_in:NnT (seq vary) {#1}

{ \seq_put_right:Nn (seq vars) {#1} }
}

The code as written here only works if (seq vars) is different from the other two se-
quence variables. To cover all cases, items should first be collected in a sequence
\1__(pkg)_internal_seq, then (seq vars) should be set equal to this internal sequence.
The same remark applies to other set functions.

The union of two sets (seq vary) and (seq vary) can be stored into (seq vars) through

\seq_concat:NNN (seq vars) (seq var;) (seq vars)
\seq_remove_duplicates:N (seq vars)

or by adding items to (a copy of) (seq var;) one by one

\seq_set_eq:NN (seq vars) (seq varp)
\seq_map_inline:Nn (seq vars)

{

\seq_if_in:NnF (seq vars) {#1}

{ \seq_put_right:Nn (seq vars) {#1} }
}

The second approach is faster than the first when the (seq vary) is short compared to
(seq vary).

The difference of two sets (seq vary) and (seq vars) can be stored into (seq vars) by
removing items of the (seq vary) from (a copy of) the (seq var,) one by one.

\seq_set_eq:NN (seq vars) (seq vari)
\seq_map_inline:Nn (seq vars)
{ \seq_remove_all:Nn (seq vars) {#1} }

The symmetric difference of two sets (seq var;) and (seq vars) can be stored into
(seq vars) by computing the difference between (seq var;) and (seq vary) and storing the
result as \1__(pkg)_internal_seq, then the difference between (seq vary) and (seq var,),
and finally concatenating the two differences to get the symmetric differences.

\seq_set_eq:NN \1__(pkg)_internal_seq (seq varj)
\seq_map_inline:Nn (seq vars)

{ \seq_remove_all:Nn \1__(pkg)_internal_seq {#1} }
\seq_set_eq:NN (seq vars) (seq vars)

\seq_map_inline:Nn (seq vari)

{ \seq_remove_all:Nn (seq vars) {#1} }

\seq_concat:NNN (seq vars) (seq vars) \1__(pkg)_internal_seq

11 Constant and scratch sequences

\c_empty_seq Constant that is always empty.

New: 2012-07-02

66

\1_tmpa_seq
\1_tmpb_seq

New: 2012-04-26

\g_tmpa_seq
\g_tmpb_seq

New: 2012-04-26

\seq_show:N
ic

Updated: 2015-08-01

\seq_log:N
c

New: 2014-08-12
Updated: 2015-08-01

\s__seq

__seq_item:n *

__seq_push_item_def:n
'X

__seq_pop_item_def:

Scratch sequences for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch sequences for global assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

12 Viewing sequences

\seq_show:N (sequence)

Displays the entries in the (sequence) in the terminal.

\seq_log:N (sequence)

Writes the entries in the (sequence) in the log file.

13 Internal sequence functions

This scan mark (equal to \scan_stop:) marks the beginning of a sequence variable.

__seq_item:n {(item)}

The internal token used to begin each sequence entry. If expanded outside of a mapping
or manipulation function, an error will be raised. The definition should always be set
globally.

__seq_push_item_def:n {(code)}

Saves the definition of __seq_item:n and redefines it to accept one parameter and
expand to (code). This function should always be balanced by use of __seq_pop_-
item_def:.

__seq_pop_item_def:

Restores the definition of __seq_item:n most recently saved by __seq_push_item_-
def:n. This function should always be used in a balanced pair with __seq_push_-
item_def:n.

67

\int_eval:n *

\int_abs:n *

Updated: 2012-09-26

\int_div_round:nn «*

Updated: 2012-09-26

Part IX
The 13int package
Integers

Calculation and comparison of integer values can be carried out using literal numbers, int
registers, constants and integers stored in token list variables. The standard operators
+, -, / and * and parentheses can be used within such expressions to carry arithmetic
operations. This module carries out these functions on integer expressions (“intexpr”).

1 Integer expressions

\int_eval:n {(integer expression)}

Evaluates the (integer expression), expanding any integer and token list variables within
the (expression) to their content (without requiring \int_use:N/\t1l_use:N) and apply-
ing the standard mathematical rules. For example both

\int_eval:n { 5+ 4 *x3 - (3+4x%5)}
and

\tl_new:N \1l_my_tl

\tl_set:Nn \1_my_tl { 5 }

\int_new:N \l_my_int

\int_set:Nn \1_my_int { 4 }

\int_eval:n { \1_my_tl1 + \l_my_int * 3 - (3 +4 x5) }

both evaluate to —6. The {(integer expression)} may contain the operators +, -, * and /,
along with parenthesis (and). Any functions within the expressions should expand to
an (integer denotation): a sequence of a sign and digits matching the regex \-7[0-9]+).
After expansion \int_eval:n yields an (integer denotation) which is left in the input
stream.

TgXhackers note: Exactly two expansions are needed to evaluate \int_eval:n. The
result is not an (internal integer), and therefore requires suitable termination if used in a TEX-
style integer assignment.

\int_abs:n {(integer expression)}

Evaluates the (integer expression) as described for \int_eval:n and leaves the absolute
value of the result in the input stream as an (integer denotation) after two expansions.

\int_div_round:nn {(intexpri)} {{intexprs)}

Evaluates the two (integer expressions) as described earlier, then divides the first value
by the second, and rounds the result to the closest integer. Ties are rounded away from
zero. Note that this is identical to using / directly in an (integer expression). The result
is left in the input stream as an (integer denotation) after two expansions.

68

\int_div_truncate:nn *

Updated: 2012-02-09

\int_max:nn x
\int_min:nn *

Updated: 2012-09-26

\int_mod:nn x

Updated: 2012-09-26

\int_new:N
:c

\int_const:Nn
:cn

Updated: 2011-10-22

\int_zero:N

ic
\int_gzero:N
ic

\int_zero_new:N

:c
\int_gzero_new:N
c

New: 2011-12-13

\int_set_eq:NN
: (cN|Nc|cc)
\int_gset_eq:NN
: (cN|Nclce)

\int_div_truncate:nn {(intexpr:)} {(intexpr:)}

Evaluates the two (integer expressions) as described earlier, then divides the first value by
the second, and rounds the result towards zero. Note that division using / rounds to the
closest integer instead. The result is left in the input stream as an (integer denotation)
after two expansions.

\int_max:nn {(intexpr:)} {(intexprs)}
\int_min:nn {(intexpr:)} {(intexprs)}

Evaluates the (integer expressions) as described for \int_eval:n and leaves either the
larger or smaller value in the input stream as an (integer denotation) after two expansions.

\int_mod:nn {(intexpr:)} {(intexprs)}

Evaluates the two (integer expressions) as described earlier, then calculates the integer
remainder of dividing the first expression by the second. This is obtained by subtract-
ing \int_div_truncate:nn {(intezpry)} {(intexprs)} times (intexprs) from (intexpr:).
Thus, the result has the same sign as (intezpr;) and its absolute value is strictly less than
that of (intexprs). The result is left in the input stream as an (integer denotation) after
two expansions.

2 Creating and initialising integers

\int_new:N (integer)

Creates a new (integer) or raises an error if the name is already taken. The declaration
is global. The (integer) will initially be equal to 0.

\int_const:Nn (integer) {(integer expression)}

Creates a new constant (integer) or raises an error if the name is already taken. The
value of the (integer) will be set globally to the (integer expression).

\int_zero:N (integer)

Sets (integer) to 0.

\int_zero_new:N (integer)

Ensures that the (integer) exists globally by applying \int_new:N if necessary, then
applies \int_(g)zero:N to leave the (integer) set to zero.

\int_set_eq:NN (integeri) (integers)

Sets the content of (integer;) equal to that of (integers).

69

\int_if_exist_p:N *x \int_if_exist_p:N (int)
:c x \int_if_exist:NTF (int) {(true code)} {(false code)}
\int-if-eXiSt:N%: : Tests whether the (int) is currently defined. This does not check that the (int) really is
:cTF

an integer variable.
New: 2012-03-03

3 Setting and incrementing integers

\int_add:Nn \int_add:Nn (integer) {(integer expression)}
:cn . . .
\int_gadd:Nn Adds the result of the (integer expression) to the current content of the (integer).
:cn

Updated: 2011-10-22

\int_decr:N \int_decr:N (integer)

ic
\int_gdecr:N
ic

Decreases the value stored in (integer) by 1.

\int_incr:N \int_incr:N (integer)

:C . .
\int_gincr:N Increases the value stored in (integer) by 1.
:C
\int_set:Nn \int_set:Nn (integer) {(integer expression)}
. “on Sets (integer) to the value of (integer expression), which must evaluate to an integer (as
\int_gset:Nn . .
.en described for \int_eval:n).

Updated: 2011-10-22

\int_sub:Nn \int_sub:Nn (integer) {(integer expression)}
:cn . . .
\int_gsub:Nn Subtracts the result of the (integer expression) from the current content of the (integer).
:cn

Updated: 2011-10-22
4 Using integers

\int_use:N * \int_use:N (integer)

‘° __* Recovers the content of an (integer) and places it directly in the input stream. An

Updated: 2011-10-22 error will be raised if the variable does not exist or if it is invalid. Can be omitted
in places where an (integer) is required (such as in the first and third arguments of
\int_compare:nNnTF).

TgXhackers note: \int_use:N is the TEX primitive \the: this is one of several ITEX3
names for this primitive.

70

\int_compare_p:nNn *
\int_compare:nNnTF *

\int_compare_p:n *
\int_compare:nTF x*

Updated: 2013-01-13

5 Integer expression conditionals

\int_compare_p:nNn {(intexpri)} (relation) {(intexprs)}
\int_compare :nNnTF

{(intexpri)} (relation) {(intexpr:)}

{(true code)} {(false code)}

This function first evaluates each of the (integer expressions) as described for \int_-
eval:n. The two results are then compared using the (relation):

Equal
Greater than
Less than

ANV

\int_compare_p:n
{

intexpri relation;
P

(intexpry) (relationy)

(intexpry41)
}
\int_compare:nTF
{

(intexpri) (relation;)

(intexpry) (relationn)
(intexpry41)

}

{(true code)} {(false code)}

This function evaluates the (integer expressions) as described for \int_eval:n and com-
pares consecutive result using the corresponding (relation), namely it compares (intexpr)
and (intexprs) using the (relation,), then (intezprs) and (intexprs) using the (relations),
until finally comparing (intezpry) and (intezpry 1) using the (relationy). The test yields
true if all comparisons are true. Each (integer expression) is evaluated only once, and
the evaluation is lazy, in the sense that if one comparison is false, then no other (integer
expression) is evaluated and no other comparison is performed. The (relations) can be
any of the following:

Equal = or ==
Greater than or equal to >=
Greater than >

Less than or equal to <=
Less than <

Not equal 1=

71

\int_case:nn * \int_case:nnTF {(test integer expression)}
\int_case:nnTF x {

Now: 2013-07-24 {({intexpr casel); E(code caser)}

{(intexpr case2)} {(code cases)}

%&intexpr case,)} {(code casen)}
}
{(true code)}
{(false code)}

This function evaluates the (test integer expression) and compares this in turn to each
of the (integer expression cases). If the two are equal then the associated (code) is left
in the input stream. If any of the cases are matched, the (true code) is also inserted into
the input stream (after the code for the appropriate case), while if none match then the
(false code) is inserted. The function \int_case:nn, which does nothing if there is no
match, is also available. For example

\int_case:nnF

{2x*x5}
{
{5} { Small }
{4+63} { Medium }
{ -2 * 10 } { Negative }
}
{ No idea! }

will leave “Medium” in the input stream.

\int_if_even_p:n x \int_if_odd_p:n {(integer expression)}
\int_if_even:nTF % \int_if_odd:nTF {(integer expression)}
\int_if_odd_p:n «* {(true code)} {(false code)}

Mnt_if odd:nTF * Tyig function first evaluates the (integer expression) as described for \int_eval:n. It

then evaluates if this is odd or even, as appropriate.

6 Integer expression loops

\int_do_until:nNnn % \int_do_until:nNnn {(intexpr:)} (relation) {(intexpr:)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (integer expressions) as described for \int_compare :nNnTF. If
the test is false then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is true.

“
Xp

\int_do_while:nNnn \int_do_while:nNnn {(intexpri)} (relation) {(intexpr:)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (integer expressions) as described for \int_compare :nNnTF. If
the test is true then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is false.

72

\int_until_do:nNnn 3

\int_while_do:nNnn 3

\int_do_until:nn

Updated: 2013-01-13

\int_do_while:nn 3

Updated: 2013-01-13

\int_until_do:nn 5

Updated: 2013-01-13

\int_while_do:nn ¥

Updated: 2013-01-13

\int_until_do:nNnn {(intexpri)} (relation) {(intexpr:)} {(code)}

Evaluates the relationship between the two (integer expressions) as described for \int_-
compare :nNnTF, and then places the (code) in the input stream if the (relation) is false.
After the (code) has been processed by TEX the test will be repeated, and a loop will
occur until the test is true.

\int_while_do:nNnn {(intexpri)} (relatiomn) {(intexpr:)} {(code)}

Evaluates the relationship between the two (integer expressions) as described for \int_-
compare:nNnTF, and then places the (code) in the input stream if the (relation) is true.
After the (code) has been processed by TEX the test will be repeated, and a loop will
occur until the test is false.

\int_do_until:nn {({integer relation)} {(code)}

Places the {code) in the input stream for TEX to process, and then evaluates the (integer
relation) as described for \int_compare:nTF. If the test is false then the (code) will be
inserted into the input stream again and a loop will occur until the (relation) is true.

\int_do_while:nn {({integer relation)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the (integer
relation) as described for \int_compare:nTF. If the test is true then the (code) will be
inserted into the input stream again and a loop will occur until the (relation) is false.

\int_until_do:nn {(integer relation)} {{code)}

Evaluates the (integer relation) as described for \int_compare:nTF, and then places the
(code) in the input stream if the (relation) is false. After the (code) has been processed
by TEX the test will be repeated, and a loop will occur until the test is true.

\int_while_do:nn {(integer relation)} {{code)}

Evaluates the (integer relation) as described for \int_compare:nTF, and then places the
(code) in the input stream if the (relation) is true. After the (code) has been processed
by TEX the test will be repeated, and a loop will occur until the test is false.

73

\int_step_function:nnnN 3¢

New: 2012-06-04
Updated: 2014-05-30

\int_step_inline:nnnn

New: 2012-06-04
Updated: 2014-05-30

\int_step_variable:nnnNn

New: 2012-06-04
Updated: 2014-05-30

\int_to_arabic:n *

Updated: 2011-10-22

7 Integer step functions

\int_step_function:nnnN {(initial value)} {(step)} {(final value)} (function)

This function first evaluates the (initial value), (step) and (final value), all of which should
be integer expressions. The (function) is then placed in front of each (wvalue) from the
(initial value) to the (final value) in turn (using (step) between each (value)). The (step)
must be non-zero. If the (step) is positive, the loop stops when the (value) becomes larger
than the (final value). If the (step) is negative, the loop stops when the (value) becomes
smaller than the (final value). The (function) should absorb one numerical argument.
For example

\cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
\int_step_function:nnnN { 1 } { 1 } { 5 } \my_func:n

would print

[saw 1] [Isaw 2] [Isaw 3] [Isaw 4] [Isaw 5]

\int_step_inline:nnnn {(initial value)} {(step)} {(final value)} {(code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. Then for each (value) from the (initial value) to the (final
value) in turn (using (step) between each (value)), the (code) is inserted into the input
stream with #1 replaced by the current (value). Thus the (code) should define a function
of one argument (#1).

\int_step_variable:nnnNn
{(initial value)} {(step)} {(final value)} (t1 var) {{code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. Then for each (value) from the (initial value) to the (final
value) in turn (using (step) between each (wvalue)), the (code) is inserted into the input
stream, with the (¢ var) defined as the current (value). Thus the {code) should make
use of the (¢l var).

8 Formatting integers

Integers can be placed into the output stream with formatting. These conversions apply
to any integer expressions.

\int_to_arabic:n {(integer expression)}

Places the value of the (integer expression) in the input stream as digits, with category
code 12 (other).

74

\int_to_alph:n *
\int_to_Alph:n *

Updated: 2011-09-17

\int_to_symbols:nnn *

Updated: 2011-09-17

\int_to_bin:n *

New: 2014-02-11

\int_to_alph:n {(integer expression)}

Evaluates the (integer expression) and converts the result into a series of letters, which
are then left in the input stream. The conversion rule uses the 26 letters of the English
alphabet, in order, adding letters when necessary to increase the total possible range of
representable numbers. Thus

\int_to_alph:n { 1 }
places a in the input stream,

\int_to_alph:n { 26 }
is represented as z and

\int_to_alph:n { 27 }

is converted to aa. For conversions using other alphabets, use \int_to_symbols:nnn to
define an alphabet-specific function. The basic \int_to_alph:n and \int_to_Alph:n
functions should not be modified. The resulting tokens are digits with category code 12
(other) and letters with category code 11 (letter).

\int_to_symbols:nnn
{(integer expression)} {(total symbols)}
(value to symbol mapping)

This is the low-level function for conversion of an (integer expression) into a symbolic
form (which will often be letters). The (total symbols) available should be given as an
integer expression. Values are actually converted to symbols according to the (value to
symbol mapping). This should be given as (total symbols) pairs of entries, a number and
the appropriate symbol. Thus the \int_to_alph:n function is defined as

\cs_new:Npn \int_to_alph:n #1

{
\int_to_symbols:nnn {#1} { 26 }
{
{ 13{a?
{ 23{v?}
{26 {z1?}
}
}

\int_to_bin:n {(integer expression)}

Calculates the value of the (integer expression) and places the binary representation of
the result in the input stream.

0]

\int_to_hex:n *
\int_to_Hex:n *

New: 2014-02-11

\int_to_oct:n *

New: 2014-02-11

\int_to_base:nn *
\int_to_Base:nn x

Updated: 2014-02-11

\int_to_roman:n
\int_to_Roman:n ¥

Updated: 2011-10-22

\int_from_alph:n *

Updated: 2014-08-25

\int_from_bin:n *

New: 2014-02-11
Updated: 2014-08-25

\int_to_hex:n {(integer expression)}

Calculates the value of the (integer expression) and places the hexadecimal (base 16)
representation of the result in the input stream. Letters are used for digits beyond 9:
lower case letters for \int_to_hex:n and upper case ones for \int_to_Hex:n. The
resulting tokens are digits with category code 12 (other) and letters with category code
11 (letter).

\int_to_oct:n {(integer expression)}

Calculates the value of the (integer expression) and places the octal (base 8) representa-
tion of the result in the input stream. The resulting tokens are digits with category code
12 (other) and letters with category code 11 (letter).

\int_to_base:nn {(integer expression)} {(base)}

Calculates the value of the (integer expression) and converts it into the appropriate
representation in the (base); the later may be given as an integer expression. For bases
greater than 10 the higher “digits” are represented by letters from the English alphabet:
lower case letters for \int_to_base:n and upper case ones for \int_to_Base:n. The
maximum (base) value is 36. The resulting tokens are digits with category code 12 (other)
and letters with category code 11 (letter).

TEXhackers note: This is a generic version of \int_to_bin:n, etc.

\int_to_roman:n {(integer expression)}

Places the value of the (integer expression) in the input stream as Roman numerals,
either lower case (\int_to_roman:n) or upper case (\int_to_Roman:n). The Roman
numerals are letters with category code 11 (letter).

9 Converting from other formats to integers

\int_from_alph:n {(letters)}

Converts the (letters) into the integer (base 10) representation and leaves this in the
input stream. The (letters) are first converted to a string, with no expansion. Lower and
upper case letters from the English alphabet may be used, with “a” equal to 1 through
to “z” equal to 26. The function also accepts a leading sign, made of + and -. This is

the inverse function of \int_to_alph:n and \int_to_Alph:n.

\int_from_bin:n {(binary number)}

Converts the (binary number) into the integer (base 10) representation and leaves this in
the input stream. The (binary number) is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by binary digits. This is
the inverse function of \int_to_bin:n.

76

\int_from_hex:n x

New: 2014-02-11
Updated: 2014-08-25

\int_from_oct:n *

New: 2014-02-11
Updated: 2014-08-25

\int_from_roman:n *

Updated: 2014-08-25

\int_from_base:nn *

Updated: 2014-08-25

\int_show:N
ic

\int_show:n

New: 2011-11-22
Updated: 2015-08-07

\int_log:N
ic

New: 2014-08-22

Updated: 2015-08-03

\int_log:n

New: 2014-08-22

Updated: 2015-08-07

\int_from_hex:n {(hexadecimal number)}

Converts the (hezadecimal number) into the integer (base 10) representation and leaves
this in the input stream. Digits greater than 9 may be represented in the (hezadecimal
number) by upper or lower case letters. The (hezadecimal number) is first converted to
a string, with no expansion. The function also accepts a leading sign, made of + and -.
This is the inverse function of \int_to_hex:n and \int_to_Hex:n.

\int_from_oct:n {(octal number)}

Converts the (octal number) into the integer (base 10) representation and leaves this in
the input stream. The (octal number) is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by octal digits. This is
the inverse function of \int_to_oct:n.

\int_from_roman:n {(roman numeral)}

Converts the (roman numeral) into the integer (base 10) representation and leaves this in
the input stream. The (roman numeral) is first converted to a string, with no expansion.
The (roman numeral) may be in upper or lower case; if the numeral contains characters
besides mdclxvi or MDCLXVI then the resulting value will be —1. This is the inverse
function of \int_to_roman:n and \int_to_Roman:n.

\int_from_base:nn {(number)} {(base)}

Converts the (number) expressed in (base) into the appropriate value in base 10. The
(number) is first converted to a string, with no expansion. The (number) should consist
of digits and letters (either lower or upper case), plus optionally a leading sign. The
maximum (base) value is 36. This is the inverse function of \int_to_base:nn and \int_-
to_Base:nn.

10 Viewing integers

\int_show:N (integer)

Displays the value of the (integer) on the terminal.
\int_show:n {(integer expression)}

Displays the result of evaluating the (integer expression) on the terminal.

\int_log:N (integer)
Writes the value of the (integer) in the log file.

\int_log:n {(integer expression)}

Writes the result of evaluating the (integer ezpression) in the log file.

7

\c_zero

\c_one

\c_two

\c_three
\c_four

\c_five

\c_six

\c_seven
\c_eight
\c_nine

\c_ten
\c_eleven
\c_twelve
\c_thirteen
\c_fourteen
\c_fifteen
\c_sixteen
\c_thirty_two
\c_one_hundred
\c_two_hundred_fifty_five
\c_two_hundred_fifty_six
\c_one_thousand
\c_ten_thousand

\c_max_int

\c_max_register_int

\c_max_char_int

\1_tmpa_int
\1_tmpb_int

\g_tmpa_int
\g_tmpb_int

11 Constant integers

Integer values used with primitive tests and assignments: self-terminating nature makes
these more convenient and faster than literal numbers.

The maximum value that can be stored as an integer.

Maximum number of registers.

Maximum character code completely supported by the engine.

12 Scratch integers

Scratch integer for local assignment. These are never used by the kernel code, and so

are safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch integer for global assignment. These are never used by the kernel code, and so
are safe for use with any TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

78

\if_int_compare:w =

\if_case:w «*
\or: *

\if_int_odd:w «*

__int_to_roman:w *

13 Primitive conditionals

\if_int_compare:w (integer:) (relation) (integers)
(true code)
\else:
(false code)
\fi:
Compare two integers using (relation), which must be one of =, < or > with category code
12. The \else: branch is optional.

TEXhackers note: These are both names for the TEX primitive \ifnum.

\if_case:w (integer) (caseo)

\or: (casei)

\or:

\else: (default)
\fi:
Selects a case to execute based on the value of the (integer). The first case ({casep)) is
executed if (integer) is 0, the second ((case;)) if the (integer) is 1, etc. The (integer)
may be a literal, a constant or an integer expression (e.g. using \int_eval:n).

TEXhackers note: These are the TEX primitives \ifcase and \or.

\if_int_odd:w (tokens) (optional space)
(true code)
\else:
(true code)
\fi:
Expands (tokens) until a non-numeric token or a space is found, and tests whether the
resulting (integer) is odd. If so, (true code) is executed. The \else: branch is optional.

TgXhackers note: This is the TEX primitive \ifodd.

14 Internal functions

__int_to_roman:w (integer) (space) or (non-expandable token)

Converts (integer> to it lower case Roman representation. Expansion ends when a space
or non-expandable token is found. Note that this function produces a string of letters with
category code 12 and that protected functions are expanded by this process. Negative
(integer) values result in no output, although the function does not terminate expansion
until a suitable endpoint is found in the same way as for positive numbers.

TEXhackers note: This is the TEX primitive \romannumeral renamed.

79

__int_value:w x

__int_eval:w *
__int_eval_end: ~*

__prg_compare_error:
__prg_compare_error:Nw

__int_value:w (integer)
__int_value:w (tokens) (optional space)

Expands (tokens) until an (integer) is formed. One space may be gobbled in the process.

TEXhackers note: This is the TEX primitive \number.

__int_eval:w (intexpr) __int_eval_end:

Evaluates (integer expression) as described for \int_eval:n. The evaluation stops when
an unexpandable token which is not a valid part of an integer is read or when __int_-
eval_end: is reached. The latter is gobbled by the scanner mechanism: __int_eval_-
end: itself is unexpandable but used correctly the entire construct is expandable.

TEXhackers note: This is the e-TEX primitive \numexpr.

__prg_compare_error:
__prg_compare_error:Nw (token)

These are used within \int_compare:nTF, \dim_compare:nTF and so on to recover cor-
rectly if the n-type argument does not contain a properly-formed relation.

80

__intarray_new:Nn

\

intarray_count:N *

__intarray_gset:Nnn
__intarray_gset_fast:Nnn

__intarray_item:Nn *
__intarray_item_fast:Nn =

Part X
The I3intarray package: low-level
arrays of small integers

1 I3intarray documentation

This module provides no user function: at present it is meant for kernel use only.

It is a wrapper around the \fontdimen primitive, used to store arrays of integers
(with a restricted range: absolute value at most 23° — 1). In contrast to I3seq sequences
the access to individual entries is done in constant time rather than linear time, but only
integers can be stored. More precisely, the primitive \fontdimen stores dimensions but
the I3intarray package transparently converts these from/to integers. Assignments are
always global.

While LuaTgX’s memory is extensible, other engines can “only” deal with a bit less
than 4 x 10% entries in all \fontdimen arrays combined (with default TEXLive settings).

1.1 Internal functions

__intarray_new:Nn (intarray var) {(size)}

Evaluates the integer expression (size) and allocates an (integer array variable) with that
number of (zero) entries.

__intarray_count:N (intarray var)

Expands to the number of entries in the (integer array variable). Contrarily to \seq_-
count: N this is performed in constant time.

__intarray_gset:Nnn (intarray var) {(position)} {(value)}
__intarray_gset_fast:Nnn (intarray var) {(position)} {(value)}

Stores the result of evaluating the integer expression (wvalue) into the (integer array
variable) at the (integer expression) (position). While __intarray_gset:Nnn checks
that the (position) is between 1 and the __intarray_count:N and that the (value)’s
absolute value is at most 230 — 1, the “fast” function performs no such bound check.
Assignments are always global.

__intarray_item:Nn (intarray var) {(position)}
__intarray_item_fast:Nn (intarray var) {(position)}

Expands to the integer entry stored at the (integer expression) (position) in the (integer
array variable). While __intarray_item:Nn checks that the (position) is between 1
and the __intarray_count:N, the “fast” function performs no such bound check.

81

\flag_new:

\flag_clear:

\flag_clear_new:

\flag_show:

\flag_log:

Part XI
The 13flag package: expandable flags

Flags are the only data-type that can be modified in expansion-only contexts. This
module is meant mostly for kernel use: in almost all cases, booleans or integers should
be preferred to flags because they are very significantly faster.

A flag can hold any non-negative value, which we call its (height). In expansion-
only contexts, a flag can only be “raised”: this increases the (height) by 1. The (height)
can also be queried expandably. However, decreasing it, or setting it to zero requires
non-expandable assignments.

Flag variables are always local. They are referenced by a (flag name) such as str_-
missing. The (flag name) is used as part of \use:c constructions hence is expanded at
point of use. It must expand to character tokens only, with no spaces.

A typical use case of flags would be to keep track of whether an exceptional condition
has occured during expandable processing, and produce a meaningful (non-expandable)
message after the end of the expandable processing. This is exemplified by I3str-convert,
which for performance reasons performs conversions of individual characters expandably
and for readability reasons produces a single error message describing incorrect inputs
that were encountered.

Flags should not be used without carefully considering the fact that raising a flag
takes a time and memory proportional to its height. Flags should not be used unless
unavoidable.

1 Setting up flags

\flag_new:n {(flag name)}

Creates a new flag with a name given by (flag name), or raises an error if the name is
already taken. The (flag name) may not contain spaces. The declaration is global, but
flags are always local variables. The (flag) will initially have zero height.

\flag_clear:n {(flag name)}
The (flag)’s height is set to zero. The assignment is local.

\flag_clear_new:n {(flag name)}

Ensures that the (flag) exists globally by applying \flag_new:n if necessary, then applies
\flag_clear:n, setting the height to zero locally.

\flag_show:n {(flag name)}
Displays the (flag)’s height in the terminal.

\flag_log:n {(flag name)}
Writes the (flag)’s height to the log file.

82

2 Expandable flag commands

*

\flag_if_exist_p:n \flag_if_exist:n {(flag name)}

\flag if exist:nlF * This function returns true if the (flag name) references a flag that has been defined

previously, and false otherwise.

*

\flag_if_raised_p:n \flag_if_raised:n {(flag name)}

\flag_if_raised:nTF *

This function returns true if the (flag) has non-zero height, and false if the (flag) has
zero height.

\flag_height:n

*

\flag_height:n {(flag name)}

Expands to the height of the (flag) as an integer denotation.

\flag_raise:n * \flag_raise:n {(flag name)}

The (flag)’s height is increased by 1 locally.

83

\quark_new:N

Part XII
The 13quark package
Quarks

1 Introduction to quarks and scan marks

Two special types of constants in IATEX3 are “quarks” and “scan marks”. By convention
all constants of type quark start out with \g_, and scan marks start with \s_. Scan
marks are for internal use by the kernel: they are not intended for more general use.

1.1 Quarks

Quarks are control sequences that expand to themselves and should therefore never be
executed directly in the code. This would result in an endless loop!

They are meant to be used as delimiter in weird functions, with the most command
use case as the ‘stop token’ (i.e. \q_stop). For example, when writing a macro to parse
a user-defined date

\date_parse:n {19/June/1981}
one might write a command such as

\cs_new:Npn \date_parse:n #1 { \date_parse_aux:w #1 \g_stop }
\cs_new:Npn \date_parse_aux:w #1 / #2 / #3 \q_stop
{ <do something with the date> }

Quarks are sometimes also used as error return values for functions that receive
erroneous input. For example, in the function \prop_get :NnN to retrieve a value stored
in some key of a property list, if the key does not exist then the return value is the quark
\gq_no_value. As mentioned above, such quarks are extremely fragile and it is imperative
when using such functions that code is carefully written to check for pathological cases
to avoid leakage of a quark into an uncontrolled environment.

Quarks also permit the following ingenious trick when parsing tokens: when you
pick up a token in a temporary variable and you want to know whether you have picked
up a particular quark, all you have to do is compare the temporary variable to the quark
using \t1l_if_eq:NNTF. A set of special quark testing functions is set up below. All the
quark testing functions are expandable although the ones testing only single tokens are
much faster. An example of the quark testing functions and their use in recursion can
be seen in the implementation of \clist_map_function:NN.

2 Defining quarks

\quark_new:N (quark)

Creates a new (quark) which expands only to (quark). The (quark) will be defined
globally, and an error message will be raised if the name was already taken.

84

\g_stop

\q_mark

\q_nil

\q_no_value

*

\quark_if_nil_p:N
\quark_if_nil:NTF *

\quark_if_nil_p:n *
:(o]V) *

\quark_if _nil:nTF *
:(o|V)TF *

\quark_if_no_value_p:N
e
\quark_if_no_value:NTF
:cTF

b S S

\quark_if_no_value_p:n
\quark_if_no_value:nTF *

*

Used as a marker for delimited arguments, such as

\cs_set:Npn \tmp:w #1#2 \q_stop {#1}

Used as a marker for delimited arguments when \q_stop is already in use.

Quark to mark a null value in structured variables or functions. Used as an end delimiter
when this may itself may need to be tested (in contrast to \q_stop, which is only ever
used as a delimiter).

A canonical value for a missing value, when one is requested from a data structure. This
is therefore used as a “return” value by functions such as \prop_get :NnN if there is no
data to return.

3 Quark tests

The method used to define quarks means that the single token (N) tests are faster than
the multi-token (n) tests. The later should therefore only be used when the argument
can definitely take more than a single token.

\quark_if_nil_p:N (token)
\quark_if_nil:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_nil.

\quark_if_nil_p:n {(token list)}
\quark_if_nil:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_nil (distinct from (token list) being empty or
containing \g_nil plus one or more other tokens).

\quark_if_no_value_p:N (token)
\quark_if_no_value:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_no_value.

\quark_if_no_value_p:n {(token list)}
\quark_if_no_value:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_no_value (distinct from (token list) being empty
or containing \q_no_value plus one or more other tokens).

4 Recursion
This module provides a uniform interface to intercepting and terminating loops as when

one is doing tail recursion. The building blocks follow below and an example is shown in
Section 5.

85

\q_recursion_tail This quark is appended to the data structure in question and appears as a real element
there. This means it gets any list separators around it.

\q_recursion_stop This quark is added after the data structure. Its purpose is to make it possible to
terminate the recursion at any point easily.

\quark_if_recursion_tail_stop:N \quark_if_recursion_tail_stop:N <token>

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop:n \quark_if_recursion_tail_stop:n {(token list)}
e

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop_do:Nn \quark_if_recursion_tail_stop_do:Nn (token) {(insertion)}

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The (insertion) code is then added to the input
stream after the recursion has ended.

\quark_if_recursion_tail_stop_do:nn \quark_if_recursion_tail_stop_do:nn {(token list)} {(insertiom)}
zon

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The (insertion) code is then added to the input
stream after the recursion has ended.

5 An example of recursion with quarks

Quarks are mainly used internally in the expl3 code to define recursion functions such
as \tl_map_inline:nn and so on. Here is a small example to demonstrate how to
use quarks in this fashion. We shall define a command called \my_map_dbl:nn which
takes a token list and applies an operation to every pair of tokens. For example,
\my_map_dbl:nn {abcd} {[--#1--#2--]~} would produce “[-a-b-] [-c-d-] ". Us-
ing quarks to define such functions simplifies their logic and ensures robustness in many
cases.

86

Here’s the definition of \my_map_dbl:nn. First of all, define the function that will
do the processing based on the inline function argument #2. Then initiate the recursion
using an internal function. The token list #1 is terminated using \q_recursion_tail,
with delimiters according to the type of recursion (here a pair of \q_recursion_tail),
concluding with \gq_recursion_stop. These quarks are used to mark the end of the
token list being operated upon.

\cs_new:Npn \my_map_dbl:nn #1#2

{
\cs_set:Npn __my_map_dbl_fn:nn ##1 ##2 {#2}
__my_map_dbl:nn #1 \q_recursion_tail \g_recursion_tail
\gq_recursion_stop

}

The definition of the internal recursion function follows. First check if either of the
input tokens are the termination quarks. Then, if not, apply the inline function to the
two arguments.

\cs_new:Nn __my_map_dbl:nn

{
\quark_if_recursion_tail_stop:n {#1}
\quark_if_recursion_tail_stop:n {#2}
__my_map_dbl_fn:nn {#1} {#2}

Finally, recurse:

__my_map_dbl:nn
¥

Note that contrarily to I¥TEX3 built-in mapping functions, this mapping function cannot
be nested, since the second map will overwrite the definition of __my_map_dbl_fn:nn.

6 Internal quark functions

__quark_if_recursion_tail_break:NN __quark_if_recursion_tail_break:nN {(token list)}
__quark_if_recursion_tail_break:nN \(type)_map_break:

Tests if (token list) contains only \q_recursion_tail, and if so terminates the recur-
sion using \(type)_map_break:. The recursion end should be marked by \prg_break_-
point:Nn \(type)_map_break:.

7 Scan marks

Scan marks are control sequences set equal to \scan_stop:, hence will never expand in an
expansion context and will be (largely) invisible if they are encountered in a typesetting
context.

Like quarks, they can be used as delimiters in weird functions and are often safer to
use for this purpose. Since they are harmless when executed by TEX in non-expandable
contexts, they can be used to mark the end of a set of instructions. This allows to skip
to that point if the end of the instructions should not be performed (see 13regex).

87

The scan marks system is only for internal use by the kernel team in a small number
of very specific places. These functions should not be used more generally.

__scan_new:N __scan_new:N (scan mark)

Creates a new (scan mark) which is set equal to \scan_stop:. The (scan mark) will be
defined globally, and an error message will be raised if the name was already taken by
another scan mark.

\s

stop Used at the end of a set of instructions, as a marker that can be jumped to using __-
use_none_delimit_by_s__stop:w.

__use_none_delimit_by_s__stop:w __use_none_delimit_by_s__stop:w <tokens> \s__stop

Removes the (tokens) and \s__stop from the input stream. This leads to a low-level
TEX error if \s__stop is absent.

88

\prg_new_conditional:Npnn
\prg_set_conditional:Npnn
\prg_new_conditional:Nnn
\prg_set_conditional:Nnn

Updated: 2012-02-06

Part XIII
The 13prg package
Control structures

Conditional processing in IXTEX3 is defined as something that performs a series of tests,
possibly involving assignments and calling other functions that do not read further ahead
in the input stream. After processing the input, a state is returned. The states returned
are (true) and (false).

TEX3 has two forms of conditional flow processing based on these states. The first
form is predicate functions that turn the returned state into a boolean (true) or (false).
For example, the function \cs_if_free_p:N checks whether the control sequence given
as its argument is free and then returns the boolean (true) or (false) values to be used in
testing with \if_predicate:w or in functions to be described below. The second form
is the kind of functions choosing a particular argument from the input stream based on
the result of the testing as in \cs_if_free:NTF which also takes one argument (the N)
and then executes either true or false depending on the result.

TEXhackers note: The arguments are executed after exiting the underlying \if...\fi:
structure.

1 Defining a set of conditional functions

\prg_new_conditional:Npnn \(name):(arg spec) (parameters) {(conditions)} {(code)}
\prg_new_conditional:Nnn \(name):({arg spec) {(conditions)} {(code)}

These functions create a family of conditionals using the same {(code)} to perform the
test created. Those conditionals are expandable if (code) is. The new versions will
check for existing definitions and perform assignments globally (cf. \cs_new:Npn) whereas
the set versions do no check and perform assignments locally (cf. \cs_set:Npn). The
conditionals created are dependent on the comma-separated list of (conditions), which
should be one or more of p, T, F and TF.

\prg_new_protected_conditional:Npnn \prg_new_protected_conditional:Npnn \(name):(arg spec) (parameters)
\prg_set_protected_conditional:Npnn {(conditions)} {(code)}

\prg_new_protected_conditional:Nnn \prg_new_protected_conditional:Nnn \(name):{(arg spec)
\prg_set_protected_conditional:Nnn {(conditions)} {(code)}

Updated: 2012-02-06

These functions create a family of protected conditionals using the same {(code)} to
perform the test created. The (code) does not need to be expandable. The new version will
check for existing definitions and perform assignments globally (¢f. \cs_new:Npn) whereas
the set version will not (¢f. \cs_set:Npn). The conditionals created are depended on
the comma-separated list of (conditions), which should be one or more of T, F and TF

(not p).
The conditionals are defined by \prg_new_conditional:Npnn and friends as:

89

o \(name)_p:(arg spec) — a predicate function which will supply either a logical
true or logical false. This function is intended for use in cases where one or more
logical tests are combined to lead to a final outcome. This function cannot be
defined for protected conditionals.

o \(name):(arg spec)T — a function with one more argument than the original (arg
spec) demands. The (true branch) code in this additional argument will be left on
the input stream only if the test is true.

o \(name):(arg spec)F — a function with one more argument than the original {(arg
spec) demands. The (false branch) code in this additional argument will be left on
the input stream only if the test is false.

e \(name):(arg spec)TF — a function with two more argument than the original
(arg spec) demands. The (true branch) code in the first additional argument will
be left on the input stream if the test is true, while the (false branch) code in the
second argument will be left on the input stream if the test is false.

The (code) of the test may use (parameters) as specified by the second argument to \prg_-
set_conditional:Npnn: this should match the (argument specification) but this is not
enforced. The Nnn versions infer the number of arguments from the argument specification
given (cf. \cs_new:Nn, etc.). Within the (code), the functions \prg_return_true: and
\prg_return_false: are used to indicate the logical outcomes of the test.

An example can easily clarify matters here:

\prg_set_conditional:Npnn \foo_if_bar:NN #1#2 { p , T , TF }
{
\if _meaning:w \1_tmpa_tl #1
\prg_return_true:
\else:
\if_meaning:w \1_tmpa_tl #2
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:
}

This defines the function \foo_if_bar_p:NN, \foo_if_bar:NNTF and \foo_if_bar:NNT
but not \foo_if_bar:NNF (because F is missing from the (conditions) list). The return
statements take care of resolving the remaining \else: and \fi: before returning the
state. There must be a return statement for each branch; failing to do so will result in
erroneous output if that branch is executed.

\prg_new_eq_conditional:NNn \prg_new_eq_conditional:NNn \(name:):(arg speci) \(name:):(arg specs)
\prg_set_eq_conditional:NNn {(conditions)}

These functions copy a family of conditionals. The new version will check for existing
definitions (c¢f. \cs_new_eq:NN) whereas the set version will not (¢f. \cs_set_eq:NN).
The conditionals copied are depended on the comma-separated list of {conditions), which
should be one or more of p, T, F and TF.

90

\prg_return_true: *
\prg_return_false: x

\bool_new:N
c

\bool_set_false:N

e
\bool_gset_false:N
ic

\bool_set_true:N

:c
\bool_gset_true:N
ic

\prg_return_true:

\prg_return_false:

These “return” functions define the logical state of a conditional statement. They appear
within the code for a conditional function generated by \prg_set_conditional:Npnn,
etc, to indicate when a true or false branch should be taken. While they may appear
multiple times each within the code of such conditionals, the execution of the conditional
must result in the expansion of one of these two functions ezactly once.

The return functions trigger what is internally an f-expansion process to com-
plete the evaluation of the conditional. Therefore, after \prg_return_true: or \prg_-
return_false: there must be no non-expandable material in the input stream for the
remainder of the expansion of the conditional code. This includes other instances of
either of these functions.

2 The boolean data type

This section describes a boolean data type which is closely connected to conditional
processing as sometimes you want to execute some code depending on the value of a
switch (e.g., draft/final) and other times you perhaps want to use it as a predicate
function in an \if_predicate:w test. The problem of the primitive \if _false: and
\if_true: tokens is that it is not always safe to pass them around as they may interfere
with scanning for termination of primitive conditional processing. Therefore, we employ
two canonical booleans: \c_true_bool or \c_false_bool. Besides preventing problems
as described above, it also allows us to implement a simple boolean parser supporting
the logical operations And, Or, Not, etc. which can then be used on both the boolean
type and predicate functions.

All conditional \bool_ functions except assignments are expandable and expect the
input to also be fully expandable (which will generally mean being constructed from
predicate functions, possibly nested).

TEXhackers note: The bool data type is not implemented using the \iffalse/\iftrue
primitives, in contrast to \newif, etc., in plain TEX, I¥TEX 2¢ and so on. Programmers should
not base use of bool switches on any particular expectation of the implementation.

\bool_new:N (boolean)

Creates a new (boolean) or raises an error if the name is already taken. The declaration
is global. The (boolean) will initially be false.

\bool_set_false:N (boolean)

Sets (boolean) logically false.

\bool_set_true:N (boolean)

Sets (boolean) logically true.

91

\bool_set_eq:NN

:(cN|N¢|ec)

\bool_gset_eq:NN

: (cN|Nclcc)

\bool_set:Nn

icn
\bool_gset:Nn
:cn

Updated: 2012-07-08

\bool_if_p:N
H
\bool_if:NTF
:cTF

* o ot

\bool_show:N
:c

New: 2012-02-09
Updated: 2015-08-01

\bool_show:n

New: 2012-02-09
Updated: 2015-08-07

\bool_log:N
ic

New: 2014-08-22
Updated: 2015-08-03

\bool_log:n

New: 2014-08-22
Updated: 2015-08-07

\bool_if_exist_p:N

\bool_if_exist:NTF

:C

b . S

:cTF

New: 2012-03-03

\1_tmpa_bool
\1_tmpb_bool

\g_tmpa_bool
\g_tmpb_bool

\bool_set_eq:NN (boolean;) (booleany)

Sets (boolean) to the current value of (booleansy).

\bool_set:Nn (boolean) {(boolexpr)}

Evaluates the (boolean expression) as described for \bool_if :nTF, and sets the (boolean)
variable to the logical truth of this evaluation.

\bool_if_p:N (boolean)
\bool_if:NTF (boolean) {(true code)} {(false code)}

Tests the current truth of (boolean), and continues expansion based on this result.

\bool_show:N (boolean)

Displays the logical truth of the (boolean) on the terminal.

\bool_show:n {(boolean expression)}

Displays the logical truth of the (boolean expression) on the terminal.

\bool_log:N (boolean)
Writes the logical truth of the (boolean) in the log file.

\bool_log:n {(boolean expression)}

Writes the logical truth of the (boolean expression) in the log file.

\bool_if_exist_p:N (boolean)

\bool_if_exist:NTF (boolean) {(true code)} {(false code)}

Tests whether the (boolean) is currently defined. This does not check that the (boolean)
really is a boolean variable.

A scratch boolean for local assignment. It is never used by the kernel code, and so is
safe for use with any I4TEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

A scratch boolean for global assignment. It is never used by the kernel code, and so is

safe for use with any I#TEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

92

3 Boolean expressions

As we have a boolean datatype and predicate functions returning boolean (true) or (false)
values, it seems only fitting that we also provide a parser for (boolean expressions).

A boolean expression is an expression which given input in the form of predicate
functions and boolean variables, return boolean (true) or (false). It supports the logical
operations And, Or and Not as the well-known infix operators && and || and prefix !
with their usual precedences (namely, && binds more tightly than []). In addition to
this, parentheses can be used to isolate sub-expressions. For example,

\int_compare_p:n { 1 = 1 } &&
(
\int_compare_p:n { 2 = 3 } ||
\int_compare_p:n { 4 <= 4 } ||
\str_if_eq_p:nn { abc } { def }
) &&
! \int_compare_p:n { 2 = 4 }

is a valid boolean expression.

At present, the infix operators && and | | perform lazy evaluation, but this will change
in the near future. Contrarily to some other programming languages, the operators &&
and || will evaluate both operands in all cases, even when the first operand is enough
to determine the result. This “eager” evaluation should be contrasted with the “lazy”
evaluation of \bool_lazy_... functions.

TEXhackers note: The eager evaluation of boolean expressions is unfortunately necessary.
Indeed, a lazy parser can get confused if && and || appear as (unbraced) arguments of some
predicates.

Minimal (lazy) evaluation can be obtained using the conditionals \bool_lazy_-
all:nTF, \bool_lazy_and:nnTF, \bool_lazy_any:nTF, or \bool_lazy_or:nnTF, which
only evaluate their boolean expression arguments when they are needed to determine the
resulting truth value. For example, when evaluating the boolean expression

\bool_lazy_and_p:nn

{
\bool_lazy_any_p:n
{
{ \int_compare_p:n { 2 =3 } }
{ \int_compare_p:n { 4 <=4 } }
{ \int_compare_p:n { 1 = \error } } ’ skipped
}
}

{ ! \int_compare_p:n { 2 =4 } }

the line marked with skipped is not expanded because the result of \bool_lazy_any_-
p:n is known once the second boolean expression is found to be logically true. On the
other hand, the last line is expanded because its logical value is needed to determine the
result of \bool_lazy_and_p:nn.

93

\bool_if_p:n «*
\bool_if:nTF x

Updated: 2012-07-08

\bool_lazy_all_p:n *
\bool_lazy_all:nTF %

New: 2015-11-15

\bool_lazy_and_p:nn *
\bool_lazy_and:nnTF *

New: 2015-11-15

\bool_lazy_any_p:n *
\bool_lazy_any:nTF *

New: 2015-11-15

\bool_lazy_or_p:nn x
\bool_lazy_or:nnTF x*

New: 2015-11-15

\bool_not_p:n *

Updated: 2012-07-08

\bool_xor_p:nn *

Updated: 2012-07-08

\bool_if_p:n {(boolean expression)}
\bool_if :nTF {(boolean expression)} {(true code)} {(false code)}

Tests the current truth of (boolean expression), and continues expansion based on this
result. The (boolean expression) should consist of a series of predicates or boolean vari-
ables with the logical relationship between these defined using && (“And”), || (“Or”), !
(“Not”) and parentheses. The logical Not applies to the next predicate or group.

\bool_lazy_all_p:n { {(boolexpri)} {(boolexpr:)} --- {(boolexprn)}
\bool_lazy_all:nTF { {(boolexpr;)} {(boolexprs)} --- {(boolexprn)}
{(false code)}

}
} {(true code)}

Implements the “And” operation on the (boolean expressions), hence is true if all of them
are true and false if any of them is false. Contrarily to the infix operator &&, only the
(boolean expressions) which are needed to determine the result of \bool_lazy_all:nTF
will be evaluated. See also \bool_lazy_and:nnTF when there are only two (boolean
expressions).

\bool_lazy_and_p:nn {(boolexpri)} {(boolexprs)}

\bool_lazy_and:nnTF {(boolexpri)} {(boolexprz)} {(true code)} {(false code)}
Implements the “And” operation between two boolean expressions, hence is true if both
are true. Contrarily to the infix operator &&, the (boolexprs) will only be evaluated if it is
needed to determine the result of \bool_lazy_and:nnTF. See also \bool_lazy_all:nTF
when there are more than two (boolean expressions).

(boolexprs)} --- {(boolexprn)
(boolexprz)} -+ {(boolexprn)

\bool_lazy_any_p:n { {(boolexpri)
\bool_lazy_any:nTF { {(boolexpri)
{(false code)}

3}
T}

[

{
{ {(true code)}
Implements the “Or” operation on the (boolean expressions), hence is true if any of
them is true and false if all of them are false. Contrarily to the infix operator
|1, only the (boolean expressions) which are needed to determine the result of \bool_-
lazy_any:nTF will be evaluated. See also \bool_lazy_or:nnTF when there are only two
(boolean expressions).

\bool_lazy_or_p:nn {(boolexpri)} {(boolexprs)}
\bool_lazy_or:nnTF {(boolexpri)} {(boolexprs)} {(true code)} {(false code)}

Implements the “Or” operation between two boolean expressions, hence is true if either
one is true. Contrarily to the infix operator | |, the (boolezprs) will only be evaluated if it
is needed to determine the result of \bool_lazy_or:nnTF. See also \bool_lazy_any:nTF
when there are more than two (boolean expressions).

\bool_not_p:n {(boolean expression)}

Function version of ! ({boolean expression)) within a boolean expression.
\bool_xor_p:nn {(boolexpr:)} {(boolexprs)}

Implements an “exclusive or” operation between two boolean expressions. There is no
infix operation for this logical operator.

94

%

\bool_do_until:Nn
:cn

L
e

\bool_do_while:Nn 3
icn W

D

\bool_until_do:Nn
icn

%

>¢

\bool_while_do:Nn
:cn

L
e

\bool_do_until:nn 5

Updated: 2012-07-08

\bool_do_while:nn 3¢

Updated: 2012-07-08

\bool_until_do:nn 5

Updated: 2012-07-08

\bool_while_do:nn 3¢

Updated: 2012-07-08

4 Logical loops

Loops using either boolean expressions or stored boolean values.

\bool_do_until:Nn (boolean) {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical value
of the (boolean). If it is false then the (code) will be inserted into the input stream again
and the process will loop until the (boolean) is true.

\bool_do_while:Nn (boolean) {{code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is true then the (code) will be inserted into the input stream
again and the process will loop until the (boolean) is false.

\bool_until_do:Nn (boolean) {(code)}

This function firsts checks the logical value of the (boolean). If it is false the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process will then loop until the (boolean) is true.

\bool_while_do:Nn (boolean) {(code)}

This function firsts checks the logical value of the (boolean). If it is true the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process will then loop until the (boolean) is false.

\bool_do_until:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if:nTF. If it is false then the
(code) will be inserted into the input stream again and the process will loop until the
(boolean expression) evaluates to true.

\bool_do_while:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if :nTF. If it is true then the
(code) will be inserted into the input stream again and the process will loop until the
(boolean expression) evaluates to false.

\bool_until_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is false the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process will then loop until the (boolean expression) is true.

\bool_while_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is true the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process will then loop until the (boolean expression) is false.

95

\prg_replicate:nn *

Updated: 2011-07-04

*

\mode_if_horizontal_p:
\mode_if_horizontal:TF *

\mode_if_inner_p: *
\mode_if_inner:TF x

\mode_if_math_p: *
\mode_if_math:TF x

Updated: 2011-09-05

\mode_if_vertical_p:
\mode_if_vertical:TF *

\if_predicate:w *

\if_bool:N *

5 Producing multiple copies

\prg_replicate:nn {(integer expression)} {(tokens)}

Evaluates the (integer expression) (which should be zero or positive) and creates the
resulting number of copies of the (tokens). The function is both expandable and safe for
nesting. It yields its result after two expansion steps.

6 Detecting TEX’s mode

\mode_if_horizontal_p:
\mode_if_horizontal:TF {(true code)} {(false code)}

Detects if TEX is currently in horizontal mode.

\mode_if_inner_p:
\mode_if_inner:TF {(true code)} {(false code)}

Detects if TEX is currently in inner mode.

\mode_if _math:TF {({true code)} {(false code)}

Detects if TEX is currently in maths mode.

\mode_if_vertical_p:
\mode_if_vertical:TF {(true code)} {(false code)}

Detects if TEX is currently in vertical mode.

7 Primitive conditionals

\if_predicate:w (predicate) (true code) \else: (false code) \fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the (predicate) but
to make the coding clearer this should be done through \if _bool:N.)

\if_bool:N (boolean) (true code) \else: (false code) \fi:

This function takes a boolean variable and branches according to the result.

96

\group_align_safe_begin: x
\group_align_safe_end: *

Updated: 2011-08-11

__prg_break_point:Nn *

__prg_map_break:Nn *

\g__prg_map_int

__prg_break_point: x

__prg_break:
__prg_break:n *

8 Internal programming functions

\group_align_safe_begin:

\group_align_safe_end:

These functions are used to enclose material in a TEX alignment environment within a
specially-constructed group. This group is designed in such a way that it does not add
brace groups to the output but does act as a group for the & token inside \halign. This
is necessary to allow grabbing of tokens for testing purposes, as TEX uses group level
to determine the effect of alignment tokens. Without the special grouping, the use of a
function such as \peek_after:Nw will result in a forbidden comparison of the internal
\endtemplate token, yielding a fatal error. Each \group_align_safe_begin: must be
matched by a \group_align_safe_end:, although this does not have to occur within
the same function.

__prg_break_point:Nn \(type)_map_break: (tokens)

Used to mark the end of a recursion or mapping: the functions \(type)_map_break: and
\(type)_map_break:n use this to break out of the loop. After the loop ends, the (tokens)
are inserted into the input stream. This occurs even if the break functions are not applied:
__prg_break_point:Nn is functionally-equivalent in these cases to \use_ii:nn.

__prg_map_break:Nn \(type)_map_break: {(user code)}

__prg_break_point:Nn \(type)_map_break: {(ending code)}

Breaks a recursion in mapping contexts, inserting in the input stream the (user code)
after the (ending code) for the loop. The function breaks loops, inserting their (ending
code), until reaching a loop with the same (type) as its first argument. This \(type)_-
map_break: argument is simply used as a recognizable marker for the (type).

This integer is used by non-expandable mapping functions to track the level of nesting
in force. The functions __prg_map_1:w, __prg_map_2:w, etc., labelled by \g__prg_-
map_int hold functions to be mapped over various list datatypes in inline and variable
mappings.

This copy of \prg_do_nothing: is used to mark the end of a fast short-term recursions:
the function __prg_break:n uses this to break out of the loop.

__prg_break:n {(tokens)} ... __prg_break_point:

Breaks a recursion which has no (ending code) and which is not a user-breakable mapping
(see for instance \prop_get:Nn), and inserts (tokens) in the input stream.

97

\clist_new:N
ic

\clist_const:Nn
: (Nx|cnlcx)

New: 2014-07-05

\clist_clear:N

:c
\clist_gclear:N
ic

\clist_clear_new:N

:c
\clist_gclear_new:N
e

Part XIV
The 13clist package
Comma separated lists

Comma lists contain ordered data where items can be added to the left or right end of the
list. The resulting ordered list can then be mapped over using \clist_map_function:NN.
Several items can be added at once, and spaces are removed from both sides of each item
on input. Hence,

\clist_new:N \1_my_clist
\clist_put_left:Nn \1_my_clist { ~a ~ , ~ {b} ~ }
\clist_put_right:Nn \1_my_clist { ~{c ~ 1}, d}

results in \1_my_clist containing a,{b},{c~},d. Comma lists cannot contain empty
items, thus

\clist_clear_new:N \1l_my_clist
\clist_put_right:Nn \1_my_clist { , ~ , , }
\clist_if_empty:NTF \1_my_clist { true } { false }

will leave true in the input stream. To include an item which contains a comma, or
starts or ends with a space, surround it with braces. The sequence data type should
be preferred to comma lists if items are to contain {, }, or # (assuming the usual TEX
category codes apply).

1 Creating and initialising comma lists

\clist_new:N (comma list)

Creates a new (comma list) or raises an error if the name is already taken. The declaration
is global. The {comma list) will initially contain no items.

\clist_const:Nn (clist var) {(comma list)}

Creates a new constant (clist var) or raises an error if the name is already taken. The
value of the (clist var) will be set globally to the (comma list).

\clist_clear:N (comma list)

Clears all items from the (comma list).

\clist_clear_new:N (comma list)

Ensures that the (comma list) exists globally by applying \clist_new:N if necessary,
then applies \clist_(g)clear:N to leave the list empty.

98

\clist_set_eq:NN \clist_set_eq:NN (comma listi) (comma listz)

:(cN|N . .
\clist_gset quilN| clec) Sets the content of (comma list;) equal to that of (comma lists).
: (cN|Nclcc)
\clist_set_from_seq:NN \clist_set_from_seq:NN (comma list) (sequence)
: (cN|Nclcc)
\clist_gset_from_seq:NN

: (cN|Nc|ec)

New: 2014-07-17

Converts the data in the (sequence) into a (comma list): the original (sequence) is un-
changed. Items which contain either spaces or commas are surrounded by braces.

\clist_concat:NNN \clist_concat:NNN (comma listi) (comma listz) (comma lists)

i "°CC Concatenates the content of (comma list;) and (comma lists) together and saves the
\clist_gconcat :NNN
.ccc Tesult in (comma list;). The items in (comma listz) will be placed at the left side of the

new comia list.

\clist_if_exist_p:N » \clist_if_exist_p:N (comma list)
ic x \clist_if_exist:NTF (comma list) {(true code)} {(false code)}
\clist_if exist :N%I; * Tests whether the (comma list) is currently defined. This does not check that the (comma
:cTF *

list) really is a comma list.
New: 2012-03-03

2 Adding data to comma lists

\clist_set:Nn \clist_set:Nn (comma list) {(itemi),...,(itemn)}
: (NV|No|Nx|cn|cV|co|cx)

\clist_gset:Nn
: (NV|No|Nx|cn|cV|co|cx)

New: 2011-09-06

Sets (comma list) to contain the (items), removing any previous content from the variable.
Spaces are removed from both sides of each item.

\clist_put_left:Nn \clist_put_left:Nn (comma list) {{itemi),...,(item,)}
: (NV|No|Nx|cn|cV|co|cx)

\clist_gput_left:Nn
: (NV|No|Nx|cn|cV|co|cx)

Updated: 2011-09-05

Appends the (items) to the left of the (comma list). Spaces are removed from both sides
of each item.

99

\clist_put_right:Nn

\clist_put_right:Nn (comma list) {(item),...,{item,)}

: (NV|No|Nx|cn|cV|co|cx)

\clist_gput_right:Nn

: (NV|No|Nx|cn|cV|co|cx)

Updated: 2011-09-05

Appends the (items) to the right of the (comma list). Spaces are removed from both
sides of each item.

3 Modifying comma lists

While comma lists are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update comma lists, while retaining the
order of the unaffected entries.

\clist_remove_duplicates:N \clist_remove_duplicates:N (comma list)

:C

\clist_gremove_duplicates:N

:C

\clist_remove_all:Nn

:cn
\clist_gremove_all:Nn
:cn

Updated: 2011-09-06

\clist_reverse:N

c
\clist_greverse:N
ic

New: 2014-07-18

\clist_reverse:n

New: 2014-07-18

Removes duplicate items from the (comma list), leaving the left most copy of each item
in the (comma list). The (item) comparison takes place on a token basis, as for \t1_-
if_eq:nn(TF).

TEXhackers note: This function iterates through every item in the (comma list) and does
a comparison with the (items) already checked. It is therefore relatively slow with large comma
lists. Furthermore, it will not work if any of the items in the (comma list) contains {, }, or #
(assuming the usual TEX category codes apply).

\clist_remove_all:Nn (comma list) {(item)}
Removes every occurrence of (item) from the (comma list). The (item) comparison takes

place on a token basis, as for \t1_if_eq:nn(TF).

TgXhackers note: The (item) may not contain {, }, or # (assuming the usual TEX
category codes apply).

\clist_reverse:N (comma list)

Reverses the order of items stored in the (comma list).

\clist_reverse:n {(comma list)}

Leaves the items in the (comma list) in the input stream in reverse order. Braces and
spaces are preserved by this process.

TgXhackers note: The result is returned within \unexpanded, which means that the
comma list will not expand further when appearing in an x-type argument expansion.

100

\clist_sort:Nn

icn
\clist_gsort:Nn
icn

New: 2017-02-06

\clist_if_empty_p:N
:c
\clist_if_empty:NTF
:cTF

* ok A

\clist_if_empty_p:n *
\clist_if_empty:nTF *

New: 2014-07-05

\clist_sort:Nn (clist var) {{comparison code)}

Sorts the items in the (clist var) according to the (comparison code), and assigns the
result to (clist var). The details of sorting comparison are described in Section 1.

4 Comma list conditionals

\clist_if_empty_p:N (comma list)
\clist_if_empty:NTF (comma list) {(true code)} {(false code)}

Tests if the (comma list) is empty (containing no items).

\clist_if_empty_p:n {(comma list)}

\clist_if_empty:nTF {(comma list)} {(true code)} {(false code)}

Tests if the (comma list) is empty (containing no items). The rules for space trimming
are as for other n-type comma-list functions, hence the comma list {~,~,,~} (without
outer braces) is empty, while {~,{},} (without outer braces) contains one element, which
happens to be empty: the comma-list is not empty.

\clist_if_in:NnTF

\clist_if_in:NnTF (comma list) {(item)} {(true code)} {(false code)}

: (NV|No|cn|cV|co) TF

\clist_if_in:nnTF

: (nV|no) TF

Updated: 2011-09-06

Tests if the (item) is present in the (comma list). In the case of an n-type (comma list),
spaces are stripped from each item, but braces are not removed. Hence,

\clist_if_in:nnTF { a , {b}~ , {b} , ¢ } { b } {true} {false}
yields false.

TgXhackers note: The (item) may not contain {, }, or # (assuming the usual TEX
category codes apply), and should not contain , nor start or end with a space.

5 Mapping to comma lists

The functions described in this section apply a specified function to each item of a comma
list.

When the comma list is given explicitly, as an n-type argument, spaces are trimmed
around each item. If the result of trimming spaces is empty, the item is ignored.
Otherwise, if the item is surrounded by braces, one set is removed, and the result is
passed to the mapped function. Thus, if your comma list that is being mapped is
{ay,u{{v}. 3}, L, {},u{c},} then the arguments passed to the mapped function are ‘a’,
‘{b}.’, an empty argument, and ‘c’.

101

e

\clist_map_function:NN 3
:cN
\clist_map_function:nN

Updated: 2012-06-29

\clist_map_inline:Nn
:cn
\clist_map_inline:nn

Updated: 2012-06-29

\clist_map_variable:NNn
:cNn
\clist_map_variable:nNn

Updated: 2012-06-29

\clist_map_break:

Updated: 2012-06-29

When the comma list is given as an N-type argument, spaces have already been
trimmed on input, and items are simply stripped of one set of braces if any. This case is
more efficient than using n-type comma lists.

\clist_map_function:NN (comma list) (function)

Applies (function) to every (item) stored in the (comma list). The (function) will receive
one argument for each iteration. The (items) are returned from left to right. The function
\clist_map_inline:Nn is in general more efficient than \clist_map_function:NN. One
mapping may be nested inside another.

\clist_map_inline:Nn (comma list) {(inline function)}

Applies (inline function) to every (item) stored within the (comma list). The (inline
function) should consist of code which will receive the (item) as #1. One in line mapping
can be nested inside another. The (items) are returned from left to right.

\clist_map_variable:NNn (comma list) (tl var.) {(function using tl var.)}

Stores each entry in the (comma list) in turn in the (¢l var.) and applies the (function
using tl var.) The (function) will usually consist of code making use of the (¢l var.), but
this is not enforced. One variable mapping can be nested inside another. The (items)
are returned from left to right.

\clist_map_break:

Used to terminate a \clist_map_. .. function before all entries in the (comma list) have
been processed. This will normally take place within a conditional statement, for example

\clist_map_inline:Nn \1_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break: }
{
% Do something useful
}
}

Use outside of a \clist_map_... scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before further items are taken from the input stream.
This will depend on the design of the mapping function.

102

\clist_map_break:n 5

Updated: 2012-06-29

\clist_count:N *
ic oK
\clist_count:n x

New: 2012-07-13

\clist_use:Nnnn *
:cnnn *

New: 2013-05-26

\clist_map_break:n {(tokens)}

Used to terminate a \clist_map_. .. function before all entries in the (comma list) have
been processed, inserting the (tokens) after the mapping has ended. This will normally
take place within a conditional statement, for example

\clist_map_inline:Nn \1_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break:n { <tokens> } }

{
% Do something useful
}
}
Use outside of a \clist_map_. .. scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the (tokens) are inserted into the input stream.
This will depend on the design of the mapping function.

\clist_count:N (comma list)

Leaves the number of items in the (comma list) in the input stream as an (integer
denotation). The total number of items in a (comma list) will include those which are
duplicates, i.e. every item in a (comma list) is unique.

6 Using the content of comma lists directly

\clist_use:Nnnn (clist var) {(separator between two)}
{(separator between more than two)} {(separator between final two)}

Places the contents of the (clist var) in the input stream, with the appropriate (separator)
between the items. Namely, if the comma list has more than two items, the (separator
between more than two) is placed between each pair of items except the last, for which
the (separator between final two) is used. If the comma list has exactly two items, then
they are placed in the input stream separated by the (separator between two). If the
comma list has a single item, it is placed in the input stream, and a comma list with no
items produces no output. An error will be raised if the variable does not exist or if it is
invalid.
For example,

\clist_set:Nn \1_tmpa_clist {a , b, , ¢, {de} , £ }
\clist_use:Nnnn \1_tmpa_clist { ~and~ } { ,~ } { ,~and~ }

will insert “a, b, c, de, and f£” in the input stream. The first separator argument is
not used in this case because the comma list has more than 2 items.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) will not expand further when appearing in an x-type argument
expansion.

103

\clist_use:Nn *
e

New: 2013-05-26

\clist_get:NN
:cN

Updated: 2012-05-14

\clist_get:NNTF
:cNTF

New: 2012-05-14

\clist_pop:NN
:cN

Updated: 2011-09-06

\clist_gpop:NN
:cN

\clist_use:Nn (clist var) {(separator)}

Places the contents of the {clist var) in the input stream, with the (separator) between
the items. If the comma list has a single item, it is placed in the input stream, and a
comma list with no items produces no output. An error will be raised if the variable does
not exist or if it is invalid.

For example,

\clist_set:Nn \1_tmpa_clist {a , b, , ¢, {de} , £ }
\clist_use:Nn \1_tmpa_clist { ~and~ }

will insert “a and b and ¢ and de and f” in the input stream.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) will not expand further when appearing in an x-type argument
expansion.

7 Comma lists as stacks

Comma lists can be used as stacks, where data is pushed to and popped from the top
of the comma list. (The left of a comma list is the top, for performance reasons.) The
stack functions for comma lists are not intended to be mixed with the general ordered
data functions detailed in the previous section: a comma list should either be used as an
ordered data type or as a stack, but not in both ways.

\clist_get:NN (comma list) (token list variable)

Stores the left-most item from a (comma list) in the (token list variable) without removing
it from the (comma list). The (token list variable) is assigned locally. If the (comma list)
is empty the (token list variable) will contain the marker value \q_no_value.

\clist_get:NNTF (comma list) (token list variable) {(true code)} {(false code)}

If the (comma list) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If the
(comma list) is non-empty, stores the top item from the (comma list) in the (token list
variable) without removing it from the (comma list). The (token list variable) is assigned
locally.

\clist_pop:NN (comma list) (token list variable)

Pops the left-most item from a (comma list) into the (token list variable), i.e. removes the
item from the comma list and stores it in the (token list variable). Both of the variables
are assigned locally.

\clist_gpop:NN (comma list) (token list variable)

Pops the left-most item from a (comma list) into the (token list variable), i.e. removes
the item from the comma list and stores it in the (token list variable). The (comma list)
is modified globally, while the assignment of the (token list variable) is local.

104

\clist_pop:NNTF
:cNTF

New: 2012-05-14

\clist_gpop:NNTF
:cNTF

New: 2012-05-14

\clist_pop:NNTF (comma list) (token list variable) {(true code)} {(false code)}

If the (comma list) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If the
(comma list) is non-empty, pops the top item from the (comma list) in the (token list
variable), i.e. removes the item from the (comma list). Both the (comma list) and the
(token list variable) are assigned locally.

\clist_gpop:NNTF (comma list) (token list variable) {(true code)} {(false code)}

If the (comma list) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If the
(comma list) is non-empty, pops the top item from the (comma list) in the (token list
variable), i.e. removes the item from the (comma list). The (comma list) is modified
globally, while the (token list variable) is assigned locally.

\clist_push:Nn

\clist_push:Nn (comma list) {(items)}

: (NV|No|Nx|cn|cV|co|cx)

\clist_gpush:Nn

: (NV|No|Nx|cn|cV|co|cx)

\clist_item:Nn *
icn &
\clist_item:nn x

New: 2014-07-17

\clist_show:N
ic

Updated: 2015-08-03

\clist_show:n

Updated: 2013-08-03

Adds the {(items)} to the top of the (comma list). Spaces are removed from both sides
of each item.

8 Using a single item

\clist_item:Nn (comma list) {(integer expression)}

Indexing items in the (comma list) from 1 at the top (left), this function will evaluate
the (integer expression) and leave the appropriate item from the comma list in the input
stream. If the (integer expression) is negative, indexing occurs from the bottom (right)
of the comma list. When the (integer expression) is larger than the number of items in
the (comma list) (as calculated by \clist_count:N) then the function will expand to
nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) will not expand further when appearing in an x-type argument
expansion.

9 Viewing comma lists

\clist_show:N (comma list)

Displays the entries in the (comma list) in the terminal.

\clist_show:n {(tokens)}

Displays the entries in the comma list in the terminal.

105

\clist_log:N
ic

New: 2014-08-22
Updated: 2015-08-03

\clist_log:n

New: 2014-08-22

\c_empty_clist

New: 2012-07-02

\1_tmpa_clist

\1_tmpb_clist

New: 2011-09-06

\g_tmpa_clist
\g_tmpb_clist

New: 2011-09-06

\clist_log:N (comma list)

Writes the entries in the (comma list) in the log file. See also \clist_show:N which
displays the result in the terminal.

\clist_log:n {(tokens)}

Writes the entries in the comma list in the log file. See also \clist_show:n which displays
the result in the terminal.

10 Constant and scratch comma lists

Constant that is always empty.

Scratch comma lists for local assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

Scratch comma lists for global assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

106

\char_set_active_eq:NN

:Nc
\char_gset_active_eq:NN
:Nc

Updated: 2015-11-12

\char_set_active_eq:nN

:nc
\char_gset_active_eq:nN
:nc

New: 2015-11-12

Part XV
The 13token package
Token manipulation

This module deals with tokens. Now this is perhaps not the most precise description so
let’s try with a better description: When programming in TgX, it is often desirable to
know just what a certain token is: is it a control sequence or something else. Similarly
one often needs to know if a control sequence is expandable or not, a macro or a primitive,
how many arguments it takes etc. Another thing of great importance (especially when it
comes to document commands) is looking ahead in the token stream to see if a certain
character is present and maybe even remove it or disregard other tokens while scanning.
This module provides functions for both and as such will have two primary function
categories: \token_ for anything that deals with tokens and \peek_ for looking ahead
in the token stream.

Most functions we will describe here can be used on control sequences, as those are
tokens as well.

It is important to distinguish two aspects of a token: its “shape” (for lack of a better
word), which affects the matching of delimited arguments and the comparison of token
lists containing this token, and its “meaning”, which affects whether the token expands
or what operation it performs. One can have tokens of different shapes with the same
meaning, but not the converse.

For instance, \if :w, \if_charcode:w, and \tex_if:D are three names for the same
internal operation of TEX, namely the primitive testing the next two characters for equal-
ity of their character code. They have the same meaning hence behave identically in many
situations. However, TEX distinguishes them when searching for a delimited argument.
Namely, the example function \show_until_if:w defined below will take everything un-
til \if :w as an argument, despite the presence of other copies of \if :w under different
names.

\cs_new:Npn \show_until_if:w #1 \if:w { \tl_show:n {#1} }
\show_until_if:w \tex_if:D \if_charcode:w \if:w

A list of all possible shapes and a list of all possible meanings are given in section 8.

1 Creating character tokens

\char_set_active_eq:NN (char) (function)

Sets the behaviour of the (char) in situations where it is active (category code 13) to be
equivalent to that of the {function). The category code of the (char) is unchanged by
this process. The (function) may itself be an active character.

\char_set_active_eq:nN {(integer expression)} (function)

Sets the behaviour of the (char) which has character code as given by the (integer
expression) in situations where it is active (category code 13) to be equivalent to that
of the (function). The category code of the (char) is unchanged by this process. The
(function) may itself be an active character.

107

\char_generate:nn * \char_generate:nn {(charcode)} {(catcode)}

New: 2015-09-09 Generates a character token of the given (charcode) and (catcode) (both of which may be
integer expressions). The {catcode) may be one of

o 1 (begin group)
e 2 (end group)

math toggle)

parameter)

(
(
(alignment)
(
(math superscript)
(

3

4
e 6

7

8 (math subscript)
o 11 (letter)

o 12 (other)

and other values will raise an error.

The (charcode) may be any one valid for the engine in use. Note however that for
XHTEX releases prior to 0.99992 only the 8-bit range (0 to 255) is accepted due to engine
limitations.

2 Manipulating and interrogating character tokens

\char_set_catcode_escape:N \char_set_catcode_letter:N (character)
\char_set_catcode_group_begin:N
\char_set_catcode_group_end:N
\char_set_catcode_math_toggle:N
\char_set_catcode_alignment:N
\char_set_catcode_end_line:N
\char_set_catcode_parameter:N
\char_set_catcode_math_superscript:N
\char_set_catcode_math_subscript:N
\char_set_catcode_ignore:N
\char_set_catcode_space:N
\char_set_catcode_letter:N
\char_set_catcode_other:N
\char_set_catcode_active:N
\char_set_catcode_comment:N
\char_set_catcode_invalid:N

Updated: 20156-11-11

Sets the category code of the (character) to that indicated in the function name. De-
pending on the current category code of the (token) the escape token may also be needed:

\char_set_catcode_other:N \%

The assignment is local.

108

\char_set_catcode_escape:n \char_set_catcode_letter:n {(integer expression)}
\char_set_catcode_group_begin:n
\char_set_catcode_group_end:n
\char_set_catcode_math_toggle:n
\char_set_catcode_alignment:n
\char_set_catcode_end_line:n
\char_set_catcode_parameter:n
\char_set_catcode_math_superscript:n
\char_set_catcode_math_subscript:n
\char_set_catcode_ignore:n
\char_set_catcode_space:n
\char_set_catcode_letter:n
\char_set_catcode_other:n
\char_set_catcode_active:n
\char_set_catcode_comment:n
\char_set_catcode_invalid:n

Updated: 2015-11-11

\char_set_catcode:nn

Updated: 2015-11-11

\char_value_catcode:n *

\char_show_value_catcode:n

\char_set_lccode:nn

Updated: 2015-08-06

Sets the category code of the (character) which has character code as given by the (integer
expression). This version can be used to set up characters which cannot otherwise be
given (cf. the N-type variants). The assignment is local.

\char_set_catcode:nn {(intexpr:)} {(intexprs)}

These functions set the category code of the (character) which has character code as
given by the (integer expression). The first (integer expression) is the character code
and the second is the category code to apply. The setting applies within the current
TEX group. In general, the symbolic functions \char_set_catcode_{type) should be
preferred, but there are cases where these lower-level functions may be useful.

\char_value_catcode:n {(integer expression)}

Expands to the current category code of the (character) with character code given by
the (integer expression).

\char_show_value_catcode:n {<integer eXpression)}

Displays the current category code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_lccode:nn {(intexpr:)} {(intexpr:)}

Sets up the behaviour of the (character) when found inside \t1_to_lowercase:n, such
that (character;) will be converted into {characters). The two (characters) may be spec-
ified using an (integer expression) for the character code concerned. This may include
the TEX ‘(character) method for converting a single character into its character code:

\char_set_lccode:nn { ‘\A } { ‘\a } % Standard behaviour
\char_set_lccode:nn { ‘\A } { ‘\A + 32 }
\char_set_lccode:nn { 50 } { 60 }

The setting applies within the current TEX group.

109

\char_value_lccode:n * \char_value_lccode:n {(integer expression)}

Expands to the current lower case code of the {character) with character code given by
the (integer expression).

\char_show_value_lccode:n \char_show_value_lccode:n {(integer expression)}

Displays the current lower case code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_uccode:nn \char_set_uccode:nn {(intexpri)} {(intexprs)}

Updated: 2015-08-06 ~ Sets up the behaviour of the (character) when found inside \t1_to_uppercase:n, such
that (character;) will be converted into {characters). The two (characters) may be spec-
ified using an (integer expression) for the character code concerned. This may include
the TEX ¢(character) method for converting a single character into its character code:

\char_set_uccode:nn { ‘\a } { ‘\A } % Standard behaviour
\char_set_uccode:nn { ‘\A } { ‘\A - 32 }
\char_set_uccode:nn { 60 } { 50 }

The setting applies within the current TEX group.

\char_value_uccode:n * \char_value_uccode:n {(integer expression)}

Expands to the current upper case code of the (character) with character code given by
the (integer expression).

\char_show_value_uccode:n \char_show_value_uccode:n {(integer expression)}

Displays the current upper case code of the {character) with character code given by the
(integer expression) on the terminal.

\char_set_mathcode:nn \char_set_mathcode:nn {(intexpr:)} {(intexprs)}

Updated: 2015-08-06 ~ This function sets up the math code of (character). The (character) is specified as an
(integer expression) which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

\char_value_mathcode:n * \char_value_mathcode:n {(integer expression)}

Expands to the current math code of the (character) with character code given by the
(integer expression).

\char_show_value_mathcode:n \char_show_value_mathcode:n {(integer expression)}

Displays the current math code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_sfcode:nn \char_set_sfcode:nn {(intexpri)} {(intexprs)}

Updated: 2015-08-06 This function sets up the space factor for the (character). The (character) is specified as
an (integer expression) which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

110

\char_value_sfcode:n *

\char_show_value_sfcode:n

\1_char_active_seq

New: 2012-01-23
Updated: 2015-11-11

\1_char_special_seq

New: 2012-01-23
Updated: 2015-11-11

\token_new:Nn

\c_group_begin_token
\c_group_end_token
\c_math_toggle_token
\c_alignment_token
\c_parameter_token
\c_math_superscript_token
\c_math_subscript_token
\c_space_token

\c_catcode_letter_token
\c_catcode_other_token

\c_catcode_active_tl

\char_value_sfcode:n {(integer expression)}

Expands to the current space factor for the {character) with character code given by the
(integer expression).

\char_show_value_sfcode:n {(integer expression)}

Displays the current space factor for the (character) with character code given by the
(integer expression) on the terminal.

Used to track which tokens may require special handling at the document level as they
are (or have been at some point) of category (active) (catcode 13). Each entry in the
sequence consists of a single escaped token, for example \~. Active tokens should be
added to the sequence when they are defined for general document use.

Used to track which tokens will require special handling when working with verbatim-
like material at the document level as they are not of categories (letter) (catcode 11) or
(other) (catcode 12). Each entry in the sequence consists of a single escaped token, for
example \\ for the backslash or \{ for an opening brace.Escaped tokens should be added
to the sequence when they are defined for general document use.

3 Generic tokens

\token_new:Nn (tokeni) {(tokenz)}

Defines (token;) to globally be a snapshot of (tokeny). This will be an implicit represen-
tation of (tokens).

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes but are also available to the programmer for other
uses.

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes and should not be used other than for category code
tests.

A token list containing an active token. This is used internally for test purposes and
should not be used other than in appropriately-constructed category code tests.

111

\token_to_meaning:N *
ic %

\token_to_str:N =%
ic %

4 Converting tokens

\token_to_meaning:N (token)

Inserts the current meaning of the (foken) into the input stream as a series of characters
of category code 12 (other). This will be the primitive TEX description of the (token),
thus for example both functions defined by \cs_set_nopar:Npn and token list variables
defined using \t1_new:N will be described as macros.

TEXhackers note: This is the TEX primitive \meaning.

\token_to_str:N (token)

Converts the given (token) into a series of characters with category code 12 (other). The
current escape character will be the first character in the sequence, although this will
also have category code 12 (the escape character is part of the (token)). This function
requires only a single expansion.

TEXhackers note: \token_to_str:N is the TEX primitive \string renamed.

5 Token conditionals

\token_if_group_begin_p:N * \token_if_group_begin_p:N (token)
\token_if_group_begin:NTF * \token_if_group_begin:NTF (token) {(true code)} {(false code)}

\token_if_group_end_p:N *
\token_if_group_end:NTF *

Tests if (token) has the category code of a begin group token ({ when normal TEX
category codes are in force). Note that an explicit begin group token cannot be tested in
this way, as it is not a valid N-type argument.

\token_if_group_end_p:N (token)
\token_if_group_end:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an end group token (} when normal TEX category
codes are in force). Note that an explicit end group token cannot be tested in this way,
as it is not a valid N-type argument.

\token_if_math_toggle p:N * \token_if_math_toggle_p:N (token)
\token_if_math_toggle:NTF * \token_if_math_toggle:NTF (token) {(true code)} {(false code)}

\token_if_alignment_p:N
\token_if_alignment:NTF *

Tests if (token) has the category code of a math shift token ($ when normal TEX category
codes are in force).

\token_if_alignment_p:N (token)
\token_if_alignment:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an alignment token (& when normal TEX category
codes are in force).

112

\token_if_parameter_p:N % \token_if_parameter_p:N (token)
\token_if_parameter:NTF x \token_if_alignment:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a macro parameter token (# when normal TEX
category codes are in force).

\token_if_math_superscript_p:N * \token_if_math_superscript_p:N (token)
\token_if_math_superscript:NTF * \token_if_math_superscript:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a superscript token (= when normal TEX category
codes are in force).

\token_if_math_subscript_p:N * \token_if_math_subscript_p:N (token)
\token_if_math_subscript:NTF x \token_if_math_subscript:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a subscript token (_ when normal TEX category
codes are in force).

*

\token_if_space_p:N \token_if_space_p:N (token)
\token_if_space:NTF x \token_if_space:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a space token. Note that an explicit space token
with character code 32 cannot be tested in this way, as it is not a valid N-type argument.

\token_if_letter_p:N x \token_if_letter_p:N (token)
\token_if_letter:NTF x \token_if_letter:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a letter token.

\token_if_other_p:N \token_if_other_p:N (token)
\token_if_other:NTF x \token_if_other:NTF (token) {(true code)} {(false code)}

*

Tests if (token) has the category code of an “other” token.

\token_if_active_p:N \token_if_active_p:N (token)
\token_if_active:NTF x \token_if_active:NTF (token) {(true code)} {(false code)}

>

Tests if (token) has the category code of an active character.

\token_if_eq_catcode_p:NN * \token_if_eq_catcode_p:NN (tokeni) (tokens)
\token_if_eq_catcode:NNTF * \token_if_eq_catcode:NNTF (token:) (tokens) {(true code)} {(false code)}

Tests if the two (tokens) have the same category code.

\token_if_eq_charcode_p:NN * \token_if_eq_charcode_p:NN (token;) (tokens)
\token_if_eq_charcode:NNTF * \token_if_eq_charcode:NNTF (tokeni) (tokens) {(true code)} {(false code)}

Tests if the two (tokens) have the same character code.

\token_if_eq_meaning p:NN * \token_if_eq_meaning p:NN (tokeni) (tokens)
\token_if_eq_meaning:NNTF * \token_if_eq_meaning:NNTF (token:) (tokens) {(true code)} {(false code)}

Tests if the two (tokens) have the same meaning when expanded.

113

\token_if_macro_p:N x \token_if_macro_p:N (token)
\token_if_macro:NTF x \token_if_macro:NTF (token) {(true code)} {(false code)}

Updated: 2011-05-23 Lests if the (token) is a TEX macro.

\token_if_cs_p:N x \token_if_cs_p:N (token)
\token_if_cs:NTF x \token_if_cs:NTF (token) {(true code)} {(false code)}

Tests if the (token) is a control sequence.

\token_if_expandable_p:N \token_if_expandable_p:N <token>
\token_if_expandable:NTF x \token_if_expandable:NTF (token) {(true code)} {(false code)}

*

Tests if the (token) is expandable. This test returns (false) for an undefined token.

\token_if_long_macro_p:N (token)
\token_if_long_macro:NTF (token) {(true code)} {(false code)}

\token_if_long_macro_p:N
\token_if_long_macro:NTF

Xt %

Updated: 2012-01-20 Tests if the (token) is a long macro.

\token_if_protected_macro_p:N * \token_if_protected_macro_p:N (token)
\token_if_protected_macro:NTF % \token_if_protected_macro:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is a protected macro: a macro which is both protected and long will
return logical false.

\token_if_protected_long_macro_p:N x \token_if_protected_long_macro_p:N <token>
\token_if_protected_long_macro:NTF * \token_if_protected_long_macro:NTF (token) {(true code)} {(false
code)}

Updated: 2012-01-20

Tests if the (token) is a protected long macro.

\token_if_chardef _p:N % \token_if_chardef_p:N (token)
\token_if_chardef:NTF % \token_if_chardef:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20 Lests if the (token) is defined to be a chardef.

TEXhackers note: Booleans, boxes and small integer constants are implemented as chard-
efs.

\token_if_mathchardef_p:N * \token_if_mathchardef_p:N (token)
\token_if_mathchardef:NTF * \token_if_mathchardef:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a mathchardef.

\token_if_dim_register_p:N x \token_if_dim_register_p:N (token)
\token_if_dim_register:NTF * \token_if_dim_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a dimension register.

114

\token_if_int_register_p:N % \token_if_int_register_p:N <token>
\token_if_int_register:NTF * \token_if_int_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a integer register.

TEXhackers note: Constant integers may be implemented as integer registers, chardefs,
or mathchardefs depending on their value.

\token_if_muskip_register_p:N x \token_if_muskip_register_p:N (token)
\token_if_muskip_register:NTF % \token_if_muskip_register:NTF (token) {(true code)} {(false code)}

New: 2012-02-15

Tests if the (token) is defined to be a muskip register.

\token_if_skip_register_p:N * \token_if_skip_register_p:N (token)
\token_if_skip_register:NTF * \token_if_skip_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a skip register.

\token_if_toks_register_p:N x \token_if_toks_register_p:N (token)
\token_if_toks_register:NTF x \token_if_toks_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a toks register (not used byETEX3).

\token_if_primitive_p:N x \token_if_primitive_p:N (token)
\token_if_primitive:NTF x \token_if_primitive:NTF (token) {(true code)} {(false code)}

Updated: 2011-05-23 Tests if the (token) is an engine primitive.

6 Peeking ahead at the next token

There is often a need to look ahead at the next token in the input stream while leaving
it in place. This is handled using the “peek” functions. The generic \peek_after:Nw is
provided along with a family of predefined tests for common cases. As peeking ahead does
not skip spaces the predefined tests include both a space-respecting and space-skipping
version.

\peek_after:Nw \peek_after:Nw (function) (token)

Locally sets the test variable \1_peek_token equal to (token) (as an implicit token, not
as a token list), and then expands the (function). The (token) will remain in the input
stream as the next item after the (function). The (token) here may be ., { or } (assuming
normal TEX category codes), i.e. it is not necessarily the next argument which would be
grabbed by a normal function.

115

\peek_gafter:Nw

\1_peek_token

\g_peek_token

\peek_catcode:NTF

Updated: 2012-12-20

\peek_gafter:Nw (function) (token)

Globally sets the test variable \g_peek_token equal to (token) (as an implicit token,
not as a token list), and then expands the (function). The (token) will remain in the
input stream as the next item after the (function). The (token) here may be ., { or }
(assuming normal TEX category codes), i.e. it is not necessarily the next argument which
would be grabbed by a normal function.

Token set by \peek_after:Nw and available for testing as described above.

Token set by \peek_gafter:Nw and available for testing as described above.

\peek_catcode:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the (token) will be left in the input stream after the (true code) or (false
code) (as appropriate to the result of the test).

\peek_catcode_ignore_spaces:NTF \peek_catcode_ignore_spaces:NTF (test token) {(true code)} {(false

Updated: 2012-12-20

code)}

\peek_catcode_remove:NTF

Updated: 2012-12-20

Tests if the next non-space (token) in the input stream has the same category code as the
(test token) (as defined by the test \token_if_eq_catcode:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the (token) will be left in the input stream after the (true code) or (false
code) (as appropriate to the result of the test).

\peek_catcode_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the (token) will be removed from the input stream if the test is true. The
function will then place either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

\peek_catcode_remove_ignore_spaces:NTF \peek_catcode_remove_ignore_spaces:NTF (test token) {(true

Updated: 2012-12-20 COde>} {<false COde>}

\peek_charcode:NTF

Updated: 2012-12-20

Tests if the next non-space (token) in the input stream has the same category code as the
(test token) (as defined by the test \token_if_eq_catcode:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed
by the test and the (token) will be removed from the input stream if the test is true.
The function will then place either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

\peek_charcode:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the (token) will be left in the input stream after the (true code) or (false
code) (as appropriate to the result of the test).

116

\peek_charcode_ignore_spaces:NTF \peek_charcode_ignore_spaces:NTF (test token) {(true code)} {(false

Updated: 2012-12-20

code)}

\peek_charcode_remove:NTF

Updated: 2012-12-20

Tests if the next non-space (token) in the input stream has the same character code as
the (test token) (as defined by the test \token_if_eq_charcode:NNTF). Explicit and
implicit space tokens (with character code 32 and category code 10) are ignored and
removed by the test and the (token) will be left in the input stream after the (true code)
or (false code) (as appropriate to the result of the test).

\peek_charcode_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the (token) will be removed from the input stream if the test is true. The
function will then place either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

\peek_charcode_remove_ignore_spaces:NTF \peek_charcode_remove_ignore_spaces:NTF (test token)

Updated: 2012-12-20 {(true code)} {(false code)}

\peek_meaning:NTF

Updated: 2011-07-02

Tests if the next non-space (token) in the input stream has the same character code as
the (test token) (as defined by the test \token_if_eq_charcode:NNTF). Explicit and
implicit space tokens (with character code 32 and category code 10) are ignored and
removed by the test and the (token) will be removed from the input stream if the test
is true. The function will then place either the (true code) or (false code) in the input
stream (as appropriate to the result of the test).

\peek_meaning:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same meaning as the (test token)
(as defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test
and the (token) will be left in the input stream after the (true code) or (false code) (as
appropriate to the result of the test).

\peek_meaning_ignore_spaces:NTF \peek_meaning_ignore_spaces:NTF (test token) {(true code)} {(false

Updated: 2012-12-05

code)}

\peek_meaning_remove:NTF

Updated: 2011-07-02

Tests if the next non-space (token) in the input stream has the same meaning as the
(test token) (as defined by the test \token_if_eq_meaning:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the (token) will be left in the input stream after the (true code) or (false
code) (as appropriate to the result of the test).

\peek_meaning_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same meaning as the (test token)
(as defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test
and the (token) will be removed from the input stream if the test is true. The function
will then place either the (true code) or (false code) in the input stream (as appropriate
to the result of the test).

117

\peek_meaning_remove_ignore_spaces:NTF \peek_meaning_remove_ignore_spaces:NTF (test token)

Updated: 2012-12-05 {(true code)} {(false code)}

\token_get_arg_spec:N *

Tests if the next non-space (token) in the input stream has the same meaning as the
(test token) (as defined by the test \token_if_eq_meaning:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed
by the test and the (token) will be removed from the input stream if the test is true.
The function will then place either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

7 Decomposing a macro definition

These functions decompose TEX macros into their constituent parts: if the (token) passed
is not a macro then no decomposition can occur. In the later case, all three functions
leave \scan_stop: in the input stream.

\token_get_arg_spec:N (token)

If the (token) is a macro, this function will leave the primitive TEX argument specification
in input stream as a string of tokens of category code 12 (with spaces having category
code 10). Thus for example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1 y #2 }

will leave #1#2 in the input stream. If the (token) is not a macro then \scan_stop: will
be left in the input stream.

TEXhackers note: If the arg spec. contains the string ->, then the spec function will
produce incorrect results.

\token_get_replacement_spec:N x \token_get_replacement_spec:N (token)

If the (token) is a macro, this function will leave the replacement text in input stream as
a string of tokens of category code 12 (with spaces having category code 10). Thus for
example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1~y #2 }

will leave x#1 y#2 in the input stream. If the (token) is not a macro then \scan_stop:
will be left in the input stream.

TEXhackers note: If the arg spec. contains the string ->, then the spec function will
produce incorrect results.

118

\token_get_prefix_spec:N x \token_get_prefix_spec:N (token)

If the (token) is a macro, this function will leave the TEX prefixes applicable in input
stream as a string of tokens of category code 12 (with spaces having category code 10).
Thus for example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1-y #2 }

will leave \long in the input stream. If the (token) is not a macro then \scan_stop:
will be left in the input stream

8 Description of all possible tokens

Let us end by reviewing every case that a given token can fall into. This section is quite
technical and some details are only meant for completeness. We distinguish the meaning
of the token, which controls the expansion of the token and its effect on TEX’s state,
and its shape, which is used when comparing token lists such as for delimited arguments.
Two tokens of the same shape must have the same meaning, but the converse does not
hold.

A token has one of the following shapes.

e A control sequence, characterized by the sequence of characters that constitute its
name: for instance, \use:n is a five-letter control sequence.

e An active character token, characterized by its character code (between 0 and
1114111 for LuaTEX and XHTEX and less for other engines) and category code 13.

A character token, characterized by its character code and category code (one of 1,
2,3,4,6,7, 8,10, 11 or 12 whose meaning is described below).*

There are also a few internal tokens. The following list may be incomplete in some
engines.

o Expanding \thepfont results in a token that looks identical to the command that
was used to select the current font (such as \tenrm) but it differs from it in shape.

o A “frozen” \relax, which differs from the primitive in shape (but has the same
meaning), is inserted when the closing \fi of a conditional is encountered before
the conditional is evaluated.

o Expanding \noexpand (token) (when the (token) is expandable) results in an in-
ternal token, displayed (temporarily) as \notexpanded: (token), whose shape co-
incides with the (token) and whose meaning differs from \relax.

o An\outer endtemplate: (expanding to another internal token, end of alignment template)
can be encountered when peeking ahead at the next token.

e Tricky programming might access a frozen \endwrite.

e Some frozen tokens can only be accessed in interactive sessions: \cr, \right,
\endgroup, \fi, \inaccessible.

4In LuaTgX, there is also the case of “bytes”, which behave as character tokens of category code
12 (other) and character code between 1114112 and 1114366. They are used to output individual bytes
to files, rather than UTF-8.

119

The meaning of a (non-active) character token is fixed by its category code (and
character code) and cannot be changed. We will call these tokens ezplicit character
tokens. Category codes that a character token can have are listed below by giving a
sample output of the TEX primitive \meaning, together with their IXTFX3 names and
most common example:

1 begin-group character (group_begin, often {),
2 end-group character (group_end, often }),
math shift character (math_toggle, often $),

3
4 alignment tab character (alignment, often &),

(=)

macro parameter character (parameter, often #),
7 superscript character (math_superscript, often 7),
8 subscript character (math_subscript, often _),

10 blank space (space, often character code 32),

11 the letter (letter, such as A),

12 the character (other, such as 0).

Category code 13 (active) is discussed below. Input characters can also have sev-
eral other category codes which do not lead to character tokens for later processing:
0 (escape), 5 (end_line), 9 (ignore), 14 (comment), and 15 (invalid).

The meaning of a control sequence or active character can be identical to that of
any character token listed above (with any character code), and we will call such tokens
implicit character tokens. The meaning is otherwise in the following list:

e a macro, used in ITEX3 for most functions and some variables (t1, fp, seq, ...),
e a primitive such as \def or \topmark, used in ITEX3 for some functions,

e a register such as \count123, used in IXTEX3 for the implementation of some vari-
ables (int, dim, ...),

e a constant integer such as \char"56 or \mathchar"121,
 a font selection command,
o undefined.

Macros be \protected or not, \long or not (the opposite of what I¥TEX3 calls nopar),
and \outer or not (unused in KTEX3). Their \meaning takes the form

(properties) macro: (parameters)->(replacement)

where (properties) is among \protected\long\outer, (parameters) describes parameters
that the macro expects, such as #1#2#3, and (replacement) describes how the parameters
are manipulated, such as #2/#1/#3.

Now is perhaps a good time to mention some subtleties relating to tokens with
category code 10 (space). Any input character with this category code (normally, space
and tab characters) becomes a normal space, with character code 32 and category code 10.

120

\

char_generate:nn *

New: 2016-03-25

When a macro takes an undelimited argument, explicit space characters (with char-
acter code 32 and category code 10) are ignored. If the following token is an explicit
character token with category code 1 (begin-group) and an arbitrary character code,
then TEX scans ahead to obtain an equal number of explicit character tokens with cate-
gory code 1 (begin-group) and 2 (end-group), and the resulting list of tokens (with outer
braces removed) becomes the argument. Otherwise, a single token is taken as the argu-
ment for the macro: we call such single tokens “N-type”, as they are suitable to be used
as an argument for a function with the signature :N.

9 Internal functions

\

This function is identical in operation to the public \char_generate:nn but omits various
sanity tests. In particular, this means it is used in certain places where engine variations
need to be accounted for by the kernel. The (catcode) must give an explicit integer after
a single expansion.

char_generate:nn {(charcode)} {(catcode)}

121

\prop_new:N

:C

\prop_clear:N

:c
\prop_gclear:N
ic

\prop_clear_new:N

:c
\prop_gclear_new:N
ic

\prop_set_eq:NN
: (cN|Nc|ec)
\prop_gset_eq:NN
: (cN|Nclce)

Part XVI
The 13prop package
Property lists

ETREX3 implements a “property list” data type, which contain an unordered list of entries
each of which consists of a (key) and an associated (value). The (key) and (value) may
both be any (balanced text). It is possible to map functions to property lists such that
the function is applied to every key—value pair within the list.

Each entry in a property list must have a unique (key): if an entry is added to
a property list which already contains the (key) then the new entry will overwrite the
existing one. The (keys) are compared on a string basis, using the same method as
\str_if_eq:nn.

Property lists are intended for storing key-based information for use within code.
This is in contrast to key—value lists, which are a form of input parsed by the keys
module.

1 Creating and initialising property lists

\prop_new:N (property list)

Creates a new (property list) or raises an error if the name is already taken. The decla-
ration is global. The (property list) will initially contain no entries.

\prop_clear:N (property list)

Clears all entries from the (property list).

\prop_clear_new:N (property list)

Ensures that the (property list) exists globally by applying \prop_new:N if necessary,
then applies \prop_(g) clear:N to leave the list empty.

\prop_set_eq:NN (property list:) (property lists)
Sets the content of (property list;) equal to that of (property lists).

122

2 Adding entries to property lists

\prop_put:Nnn

\prop_put:Nnn (property list)

: (NnV|Nno|Nnx|NVn|NVV|Non|Noo|cnn|cnV|cno|cnx|cVn|cVV|con|coo) {(key)} {(value)}

\prop_gput :Nnn

: (NnV|Nno|Nnx|NVn|NVV|Non|Noo|cnn|cnV|cno|cnx|cVn|cVV|con|coo)

Updated: 2012-07-09

\prop_put_if_new:Nnn

:cnn
\prop_gput_if_new:Nnn
rcnn

Adds an entry to the (property list) which may be accessed using the (key) and which
has (value). Both the (key) and (value) may contain any (balanced text). The (key) is
stored after processing with \t1_to_str:n, meaning that category codes are ignored. If
the (key) is already present in the (property list), the existing entry is overwritten by the
new (value).

\prop_put_if_new:Nnn (property list) {(key)} {(value)}

If the (key) is present in the (property list) then no action is taken. If the (key) is not
present in the (property list) then a new entry is added. Both the (key) and (value) may
contain any (balanced text). The (key) is stored after processing with \tl_to_str:n,
meaning that category codes are ignored.

3 Recovering values from property lists

\prop_get :NnN

\prop_get:NnN (property list) {(key)} (tl var)

: (NVN|NoN|cnN|cVN|coN)

Updated: 2011-08-28

\prop_pop:NnN
: (NoN|cnN|coN)

Updated: 2011-08-18

\prop_gpop:NnN
: (NoN|cnN|coN)

Updated: 2011-08-18

Recovers the (value) stored with (key) from the (property list), and places this in the
(token list variable). If the (key) is not found in the (property list) then the (token list
variable) will contain the special marker \q_no_value. The (token list variable) is set
within the current TEX group. See also \prop_get : NnNTF.

\prop_pop:NnN (property list) {(key)} (tl var)

Recovers the (value) stored with (key) from the (property list), and places this in the
(token list variable). If the (key) is not found in the (property list) then the (token list
variable) will contain the special marker \q_no_value. The (key) and (value) are then
deleted from the property list. Both assignments are local. See also \prop_pop:NnNTF.

\prop_gpop:NnN (property list) {(key)} (tl1 var)

Recovers the (value) stored with (key) from the (property list), and places this in the
(token list variable). If the (key) is not found in the (property list) then the (token
list variable) will contain the special marker \q_no_value. The (key) and (value) are
then deleted from the property list. The (property list) is modified globally, while the
assignment of the (token list variable) is local. See also \prop_gpop:NnNTF.

123

\prop_item:Nn *
icn %

New: 2014-07-17

\prop_remove:Nn

: (NV|cnlcV)

\prop_gremove:Nn

: (NV|cnlcV)

New: 2012-05-12

\prop_if_exist_p:N
e
\prop_if_exist:NTF
:cTF

* ok A

New: 2012-03-03

\prop_if_empty_p:N
ic
\prop_if_empty:NTF
:cTF

b S S

\prop_item:Nn (property list) {(key)}
Expands to the (value) corresponding to the (key) in the (property list). If the (key) is

missing, this has an empty expansion.

TEXhackers note: This function is slower than the non-expandable analogue \prop_-
get:NnN. The result is returned within the \unexpanded primitive (\exp_not:n), which means
that the (value) will not expand further when appearing in an x-type argument expansion.

4 Modifying property lists

\prop_remove:Nn (property list) {(key)}

Removes the entry listed under (key) from the (property list). If the (key) is not found
in the (property list) no change occurs, i.e there is no need to test for the existence of a
key before deleting it.

5 Property list conditionals

\prop_if_exist_p:N (property list)
\prop_if_exist:NTF (property list) {(true code)} {(false code)}

Tests whether the (property list) is currently defined. This does not check that the
(property list) really is a property list variable.

\prop_if_empty_p:N (property list)
\prop_if_empty:NTF (property list) {(true code)} {(false code)}

Tests if the (property list) is empty (containing no entries).

\prop_if_in_p:Nn

* \prop_if_in:NnTF (property list) {(key)} {(true code)} {(false code)}

: (NV|No|cn|cV|co) *

\prop_if_in:NnTF

*

: (NV|No|cn|cV|co)TF *

Updated: 2011-09-15

Tests if the (key) is present in the (property list), making the comparison using the
method described by \str_if_eq:nnTF.

TgXhackers note: This function iterates through every key—value pair in the (property
listy and is therefore slower than using the non-expandable \prop_get : NnNTF.

124

6 Recovering values from property lists with branch-
ing

The functions in this section combine tests for the presence of a key in a property list
with recovery of the associated valued. This makes them useful for cases where different
cases follow dependent on the presence or absence of a key in a property list. They offer
increased readability and performance over separate testing and recovery phases.

\prop_get :NnNTF

\prop_get :NnNTF (property list) {(key)} (token list variable)

: (NVN|NoN|cnN|cVN|coN) TF {(true code)} {(false code)}

Updated: 2012-05-19

\prop_pop :NnNTF
:cuNTF

New: 2011-08-18
Updated: 2012-05-19

\prop_gpop:NnNTF
:cnNTF

New: 2011-08-18
Updated: 2012-05-19

\prop_map_function:NN 3¢
:cN

Updated: 2013-01-08

\prop_map_inline:Nn
icn

Updated: 2013-01-08

If the (key) is not present in the (property list), leaves the (false code) in the input stream.
The value of the (token list variable) is not defined in this case and should not be relied
upon. If the (key) is present in the (property list), stores the corresponding (value) in the
(token list variable) without removing it from the (property list), then leaves the (true
code) in the input stream. The (token list variable) is assigned locally.

\prop_pop:NnNTF (property list) {(key)} (token list variable) {(true code)}
{(false code)}

If the (key) is not present in the (property list), leaves the (false code) in the input stream.
The value of the (token list variable) is not defined in this case and should not be relied
upon. If the (key) is present in the (property list), pops the corresponding (value) in the
(token list variable), i.e. removes the item from the (property list). Both the (property
list) and the (token list variable) are assigned locally.

\prop_gpop:NnNTF (property list) {(key)} (token list variable) {(true code)}
{(false code)?}

If the (key) is not present in the (property list), leaves the (false code) in the input stream.
The value of the (token list variable) is not defined in this case and should not be relied
upon. If the (key) is present in the (property list), pops the corresponding (value) in the
(token list variable), i.e. removes the item from the (property list). The (property list) is
modified globally, while the (token list variable) is assigned locally.

7 Mapping to property lists

\prop_map_function:NN (property list) (function)

Applies (function) to every (entry) stored in the (property list). The (function) will
receive two argument for each iteration: the (key) and associated (value). The order in
which (entries) are returned is not defined and should not be relied upon.

\prop_map_inline:Nn (property list) {(inline function)}

Applies (inline function) to every (entry) stored within the (property list). The (inline
function) should consist of code which will receive the (key) as #1 and the (value) as #2.
The order in which (entries) are returned is not defined and should not be relied upon.

125

\prop_map_break: v

Updated: 2012-06-29

\prop_map_break:n

Updated: 2012-06-29

\prop_show:N

:C

Updated: 2015-08-01

\prop_log:N
ic

New: 2014-08-12

Updated: 2015-08-01

\prop_map_break:

Used to terminate a \prop_map_... function before all entries in the (property list)
have been processed. This will normally take place within a conditional statement, for
example

\prop_map_inline:Nn \1_my_prop
{
\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break: }

{
% Do something useful
}
}
Use outside of a \prop_map_. .. scenario will lead to low level TEX errors.

\prop_map_break:n {(tokens)}

Used to terminate a \prop_map_. .. function before all entries in the (property list) have
been processed, inserting the (tokens) after the mapping has ended. This will normally
take place within a conditional statement, for example

\prop_map_inline:Nn \1_my_prop

\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break:n { <tokens> } }

{
% Do something useful
}
}
Use outside of a \prop_map_. .. scenario will lead to low level TEX errors.

8 Viewing property lists

\prop_show:N (property list)
Displays the entries in the (property list) in the terminal.

\prop_log:N (property list)
Writes the entries in the (property list) in the log file.

126

\1_tmpa_prop
\1_tmpb_prop

New: 2012-06-23

\g_tmpa_prop
\g_tmpb_prop

New: 2012-06-23

\c_empty_prop

\s__prop

__prop_pair:wn

\1__prop_internal_tl

__prop_split:NnTF

Updated: 2013-01-08

9 Scratch property lists

Scratch property lists for local assignment. These are never used by the kernel code, and
so are safe for use with any I4TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

Scratch property lists for global assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

10 Constants

A permanently-empty property list used for internal comparisons.

11 Internal property list functions

The internal token used at the beginning of property lists. This is also used after each
(key) (see __prop_pair:wn).

__prop_pair:wn (key) \s__prop {({item)}

The internal token used to begin each key—value pair in the property list. If expanded
outside of a mapping or manipulation function, an error will be raised. The definition
should always be set globally.

Token list used to store new key—value pairs to be inserted by functions of the \prop_-
put :Nnn family.

__prop_split:NnTF (property list) {(key)} {(true code)} {(false code)}

Splits the (property list) at the (key), giving three token lists: the (extract) of (property
listy before the (key), the (value) associated with the (key) and the (extract) of the
(property list) after the (value). Both (extracts) retain the internal structure of a property
list, and the concatenation of the two (extracts) is a property list. If the (key) is present
in the (property list) then the (true code) is left in the input stream, with #1, #2, and
#3 replaced by the first (extract), the (value), and the second extract. If the (key) is not
present in the (property list) then the (false code) is left in the input stream, with no
trailing material. Both (true code) and (false code) are used in the replacement text of
a macro defined internally, hence macro parameter characters should be doubled, except
#1, #2, and #3 which stand in the (true code) for the three extracts from the property
list. The (key) comparison takes place as described for \str_if_eq:nn.

127

\msg_new:nnnn
\msg_new:nnn

Updated: 2011-08-16

\msg_set :nnnn
\msg_set:nnn

\msg_gset :nnnn
\msg_gset :nnn

Part XVII
The 13msg package
Messages

Messages need to be passed to the user by modules, either when errors occur or to indicate
how the code is proceeding. The I13msg module provides a consistent method for doing
this (as opposed to writing directly to the terminal or log).

The system used by I3msg to create messages divides the process into two distinct
parts. Named messages are created in the first part of the process; at this stage, no
decision is made about the type of output that the message will produce. The second
part of the process is actually producing a message. At this stage a choice of message
class has to be made, for example error, warning or info.

By separating out the creation and use of messages, several benefits are available.
First, the messages can be altered later without needing details of where they are used
in the code. This makes it possible to alter the language used, the detail level and so
on. Secondly, the output which results from a given message can be altered. This can be
done on a message class, module or message name basis. In this way, message behaviour
can be altered and messages can be entirely suppressed.

1 Creating new messages

All messages have to be created before they can be used. The text of messages will
automatically by wrapped to the length available in the console. As a result, formatting
is only needed where it will help to show meaning. In particular, \\ may be used to force
a new line and \, forces an explicit space. Additionally, \{, \#, \}, \% and \~ can be
used to produce the corresponding character.

Messages may be subdivided by one level using the / character. This is used within
the message filtering system to allow for example the N TEX kernel messages to belong to
the module LaTeX while still being filterable at a more granular level. Thus for example

\msg_new:nnnn { mymodule } { submodule / message } ...

will allow only those messages from the submodule to be filtered out.

\msg_new:nnnn {(module)} {(message)} {(text)} {(more text)}

Creates a (message) for a given (module). The message will be defined to first give (text)
and then (more text) if the user requests it. If no (more text) is available then a standard
text is given instead. Within (text) and (more text) four parameters (#1 to #4) can be
used: these will be supplied at the time the message is used. An error will be raised if
the (message) already exists.

\msg_set:nnnn {(module)} {(message)} {(text)} {(more text)}

Sets up the text for a (message) for a given (module). The message will be defined to
first give (text) and then (more text) if the user requests it. If no (more text) is available
then a standard text is given instead. Within (text) and (more text) four parameters (#1
to #4) can be used: these will be supplied at the time the message is used.

128

\msg_if_exist_p:nn *
\msg_if_exist:nnTF *

New: 2012-03-03

L

“
IXe

\msg_line_context:

\msg_line_number: =

\msg_fatal_text:n *

\msg_critical_text:n =%

\msg_error_text:n *

\msg_warning_text:n x

\msg_if_exist_p:nn {(module)} {(message)}
\msg_if_exist:nnTF {(module)} {(message)} {(true code)} {(false code)}

Tests whether the (message) for the (module) is currently defined.

2 Contextual information for messages

\msg_line_context:

Prints the current line number when a message is given, and thus suitable for giving

context to messages. The number itself is proceeded by the text on line.

\msg_line_number:

Prints the current line number when a message is given.

\msg_fatal_text:n {(module)}

Produces the standard text
Fatal (module) error
This function can be redefined to alter the language in which the message is given,

#1 as the name of the (module) to be included.

\msg_critical_text:n {(module)}

Produces the standard text
Critical (module) error

This function can be redefined to alter the language in which the message is given,
#1 as the name of the (module) to be included.

\msg_error_text:n {(module)}

Produces the standard text
(module) error

This function can be redefined to alter the language in which the message is given,
#1 as the name of the {(module) to be included.

\msg_warning_text:n {(module)}

Produces the standard text
(module) warning

This function can be redefined to alter the language in which the message is given,
#1 as the name of the (module) to be included.

129

using

using

using

using

\msg_info_text:n *

\msg_info_text:n {(module)}

Produces the standard text:
(module) info

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included.

\msg_see_documentation_text:n x \msg_see_documentation_text:n {(module)}

\msg_fatal:nnnnnn
INNXXXX
\msg_fatal :nnnnn
INNXXX
\msg_fatal:nnnn
:nnxx
\msg_fatal:nnn
:nnx
\msg_fatal:nn

Updated: 2012-08-11

\msg_critical:nnnnnn
INNXXXX
\msg_critical:nnnnn
INNXXX
\msg_critical:nnnn
INNXx
\msg_critical:nnn
:nnx
\msg_critical:nn

Updated: 2012-08-11

Produces the standard text
See the (module) documentation for further information.

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included.

3 Issuing messages

Messages behave differently depending on the message class. In all cases, the message
may be issued supplying 0 to 4 arguments. If the number of arguments supplied here does
not match the number in the definition of the message, extra arguments will be ignored,
or empty arguments added (of course the sense of the message may be impaired). The
four arguments will be converted to strings before being added to the message text: the
x-type variants should be used to expand material.

\msg_fatal:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)}
{(arg four)}

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a fatal error the TEX run will halt.

\msg_critical:nnnnnn {(module)} {(message)} {(arg ome)} {(arg two)} {(arg three)}
{(arg four)}

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a critical error, TEX will stop reading the current input file. This
may halt the TEX run (if the current file is the main file) or may abort reading a sub-file.

TEXhackers note: The TEX \endinput primitive is used to exit the file. In particular,
the rest of the current line remains in the input stream.

130

\msg_error:

nnnnnn

(NNXXXX

\msg_error:

nnnnn

(NNXXX

\msg_error:

nnnn

‘nnxx

\msg_error:

nnn

‘nnx

\msg_error:

nn

Updated: 2012-08-11

\msg_warning:

nnnnnn

(NNXXXX

\msg_warning:

nnnnn

(NNXXX

\msg_warning:

nnnn

nnxx

\msg_warning:

nnn

‘nnx

\msg_warning:

nn

Updated: 2012-08-11

\msg_info:

nnnnnn

{NNXXXX

\msg_info:

nnnnn

(NNXXX

\msg_info:

nnnn

‘nnxx

\msg_info:

nnn

nnx

\msg_info:

nn

Updated: 2012-08-11

\msg_log:

nnnnnn

NNXXXX

\msg_log:

nnnnn

(NNXXX

\msg_log:

nnnn

nnxx

\msg_log:

\msg_log:

Updated: 2012-08-11

\msg_error:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)}
{(arg four)}

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. The error will interrupt processing and issue the text at the terminal. After
user input, the run will continue.

\msg_warning:nnxxxx {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)}
{(arg four)}

Issues (module) warning (message), passing (arg one) to {arg four) to the text-creating
functions. The warning text will be added to the log file and the terminal, but the TEX
run will not be interrupted.

\msg_info:nnnnnn {({module)} {(message)} {(arg ome)} {(arg two)} {(arg three)} {(arg
four)}

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. The information text will be added to the log file.

\msg_log:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {(arg three)} {(arg
four)}

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. The information text will be added to the log file: the output is briefer than
\msg_info:nnnnnn.

131

\msg_none:

nnnnnn

(NNXXXX

\msg_none:

nnnnn

(NNXXX

\msg_none:

nnnn

nnxx

\msg_none:

nnn

‘nnx

\msg_none:

nn

Updated: 2012-08-11

\msg_redirect_class:nn

Updated: 2012-04-27

\msg_none:nnnnnn {({module)} {(message)} {(arg ome)} {(arg two)} {(arg three)} {(arg
four)}

Does nothing: used as a message class to prevent any output at all (see the discussion of
message redirection).

4 Redirecting messages

Each message has a “name”, which can be used to alter the behaviour of the message
when it is given. Thus we might have

\msg_new:nnnn { module } { my-message } { Some~text } { Some~more~text }
to define a message, with
\msg_error:nn { module } { my-message }

when it is used. With no filtering, this will raise an error. However, we could alter the
behaviour with

\msg_redirect_class:nn { error } { warning }

to turn all errors into warnings, or with
\msg_redirect_module:nnn { module } { error } { warning }

to alter only messages from that module, or even
\msg_redirect_name:nnn { module } { my-message } { warning }

to target just one message. Redirection applies first to individual messages, then to
messages from one module and finally to messages of one class. Thus it is possible to
select out an individual message for special treatment even if the entire class is already
redirected.

Multiple redirections are possible. Redirections can be cancelled by providing an
empty argument for the target class. Redirection to a missing class will raise errors
immediately. Infinite loops are prevented by eliminating the redirection starting from
the target of the redirection that caused the loop to appear. Namely, if redirections are
requested as A — B, B — C and C' — A in this order, then the A — B redirection is
cancelled.

\msg_redirect_class:nn {(class one)} {(class two)}

Changes the behaviour of messages of (class one) so that they are processed using the
code for those of (class two).

132

\msg_redirect_module:nnn

Updated: 2012-04-27

\msg_redirect_name:nnn

Updated: 2012-04-27

\msg_interrupt:nnn

New: 2012-06-28

\msg_redirect_module:nnn {(module)} {(class one)} {(class two)}

Redirects message of (class one) for (module) to act as though they were from (class
two). Messages of (class one) from sources other than (module) are not affected by this
redirection. This function can be used to make some messages “silent” by default. For
example, all of the warning messages of (module) could be turned off with:

\msg_redirect_module:nnn { module } { warning } { none }

\msg_redirect_name:nnn {(module)} {(message)} {(class)}

Redirects a specific (message) from a specific (module) to act as a member of (class) of
messages. No further redirection is performed. This function can be used to make a
selected message “silent” without changing global parameters:

\msg_redirect_name:nnn { module } { annoying-message } { none }

5 Low-level message functions

The lower-level message functions should usually be accessed from the higher-level system.
However, there are occasions where direct access to these functions is desirable.

\msg_interrupt:nnn {(first line)} {(text)} {(extra text)}

Interrupts the TEX run, issuing a formatted message comprising (first line) and (text)
laid out in the format

<first line>

<text>

where the (text) will be wrapped to fit within the current line length. The user may then
request more information, at which stage the (extra text) will be shown in the terminal
in the format

I7})77’)))7’)))7)))77))777})777})77’)})7’)})7’))

| <extra text>

where the (extra text) will be wrapped within the current line length. Wrapping of both
(text) and (more texrt) takes place using \iow_wrap:nnnN; the documentation for the
latter should be consulted for full details.

133

\msg_log:n

New: 2012-06-28

\msg_term:n

New: 2012-06-28

__msg_kernel_new:nnnn
__msg_kernel_new:nnn

Updated: 2011-08-16

__msg_kernel_set:nnnn
__msg_kernel_set:nnn

\msg_log:n {(text)}
Writes to the log file with the (text) laid out in the format

where the (text) will be wrapped to fit within the current line length. Wrapping takes
place using \iow_wrap:nnnN; the documentation for the latter should be consulted for
full details.

\msg_term:n {(text)}
Writes to the terminal and log file with the (text) laid out in the format

>k >k >k >k 3K 3k 3k ok 5k 5k 3k 5k 5k %k %k %k >k >k >k 5k 5k 3k 3k %k >k >k >k %k %k >k >k >k >k >k 5k 5k %k >k >k >k %k %k %k K >k >k >k >k >k

* <text>
>k 3k 3k >k 3k 5K 5k 5k 5K 5k >k 3k 3k >k 3k 3k >k 3k 5K 5k 5k 5K 5k >k 5k 5k >k 3k 3k >k 5k 3k 5k >k 5K 5k >k 5K 5k %k >k %k %k >k 5k %k >k >k %k

where the (text) will be wrapped to fit within the current line length. Wrapping takes
place using \iow_wrap:nnnN; the documentation for the latter should be consulted for
full details.

6 Kernel-specific functions

Messages from KTEX3 itself are handled by the general message system, but have their
own functions. This allows some text to be pre-defined, and also ensures that serious
errors can be handled properly.

__msg_kernel_new:nnnn {(module)} {(message)} {(text)} {(more text)}

Creates a kernel (message) for a given (module). The message will be defined to first give
(text) and then (more text) if the user requests it. If no (more text) is available then a
standard text is given instead. Within (text) and (more text) four parameters (#1 to #4)
can be used: these will be supplied and expanded at the time the message is used. An
error will be raised if the (message) already exists.

__msg_kernel_set:nnnn {(module)} {(message)} {(text)} {(more text)}

Sets up the text for a kernel (message) for a given (module). The message will be defined
to first give (text) and then (more text) if the user requests it. If no (more text) is available
then a standard text is given instead. Within (text) and (more text) four parameters (#1
to #4) can be used: these will be supplied and expanded at the time the message is used.

134

__msg_kernel_fatal:nnnnnn

INNXXXX

__msg_kernel_fatal:nnnnn
INNXXX

__msg_kernel_fatal:nnnn
Innxx

__msg_kernel_fatal:nnn
:nnx
__msg_kernel_fatal:nn

Updated: 2012-08-11

__msg_kernel_error:nnnnnn

!NNXXXX
__msg_kernel_error:nnnnn

INNXXX
__msg_kernel_error:nnnn

:nnxx

__msg_kernel_error:nnn
:nnx
__msg_kernel_error:nn

Updated: 2012-08-11

__msg_kernel_fatal:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {{arg
three)} {(arg four)}

Issues kernel (module) error (message), passing {arg one) to {arg four) to the text-creating
functions. After issuing a fatal error the TEX run will halt. Cannot be redirected.

__msg_kernel_error:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {{arg
three)} {(arg four)}

Issues kernel (module) error (message), passing {arg one) to {arg four) to the text-creating
functions. The error will stop processing and issue the text at the terminal. After user
input, the run will continue. Cannot be redirected.

__msg_kernel_warning:

nnnnnn __msg_kernel_warning:nnnnnn {(module)} {(message)} {(arg one)} {(arg

:nnxxxx two)} {(arg three)} {(arg four)}

__msg_kernel_warning:

nnnnn

(NNnXxXx

__msg_kernel_warning:

nnnn

nnxx

__msg_kernel_warning:

nnn

nnx

__msg_kernel_warning:

nn

Updated: 2012-08-11

__msg_kernel_info:nnnnnn
INNXXXX
__msg_kernel_info:nnnnn
INNXXX
__msg_kernel_info:nnnn
:Nnxx
__msg_kernel_info:nnn
:nnx
__msg_kernel_info:nn

Updated: 2012-08-11

Issues kernel (module) warning (message), passing (arg one) to {arg four) to the text-
creating functions. The warning text will be added to the log file, but the TEX run will
not be interrupted.

__msg_kernel_info:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {(arg
three)} {(arg four)}

Issues kernel (module) information (message), passing (arg one) to (arg four) to the
text-creating functions. The information text will be added to the log file.

135

7 Expandable errors

In a few places, the I¥TEX3 kernel needs to produce errors in an expansion only context.
This must be handled internally very differently from normal error messages, as none of
the tools to print to the terminal or the log file are expandable. However, the interface is
similar, with the important caveat that the message text and arguments are not expanded,
and messages should be very short.

__msg_kernel_expandable_error:nnnnnn * __msg_kernel_expandable_error:nnnnnn {(module)} {(message)}

__msg_kernel_expandable_error :nnnnn
__msg_kernel_expandable_error:nnnn
__msg_kernel_expandable_error:nnn
__msg_kernel_expandable_error:nn

{(arg one)} {(arg two)} {(arg three)} {(arg four)}

b I S =

New: 2011-11-23

Issues an error, passing (arg one) to (arg four) to the text-creating functions. The
resulting string must be shorter than a line, otherwise it will be cropped.

__msg_expandable_error:n * __msg_expandable_error:n {(error message)}

New: 2011-08-11
Updated: 2011-08-13

__msg_log_next:

New: 2015-08-05

Issues an “Undefined error” message from TEX itself, and prints the (error message).
The (error message) must be short: it is cropped at the end of one line.

TEXhackers note: This function expands to an empty token list after two steps. Tokens
inserted in response to TEX’s prompt are read with the current category code setting, and
inserted just after the place where the error message was issued.

8 Internal I3msg functions

The following functions are used in several kernel modules.

__msg_log_next: (show-command)

Causes the next (show-command) to send its output to the log file instead of the terminal.
This allows for instance \cs_log:N to be defined as __msg_log_next: \cs_show:N. The
effect of this command lasts until the next use of __msg_show_wrap:Nn or __msg_-
show_wrap:n or __msg_show_variable:NNNnn, in other words until the next time the
e-TEX primitive \showtokens would have been used for showing to the terminal or until
the next variable-not-defined error.

__msg_show_pre:nnnnnn

__msg_show_pre:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)}

: (nnxxxx|nnnnnV) {(arg three)} {(arg four)}

New: 2015-08-05

Prints the (message) from (module) in the terminal (or log file if __msg_log_next:
was issued) without formatting. Used in messages which print complex variable contents
completely.

136

__msg_show_variable:NNNnn

New: 2015-08-04

__msg_show_wrap:Nn

New: 2015-08-03
Updated: 2015-08-07

__msg_show_wrap:n

New: 2015-08-03

__msg_show_variable:NNNnn (variable) (if-exist) (if-empty) {(msg)} {(formatted
content)}

If the (variable) does not exist according to (if-exist) (typically \cs_if_exist:NTF) then
throw an error and do nothing more. Otherwise, if (msg) is not empty, display the message
LaTeX/kernel/show-(msg) with \token_to_str:N (variable) as a first argument, and
a second argument that is ? or empty depending on the result of (if-empty) (typically
\tl_if_empty:NTF) on the (variable). Then display the (formatted content) by giving it
as an argument to __msg_show_wrap:n.

__msg_show_wrap:Nn (function) {(expression)}

Shows or logs the (expression) (turned into a string), an equal sign, and the result of
applying the (function) to the {(expression)}. For instance, if the (function) is \int_-
eval:n and the (expression) is 1+2 then this will log > 1+2=3. The case where the
(function) is \t1_to_str:n is special: then the string representation of the (expression)
is only logged once.

__msg_show_wrap:n {(formatted text)}

Shows or logs the (formatted text). After expansion, unless it is empty, the {formatted
text) must contain >, and the part of (formatted text) before the first > is removed. Failure
to do so causes low-level TEX errors.

__msg_show_item:n
__msg_show_item:nn

__msg_show_item:n (item)
__msg_show_item:nn (item-key) (item-value)

__msg_show_item_unbraced:nn

Updated: 2012-09-09

Auxiliary functions used within the last argument of __msg_show_variable:NNNnn or
__msg_show_wrap:n to format variable items correctly for display. The __msg_show_-
item:n version is used for simple lists, the __msg_show_item:nn and __msg_show_-
item_unbraced:nn versions for key—value like data structures.

\c__msg_coding_error_text_tl

The text
This is a coding error.

used by kernel functions when erroneous programming input is encountered.

137

\g_file_current_name_tl

\file_if_exist:nTF

Updated: 2012-02-10

\file_add_path:nN

Updated: 2012-02-10

\file_input:n

Updated: 2012-02-17

\file_path_include:n

Updated: 2012-07-04

Part XVIII
The 13file package
File and I/O operations

This module provides functions for working with external files. Some of these functions
apply to an entire file, and have prefix \file_. .., while others are used to work with
files on a line by line basis and have prefix \ior_... (reading) or \iow_... (writing).

It is important to remember that when reading external files TEX will attempt to
locate them both the operating system path and entries in the TEX file database (most
TEX systems use such a database). Thus the “current path” for TEX is somewhat broader
than that for other programs.

For functions which expect a (file name) argument, this argument may contain both
literal items and expandable content, which should on full expansion be the desired file
name. Any active characters (as declared in \1_char_active_seq) will not be expanded,
allowing the direct use of these in file names. File names will be quoted using " tokens
if they contain spaces: as a result, " tokens are not permitted in file names.

1 File operation functions

Contains the name of the current IXTEX file. This variable should not be modified: it is
intended for information only. It will be equal to \c_sys_jobname_str at the start of a
ETEX run and will be modified each time a file is read using \file_input:n.

\file_if_exist:nTF {(file name)} {(true code)} {(false code)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \file_path_include:n).

\file_add_path:nN {(file name)} (t1 var)

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
sets the (¢l var) the fully-qualified name of the file, i.e. the path and file name. If the file
is not found then the (¢ var) will contain the marker \q_no_value.

\file_input:n {(file name)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional IXTEX source. All files read are recorded for information
and the file name stack is updated by this function. An error will be raised if the file is
not found.

\file_path_include:n {(path)}

Adds (path) to the list of those used to search when reading files. The assignment is local.
The (path) is processed in the same way as a (file name), i.e., with x-type expansion
except active characters.

138

\file_path_remove:n

Updated: 2012-07-04

\file_list:

\ior_new:N
:c
\iow_new:N
:c

New: 2011-09-26
Updated: 2011-12-27

\ior_open:Nn
rcn

Updated: 2012-02-10

\ior_open:NnTF
:cnTF

New: 2013-01-12

\iow_open:Nn
icn

Updated: 2012-02-09

\file_path_remove:n {(path)}

Removes (path) from the list of those used to search when reading files. The assignment
is local. The (path) is processed in the same way as a (file name), i.e., with x-type
expansion except active characters.

\file_list:

This function will list all files loaded using \file_input:n in the log file.

1.1 Input—output stream management

As TgX is limited to 16 input streams and 16 output streams, direct use of the streams
by the programmer is not supported in ITEX3. Instead, an internal pool of streams is
maintained, and these are allocated and deallocated as needed by other modules. As a
result, the programmer should close streams when they are no longer needed, to release
them for other processes.

Note that I/O operations are global: streams should all be declared with global
names and treated accordingly.

\ior_new:N (stream)
\iow_new:N (stream)

Globally reserves the name of the (stream), either for reading or for writing as appropri-
ate. The (stream) is not opened until the appropriate \..._open:Nn function is used.
Attempting to use a (stream) which has not been opened is an error, and the (stream)
will behave as the corresponding \c_term_. . ..

\ior_open:Nn (stream) {(file name)}

Opens (file name) for reading using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \ior_-
close:N instruction is given or the TEX run ends.

\ior_open:NnTF (stream) {(file name)} {(true code)} {(false code)}

Opens (file name) for reading using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \ior_-
close:N instruction is given or the TEX run ends. The (true code) is then inserted into
the input stream. If the file is not found, no error is raised and the (false code) is inserted
into the input stream.

\iow_open:Nn (stream) {(file name)}

Opens (file name) for writing using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \iow_-
close:N instruction is given or the TEX run ends. Opening a file for writing will clear
any existing content in the file (i.e. writing is not additive).

139

\ior_close:N
e
\iow_close:N
e

Updated: 2012-07-31

\ior_list_streams:
\iow_list_streams:

Updated: 2015-08-01

\ior_get:NN

New: 2012-06-24

\ior_close:N (stream)
\iow_close:N (stream)

Closes the (stream). Streams should always be closed when they are finished with as this
ensures that they remain available to other programmers.

\ior_list_streams:

\iow_list_streams:

Displays a list of the file names associated with each open stream: intended for tracking
down problems.

1.2 Reading from files

\ior_get:NN (stream) (token list variable)

Function that reads one or more lines (until an equal number of left and right braces are
found) from the input (streamn) and stores the result locally in the (token list) variable.
If the (stream) is not open, input is requested from the terminal. The material read from
the (stream) will be tokenized by TEX according to the category codes and \endlinechar
in force when the function is used. Assuming normal settings, any lines which do not end
in a comment character % will have the line ending converted to a space, so for example
input

ab c

will result in a token list a b c.. Any blank line is converted to the token \par. There-
fore, blank lines can be skipped by using a test such as

\ior_get:NN \1_my_stream \1_tmpa_tl
\tl_set:Nn \1_tmpb_tl { \par }
\tl_if_eq:NNF \1_tmpa_tl \1_tmpb_tl

Also notice that if multiple lines are read to match braces then the resulting token list
can contain \par tokens.

TEXhackers note: This protected macro is a wrapper around the TEX primitive \read.
Regardless of settings, TEX replaces trailing space and tab characters (character codes 32 and 9)
in each line by an end-of-line character (character code \endlinechar, omitted if \endlinechar
is negative or too large) before turning characters into tokens according to current category
codes. With default settings, spaces appearing at the beginning of lines are also ignored.

140

\ior_str_get:NN

New: 2016-12-04

\ior_map_inline:Nn

New: 2012-02-11

\ior_str_map_inline:Nn

New: 2012-02-11

\ior_map_break:

New: 2012-06-29

\ior_str_get:NN (stream) (token list variable)

Function that reads one line from the input (stream) and stores the result locally in the
(token list) variable. If the (stream) is not open, input is requested from the terminal.
The material is read from the (stream) as a series of tokens with category code 12 (other),
with the exception of space characters which are given category code 10 (space). Multiple
whitespace characters are retained by this process. It will always only read one line and
any blank lines in the input will result in the (token list variable) being empty. Unlike
\ior_get:NN, line ends do not receive any special treatment. Thus input

ab c
will result in a token list a b ¢ with the letters a, b, and ¢ having category code 12.

TEXhackers note: This protected macro is a wrapper around the e-TEX primitive
\readline. Regardless of settings, TEX removes trailing space and tab characters (character
codes 32 and 9). However, the end-line character normally added by this primitive is not in-
cluded in the result of \ior_str_get:NN.

\ior_map_inline:Nn (stream) {(inline function)}

Applies the (inline function) to each set of (lines) obtained by calling \ior_get : NN until
reaching the end of the file. TEX ignores any trailing new-line marker from the file it
reads. The (inline function) should consist of code which will receive the (line) as #1.

\ior_str_map_inline:Nn {(stream)} {(inline function)}

Applies the (inline function) to every (line) in the (stream). The material is read from
the (stream) as a series of tokens with category code 12 (other), with the exception of
space characters which are given category code 10 (space). The (inline function) should
consist of code which will receive the (line) as #1. Note that TEX removes trailing space
and tab characters (character codes 32 and 9) from every line upon input. TEX also
ignores any trailing new-line marker from the file it reads.

\ior_map_break:

Used to terminate a \ior_map_... function before all lines from the (stream) have been
processed. This will normally take place within a conditional statement, for example

\ior_map_inline:Nn \1l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break: }

{
% Do something useful
}
}
Use outside of a \ior_map_... scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before further items are taken from the input stream.
This will depend on the design of the mapping function.

141

\ior_map_break:n

New: 2012-06-29

\ior_if_eof_p:N *
\ior_if_eof:NTF x

Updated: 2012-02-10

\iow_now:Nn
: (Nx|cn|cx)

Updated: 2012-06-05

\iow_log:n
X

\iow_term:n
X

\ior_map_break:n {(tokens)}

Used to terminate a \ior_map_... function before all lines in the (stream) have been
processed, inserting the (tokens) after the mapping has ended. This will normally take
place within a conditional statement, for example

\ior_map_inline:Nn \1l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break:n { <tokens> } }

{
% Do something useful
}
}
Use outside of a \ior_map_. .. scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the (tokens) are inserted into the input stream.
This will depend on the design of the mapping function.

\ior_if_eof_p:N (stream)
\ior_if_eof:NTF (stream) {(true code)} {(false code)}

Tests if the end of a (stream) has been reached during a reading operation. The test will
also return a true value if the (stream) is not open.

2 Writing to files

\iow_now:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) immediately (7.e. the write oper-
ation is called on expansion of \iow_now:Nn).

\iow_log:n {(tokens)}

This function writes the given (tokens) to the log (transcript) file immediately: it is a
dedicated version of \iow_now:Nn.

\iow_term:n {(tokens)}

This function writes the given (tokens) to the terminal file immediately: it is a dedicated
version of \iow_now:Nn.

142

\iow_shipout:Nn

: (Nx|cnlcx)

\iow_shipout_x:Nn

: (Nx|cnlcx)

Updated: 2012-09-08

\iow_char:N *

\iow_newline:

*

\iow_shipout:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) when the current page is finalised
(i.e. at shipout). The x-type variants expand the (tokens) at the point where the function
is used but not when the resulting tokens are written to the (stream) (¢f. \iow_shipout_-
x:Nn).

TgXhackers note: When using expl3 with a format other than ETEX, new line charac-
ters inserted using \iow_newline: or using the line-wrapping code \iow_wrap:nnnN will not be
recognized in the argument of \iow_shipout:Nn. This may lead to the insertion of additionnal
unwanted line-breaks.

\iow_shipout_x:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) when the current page is finalised
(i.e. at shipout). The (tokens) are expanded at the time of writing in addition to any
expansion when the function is used. This makes these functions suitable for including
material finalised during the page building process (such as the page number integer).

TEXhackers note: This is a wrapper around the TEX primitive \write. When using expl3
with a format other than ITEX, new line characters inserted using \iow_newline: or using the
line-wrapping code \iow_wrap:nnnN will not be recognized in the argument of \iow_shipout :Nn.
This may lead to the insertion of additionnal unwanted line-breaks.

\iow_char:N \(char)
Inserts (char) into the output stream. Useful when trying to write difficult characters
such as %, {, }, etc. in messages, for example:

\iow_now:Nx \g_my_iow { \iow_char:N \{ text \iow_char:N \} }

The function has no effect if writing is taking place without expansion (e.g. in the second
argument of \iow_now:Nn).

\iow_newline:

Function to add a new line within the (tokens) written to a file. The function has no
effect if writing is taking place without expansion (e.g. in the second argument of \iow_-
now:Nn).

TEXhackers note: When using expl3 with a format other than KTEX, the character
inserted by \iow_newline: will not be recognized by TEX, which may lead to the insertion of
additionnal unwanted line-breaks. This issue only affects \iow_shipout:Nn, \iow_shipout_x:Nn
and direct uses of primitive operations.

143

\iow_wrap:nnnN

New: 2012-06-28
Updated: 2015-08-05

\iow_indent:n

New: 2011-09-21

\1l_iow_line_count_int

New: 2012-06-24

\c_catcode_other_space_tl

New: 2011-09-05

2.1 Wrapping lines in output

\iow_wrap:nnnN {(text)} {(run-on text)} {(set up)} (function)

This function will wrap the (text) to a fixed number of characters per line. At the start of
each line which is wrapped, the (run-on text) will be inserted. The line character count
targeted will be the value of \1_iow_line_count_int minus the number of characters in
the (run-on text) for all lines except the first, for which the target number of characters
is simply \1_iow_line_count_int since there is no run-on text. The (text) and (run-on
text) are exhaustively expanded by the function, with the following substitutions:

¢ \\ may be used to force a new line,

o \U may be used to represent a forced space (for example after a control sequence),
o \#, \%, \{, \}, \~ may be used to represent the corresponding character,

o \iow_indent:n may be used to indent a part of the (text) (not the (run-on text)).

Additional functions may be added to the wrapping by using the (set up), which is
executed before the wrapping takes place: this may include overriding the substitutions
listed.

Any expandable material in the (text) which is not to be expanded on wrapping
should be converted to a string using \token_to_str:N, \tl_to_str:n, \tl_to_str:N,
etc.

The result of the wrapping operation is passed as a braced argument to the
(function), which will typically be a wrapper around a write operation. The output
of \iow_wrap:nnnN (i.e. the argument passed to the {function)) will consist of characters
of category “other” (category code 12), with the exception of spaces which will have cat-
egory “space” (category code 10). This means that the output will not expand further
when written to a file.

TEXhackers note: Internally, \iow_wrap:nnnN carries out an x-type expansion on the
(text) to expand it. This is done in such a way that \exp_not:N or \exp_not:n could be used
to prevent expansion of material. However, this is less conceptually clear than conversion to a
string, which is therefore the supported method for handling expandable material in the (text).

\iow_indent:n {(text)}

In the first argument of \iow_wrap:nnnN (for instance in messages), indents (text) by
four spaces. This function will not cause a line break, and only affects lines which start
within the scope of the (text). In case the indented (text) should appear on separate lines
from the surrounding text, use \\ to force line breaks.

The maximum number of characters in a line to be written by the \iow_wrap:nnnN
function. This value depends on the TEX system in use: the standard value is 78, which
is typically correct for unmodified TpXlive and MiKTEX systems.

Token list containing one character with category code 12, (“other”), and character code
32 (space).

144

\c_term_ior

\c_log_iow
\c_term_iow

\if_eof:w *

\g__file_internal_ior

\1__file_internal_name_tl

__file_name_sanitize:nn

New: 2012-02-09

__ior_open:Nn
:No

New: 2012-01-23

2.2 Constant input—output streams

Constant input stream for reading from the terminal. Reading from this stream using
\ior_get:NN or similar will result in a prompt from TEX of the form

<tl>=

Constant output streams for writing to the log and to the terminal (plus the log), respec-
tively.

2.3 Primitive conditionals

\if_eof:w (stream)
(true code)
\else:
(false code)
\fi:
Tests if the (stream) returns “end of file”, which is true for non-existent files. The \else:
branch is optional.

TEXhackers note: This is the TEX primitive \ifeof.

2.4 Internal file functions and variables

Used to test for the existence of files when opening.

Used to return the full name of a file for internal use. This is set by \file_if_exist:nTF
and __file_if_exist:nT, and the value may then be used to load a file directly pro-
vided no further operations intervene.

__file_name_sanitize:nn {(name)} {(tokens)}

Exhaustively-expands the (name) with the exception of any category (active) (catcode 13)
tokens, which are not expanded. The list of (active) tokens is taken from \1_char_-
active_seq. The (sanitized name) is then inserted (in braces) after the (tokens), which
should further process the file name. If any spaces are found in the name after expansion,
an error is raised.

2.5 Internal input—output functions

__ior_open:Nn (stream) {(file name)}

This function has identical syntax to the public version. However, is does not take
precautions against active characters in the (file name), and it does not attempt to add
a (path) to the (file name): it is therefore intended to be used by higher-level functions
which have already fully expanded the (file name) and which need to perform multiple
open or close operations. See for example the implementation of \file_add_path:nN,

145

__iow_with:Nnn

New: 2014-08-23

__iow_with:Nnn (integer) {(value)} {(code)}

If the (integer) is equal to the (value) then this function simply runs the (code). Oth-
erwise it saves the current value of the (integer), sets it to the (value), runs the
(code), and restores the (integer) to its former value. This is used to ensure that the
\newlinechar is 10 when writing to a stream, which lets \iow_newline: work, and that
\errorcontextlines is —1 when displaying a message.

146

\dim_new:N
c

\dim_const:Nn
icn

New: 2012-03-05

\dim_zero:N

:c
\dim_gzero:N
e

\dim_zero_new:N

:c
\dim_gzero_new:N
e

New: 2012-01-07

\dim_if_exist_p:N
ic
\dim_if_exist:NTF
:cTF

* ok A

New: 2012-03-03

Part XIX
The 13skip package
Dimensions and skips

ETREX3 provides two general length variables: dim and skip. Lengths stored as dim
variables have a fixed length, whereas skip lengths have a rubber (stretch/shrink) com-
ponent. In addition, the muskip type is available for use in math mode: this is a special
form of skip where the lengths involved are determined by the current math font (in
mu). There are common features in the creation and setting of length variables, but for
clarity the functions are grouped by variable type.

1 Creating and initialising dim variables

\dim_new:N (dimension)

Creates a new (dimension) or raises an error if the name is already taken. The declaration
is global. The (dimension) will initially be equal to 0 pt.

\dim_const:Nn (dimension) {(dimension expression)}

Creates a new constant (dimension) or raises an error if the name is already taken. The
value of the (dimension) will be set globally to the (dimension expression).

\dim_zero:N (dimension)

Sets (dimension) to 0pt.

\dim_zero_new:N (dimension)

Ensures that the (dimension) exists globally by applying \dim_new:N if necessary, then
applies \dim_(g)zero:N to leave the (dimension) set to zero.

\dim_if_exist_p:N (dimension)
\dim_if_exist:NTF (dimension) {(true code)} {(false code)}

Tests whether the (dimension) is currently defined. This does not check that the
(dimension) really is a dimension variable.

147

\dim_add:Nn

icn
\dim_gadd:Nn
:cn

Updated: 2011-10-22

\dim_set:Nn

icn
\dim_gset:Nn
icn

Updated: 2011-10-22

\dim_set_eq:NN

:(cN|Nc|ec)

\dim_gset_eq:NN

: (cN|Nc|cc)

\dim_sub:Nn

:cn
\dim_gsub:Nn
:cn

Updated: 2011-10-22

\dim_abs:n *

Updated: 2012-09-26

\dim_max:nn *
\dim_min:nn x

New: 2012-09-09
Updated: 2012-09-26

2 Setting dim variables

\dim_add:Nn (dimension) {(dimension expression)}

Adds the result of the (dimension expression) to the current content of the (dimension).

\dim_set:Nn (dimension) {(dimension expression)}

Sets (dimension) to the value of (dimension expression), which must evaluate to a length
with units.

\dim_set_eq:NN (dimension:) (dimensions)

Sets the content of (dimension;) equal to that of (dimensions).

\dim_sub:Nn (dimension) {(dimension expression)}

Subtracts the result of the (dimension expression) from the current content of the
(dimension).

3 Utilities for dimension calculations

\dim_abs:n {(dimexpr)}

Converts the (dimezpr) to its absolute value, leaving the result in the input stream as a
(dimension denotation).

\dim_max:nn {(dimexpr:)} {(dimexprs)}
\dim_min:nn {(dimexpr:)} {(dimexprs)}

Evaluates the two (dimension expressions) and leaves either the maximum or minimum
value in the input stream as appropriate, as a (dimension denotation).

148

\dim_ratio:nn ¥

Updated: 2011-10-22

\dim_compare_p:nNn *
\dim_compare:nNnTF *

\dim_ratio:nn {(dimexpri)} {(dimexpr:)}

Parses the two (dimension expressions) and converts the ratio of the two to a form
suitable for use inside a (dimension expression). This ratio is then left in the input
stream, allowing syntax such as

\dim_set:Nn \1_my_dim
{ 10 pt * \dim_ratio:nn { 5 pt } { 10 pt } }

The output of \dim_ratio:nn on full expansion is a ration expression between two inte-
gers, with all distances converted to scaled points. Thus

\tl_set:Nx \l_my_tl { \dim_ratio:nn { 5 pt } { 10 pt } }
\tl_show:N \1_my_tl

will display 327680/655360 on the terminal.

4 Dimension expression conditionals

\dim_compare_p:nNn {(dimexpri)} (relation) {(dimexprs)}
\dim_compare :nNnTF

{(dimexpr1)} (relation) {(dimexprs)}

{(true code)} {(false code)}

This function first evaluates each of the (dimension expressions) as described for \dim_-
eval:n. The two results are then compared using the (relation):

Equal
Greater than
Less than

ANV

149

\dim_compare_p:n *
\dim_compare:nTF *

Updated: 2013-01-13

\dim_compare_p:n
{

(dimexpr1) (relation;)

(dimexpry) (relationn)

(dimexpry41)
}
\dim_compare:nTF
{

dimexpri relation;
P

(dimexpry) (relationy)
(dimexpry+1)

}

{(true code)} {(false code)}

This function evaluates the (dimension expressions) as described for \dim_eval:n and
compares consecutive result using the corresponding (relation), namely it compares
(dimexpry) and (dimexprs) using the (relation;), then (dimexprs) and (dimexprs) us-
ing the (relationy), until finally comparing (dimezpry) and (dimexpryi1) using the
(relationy). The test yields true if all comparisons are true. FEach (dimension
expression) is evaluated only once, and the evaluation is lazy, in the sense that if one
comparison is false, then no other (dimension exrpression) is evaluated and no other
comparison is performed. The (relations) can be any of the following:

Equal =or ==
Greater than or equal to >=
Greater than >

Less than or equal to <=
Less than <

Not equal 1=

150

\dim_case:nn *
\dim_case:nnTF x

New: 2013-07-24

\dim_do_until:nNnn 3

\dim_do_while:nNnn 3%

\dim_until_do:nNnn 3¢

\dim_case:nnTF {(test dimension expression)}
{
{(dimexpr casei)} {(code casei)}
{(dimexpr case2)} {(code cases)}

%(.c;imexpr case,)} {(code casen)}
}
{(true code)}
{(false code)}

This function evaluates the (test dimension expression) and compares this in turn to each
of the (dimension expression cases). If the two are equal then the associated (code) is
left in the input stream. If any of the cases are matched, the (true code) is also inserted
into the input stream (after the code for the appropriate case), while if none match then
the (false code) is inserted. The function \dim_case:nn, which does nothing if there is
no match, is also available. For example

\dim_set:Nn \1_tmpa_dim { 5 pt }
\dim_case:nnF
{ 2 \1_tmpa_dim }

{
{5pt} { Small }
{4 pt+6pt} {Medium }
{ - 10 pt } { Negative }
}
{ No idea! }

will leave “Medium” in the input stream.

5 Dimension expression loops

\dim_do_until:nNnn {(dimexpr:)} (relation) {(dimexprs)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (dimension expressions) as described for \dim_compare :nNnTF. If
the test is false then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is true.

\dim_do_while:nNnn {(dimexpri)} (relation) {(dimexpr:)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (dimension expressions) as described for \dim_compare :nNnTF. If
the test is true then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is false.

\dim_until_do:nNnn {(dimexpri)} (relation) {(dimexprs)} {(code)}

Evaluates the relationship between the two (dimension expressions) as described for
\dim_compare:nNnTF, and then places the (code) in the input stream if the (relation) is
false. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is true.

151

\dim_while_do:nNnn 3

\dim_do_until:nn 3

Updated: 2013-01-13

\dim_do_while:nn 3

Updated: 2013-01-13

\dim_until_do:nn 3

Updated: 2013-01-13

\dim_while_do:nn 5

Updated: 2013-01-13

\dim_eval:n *

Updated: 2011-10-22

\dim_use:N «*
ic %

\dim_while_do:nNnn {(dimexpri)} (relation) {(dimexpr:)} {(code)}

Evaluates the relationship between the two (dimension expressions) as described for
\dim_compare :nNnTF, and then places the (code) in the input stream if the (relation) is
true. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is false.

\dim_do_until:nn {(dimension relation)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the
(dimension relation) as described for \dim_compare:nTF. If the test is false then the
(code) will be inserted into the input stream again and a loop will occur until the (relation)
is true.

\dim_do_while:nn {(dimension relation)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the
(dimension relation) as described for \dim_compare:nTF. If the test is true then the
(code) will be inserted into the input stream again and a loop will occur until the (relation)
is false.

\dim_until_do:nn {(dimension relation)} {(code)}

Evaluates the (dimension relation) as described for \dim_compare:nTF, and then places
the (code) in the input stream if the (relation) is false. After the (code) has been
processed by TEX the test will be repeated, and a loop will occur until the test is true.

\dim_while_do:nn {(dimension relation)} {(code)}

Evaluates the (dimension relation) as described for \dim_compare:nTF, and then places
the (code) in the input stream if the (relation) is true. After the (code) has been processed
by TEX the test will be repeated, and a loop will occur until the test is false.

6 Using dim expressions and variables

\dim_eval:n {(dimension expression)}

Evaluates the (dimension expression), expanding any dimensions and token list variables
within the (expression) to their content (without requiring \dim_use:N/\t1l_use:N) and
applying the standard mathematical rules. The result of the calculation is left in the
input stream as a (dimension denotation) after two expansions. This will be expressed
in points (pt), and will require suitable termination if used in a TEX-style assignment as
it is not an (internal dimension).

\dim_use:N (dimension)

Recovers the content of a (dimension) and places it directly in the input stream. An
error will be raised if the variable does not exist or if it is invalid. Can be omitted in
places where a (dimension) is required (such as in the argument of \dim_eval:n).

TEXhackers note: \dim_use:N is the TEX primitive \the: this is one of several ITEX3
names for this primitive.

152

\dim_to_decimal:n *

New: 2014-07-15

\dim_to_decimal_in_bp:n *

New: 2014-07-15

\dim_to_decimal_in_sp:n *

New: 2015-05-18

\dim_to_decimal:n {(dimexpr)}

Evaluates the (dimension expression), and leaves the result, expressed in points (pt) in
the input stream, with no units. The result is rounded by TEX to four or five decimal
places. If the decimal part of the result is zero, it is omitted, together with the decimal
marker.

For example

\dim_to_decimal:n { 1bp }

leaves 1.00374 in the input stream, i.e. the magnitude of one “big point” when converted

to (TEX) points.

\dim_to_decimal_in_bp:n {(dimexpr)}

Evaluates the (dimension expression), and leaves the result, expressed in big points (bp)
in the input stream, with no units. The result is rounded by TEX to four or five decimal
places. If the decimal part of the result is zero, it is omitted, together with the decimal
marker.

For example

\dim_to_decimal_in_bp:n { 1pt }

leaves 0.99628 in the input stream, ¢.e. the magnitude of one (TEX) point when converted
to big points.

\dim_to_decimal_in_sp:n {(dimexpr)}

Evaluates the (dimension expression), and leaves the result, expressed in scaled points
(sp) in the input stream, with no units. The result will necessarily be an integer.

\dim_to_decimal_in_unit:nn * \dim_to_decimal_in_unit:nn {(dimexpri)} {(dimexprs)}

New: 2014-07-15

Evaluates the (dimension expressions), and leaves the value of (dimezpr;), expressed in a
unit given by (dimezprs), in the input stream. The result is a decimal number, rounded
by TEX to four or five decimal places. If the decimal part of the result is zero, it is
omitted, together with the decimal marker.

For example

\dim_to_decimal_in_unit:nn { 1bp } { imm }

leaves 0.35277 in the input stream, i.e. the magnitude of one big point when converted
to millimetres.

Note that this function is not optimised for any particular output and as such may
give different results to \dim_to_decimal_in_bp:n or \dim_to_decimal_in_sp:n. In
particular, the latter is able to take a wider range of input values as it is not limited
by the ability to calculate a ratio using e-TEX primitives, which is required internally by
\dim_to_decimal_in_unit:nn.

153

\dim_to_fp:n *

New: 2012-05-08

\dim_show:N
:c

\dim_show:n

New: 2011-11-22
Updated: 2015-08-07

\dim_log:N
:c

New: 2014-08-22
Updated: 2015-08-03

\dim_log:n

New: 2014-08-22
Updated: 2015-08-07

\c_max_dim

\c_zero_dim

\1_tmpa_dim
\1_tmpb_dim

\g_tmpa_dim
\g_tmpb_dim

\dim_to_fp:n {(dimexpr)}

Expands to an internal floating point number equal to the value of the (dimezpr) in
pt. Since dimension expressions are evaluated much faster than their floating point
equivalent, \dim_to_fp:n can be used to speed up parts of a computation where a low
precision is acceptable.

7 Viewing dim variables
\dim_show:N (dimension)
Displays the value of the (dimension) on the terminal.

\dim_show:n {(dimension expression)}

Displays the result of evaluating the (dimension expression) on the terminal.

\dim_log:N (dimension)

Writes the value of the (dimension) in the log file.

\dim_log:n {(dimension expression)}

Writes the result of evaluating the (dimension expression) in the log file.

8 Constant dimensions

The maximum value that can be stored as a dimension. This can also be used as a
component of a skip.

A zero length as a dimension. This can also be used as a component of a skip.

9 Scratch dimensions

Scratch dimension for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch dimension for global assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

154

\skip_new:N
ic

\skip_const:Nn
icn

New: 2012-03-05

\skip_zero:N

c
\skip_gzero:N
ic

\skip_zero_new:N

ic
\skip_gzero_new:N
ic

New: 2012-01-07

\skip_if_exist_p:N *
ic oK
\skip_if_exist:NTF x
:cTF *

New: 2012-03-03

\skip_add:Nn

rcn
\skip_gadd:Nn
icn

Updated: 2011-10-22

\skip_set:Nn

icn
\skip_gset:Nn
icn

Updated: 2011-10-22

\skip_set_eq:NN
:(cN|Nc|ec)
\skip_gset_eq:NN
: (cN|Nclcc)

10 Creating and initialising skip variables

\skip_new:N (skip)

Creates a new (skip) or raises an error if the name is already taken. The declaration is
global. The (skip) will initially be equal to 0 pt.

\skip_const:Nn (skip) {(skip expression)}

Creates a new constant (skip) or raises an error if the name is already taken. The value
of the (skip) will be set globally to the (skip expression).

\skip_zero:N (skip)
Sets (skip) to 0pt.

\skip_zero_new:N (skip)

Ensures that the (skip) exists globally by applying \skip_new:N if necessary, then applies
\skip_(g)zero:N to leave the (skip) set to zero.

\skip_if_exist_p:N (skip)
\skip_if_exist:NTF (skip) {(true code)} {(false code)}

Tests whether the (skip) is currently defined. This does not check that the (skip) really
is a skip variable.

11 Setting skip variables

\skip_add:Nn (skip) {(skip expression)}
Adds the result of the (skip expression) to the current content of the (skip).

\skip_set:Nn (skip) {(skip expression)}

Sets (skip) to the value of (skip expression), which must evaluate to a length with units
and may include a rubber component (for example 1 cm plus 0.5 cm.

\skip_set_eq:NN (skipi) (skipz)
Sets the content of (skip;) equal to that of (skips).

155

\skip_sub:Nn

icn
\skip_gsub:Nn
icn

Updated: 2011-10-22

\skip_if_eq_p:nn *
\skip_if_eq:nnTF *

\skip_if_finite_p:n *
\skip_if_finite:nTF *

New: 2012-03-05

\skip_eval:n *

Updated: 2011-10-22

\skip_use:N *
icok

\skip_show:N
ic

Updated: 2015-08-03

\skip_sub:Nn (skip) {(skip expression)}

Subtracts the result of the (skip expression) from the current content of the (skip).

12 Skip expression conditionals

\skip_if_eq_p:nn {(skipexpri)} {(skipexprs)}
\dim_compare:nTF

{(skipexpri)} {(skipexpr2)}

{{true code)} {(false code)}
This function first evaluates each of the (skip expressions) as described for \skip_-
eval:n. The two results are then compared for exact equality, i.e. both the fixed and
rubber components must be the same for the test to be true.

\skip_if_finite_p:n {(skipexpr)}
\skip_if_finite:nTF {(skipexpr)} {(true code)} {(false code)}

Evaluates the (skip expression) as described for \skip_eval:n, and then tests if all of
its components are finite.

13 Using skip expressions and variables

\skip_eval:n {(skip expression)}

Evaluates the (skip expression), expanding any skips and token list variables within the
(expression) to their content (without requiring \skip_use:N/\tl_use:N) and applying
the standard mathematical rules. The result of the calculation is left in the input stream
as a (glue denotation) after two expansions. This will be expressed in points (pt), and
will require suitable termination if used in a TEX-style assignment as it is not an (internal
glue).

\skip_use:N (skip)

Recovers the content of a (skip) and places it directly in the input stream. An error will
be raised if the variable does not exist or if it is invalid. Can be omitted in places where
a (dimension) is required (such as in the argument of \skip_eval:n).

TEXhackers note: \skip_use:N is the TEX primitive \the: this is one of several I¥TEX3
names for this primitive.

14 Viewing skip variables

\skip_show:N (skip)
Displays the value of the (skip) on the terminal.

156

\skip_show:n

New: 2011-11-22
Updated: 2015-08-07

\skip_log:N
ic

New: 2014-08-22
Updated: 2015-08-03

\skip_log:n

New: 2014-08-22
Updated: 2015-08-07

\c_max_skip

Updated: 2012-11-02

\c_zero_skip

Updated: 2012-11-01

\1_tmpa_skip
\1_tmpb_skip

\g_tmpa_skip
\g_tmpb_skip

\skip_horizontal:N
ic
\skip_horizontal:n

Updated: 2011-10-22

\skip_show:n {(skip expression)}

Displays the result of evaluating the (skip expression) on the terminal.

\skip_log:N (skip)
Writes the value of the (skip) in the log file.

\skip_log:n {(skip expression)}
Writes the result of evaluating the (skip expression) in the log file.

15 Constant skips

The maximum value that can be stored as a skip (equal to \c_max_dim in length), with
no stretch nor shrink component.

A zero length as a skip, with no stretch nor shrink component.

16 Scratch skips

Scratch skip for local assignment. These are never used by the kernel code, and so are
safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch skip for global assignment. These are never used by the kernel code, and so are
safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

17 Inserting skips into the output

\skip_horizontal:N (skip)
\skip_horizontal:n {(skipexpr)}

Inserts a horizontal (skip) into the current list.

TEXhackers note: \skip_horizontal:N is the TEX primitive \hskip renamed.

157

\skip_vertical:N
ic
\skip_vertical:n

Updated: 2011-10-22

\muskip_new:N
ic

\muskip_const:Nn
:cn

New: 2012-03-05

\muskip_zero:N

c
\muskip_gzero:N
ic

\muskip_zero_new:N

:c
\muskip_gzero_new:N
e

New: 2012-01-07

\muskip_if_exist_p:N
e
\muskip_if_exist:NTF
:cTF

* Ok A

New: 2012-03-03

\muskip_add:Nn

icn
\muskip_gadd:Nn
icn

Updated: 2011-10-22

\skip_vertical:N (skip)
\skip_vertical:n {(skipexpr)}

Inserts a vertical (skip) into the current list.

TEXhackers note: \skip_vertical:N is the TEX primitive \vskip renamed.

18 Creating and initialising muskip variables

\muskip_new:N (muskip)

Creates a new (muskip) or raises an error if the name is already taken. The declaration
is global. The {muskip) will initially be equal to 0 mu.

\muskip_const:Nn (muskip) {(muskip expression)}

Creates a new constant (muskip) or raises an error if the name is already taken. The
value of the (muskip) will be set globally to the (muskip expression).

\skip_zero:N (muskip)
Sets (muskip) to 0 mu.

\muskip_zero_new:N (muskip)

Ensures that the (muskip) exists globally by applying \muskip_new:N if necessary, then
applies \muskip_(g)zero:N to leave the (muskip) set to zero.

\muskip_if_exist_p:N (muskip)
\muskip_if_exist:NTF (muskip) {(true code)} {(false code)}

Tests whether the (muskip) is currently defined. This does not check that the {muskip)
really is a muskip variable.

19 Setting muskip variables

\muskip_add:Nn (muskip) {(muskip expression)}

Adds the result of the (muskip expression) to the current content of the (muskip).

158

\muskip_set:Nn

icn
\muskip_gset:Nn
icn

Updated: 2011-10-22

\muskip_set_eq:NN
:(cN|Nc|ec)
\muskip_gset_eq:NN
: (cN|Nclcc)

\muskip_sub:Nn

icn
\muskip_gsub:Nn
icn

Updated: 2011-10-22

\muskip_eval:n *

Updated: 2011-10-22

\muskip_use:N *
icok

\muskip_show:N

:C

Updated: 2015-08-03

\muskip_show:n

New: 2011-11-22

Updated: 2015-08-07

\muskip_set:Nn (muskip) {(muskip expression)}

Sets (muskip) to the value of (muskip expression), which must evaluate to a math length
with units and may include a rubber component (for example 1 mu plus 0.5 mu.

\muskip_set_eq:NN (muskip:) (muskips)
Sets the content of (muskip;) equal to that of (muskips).

\muskip_sub:Nn (muskip) {(muskip expression)}

Subtracts the result of the (muskip expression) from the current content of the (skip).

20 Using muskip expressions and variables

\muskip_eval:n {(muskip expression)}

Evaluates the (muskip expression), expanding any skips and token list variables within
the (expression) to their content (without requiring \muskip_use:N/\tl_use:N) and
applying the standard mathematical rules. The result of the calculation is left in the
input stream as a (muglue denotation) after two expansions. This will be expressed in
mu, and will require suitable termination if used in a TEX-style assignment as it is not an
(internal muglue).

\muskip_use:N (muskip)

Recovers the content of a (skip) and places it directly in the input stream. An error will
be raised if the variable does not exist or if it is invalid. Can be omitted in places where
a (dimension) is required (such as in the argument of \muskip_eval:n).

TEXhackers note: \muskip_use:N is the TEX primitive \the: this is one of several I¥TEX3
names for this primitive.

21 Viewing muskip variables

\muskip_show:N (muskip)

Displays the value of the (muskip) on the terminal.

\muskip_show:n {(muskip expression)}

Displays the result of evaluating the (muskip ezpression) on the terminal.

159

\muskip_log:N \muskip_log:N (muskip)

"°_ Writes the value of the (muskip) in the log file.
New: 2014-08-22

Updated: 2015-08-03

\muskip_log:n \muskip_log:n {(muskip expression)}

New: 2014-08-22 Writes the result of evaluating the (muskip expression) in the log file.
Updated: 2015-08-07

22 Constant muskips

\c_max_muskip The maximum value that can be stored as a muskip, with no stretch nor shrink compo-
nent.

\c_zero_muskip A zero length as a muskip, with no stretch nor shrink component.

23 Scratch muskips

\1_tmpa_muskip Scratch muskip for local assignment. These are never used by the kernel code, and so
\1_tmpb_muskip are safe for use with any BTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_muskip Scratch muskip for global assignment. These are never used by the kernel code, and so
\g_tmpb_muskip are safe for use with any KTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

24 Primitive conditional

\if_dim:w \if_dim:w (dimen;) (relation) (dimens)
- (true code)
\else:
(false)
\fi:
Compare two dimensions. The (relation) is one of <, = or > with category code 12.

TEXhackers note: This is the TEX primitive \ifdim.

160

25 Internal functions

__dim_eval:w * __dim_eval:w (dimexpr) __dim_eval_end:

di 1_end:
\.-dim_eval_end: * Evaluates (dimension expression) as described for \dim_eval:n. The evaluation stops

when an unexpandable token which is not a valid part of a dimension is read or when _-
_dim_eval_end: is reached. The latter is gobbled by the scanner mechanism: __dim_-
eval_end: itself is unexpandable but used correctly the entire construct is expandable.

TEXhackers note: This is the e-TEX primitive \dimexpr.

161

Part XX
The 13keys package
Key—value interfaces

The key—value method is a popular system for creating large numbers of settings for
controlling function or package behaviour. The system normally results in input of the
form

\MyModuleSetup{
key-one = value one,
key-two = value two

}

or

\MyModuleMacro [
key-one = value one,
key-two = value two

J{argument}

for the user.

The high level functions here are intended as a method to create key—value controls.
Keys are themselves created using a key—value interface, minimising the number of func-
tions and arguments required. Each key is created by setting one or more properties of
the key:

\keys_define:nn { mymodule }
{
key-one .code:n = code including parameter #1,
key-two .tl_set:N = \1_mymodule_store_tl
}

These values can then be set as with other key—value approaches:

\keys_set:nn { mymodule }
{
key-one = value one,
key-two = value two

}

At a document level, \keys_set:nn will be used within a document function, for
example

\DeclareDocumentCommand \MyModuleSetup { m }
{ \keys_set:nn { mymodule } { #1 } 1}
\DeclareDocumentCommand \MyModuleMacro { o m }
{
\group_begin:
\keys_set:nn { mymodule } { #1 }
% Main code for \MyModuleMacro
\group_end:
}

162

\keys_define:nn

Updated: 2015-11-07

Key names may contain any tokens, as they are handled internally using \t1_to_-
str:n; spaces are ignored in key names. As will be discussed in section 2, it is suggested
that the character / is reserved for sub-division of keys into logical groups. Functions
and variables are not expanded when creating key names, and so

\tl_set:Nn \1_mymodule_tmp_tl { key }
\keys_define:nn { mymodule }
{
\1_mymodule_tmp_tl .code:n = code
}

will create a key called \1_mymodule_tmp_t1, and not one called key.

1 Creating keys

\keys_define:nn {(module)} {(keyval list)}

Parses the (keyval list) and defines the keys listed there for (module). The (module)
name should be a text value, but there are no restrictions on the nature of the text. In
practice the (module) should be chosen to be unique to the module in question (unless
deliberately adding keys to an existing module).

The (keyval list) should consist of one or more key names along with an associated
key property. The properties of a key determine how it acts. The individual properties
are described in the following text; a typical use of \keys_define:nn might read

\keys_define:nn { mymodule }
{
keyname .code:n = Some~code~using-~#1,
keyname .value_required:n = true

3

where the properties of the key begin from the . after the key name.
The various properties available take either no arguments at all, or require one

or more arguments. This is indicated in the name of the property using an argument
specification. In the following discussion, each property is illustrated attached to an
arbitrary (key), which when used may be supplied with a (value). All key definitions are
local.

Key properties are applied in the reading order and so the ordering is significant.
Key properties which define “actions”, such as .code:n, .tl_set:N, etc., will override
one another. Some other properties are mutually exclusive, notably .value_required:n
and .value_forbidden:n, and so will replace one another. However, properties covering
non-exclusive behaviours may be given in any order. Thus for example the following
definitions are equivalent.

\keys_define:nn { mymodule }
{
keyname .code:n = Some~code~using~#1,
keyname .value_required:n = true
}
\keys_define:nn { mymodule }

163

.bool_set:N

:c
.bool_gset:N
:c

Updated: 2013-07-08

.bool_set_inverse:N

e
.bool_gset_inverse:N
i

New: 2011-08-28
Updated: 2013-07-08

.choice:

.choices:nn
: (Vn|on|xn)

New: 2011-08-21
Updated: 2013-07-10

.clist_set:N

H
.clist_gset:N
H

New: 2011-09-11

.code:n

Updated: 2013-07-10

{
keyname .value_required:n =
keyname .code:n

3

true,
Some~code~using~#1

Note that with the exception of the special .undefine: property, all key properties will
define the key within the current TEX scope.

(key) .bool_set:N = (boolean)

Defines (key) to set (boolean) to (value) (which must be either true or false). If the
variable does not exist, it will be created globally at the point that the key is set up.

(key) .bool_set_inverse:N = (boolean)

Defines (key) to set (boolean) to the logical inverse of (value) (which must be either true
or false). If the (boolean) does not exist, it will be created globally at the point that
the key is set up.

(key) .choice:

Sets (key) to act as a choice key. Each valid choice for (key) must then be created, as
discussed in section 3.

(key) .choices:nn = {(choices)} {(code)}

Sets (key) to act as a choice key, and defines a series (choices) which are implemented
using the (code). Inside (code), \1_keys_choice_t1 will be the name of the choice
made, and \1_keys_choice_int will be the position of the choice in the list of {choices)
(indexed from 1). Choices are discussed in detail in section 3.

(key) .clist_set:N = (comma list variable)

Defines (key) to set (comma list variable) to (value). Spaces around commas and empty
items will be stripped. If the variable does not exist, it will be created globally at the
point that the key is set up.

(key) .code:n = {(code)}

Stores the (code) for execution when (key) is used. The (code) can include one parameter
(#1), which will be the (value) given for the (key). The x-type variant will expand (code)
at the point where the (key) is created.

164

.default:n (key) .default:n = {(default)}

 (Vlolx) Creates a (default) value for (key), which is used if no value is given. This will be used

Updated: 2013-07-09 if only the key name is given, but not if a blank (value) is given:

\keys_define:nn { mymodule }
{

key .code:n = Hello~#1,
key .default:n = World

}

\keys_set:nn { mymodule }

{
key = Fred, % Prints ’Hello Fred’
key, % Prints ’Hello World’
key = , % Prints ’Hello °

}

The default does not affect keys where values are required or forbidden. Thus a required
value cannot be supplied by a default value, and giving a default value for a key which
cannot take a value will not trigger an error.

.dim_set:N (key) .dim_set:N = (dimension)
ic
.dim_gset:N
ic

Defines (key) to set (dimension) to (value) (which must a dimension expression). If the
variable does not exist, it will be created globally at the point that the key is set up.

.fp_set:N (key) .fp_set:N = (floating point)
ic
.fp_gset:N
ic

Defines (key) to set (floating point) to (value) (which must a floating point expression).
If the variable does not exist, it will be created globally at the point that the key is set

up.

.groups:n (key) .groups:n = {(groups)}

New: 2013-07-14 Defines (key) as belonging to the (groups) declared. Groups provide a “secondary axis”
for selectively setting keys, and are described in Section 6.

.inherit:n (key) .inherit:n = {(parents)}
New: 2016-11-22 Specifies that the (key) path should inherit the keys listed as (parents). For example,
with setting

\keys_define:n { foo } { test .code:n = \tl_show:n {#1} }
\keys_define:n { } { bar .inherit:n = foo }

setting

\keys_set:n { bar } { test = a }
will be equivalent to

\keys_set:n { foo } { test = a }

165

.initial:n
:(V]olx)

Updated: 2013-07-09

.int_set:N

:c
.int_gset:N
c

.meta:n

Updated: 2013-07-10

.meta:nn

New: 2013-07-10

.multichoice:

New: 2011-08-21

.multichoices:nn
: (Vn|on|xn)

New: 2011-08-21
Updated: 2013-07-10

.skip_set:N

e
.skip_gset:N
:c

.tl_set:N

e
.tl_gset:N
:c

.tl_set_x:N

He
.tl_gset_x:N
i

{(value)}
Initialises the (key) with the (value), equivalent to

(key) .initial:n =

\keys_set:nn {(module)} { (key) = (value) }

(key) .int_set:N = (integer)

Defines (key) to set (integer) to (value) (which must be an integer expression). If the
variable does not exist, it will be created globally at the point that the key is set up.

(key) .meta:n = {(keyval list)}

Makes (key) a meta-key, which will set (keyval list) in one go. If (key) is given with a
value at the time the key is used, then the value will be passed through to the subsidiary
(keys) for processing (as #1).

(key) .meta:nn = {(path)} {(keyval list)}

Makes (key) a meta-key, which will set (keyval list) in one go using the (path) in place of
the current one. If (key) is given with a value at the time the key is used, then the value
will be passed through to the subsidiary (keys) for processing (as #1).

(key) .multichoice:

Sets (key) to act as a multiple choice key. Each valid choice for (key) must then be
created, as discussed in section 3.

(key) .multichoices:nn {(choices)} {(code)}

Sets (key) to act as a multiple choice key, and defines a series (choices) which are im-
plemented using the (code). Inside (code), \1_keys_choice_t1 will be the name of the
choice made, and \1_keys_choice_int will be the position of the choice in the list of
(choices) (indexed from 1). Choices are discussed in detail in section 3.

(key) .skip_set:N = (skip)

Defines (key) to set (skip) to (value) (which must be a skip expression). If the variable
does not exist, it will be created globally at the point that the key is set up.

(key) .tl_set:N = (token list variable)

Defines (key) to set (token list variable) to (value). If the variable does not exist, it will
be created globally at the point that the key is set up.

(key) .tl_set_x:N = (token list variable)

Defines (key) to set (token list variable) to (value), which will be subjected to an x-
type expansion (i.e. using \t1l_set:Nx). If the variable does not exist, it will be created
globally at the point that the key is set up.

166

.undefine:

New: 2015-07-14

.value_forbidden:n

New: 2015-07-14

.value_required:n

New: 2015-07-14

(key) .undefine:

Removes the definition of the (key) within the current scope.

(key) .value_forbidden:n = truel|false

Specifies that (key) cannot receive a (value) when used. If a (value) is given then an error
will be issued. Setting the property false will cancel the restriction.

(key) .value_required:n = true|false

Specifies that (key) must receive a (value) when used. If a (value) is not given then an
error will be issued. Setting the property false will cancel the restriction.

2 Sub-dividing keys

When creating large numbers of keys, it may be desirable to divide them into several
sub-groups for a given module. This can be achieved either by adding a sub-division to
the module name:

\keys_define:nn { module / subgroup }
{ key .code:n = code }

or to the key name:

\keys_define:nn { mymodule }
{ subgroup / key .code:n = code }

As illustrated, the best choice of token for sub-dividing keys in this way is /. This is
because of the method that is used to represent keys internally. Both of the above code
fragments set the same key, which has full name module/subgroup/key.

As will be illustrated in the next section, this subdivision is particularly relevant to
making multiple choices.

3 Choice and multiple choice keys

The I3keys system supports two types of choice key, in which a series of pre-defined input
values are linked to varying implementations. Choice keys are usually created so that the
various values are mutually-exclusive: only one can apply at any one time. “Multiple”
choice keys are also supported: these allow a selection of values to be chosen at the same
time.

Mutually-exclusive choices are created by setting the .choice: property:

\keys_define:nn { mymodule }
{ key .choice: }

For keys which are set up as choices, the valid choices are generated by creating sub-keys
of the choice key. This can be carried out in two ways.

In many cases, choices execute similar code which is dependant only on the name of
the choice or the position of the choice in the list of all possibilities. Here, the keys can
share the same code, and can be rapidly created using the .choices:nn property.

167

\1_keys_choice_int
\1_keys_choice_tl

\keys_define:nn { mymodule }

{
key .choices:nn =
{ choice-a, choice-b, choice-c }
{
You~gave~choice~’\tl_use:N \1_keys_choice_tl’,~
which~is~in~position~\int_use:N \1_keys_choice_int \c_space_tl
in~the~1list.
}
}

The index \1_keys_choice_int in the list of choices starts at 1.

Inside the code block for a choice generated using .choices:nn, the variables \1_keys_-
choice_t1 and \1_keys_choice_int are available to indicate the name of the current
choice, and its position in the comma list. The position is indexed from 1. Note that,
as with standard key code generated using .code:n, the value passed to the key (i.e. the

choice name) is also available as #1.
On the other hand, it is sometimes useful to create choices which use entirely different

code from one another. This can be achieved by setting the .choice: property of a key,
then manually defining sub-keys.

\keys_define:nn { mymodule }

{
key .choice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,
}

It is possible to mix the two methods, but manually-created choices should not
use \1_keys_choice_tl or \1_keys_choice_int. These variables do not have defined
behaviour when used outside of code created using .choices:nn (i.e. anything might
happen).

It is possible to allow choice keys to take values which have not previously been
defined by adding code for the special unknown choice. The general behavior of the
unknown key is described in Section 5. A typical example in the case of a choice would
be to issue a custom error message:

\keys_define:nn { mymodule }
{

key .choice:,

key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,
key / unknown .code:n =

\msg_error:nnxxx { mymodule } { unknown-choice }

{ key } % Name of choice key
{ choice-a , choice-b , choice-c } % Valid choices
{ \exp_not:n {#1} } % Invalid choice given

168

Multiple choices are created in a very similar manner to mutually-exclusive choices,
using the properties .multichoice: and .multichoices:nn. As with mutually exclusive
choices, multiple choices are define as sub-keys. Thus both

\keys_define:nn { mymodule }

{
key .multichoices:nn =
{ choice-a, choice-b, choice-c }
{
You~gave~choice~’\tl_use:N \1_keys_choice_t1’,~
which~is~in~position~
\int_use:N \1_keys_choice_int \c_space_tl
in~the~list.
}
}

and

\keys_define:nn { mymodule }

{
key .multichoice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,
by
are valid.

When a multiple choice key is set

\keys_set:nn { mymodule }
{
key ={a, b, c} % ’key’ defined as a multiple choice
}

each choice is applied in turn, equivalent to a clist mapping or to applying each value
individually:

\keys_set:nn { mymodule }

{
key = a ,
key = b ,
key = ¢ ,

}

Thus each separate choice will have passed to it the \1_keys_choice_t1 and \1_keys_-
choice_int in exactly the same way as described for .choices:nn.

169

\keys_set:nn
: (nV|nv|no)

Updated: 2015-11-07

\1_keys_key_tl
\1_keys_path_tl
\1_keys_value_tl

Updated: 2015-07-14

4 Setting keys

\keys_set:nn {(module)} {(keyval list)}

Parses the (keyval list), and sets those keys which are defined for (module). The behaviour
on finding an unknown key can be set by defining a special unknown key: this will be
illustrated later.

For each key processed, information of the full path of the key, the name of the key and
the value of the key is available within three token list variables. These may be used
within the code of the key.

The value is everything after the =, which may be empty if no value was given. This
is stored in \1_keys_value_tl, and is not processed in any way by \keys_set:nn.

The path of the key is a “full” description of the key, and is unique for each key. It
consists of the module and full key name, thus for example

\keys_set:nn { mymodule } { key-a = some-value }
has path mymodule/key-a while
\keys_set:nn { mymodule } { subset / key-a = some-value }

has path mymodule/subset/key-a. This information is stored in \1_keys_path_t1, and
will have been processed by \tl_to_str:n.

The name of the key is the part of the path after the last /, and thus is not unique.
In the preceding examples, both keys have name key-a despite having different paths.
This information is stored in \1_keys_key_t1, and will have been processed by \tl_-
to_str:n.

5 Handling of unknown keys

If a key has not previously been defined (is unknown), \keys_set :nn will look for a special
unknown key for the same module, and if this is not defined raises an error indicating that
the key name was unknown. This mechanism can be used for example to issue custom
error texts.

\keys_define:nn { mymodule }
{

unknown .code:n =
You~tried~to~set~key~’\1_keys_key_t1l’~to~’#1’.

170

\keys_set_known:nnN \keys_set_known:nnN {(module)} {(keyval list)} (t1)
: (nVN|nvN|noN)

\keys_set_known:nn
: (nV|nv|no)

New: 2011-08-23
Updated: 2017-05-27

In some cases, the desired behavior is to simply ignore unknown keys, collecting up
information on these for later processing. The \keys_set_known:nnN function parses
the (keyval list), and sets those keys which are defined for (module). Any keys which are
unknown are not processed further by the parser. The key—value pairs for each unknown
key name will be stored in the (tI) in a comma-separated form (i.e. an edited version of
the (keyval list)). The \keys_set_known:nn version skips this stage.

Use of \keys_set_known:nnN can be nested, with the correct residual (keyval list)
returned at each stage.

6 Selective key setting

In some cases it may be useful to be able to select only some keys for setting, even though
these keys have the same path. For example, with a set of keys defined using

\keys define:nn { mymodule }

{
key-one .code:n = { \my_func:n {#1} } ,
key-two .tl_set:N = \1_my_a_tl ,
key-three .tl_set:N = \1_my_b_tl ,
key-four .fp_set:N = \1_my_a_fp ,

}

the use of \keys_set:nn will attempt to set all four keys. However, in some contexts it
may only be sensible to set some keys, or to control the order of setting. To do this, keys
may be assigned to groups: arbitrary sets which are independent of the key tree. Thus
modifying the example to read

\keys define:nn { mymodule }

{
key-one .code:n = { \my_func:n {#1} } ,
key-one .groups:n = { first } ,
key-two .tl_set:N = \1l_my_a_tl ,
key-two .groups:n = { first } ,
key-three .tl_set:N = \1_my_b_tl ,
key-three .groups:n = { second } ,
key-four .fp_set:N = \1_my_a_fp ,

}

will assign key-one and key-two to group first, key-three to group second, while
key-four is not assigned to a group.

Selective key setting may be achieved either by selecting one or more groups to be
made “active”, or by marking one or more groups to be ignored in key setting.

171

\keys_set_filter:nnnN \keys_set_filter:nnnN {(module)} {(groups)} {(keyval list)} (tl1)
: (nnVN|nnvN|nnoN)

\keys_set_filter:nnn
: (nnV|nnv|nno)

New: 2013-07-14
Updated: 2017-05-27

Actives key filtering in an “opt-out” sense: keys assigned to any of the (groups) specified
will be ignored. The (groups) are given as a comma-separated list. Unknown keys are
not assigned to any group and will thus always be set. The key—value pairs for each key
which is filtered out will be stored in the (¢l) in a comma-separated form (i.e. an edited
version of the (keyval list)). The \keys_set_filter:nnn version skips this stage.

Use of \keys_set_filter:nnnN can be nested, with the correct residual (keyval list)

returned at each stage.

\keys_set_groups:nnn \keys_set_groups:nnn {(module)} {(groups)} {(keyval list)}
: (nnV|nnv|nno)

New: 2013-07-14
Updated: 2017-05-27

Actives key filtering in an “opt-in” sense: only keys assigned to one or more of the {groups)
specified will be set. The (groups) are given as a comma-separated list. Unknown keys
are not assigned to any group and will thus never be set.

7 Utility functions for keys

\keys_if_exist_p:nn » \keys_if_exist_p:nn {(module)} {(key)}
\keys_if_exist:nnTF » \keys_if_exist:nnTF {(module)} {(key)} {(true code)} {(false code)}

Updated: 2015-11-07 Lests if the (key) exists for (module), i.e. if any code has been defined for (key).

\keys_if_choice_exist_p:nnn * \keys_if_choice_exist_p:nnn {(module)} {(key)} {(choice)}
\keys_if_choice_exist:nnnTF + \keys_if_choice_exist:nnnTF {(module)} {(key)} {(choice)} {(true code)}
{(false code)}

New: 2011-08-21
Updated: 2015-11-07

Tests if the (choice) is defined for the (key) within the (module), i.e. if any code has been
defined for (key)/(choice). The test is false if the (key) itself is not defined.

\keys_show:nn \keys_show:nn {(module)} {(key)}

Updated: 2015-08-09 Displays in the terminal the information associated to the (key) for a (module), including
the function which is used to actually implement it.

\keys_log:nn \keys_log:nn {(module)} {(key)}

New: 2014-08-22 Writes in the log file the information associated to the (key) for a {module). See also
Updated: 2015-08-09 \keys_show:nn which displays the result in the terminal.

172

8 Low-level interface for parsing key—val lists

To re-cap from earlier, a key—value list is input of the form

KeyOne = ValueOne ,
KeyTwo = ValueTwo ,
KeyThree

where each key—value pair is separated by a comma from the rest of the list, and each
key—value pair does not necessarily contain an equals sign or a value! Processing this
type of input correctly requires a number of careful steps, to correctly account for braces,
spaces and the category codes of separators.

While the functions described earlier are used as a high-level interface for processing
such input, in special circumstances you may wish to use a lower-level approach. The
low-level parsing system converts a (key—value list) into (keys) and associated (values).
After the parsing phase is completed, the resulting keys and values (or keys alone) are
available for further processing. This processing is not carried out by the low-level parser
itself, and so the parser requires the names of two functions along with the key—value
list. One function is needed to process key—value pairs (it receives two arguments), and
a second function is required for keys given without any value (it is called with a single
argument).

The parser does not double # tokens or expand any input. Active tokens = and ,
appearing at the outer level of braces are converted to category “other” (12) so that the
parser does not “miss” any due to category code changes. Spaces are removed from the
ends of the keys and values. Keys and values which are given in braces will have exactly
one set removed (after space trimming), thus

key = {value here},
and
key = value here,

are treated identically.

173

\keyval_parse:NNn

Updated: 2011-09-08

\keyval_parse:NNn (functioni) (functions) {(key-value list)}

Parses the (key—value list) into a series of (keys) and associated (values), or keys alone
(if no (value) was given). (function;) should take one argument, while (functions)
should absorb two arguments. After \keyval_parse:NNn has parsed the (key—value list),
(function;) will be used to process keys given with no value and (functions) will be used
to process keys given with a value. The order of the (keys) in the (key—value list) will be
preserved. Thus

\keyval_parse:NNn \function:n \function:nn
{ keyl = valuel , key2 = value2, key3 = , key4 }

will be converted into an input stream

\function:nn { keyl } { valuel }
\function:nn { key2 } { value2 }
\function:nn { key3 } { }
\function:n { key4 }

Note that there is a difference between an empty value (an equals sign followed by noth-
ing) and a missing value (no equals sign at all). Spaces are trimmed from the ends of the
(key) and (value), then one outer set of braces is removed from the (key) and (value) as
part of the processing.

174

Part XXI
The 13fp package: floating points

A decimal floating point number is one which is stored as a significand and a separate
exponent. The module implements expandably a wide set of arithmetic, trigonometric,
and other operations on decimal floating point numbers, to be used within floating point
expressions. Floating point expressions support the following operations with their usual
precedence.

e Basic arithmetic: addition x 4 ¥, subtraction z — y, multiplication z * y, division
x/y, square root /x, and parentheses.

o Comparison operators: x <y, x <=y, z>7y, z! =y etc.

o Boolean logic: sign signz, negation !z, conjunction x&&y, disjunction z ||y,
ternary operator z 7y: z.

o Exponentials: expx, Inz, x¥.

e Trigonometry: sinzx, cosx, tanz, cotx, secx, cscx expecting their arguments in
radians, and sind x, cosd z, tand z, cotd x, secd x, cscd x expecting their arguments
in degrees.

e Inverse trigonometric functions: asinx, acos z, atan z, acot z, asecx, acscx giving
a result in radians, and asind x, acosd x, atand x, acotd x, asecd x, acscd x giving a
result in degrees.

(not yet) Hyperbolic functions and their inverse functions: sinhz, coshz, tanhz, cothz,
sech x, csch, and asinh x, acosh z, atanh x, acoth x, asech x, acsch x.

o Extrema: max(z,y,...), min(z,y,...), abs(z).

o Rounding functions (n = 0 by default, ¢ = NaN by default): trunc(z,n) rounds
towards zero, floor(z,n) rounds towards —oo, ceil(z,n) rounds towards oo,
round(x, n,t) rounds to the closest value, with ties rounded to an even value by
default, towards zero if t = 0, towards +oo if ¢ > 0 and towards —oco if ¢ < 0. And
(not yet) modulo, and “quantize”.

e Random numbers: rand(), randint(m,n) in pdfTEX and LuaTEX engines.
o Constants: pi, deg (one degree in radians).
e Dimensions, automatically expressed in points, e.g., pc is 12.

o Automatic conversion (no need for \(type)_use:N) of integer, dimension, and skip
variables to floating points, expressing dimensions in points and ignoring the stretch
and shrink components of skips.

Floating point numbers can be given either explicitly (in a form such as 1.234e-34, or
-.0001), or as a stored floating point variable, which is automatically replaced by its
current value. See section 9.1 for a description of what a floating point is, section 9.2
for details about how an expression is parsed, and section 9.3 to know what the various
operations do. Some operations may raise exceptions (error messages), described in
section 7.

An example of use could be the following.

175

\fp_new:N
:c

Updated: 2012-05-08

\fp_const:Nn

:cn

Updated: 2012-05-08

\fp_zero:N

ic
\fp_gzero:N
ic

Updated: 2012-05-08

\fp_zero_new:N

ic
\fp_gzero_new:N
i

Updated: 2012-05-08

\fp_set:Nn

:cn
\fp_gset:Nn
icn

Updated: 2012-05-08

\LaTeX{} can now compute: $ \frac{\sin (3.5)}{2} + 2\cdot 10°{-3%}
= \ExplSyntaxOn \fp_to_decimal:n {sin 3.5 /2 + 2e-3} §.

But in all fairness, this module is mostly meant as an underlying tool for higher-level
commands. For example, one could provide a function to typeset nicely the result of
floating point computations.

\documentclass{article}

\usepackage{xparse, siunitx}

\ExplSyntaxOn

\NewDocumentCommand { \calcnum } { m }
{ \num { \fp_to_scientific:n {#1} } }

\ExplSyntax0ff

\begin{document}

\calcnum { 2 pi * sin (2.3 ~ 5) }

\end{document}

1 Creating and initialising floating point variables

\fp_new:N (fp var)

Creates a new (fp var) or raises an error if the name is already taken. The declaration is
global. The (fp var) will initially be +0.

\fp_const:Nn (fp var) {(floating point expression)}

Creates a new constant (fp var) or raises an error if the name is already taken. The
(fp var) will be set globally equal to the result of evaluating the (floating point expression).

\fp_zero:N (fp var)
Sets the (fp var) to +0.

\fp_zero_new:N (fp var)

Ensures that the (fp var) exists globally by applying \fp_new:N if necessary, then applies
\fp_(g)zero:N to leave the (fp var) set to +0.

2 Setting floating point variables

\fp_set:Nn (fp var) {(floating point expression)}

Sets (fp var) equal to the result of computing the (floating point expression).

176

\fp_set_eq:NN

:(cN|N¢|ec)

\fp_gset_eq:NN

: (cN|Nclcc)

Updated: 2012-05-08

\fp_add:Nn

icn
\fp_gadd:Nn
icn

Updated: 2012-05-08

\fp_sub:Nn

icn
\fp_gsub:Nn
icn

Updated: 2012-05-08

\fp_eval:n *

New: 2012-05-08
Updated: 2012-07-08

\fp_to_decimal:N «*

iC X

\fp_to_decimal:n *

New: 2012-05-08
Updated: 2012-07-08

\fp_to_dim:N *
:C X
\fp_to_dim:n «*

Updated: 2016-03-22

\fp_set_eq:NN (fp vari) (fp vars)

Sets the floating point variable (fp var;) equal to the current value of (fp vars).

\fp_add:Nn (fp var) {(floating point expression)}
Adds the result of computing the (floating point expression) to the (fp var).

\fp_sub:Nn (fp var) {(floating point expression)}

Subtracts the result of computing the (floating point expression) from the (fp var).

3 Using floating point numbers

\fp_eval:n {(floating point expression)}

Evaluates the (floating point expression) and expresses the result as a decimal number
with no exponent. Leading or trailing zeros may be inserted to compensate for the
exponent. Non-significant trailing zeros are trimmed, and integers are expressed without
a decimal separator. The values +0o and NaN trigger an “invalid operation” exception.
This function is identical to \fp_to_decimal:n.

\fp_to_decimal:N (fp var)

\fp_to_decimal:n {(floating point expression)}

Evaluates the (floating point expression) and expresses the result as a decimal number
with no exponent. Leading or trailing zeros may be inserted to compensate for the
exponent. Non-significant trailing zeros are trimmed, and integers are expressed without
a decimal separator. The values +co and NaN trigger an “invalid operation” exception.

\fp_to_dim:N (fp var)

\fp_to_dim:n {(floating point expression)}

Evaluates the (floating point expression) and expresses the result as a dimension (in pt)
suitable for use in dimension expressions. The output is identical to \fp_to_decimal:n,
with an additional trailing pt (both letter tokens). In particular, the result may be
outside the range [—21* + 2717, 214 — 2717] of valid TEX dimensions, leading to overflow
errors if used as a dimension. The values 0o and NaN trigger an “invalid operation”
exception.

177

\fp_to_int:N x*
i *
\fp_to_int:n *

Updated: 2012-07-08

\fp_to_scientific:N *
ic oK
\fp_to_scientific:n *

New: 2012-05-08
Updated: 2016-03-22

\fp_to_t1l:N «
¢
\fp_to_tl:n «

Updated: 2016-03-22

\fp_use:N *
ic *

Updated: 2012-07-08

\fp_if_exist_p:N
e
\fp_if_exist:NTF

*
*
*

:cTF %

Updated: 2012-05-08

\fp_to_int:N (fp var)

\fp_to_int:n {(floating point expression)}

Evaluates the (floating point expression), and rounds the result to the closest integer,
rounding exact ties to an even integer. The result may be outside the range [—23! +
1,231 —1] of valid TEX integers, leading to overflow errors if used in an integer expression.
The values 00 and NaN trigger an “invalid operation” exception.

\fp_to_scientific:N (fp var)
\fp_to_scientific:n {(floating point expression)}

Evaluates the (floating point expression) and expresses the result in scientific notation:
(optional -){digit) . (15 digits)e{optional sign){exponent)

The leading (digit) is non-zero except in the case of 0. The values +oo and NaN trigger
an “invalid operation” exception. Normal category codes apply: thus the e is category
code 11 (a letter).

\fp_to_t1l:N (fp var)

\fp_to_tl:n {(floating point expression)}

Evaluates the (floating point expression) and expresses the result in (almost) the shortest
possible form. Numbers in the ranges (0,1073) and [10'6,00) are expressed in scien-
tific notation with trailing zeros trimmed and no decimal separator when there is a
single significant digit (this differs from \fp_to_scientific:n). Numbers in the range
[1073,10%%) are expressed in a decimal notation without exponent, with trailing zeros
trimmed, and no decimal separator for integer values (see \fp_to_decimal:n. Nega-
tive numbers start with —. The special values +0, 00 and NaN are rendered as 0, -0,
inf, -inf, and nan respectively. Normal category codes apply and thus inf or nan, if
produced, will be made up of letters.

\fp_use:N (fp var)

Inserts the value of the {fp var) into the input stream as a decimal number with no
exponent. Leading or trailing zeros may be inserted to compensate for the exponent.
Non-significant trailing zeros are trimmed. Integers are expressed without a decimal sep-
arator. The values +0o0 and NaN trigger an “invalid operation” exception. This function
is identical to \fp_to_decimal:N.

4 Floating point conditionals

\fp_if_exist_p:N (fp var)
\fp_if_exist:NTF (fp var) {(true code)} {(false code)}

Tests whether the (fp var) is currently defined. This does not check that the (fp var)
really is a floating point variable.

178

\fp_compare_p:nNn *
\fp_compare:nNnTF *

Updated: 2012-05-08

\fp_compare_p:n *
\fp_compare:nTF *

Updated: 2012-12-14

\fp_compare_p:nNn {(fpexpri)} (relation) {(fpexprs:)}

\fp_compare:nNnTF {(fpexpri)} (relation) {(fpexpr:)} {(true code)} {(false code)}
Compares the (fpexpr;) and the (fpexprs), and returns true if the (relation) is obeyed.
Two floating point numbers z and y may obey four mutually exclusive relations:
z(y,z=y,x)y, or and y are not ordered. The latter case occurs exactly when one or
both operands is NaN, and this relation is denoted by the symbol ?. Note that a NaN is
distinct from any value, even another NaN, hence z = z is not true for a NaN. To test if a
value is NaN, compare it to an arbitrary number with the “not ordered” relation.

\fp_compare:nNnTF { <value> } 7 { 0 }
{ } % <value> is nan
{ } % <value> is not nan

\fp_compare_p:n
{
(fpexpri) (relatiom)
(fpexprn) (relationn)
(fpexpry+1)
}
\fp_compare :nTF
{
(fpexpr1) (relatiom)

(fpexprn) (relationy)
(fpexprn1)

}

{(true code)} {(false code)}

Evaluates the (floating point expressions) as described for \fp_eval:n and compares
consecutive result using the corresponding (relation), namely it compares (intexpr;) and
(intexprs) using the (relation;), then (intexprs) and (intexprs) using the (relations), until
finally comparing (intexpry) and (intezpry.y1) using the (relationy). The test yields
true if all comparisons are true. Each (floating point expression) is evaluated only once.
Contrarily to \int_compare:nTF, all (floating point expressions) are computed, even if
one comparison is false. Two floating point numbers and y may obey four mutually
exclusive relations: z(y,z=y,z)y, or x and y are not ordered. The latter case occurs
exactly when one or both operands is NaN, and this relation is denoted by the symbol 7.
Each (relation) can be any (non-empty) combination of <, =, >, and ?, plus an optional
leading ! (which negates the (relation)), with the restriction that the (relation) may
not start with 7, as this symbol has a different meaning (in combination with :) within
floatin point expressions. The comparison x (relation) y is then true if the (relation)
does not start with ! and the actual relation (<, =, >, or ?) between z and y appears
within the (relation), or on the contrary if the (relation) starts with ! and the relation
between x and y does not appear within the (relation). Common choices of (relation)
include >= (greater or equal), != (not equal), !? or <=> (comparable).

179

\fp_do_until:nNnn

New: 2012-08-16

\fp_do_while:nNnn 3¢

New: 2012-08-16

\fp_until_do:nNnn 7

New: 2012-08-16

\fp_while_do:nNnn v

New: 2012-08-16

\fp_do_until:nn

New: 2012-08-16

\fp_do_while:nn ¥

New: 2012-08-16

\fp_until_do:nn ¥

New: 2012-08-16

5 Floating point expression loops

\fp_do_until:nNnn {(fpexpri)} (relation) {(fpexpr2)} {({code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (floating point expressions) as described for \fp_compare:nNnTF.
If the test is false then the (code) will be inserted into the input stream again and a
loop will occur until the (relation) is true.

\fp_do_while:nNnn {(fpexpri)} (relation) {(fpexprz)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (floating point expressions) as described for \fp_compare:nNnTF.
If the test is true then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is false.

\fp_until_do:nNnn {(fpexpri)} (relation) {(fpexpr2)} {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nNnTF, and then places the {code) in the input stream if the (relation) is
false. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is true.

\fp_while_do:nNnn {(fpexpri)} (relation) {(fpexpr2)} {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nNnTF, and then places the {code) in the input stream if the (relation) is
true. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is false.

\fp_do_until:nn { (fpexpri) (relation) (fpexprs) } {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (floating point expressions) as described for \fp_compare:nTF.
If the test is false then the (code) will be inserted into the input stream again and a
loop will occur until the (relation) is true.

\fp_do_while:nn { (fpexpri) (relation) (fpexprz) } {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (floating point expressions) as described for \fp_compare:nTF.
If the test is true then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is false.

\fp_until_do:nn { (fpexpr:) (relation) (fpexprz) } {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nTF, and then places the (code) in the input stream if the (relation) is
false. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is true.

180

\fp_while_do:nn

New: 2012-08-16

\fp_step_function:nnnN
:nnnc

New: 2016-11-21
Updated: 2016-12-06

\fp_step_inline:nnnn

New: 2016-11-21
Updated: 2016-12-06

\fp_step_variable:nnnNn

New: 2017-04-12

\c_zero_fp
\c_minus_zero_fp

New: 2012-05-08

\fp_while_do:nn { (fpexpr:) (relation) (fpexprz) } {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nTF, and then places the (code) in the input stream if the (relation) is
true. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is false.

\fp_step_function:nnnN {(initial value)} {(step)} {(final value)} (function)

This function first evaluates the (initial value), (step) and (final value), all of which should
be floating point expressions. The (function) is then placed in front of each (value) from
the (initial value) to the (final value) in turn (using (step) between each (value)). The
(step) must be non-zero. If the (step) is positive, the loop stops when the (value) becomes
larger than the (final value). If the (step) is negative, the loop stops when the (value)
becomes smaller than the (final value). The (function) should absorb one numerical
argument. For example

\cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
\fp_step_function:nnnN { 1.0 } { 0.1 } { 1.5 } \my_func:n

would print

[[saw 1.0] [Isaw 1.1] [Isaw 1.2] [Isaw 1.3] [Isaw 1.4] [Isaw 1.5]

TgXhackers note: Due to rounding, it may happen that adding the (step) to the (value) does
not change the (value); such cases give an error, as they would otherwise lead to an infinite loop.

\fp_step_inline:nnnn {(initial value)} {(step)} {(final value)} {(code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be floating point expressions. Then for each (value) from the (initial value) to
the (final value) in turn (using (step) between each (value)), the (code) is inserted into
the input stream with #1 replaced by the current (value). Thus the (code) should define
a function of one argument (#1).

\fp_step_variable:nnnNn
{(initial value)} {(step)} {(final value)} (t1 var) {({code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be floating point expressions. Then for each (value) from the (initial value) to the
(final value) in turn (using (step) between each (value)), the (code) is inserted into the
input stream, with the (¢ var) defined as the current (value). Thus the (code) should
make use of the (tl var).

6 Some useful constants, and scratch variables

Zero, with either sign.

181

\c_one_fp

New: 2012-05-08

\c_inf_fp
\c_minus_inf_fp

New: 2012-05-08

\c_e_fp

Updated: 2012-05-08

\c_pi_fp

Updated: 2013-11-17

\c_one_degree_fp

New: 2012-05-08
Updated: 2013-11-17

\1_tmpa_£p
\1_tmpb_fp

\g_tmpa_£p
\g_tmpb_£p

One as an fp: useful for comparisons in some places.

Infinity, with either sign. These can be input directly in a floating point expression as
inf and -inf.

The value of the base of the natural logarithm, e = exp(1).

The value of w. This can be input directly in a floating point expression as pi.

The value of 1° in radians. Multiply an angle given in degrees by this value to obtain a
result in radians. Note that trigonometric functions expecting an argument in radians or
in degrees are both available. Within floating point expressions, this can be accessed as
deg.

Scratch floating points for local assignment. These are never used by the kernel code, and
so are safe for use with any IATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

Scratch floating points for global assignment. These are never used by the kernel code,
and so are safe for use with any I¥TEX3-defined function. However, they may be over-
written by other non-kernel code and so should only be used for short-term storage.

7 Floating point exceptions

The functions defined in this section are experimental, and their functionality may be
altered or removed altogether.

“Exceptions” may occur when performing some floating point operations, such as
0 / 0,0r 10 *x*x 1e9999. The relevant IEEE standard defines 5 types of exceptions, of
which we implement 4.

e Owverflow occurs whenever the result of an operation is too large to be represented
as a normal floating point number. This results in 4oc.

e Underflow occurs whenever the result of an operation is too close to 0 to be repre-
sented as a normal floating point number. This results in +0.

o Inwvalid operation occurs for operations with no defined outcome, for instance 0/0
or sin(oo), and results in a NaN. It also occurs for conversion functions whose target
type does not have the appropriate infinite or NaN value (e.g., \fp_to_dim:n).

e Division by zero occurs when dividing a non-zero number by 0, or when evaluating
functions at poles, e.g., In(0) or cot(0). This results in +oo.

182

(not yet) Inexact occurs whenever the result of a computation is not exact, in other words,

\fp_trap:nn

New: 2012-07-19
Updated: 2017-02-13

flag fp_overflow

flag fp_underflow

flag fp_invalid_operation
flag fp_division_by_zero

\fp_show:N

ic

\fp_show:n
New: 2012-05-08
Updated: 2015-08-07

\fp_log:N
ic
\fp_log:n

New: 2014-08-22

Updated: 2015-08-07

almost always. At the moment, this exception is entirely ignored in ETREX3.

To each exception we associate a “flag”: fp_overflow, fp_underflow, fp_invalid_-
operation and fp_division_by_zero. The state of these flags can be tested and mod-
ified with commands from [3flag

By default, the “invalid operation” exception triggers an (expandable) error, and
raises the corresponding flag. Other exceptions raise the corresponding flag but do not
trigger an error. The behaviour when an exception occurs can be modified (using \fp_-
trap:nn) to either produce an error and raise the flag, or only raise the flag, or do nothing
at all.

\fp_trap:nn {(exception)} {(trap type)}

All occurrences of the (exception) (overflow, underflow, invalid_operation or
division_by_zero) within the current group are treated as (trap type), which can be

 none: the (exception) will be entirely ignored, and leave no trace;
o flag: the (exception) will turn the corresponding flag on when it occurs;

o error: additionally, the (exception) will halt the TEX run and display some infor-
mation about the current operation in the terminal.

This function is experimental, and may be altered or removed.

Flags denoting the occurrence of various floating-point exceptions.

8 Viewing floating points

\fp_show:N (fp var)
\fp_show:n {(floating point expression)}

Evaluates the (floating point expression) and displays the result in the terminal.

\fp_log:N (fp var)
\fp_log:n {(floating point expression)}

Evaluates the (floating point expression) and writes the result in the log file.

9 Floating point expressions

9.1 Input of floating point numbers

We support four types of floating point numbers:

183

e £m-10", a floating point number, with integer 1 < m < 106, and —10000 < n <
10000;

e 10, zero, with a given sign;
e +o00, infinity, with a given sign;

e NaNl, is “not a number”, and can be either quiet or signalling (not yet: this distinc-
tion is currently unsupported);

Normal floating point numbers are stored in base 10, with up to 16 significant figures.
On input, a normal floating point number consists of:

o (sign): a possibly empty string of + and - characters;
o (significand): a non-empty string of digits together with zero or one dot;

o (exponent) optionally: the character e, followed by a possibly empty string of
+ and - tokens, and a non-empty string of digits.

The sign of the resulting number is + if {sign) contains an even number of -, and -
otherwise, hence, an empty (sign) denotes a non-negative input. The stored significand
is obtained from (significand) by omitting the decimal separator and leading zeros, and
rounding to 16 significant digits, filling with trailing zeros if necessary. In particular, the
value stored is exact if the input (significand) has at most 16 digits. The stored (ezponent)
is obtained by combining the input (exponent) (0 if absent) with a shift depending on
the position of the significand and the number of leading zeros.

A special case arises if the resulting (ezponent) is either too large or too small for the
floating point number to be represented. This results either in an overflow (the number
is then replaced by +00), or an underflow (resulting in £0).

The result is thus +0 if and only if (significand) contains no non-zero digit (i.e.,
consists only in characters 0, and an optional period), or if there is an underflow. Note
that a single dot is currently a valid floating point number, equal to 40, but that is not
guaranteed to remain true.

The (significand) must be non-empty, so el and e-1 are not valid floating point
numbers. Note that the latter could be mistaken with the difference of “e” and 1. To
avoid confusions, the base of natural logarithms cannot be input as e and should be input
as exp(1) or \c_e_=£p.

Special numbers are input as follows:

 inf represents +00, and can be preceded by any (sign), yielding oo as appropriate.

o nan represents a (quiet) non-number. It can be preceded by any sign, but that will
be ignored.

e Any unrecognizable string triggers an error, and produces a NaN.

9.2 Precedence of operators

We list here all the operations supported in floating point expressions, in order of de-
creasing precedence: operations listed earlier bind more tightly than operations listed
below them.

o Function calls (sin, 1n, etc).

184

|]

o Binary ** and ~ (right associative).

e Unary +, -, !.

o Binary *, /, and implicit multiplication by juxtaposition (2pi, 3(4+5), etc).
e Binary + and -.

e Comparisons >=, 1= <7, etc.

e Logical and, denoted by &&.

e Logical or, denoted by ||.

o Ternary operator ?: (right associative).

The precedence of operations can be overridden using parentheses. In particular, those
precedences imply that

sin2pi = sin(27) = 0,
2"2max(3,4) = 22maxG4) — 956,

Functions are called on the value of their argument, contrarily to TEX macros.

9.3 Operations

We now present the various operations allowed in floating point expressions, from the
lowest precedence to the highest. When used as a truth value, a floating point expression
is false if it is +0, and true otherwise, including when it is NaN.

\fp_eval:n { (operand:) ? (operand,) : (operands) }

The ternary operator ?: results in (operandy) if (operand,) is true, and (operands) if it is
false (equal to £0). All three (operands) are evaluated in all cases. The operator is right
associative, hence

\fp_eval:n
{
1+3>471
2+4>572
3+5>67
}

first tests whether 1 4 3 > 4; since this isn’t true, the branch following : is taken, and
244 > 5 is compared; since this is true, the branch before : is taken, and everything else
is (evaluated then) ignored. That allows testing for various cases in a concise manner,
with the drawback that all computations are made in all cases.

\fp_eval:n { (operand;) (operands) }

If (operand;) is true (non-zero), use that value, otherwise the value of (operands). Both
(operands) are evaluated in all cases.

185

&&

N VvV Il A

Updated: 2013-12-14

o+

I~ * | |

+ 1

*k

\fp_eval:n { (operand:) && (operands) }

If (operand;) is false (equal to £0), use that value, otherwise the value of (operands).
Both (operands) are evaluated in all cases.

\fp_eval:n
{

(operand;) (relation;)

(operandy) (relationy)
(operandn+1)
}
Each (relation) consists of a non-empty string of <, =, > and 7, optionally preceded by !,
and may not start with ?. This evaluates to +1 if all comparisons (operand;) (relation;)
(operand; 1) are true, and +0 otherwise. All (operands) are evaluated in all cases. See
\fp_compare:nTF for details.

\fp_eval:n { (operand;) + (operand,) }

\fp_eval:n { (operand;) - (operand.) }

Computes the sum or the difference of its two (operands). The “invalid operation” ex-
ception occurs for oo — oco. “Underflow” and “overflow” occur when appropriate.

\fp_eval:n { (operand;) * (operand,) }
\fp_eval:n { (operand;) / (operands) }

Computes the product or the ratio of its two (operands). The “invalid operation” excep-
tion occurs for co/oco, 0/0, or 0 x co. “Division by zero” occurs when dividing a finite
non-zero number by £0. “Underflow” and “overflow” occur when appropriate.

\fp_eval:n { + (operand) }
\fp_eval:n { - (operand) }
\fp_eval:n { ! (operand) }

The unary + does nothing, the unary - changes the sign of the (operand), and ! {(operand)
evaluates to 1 if (operand) is false and 0 otherwise (this is the not boolean function).
Those operations never raise exceptions.

\fp_eval:n { (operand;) ** (operands) }

\fp_eval:n { (operand;) ~ (operands) }

Raises (operand;) to the power {(operands). This operation is right associative, hence 2
*% 2 %% 3equals 22" = 256. If (operandy) is negative or —0 then: the result’s sign is + if
the (operands) is infinite and (—1)? if the (operands) is p/q with p integer and ¢ odd; the
result is 40 if abs ((operand;)) ~(operands) evaluates to zero; in other cases the “invalid
operation” exception occurs because the sign cannot be determined. “Division by zero”
occurs when raising +0 to a finite strictly negative power. “Underflow” and “overflow”
occur when appropriate.

\fp_eval:n { abs((fpexpr)) }

Computes the absolute value of the (fpexpr). This function does not raise any exception
beyond those raised when computing its operand (fpexpr). See also \fp_abs:n.

186

max
min

round
trunc
ceil

floor

New: 2013-12-14
Updated: 2015-08-08

sign

\fp_eval:n { exp((fpexpr)) %}

Computes the exponential of the (fpexpr). “Underflow” and “overflow” occur when ap-
propriate.

\fp_eval:n { 1n((fpexpr)) }

Computes the natural logarithm of the (fpexpr). Negative numbers have no (real) loga-
rithm, hence the “invalid operation” is raised in that case, including for In(—0). “Division
by zero” occurs when evaluating In(+0) = —oco. “Underflow” and “overflow” occur when
appropriate.

\fp_eval:n { max((fpexpri) , (fpexpra) ,)}

\fp_eval:n { min((fpexpri) , (fpexprz) ,)}

Evaluates each (fpexpr) and computes the largest (smallest) of those. If any of the
(fpexpr) is a NaN, the result is NaN. Those operations do not raise exceptions.

\fp_eval:n { round ((fpexpr)) }

\fp_eval:n { round ((fpexpri) , (fpexprs)) }

\fp_eval:n { round ((fpexpri) , (fpexpr:) , (fpexprs)) }

Only round accepts a third argument. Evaluates (fpexpri) = z and (fpexprs) = n and
(fpexprs) = t then rounds x to n places. If n is an integer, this rounds x to a multiple
of 107"; if n = 400, this always yields z; if n = —oo, this yields one of £0, 400,
or NaN; if n is neither +00 nor an integer, then an “invalid operation” exception is raised.
When (fpexprs) is omitted, n = 0, i.e., (fpexpr;) is rounded to an integer. The rounding
direction depends on the function.

e round yields the multiple of 10~™ closest to x, with ties (z half-way between two
such multiples) rounded as follows. If ¢ is nan or not given the even multiple is
chosen (“ties to even”), if ¢ = £0 the multiple closest to 0 is chosen (“ties to zero”),
if ¢ is positive/negative the multiple closest to co/—oco is chosen (“ties towards
positive/negative infinity”).

e floor, or the deprecated round-, yields the largest multiple of 10™" smaller or
equal to z (“round towards negative infinity”);

e ceil, or the deprecated round+, yields the smallest multiple of 10™" greater or
equal to z (“round towards positive infinity”);

e trunc, or the deprecated round0, yields a multiple of 10™" with the same sign as z
and with the largest absolute value less that that of z (“round towards zero”).

“Overflow” occurs if « is finite and the result is infinite (this can only happen if (fpezprs) <
—9984).

\fp_eval:n { sign((fpexpr)) }

Evaluates the (fpexpr) and determines its sign: +1 for positive numbers and for +oo, —1
for negative numbers and for —oco, +0 for +0, and NaN for NaN. This operation does not
raise exceptions.

187

sin
cos
tan
cot
csc
sec

Updated: 2013-11-17

sind
cosd
tand
cotd
cscd
secd

New: 2013-11-02

asin
acos
acsc
asec

New: 2013-11-02

asind
acosd
acscd
asecd

New: 2013-11-02

\fp_eval:n { sin((fpexpr)) %}
\fp_eval:n { cos((fpexpr)) %}
\fp_eval:n { tan((fpexpr)) }
\fp_eval:n { cot((fpexpr)) %}
\fp_eval:n { csc((fpexpr)) %}
\fp_eval:n { sec((fpexpr)) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the (fpezpr) given
in radians. For arguments given in degrees, see sind, cosd, etc. Note that since 7 is
irrational, sin(8pi) is not quite zero, while its analogue sind(8 x 180) is exactly zero. The
trigonometric functions are undefined for an argument of +oo, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate.

\fp_eval:n { sind((fpexpr)) }
\fp_eval:n { cosd((fpexpr)) }
\fp_eval:n { tand((fpexpr)) }
\fp_eval:n { cotd((fpexpr)) }
\fp_eval:n { cscd((fpexpr)) }
\fp_eval:n { secd((fpexpr)) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the (fpexpr) given
in degrees. For arguments given in radians, see sin, cos, etc. Note that since 7 is
irrational, sin(8pi) is not quite zero, while its analogue sind(8 x 180) is exactly zero. The
trigonometric functions are undefined for an argument of +oo, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate.

\fp_eval:n { asin((fpexpr)) }
\fp_eval:n { acos((fpexpr)) }
\fp_eval:n { acsc((fpexpr)) }
\fp_eval:n { asec((fpexpr)) }

Computes the arcsine, arccosine, arccosecant, or arcsecant of the (fpe:npﬂ and returns
the result in radians, in the range [—7/2,7/2] for asin and acsc and [0, 7] for acos and
asec. For a result in degrees, use asind, etc. If the argument of asin or acos lies outside
the range [—1,1], or the argument of acsc or asec inside the range (—1,1), an “invalid
operation” exception is raised. “Underflow” and “overflow” occur when appropriate.

\fp_eval:n { asind((fpexpr)) }
\fp_eval:n { acosd((fpexpr)) }
\fp_eval:n { acscd((fpexpr)) }
\fp_eval:n { asecd((fpexpr)) }

Computes the arcsine, arccosine, arccosecant, or arcsecant of the (fpexpr) and returns
the result in degrees, in the range [—90,90] for asin and acsc and [0, 180] for acos and
asec. For a result in radians, use asin, etc. If the argument of asin or acos lies outside
the range [—1, 1], or the argument of acsc or asec inside the range (—1,1), an “invalid
operation” exception is raised. “Underflow” and “overflow” occur when appropriate.

188

atan
acot

New: 2013-11-02

atand
acotd

New: 2013-11-02

sqrt

New: 2013-12-14

\fp_eval:n { atan((fpexpr)) }
\fp_eval:n { atan((fpexpri) , (fpexpras)) }
\fp_eval:n { acot((fpexpr)) }
\fp_eval:n { acot((fpexpri) , (fpexprs)) }

Those functions yield an angle in radians: atand and acotd are their analogs in degrees.
The one-argument versions compute the arctangent or arccotangent of the (fpexpr): arc-
tangent takes values in the range [—m/2,7/2], and arccotangent in the range [0, 7]. The
two-argument arctangent computes the angle in polar coordinates of the point with Carte-
sian coordinates ((fpexpra), (fpexpr:)): this is the arctangent of (fpexpri)/(fpexprs), pos-
sibly shifted by m depending on the signs of (fpexpr;) and (fpexprs). The two-argument
arccotangent computes the angle in polar coordinates of the point ({fpexpri), (fpexprs)),
equal to the arccotangent of (fpexpri)/(fpexprs), possibly shifted by m. Both two-
argument functions take values in the wider range [—m,]. The ratio (fpexpri)/(fpexprs)
need not be defined for the two-argument arctangent: when both expressions yield £0,
or when both yield +o0, the resulting angle is one of {£7/4,+37/4} depending on signs.
Only the “underflow” exception can occur.

\fp_eval:n { atand((fpexpr)) }

\fp_eval:n { atand((fpexpri) , (fpexpr:)) }

\fp_eval:n { acotd((fpexpr)) }

\fp_eval:n { acotd((fpexpri) , (fpexprz)) }

Those functions yield an angle in degrees: atand and acotd are their analogs in ra-
dians. The one-argument versions compute the arctangent or arccotangent of the
(fpexpr): arctangent takes values in the range [—90,90], and arccotangent in the range
[0,180]. The two-argument arctangent computes the angle in polar coordinates of
the point with Cartesian coordinates ({fpexprs),(fpexpri)): this is the arctangent of
(fpexpry) /{fpexprs), possibly shifted by 180 depending on the signs of (fpexpr;) and
(fpexpry). The two-argument arccotangent computes the angle in polar coordinates of
the point ((fpexpr:), (frexpra)), equal to the arccotangent of (fpexpr:)/{fpexpra), possibly
shifted by 180. Both two-argument functions take values in the wider range [—180, 180].
The ratio (fpexpri)/(fpexprs) need not be defined for the two-argument arctangent:
when both expressions yield 0, or when both yield £oo, the resulting angle is one
of {+45,+135} depending on signs. Only the “underflow” exception can occur.

\fp_eval:n { sqrt((fpexpr)) }

Computes the square root of the (fpexpr). The “invalid operation” is raised when the
(fpexpr) is negative; no other exception can occur. Special values yield /—0 = —0,

v+0 =40, /400 = 400 and y/NaN = NaN.

189

rand

New: 2016-12-05

randint

New: 2016-12-05

inf

\fp_eval:n { rand() }

Produces a pseudo-random floating-point number (multiple of 10716) between 0 included
and 1 excluded. Available in pdfTEX and LuaTgX engines only.

TEXhackers note: This is based on pseudo-random numbers provided by the engine’s
primitive \pdfuniformdeviate in pdfTEX and \uniformdeviate in LualTgX. The underlying
code in pdfTEX and LuaTgX is based on Metapost, which follows an additive scheme recom-
mended in Section 3.6 of “The Art of Computer Programming, Volume 2.

While we are more careful than \uniformdeviate to preserve uniformity of the underlying
stream of 28-bit pseudo-random integers, these pseudo-random numbers should of course not be
relied upon for serious numerical computations nor cryptography.

The random seed can be queried using \pdfrandomseed and set using \pdfsetrandomseed
(in LuaTEX \randomseed and \setrandomseed). While a 32-bit (signed) integer can be given as
a seed, only the absolute value is used and any number beyond 2% is divided by an appropriate
power of 2. We recommend using an integer in [0, 2%8 _ 1].

\fp_eval:n { randint((fpexpr)) }
\fp_eval:n { randint((fpexpri) , (fpexpra)) }

Produces a pseudo-random integer between 1 and (fpexpr) or between (fpexpr;) and
(fpexprs) inclusive. The bounds must be integers in the range (—10',101%) and the first
must be smaller or equal to the second. See rand for important comments on how these
pseudo-random numbers are generated.

The special values +00, —o00, and NaN are represented as inf, -inf and nan (see \c_-
inf_fp, \c_minus_inf_fp and \c_nan_£p).

The value of 7 (see \c_pi_£p).

The value of 1° in radians (see \c_one_degree_£p).

190

em
ex
in
pt
pc
cm

dd
cc
nd
nc
bp
sp

true
false

\fp_abs:n *

New: 2012-05-14
Updated: 2012-07-08

\fp_max:nn *
\fp_min:nn *

New: 2012-09-26

Those units of measurement are equal to their values in pt, namely

1lin = 72.27pt

1pt = 1pt

1lpc = 12pt
L

lem = Spin= 28.45275590551181pt
1

Imm = ﬂin = 2.845275590551181pt

1dd = 0.376065mm = 1.07000856496063pt
lcc = 12dd = 12.84010277952756pt

Ind = 0.375mm = 1.066978346456693pt
Inc = 12nd = 12.80374015748031pt

L.
1bp = Eln = 1.00375pt

Isp = 27 10pt = 1.52587890625¢ — 5pt.

The values of the (font-dependent) units em and ex are gathered from TEX when the
surrounding floating point expression is evaluated.

Other names for 1 and +0.

\fp_abs:n {(floating point expression)}

Evaluates the (floating point expression) as described for \fp_eval:n and leaves the
absolute value of the result in the input stream. This function does not raise any exception
beyond those raised when evaluating its argument. Within floating point expressions,
abs () can be used.

\fp_max:nn {(fp expression 1)} {(fp expression 2)}

Evaluates the (floating point expressions) as described for \fp_eval:n and leaves the
resulting larger (max) or smaller (min) value in the input stream. This function does not
raise any exception beyond those raised when evaluating its argument. Within floating
point expressions, max() and min() can be used.

10 Disclaimer and roadmap

The package may break down if the escape character is among 0123456789_+, or if it
receives a TEX primitive conditional affected by \exp_not:N.
The following need to be done. I'll try to time-order the items.

e Decide what exponent range to consider.

e Support signalling nan.

191

Modulo and remainder, and rounding functions quantize, quantize0, quantize+,
quantize-, quantize=, round=. Should the modulo also be provided as (catcode
12) %?

\fp_format:nn {(fpexpr)} {(format)}, but what should (format) be? More general
pretty printing?

Add and, or, xor? Perhaps under the names all, any, and xor?

Add log(z,b) for logarithm of x in base b.

hypot (Euclidean length). Cartesian-to-polar transform.

Hyperbolic functions cosh, sinh, tanh.

Inverse hyperbolics.

Base conversion, input such as 0xAB.CDEF.

Factorial (not with !), gamma function.

Improve coefficients of the sin and tan series.

Treat upper and lower case letters identically in identifiers, and ignore underscores.
Add an array(1,2,3) and i=complex(0,1).

Provide an experimental map function? Perhaps easier to implement if it is a single
character, @sin(1,2)7?

Provide \fp_if_nan:nTF, and an isnan function?

Support keyword arguments?

Pgfmath also provides box-measurements (depth, height, width), but boxes are not pos-
sible expandably.

Bugs.
Check that functions are monotonic when they should.
Add exceptions to 7:, '<=>7, &&, ||, and !.
Logarithms of numbers very close to 1 are inaccurate.
When rounding towards —oo, \dim_to_£fp:n {Opt} should return —0, not +0.

The result of (£0) + (£0), of = 4+ (—z), and of (—z) 4+ x should depend on the
rounding mode.

0€9999999999 gives a TEX “number too large” error.
Subnormals are not implemented.
Possible optimizations/improvements.
Document that 13trial /I3fp-types introduces tools for adding new types.

In subsection 9.1, write a grammar.

192

It would be nice if the parse auxiliaries for each operation were set up in the
corresponding module, rather than centralizing in I3fp-parse.

Some functions should get an _o ending to indicate that they expand after their
result.

More care should be given to distinguish expandable/restricted expandable (auxil-
iary and internal) functions.

The code for the ternary set of functions is ugly.
There are many ~ missing in the doc to avoid bad line-breaks.

The algorithm for computing the logarithm of the significand could be made to use
a b terms Taylor series instead of 10 terms by taking ¢ = 2000/(|200x |+1) € [10,95]
instead of ¢ € [1,10]. Also, it would then be possible to simplify the computation
of t. However, we would then have to hard-code the logarithms of 44 small integers
instead of 9.

Improve notations in the explanations of the division algorithm (13fp-basics).

Understand and document __fp_basics_pack_weird_low:NNNNw and __fp_-
basics_pack_weird_high:NNNNNNNNw better. Move the other basics_pack auxil-
iaries to I3fp-aux under a better name.

Find out if underflow can really occur for trigonometric functions, and redoc as
appropriate.

Add bibliography. Some of Kahan’s articles, some previous TEX fp packages, the
international standards,. ..

Also take into account the “inexact” exception?

Support multi-character prefix operators (e.g., @/ or whatever)?

193

Part XXII
The I13sort package
Sorting functions

1 Controlling sorting

KTEX3 comes with a facility to sort list variables (sequences, token lists, or comma-lists)
according to some user-defined comparison. For instance,

\clist_set:Nn \1_foo_clist { 3, 01 , -2 , 5, +1 }
\clist_sort:Nn \1_foo_clist
{
\int_compare:nNnTF { #1 } > { #2 }
{ \sort_return_swapped: }
{ \sort_return_same: }

3

will result in \1_foo_clist holding the values { -2 , 01 , +1 , 3 , 5 } sorted in
non-decreasing order.

The code defining the comparison should call \sort_return_swapped: if the two
items given as #1 and #2 are not in the correct order, and otherwise it should call \sort_-
return_same: to indicate that the order of this pair of items should not be changed.

For instance, a (comparison code) consisting only of \sort_return_same: with no
test will yield a trivial sort: the final order is identical to the original order. Conversely,
using a (comparison code) consisting only of \sort_return_swapped: will reverse the
list (in a fairly inefficient way).

TEXhackers note: The current implementation is limited to sorting approximately 20000
items (40000 in LuaTgEX), depending on what other packages are loaded.

Internally, the code from I3sort stores items in \toks registers allocated locally. Thus,
the (comparison code) should not call \newtoks or other commands that allocate new \toks
registers. On the other hand, altering the value of a previously allocated \toks register is not a
problem.

194

\tl_show_analysis:N
\tl_show_analysis:n

New: 2017-05-26

Part XXIII
The I3tl-analysis package: analysing
token lists

1 I13tl-analysis documentation

This module mostly provides internal functions for use in the 13regex module. However,
it provides as a side-effect a user debugging function, very similar to the \ShowTokens
macro from the ted package.

\tl_show_analysis:n {(token list)}

Displays to the terminal the detailed decomposition of the (token list) into tokens, show-
ing the category code of each character token, the meaning of control sequences and
active characters, and the value of registers.

195

__tl_build:Nw
__tl_gbuild:Nw
__tl_build_x:Nw
__tl_gbuild_x:Nw

__tl_build_omne:n

(o]x)

__tl_build_end:

Part XXIV
The 13tl-build package: building token
lists

1 13tl-build documentation

This module provides no user function: it is meant for kernel use only.

There are two main ways of building token lists from individual tokens. Either in
one go within an x-expanding assignment, or by repeatedly using \tl_put_right:Nn.
The first method takes a linear time, but only allows expandable operations. The second
method takes a time quadratic in the length of the token list, but allows expandable and
non-expandable operations.

The goal of this module is to provide functions to build a token list piece by piece
in linear time, while allowing non-expandable operations. This is achieved by abusing
\toks: adding some tokens to the token list is done by storing them in a free token
register (time O(1) for each such operation). Those token registers are only put together
at the end, within an x-expanding assignment, which takes a linear time.® Of course, all
this must be done in a group: we can’t go and clobber the values of legitimate \toks
used by BTEX 2¢.

Since none of the current applications need the ability to insert material on the left
of the token list, I have not implemented that. This could be done for instance by using
odd-numbered \toks for the left part, and even-numbered \toks for the right part.

1.1 Internal functions

__tl_build:Nw (tI1 var) ...
__t1l_build_one:n {(tokensi)} ...
__t1l_build_one:n {(tokens2)} ...

__tl_build_end:

Defines the (¢l var) to contain the contents of (tokens1) followed by (tokens2), etc. This
is built in such a way to be more efficient than repeatedly using \t1_put_right:Nn. The
code in “...” does not need to be expandable. The commands __t1_build:Nw and _-
_tl_build_end: start and end a group. The assignment to the (tl var) occurs just after
the end of that group, using \t1l_set:Nn, \t1l_gset:Nn, \t1l_set:Nx, or \tl_gset:Nx.

__t1l_build_one:n {(tokens)}

This function may only be used within the scope of a __t1_build:Nw function. It adds
the (tokens) on the right of the current token list.

Ends the scope started by __t1_build:Nw, and performs the relevant assignment.

5If we run out of token registers, then the currently filled-up \toks are put together in a temporary
token list, and cleared, and we ultimately use \t1l_put_right:Nx to put those chunks together. Hence
the true asymptotic is quadratic, with a very small constant.

196

Part XXV
The 13regex package: regular
expressions in TEX

1 Regular expressions

The 13regex package provides regular expression testing, extraction of submatches, split-
ting, and replacement, all acting on token lists. The syntax of regular expressions is
mostly a subset of the PCRE syntax (and very close to POSIX), with some additions due
to the fact that TEX manipulates tokens rather than characters. For performance rea-
sons, only a limited set of features are implemented. Notably, back-references are not
supported.

Let us give a few examples. After

\tl_set:Nn \1_my_tl { That~cat. }
\regex_replace_once:nnN { at } { is } \l_my_tl

the token list variable \1_my_t1 holds the text “This cat.”, where the first occurrence
of “at” was replaced by “is”. A more complicated example is a pattern to add a comma
at the end of each word:

\regex_replace_all:nnN { \w+ } { \0O , } \l_my_tl

The \w sequence represents any “word” character, and + indicates that the \w sequence
should be repeated as many times as possible (at least once), hence matching a word in
the input token list. In the replacement text, \O denotes the full match (here, a word).

If a regular expression is to be used several times, it can be compiled once, and
stored in a regex variable using \regex_const:Nn. For example,

\regex_const:Nn \c_foo_regex { \c{begin} \cB. (\c["BE].*) \cE. }

stores in \c_foo_regex a regular expression which matches the starting marker for an
environment: \begin, followed by a begin-group token (\cB.), then any number of tokens
which are neither begin-group nor end-group character tokens (\c["BE] . *), ending with
an end-group token (\cE.). As explained in the next section, the parentheses “capture”
the result of \c["BE].*, giving us access to the name of the environment when doing
replacements.

1.1 Syntax of regular expressions

Most characters match exactly themselves, with an arbitrary category code. Some charac-
ters are special and must be escaped with a backslash (e.g., * matches a star character).
Some escape sequences of the form backslash—letter also have a special meaning (for
instance \d matches any digit). As a rule,

o every alphanumeric character (A-Z, a—z, 0-9) matches exactly itself, and should
not be escaped, because \A, \B, ... have special meanings;

 non-alphanumeric printable ascii characters can (and should) always be escaped:
many of them have special meanings (e.g., use \(, \), \?7, \.);

197

« spaces should always be escaped (even in character classes);

e any other character may be escaped or not, without any effect: both versions will
match exactly that character.

Note that these rules play nicely with the fact that many non-alphanumeric characters are
difficult to input into TEX under normal category codes. For instance, \\abc\’ matches
the characters \abc¥% (with arbitrary category codes), but does not match the control
sequence \abc followed by a percent character. Matching control sequences can be done
using the \c{(regez)} syntax (see below).

Any special character which appears at a place where its special behaviour cannot
apply matches itself instead (for instance, a quantifier appearing at the beginning of a
string), after raising a warning.

Characters.

\x{hh. ..} Character with hex code hh. ..
\xhh Character with hex code hh.
\a Alarm (hex 07).
\e Escape (hex 1B).
\f Form-feed (hex 0C).
\n New line (hex 0A).
\r Carriage return (hex 0D).
\t Horizontal tab (hex 09).
Character types.
. A single period matches any token.
\d Any decimal digit.
\h Any horizontal space character, equivalent to [\ \""I]: space and tab.
\s Any space character, equivalent to [\ \""I\~"J\""L\""M].

\v Any vertical space character, equivalent to [\""J\""K\""L\""M]. Note that \""K
is a vertical space, but not a space, for compatibility with Perl.

\w Any word character, i.e., alpha-numerics and underscore, equivalent to [A-Za-z0-9_].
\D Any token not matched by \d.

\H Any token not matched by \h.

\N Any token other than the \n character (hex 0A).

\S Any token not matched by \s.

\V Any token not matched by \v.

\W Any token not matched by \w.

198

Of those, ., \D, \H, \N, \S, \V, and \W will match arbitrary control sequences.
Character classes match exactly one token in the subject.

[...] Positive character class. Matches any of the specified tokens.
[...] Negative character class. Matches any token other than the specified characters.
x-y Within a character class, this denotes a range (can be used with escaped characters).

[:(name):] Within a character class (one more set of brackets), this denotes the POSIX character
class (name), which can be alnum, alpha, ascii, blank, cntrl, digit, graph,
lower, print, punct, space, upper, word, or xdigit.

[:~(name):] Negative POSIX character class.

For instance, [a-oq-z\cC.] matches any lowercase latin letter except p, as well as control
sequences (see below for a description of \c).
Quantifiers (repetition).

? 0 or 1, greedy.
7?7 0 or 1, lazy.
* 0 or more, greedy.
*7 0 or more, lazy.
+ 1 or more, greedy.
+7 1 or more, lazy.
{n} Exactly n.
{n,} n or more, greedy.
{n,}? n or more, lazy.
{n,m} At least n, no more than m, greedy.
{n,m}? At least n, no more than m, lazy.
Anchors and simple assertions.

\b Word boundary: either the previous token is matched by \w and the next by \W,
or the opposite. For this purpose, the ends of the token list are considered as \W.

\B Not a word boundary: between two \w tokens or two \W tokens (including the
boundary).

“or \A Start of the subject token list.
$, \Z or \z End of the subject token list.

\G Start of the current match. This is only different from ~ in the case of multi-
ple matches: for instance \regex_count:nnN { \G a } { aaba } \1_tmpa_int
yields 2, but replacing \G by ~ would result in \1_tmpa_int holding the value 1.

Alternation and capturing groups.

199

A|BIC Either one of A, B, or C.
(...) Capturing group.

(7:...) Non-capturing group.

(?1...) Non-capturing group which resets the group number for capturing groups in each
alternative. The following group will be numbered with the first unused group
number.

The \c escape sequence allows to test the category code of tokens, and match control
sequences. Each character category is represented by a single uppercase letter:

e C for control sequences;
e B for begin-group tokens;
e E for end-group tokens;
e M for math shift;
o T for alignment tab tokens;
e P for macro parameter tokens;
o U for superscript tokens (up);
o D for subscript tokens (down);
e S for spaces;
e L for letters;
e 0 for others; and
e A for active characters.
The \c escape sequence is used as follows.

\c{(regex)} A control sequence whose csname matches the (regex), anchored at the beginning
and end, so that \c{begin} matches exactly \begin, and nothing else.

\cX Applies to the next object, which can be a character, character property, class,
or group, and forces this object to only match tokens with category X (any of
CBEMTPUDSLOA. For instance, \cL[A-Z\d] matches uppercase letters and digits of
category code letter, \cC. matches any control sequence, and \c0(abc) matches
abc where each character has category other.

\c[XYZ] Applies to the next object, and forces it to only match tokens with category X, Y,
or Z (each being any of CBEMTPUDSLOA). For instance, \c[LSO0] (..) matches two
tokens of category letter, space, or other.

\c["XYZ] Applies to the next object and prevents it from matching any token with category
X, Y, or Z (each being any of CBEMTPUDSLOA). For instance, \c ["0]\d matches digits
which have any category different from other.

200

The category code tests can be used inside classes; for instance, [\cO\d \c[LO] [A-F]]
matches what TEX considers as hexadecimal digits, namely digits with category other,
or uppercase letters from A to F with category either letter or other. Within a group
affected by a category code test, the outer test can be overridden by a nested test: for
instance, \cL(ab\cO*cd) matches ab*cd where all characters are of category letter,
except * which has category other.

The \u escape sequence allows to insert the contents of a token list directly into
a regular expression or a replacement, avoiding the need to escape special characters.
Namely, \u{(tl var name)} matches the exact contents of the token list (¢! var). Within
a \c{...} control sequence matching, the \u escape sequence only expands its argument
once, in effect performing \t1l_to_str:v. Quantifiers are not supported directly: use a
group.

The option (?7i) makes the match case insensitive (identifying A-Z with a—z; no
Unicode support yet). This applies until the end of the group in which it appears,
and can be reverted using (?7-i). For instance, in (?7i) (a(?-i)blc)d, the letters a
and d are affected by the i option. Characters within ranges and classes are affected
individually: (?71) [Y-\\] is equivalent to [YZ\[\\yz], and (?i) [Taeiou] matches any
character which is not a vowel. Neither character properties, nor \c{...} nor \u{...}
are affected by the i option.

In character classes, only [, =, =, 1, \ and spaces are special, and should be escaped.
Other non-alphanumeric characters can still be escaped without harm. Any escape se-
quence which matches a single character (\d, \D, etc.) is supported in character classes.
If the first character is ~, then the meaning of the character class is inverted; ~ appear-
ing anywhere else in the range is not special. If the first character (possibly following a
leading ~) is] then it does not need to be escaped since ending the range there would
make it empty. Ranges of characters can be expressed using -, for instance, [\D 0-5]
and ["6-9] are equivalent.

Capturing groups are a means of extracting information about the match. Paren-
thesized groups are labelled in the order of their opening parenthesis, starting at 1. The
contents of those groups corresponding to the “best” match (leftmost longest) can be
extracted and stored in a sequence of token lists using for instance \regex_extract_-
once :nnNTF.

The \K escape sequence resets the beginning of the match to the current position in
the token list. This only affects what is reported as the full match. For instance,

\regex_extract_all:nnN { a \K . } { al23aaxyz } \1_foo_seq

results in \1_foo_seq containing the items {1} and {a}: the true matches are {a1} and
{aa}, but they are trimmed by the use of \K. The \K command does not affect capturing
groups: for instance,

\regex_extract_once:nnN { (. \K c)+ \d } { acbec3 } \1_foo_seq

results in \1_foo_seq containing the items {c3} and {bc}: the true match is {acbc3},
with first submatch {bc}, but \K resets the beginning of the match to the last position
where it appears.

1.2 Syntax of the replacement text

Most of the features described in regular expressions do not make sense within the re-
placement text. Backslash introduces various special constructions:

201

e \O0 is the whole match;

e \1,\2,...,\9 or \g{(number)} are the submatches (empty if there are fewer than
(number) capturing groups);

o _ inserts a space (spaces are ignored when not escaped);

e \a, \e, \f, \n, \r, \t, \xhh, \x{hhh} correspond to single characters as in regular
expressions;

o \c{(cs name)} inserts a control sequence;
o \c{category){character) (see below);
o \u{(#l var name)} inserts the contents of the (tl var) (see below).

Characters other than backslash and space are simply inserted in the result (but since
the replacement text is first converted to a string, one should also escape characters that
are special for TEX, for instance use \#). Non-alphanumeric characters can always be
safely escaped with a backslash.

For instance,

\tl_set:Nn \1_my_tl { Hello,~world! }
\regex_replace_all:nnN { ([er]?llo) . } { (\0O--\1) } \1l_my_tl

results in \1_my_t1 holding H(ell--el) (0o,--0) w(or--o) (1d--1)!

Submatches always keep the same category codes as in the original token list. The
characters inserted by the replacement have category code 12 (other) by default, with the
exception of space characters. Spaces inserted through \, have category code 10, while
spaces inserted through \x20 or \x{20} have category code 12. The escape sequence \c
allows to insert characters with arbitrary category codes, as well as control sequences.

\cX(...) Produces the characters “...” with category X, which must be one of CBEMTPUDSLOA
as in regular expressions. Parentheses are optional for a single character (which can
be an escape sequence). This can be nested, for instance \cL(Hello\cS\ world)!

\c{(text)} Produces the control sequence with csname (text). The (text) may contain refer-
ences to the submatches \0, \1, and so on, as in the example for \u below.

The escape sequence \u{ (¢ var name)} allows to insert the contents of the token list
with name (¢! var name) directly into the replacement, giving an easier control of cate-
gory codes. Within \c{...} and \u{...} constructions, the \u and \c escape sequences
perform \tl_to_str:v, namely extract the value of the control sequence and turn it into
a string.

Matches can be used within the arguments of \c and \u. For instance,

\tl_set:Nn \1_my_one_tl { first }

\tl_set:Nn \1_my_two_tl { \emph{second} }

\tl_set:Nn \1_my_tl { one , two , one , one }
\regex_replace_all:nnN { [~,]1+ } { \u{l_my_\O_t1} } \1_my_tl

results in \1_my_t1 holding first, \emph{second},first,first.

202

\regex_new:N

New: 2017-05-26

\regex_set:Nn
\regex_gset:Nn
\regex_const:Nn

New: 2017-05-26

\regex_show:n
\regex_show:N

New: 2017-05-26

\regex_match:nnTF
\regex_match:NnTF

New: 2017-05-26

1.3 Pre-compiling regular expressions

If a regular expression is to be used several times, it is better to compile it once rather
than doing it each time the regular expression is used. The compiled regular expression
is stored in a variable. All of the I3regex module’s functions can be given their regular
expression argument either as an explicit string or as a compiled regular expression.

\regex_new:N (regex var)

Creates a new (regex var) or raises an error if the name is already taken. The declaration
is global. The (regex var) will initially be such that it never matches.

\regex_set:Nn (regex var) {(regex)}

Stores a compiled version of the (regular expression) in the (regex var). For instance,
this function can be used as

\regex_new:N \1l_my_regex
\regex_set:Nn \1_my_regex { my\ (simple\)7 reg(ex|ular\ expression) }

The assignment is local for \regex_set:Nn and global for \regex_gset:Nn. Use
\regex_const:Nn for compiled expressions which will never change.

\regex_show:n {(regex)}

Shows how [3regex interprets the (regez). For instance, \regex_show:n {\A X|Y} shows

+-branch
anchor at start (\A)
char code 88
+-branch
char code 89

indicating that the anchor \A only applies to the first branch: the second branch is not
anchored to the beginning of the match.

1.4 Matching

All regular expression functions are available in both :n and :N variants. The former
require a “standard” regular expression, while the later require a compiled expression as
generated by \regex_(g)set:Nn.

\regex_match:nnTF {(regex)} {(token list)} {(true code)} {(false code)}

Tests whether the (reqular expression) matches any part of the (token list). For instance,

\regex_match:nnTF { b [cdel* } { abecdcx } { TRUE } { FALSE }
\regex_match:nnTF { [b-dgq-w] } { example } { TRUE } { FALSE }

leaves TRUE then FALSE in the input stream.

203

\regex_count :nnN
\regex_count :NnN

New: 2017-05-26

\regex_extract_once:nnNTF
\regex_extract_once:NnNTF

New: 2017-05-26

\regex_extract_all:nnNTF
\regex_extract_all:NnNTF

New: 2017-05-26

\regex_count:nnN {(regex)} {(token 1list)} (int var)

Sets (int var) within the current TEX group level equal to the number of times (regular
expression) appears in (token list). The search starts by finding the left-most longest
match, respecting greedy and ungreedy operators. Then the search starts again from the
character following the last character of the previous match, until reaching the end of
the token list. Infinite loops are prevented in the case where the regular expression can
match an empty token list: then we count one match between each pair of characters.
For instance,

\int_new:N \1_foo_int
\regex_count:nnN { (b+|c) } { abbababcbb } \1_foo_int

results in \1_foo_int taking the value 5.

1.5 Submatch extraction

\regex_extract_once:nnN {(regex)} {(token list)} (seq var)
\regex_extract_once:nnNTF {(regex)} {(token list)} (seq var) {(true code)} {(false
code)?}

Finds the first match of the (regular expression) in the (token list). If it exists, the
match is stored as the zeroeth item of the (seq var), and further items are the contents
of capturing groups, in the order of their opening parenthesis. The (seq var) is assigned
locally. If there is no match, the (seq var) is cleared. The testing versions insert the (true
code) into the input stream if a match was found, and the (false code) otherwise. For
instance, assume that you type

\regex_extract_once:nnNTF { \A(La)?TeX(!*)\Z } { LaTeX!!! } \1_foo_seq
{ true } { false }

Then the regular expression (anchored at the start with \A and at the end with \Z)
will match the whole token list. The first capturing group, (La)?, matches La, and the
second capturing group, (!*), matches !!!. Thus, \1_foo_seq will contain the items
{LaTeX!!!} {La}, and {!!!}, and the true branch is left in the input stream.

\regex_extract_all:nnN {(regex)} {(token list)} (seq var)
\regex_extract_all:nnNTF {(regex)} {(token list)} (seq var) {(true code)} {(false
code)?}

Finds all matches of the (regular expression) in the (token list), and stores all the sub-
match information in a single sequence (concatenating the results of multiple \regex_-
extract_once:nnN calls). The (seq var) is assigned locally. If there is no match, the
(seq var) is cleared. The testing versions insert the (true code) into the input stream if
a match was found, and the (false code) otherwise. For instance, assume that you type

\regex_extract_all:nnNTF { \w+ } { Hello,~world! } \1_foo_seq
{ true } { false }

Then the regular expression will match twice, and the resulting sequence contains the
two items {Hello} and {world}, and the true branch is left in the input stream.

204

\regex_split:nnNTF
\regex_split:NnNTF

New: 2017-05-26

\regex_replace_once:nnNTF
\regex_replace_once:NnNTF

New: 2017-05-26

\regex_replace_all:nnNTF
\regex_replace_all:NnNTF

New: 2017-05-26

\regex_split:nnN {(regular expression)} {(token list)} (seq var)
\regex_split:nnNTF {(regular expression)} {(token list)} (seq var) {(true code)}
{(false code)}

Splits the (token list) into a sequence of parts, delimited by matches of the (regular
expression). If the (regular expression) has capturing groups, then the token lists that
they match are stored as items of the sequence as well. The assignment to (seq var) is
local. If no match is found the resulting (seq var) has the (token list) as its sole item. If
the (regular expression) matches the empty token list, then the (token list) is split into
single tokens. The testing versions insert the (¢true code) into the input stream if a match
was found, and the (false code) otherwise. For example, after

\seq_new:N \1_path_seq
\regex_split:nnNTF { / } { the/path/for/this/file.tex } \1l_path_seq
{ true } { false }

the sequence \1_path_seq contains the items {the}, {path}, {for}, {this}, and

{file.tex}, and the true branch is left in the input stream.

1.6 Replacement

\regex_replace_once:nnN {(regular expression)} {(replacement)} (tl var)
\regex_replace_once:nnNTF {(regular expression)} {(replacement)} (tl var) {(true
code)} {(false code)}

Searches for the (regular expression) in the (token list) and replaces the first match with
the (replacement). The result is assigned locally to (tl var). In the (replacement), \0
represents the full match, \1 represent the contents of the first capturing group, \2 of
the second, etc.

\regex_replace_all:nnN {(regular expression)} {(replacement)} (tl var)
\regex_replace_all:nnNTF {(regular expression)} {(replacement)} (tl var) {(true
code)} {(false code)}

Replaces all occurrences of the \regular expression in the (ftoken list) by the
(replacement), where \O represents the full match, \1 represent the contents of the
first capturing group, \2 of the second, etc. Every match is treated independently, and
matches cannot overlap. The result is assigned locally to (¢ var).

1.7 Bugs, misfeatures, future work, and other possibilities
The following need to be done now.
e Change user function names!
e Clean up the use of messages.
¢ Rewrite the documentation in a more ordered way, perhaps add a BNF?
Additional error-checking to come.
e Currently, a{\x34} is recognized as a{4}.

e Cleaner error reporting in the replacement phase.

205

¢ Add tracing information.
o Detect attempts to use back-references and other non-implemented syntax.
e Test for the maximum register \c_max_register_int.

o Find out whether the fact that \W and friends match the end-marker leads to bugs.
Possibly update __regex_item_reverse:n.

o Enforce that \cC can only be followed by a match-all dot.

e The empty cs should be matched by \c{}, not by \c{csname.?endcsname\s?}.
Code improvements to come.

« Shift arrays so that the useful information starts at position 1.

e Only build .,. once.

e Use arrays for the left and right state stacks when compiling a regex.

e Should __regex_action_free_group:n only be used for greedy {n,} quantifier?
(I think not.)

e Quantifiers for \u and assertions.

e When matching, keep track of an explicit stack of current_state and current_-
submatches.

o If possible, when a state is reused by the same thread, kill other subthreads.

o Use an array rather than \1__regex_balance_tl to build __regex_replacement_-
balance_one_match:n.

¢ Reduce the number of epsilon-transitions in alternatives.

o Optimize simple strings: use less states (abcade should give two states, for abc and
ade). [Does that really make sense?]

e Optimize groups with no alternative.
o Optimize states with a single __regex_action_free:n.

e Optimize the use of __regex_action_success: by inserting it in state 2 directly
instead of having an extra transition.

e Optimize the use of \int_step_. .. functions.

e Groups don’t capture within regexes for csnames; optimize and document.
e Better “show” for anchors, properties, and catcode tests.

e Does \K really need a new state for itself?

e When compiling, use a boolean in_cs and less magic numbers.

o Instead of checking whether the character is special or alphanumeric using its char-
acter code, check if it is special in regexes with \cs_if_exist tests.

206

The following features are likely to be implemented at some point in the future.
General look-ahead/behind assertions.
Regex matching on external files.

Conditional subpatterns with look ahead/behind: “if what follows is [...], then

[..]>
(x..) and (7..) sequences to set some options.
UTF-8 mode for pdfTEX.

Newline conventions are not done. In particular, we should have an option for . not
to match newlines. Also, \A should differ from =, and \Z, \z and $ should differ.

Unicode properties: \p{..} and \P{..}; \X which should match any “extended”
Unicode sequence. This requires to manipulate a lot of data, probably using tree-
boxes.

The following features of PCRE or Perl may or may not be implemented.
\ddd, matching the character with octal code ddd;
Callout with (?7C...);

Conditional subpatterns (other than with a look-ahead or look-behind condition):
this is non-regular, isn’t it?

Named subpatterns: TEX programmers have lived so far without any need for
named macro parameters.

The following features of PCRE or Perl will definitely not be implemented.
\cx, similar to TEX’s own \"7x;
Comments: TEX already has its own system for comments.

\Q...\E escaping: this would require to read the argument verbatim, which is not
in the scope of this module.

Atomic grouping, possessive quantifiers: those tools, mostly meant to fix catas-
trophic backtracking, are unnecessary in a non-backtracking algorithm, and difficult
to implement.

Subroutine calls: this syntactic sugar is difficult to include in a non-backtracking al-
gorithm, in particular because the corresponding group should be treated as atomic.

Recursion: this is a non-regular feature.

Back-references: mnon-regular feature, this requires backtracking, which is pro-
hibitively slow.

Backtracking control verbs: intrinsically tied to backtracking.

\C single byte in UTF-8 mode: XeTEX and LuaTgX serve us characters directly,
and splitting those into bytes is tricky, encoding dependent, and most likely not
useful anyways.

207

Part XXVI
The I13box package
Boxes

There are three kinds of box operations: horizontal mode denoted with prefix \hbox_,
vertical mode with prefix \vbox_, and the generic operations working in both modes with
prefix \box_.

1 Creating and initialising boxes

\box_new:N \box_new:N (box)

" Creates a new (boz) or raises an error if the name is already taken. The declaration is

global. The (boz) will initially be void.

\box_clear:N \box_clear:N (box)

ic
\box_gclear:N
ic

Clears the content of the (box) by setting the box equal to \c_void_box.

\box_clear_new:N \box_clear_new:N (box)

:c
\box_gclear_new:N
ic

Ensures that the (boz) exists globally by applying \box_new:N if necessary, then applies
\box_(g)clear:N to leave the (box) empty.

\box_set_eq:NN \box_set_eq:NN (boxi) (boxz)
 (cN[Nclee) Sets the content of (box;) equal to that of (bozz)

\box_gset_eq:NN ’
: (cN|Nclcc)

\box_set_eq_clear:NN \box_set_eq_clear:NN (box;) (boxs)
: (cllic|ee) Sets the content of (boz;) within the current TEX group equal to that of (bozp), then
clears (boxy) globally.
\box_gset_eq_clear:NN \box_gset_eq_clear:NN (boxi) (boxa)

:(cN|N¢|ec)

Sets the content of (box;) equal to that of (boxs), then clears (boxz). These assignments
are global.

\box_if_exist_p:N \box_if _exist_p:N (box)

\box_if_exist:NTF (box) {(true code)} {(false code)}

Tests whether the (boz) is currently defined. This does not check that the (box) really is
a box.

*
ic oK
\box_if_exist:NTF x
:cTF %

New: 2012-03-03

208

\box_use:N
:c

\box_use_clear:N
:c

\box_move_right:nn
\box_move_left:nn

\box_move_up:nn
\box_move_down:nn

\box_dp:N
ic

\box_ht:N
ic

2 Using boxes

\box_use:N (box)

Inserts the current content of the (boz) onto the current list for typesetting.

TgXhackers note: This is the TEX primitive \copy.

\box_use_clear:N (box)
Inserts the current content of the (box) onto the current list for typesetting, then globally

clears the content of the (box).

TEXhackers note: This is the TEX primitive \box.

\box_move_right:nn {(dimexpr)} {(box function)}

This function operates in vertical mode, and inserts the material specified by the (box
function) such that its reference point is displaced horizontally by the given (dimexpr)
from the reference point for typesetting, to the right or left as appropriate. The (box
function) should be a box operation such as \box_use:N \<box> or a “raw” box specifi-
cation such as \vbox:n { xyz }.

\box_move_up:nn {(dimexpr)} {(box function)}

This function operates in horizontal mode, and inserts the material specified by the
(box function) such that its reference point is displaced vertical by the given (dimexpr)
from the reference point for typesetting, up or down as appropriate. The (boz function)
should be a box operation such as \box_use:N \<box> or a “raw” box specification such
as \vbox:n { xyz }.

3 Measuring and setting box dimensions

\box_dp:N (box)

Calculates the depth (below the baseline) of the (boz) in a form suitable for use in a
(dimension expression).

TEXhackers note: This is the TEX primitive \dp.

\box_ht:N (box)

Calculates the height (above the baseline) of the (boz) in a form suitable for use in a
(dimension expression).

TEXhackers note: This is the TEX primitive \ht.

209

\box_wd:N

:C

\box_set_dp:Nn
:cn

Updated: 2011-10-22

\box_set_ht:Nn
:cn

Updated: 2011-10-22

\box_set_wd:Nn
icn

Updated: 2011-10-22

\box_if_empty_p:N
:c
\box_if_empty:NTF
:cTF

\box_if_horizontal_p:N
e
\box_if_horizontal:NTF
:cTF

b I I

\box_if_vertical_p:N
ic
\box_if_vertical:NTF
:cTF

X X

\box_set_to_last:N

:c
\box_gset_to_last:N
:c

\box_wd:N (box)

Calculates the width of the (boz) in a form suitable for use in a (dimension expression).

TEXhackers note: This is the TEX primitive \wd.

\box_set_dp:Nn (box) {(dimension expression)}

Set the depth (below the baseline) of the (box) to the value of the {(dimension
expression)}. This is a global assignment.

\box_set_ht:Nn (box) {(dimension expression)}

Set the height (above the baseline) of the (box) to the value of the {(dimension
expression)}. This is a global assignment.

\box_set_wd:Nn (box) {(dimension expression)}

Set the width of the (box) to the value of the {({dimension expression)}. This is a global
assignment.

4 Box conditionals

\box_if_empty_p:N (box)
\box_if _empty:NTF (box) {(true code)} {(false code)}

Tests if (box) is a empty (equal to \c_empty_box).

\box_if_horizontal_p:N (box)
\box_if_horizontal:NTF (box) {(true code)} {(false code)}

Tests if (box) is a horizontal box.

\box_if_vertical_p:N (box)
\box_if_vertical:NTF (box) {(true code)} {(false code)}

Tests if (box) is a vertical box.

5 The last box inserted

\box_set_to_last:N (box)

Sets the (boz) equal to the last item (box) added to the current partial list, removing the
item from the list at the same time. When applied to the main vertical list, the (box)
will always be void as it is not possible to recover the last added item.

210

\c_empty_box

Updated: 2012-11-04

\1_tmpa_box
\1_tmpb_box

Updated: 2012-11-04

\g_tmpa_box
\g_tmpb_box

\box_show:N
ic

Updated: 2012-05-11

\box_show:Nnn
:cnn

New: 2012-05-11

\box_log:N
ic

New: 2012-05-11

\box_log:Nnn
:cnn

New: 2012-05-11

6 Constant boxes

This is a permanently empty box, which is neither set as horizontal nor vertical.

7 Scratch boxes

Scratch boxes for local assignment. These are never used by the kernel code, and so are
safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch boxes for global assignment. These are never used by the kernel code, and so
are safe for use with any BTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

8 Viewing box contents

\box_show:N (box)

Shows full details of the content of the (box) in the terminal.

\box_show:Nnn (box) (intexpri) (intexprs)

Display the contents of (boz) in the terminal, showing the first (intezpr;) items of the
box, and descending into (intexprs) group levels.

\box_log:N (box)
Writes full details of the content of the (boz) to the log.

\box_log:Nnn (box) (intexpri) (intexprs)

Writes the contents of (boz) to the log, showing the first (intezpr;) items of the box, and
descending into (intexprs) group levels.

9 Boxes and color

All ITEX3 boxes are “color safe”: a color set inside the box will not apply after the end
of the box has occurred.

211

\hbox:n

Updated: 2017-04-05

\hbox_to_wd:nn

Updated: 2017-04-05

\hbox_to_zero:n

Updated: 2017-04-05

\hbox_set:Nn

icn
\hbox_gset:Nn
icn

Updated: 2017-04-05

\hbox_set_to_wd:Nnn

:cnn

\hbox_gset_to_wd:Nnn

:cnn

Updated: 2017-04-05

\hbox_overlap_right:n

Updated: 2017-04-05

\hbox_overlap_left:n

Updated: 2017-04-05

\hbox_set :Nw
tcw
\hbox_set_end:
\hbox_gset :Nw
icw
\hbox_gset_end:

Updated: 2017-04-05

10 Horizontal mode boxes

\hbox:n {(contents)}

Typesets the (contents) into a horizontal box of natural width and then includes this box
in the current list for typesetting.

\hbox_to_wd:nn {(dimexpr)} {(contents)}

Typesets the (contents) into a horizontal box of width (dimezpr) and then includes this
box in the current list for typesetting.

\hbox_to_zero:n {(contents)}

Typesets the (contents) into a horizontal box of zero width and then includes this box in
the current list for typesetting.

\hbox_set:Nn (box) {(contents)}

Typesets the (contents) at natural width and then stores the result inside the (boz).

\hbox_set_to_wd:Nnn (box) {(dimexpr)} {(contents)}

Typesets the (contents) to the width given by the (dimezpr) and then stores the result
inside the (box).

\hbox_overlap_right:n {(contents)}

Typesets the (contents) into a horizontal box of zero width such that material will pro-
trude to the right of the insertion point.

\hbox_overlap_left:n {(contents)}

Typesets the (contents) into a horizontal box of zero width such that material will pro-
trude to the left of the insertion point.

\hbox_set:Nw (box) (contents) \hbox_set_end:

Typesets the (contents) at natural width and then stores the result inside the (boz). In
contrast to \hbox_set :Nn this function does not absorb the argument when finding the
{content), and so can be used in circumstances where the (content) may not be a simple
argument.

212

\hbox_unpack:N

:C

\hbox_unpack_clear:N

:C

\vbox:n

Updated: 2017-04-05

\vbox_top:n

Updated: 2017-04-05

\vbox_to_ht:nn

Updated: 2017-04-05

\vbox_to_zero:n

Updated: 2017-04-05

\vbox_set:Nn

icn
\vbox_gset:Nn
:cn

Updated: 2017-04-05

\hbox_unpack:N (box)

Unpacks the content of the horizontal (boz), retaining any stretching or shrinking applied
when the (boz) was set.

TEXhackers note: This is the TEX primitive \unhcopy.

\hbox_unpack_clear:N (box)
Unpacks the content of the horizontal (box), retaining any stretching or shrinking applied
when the (boz) was set. The (box) is then cleared globally.

TEXhackers note: This is the TEX primitive \unhbox.

11 Vertical mode boxes

Vertical boxes inherit their baseline from their contents. The standard case is that the
baseline of the box is at the same position as that of the last item added to the box.
This means that the box will have no depth unless the last item added to it had depth.
As a result most vertical boxes have a large height value and small or zero depth. The
exception are _top boxes, where the reference point is that of the first item added. These
tend to have a large depth and small height, although the latter will typically be non-zero.

\vbox:n {(contents)}

Typesets the (contents) into a vertical box of natural height and includes this box in the
current list for typesetting.

\vbox_top:n {(contents)}

Typesets the (contents) into a vertical box of natural height and includes this box in the
current list for typesetting. The baseline of the box will be equal to that of the first item
added to the box.

\vbox_to_ht:nn {(dimexpr)} {(contents)}

Typesets the (contents) into a vertical box of height (dimezpr) and then includes this
box in the current list for typesetting.

\vbox_to_zero:n {(contents)}

Typesets the (contents) into a vertical box of zero height and then includes this box in
the current list for typesetting.

\vbox_set:Nn (box) {(contents)}

Typesets the (contents) at natural height and then stores the result inside the (boz).

213

\vbox_set_top:Nn

icn
\vbox_gset_top:Nn
icn

Updated: 2017-04-05

\vbox_set_to_ht:Nnn

:cnn
\vbox_gset_to_ht:Nnn
:cnn

Updated: 2017-04-05

\vbox_set:Nw
icw
\vbox_set_end:
\vbox_gset :Nw
icw
\vbox_gset_end:

Updated: 2017-04-058

\vbox_set_split_to_ht:NNn

Updated: 2011-10-22

\vbox_unpack:N
ic

\vbox_unpack_clear:N
:c

\vbox_set_top:Nn (box) {(contents)}

Typesets the {contents) at natural height and then stores the result inside the (boz). The
baseline of the box will be equal to that of the first item added to the box.

\vbox_set_to_ht:Nnn (box) {(dimexpr)} {(contents)}

Typesets the (contents) to the height given by the (dimezpr) and then stores the result
inside the (box).

\vbox_set:Nw (box) (contents) \vbox_set_end:

Typesets the (contents) at natural height and then stores the result inside the (boz). In
contrast to \vbox_set:Nn this function does not absorb the argument when finding the
(content), and so can be used in circumstances where the (content) may not be a simple
argument.

\vbox_set_split_to_ht:NNn (boxi) (boxz) {(dimexpr)}
Sets (box;) to contain material to the height given by the (dimezpr) by removing content

from the top of (box) (which must be a vertical box).

TEXhackers note: This is the TEX primitive \vsplit.

\vbox_unpack:N (box)
Unpacks the content of the vertical (boz), retaining any stretching or shrinking applied

when the (boz) was set.

TEXhackers note: This is the TEX primitive \unvcopy.

\vbox_unpack:N (box)
Unpacks the content of the vertical (boz), retaining any stretching or shrinking applied
when the (boz) was set. The (box) is then cleared globally.

TgXhackers note: This is the TEX primitive \unvbox.

11.1 Affine transformations

Affine transformations are changes which (informally) preserve straight lines. Simple
translations are affine transformations, but are better handled in TEX by doing the trans-
lation first, then inserting an unmodified box. On the other hand, rotation and resizing
of boxed material can best be handled by modifying boxes. These transformations are
described here.

214

\box_autosize_to_wd_and_ht:Nnn \box_autosize_to_wd_and_ht:Nnn (box) {(x-size)} {(y-size)}

:Nnn

New: 2017-04-04

Resizes the (box) to fit within the given (z-size) (horizontally) and (y-size) (vertically);
both of the sizes are dimension expressions. The (y-size) is the height only: it does not
include any depth. The updated (boz) will be an hbox, irrespective of the nature of the
(boz) before the resizing is applied. The final size of the (boz) will be the smaller of
{(z-size)} and {(y-size)}, i.e. the result will fit within the dimensions specified. Negative
sizes will cause the material in the (boz) to be reversed in direction, but the reference
point of the (box) will be unchanged. Thus a negative (y-size) will result in the (box)
having a depth dependent on the height of the original and wvice versa. The resizing
applies within the current TEX group level.

\box_autosize_to_wd_and_ht_plus_dp:Nnn \box_autosize_to_wd_and_ht_plus_dp:Nnn (box) {(x-size)}

:Nnn {(y-size)}

New: 2017-04-04

\box_resize_to_ht:Nn
:cn

Resizes the (bozx) to fit within the given (z-size) (horizontally) and (y-size) (vertically);
both of the sizes are dimension expressions. The (y-size) is the total vertical size (height
plus depth). The updated (boz) will be an hbox, irrespective of the nature of the (box)
before the resizing is applied. The final size of the (boz) will be the smaller of {(z-size)}
and {(y-size)}, i.e. the result will fit within the dimensions specified. Negative sizes will
cause the material in the (box) to be reversed in direction, but the reference point of the
(boz) will be unchanged. Thus a negative (y-size) will result in the (boz) having a depth
dependent on the height of the original and wice versa. The resizing applies within the
current TEX group level.

\box_resize_to_ht:Nn (box) {(y-size)}

Resizes the (boz) to (y-size) (vertically), scaling the horizontal size by the same amount;
(y-size) is a dimension expression. The (y-size) is the height only: it does not include
any depth. The updated (boz) will be an hbox, irrespective of the nature of the (box)
before the resizing is applied. A negative (y-size) will cause the material in the (boz) to
be reversed in direction, but the reference point of the (boz) will be unchanged. Thus a
negative (y-size) will result in the (boz) having a depth dependent on the height of the
original and wvice versa. The resizing applies within the current TEX group level.

\box_resize_to_ht_plus_dp:Nn \box_resize_to_ht_plus_dp:Nn (box) {(y-size)}

:cn

Resizes the (box) to (y-size) (vertically), scaling the horizontal size by the same amount;
(y-size) is a dimension expression. The (y-size) is the total vertical size (height plus
depth). The updated (boz) will be an hbox, irrespective of the nature of the (boz) before
the resizing is applied. A negative (y-size) will cause the material in the (bozx) to be
reversed in direction, but the reference point of the (boz) will be unchanged. Thus a
negative (y-size) will result in the (boz) having a depth dependent on the height of the
original and wice versa. The resizing applies within the current TEX group level.

215

\box_resize_to_wd:Nn
icn

\box_resize_to_wd:Nn (box) {(x-size)}

Resizes the (box) to (z-size) (horizontally), scaling the vertical size by the same amount;
(2-size) is a dimension expression. The updated (boz) will be an hbox, irrespective of
the nature of the (boz) before the resizing is applied. A negative (z-size) will cause the
material in the (boz) to be reversed in direction, but the reference point of the (boz) will
be unchanged. Thus a negative (z-size) will result in the (boz) having a depth dependent
on the height of the original and vice versa. The resizing applies within the current TEX
group level.

\box_resize_to_wd_and_ht:Nnn \box_resize_to_wd_and_ht:Nnn (box) {(x-size)} {(y-size)}

:cnn

New: 2014-07-03

Resizes the (boz) to (z-size) (horizontally) and (y-size) (vertically): both of the sizes are
dimension expressions. The (y-size) is the height only and does not include any depth.
The updated (boz) will be an hbox, irrespective of the nature of the (box) before the
resizing is applied. Negative sizes will cause the material in the (boz) to be reversed in
direction, but the reference point of the (boz) will be unchanged. Thus a negative (y-size)
will result in the (boz) having a depth dependent on the height of the original and wvice
versa. The resizing applies within the current TEX group level.

\box_resize_to_wd_and_ht_plus_dp:Nnn \box_resize_to_wd_and_ht_plus_dp:Nnn (box) {(x-size)} {(y-size)}

:cnn

New: 2017-04-06

\box_rotate:Nn
:cn

\box_scale:Nnn
:cnn

Resizes the (boz) to (z-size) (horizontally) and (y-size) (vertically): both of the sizes are
dimension expressions. The (y-size) is the total vertical size (height plus depth). The
updated (boz) will be an hbox, irrespective of the nature of the (bozx) before the resizing
is applied. Negative sizes will cause the material in the (bozx) to be reversed in direction,
but the reference point of the (box) will be unchanged. Thus a negative (y-size) will
result in the (box) having a depth dependent on the height of the original and vice versa.
The resizing applies within the current TEX group level.

\box_rotate:Nn (box) {(angle)}

Rotates the (box) by (angle) (in degrees) anti-clockwise about its reference point. The
reference point of the updated box will be moved horizontally such that it is at the left
side of the smallest rectangle enclosing the rotated material. The updated (boz) will
be an hbox, irrespective of the nature of the (box) before the rotation is applied. The
rotation applies within the current TEX group level.

\box_scale:Nnn (box) {(x-scale)} {(y-scale)}

Scales the (boz) by factors (a-scale) and (y-scale) in the horizontal and vertical directions,
respectively (both scales are integer expressions). The updated (boz) will be an hbox,
irrespective of the nature of the (box) before the scaling is applied. Negative scalings will
cause the material in the (boz) to be reversed in direction, but the reference point of the
(boz) will be unchanged. Thus a negative (y-scale) will result in the (boz) having a depth
dependent on the height of the original and wvice versa. The resizing applies within the
current TEX group level.

216

\if_hbox:N *

\if_vbox:N *

\if _box_empty:N *

12 Primitive box conditionals

\if_hbox:N (box)
(true code)
\else:
(false code)
\fi:
Tests is (boz) is a horizontal box.

TEXhackers note: This is the TEX primitive \ifhbox.

\if_vbox:N (box)
(true code)
\else:
(false code)
\fi:
Tests is (box) is a vertical box.

TEXhackers note: This is the TEX primitive \ifvbox.

\if_box_empty:N (box)
(true code)
\else:
(false code)
\fi:
Tests is (boz) is an empty (void) box.

TEXhackers note: This is the TEX primitive \ifvoid.

217

\coffin_new:N
:c

New: 2011-08-17

\coffin_clear:N
c

New: 2011-08-17

\coffin_set_eq:NN
:(Nc|ceN|cc)

New: 2011-08-17

\coffin_if_exist_p:N
e
\coffin_if_exist:NTF
:cTF

* o ot

New: 2012-06-20

\hcoffin_set:Nn
:cn

New: 2011-08-17
Updated: 2011-09-03

\hcoffin_set:Nw
icw
\hcoffin_set_end:

New: 2011-09-10

Part XXVII
The 13coffins package
Coffin code layer

The material in this module provides the low-level support system for coffins. For details
about the design concept of a coffin, see the xcoffins module (in the 13experimental bundle).

1 Creating and initialising coffins

\coffin_new:N (coffin)

Creates a new (coffin) or raises an error if the name is already taken. The declaration is
global. The (coffin) will initially be empty.

\coffin_clear:N (coffin)

Clears the content of the (coffin) within the current TEX group level.

\coffin_set_eq:NN (coffin;) (coffiny)

Sets both the content and poles of (coffini) equal to those of (coffing) within the current
TEX group level.

\coffin_if_exist_p:N (box)
\coffin_if_exist:NTF (box) {(true code)} {(false code)}

Tests whether the (coffin) is currently defined.

2 Setting coffin content and poles

All coffin functions create and manipulate coffins locally within the current TEX group
level.

\hcoffin_set:Nn (coffin) {(material)}

Typesets the (material) in horizontal mode, storing the result in the {coffin). The stan-
dard poles for the (coffin) are then set up based on the size of the typeset material.

\hcoffin_set:Nw (coffin) (material) \hcoffin_set_end:

Typesets the (material) in horizontal mode, storing the result in the {coffin). The stan-
dard poles for the (coffin) are then set up based on the size of the typeset material. These
functions are useful for setting the entire contents of an environment in a coffin.

218

\vcoffin_set:Nnn \vcoffin_set:Nnn (coffin) {(width)} {(material)}

"B Typesets the (material) in vertical mode constrained to the given (width) and stores the

New: 2011-08-17 result in the (coffin). The standard poles for the (coffin) are then set up based on the
Updated: 2012-05-22 gijze of the typeset material.

\vcoffin_set:Nnw \vcoffin_set:Nnw (coffin) {(width)} (material) \vcoffin_set_end:
:cow

\vcoffin_set_end: Typesets the (material) in vertical mode constrained to the given (width) and stores the

result in the (coffin). The standard poles for the (coffin) are then set up based on the

New: 2011-09-10 gjze of the typeset material. These functions are useful for setting the entire contents of
Updated: 2012-05-22

an environment in a coffin.

\coffin_set_horizontal_pole:Nnn \coffin_set_horizontal_pole:Nnn (coffin)
:cnn {(pole)} {(offset)}

New: 2012-07-20

Sets the (pole) to run horizontally through the (coffin). The (pole) will be located at the
(offset) from the bottom edge of the bounding box of the (coffin). The (offset) should

be given as a dimension expression.

\coffin_set_vertical_pole:Nnn \coffin_set_vertical_pole:Nnn (coffin) {(pole)} {(offset)}
:cnn

New: 2012-07-20

Sets the (pole) to run vertically through the (coffin). The (pole) will be located at the
(offset) from the left-hand edge of the bounding box of the (coffin). The (offset) should
be given as a dimension expression.

3 Joining and using coffins

\coffin_attach:NnnNnnnn \coffin_attach:NnnNnnnn

: (cnnNnnnn|Nnncnnnn|cnncnnnn) (coffini) {{coffin;-pole;)
(coffing) {{coffiny-polei)
{(x-offset)} {(y-offset)}
This function attaches {(coffing) to (coffiny) such that the bounding box of (coffini)
is not altered, i.e. (coffing) can protrude outside of the bounding box of the cof-
fin. The alignment is carried out by first calculating (handle;), the point of intersec-
tion of (coffini-pole;) and (coffini-poles), and (handles), the point of intersection of
{coffing-poler) and (coffina-poles). {coffing) is then attached to {coffiny) such that the
relationship between (handle;) and (handles) is described by the (z-offset) and (y-offset).
The two offsets should be given as dimension expressions.

(coffini-poles)}
(coffiny-poles)}

+A{
A

219

\coffin_join:NnnNnnnn

\coffin_join:NnnNnnnn

: (cnnNnnnn|Nnnennnn|cnnennnn) (coffini) {{coffini-polei)} {(coffin;-poles)}

\coffin_typeset:Nnnnn
:cnnnn

Updated: 2012-07-20

\coffin_dp:N
ic

\coffin_ht:N
:c

\coffin_wd:N
c

\coffin_display_handles:Nn
icn

Updated: 2011-09-02

(coffiny) {(coffina-pole1)} {({coffinp-poles)}

{(x-offset)} {(y-offset)}

This function joins (coffing) to {coffini) such that the bounding box of (coffiny) may
expand. The new bounding box will cover the area containing the bounding boxes of
the two original coffins. The alignment is carried out by first calculating (handle;), the
point of intersection of (coffini-pole;) and (coffini-poles), and (handles), the point of
intersection of (coffing-poler) and (coffing-poles). (coffing) is then attached to (coffini)
such that the relationship between (handle;) and (handles) is described by the (z-offset)
and (y-offset). The two offsets should be given as dimension expressions.

\coffin_typeset:Nnnnn (coffin) {(polei)} {(pole2)}
{(x-offset)} {(y-offset)}

Typesetting is carried out by first calculating (handle), the point of intersection of (pole;)
and (polez). The coffin is then typeset in horizontal mode such that the relationship be-
tween the current reference point in the document and the (handle) is described by the
(x-offset) and (y-offset). The two offsets should be given as dimension expressions. Type-
setting a coffin is therefore analogous to carrying out an alignment where the “parent”
coffin is the current insertion point.

4 Measuring coffins

\coffin_dp:N (coffin)

Calculates the depth (below the baseline) of the (coffin) in a form suitable for use in a
(dimension expression).

\coffin_ht:N (coffin)

Calculates the height (above the baseline) of the (coffin) in a form suitable for use in a
(dimension expression).

\coffin_wd:N (coffin)

Calculates the width of the (coffin) in a form suitable for use in a (dimension expression).

5 Coffin diagnostics

\coffin_display_handles:Nn (coffin) {(color)}

This function first calculates the intersections between all of the (poles) of the (coffin) to
give a set of (handles). It then prints the (coffin) at the current location in the source,
with the position of the (handles) marked on the coffin. The (handles) will be labelled
as part of this process: the locations of the (handles) and the labels are both printed in
the (color) specified.

220

\coffin_mark_handle:Nnnn
:cnnn

Updated: 2011-09-02

\coffin_show_structure:N
:c

Updated: 2015-08-01

\coffin_log_structure:N
:c

New: 2014-08-22
Updated: 2015-08-01

\c_empty_coffin

\1_tmpa_coffin
\1_tmpb_coffin

New: 2012-06-19

\coffin_mark_handle:Nnnn (coffin) {(polei)} {(poles)} {(color)}

This function first calculates the (handle) for the (coffin) as defined by the intersection
of (poler) and (poleg). It then marks the position of the (handle) on the (coffin). The
(handle) will be labelled as part of this process: the location of the (handle) and the
label are both printed in the (color) specified.

\coffin_show_structure:N (coffin)

This function shows the structural information about the (coffin) in the terminal. The
width, height and depth of the typeset material are given, along with the location of all
of the poles of the coffin.

Notice that the poles of a coffin are defined by four values: the x and y co-ordinates
of a point that the pole passes through and the z- and y-components of a vector denoting
the direction of the pole. It is the ratio between the later, rather than the absolute values,
which determines the direction of the pole.

\coffin_log_structure:N (coffin)

This function writes the structural information about the (coffin) in the log file. See also
\coffin_show_structure:N which displays the result in the terminal.

5.1 Constants and variables

A permanently empty coffin.

Scratch coffins for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

221

\color_group_begin:
\color_group_end:

New: 2011-09-03

\color_ensure_current:

New: 2011-09-03

Part XXVIII
The 13color package
Color support

This module provides support for color in XTEX3. At present, the material here is mainly
intended to support a small number of low-level requirements in other I3kernel modules.

1 Color in boxes

Controlling the color of text in boxes requires a small number of control functions, so
that the boxed material uses the color at the point where it is set, rather than where it
is used.

\color_group_begin:

\color_group_end:

Creates a color group: one used to “trap” color settings.

\color_ensure_current:

Ensures that material inside a box will use the foreground color at the point where the
box is set, rather than that in force when the box is used. This function should usually
be used within a \color_group_begin: ...\color_group_end: group.

222

\c_sys_jobname_str

New: 2015-09-19

\c_sys_minute_int
\c_sys_hour_int
\c_sys_day_int
\c_sys_month_int
\c_sys_year_int

New: 2015-09-22

\sys_if_engine_luatex_p:
\sys_if_engine_luatex:TF
\sys_if_engine_pdftex_p:
\sys_if_engine_pdftex:TF
\sys_if_engine_ptex_p:
\sys_if_engine_ptex:TF
\sys_if_engine_uptex_p:
\sys_if_engine_uptex:TF
\sys_if_engine_xetex_p:
\sys_if_engine_xetex:TF

D D D R R s D I o

New: 2015-09-07

\c_sys_engine_str

New: 2015-09-19

Part XXIX
The 13sys package
System /runtime functions

1 The name of the job

Constant that gets the “job name” assigned when TEX starts.

TEXhackers note: This copies the contents of the primitive \jobname. It is a constant
that is set by TEX and should not be overwritten by the package.

2 Date and time

The date and time at which the current job was started: these are all reported as integers.

TEXhackers note: Whilst the underlying primitives can be altered by the user, this
interface to the time and date is intended to be the “real” values.

3 Engine

\sys_if_engine_pdftex:TF {(true code)} {(false code)}

Conditionals which allow engine-specific code to be used. The names follow naturally
from those of the engine binaries: note that the (u)ptex tests are for e-pIEX and e-upIEX
as expl3 requires the e-TEX extensions. Each conditional is true for ezactly one supported
engine. In particular, \sys_if_engine_ptex_p: is true for e-pIgX but false for e-upIrX.

The current engine given as a lower case string: will be one of luatex, pdftex, ptex,
uptex or xetex.

223

\sys_if_output_dvi_p:
\sys_if_output_dvi:TF
\sys_if_output_pdf_p:

*
*
*

\sys_if_output_pdf:TF *

New: 2015-09-19

\c_sys_output_str

New: 2015-09-19

4 Output format

\sys_if_output_dvi:TF {(true code)} {(false code)}

Conditionals which give the current output mode the TEX run is operating in. This will
always be one of two outcomes, DVI mode or PDF mode. The two sets of conditionals
are thus complementary and are both provided to allow the programmer to emphasise
the most appropriate case.

The current output mode given as a lower case string: will be one of dvi or pdf.

224

\deprecation_error:

Part XXX
The 13deprecation package
Deprecation errors

1 13deprecation documentation

A few commands have had to be deprecated over the years. This module defines depre-
cated and deleted commands to produce an error.

Defines commands that will soon become deprecated to produce errors.

(End definition for \deprecation_error:. This function is documented on page ?7.)

225

\box_clip:N

:C

Part XXXI
The I3candidates package
Experimental additions to 13kernel

1 Important notice

This module provides a space in which functions can be added to I3kernel (expl3) while
still being experimental.

As such, the functions here may not remain in their current form,
or indeed at all, in I13kernel in the future.

In contrast to the material in I3experimental, the functions here are all small additions to
the kernel. We encourage programmers to test them out and report back on the LaTeX-L
mailing list.

Thus, if you intend to use any of these functions from the candidate module in a
public package offered to others for productive use (e.g., being placed on CTAN) please
consider the following points carefully:

e Be prepared that your public packages might require updating when such functions
are being finalized.

e Consider informing us that you use a particular function in your public package,
e.g., by discussing this on the LaTeX-L mailing list. This way it becomes easier to
coordinate any updates necessary without issues for the users of your package.

e Discussing and understanding use cases for a particular addition or concept also
helps to ensure that we provide the right interfaces in the final version so please
give us feedback if you consider a certain candidate function useful (or not).

We only add functions in this space if we consider them being serious candidates for
a final inclusion into the kernel. However, real use sometimes leads to better ideas, so
functions from this module are not necessarily stable and we may have to adjust them!

2 Additions to 13box

2.1 Viewing part of a box

\box_clip:N (box)

Clips the (boz) in the output so that only material inside the bounding box is displayed
in the output. The updated (boz) will be an hbox, irrespective of the nature of the (boz)
before the clipping is applied. The clipping applies within the current TEX group level.

These functions require the IXTEX3 native drivers: they will not work
with the BTEX 2¢ graphics drivers!

TEXhackers note: Clipping is implemented by the driver, and as such the full content of
the box is placed in the output file. Thus clipping does not remove any information from the
raw output, and hidden material can therefore be viewed by direct examination of the file.

226

\box_trim:Nnnnn
:cnnnn

\box_viewport:Nnnnn
:cnnnn

\clist_rand_item:N x
ic oK
\clist_rand_item:n *

New: 2016-12-06

\coffin_resize:Nnn
:cnn

\coffin_rotate:Nn
:cn

\coffin_scale:Nnn
:cnn

\box_trim:Nnnnn (box) {(left)} {(bottom)} {(right)} {(top)}

Adjusts the bounding box of the (box) (left) is removed from the left-hand edge of the
bounding box, (right) from the right-hand edge and so fourth. All adjustments are
(dimension expressions). Material output of the bounding box will still be displayed in
the output unless \box_clip:N is subsequently applied. The updated (boz) will be an
hbox, irrespective of the nature of the (boz) before the trim operation is applied. The
adjustment applies within the current TEX group level. The behavior of the operation
where the trims requested is greater than the size of the box is undefined.

\box_viewport:Nnnnn (box) {(11x)} {(11y)} {(urx)} {({ury)}

Adjusts the bounding box of the (boz) such that it has lower-left co-ordinates ((liz),
(lly)) and upper-right co-ordinates ((urz), (ury)). All four co-ordinate positions are
(dimension expressions). Material output of the bounding box will still be displayed in
the output unless \box_clip:N is subsequently applied. The updated (boz) will be an
hbox, irrespective of the nature of the (box) before the viewport operation is applied.
The adjustment applies within the current TEX group level.

3 Additions to 13clist

\clist_rand_item:N (clist var)
\clist_rand_item:n {(comma list)}

Selects a pseudo-random item of the (comma list). If the (comma list) has no item, the
result is empty. This is only available in pdfTEX and LuaTgX.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) will not expand further when appearing in an x-type argument
expansion.

4 Additions to 13coffins

\coffin_resize:Nnn (coffin) {(width)} {(total-height)}

Resized the (coffin) to (width) and (total-height), both of which should be given as di-
mension expressions.

\coffin_rotate:Nn (coffin) {(angle)}

Rotates the (coffin) by the given (angle) (given in degrees counter-clockwise). This
process will rotate both the coffin content and poles. Multiple rotations will not result
in the bounding box of the coffin growing unnecessarily.

\coffin_scale:Nnn (coffin) {(x-scale)} {(y-scale)}

Scales the (coffin) by a factors (z-scale) and (y-scale) in the horizontal and vertical
directions, respectively. The two scale factors should be given as real numbers.

227

\file_if_exist_input:nTF

New: 2014-07-02

\ior_log_streams:
\iow_log_streams:

New: 2014-08-22

\int_rand:nn *

New: 2016-12-06

5 Additions to I3file

\file_if_exist_input:n {(file name)}

\file_if_exist_input:nTF {(file name)} {(true code)} {(false code)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \file_path_include:n). If found, inserts the (true code) then reads in
the file as additional IMTEX source as described for \file_input:n. Note that \file_-
if_exist_input:n does not raise an error if the file is not found, in contrast to \file_-
input:n.

\ior_log_streams:

\iow_log_streams:

Writes in the log file a list of the file names associated with each open stream: intended
for tracking down problems.

6 Additions to 13int

\int_rand:nn {(intexpri)} {(intexprs)}

Evaluates the two (integer expressions) and produces a pseudo-random number between
the two (with bounds included). This is only available in pdfTEX and LuaTgX.

7 Additions to I13msg

In very rare cases it may be necessary to produce errors in an expansion-only context.
The functions in this section should only be used if there is no alternative approach
using \msg_error :nnnnnn or other non-expandable commands from the previous section.
Despite having a similar interface as non-expandable messages, expandable errors must
be handled internally very differently from normal error messages, as none of the tools
to print to the terminal or the log file are expandable. As a result, the message text and
arguments are not expanded, and messages must be very short (with default settings,
they are truncated after approximately 50 characters). It is advisable to ensure that the
message is understandable even when truncated. Another particularity of expandable
messages is that they cannot be redirected or turned off by the user.

228

\msg_expandable_error:

nnnnnn * \msg_expandable_error:nnnnnn {(module)} {(message)} {(arg one)} {(arg

:nnffff x two)} {(arg three)} {(arg four)}

\msg_expandable_error:

:nnfff

\msg_expandable_error:

:nnff

\msg_expandable_error:

:nnf

\msg_expandable_error:

nnnnn *

nnnn

nnn

b S S . S

nn

New:

2015-08-06

\prop_count:N *
ic %

\prop_map_tokens:Nn
icn

“
DD

\prop_rand_key_value:N *
C ok

New: 2016-12-06

Issues an “Undefined error” message from TEX itself using the undefined control sequence
\: :error then prints “! (module): ”({error message), which should be short. With default
settings, anything beyond approximately 60 characters long (or bytes in some engines) is
cropped. A leading space might be removed as well.

8 Additions to 13prop

\prop_count:N (property list)

Leaves the number of key—value pairs in the (property list) in the input stream as an
(integer denotation).

\prop_map_tokens:Nn (property list) {(code)}

Analogue of \prop_map_function:NN which maps several tokens instead of a single func-
tion. The (code) receives each key—value pair in the (property list) as two trailing brace
groups. For instance,

\prop_map_tokens:Nn \1_my_prop { \str_if_eq:nnT { mykey } }

will expand to the value corresponding to mykey: for each pair in \1_my_prop the function
\str_if_eq:nnT receives mykey, the (key) and the (value) as its three arguments. For
that specific task, \prop_item:Nn is faster.

\prop_rand_key_value:N (prop var)

Selects a pseudo-random key—value pair in the (property list) and returns {(key)}{(value)}.
If the (property list) is empty the result is empty. This is only available in pdfTEX and
LuaTgX.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (value) will not expand further when appearing in an x-type argument
expansion.

229

9 Additions to 13seq

\seq_mapthread_function:NNN % \seq_mapthread_function:NNN (seq:) (seqz) (function)
:(NcN|cNN|ceN)

Applies (function) to every pair of items (seq; -item)—(sego-item) from the two sequences,
returning items from both sequences from left to right. The (function) will receive two
n-type arguments for each iteration. The mapping will terminate when the end of ei-
ther sequence is reached (i.e. whichever sequence has fewer items determines how many
iterations occur).

\seq_set_filter:NNn \seq_set_filter:NNn (sequence;) (sequencez) {(inline boolexpr)}
\seq_gset_filter:NNn

Evaluates the (inline boolexpr) for every (item) stored within the (sequences). The (inline
boolexpr) will receive the (item) as #1. The sequence of all (items) for which the (inline
boolexpr) evaluated to true is assigned to (sequencey).

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and will lead to low-level TEX errors.

\seq_set_map:NNn \seq_set_map:NNn (sequence:) (sequences) {(inline function)}
\seq_gset_map:NNn

Applies (inline function) to every (item) stored within the (sequences). The (inline
New: 2011-12-22 fynction) should consist of code which will receive the (item) as #1. The sequence result-
ing from x-expanding (inline function) applied to each (item) is assigned to (sequence;).
As such, the code in (inline function) should be expandable.

TrXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and will lead to low-level TEX errors.

\seq_rand_item:N x \seq_rand_item:N (seq var)

€ ¥ Selects a pseudo-random item of the (sequence). If the (sequence) is empty the result is

New: 2016-12-06 empty. This is only available in pdfTEX and LuaTgX.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) will not expand further when appearing in an x-type argument
expansion.

10 Additions to 13skip

\skip_split_finite_else_action:nnNN \skip_split_finite_else_action:nnNN {(skipexpr)} {(action)}
(dimen;) (dimens)

Checks if the (skipezpr) contains finite glue. If it does then it assigns (dimen;) the stretch
component and (dimens) the shrink component. If it contains infinite glue set (dimen;)
and (dimeny) to Opt and place #2 into the input stream: this is usually an error or
warning message of some sort.

230

\sys_if_rand_exist_p: *
\sys_if_rand_exist:TF *

New: 2017-05-27

\sys_rand_seed: x

New: 2017-05-27

\sys_gset_rand_seed:n

New: 2017-05-27

\c_sys_shell_escape_int

New: 2017-05-27

\sys_if_shell_p: «*
\sys_if_shell:TF «*

New: 2017-05-27

11 Additions to I13sys

\sys_if_rand_exist_p:
\sys_if_rand_exist:TF {(true code)} {(false code)}

Tests if the engine has a pseudo-random number generator. Currently this is the case in

pdfTEX and LuaTgX.

\sys_rand_seed:

Expands to the current value of the engine’s random seed, a non-negative integer. In
engines without random number support this expands to 0.

\sys_gset_rand_seed:n {(intexpr)}

Sets the seed for the engine’s pseudo-random number generator to the (integer expression).
The assignment is global. This random seed affects all \..._rand functions (such as
\int_rand:nn or \clist_rand_item:n) as well as other packages relying on the en-
gine’s random number generator. Currently only the absolute value of the seed is used.
In engines without random number support this produces an error.

This variable exposes the internal triple of the shell escape status. The possible values
are

0 Shell escape is disabled

1 Unrestricted shell escape is enabled

2 Restricted shell escape is enabled

\sys_if_shell _p:

\sys_if_shell:TF {(true code)} {(false code)}

Performs a check for whether shell escape is enabled. This will return true if either of
restricted or unrestircted shell escape is enabled.

\sys_if_shell_unrestricted_p: * \sys_if_shell_unrestricted_p:
\sys_if_shell_unrestricted:TF * \sys_if_shell_unrestricted:TF {(true code)} {(false code)}

New: 2017-05-27

Performs a check for whether unrestricted shell escape is enabled.

\sys_if_shell_restricted_p: * \sys_if_shell_restricted_p:
\sys_if_shell_restricted:TF x \sys_if_shell_restricted:TF {(true code)} {(false code)}

New: 2017-05-27

Performs a check for whether restricted shell escape is enabled. This will return false if
unrestricted shell escape is enabled. Unrestricted shell escape is not considered a superset
of restricted shell escape in this case. To find whether any shell escape is enabled use
\sys_if_shell:.

231

\sys_shell_now:n
1X

New: 2017-05-27

\sys_shell_shipout:n
1X

New: 2017-05-27

\tl_if_single_token_p:n *
\tl_if_single_token:nTF x

\tl_reverse_tokens:n x*

\tl_count_tokens:n *

\tl_lower_case:n
\tl_upper_case:n
\tl_mixed_case:n
\tl_lower_case:nn
\tl_upper_case:nn
\tl_mixed_case:nn

b D S . S

New: 2014-06-30
Updated: 2016-01-12

\sys_shell_now:n {(tokens)}

Execute (tokens) through shell escape immediately.

\sys_shell_shipout:n {(tokens)}

Execute (tokens) through shell escape at shipout.

12 Additions to 13tl

\tl_if_single_token_p:n {(token list)}

\tl_if_single_token:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the token list consists of exactly one token, i.e. is either a single space character
or a single “normal” token. Token groups ({...}) are not single tokens.

\tl_reverse_tokens:n {(tokens)}

This function, which works directly on TEX tokens, reverses the order of the (tokens):
the first will be the last and the last will become first. Spaces are preserved. The reversal
also operates within brace groups, but the braces themselves are not exchanged, as this
would lead to an unbalanced token list. For instance, \t1l_reverse_tokens:n {a~{b()}}
leaves {) (b}~a in the input stream. This function requires two steps of expansion.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the token list will not expand further when appearing in an x-type argument
expansion.

\tl_count_tokens:n {(tokens)}

Counts the number of TEX tokens in the (tokens) and leaves this information in the input
stream. Every token, including spaces and braces, contributes one to the total; thus for
instance, the token count of a~{bc} is 6. This function requires three expansions, giving
an (integer denotation).

\tl_upper_case:n {(tokens)}
\tl_upper_case:nn {(language)} {(tokens)}
These functions are intended to be applied to input which may be regarded broadly
as “text”. They traverse the (tokens) and change the case of characters as discussed
below. The character code of the characters replaced may be arbitrary: the replacement
characters will have standard document-level category codes (11 for letters, 12 for letter-
like characters which can also be case-changed). Begin-group and end-group characters
in the (tokens) are normalized and become { and }, respectively.

Importantly, notice that these functions are intended for working with user text for
typesetting. For case changing programmatic data see the |13str module and discussion

there of \str_lower_case:n, \str_upper_case:n and \str_fold_case:n.
The functions perform expansion on the input in most cases. In particular, input

in the form of token lists or expandable functions will be expanded unless it falls within

232

\1_t1l_case_change_math_tl

one of the special handling classes described below. This expansion approach means that
in general the result of case changing will match the “natural” outcome expected from a
“functional” approach to case modification. For example

\tl_set:Nn \1_tmpa_tl { hello }
\tl_upper_case:n { \1_tmpa_tl \c_space_tl world }

will produce
HELLO WORLD

The expansion approach taken means that in package mode any I2TEX 2¢ “robust” com-
mands which may appear in the input should be converted to engine-protected versions
using for example the \robustify command from the etoolbox package.

Case changing will not take place within math mode material so for example
\tl_upper_case:n { Some~text~$y = mx + c$~with~{Braces} }
will become
SOME TEXT $y = mx + c$ WITH {BRACES}

Material inside math mode is left entirely unchanged: in particular, no expansion is
undertaken.

Detection of math mode is controlled by the list of tokens in \1_t1_case_change_-
math_tl, which should be in open—close pairs. In package mode the standard settings
is

$ $\C\)

Note that while expansion occurs when searching the text it does not apply to math
mode material (which should be unaffected by case changing). As such, whilst the opening
token for math mode may be “hidden” inside a command/macro, the closing one cannot
be as this is being searched for in math mode. Typically, in the types of “text” the case
changing functions are intended to apply to this should not be an issue.

233

\1_t1_case_change_exclude_tl

Case changing can be prevented by using any command on the list \1_t1_case_change_-
exclude_tl. Each entry should be a function to be followed by one argument: the latter
will be preserved as-is with no expansion. Thus for example following

\tl_put_right:Nn \1_t1l_case_change_exclude_tl { \NoChangeCase }
the input

\tl_upper_case:n
{ Some~text~$y = mx + c$~with~\NoChangeCase {Protection} }

will result in
SOME TEXT $y = mx + c$ WITH \NoChangeCase {Protection}

Notice that the case changing mapping preserves the inclusion of the escape functions:
it is left to other code to provide suitable definitions (typically equivalent to \use:n). In
particular, the result of case changing is returned protected by \exp_not:n.

When used with ITEX 2¢ the commands \cite, \ensuremath, \label and \ref are
automatically included in the list for exclusion from case changing.

\1_t1l_case_change_accents_tl

This list specifies accent commands which should be left unexpanded in the output. This
allows for example

\tl_upper_case:n { \" { a } }
to yield
\" { A}

irrespective of the expandability of \".
The standard contents of this variable is \", \”, \., \7, \‘, \~, \¢c, \H, \k, \r, \t,

\u and \v.
“Mixed” case conversion may be regarded informally as converting the first character

of the (tokens) to upper case and the rest to lower case. However, the process is more
complex than this as there are some situations where a single lower case character maps
to a special form, for example ij in Dutch which becomes IJ. As such, \t1l_mixed_-
case:n(n) implement a more sophisticated mapping which accounts for this and for
modifying accents on the first letter. Spaces at the start of the (tokens) are ignored when
finding the first “letter” for conversion.

\tl_mixed_case:n { hello~WORLD } % => "Hello world"
\tl_mixed_case:n { ~hello~WORLD } % => " Hello world"
\tl_mixed_case:n { {hello}~WORLD } % => "{Hello} world"

When finding the first “letter” for this process, any content in math mode or covered by
\1_t1l_case_change_exclude_t1 is ignored.

(Note that the Unicode Consortium describe this as “title case”, but that in English
title case applies on a word-by-word basis. The “mixed” case implemented here is a lower
level concept needed for both “title” and “sentence” casing of text.)

234

\1_tl_mixed_case_ignore_tl

\tl_set_from_file:Nnn

:cnn
\tl_gset_from_file:Nnn
:cnn

New: 2014-06-25

The list of characters to ignore when searching for the first “letter” in mixed-casing is
determined by \1_t1l_mixed_change_ignore_t1l. This has the standard setting

L=

where comparisons are made on a character basis.
As is generally true for expl3, these functions are designed to work with Unicode

input only. As such, UTF-8 input is assumed for all engines. When used with X{TEX or
LuaTgX a full range of Unicode transformations are enabled. Specifically, the standard
mappings here follow those defined by the Unicode Consortium in UnicodeData.txt and
SpecialCasing.txt. In the case of 8-bit engines, mappings are provided for characters
which can be represented in output typeset using the T1 font encoding. Thus for example
K& can be case-changed using pdfTEX. For pIEX only the ASCII range is covered as the
engine treats input outside of this range as east Asian.

Context-sensitive mappings are enabled: language-dependent cases are discussed be-
low. Context detection will expand input but treats any unexpandable control sequences
as “failures” to match a context.

Language-sensitive conversions are enabled using the (language) argument, and fol-
low Unicode Consortium guidelines. Currently, the languages recognised for special han-
dling are as follows.

o Azeri and Turkish (az and tr). The case pairs I/i-dotless and I-dot/i are activated
for these languages. The combining dot mark is removed when lower casing I-dot
and introduced when upper casing i-dotless.

o German (de-alt). An alternative mapping for German in which the lower case
Eszett maps to a grofies Eszett.

o Lithuanian (1t). The lower case letters i and j should retain a dot above when the
accents grave, acute or tilde are present. This is implemented for lower casing of
the relevant upper case letters both when input as single Unicode codepoints and
when using combining accents. The combining dot is removed when upper casing
in these cases. Note that only the accents used in Lithuanian are covered: the
behaviour of other accents are not modified.

o Dutch (nl). Capitalisation of ij at the beginning of mixed cased input produces IJ
rather than Ij. The output retains two separate letters, thus this transformation
is available using pdfTEX.

Creating additional context-sensitive mappings requires knowledge of the underlying
mapping implementation used here. The team are happy to add these to the kernel
where they are well-documented (e.g. in Unicode Consortium or relevant government
publications).

\tl_set_from_file:Nnn (t1) {(setup)} {(filename)}

Defines (tl) to the contents of (filename). Category codes may need to be set appropri-
ately via the (setup) argument.

235

http://www.unicode.org

\tl_set_from_file_x:Nnn

:cnn
\tl_gset_from_file_x:Nnn
:cnn

New: 2014-06-25

\tl_rand_item:N x
ic X
\tl_rand_item:n *

New: 2016-12-06

\tl_range:Nnn *
rcon o+
\tl_range:nnn *

New: 2017-02-17

\tl_set_from_file_x:Nnn (t1) {(setup)} {(filename)}

Defines (tl) to the contents of (filename), expanding the contents of the file as it is read.
Category codes and other definitions may need to be set appropriately via the (setup)
argument.

\tl_rand_item:N (tl var)

\tl_rand_item:n {(token list)}

Selects a pseudo-random item of the (token list). If the (token list) is blank, the result
is empty. This is only available in pdfTEX and LuaTgX.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) will not expand further when appearing in an x-type argument
expansion.

\tl_range:Nnn (t1 var) {(start index)} {(end index)}
\tl_range:nnn {(token list)} {(start index)} {(end index)}

Leaves in the input stream the items from the (start index) to the (end index) inclusive.
Positive (indices) are counted from the start of the (token list), 1 being the first item,
and negative (indices) are counted from the end of the token list, —1 being the last item.
If either of (start index) or (end index) is 0, the result is empty. For instance,

\iow_term:x { \tl_range:nnn { abcdef } { 2 } {5} }

\iow_term:x { \tl_range:nnn { abcdef } { -4} {-113} 1}
\iow_term:x { \tl_range:nnn { abcdef } { -2 } { -1} }
\iow_term:x { \tl_range:nnn { abcdef } { 0 } { -1 } }

will print becde, cdef, ef, and an empty line to the terminal. The (start index) must
always be smaller than or equal to the (end indez): if this is not the case then no output
is generated. Thus

\iow_term:x { \tl_range:nnn { abcdef } { 5} {2 } }
\iow_term:x { \tl_range:nnn { abcdef } { -1 } { 41} }

both yield empty token lists.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) will not expand further when appearing in an x-type argument
expansion.

236

\peek_N_type: TF

Updated: 2012-12-20

13 Additions to 13tokens

\peek_N_type:TF {(true code)} {(false code)}

Tests if the next (token) in the input stream can be safely grabbed as an N-type argument.
The test will be (false) if the next (token) is either an explicit or implicit begin-group
or end-group token (with any character code), or an explicit or implicit space character
(with character code 32 and category code 10), or an outer token (never used in ITEX3)
and (true) in all other cases. Note that a (true) result ensures that the next (token) is a
valid N-type argument. However, if the next (token) is for instance \c_space_token, the
test will take the (false) branch, even though the next (token) is in fact a valid N-type
argument. The (token) will be left in the input stream after the (true code) or (false
code) (as appropriate to the result of the test).

237

\lua_now_x:n *
\lua_now:n *

New: 2015-06-29

\lua_shipout_x:n
\lua_shipout:n

New: 2015-06-30

Part XXXII
The I3luatex package
LuaTeX-specific functions

1 Breaking out to Lua

The LuaTgX engine provides access to the Lua programming language, and with it access
to the “internals” of TEX. In order to use this within the framework provided here, a
family of functions is available. When used with pdfTEX or X{ITEX these will raise an
error: use \sys_if_engine_luatex:T to avoid this. Details of coding the LuaTEX engine
are detailed in the LuaTEX manual.

1.1 TgX code interfaces

\lua_now:n {(token list)}

The (token list) is first tokenized by TEX, which will include converting line ends to
spaces in the usual TEX manner and which respects currently-applicable TEX category
codes. The resulting (Lua input) is passed to the Lua interpreter for processing. Each
\lua_now:n block is treated by Lua as a separate chunk. The Lua interpreter will execute
the (Lua input) immediately, and in an expandable manner.

In the case of the \lua_now_x:n version the input is fully expanded by TEX in an
x-type manner but the function remains fully expandable.

TEXhackers note: \lua_now_x:n is a macro wrapper around \directlua: when LualTgX
is in use two expansions will be required to yield the result of the Lua code.

\lua_shipout:n {(token list)}

The (token list) is first tokenized by TgEX, which will include converting line ends to
spaces in the usual TEX manner and which respects currently-applicable TEX category
codes. The resulting (Lua input) is passed to the Lua interpreter when the current page
is finalised (7.e. at shipout). Each \lua_shipout:n block is treated by Lua as a separate
chunk. The Lua interpreter will execute the (Lua input) during the page-building routine:
no TEX expansion of the (Lua input) will occur at this stage.

In the case of the \1lua_shipout_x:n version the input is fully expanded by TEX in
an x-type manner during the shipout operation.

TEXhackers note: At a TEX level, the (Lua input) is stored as a “whatsit”.

238

\lua_escape_x:n * \lua_escape:n {(token list)}

\ua_escape:n Converts the (token list) such that it can safely be passed to Lua: embedded backslashes,

New: 2016-06-29 double and single quotes, and newlines and carriage returns are escaped. This is done by
prepending an extra token consisting of a backslash with category code 12, and for the
line endings, converting them to \n and \r, respectively.

In the case of the \lua_escape_x:n version the input is fully expanded by TEX in
an x-type manner but the function remains fully expandable.

TEXhackers note: \lua_escape_x:n is a macro wrapper around \luaescapestring:
when LuaTgX is in use two expansions will be required to yield the result of the Lua code.

1.2 Lua interfaces
As well as interfaces for TEX, there are a small number of Lua functions provided here.

Currently these are intended for internal use only.

13kernel.strcmp \13kernel.strcmp((str one), (str two))

Compares the two strings and returns 0 to TEX if the two are identical.

13kernel.charcat \13kernel.charcat({charcode), (catcode))

Constructs a character of (charcode) and (catcode) and returns the result to TEX.

239

__driver_box_use_clip:N

New: 2011-11-11

Part XXXIII
The |13drivers package
Drivers

TEX relies on drivers in order to carry out a number of tasks, such as using color, including
graphics and setting up hyper-links. The nature of the code required depends on the exact
driver in use. Currently, IXTEX3 is aware of the following drivers:

o pdfmode: The “driver” for direct PDF output by both pdfTEX and LuaTgX (no
separate driver is used in this case: the engine deals with PDF creation itself).

e dvips: The dvips program, which works in conjugation with pdfTEX or LuaTgX
in DVI mode.

e dvipdfmx: The dvipdfmx program, which works in conjugation with pdfTEX or
LuaTgX in DVI mode.

e dvisvgm: The dvisvgm program, which works in conjugation with pdfTEX or
LuaTEX when run in DVI mode as well as with (u)pTEX and X#TEX.

e xdvipdfmx: The driver used by XHIEX.

The code here is all very low-level, and should not in general be used outside of the
kernel. It is also important to note that many of the functions here are closely tied to
the immediate level “up”, and they must be used in the correct contexts.

1 Box clipping

__driver_box_use_clip:N (box)

Inserts the content of the (boz) at the current insertion point such that any material
outside of the bounding box will not be displayed by the driver. The material in the
(boz) is still placed in the output stream: the clipping takes place at a driver level.

This function should only be used within a surrounding horizontal box construct.

2 Box rotation and scaling

__driver_box_use_rotate:Nn __driver_box_use_rotate:Nn (box) {(angle)}

New: 2016-05-12

Inserts the content of the (boz) at the current insertion point rotated by the (angle)
(expressed in degrees). The material is inserted with no apparent height or width, and is
rotated such the the TEX reference point of the box is the center of rotation and remains
the reference point after rotation. It is the responsibly of the code using this function to
adjust the apparent size of the box to be correct at the TEX side.

This function should only be used within a surrounding horizontal box construct.

240

__driver_box_use_scale:Nnn __driver_box_use_scale:Nnn (box) {(x-scale)} {(y-scale)}

New: 2016-05-12

Inserts the content of the (boz) at the current insertion point scale by the (z-scale) and
(y-scale). The material is inserted with no apparent height or width. It is the responsibly
of the code using this function to adjust the apparent size of the box to be correct at the

TEX side.

This function should only be used within a surrounding horizontal box construct.

3 Color support

__driver_color_ensure_current: __driver_color_ensure_current:

New: 2011-09-03

Updated: 2012-05-18

__driver_draw_begin:
__driver_draw_end:

Ensures that the color used to typeset material is that which was set when the material
was placed in a box. This function is therefore required inside any “color safe” box to
ensure that the box may be inserted in a location where the foreground color has been
altered, while preserving the color used in the box.

4 Drawing

The drawing functions provided here are highly experimental. They are inspired heavily
by the system layer of pgf (most have the same interface as the same functions in the
latter’s \pgfsys@. .. namespace). They are intended to form the basis for higher level
drawing interfaces, which themselves are likely to be further abstracted for user access.
Again, this model is heavily inspired by pgf and Tikz.

These low level drawing interfaces abstract from the driver raw requirements but
still require an appreciation of the concepts of PostScript/PDF/SVG graphic creation.

__driver_draw_begin:

(content)

__driver_draw_end:

Defines a drawing environment. This will be a scope for the purposes of the graphics
state. Depending on the driver, other set up may or may not take place here. The natural
size of the (content) should be zero from the TEX perspective: allowance for the size of
the content must be made at a higher level (or indeed this can be skipped if the content
is to overlap other material).

__driver_draw_scope_begin: __driver_draw_scope_begin:
__driver_draw_scope_end: (content)

__driver_draw_scope_end:

Defines a scope for drawing settings and so on. Changes to the graphic state and concepts
such as color or linewidth are localised to a scope. This function pair must never be used
if an partial path is under construction: such paths must be entirely contained at one
unbroken scope level. Note that scopes do not form TEX groups and may not be aligned
with them.

241

__driver_draw_moveto:nn

__driver_draw_lineto:nn

4.1 Path construction

__driver_draw_move:nn {(x)} {(y)}

Moves the current drawing reference point to ({(z), (y)); any active transformation matrix
will apply.

__driver_draw_lineto:nn {(x)} {(y)}

Adds a path from the current drawing reference point to ((z), (y)); any active transfor-
mation matrix will apply. Note that nothing is drawn until a fill or stroke operation is
applied, and that the path may be discarded or used as a clip without appearing itself.

__driver_draw_curveto:nnnnnn __driver_draw_curveto:nnnnnn {(x1)} {(y1)}

{(x2)} {(y2)F {(x3)} {(y3)}

Adds a Bezier curve path from the current drawing reference point to ({xz3), (y3)), using
({z1), (1n)) and ((z2), (y2)) as control points; any active transformation matrix will apply.
Note that nothing is drawn until a fill or stroke operation is applied, and that the path
may be discarded or used as a clip without appearing itself.

__driver_draw_rectangle:nnnn __driver_draw_rectangle:nnnn {(x)} {(y)} {(width)} {(height)}

__driver_draw_closepath:

Adds rectangular path from ({z1), (y1)) of (height) and (width); any active transformation
matrix will apply. Note that nothing is drawn until a fill or stroke operation is applied,
and that the path may be discarded or used as a clip without appearing itself.

__driver_draw_closepath:

Closes an existing path, adding a line from the current point to the start of path. Note
that nothing is drawn until a fill or stroke operation is applied, and that the path may
be discarded or used as a clip without appearing itself.

4.2 Stroking and filling

__driver_draw_stroke:

(path comstruction)

__driver_draw_closestroke: __driver_draw_stroke:

Draws a line alone the current path, which will also be closed when __driver_draw_-
closestroke: is used. The nature of the line drawn is influenced by settings for

e Line thickness

 Stroke color (or the current color if no specific stroke color is set)
« Line capping (how non-closed line ends should look)

o Join style (how a bend in the path should be rendered)

e Dash pattern

The path may also be used for clipping.

242

__driver_draw_fill:
__driver_draw_fillstroke:

(path construction)

__driver_draw_fill:

Fills the area surrounded by the current path: this will be closed prior to filling if it is not
already. The fillstroke version will also stroke the path as described for __driver_-
draw_stroke:. The fill is influenced by the setting for fill color (or the current color if
no specific stroke color is set). The path may also be used for clipping. For paths which
are self-intersecting or comprising multiple parts, the determination of which areas are
inside the path is made using the non-zero winding number rule unless the even-odd rule
is active.

__driver_draw_nonzero_rule: __driver_draw_nonzero_rule:
__driver_draw_evenodd_rule:

__driver_draw_clip:

Active either the non-zero winding number or the even-odd rule, respectively, for deter-
mining what is inside a fill or clip area. For technical reasons, these command are not
influenced by scoping and apply on an ongoing basis.

(path construction)

__driver_draw_clip:

Indicates that the current path should be used for clipping, such that any subsequent
material outside of the path (but within the current scope) will not be shown. This
command should be given once a path is complete but before it is stroked or filled (if
appropriate). This command is not affected by scoping: it applies to exactly one path as
shown.

__driver_draw_discardpath: (path comstruction)

__driver_draw_linewidth:n

__driver_draw_dash:nn

__driver_draw_discardpath:

Discards the current path without stroking or filling. This is primarily useful for paths
constructed purely for clipping, as this alone does not end the paths existence.

4.3 Stroke options

__driver_draw_linewidth:n {(dimexpr)}

Sets the width to be used for stroking to (dimezpr).

__driver_draw_dash:nn {(dash pattern)} {(phase)}

Sets the pattern of dashing to be used when stroking a line. The (dash pattern) should
be a comma-separated list of dimension expressions. This is then interpreted as a series
of pairs of line-on and line-off lengths. For example 3pt, 4pt means that 3pt on, 4pt
off, 3pt on, and so on. A more complex pattern will also repeat: 3pt, 4pt, 1pt, 2pt
results in 3 pt on, 4 pt off, 1 pt on, 2 pt off, 3pt on, and so on. An odd number of entries
means that the last is repeated, for example 3pt is equal to 3pt, 3pt. An empty pattern
yields a solid line.

The (phase) specifies an offset at the start of the cycle. For example, with a pattern
3pt a phase of 1pt will mean that the output is 2 pt on, 3 pt off, 3 pt on, 3 pt on, etc.

243

__driver_draw_cap_butt: __driver_draw_cap_butt:
__driver_draw_cap_rectangle:
__driver_draw_cap_round:

__driver_draw_join_bevel:
__driver_draw_join_miter:
__driver_draw_join_round:

Sets the style of terminal stroke position to one of butt, rectangle or round.

__driver_draw_cap_butt:

Sets the style of stroke joins to one of bevel, miter or round.

__driver_draw_miterlimit:n __driver_draw_miterlimit:n {(dimexpr)}

Sets the miter limit of lines joined as a miter, as described in the PDF and PostScript
manuals.

4.4 Color

__driver_draw_color_cmyk:nnnn __driver_draw_color_cmyk:nnnn {{cyan)} {(magneta)} {(yellow)}
__driver_draw_color_cmyk_fill:nnnn {(black)}
__driver_draw_color_cmyk_stroke:nnnn

Sets the color for drawing to the CMYK values specified, all of which are fp expressions
which should evaluate to between 0 and 1. The £ill and stroke versions set only the
color for those operations. Note that the general setting is more efficient with some
drivers so should in most cases be preferred.

__driver_draw_color_gray:n __driver_draw_color_gray:n {(gray)}
__driver_draw_color_gray_fill:n
__driver_draw_color_gray_stroke:n

Sets the color for drawing to the grayscale value specified, which is fp expressions which
should evaluate to between 0 and 1. The £ill and stroke versions set only the color
for those operations. Note that the general setting is more efficient with some drivers so
should in most cases be preferred.

__driver_draw_color_rgb:nnn __driver_draw_color_gray:n {(red)} {(green)} {(blue)}
__driver_draw_color_rgb_fill:nnn
__driver_draw_color_rgb_stroke:nnn

Sets the color for drawing to the RGB values specified, all of which are fp expressions
which should evaluate to between 0 and 1. The £ill and stroke versions set only the
color for those operations. Note that the general setting is more efficient with some
drivers so should in most cases be preferred.

244

4.5 Inserting TEX material

__driver_draw_hbox:Nnnnnnn __driver_draw_hbox:Nnnnnnn (box)

{(a)} {(p)} {(c)} ()} {(x)} {(y)}

Inserts the (box) as an hbox with the box reference point placed at (z, y). The trans-
formation matrix [abcd] will be applied to the box, allowing it to be in synchronisation
with any scaling, rotation or skewing applying more generally. Note that TEX material
should not be inserted directly into a drawing as it will not be in the correct location.
Also note that as for other drawing elements the box here will have no size from a TEX
perspective.

4.6 Coordinate system transformations

__driver_draw_transformcm:nnnnnn __driver_draw_transformcm:nnnnnn {(a)} {(b)} {(c)} {(d)}

{{x)} {(y)}

Applies the transformation matrix [abed] and offset vector (z, y) to the current graphic
state. This will affect any subsequent items in the same scope but not those already
given.

245

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
L 186
& 186
2t 186
KK e 186
o 186, 186
e 186, 186
/2 186
N 33
NeeN L 33
NV 38
NG o 33
\:iterror 229
N 38
NS < 33
N« 33
NIIp o 33
NIV 33
N S 33
K e 186
S 186
> e 186
P e 186

........................... 185
............................ 186
1 T 185
A
abs ... 186
ACOS & v v e e e 188
acoSd e 188
ACOL v vt 189
acotd 189
ACSC v e e e e e 188
acsSCd ... 188
ASEC . i i e e 188
asecd e 188
asin 188
asind 188
atan 189
atand 189
B
\begin 197, 200
bool commands:
\bool_do_until:Nn 95, 95
\bool_do_until:nn 95, 95
\bool_do_while:Nn 95, 95

\bool_do_while:nn 95, 95
.bool_gset:N 164
\bool_gset:Nn 92
\bool_gset_eq:NN 92
\bool_gset_false:N 91
.bool_gset_inverse:N 164
\bool_gset_true:N 91
\bool_ if:NTF 92, 92
\bool_if :nTF 92, 94, 94, 95, 95, 95, 95
\bool_if_exist:NTF 92, 92
\bool_if_exist_p:N 92, 92
\bool_if p:N 92, 92
\bool_if p:n 94, 94
\bool_lazy_all:nTF 93, 94, 94, 94, 94
\bool_lazy_all p:n 94, 94
\bool_lazy_and:nnTF 93, 94, 9/, 94, 94
\bool_lazy_and_p:nn 93, 94, 94
\bool_lazy_any:nTF 93, 94, 94, 94, 94
\bool_lazy_any _p:n 93, 94, 94
\bool_lazy_or:nnTF 93, 94, 94, 94, 94
\bool_lazy_or_p:nn 94, 94
\bool_log:N 92, 92
\bool_log:n 92, 92
\bool_new:N 91, 91
\bool_not_p:n 94, 94
.bool_set:N 164
\bool_set:Nn 92, 92
\bool_set_eq:NN 92, 92
\bool_set_false:N 91, 91
.bool_set_inverse:N 164
\bool_set_true:N 91, 91
\bool_show:N 92, 92
\bool_show:n 92, 92
\bool_until _do:Nn 95, 95
\bool_until_do:nn 95, 95
\bool_while_do:Nn 95, 95
\bool_while_do:nn 95, 95
\bool_xor_p:nn 94, 94
\c_false bool 20, 91
\g_tmpa_bool 92
\1_tmpa_bool 92
\g_tmpb_bool 92
\1_tmpb_bool 92
\c_true_bool 20, 91

box commands:
\box_autosize_to_wd_and_ht:Nnn ..
215, 215

246

\box_autosize_to_wd_and_ht_plus_-

dp:Nnn 215
\box_clear:N 208,
box_clear:N
\box_clear_new:N 208,
\box_clip:N 226, 226, 227
\box_dp:N 209,
\box_gclear:N
\box_gclear_new:N
\box_gset_eq:NN
\box_gset_eq_clear:NN 208
\box_gset_to_last:N
\box_ht:N 209,
\box_if_empty:NTF 210
\box_if_empty_p:N 210
\box_if_exist:NTF 208,
\box_if_exist_p:N 208,
\box_if_horizontal:NTF 210,
\box_if_horizontal_p:N 210,
\box_if_vertical:NTF 210,
\box_if_vertical_p:N 210,
\box_log:N 211,
\box_log:Nnn 211,
\box_move_down:nn
\box_move_left:nn
\box_move_right:nn 209,
\box_move_up:nn 209,
\box_new:N 208, 208
\box_resize_to_ht:Nn 215

\box_resize_to_ht_plus_dp:Nn 215
\box_resize_to_wd:Nn 216
\box_resize_to_wd_and_ht:Nnn 216
\box_resize_to_wd_and_ht_plus_-

dp:Nnn 216
\box_rotate:Nn 216,
\box_scale:Nnn 216,
\box_set _dp:Nn 210
\box_set_eq:NN 208
\box_set_eq_clear:NN 208,
\box_set_ht:Nn 210,
\box_set_to_last:N 210,
\box_set_wd:Nn 210,
\box_show:N 211,
\box_show:Nnn 211,
\box_trim:Nnnnn 227,
\box_use:N 209,
\box_use_clear:N 209,
\box_viewport:Nnnnn 227,
\box_wd:N 210.
\c_empty_box 210,
\g_tmpa_box
\1_tmpa_box
\g_tmpb_box
\1_tmpb_box

215
208
208
208
227
209
208

210
210
210
210
211
211
209
209
209
209
208
215
215
216
216

216

, 216
, 216

210

. 208

208
210
210
210
211
211
227
209
209

227

210
211
211
211
211
211

\c_void_box 208
B 191
C
catcode commands:
\c_catcode_active_tl 111
\c_catcode_letter_token 111
\c_catcode_other_space_tl 144
\c_catcode_other_token 111
CC i e e 191
ceil 187

char commands:
111, 138, 145
108, 108, 121

\1_char_active_seq
\char_generate:nn

\char_gset_active_eq:NN 107
\char_gset_active_eq:nN 107
\char_set_active_eq:NN 107, 107
\char_set_active_eq:nN 107, 107
\char_set_catcode:nn 109, 109
\char_set_catcode_active:N 108
\char_set_catcode_active:n 109
\char_set_catcode_alignment:N .. 108
\char_set_catcode_alignment:n .. 109
\char_set_catcode_comment:N 108
\char_set_catcode_comment:n 109
\char_set_catcode_end_line:N 108
\char_set_catcode_end_line:n 109
\char_set_catcode_escape:N 108
\char_set_catcode_escape:n 109
\char_set_catcode_group_begin:N 108
\char_set_catcode_group_begin:n 109
\char_set_catcode_group_end:N .. 108
\char_set_catcode_group_end:n .. 109
\char_set_catcode_ignore:N 108
\char_set_catcode_ignore:n 109
\char_set_catcode_invalid:N 108
\char_set_catcode_invalid:n 109
\char_set_catcode_letter:N 108, 108
\char_set_catcode_letter:n 109, 109

\char_set_catcode_math_subscript:N

......................... 108
\char_set_catcode_math_subscript:n
......................... 109
\char_set_catcode_math_superscript:N
......................... 108
\char_set_catcode_math_superscript:n
......................... 109
\char_set_catcode_math_toggle:N 108
\char_set_catcode_math_toggle:n 109
\char_set_catcode_other:N 108
\char_set_catcode_other:n 109
\char_set_catcode_parameter:N .. 108
\char_set_catcode_parameter:n .. 109
\char_set_catcode_space:N 108

247

\char_set_catcode_space:n 109
\char_set_lccode:nn 109, 109
\char_set_mathcode:nn 110, 110
\char_set_sfcode:nn 110, 110
\char_set_uccode:nn 110, 110
\char_show_value_catcode:n 109, 109
\char_show_value_lccode:n 110, 110
\char_show_value_mathcode:n 110, 110
\char_show_value_sfcode:n 111, 111
\char_show_value_uccode:n 110, 110
\1_char_special_seq 111
\char_value_catcode:n 109, 109
\char_value_lccode:n 110, 110
\char_value_mathcode:n 110, 110
\char_value_sfcode:n 111,111
\char_value_uccode:n 110, 110
char internal commands:
__char_generate:nn 121, 121
chk internal commands:
__chk_if_exist_cs:N 22, 22
__chk_if_exist_var:N 22, 22
__chk_if_free_cs:N 22, 22
__chk_log:n 22,22, 22, 22
__chk_resume_log: 22, 22, 22
__chk_suspend_log: 22, 22, 22
choice commands:
.choice: 164
choices commands:
.choices:nn 164
clist commands:
\clist_clear:N 98, 98
clist_clear:N 98
\clist_clear_new:N 98, 98
\clist_concat:NNN 99, 99
\clist_const:Nn 98, 98
\clist_count:N 108, 103, 105
\clist_count:n 103
\clist_gclear:N 98
\clist_gclear_new:N 98
\clist_gconcat:NNN 99
\clist_get:NN 104, 104
\clist_get:NNTF 104, 104
\clist_gpop:NN 104, 104
\clist_gpop:NNTF 105, 105
\clist_gpush:Nn 105
\clist_gput_left:Nn 99
\clist_gput_right:Nn 100
\clist_gremove_all:Nn 100
\clist_gremove_duplicates:N 100
\clist_greverse:N 100
.clist_gset:N 164
\clist_gset:Nn 99
\clist_gset_eq:NN 99
\clist_gset_from_seq:NN 99

\clist_gsort:Nn 101
\clist_if_empty:NTF 101, 101
\clist_if_empty:nTF 101, 101
\clist_if_empty_p:N 101, 101
\clist_if_empty_p:n 101, 101
\clist_if_exist:NTF 99, 99
\clist_if_exist_p:N 99, 99
\clist_if_in:NnTF 101, 101
\clist_if_in:nnTF 101
\clist_item:Nn 105, 105
\clist_item:nn 105
\clist_log:N 106, 106
\clist_log:m 106, 106
\clist_map_break: 102, 102
\clist_map_break:n 108, 103
\clist_map_function:NN
............ 84, 98, 102, 102, 102
\clist_map_function:nN 102
\clist_map_inline:Nn 102, 102, 102
\clist_map_inline:nn 102
\clist_map_variable:NNn 102, 102
\clist_map_variable:nNn 102
\clist_new:N 98, 98, 98
\clist_pop:NN 104, 104
\clist_pop:NNTF 105, 105
\clist_push:Nn 105, 105
\clist_put_left:Nn 99, 99
\clist_put_right:Nn 100, 100
\clist_rand_item:N 227, 227
\clist_rand_item:n 227, 227, 231
\clist_remove_all:Nn 100, 100
\clist_remove_duplicates:N . 100, 100
\clist_reverse:N 100, 100
\clist_reverse:n 100, 100
.clist_set:N 164
\clist_set:Nn 99, 99
\clist_set_eq:NN 99, 99
\clist_set_from_seq:NN 99, 99
\clist_show:N 105, 105, 106
\clist_show:n 105, 105, 106
\clist_sort:Nn 101, 101
\clist_use:Nn 104, 104
\clist_use:Nnnn 103, 103
\c_empty_clist 106
\l_foo_clist 194
\g_tmpa_clist 106
\l_tmpa_clist 106
\g_tmpb_clist 106
\1_tmpb_clist 106
[191
code commands:
.code:n 164
coffin commands:
\coffin_attach:NnnNnnnn 219, 219

248

\coffin_clear:N 218.
\coffin_display_handles:Nn . 220
\coffin dp:N 220
\coffin ht:N 220,
\coffin_if_exist:NTF 218
\coffin_if_exist_p:N 218
\coffin_join:NnnNnnnn 220
\coffin_log_structure:N 221,
\coffin_mark_handle:Nnnn ... 221,
\coffin new:N 218
\coffin_resize:Nnn 227
\coffin_rotate:Nn 227,
\coffin_scale:Nnn 227,
\coffin_set_eq:NN 218,

\coffin_set_horizontal_pole:Nnn .

..................... 219,
\coffin_set_vertical_pole:Nnn ...
.................... 219,
\coffin_show_structure:N 221, 221,
\coffin_typeset:Nnnnn 220
\coffin wd:N 220,
\c_empty_coffin
\1_tmpa_coffin
\1_tmpb_coffin
color commands:
\color_ensure_current: 222
\color_group_begin: 222, 222
\color_group_end: 222, 222
COS vttt e
cosd ...
COt o
cotd L
cs commands:
\CS:W ..o 16, 16, 16,
\cs_end: 16, 16,
\cs_generate_from_arg_count:NNnn
...................... 14,

\cs_generate_variant:Nn

218
220
220
220
218
218
220
221
221
218
227
227
227
218

219
219

221
220

, 220

221
221
221

222

14

.......... 10, 24, 24, 25, 25, 25, 26
\cs_gset:Nn 14, 14
\cs_gset:Npn 10, 12, 12
\cs_gset:Npx 12
\cs_gset_eq:NN 15, 15, 15
\cs_gset_nopar:Nn 14,14
\cs_gset_nopar:Npn 12,12
\cs_gset_nopar:Npx 12
\cs_gset_protected:Nn 14,14
\cs_gset_protected:Npn 12,12
\cs_gset_protected:Npx 12
\cs_gset_protected_nopar:Nn 14,14
\cs_gset_protected_nopar:Npn 12,12
\cs_gset_protected_nopar:Npx ... 12
\cs_if_eq:NNTF 20, 20
\cs_if_eq p:NN 20, 20

\cs_if_exist 206
\cs_if_exist:N 20
\cs_if_exist:NTF 20, 20, 137
\cs_if_exist_p:N 20, 20, 22
\cs_if_exist_use:N 16, 16
\cs_if_exist_use:NTF 16, 16
\cs_if_free:NTF 20, 20, 89
\cs_if_free_p:N . 20, 20, 20, 22, 22, 89
\cs_log:N 16, 16, 136
\cs_meaning:N 15, 15
\cs_new:Nn 12,12, 90
\cs_new:Npn 10, 11, 11, 14, 89, 89
\cs_new:Npx 11
\cs_new_eq:NN 15, 15, 15, 90
\cs_new_nopar:Nn 13, 13
\cs_new_nopar:Npn 11,11
\cs_new_nopar:Npx 11
\cs_new_protected:Nn 13, 13
\cs_new_protected:Npn 11,11
\cs_new_protected:Npx 11
\cs_new_protected_nopar:Nn 13,13
\cs_new_protected_nopar:Npn 11,11
\cs_new_protected_nopar:Npx L. 11
\cs_set:Nn 13, 13
\cs_set:Npn 10, 11, 11, 89, 89
\cs_set:Npx 11
\cs_set_eq:NN 15, 15, 15, 90
\cs_set_nopar:Nn 13, 13
\cs_set_nopar:Npn 10, 71, 11, 112
\cs_set_nopar:Npx 11
\cs_set_protected:Nn 13,13
\cs_set_protected:Npn .10, 11, 11
\cs_set_protected:Npx 11
\cs_set_protected_nopar:Nn 14, 14
\cs_set_protected_nopar:Npn 12,12
\cs_set_protected_nopar:Npx 12

16, 16, 16, 20, 136
4, 17,17, 41, 47

\cs_show:N
\cs_to_str:N

\cs_undefine:N 15, 15
cs internal commands:
__cs_count_signature:N 22, 22
__cs_get_function_name:N 22, 22
__cs_get_function_signature:N ..
....................... 22, 22
__cs_split_function:NN 22, 22
__Cs_tmp:w, 23
CSC et e e e e 188
cscd ... 188
D
dd ... 191
default commands:
.default:n 165
deg 190

249

deprecation commands:

\deprecation_error:

dim commands:

\dim_abs:n 148
\dim_add:Nn 148
\dim_case:nn 151,
\dim_case:nnTF 151,

\dim_compare :nNnTF

....... 149, 149, 151, 151, 151,
\dim_compare:nTF
80, 150, 150, 152, 152, 152, 152,
\dim_compare_p:n 150
\dim_compare_p:nNn 149
\dim_const:Nn 147,
\dim_do_until:nn 152
\dim_do_until:nNnn 151,
\dim_do_while:nn 152
\dim_do_while:nNnn 151,
\dim_eval:n 149, 150, 152, 152, 152
\dim_gadd:Nn
.dim_gset:N
\dim_gset:Nn
\dim_gset_eq:NN
\dim_gsub:Nn
\dim_gzero:N
\dim_gzero_new:N
\dim_if_exist:NTF 147
\dim_if_exist_p:N 147
\dim_log:N 154,
\dim_log:n 154,
\dim_max:nn 148
\dim_min:nn 148
\dim_new:N 147, 147
\dim_ratio:nn 149, 149,
.dim_set:N
\dim_set:Nn 148
\dim_set_eq:NN 148
\dim_show:N 154,
\dim_show:n 154,
\dim_sub:Nn 148
\dim_to_decimal:n 158
\dim_to_decimal_in_bp:n 153, 153
\dim_to_decimal_in_sp:n 153, 153
\dim_to_decimal_in_unit:nn
.................. 153, 153,
\dim_to_fp:n 154, 154,
\dim_until _do:nn 152
\dim_until_do:nNnn 151,
\dim_use:N 152, 152, 152
\dim_while_do:nn 152
\dim_while_do:nNnn 152
\dim_zero:N 147,
dim_zero:N
\dim_zero_new:N 147,

152

\c_max_dim

\g_tmpa_dim
\1_tmpa_dim
\g_tmpb_dim
\1_tmpb_dim
\c_zero_dim

dim internal commands:

__dim_eval:w
__dim_eval_end:

. 161, 161,

driver internal commands:

156
150
149
147

, 152

151
152
151
161
148
165
148
148
148
147
147
147
147
154
154
148
148
147
149
165
148
148
154
154
148
153
153
153

153
154
152
151
152

, 152

152
147
147
147

250

__driver_box_use_clip:N ...
__driver_box_use_rotate:Nn
__driver_box_use_scale:Nnn

154, 157
15
15
.. 15

161, 161
161, 161

240, 240
240, 240
241, 241

__driver_color_ensure_current:

__driver_draw_begin:
__driver_draw_cap_butt:

244,

__driver_draw_cap_rectangle: ..

__driver_draw_cap_round:
__driver_draw_clip:
__driver_draw_closepath:

__driver_draw_closestroke:

. 242,

241, 241
241, 241
244, 244
244
244
243
242
242

242,

__driver_draw_color_cmyk:nnnn ..

__driver_draw_color_cmyk_-
fill:nnnn
__driver_draw_color_cmyk_-
stroke:nnnn
__driver_draw_color_gray:n

244,

__driver_draw_color_gray_fill:n

__driver_draw_color_gray_-
stroke:n

__driver_draw_color_rgb:nnn

__driver_draw_color_rgb_-
fillinnn

__driver_draw_color_rgb_-
stroke:nnn

244, 244

244

244

244, 244

244

244
244

244

244

__driver_draw_curveto:nnnnnn . ..

__driver_draw_dash:nn
__driver_draw_discardpath:
__driver_draw_end:
__driver_draw_evenodd_rule:
__driver_draw_fill:
__driver_draw_fillstroke:

__driver_draw_hbox:Nnnnnnn
__driver_draw_join_bevel:

__driver_draw_join_miter:

__driver_draw_join_round:

__driver_draw_lineto:nn ...
__driver_draw_linewidth:n
__driver_draw_miterlimit:n
__driver_draw_move:nn

245,
242,
. 243,243

242
243
243
241
243
243
243
245
244
244
244
242

242,
243,
243,
241,

243,

244, 244
242

__driver_draw_moveto:nn 242
__driver_draw_nonzero_rule: 243, 243
__driver_draw_rectangle:nnnn . ..
..................... 242, 242
__driver_draw_scope_begin: 2/1, 241
__driver_draw_scope_end: .. 241, 241

__driver_draw_stroke: . 2/2, 242, 243
__driver_draw_transformcm:nnnnnn

..................... 245, 245
E
Nedef 4
else commands:
\else: 21,79, 79,79, 79,79
90, 96, 96, 145, 145, 160, 217, 217, 217
M .. 191
€X i 191
@XD i 187
exp commands:
\exp:w 31, 31, 31, 32, 32, 32, 32, 32, 32
\exp_after:wN 30, 30, 31, 32, 32
\exp_arg:N 30
\exp_args:cc 27
\exp_args:Nc 27, 27
\exp_args:Ncc 28
\exp_args:Nccc 28
\exp_args:Ncco 28
\exp_args:Nccx 29
\exp_args:Ncf 28
\exp_args:NcNc 28
\exp_args:NcNo 28
\exp_args:Necnx 29
\exp_args:Nco 28
\exp_args:Ncx 28
\exp_args:Nf 217, 27
\exp_args:Nff 28
\exp_args:Nfo 28
\exp_args:NNc 28, 28
\exp_args:Nnc 28
\exp_args:NNf 28
\exp_args:Nnf 28
\exp_args:Nnnc 28
\exp_args:NNNo 28, 28
\exp_args:NNno 28
\exp_args:Nnno 28
\exp_args:NNNV 28
\exp_args:NNNx 29
\exp_args:NNnx 29, 29
\exp_args:Nnnx 29
\exp_args:NNo 24,24, 24, 28
\exp_args:Nno 28
\exp_args:NNoo 28, 28
\exp_args:NNox 29
\exp_args:Nnox 29

\exp_args:NNV 28
\exp_args:NNv 28
\exp_args:NnV 28
\exp_args:NNx 28, 28
\exp_args:Nnx 28
\exp_args:No 217, 27
\exp_args:Noc 28
\exp_args:Nof 28
\exp_args:Noo 28, 28
\exp_args:Nooo 28
\exp_args:Noox 29
\exp_args:Nox 28
\exp_args:NV 27, 27
\exp_args:Nv 27, 27
\exp_args:NVV 28
\exp_args:Nx 27, 27
\exp_args:Nxo 28
\exp_args:Nxx 28
\exp_end: 31, 31, 31, 31, 31, 31, 32
\exp_end_continue_f:nw 32, 32
\exp_end_continue_f:w
............ 32, 32, 32, 32, 32, 32
\exp_last_two_unbraced:Nnn 29, 29
\exp_last_unbraced:Nn 29, 29, 29, 29
\exp_last_unbraced:NNn 29

\exp_last_unbraced:Nnn 29, 29
\exp_last_unbraced:NNNn
\exp_last_unbraced:NnNn 29
\exp_not:N 30,30, 30, 30, 144, 191
\exp_not:n 30, 30, 30, 30, 30.

30, 31, 31, 31, 31, 43, 43, 44, 45,

46, 59, 63, 64, 103, 104, 105, 124,

144, 227, 229, 230, 232, 234, 236, 236

\exp_stop_f: . 81,31, 31, 32, 32, 32
exp internal commands:

\1__exp_internal tl1 32
\ExplFileDate 6
\ExplFileDescription 6
\ExplFileName 6
\ExplFileVersion 6
\ExplSyntax0ff 3, 6,6,6,6,7
\ExplSyntaxOn 3, 6,6,6,6,7

F

false 191
fi commands:

Nfi: oo 21,79, 79,

79, 90, 96, 96, 145, 160, 217, 217, 217

file commands:
\file_add_path:nN
\g_file_current_name_tl
\file_if_exist:nTF
138, 138, 138, 138, 145
\file_if_exist_input:n 228, 228

158, 138, 145
....... 138

251

\file_if_exist_input:nTF ... 228, 228
\file_input:in
....... 138, 138, 138, 139, 228, 228
\file_list: 159, 139
\file_path_include:n 138, 138, 138, 228
\file_path_remove:n 159, 139
file internal commands:
__file_if_exist:nTF 145
\g__file_internal_ior 145
\1__file_internal_name_tl 145
__file_name_sanitize:nn ... 145, 145
flag commands:
\flag_clear:n 82, 82, 82
\flag_clear_new:n 82, 82
\flag_height:n 83, 83
\flag_if _exist:nm 83
\flag_if_exist:nTF 83
\flag_if _exist_p:n 83
\flag_if _raised:n 83
\flag_if_raised:nTF 83
\flag_if _raised_p:n 83
\flag_log:n 82, 82
\flag new:n 82, 82, 82
\flag_raise:n 83, 83
\flag_show:n 82, 82
flag fp commands:
flag fp_division_by_zero 183
flag fp_invalid_operation 183
flag fp_overflow 188
flag fp_underflow 183
floor 187
fp commands:
\c_e fp - 182, 184
\fp_abs:n 186, 191, 191
\fp_add:Nn 177, 177
\fp_compare:nNnTF
....... 179, 179, 180, 180, 180, 180
\fp_compare:nTF

. 179, 179, 180, 180, 180, 181, 186
\fp_compare_p:n 179, 179
\fp_compare_p:nNn 179, 179
\fp_const:Nn 176, 176
\fp_do_until:nn 180, 180
\fp_do_until:nNnn 180, 180
\fp_do_while:nn 180, 180
\fp_do_while:nNnn 180, 180
\fp_evalin 177,177,

179, 185, 185, 186, 186, 186, 186,
186, 186, 186, 186, 186, 186, 186,
186, 187, 187, 187, 187, 187, 187,
187, 187, 188, 188, 188, 188, 188,
188, 188, 188, 188, 188, 188, 188,
188, 188, 188, 188, 188, 188, 188,

252

188, 189, 189, 189, 189, 189, 189,

189, 189, 189, 190, 190, 190, 191,
\fp_format:nn
\fp_gadd:Nn
.fp_gset:N
\fp_gset:Nn
\fp_gset_eq:NN
\fp_gsub:Nn
\fp_gzero:N
\fp_gzero_new:N

\fp_if_exist:NTF 178,
\fp_if_exist_p:N 178,
\fp_if_nan:nTF

\fp_log:N 183
\fp_log:n 183
\fp_max:nn 191,
\fp_min:nn

\fp_new:N 176, 176
dfp_set:N oL

\fp_set:Nn 176,
\fp_set_eq:NN 177,
\fp_show:N 183
\fp_show:n 183
\fp_step_function:nnnN 181,
\fp_step_inline:nnnn 181,
\fp_step_variable:nnnNn 181,
\fp_sub:Nn 177,
\fp_to_decimal:N 177, 177,

\fp_to_decimal:n 177, 177, 177, 177

\fp_to_dim:N 177,
\fp_to_dim:n 177, 177
\fp_to_int:N 178,
\fp_to_int:n 178,
\fp_to_scientific:N 178
\fp_to_scientific:n 178, 178
\fp_to_tl:N 178
\fp_to_tl:n 178
\fp_trap:nn 183, 183
\fp_until_do:nn 180
\fp_until_do:nNnn 180
\fp_use:N 178
\fp_while_do:nn 181,
\fp_while_do:nNnn 180,
\fp_zero:N 176,
fp_zero:N

\fp_zero_new:N 176,
\c_inf fp 182
\c_nan_fp

\c_one_fp

\c_pifp 182
\g_tmpa_fp

\l_tmpa_fp

\g_tmpb_fp

\I_tmpb_fp

191

\c_zero_fp

fp internal commands:
__fp_basics_pack_weird_high:NNNNNNNNw

......................... 193
__fp_basics_pack_weird_low:NNNNw
......................... 193
G
\GetIdInfo 6, 6,6
group commands:
\group_align_safe_begin: .. 97, 97, 97
\group_align_safe_end: 97, 97,97
\group_begin: 9,9,9
\c_group_begin_token 45, 111
\group_end: 9,9,9,9
\c_group_end_token 111
\group_insert_after:N 9,9,9
groups commands:
LBTOUPS:IM « oot e 165
H
hbox commands:
\hbox:n 212, 212
\hbox_gset:Nn 212
\hbox_gset:Nw 212
\hbox_gset_end: 212
\hbox_gset_to_wd:Nnn 212
\hbox_overlap_left:n 212, 212
\hbox_overlap_right:n 212, 212
\hbox_set:Nn 212, 212, 212
\hbox_set:Nw 212, 212
\hbox_set_end: 212, 212
\hbox_set_to_wd:Nnn 212, 212
\hbox_to_wd:nn 212, 212
\hbox_to_zero:n 212, 212
\hbox_unpack:N 213, 213
\hbox_unpack_clear:N 213, 213
hcoffin commands:
\hcoffin_set:Nn 218, 218
\hcoffin_set:Nw 218, 218
\hcoffin_set_end: 218, 218
hundred commands:
\c_one_hundred 78
I
if commands:
\if:w ... 21, 107, 107, 107
\if_bool:N 96, 96, 96
\if_box_empty:N 217, 217
\if_case:w 79, 79
\if_catcode:w 21
\if _charcode:w 21, 107
\if_cs_exist:N 21
\if_cs_exist:w 21

\if_dim:w 160, 160
\if_eof:w 145, 145
\if _false: 21,91
\if_hbox:N 217, 217
\if_int_compare:w 21, 79, 79
\if_int_odd:w 79, 79
\if _meaning:w 21
\if_mode_horizontal: 21
\if_mode_inner: 21
\if_mode_math: 21
\if_mode_vertical: 21
\if _predicate:w 89, 91, 96, 96
\if_true: 21, 91
\if_vbox:N 217, 217
in L 191
inf L. 190
inherit commands:
.inherit:n, 165
initial commands:
.initialin ... 166
int commands:
\c_eight 78
\c_eleven 78
\c_fifteen 78
\c_five 78
\1l_foo_int 204
\c_four 78
\c_fourteen 78
\int_abs:n 08, 68
\int_add:Nn 70, 70
\int_case:nn 72, 72
\int_case:nnTF 23, 72, 72

\int_compare :nNnTF

\int_compare:nTF

70, 71, 71, 72, 72, 73, 73

...... 71,71, 73,73, 73, 73, 80, 179
\int_compare_p:n 71, 71
\int_compare_p:nNn 21, 71, 71
\int_const:Nn 69, 69
\int_decr:N 70, 70
\int_div_round:nn 68, 68
\int_div_truncate:nn 69, 69, 69
\int_do_until:nn 73,73
\int_do_until:nNnn 72, 72
\int_do_while:nn 73,73
\int_do_while:nNnn 72, 72
\int_eval:n . 14, 26, 26, 68, 68, 68

68, 68, 69, 70, 71, 71, 72, 79, 80, 137
\int_from_alph:n 76, 76
\int_from_base:nn 77,77
\int_from_bin:n 76, 76
\int_from_hex:n 77,77
\int_from_oct:n 7,7
\int_from_roman:n 77T

253

\int_gadd:Nn 70
\int_gdecr:N 70
\int_gincr:N 70
.int_gset:N 166
\int_gset:Nn 70
\int_gset_eq:NN 69
\int_gsub:Nn 70
\int_gzero:N 69
\int_gzero_new:N 69
\int_if_even:nTF 72
\int_if_even_p:m 72
\int_if_exist:NTF 70, 70
\int_if_exist_p:N 70, 70
\int_if_odd:nTF 72, 72
\int_if_odd_p:n 72, 72
\int_incr:N 70, 70
\int_log:N 7,7
\int_log:n 7,7
\int_max:nn 69, 69
\int_min:nn 69, 69
\int_mod:nn 69, 69
\int_new:N 69, 69, 69
\int_rand:nn 228, 228, 231
.int_set:N L. 166
\int_set:Nn 70, 70
\int_set_eq:NN 69, 69
\int_show:N 77,77
\int_show:n 77,77
\int_step_... 206
\int_step_function:nnnN 74, 74
\int_step_inline:nnnn 74, 74
\int_step_variable:nnnNn 74, 74
\int_sub:Nn 70, 70
\int_to_Alph:n 75, 75, 76
\int_to_alph:n 75, 75, 75, 75, 76
\int_to_arabic:n 74, T4
\int_to_Base:n 76
\int_to_base:n 76
\int_to_Base:nn 76, 77
\int_to_base:nn 76, 76, 77
\int_to_bin:n 75, 75, 76, 76
\int_to_Hex:n 76, 76, 77
\int_to_hex:n 76, 76, 76, 77
\int_to_oct:n 76, 76, 77
\int_to_Roman:n 76, 76, 77
\int_to_roman:n 76, 76, 76, 77
\int_to_symbols:nnn 75, 75, 75
\int_until_do:nn 73,73
\int_until_do:nNnn 73,73
\int_use:N 68, 70, 70, 70
\int_while_do:nn 73,73
\int_while_do:nNnn 73,73
\int_zero:N 69, 69
int_zero:N 69

\int_zero_new:N 69,
\c_max_int
\c_nine,
\c_one
\c_seven
\C_Six ...
\c_sixteen
\c_ten
\c_thirteen
\c_three
\g_tmpa_int
\l_tmpa_int 2, 78,
\g_tmpb_int
\l_tmpb_int 2,
\c_twelve
\c_two
\c_zZero
int internal commands:
__int_eval:w 80,
__int_eval_end: 80, 80, 80
__int_to_roman:w 79,
__int_value:w 80, 80
intarray internal commands:
__intarray_count:N 81, 81, 81,
__intarray_gset:Nnn 81, 81,
__intarray_gset_fast:Nnn 81,
__intarray_item:Nn 81, 81,
__intarray_item_fast:Nn &1,
__intarray _new:Nn 81,
ior commands:
\ior_close:N 139, 139, 140.
\ior_get:NN 140, 140, 141, 141,
\ior_if_eof:NTF 142
\ior_if_eof _p:N 142
\ior_list_streams: 140,
\ior_log_streams: 228,
\ior_map_break: 141,
\ior_map_break:n 142
\ior_map_inline:Nn 141,
\ior_new:N 139
\ior_open:Nn 139,
\ior_open:NnTF 139,
\ior_str_get:NN 141, 141,
\ior_str_map_inline:Nn 141,
\c_term_ior
ior internal commands:
__ior_open:Nn 145,
iow commands:
\iow_char:N 143
\iow_close:N 139, 140
\iow_indent:n 144, 144,
\1_iow_line_count_int 144, 144,
\iow_list_streams: 140
\iow_log:n 22, 142

78

80
80
79
80

81
81
81
81
81
81

140
145
142
142
140
228
141
142
141
139
139
139
141
141
145

145

143
140
144
144
140
142

\iow_log_streams: 228,228 Nlet 1

\iow_new:N 139,139 1In ... 187
\iow_newline: lua commands:
....... 143, 143, 143, 143, 143, 146 \lua_escape:n 239, 239
\iow_now:Nn \lua_escape_x:n 239, 239, 239
. 142,142, 142, 142, 142, 143, 143 \lua_now:n 238, 238, 238
\iow_open:Nn 139, 139 \lua_now_x:n 238, 238, 238
\iow_shipout:Nn 143, 143, 143, 143, 143 \lua_shipout:n 238, 238, 238
\iow_shipout_x:Nn .. 143, 143, 143, 143 \lua_shipout_x:n 238, 238
\iow_term:n 142, 142
\iow_wrap:nnnN . 56, 133, 134, 134, M
143, 143, 144, 144, 144, 144, 144, 144 math commands:
\c_log ioWwoo... 145 \c_math_subscript_token 111
\c_term_iow 145 \c_math_superscript_token 111
jow internal commands: \c_math_toggle_token 111
__iow_with:Nnn 146,146 max 187
max commands:
K \c_max_char_int 78
kernel internal commands: \c_max_register_int 78, 206
\1__kernel_expl_bool 7 meta commands:
__kernel_register_log:N 23 23 metain ... 166
__kernel_register_show:N . 23, 23, 23 .meta:nn ... 166
keys commands: min ... 187
\1_keys_choice_int minus commands:
. 164, 166, 168, 168, 168, 168, 169 \c_minus_inf_fp 182, 190
\1_keys_choice_tl \c_minus_zero_fp 181
....... 164, 166, 168, 168, 168, 169 mm 191
\keys_define:nn 163, 163, 163 mode commands:
\keys_if_choice_exist:nnnTF 172, 172 \mode_if_horizontal:TF 96, 96
\keys_if_choice_exist_p:nnn 172, 172 \mode_if_horizontal_p: 96, 96
\keys_if_exist:nnTF 172, 172 \mode_if_inner:TF 96, 96
\keys_if_exist_p:nn 172, 172 \mode_if_inner p: 96, 96
\1l_keys_key_tl 170, 170 \mode_if_math:TF 96, 96
\keys_log:nn 172, 172 \mode_if _math_p: 96
\1l_keys_path_tl 170, 170 \mode_if_vertical:TF 96, 96
\keys_set:nn \mode_if_vertical_p: 96, 96
. 162, 166, 170, 170, 170, 170, 171 msg commands:
\keys_set_filter:nnn 172, 172 \msg_critical:nn 150
\keys_set_filter:nnnN . 172, 172, 172 \msg_critical:nnn 130
\keys_set_groups:nnn 172, 172 \msg_critical:nnnn 130
\keys_set_known:nn 171, 171 \msg_critical:nnnnn 130
\keys_set_known:nnN 171, 171, 171, 171 \msg_critical:nnnnnn 130, 130
\keys_show:nn 172, 172, 172 \msg_critical_text:n 129, 129
\1_keys_value_tl 170, 170 \msg_error:nn 131
keyval commands: \msg_error:nnn 131
\keyval_parse:NNn 174,174, 174 \msg_error:nnnn 131
\msg_error:nnnnn 131
L \msg_error:nnnnnn 131, 131, 228
\13kernel.charcat 239 \msg_error_text:n 129, 129
13kernel.charcat 239 \msg_expandable_error:nn 229
\13kernel.strcmp 239 \msg_expandable_error:nnn 229
13kernel.strcmp 239 \msg_expandable_error:nnnn 229
left commands: \msg_expandable_error:nnnnn ... 229
\c_left_brace_str 55 \msg_expandable_error:nnnnnn 229, 229

255

\msg_fatal:
\msg_fatal:
\msg_fatal:
\msg_fatal:
\msg_fatal:
\msg_fatal
\msg_gset :nnn
\msg_gset :nnnn
\msg_if_exist:nnTF 129
\msg_if_exist_p:nn 129
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info:
\msg_info_text:n
\msg_interrupt:nnn
\msg_line_context:
\msg_line_number:
\msg_log:n
\msg_log:nn
\msg_log:nnn
\msg_log:nnnn
\msg_log:nnnnn
\msg_log:nnnnnn
\msg_new:nnn
\msg_new:nnnn
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none :nnnnnn
\msg_redirect_class:nn
\msg_redirect_module:nnn ...
\msg_redirect_name:nnn
\msg_see_documentation_text:n ...

_text:n

129,

\msg_set:nnn
\msg_set:nnnn
\msg_term:n
\msg_warning:nn
\msg_warning:nnn
\msg_warning:nnnn
\msg_warning:nnnnn
\msg_warning:nnnnnn
\msg_warning_text:n

msg internal commands:

\c__msg_coding_error_text_tl
__msg_expandable_error:n
__msg_kernel_error:nn
__msg_kernel_error:nnn
__msg_kernel_error:nnnn
__msg_kernel_error:nnnnn
__msg_kernel_error:nnnnnn

256

130 __msg_kernel_expandable_-
130 @rYOT: NN . . . v vt vv e i e
130 __msg_kernel_expandable_-
130 ErYOY:NNN . . . v v v v v e e
130 __msg_kernel_expandable_-
129 ErrOY:NNNN . . . v v v v v e v v
128 __msg_kernel_expandable_-
128 error:nnnnn
129 __msg_kernel_expandable_-
129 error:nnnnnn 136,
131 __msg_kernel_fatal:nn
131 __msg_kernel_fatal:nnn
131 __msg_kernel_fatal:nnnn
131 __msg_kernel_fatal:nnnnn
131 __msg_kernel_fatal:nnnnnn 135,
130 __msg_kernel_info:nn
133 __msg_kernel_info:nnn
129 __msg_kernel_info:nnnn
129 __msg_kernel_info:nnnnn
134 __msg_kernel_info:nnnnnn 135,
131 __msg_kernel _new:nnn
131 __msg_kernel _new:nnnn 134,
131 __msg_kernel_set:nnn
131 __msg_kernel_set:nnnn 134,
131 __msg_kernel_warning:nn
128 __msg_kernel_warning:nnn
128 __msg_kernel_warning:nnnn
132 __msg_kernel_warning:nnnnn ...
132 __msg_kernel_warning:nnnnnn 135
132 __msg_log_next: . 136, 136, 136
132 __msg_show_item:n 137, 137
132 __msg_show_item:nn 137, 137,
132 __msg_show_item_unbraced:nn 137,
133 __msg_show_pre:nnnnnn 136
133 __msg_show_variable:NNNnn
.............. 136, 137, 137,
130 __msg_show_wrap:n
128 L 136, 137, 137, 137,
128 __msg_show_wrap:Nn 136, 137,
134 multichoice commands:
131 .multichoice:
131 multichoices commands:
131 .multichoices:nn
131 muskip commands:
131 \c_max_muskip
129 \muskip_add:Nn 158
\muskip_const:Nn 158
137 \muskip_eval:n 159, 159
, 136 \muskip_gadd:Nn
135 \muskip_gset:Nn
185 \muskip_gset_eq:NN
135 \muskip_gsub:Nn
135 \muskip_gzero:N
135 \muskip_gzero_new:N

, 136

135
135
135
135
135
185
185
1385
135
135
13/
134
13
134
185
185
135
135
135
136
137
137
137
136

137

137
137

166

166

\muskip_if_exist:NTF 158, 158
\muskip_if_exist_p:N 158, 158
\muskip_log:N 160, 160
\muskip_log:n 160, 160
\muskip_new:N 158, 158, 158
\muskip_set:Nn 159, 159
\muskip_set_eq:NN 159, 159
\muskip_show:N 159, 159
\muskip_show:n 159, 159
\muskip_sub:Nn 159, 159
\muskip_use:N 159, 159, 159, 159
\muskip_zero:N 158
muskip_zero:N 158
\muskip_zero_new:N 158, 158
\g_tmpa_muskip 160
\1_tmpa_muskip 160
\g_tmpb_muskip 160
\1_tmpb_muskip 160
\c_zero_muskip 160
N
NAN .ttt 190
NC e e 191
Nd . 191
\next 118, 118, 119
notexpanded commands:
\notexpanded: (token) 119
O
one commands:
\c_one_degree_fp 182, 190
or commands:

Nor: 79,79, 79
\outer, 5, b
P

\par 10, 10, 11, 11, 11, 12,
12, 12, 13, 13, 13, 14, 14, 14, 140, 140
PC e 191
peek commands:
\peek_after:Nw 97, 115, 115, 115, 116
\peek_catcode:NTF 116, 116
\peek_catcode_ignore_spaces:NTF
..................... 116, 116
\peek_catcode_remove:NTF ... 116, 116
\peek_catcode_remove_ignore_-
spaces:NTF 116, 116
\peek_charcode:NTF 116, 116
\peek_charcode_ignore_spaces:NTF
..................... 117, 117
\peek_charcode_remove:NTF .. 117, 117
\peek_charcode_remove_ignore_-
spaces:NTF 117,117
\peek_gafter:Nw 116, 116, 116

\peek_meaning:NTF 117,117
\peek_meaning_ignore_spaces:NTF .
..................... 117,117
\peek_meaning_remove:NTF ... 117, 117
\peek_meaning_remove_ignore_-
spaces:NTF 118, 118
\peek_N_type:TF 237, 237
PL o 190
prg commands:
\prg_break_point:Nn 87
\prg_do_nothing: 9,9, 97
\prg_new_conditional:Nnn &9, 89
\prg_new_conditional:Npnn . 89, 89, 89
\prg_new_eq_conditional:NNn 90, 90

\prg_new_protected_conditional:Nnn

....................... 89, 89
\prg_new_protected_conditional:Npnn

....................... 89, 89
\prg_replicate:nn 96, 96

55, 90, 91, 91, 91
55, 90, 91, 91, 91

\prg_return_false:
\prg_return_true:

\prg_set_conditional:Nnn 89
\prg_set_conditional:Npnn . &9, 90, 91
\prg_set_eq_conditional:NNn 90
\prg_set_protected_conditional:Nnn
......................... 89
\prg_set_protected_conditional:Npnn
.......................... 89
prg internal commands:
__prg_break: 97
__prg_break:n 97, 97, 97
__prg_break_point: 97, 97

__prg_break_point:Nn 40, 40,
62, 63, 97,97, 97, 97, 102, 103, 141, 142

__prg_case_end:nw 23, 23
__prg_compare_error: 80, 80
__prg_compare_error:Nw 80, 80
__prg_map_l:w 97
__Prg_map_2:wo.... 97
__prg_map_break:Nn 97, 97
\g__prg_map_int 97, 97
prop commands:
\c_empty_prop 127
\prop_clear:N 122,122
prop_clear:N 122
\prop_clear_new:N 122,122
\prop_count:N 229, 229
\prop_gclear:N 122
\prop_gclear_new:N 122
\prop_get:Nn 97

. 84, 85, 123, 123, 124

. 123, 124, 125, 125
123,123
123, 125, 125

\prop_get :NnN
\prop_get : NnNTF
\prop_gpop : NnN
\prop_gpop: NnNTF

257

\prop_gput:Nnn
\prop_gput_if new:Nnn
\prop_gremove:Nn
\prop_gset_eq:NN
\prop_if_empty:NTF 124,
\prop_if_empty_p:N 124,
\prop_if_exist:NTF 124,
\prop_if_exist_p:N 124,
\prop_if _in:NnTF 124,
\prop_if _in_p:Nn
\prop_item:Nn 124, 124,
\prop_log:N 126
\prop_map_break: 126
\prop_map_break:n 126
\prop_map_function:NN 125, 125
\prop_map_inline:Nn 125,
\prop_map_tokens:Nn 229
\prop_new:N 122, 122
\prop_pop:NnN 123
\prop_pop:NnNTF 123, 125,
\prop_put:Nnn 123,123
\prop_put_if_new:Nnn 123
\prop_rand_key_value:N 229
\prop_remove:Nn 124,
\prop_set_eq:NN 122
\prop_show:N 126
\g_tmpa_prop
\l_tmpa_prop
\g_tmpb_prop
\1_tmpb_prop
prop internal commands:
\1__prop_internal tl1
__prop_pair:wn 127, 127,
__prop_split:NnTF 127,
\ProvidesExplClass
\ProvidesExplFile
\ProvidesExplPackage
Pt
Q

quark commands:
\q_mark
\q_nil
\g_no_value

123 \quark_if_recursion_tail_stop:N .
123 86, 86
124 \quark_if_recursion_tail_stop:n .
122 e 86, 86
124 \quark_if_recursion_tail_stop_-
124 do:Nn 86, 86
124 \quark_if_recursion_tail_stop_-
124 dormn 86, 86
124 \quark_new:N 84, 84
124 \gq_recursion_stop
229 ... 19, 19, 86, 86, 86, 86, 86, 87
126 \g_recursion_tail 86,
126 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87
126 \g_stop
229 19, 19, 23, 23, 29, 44, 84, 85, 85, 85
125 quark internal commands:
229 \S__Prop 127, 127
122 __quark_if_recursion_tail_-
123 break:NN 87
125 __quark_if_recursion_tail_-
127 break:nN 87, 87
123 \S__S€q -+t 67
229 \s__stop 88, 88, 88, 88
124
122 R
126 rand 190
727 randint 190
127 regex commands:
127 \c_foo_regex 197
197 \regex_(g)set:Nn 203
\regex_const:Nn 197, 203, 203
197 \regex_count:NnN 204
127 \regex_count:nnN 204, 204
127 \regex_extract_all:nnN 204
.6 \regex_extract_all:NnNTF 204
.6 \regex_extract_all:nnNTF ... 20/, 204
6, 6 \regex_extract_once:nnN 204, 204
191 \regex_extract_once:NnNTF 204

23, 23, 46, 46, 85
19, 19, 85, 85, 85, 85
............... 58,
59, 59, 59, 59, 59, 64, 64, 64, 84,

85, 85, 85, 85, 104, 123, 123, 123, 138
\quark_if nil:NTF 85, 85
\quark_if_nil:nTF 85, 85
\quark_if _nil p:N 85, 85
\quark_if _nil p:n 85, 85
\quark_if_no_value:NTF 85, 85
\quark_if_no_value:nTF 85, 85
\quark_if_no_value_p:N 85, 85
\quark_if_no_value_p:n 85, 85

\regex_extract_once:nnNTF

\regex_gset:Nn 203, 203
\regex_match:NnTF 203
\regex_match:nnTF 203, 203
\regex_new:N 203, 203
\regex_replace_all:nnN 205
\regex_replace_all:NnNTF 205
\regex_replace_all:nnNTF ... 205, 205
\regex_replace_once:nnN 205
\regex_replace_once:NnNTF 205
\regex_replace_once:nnNTF .. 205, 205
\regex_set:Nn 203, 203, 203
\regex_show:N 203
\regex_show:n 203, 203, 203
\regex_split:nnN 205

\regex_split:NnNTF 205
\regex_split:nnNTF 205, 205
regex internal commands:
__regex_action_free:n 206
__regex_action_free_group:n 206
__regex_action_success: 206
\1__regex_balance_tl 206
__regex_item_reverse:n 206
__regex_replacement_balance_-
one_match:n 206
\regular expression 205
reverse commands:
\reverse_if:N 21, 21
right commands:
\c_right_brace_str 55
round 187

scan commands:
\scan_stop:
9,9, 67, 87, 88, 118, 118, 118, 119

scan internal commands:

__scan_new:N 88, 88
SEC 188
secd 188
seq commands:

\c_empty_seq 66

\l_foo_seq 201, 201

\seq_clear:N 57, 57, 66

seq_clear:N 57

\seq_clear_new:N 57, 57

\seq_concat:NNN 58, 58, 66, 66

\seq_count:N 59, 63, 63, 65, 81

\seq_gclear:N 57

\seq_gclear_new:N 57

\seq_gconcat:NNN 58

\seq_get:NN 64, 64

\seq_get:NNTF 64, 64

\seq_get_left:NN 58, 58

\seq_get_left:NNTF 60, 60

\seq_get_right:NN 59, 59

\seq_get_right:NNTF 60, 60

\seq_gpop:NN 64, 64

\seq_gpop:NNTF 65, 65

\seq_gpop_left:NN 59, 59

\seq_gpop_left:NNTF 60, 60

\seq_gpop_right:NN 59, 59

\seq_gpop_right:NNTF 60, 60

\seq_gpush:Nn 24, 65

\seq_gput_left:Nn 58

\seq_gput_right:Nn 58

\seq_gremove_all:Nn 61

\seq_gremove_duplicates:N 61

\seq_greverse:N 61

seq

259

\seq_gset_eq:NN 57
\seq_gset_filter:NNn 230
\seq_gset_from_clist:NN 57
\seq_gset_from_clist:Nn 57
\seq_gset_map:NNn 230
\seq_gset_split:Nnn 58
\seq_gsort:Nn 61
\seq_if_empty:NTF 61, 61
\seq_if_empty_p:N 61, 61

\seq_if_exist:NTF 58, 58

\seq_if_exist_p:N 58, 58
\seq_if_in:NnTF . 61, 61, 65, 65, 66, 66
\seq_item:Nn 59, 59
\seq_log:N 67, 67
\seq_map_break: 62, 62, 230, 230
\seq_map_break:n 63, 63
\seq_map_function:NN ... 4, 61, 61, 61

\seq_map_inline:Nn
61, 62, 62, 66, 66, 66, 66, 66

\seq_map_variable:NNn 62, 62
\seq_mapthread_function:NNN 230, 230
\seq_new:N 4, 57, 57, 57
\seq_pop:NN 64, 64
\seq_pop:NNTF 65, 65
\seq_pop_left:NN 59, 59
\seq_pop_left:NNTF 60, 60
\seq_pop_right:NN 59, 59
\seq_pop_right:NNTF 60, 60
\seq_push:Nn 65, 65
\seq_put_left:Nn 58, 58
\seq_put_right:Nn .. &8, 58, 65, 66, 66
\seq_rand_item:N 230, 230

\seq_remove_all:Nn
58, 61, 61, 65, 65, 66, 66, 66
\seq_remove_duplicates:N

.................. 61, 61, 65, 66
\seq_reverse:N 61, 61
\seq_set_eq:NN .. 57, 57, 66, 66, 66, 66
\seq_set_filter:NNn 230, 230
\seq_set_from_clist:NN 57, 57
\seq_set_from_clist:Nn 57
\seq_set_map:NNn 230, 230
\seq_set_split:Nnn 58, b8, 58
\seq_show:N 67, 67
\seq_sort:Nn 61, 61
\seq use:Nn 64, 64
\seq_use:Nnnn 63, 63
\g_tmpa_seq 67
\l_tmpa_seq 67
\g_tmpb_seq 67
\l_tmpb_seq 67
internal commands:

__seq_item:n 67, 67, 67, 67
__seq_pop_item_def: 67, 67, 67

__seq_push_item_def:n . 67, 67, 67, 67
\ShowTokens 195
sign 187
sin ... 188
sind 188
skip commands:

\c_max_skip 157

\skip_add:Nn 155, 155

\skip_const:Nn 155, 155

\skip_eval:n .. 156, 156, 156, 156, 156

\skip_gadd:Nn 155

.skip_gset:N 166

\skip_gset:Nn 155

\skip_gset_eq:NN 155

\skip_gsub:Nn 156

\skip_gzero:N 155

\skip_gzero_new:N 155

\skip_horizontal:N 157 157, 157

\skip_horizontal:n 157, 157

\skip_if_eq:nnTF 156

\skip_if _eq p:nn 156, 156

\skip_if_exist:NTF 155, 155

\skip_if_exist_p:N 155, 155

\skip_if_finite:nTF 156, 156

\skip_if_finite_p:n 156, 156

\skip_log:N 157, 157

\skip_log:n 157, 157

\skip_new:N 155, 155, 155

.skip_set:N 166

\skip_set:Nn 155, 155

\skip_set_eq:NN 155, 155

\skip_show:N 156, 156

\skip_show:n 157, 157

\skip_split_finite_else_action:nnNN

..................... 230, 230

\skip_sub:Nn 156, 156

\skip_use:N 156, 156, 156, 156

\skip_vertical:N 158, 158, 158

\skip_vertical:n 158, 158

\skip_zero:N 155, 155, 158

skip_zero:N 155

\skip_zero_new:N 155, 155

\g_tmpa_skip 157

\l_tmpa_skip 157

\g_tmpb_skip 157

\1_tmpb_skip 157

\c_zero_skip 157
sort commands:

\sort_return_same: 194, 194

\sort_return_swapped: 194, 194
] o T 191
STt 189

sr commands:
\sr_if_empty_p:N

260

str commands:

\c_ampersand_str 55
\c_atsign_str 55
\c_backslash_str 55
\c_circumflex_str 55
\c_colon_str 55
\c_dollar_str 55
\c_hash_str 55
\c_percent_str 55
\str_case:nn 49, 49
\str_case:nnTF 49, 49
\str_case_x:nn 50
\str_case_x:nnTF 50, 50
\str_clear:N 48, 48
str_clear:N 48
\str_clear_new:N 48, 48
\str_const:Nn 47, 47
\str_count:N 50, 50
\str_count:n 50, 50, 50, 56
\str_count_ignore_spaces:n 50, 50
\str_count_spaces:N 50
\str_count_spaces:n 50, 50

\str_fold_case:n
53, 53, 54, 54, 54, 54, 54, 232

\str_gclear:N 48
\str_gput_left:Nn 48
\str_gput_right:Nn 48
\str_gset:Nn 48
\str_gset_eq:NN 48
\str_head:N 51, 51
\str_head:n 51, 51, 51
\str_head_ignore_spaces:n ... 51,51
\str_if_empty:NTF 49, 49
\str_if _empty_p:N 49
\str_if_eq:nn 122, 127
\str_if_eq:NNTF 49, 49

\str_if_eq:nnTF /9, 49, 49, 50, 124, 229

\str_if_eq p:NN 49, 49
\str_if_eq_p:nn 49, 49
\str_if_eq_x:nnTF 49, 49, 55
\str_if_eq x_p:nn 49, 49
\str_if_exist:NTF 48, 48
\str_if_exist_p:N 48, 48
\str_item:Nn 51, 51
\str_item:nn 51, 51, 51
\str_item_ignore_spaces:nn 51, 51
\str_lower_case:n 53, 53, 232
\str_new:N 47, 47, 48
\str_put_left:Nn 48, 48
\str_put_right:Nn 48, 48
\str_range:Nnn 52
\str_range:nnn 52, 52, 56
\str_range_ignore_spaces:nnn ... 52
\str_set:Nn 48, 48

\str_set_eq:NN 48, 48 \c_sys_output_str 224
\str_show:N 54, 54 \sys_rand_seed: 251, 231
\str_show:n 54 \c_sys_shell_escape_int 231
\str_tail:N 51, 51 \sys_shell now:n 232, 232
\str_tail:n 51, 51, 51 \sys_shell_shipout:n 282, 232
\str_tail_ignore_spaces:n . 51,51 \c_sys_year_int 2238
\str_upper_case:n 53, 53, 232
\str_use:N 50, 50 T
\c_tilde_str 55 tan .. 188
\g_tmpa_str H55 tand 188
\l_tmpa_str 55 TEX and BTEX 2¢ commands:
\g_tmpb_str 55 \box 209
\l_tmpb_str 55 \char 120
\c_underscore_str 55 \COPY + v 209
str internal commands: \count, 120
__str_count:n 56, 56 \csname, 16
__str_if _eq x:nn 55, 55 \def 120
__str_if_eq_x_return:nn 55 55 \dimexpr 161
__str_range:nnn 56, 56 \directlua 238
__str_to_other:n .. 55, 55, 56, 56, 56 Ndp .« 209
__str_to_other_fast:n 56, 56 \edef 1
sys commands: \endcsname 16
\c_sys_day_int 228 \endinput 130
\c_sys_engine_str 223 \endlinechar 37, 37, 140, 140, 140
\sys_gset_rand_seed:n 231, 231 \endtemplate 97
\c_sys_hour_int 223 \errorcontextlines 146
\sys_if_engine_luatex:TF ... 223 238 \escapechar 41, 41, 41
\sys_if_engine_luatex_p: 223 \expandafter 30, 31
\sys_if_engine_pdftex:TF ... 223 223 NFL o 119
\sys_if_engine_pdftex_p: 223 \fontdimen 81, 81, 81
\sys_if_engine_ptex:TF 223 \halign 97
\sys_if_engine_ptex_p: 223 \hskip 157
\sys_if_engine_uptex:TF 223 \ht 209
\sys_if_engine_uptex_p: 2283 \ifcase 79
\sys_if_engine_xetex:TF 4, 228 \ifdim 160
\sys_if_engine_xetex_p: 2283 \ifeof 145
\sys_if_output_dvi:TF 224, 224 \iffalse 91
\sys_if_output_dvi_p: 22/ \ifhbox 217
\sys_if_output_pdf:TF 224 \ifnum, 79
\sys_if_output_pdf_p: 224 \ifodd 79
\sys_if_rand_exist:TF 231, 231 \iftrue, 91
\sys_if_rand_exist_p: 251, 231 \ifvbox 217
\sys_if_shell: 231 \ifvoid 217
\sys_if_shell:TF 231, 231 NEEX oo 21
\sys_if_shell p: 231, 231 \jobname 223
\sys_if_shell_restricted:TF 231, 231 \long 120, 120
\sys_if_shell_restricted_p: 231, 231 \luaescapestring 239
\sys_if_shell_unrestricted:TF ... \makeatletter 6
..................... 231, 231 \mathchar 120
\sys_if_shell_unrestricted_p: ... \meaning 15, 112, 120, 120
.................... 231, 231 \newif 91
\c_sys_jobname_str 138, 223 \newlinechar 37, 37, 146
\c_sys_minute_int 228 \newtoks 194
\c_sys_month_int 2283 \noexpand 30, 119

261

\number 80

\numexpr 80
Nor ... 79
\outer 120, 120
\pdfrandomseed 190
\pdfsetrandomseed 190
\pdfuniformdeviate 190
\pgfsys@... 241
\protected 120, 120
\ProvidesClass 6
\ProvidesFile 6
\ProvidesPackage 6
\randomseed 190
\read 140
\readline 141
\relaxiii 119
\RequirePackage 6
\robustify 233
\romannumeral 79
\setrandomseed 190
\show 16, 45
\showtokens 46, 136
\string 112
\tenrm 119
\the 70, 119, 152, 156, 159
NtOKS ..o
194, 194, 194, 196, 196, 196, 196, 196
\topmark 120
\unexpanded 30, 42

42, 42, 45, 59, 63, 64, 100, 103, 104,
105, 124, 227, 229, 230, 232, 236, 236

\unhbox 213
\unhcopy 213
\uniformdeviate 190, 190
\unless 21
\unvbox 214
\UDVCOPY « o vt 214
\vskip 158
\vsplitii... 214
\wd .. 210
\write 143
tex commands:
\tex_if:D 107
thousand commands:
\c_one_thousand 78
\c_ten_thousand 78
tl commands:
\c_empty_tl 46
\Lmy_ t1 ... 197, 202, 202
\c_space_tl 46
\tl_case:Nn 39, 39
\tl_case:NnTF 39, 39
\1_tl_case_change_accents_tl .. 234

\1_t1_case_change_exclude_tl
.................. 234, 234, 234
\1_t1l_case_change_math_tl .. 233, 233

\tl_clear:N 34, 34
tl_clear:N 35
\tl_clear_new:N 35, 35
\tl_concat:NNN 35, 35
\tl_const:Nn 34, 34
\tl_count:N 38, 41, 42, 42
\tl_count:n 39, 41, 41, 42
\tl_count_tokens:n 232, 232
\tl_gclear:N 34
\tl_gclear_new:N 35
\tl_gconcat:NNN 35
\tl_gput_left:Nn 35
\tl_gput_right:Nn 35
\tl_gremove_all:Nn 36
\tl_gremove_once:Nn 36
\tl_greplace_all:Nnn 36
\tl_greplace_once:Nnn 36
\tl_greverse:N 42
stl_gset:N ... 166
\tl_gset:Nn 35, 58, 196, 196
\tl_gset_eq:NN 35
\tl_gset_from_file:Nnn 285
\tl_gset_from_file_x:Nnn 236
\tl_gset_rescan:Nnn 37
.tl_gset_x:N ... L 166
\tl_gsort:Nn 43
\tl_gtrim_spaces:N 42
\tl_head:N 43
\tl_head:n 43,43, 43, 44
\tl_head:w 44, 44
\tl_if_blank:nTF ... 87 37, 43,44, 44
\tl_if_blank _p:n 37, 37
\tl_if_empty:NTF 38, 38, 137
\tl_if_empty:nTF 38, 38
\tl_if_empty_p:N 38, 38
\tl_if_empty_p:n 38, 38
\tl_if_eq:nn(TF) 100, 100
\tl_if_eq:NNTF 38, 38, 39, 84
\tl_if_eq:nnTF 38, 38, 61, 61
\tl_if_eq p:NN 38, 38
\tl_if exist:NTF 35, 35
\tl_if_exist_p:N 35, 35

\tl_if_head_eq_catcode:nNTF . /4, 44
\tl_if_head_eq_catcode_p:nN . 44, 44
\tl_if_head_eq_charcode:nNTF 44, 44
\tl_if_head_eq_charcode_p:nN 44, 44
\tl_if_head_eq_meaning:nNTF . 4/, 44
\tl_if_head_eq_meaning_p:nN . 4/, 44

\tl_if_head_is_group:nTF 45, 45
\tl_if_head_is_group_p:n 45, 45
\tl_if_head_is_N_type:nTF ... 45, 45

\tl_if_head_is_N_type_p:n ... 45, 45

\tl_if_head_is_space:nTF 45, 45
\tl_if_head_is_space_p:n 45,45
\tl_if_in:NnTF 38, 38
\tl_if_in:nnTF 38, 38
\tl_if_single:NTF 38, 38
\tl_if_single:nTF 39, 39
\tl_if_single_p:N 38, 38
\tl_if_single_p:n 39, 39
\tl_if_single_token:nTF 232, 232
\tl_if_single_token_p:n 232, 232
\tl_item:Nn 45
\tl_item:nn 45, 45
\tl_log:N 46, 46
\tl log:n 46, 46
\tl_lower_case:n 232
tl_lower_case:n 53
\tl_lower_case:nn 232
\tl_map_break: 40, 40
\tl_map_break:n 40, 40, 40
\tl_map_function:NN 39, 39, 39, 39
\tl_map_function:nN 39, 39, 39, 39
\tl_map_inline:Nn 39, 39, 40
\tl_map_inline:nn 39, 39, 40, 86
\tl_map_variable:NNn 40, 40
\tl_map_variable:nNn 40, 40
\tl_mixed_case:n 232
tl_mixed_case:n 53, 234
\tl_mixed_case:nn 232
\1_tl_mixed_case_ignore_tl 235
\1_tl_mixed_change_ignore_tl .. 235
\tl new:N 84, 34, 35, 112
\tl_put_left:Nn 35, 35
\tl_put_right:Nn . 35, 35, 196, 196, 196
\tl_rand_item:N 236, 236
\tl_rand_item:n 236, 236
\tl_range:Nnn 236, 236
\tl_range:nnn 236, 236
\tl_remove_all:Nn 36, 36, 36, 36
\tl_remove_once:Nn 36, 36
\tl_replace_all:Nnn 36, 36
\tl_replace_once:Nnn 36, 36
\tl_rescan:nn 37, 87, 37, 37, 37
\tl_reverse:N 42, 42, 42
\tl_reverse:n 42,42, 42, 42

\tl_reverse_items:n
\tl_reverse_tokens:n

42, 42, 42, 42
232, 232, 232

tl_set:N ... 166
\tl_set:Nn

35, 35, 36, 37, 58, 166, 196, 196
\tl_set_eq:NN 35, 35
\tl_set_from_file:Nnn 235, 235
\tl_set_from_file_x:Nnn 236, 236
\tl_set_rescan:Nnn 37, 37, 37, 37

263

tl_set_x:N 166
\tl_show:N 45, 45, 46
\tl_show:n 46, 46, 46
\tl_show_analysis:N 195
\tl_show_analysis:n 195, 195
\tl_sort:Nn 43, 43
\tl_sort:nN 43, 43
\tl_tail:N 44
\tl_tailin 44, 44, 44
\tl_to_lowercase:n 109
\tl_to_str:N 41,41, 47, 144
\tl_to_str:n 37, 37, 41, 41,

41, 41, 47, 47, 53, 53, 54, 54, 123,
123, 137, 144, 163, 170, 170, 201, 202

\tl_to_uppercase:n 110
\tl_trim_spaces:N 42, 42
\tl_trim_spaces:n 42, 42, 46
\tl_upper_case:n 232, 232
tl_upper_case:n 53
\tl_upper_case:nn 252, 232
\tl_use:N 41,41, 68, 152, 156, 159
\g_tmpa_tl 46
\l_tmpa_tl 4, 36, 36, 36, 46
\g_tmpb_tl 46
\1_tmpb_tl 46

tl internal commands:

__tl_build:Nw 196, 196, 196, 196, 196

__tl_build_end: 196, 196, 196
__tl_build_one:n .. 196, 196, 196, 196
__tl build_x:Nw 196
__tl_gbuild:Nw 196
__tl_gbuild_x:Nw 196
__tl_trim_spaces:nn 46, 46
token commands:
\c_alignment_token 111
\c_parameter_token 111
\g_peek_token 116, 116
\1_peek_token 115, 116
\c_space_token 45, 46, 111, 237
\token_get_arg_spec:N 118, 118
\token_get_prefix_spec:N ... 119,119
\token_get_replacement_spec:N . ..
.................... 118, 118
\token_if_active:NTF 113,113
\token_if_active_p:N 113,113
\token_if_alignment:NTF 172, 112, 113
\token_if_alignment_p:N 112, 112
\token_if_chardef:NTF 114,114
\token_if_chardef _p:N 114,114
\token_if_cs:NTF 114, 114
\token_if_cs_p:N 114, 114

\token_if_dim_register:NTF . 114, 114
\token_if_dim_register_p:N 114,114

\token_if_eq_catcode:NNTF

....... 118, 113, 116, 116, 116,
\token_if_eq_catcode_p:NN 113
\token_if_eq_charcode:NNTF

....... 118, 113, 116, 117, 117,
\token_if_eq_charcode_p:NN 113
\token_if_eq_meaning:NNTF

....... 118,113, 117, 117, 117,
\token_if_eq_meaning_p:NN 113
\token_if_expandable:NTF ... 114
\token_if_expandable_p:N ... 11/
\token_if_group_begin:NTF 112
\token_if_group_begin_p:N 112
\token_if_group_end:NTF 112

\token_if_group_end p:N 112
\token_if_int_register:NTF 115
\token_if_int_register_p:N 115
\token_if_letter:NTF 113
\token_if_letter_p:N 118
\token_if_long_macro:NTF ... 11/
\token_if_long _macro_p:N ... 11/
\token_if_macro:NTF 114
\token_if_macro_p:N 114

\token_if_math_subscript:NTF 113
\token_if_math_subscript_p:N 113
\token_if_math_superscript:NTF ..

..................... 118,
\token_if_math_superscript_p:N ..

..................... 113,
\token_if_math_toggle:NTF .. 112
\token_if_math_toggle p:N .. 112
\token_if_mathchardef:NTF .. 11/,
\token_if_mathchardef _p:N .. 114,

\token_if_muskip_register:NTF ...

..................... 115,
\token_if_muskip_register_p:N ...
..................... 115,
\token_if_other:NTF 118
\token_if_other_p:N 118
\token_if_parameter:NTF
\token_if_parameter_p:N 113
\token_if_primitive:NTF 115
\token_if_primitive_p:N 115
\token_if_protected_long_-
macro:NTF 114
\token_if_protected_long_macro_-
p:N 114,
\token_if_protected_macro:NTF ...
..................... 114,
\token_if_protected_macro_p:N ...
..................... 114,
\token_if_skip_register:NTF 115
\token_if_skip_register_p:N 115
\token_if_space:NTF 113

116
113

117
113

118
113
114
114
112
112
112
112
115
115
113
113
114
114
114
114
113
113

113

113
112
112
114
114

115
113
113
113
113
115
115

114
114
114
114
115

115
113

\token_if_space_p:N 118,113
\token_if_toks_register:NTF 115, 115
\token_if_toks_register_p:N 115, 115
\token_new:Nn 111,111
\token_to_meaning:N 112, 112
\token_to_str:N
4, 17,47, 112, 112, 112, 137, 144
true 191
trunc 187
two commands:
\c_thirty_two 78
\c_two_hundred_fifty_five 78
\c_two_hundred_fifty_six 78
U
undefine commands:
.undefine: 167

use commands:

\use:N 16, 16, 16, 16, 82
\use:n 17,17, 19, 19, 34, 119, 234
\use:nn 17,17
\use:nnn 17, 17
\use:nnnn 17,17
\use_i:nn 18, 18, 18
\use_i:nnn 18, 18, 18
\use_i:nnnn 18, 18, 18
\use_i_delimit_by_q_nil:nw 19, 19
\use_i_delimit_by_q_recursion_-
stop:nw 19, 19
\use_i_delimit_by_q_stop:nw 19, 19
\use_i_ii:innn 18, 18
\use_ii:nn 18, 18, 97
\use_ii:nnn 18, 18
\use_ii:nnnn 18, 18
\use_iii:nnn 18, 18
\use_iii:nnnn 18, 18
\use_iv:nnnn 18, 18
\use_none:n 18, 18, 22, 46
\use_none:nn 18
\use_none:nnn 18
\use_none:nnnn 18
\use_none:nnnnn 18
\use_none:nnnnnn 18
\use_none:nnnnnnn 18
\use_none:nnnnnnnn 18
\use_none:nnnnnnnnn 18
\use_none_delimit_by_q_nil:w 19, 19

\use_none_delimit_by_q_recursion_-
stop:w 19, 19, 86, 86, 86, 86
\use_none_delimit_by_q_stop:w 19, 19
use internal commands:

__use_none_delimit_by_s__stop:w
88, 88, 88

264

A\ \vbox_set_end: 214, 214
value commands: \vbox_set_split_to_ht:NNn .. 21/, 214
.value_forbidden:n 167 \vbox_set_to_ht:Nnn 214, 214
.value_required:n 167 \vbox_set_top:Nn 214, 214
vbox commands: \vbox_to_ht:nn 213, 213
\vbox:n 213, 213 \vbox_to_zero:n 213, 213
\vbox_gset:Nn 213 \vbox_top:n 213, 213
\vbox_gset:Nw 214 \vbox_unpack:N 214, 214, 214
\vbox_gset_end: 214 \vbox_unpack_clear:N 214
\vbox_gset_to_ht:Nnn 214 vcoffin commands:
\vbox_gset_top:Nn 214 \vcoffin_set:Nnn 219, 219
\vbox_set:Nn 213, 213, 214 \vcoffin_set:Nnw 219, 219
\vbox_set:Nw 214, 214 \vcoffin_set_end: 219, 219

265

	Contents
	I Introduction to expl3 and this document
	1 Naming functions and variables
	1.1 Terminological inexactitude

	2 Documentation conventions
	3 Formal language conventions which apply generally
	4 TeX concepts not supported by LaTeX3

	II The l3bootstrap package: Bootstrap code
	1 Using the LaTeX3 modules
	1.1 Internal functions and variables

	III The l3names package: Namespace for primitives
	1 Setting up the LaTeX3 programming language

	IV The l3basics package: Basic definitions
	1 No operation functions
	2 Grouping material
	3 Control sequences and functions
	3.1 Defining functions
	3.2 Defining new functions using parameter text
	3.3 Defining new functions using the signature
	3.4 Copying control sequences
	3.5 Deleting control sequences
	3.6 Showing control sequences
	3.7 Converting to and from control sequences

	4 Using or removing tokens and arguments
	4.1 Selecting tokens from delimited arguments

	5 Predicates and conditionals
	5.1 Tests on control sequences
	5.2 Primitive conditionals

	6 Internal kernel functions

	V The l3expan package: Argument expansion
	1 Defining new variants
	2 Methods for defining variants
	3 Introducing the variants
	4 Manipulating the first argument
	5 Manipulating two arguments
	6 Manipulating three arguments
	7 Unbraced expansion
	8 Preventing expansion
	9 Controlled expansion
	10 Internal functions and variables

	VI The l3tl package: Token lists
	1 Creating and initialising token list variables
	2 Adding data to token list variables
	3 Modifying token list variables
	4 Reassigning token list category codes
	5 Token list conditionals
	6 Mapping to token lists
	7 Using token lists
	8 Working with the content of token lists
	9 The first token from a token list
	10 Using a single item
	11 Viewing token lists
	12 Constant token lists
	13 Scratch token lists
	14 Internal functions

	VII The l3str package: Strings
	1 Building strings
	2 Adding data to string variables
	2.1 String conditionals

	3 Working with the content of strings
	4 String manipulation
	5 Viewing strings
	6 Constant token lists
	7 Scratch strings
	7.1 Internal string functions

	VIII The l3seq package: Sequences and stacks
	1 Creating and initialising sequences
	2 Appending data to sequences
	3 Recovering items from sequences
	4 Recovering values from sequences with branching
	5 Modifying sequences
	6 Sequence conditionals
	7 Mapping to sequences
	8 Using the content of sequences directly
	9 Sequences as stacks
	10 Sequences as sets
	11 Constant and scratch sequences
	12 Viewing sequences
	13 Internal sequence functions

	IX The l3int package: Integers
	1 Integer expressions
	2 Creating and initialising integers
	3 Setting and incrementing integers
	4 Using integers
	5 Integer expression conditionals
	6 Integer expression loops
	7 Integer step functions
	8 Formatting integers
	9 Converting from other formats to integers
	10 Viewing integers
	11 Constant integers
	12 Scratch integers
	13 Primitive conditionals
	14 Internal functions

	X The l3intarray package: low-level arrays of small integers
	1 l3intarray documentation
	1.1 Internal functions

	XI The l3flag package: expandable flags
	1 Setting up flags
	2 Expandable flag commands

	XII The l3quark package: Quarks
	1 Introduction to quarks and scan marks
	1.1 Quarks

	2 Defining quarks
	3 Quark tests
	4 Recursion
	5 An example of recursion with quarks
	6 Internal quark functions
	7 Scan marks

	XIII The l3prg package: Control structures
	1 Defining a set of conditional functions
	2 The boolean data type
	3 Boolean expressions
	4 Logical loops
	5 Producing multiple copies
	6 Detecting TeX's mode
	7 Primitive conditionals
	8 Internal programming functions

	XIV The l3clist package: Comma separated lists
	1 Creating and initialising comma lists
	2 Adding data to comma lists
	3 Modifying comma lists
	4 Comma list conditionals
	5 Mapping to comma lists
	6 Using the content of comma lists directly
	7 Comma lists as stacks
	8 Using a single item
	9 Viewing comma lists
	10 Constant and scratch comma lists

	XV The l3token package: Token manipulation
	1 Creating character tokens
	2 Manipulating and interrogating character tokens
	3 Generic tokens
	4 Converting tokens
	5 Token conditionals
	6 Peeking ahead at the next token
	7 Decomposing a macro definition
	8 Description of all possible tokens
	9 Internal functions

	XVI The l3prop package: Property lists
	1 Creating and initialising property lists
	2 Adding entries to property lists
	3 Recovering values from property lists
	4 Modifying property lists
	5 Property list conditionals
	6 Recovering values from property lists with branching
	7 Mapping to property lists
	8 Viewing property lists
	9 Scratch property lists
	10 Constants
	11 Internal property list functions

	XVII The l3msg package: Messages
	1 Creating new messages
	2 Contextual information for messages
	3 Issuing messages
	4 Redirecting messages
	5 Low-level message functions
	6 Kernel-specific functions
	7 Expandable errors
	8 Internal l3msg functions

	XVIII The l3file package: File and I/O operations
	1 File operation functions
	1.1 Input–output stream management
	1.2 Reading from files

	2 Writing to files
	2.1 Wrapping lines in output
	2.2 Constant input–output streams
	2.3 Primitive conditionals
	2.4 Internal file functions and variables
	2.5 Internal input–output functions

	XIX The l3skip package: Dimensions and skips
	1 Creating and initialising dim variables
	2 Setting dim variables
	3 Utilities for dimension calculations
	4 Dimension expression conditionals
	5 Dimension expression loops
	6 Using dim expressions and variables
	7 Viewing dim variables
	8 Constant dimensions
	9 Scratch dimensions
	10 Creating and initialising skip variables
	11 Setting skip variables
	12 Skip expression conditionals
	13 Using skip expressions and variables
	14 Viewing skip variables
	15 Constant skips
	16 Scratch skips
	17 Inserting skips into the output
	18 Creating and initialising muskip variables
	19 Setting muskip variables
	20 Using muskip expressions and variables
	21 Viewing muskip variables
	22 Constant muskips
	23 Scratch muskips
	24 Primitive conditional
	25 Internal functions

	XX The l3keys package: Key–value interfaces
	1 Creating keys
	2 Sub-dividing keys
	3 Choice and multiple choice keys
	4 Setting keys
	5 Handling of unknown keys
	6 Selective key setting
	7 Utility functions for keys
	8 Low-level interface for parsing key–val lists

	XXI The l3fp package: floating points
	1 Creating and initialising floating point variables
	2 Setting floating point variables
	3 Using floating point numbers
	4 Floating point conditionals
	5 Floating point expression loops
	6 Some useful constants, and scratch variables
	7 Floating point exceptions
	8 Viewing floating points
	9 Floating point expressions
	9.1 Input of floating point numbers
	9.2 Precedence of operators
	9.3 Operations

	10 Disclaimer and roadmap

	XXII The l3sort package: Sorting functions
	1 Controlling sorting

	XXIII The l3tl-analysis package: analysing token lists
	1 l3tl-analysis documentation

	XXIV The l3tl-build package: building token lists
	1 l3tl-build documentation
	1.1 Internal functions

	XXV The l3regex package: regular expressions in TeX
	1 Regular expressions
	1.1 Syntax of regular expressions
	1.2 Syntax of the replacement text
	1.3 Pre-compiling regular expressions
	1.4 Matching
	1.5 Submatch extraction
	1.6 Replacement
	1.7 Bugs, misfeatures, future work, and other possibilities

	XXVI The l3box package: Boxes
	1 Creating and initialising boxes
	2 Using boxes
	3 Measuring and setting box dimensions
	4 Box conditionals
	5 The last box inserted
	6 Constant boxes
	7 Scratch boxes
	8 Viewing box contents
	9 Boxes and color
	10 Horizontal mode boxes
	11 Vertical mode boxes
	11.1 Affine transformations

	12 Primitive box conditionals

	XXVII The l3coffins package: Coffin code layer
	1 Creating and initialising coffins
	2 Setting coffin content and poles
	3 Joining and using coffins
	4 Measuring coffins
	5 Coffin diagnostics
	5.1 Constants and variables

	XXVIII The l3color package: Color support
	1 Color in boxes

	XXIX The l3sys package: System/runtime functions
	1 The name of the job
	2 Date and time
	3 Engine
	4 Output format

	XXX The l3deprecation package: Deprecation errors
	1 l3deprecation documentation

	XXXI The l3candidates package: Experimental additions to l3kernel
	1 Important notice
	2 Additions to l3box
	2.1 Viewing part of a box

	3 Additions to l3clist
	4 Additions to l3coffins
	5 Additions to l3file
	6 Additions to l3int
	7 Additions to l3msg
	8 Additions to l3prop
	9 Additions to l3seq
	10 Additions to l3skip
	11 Additions to l3sys
	12 Additions to l3tl
	13 Additions to l3tokens

	XXXII The l3luatex package: LuaTeX-specific functions
	1 Breaking out to Lua
	1.1 TeX code interfaces
	1.2 Lua interfaces

	XXXIII The l3drivers package: Drivers
	1 Box clipping
	2 Box rotation and scaling
	3 Color support
	4 Drawing
	4.1 Path construction
	4.2 Stroking and filling
	4.3 Stroke options
	4.4 Color
	4.5 Inserting TeX material
	4.6 Coordinate system transformations

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

