The IXTEX3 Interfaces

The BTEX3 Project™
April 1, 2017

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for KTEX commands, which
allow the BTEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level I¥TEX3 programming
language.

At present, the expl3 modules are designed to be loaded on top of I¥TEX 2¢. In time,
a IMTEX3 format will be produced based on this code. This allows the code to be
used in B TEX 2¢ packages now while a stand-alone I¥TEX3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly
stable. The syntax conventions and functions provided are now ready
for wider use. There may still be changes to some functions, but these
will be minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they
reach maturity.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

Contents

I Introduction to expl3 and this document

1 Naming functions and variables
1.1 Terminological inexactitude L.

2 Documentation conventions

3 Formal language conventions which apply generally
4 TEX concepts not supported by BTEX3

IT The I3bootstrap package: Bootstrap code

1 Using the BTEX3 modules

1.1 Internal functions and variables. L.

IIT The I3names package: Namespace for primitives

1 Setting up the B'TEX3 programming language

IV The I3basics package: Basic definitions

1 No operation functions
2 Grouping material
3 Control sequences and functions

3.1 Defining functions Lo
3.2 Defining new functions using parameter text
3.3 Defining new functions using the signature
3.4 Copying control sequences
3.5 Deleting control sequences
3.6 Showing control sequences o
3.7 Converting to and from control sequences

4 Using or removing tokens and arguments
4.1 Selecting tokens from delimited arguments

5 Predicates and conditionals
5.1 Tests on control sequences
5.2 Primitive conditionals

6 Internal kernel functions

V The I3expan package: Argument expansion

ii

16
18

18
19
20

21

23

10

VI

10
11
12
13

14

Defining new variants

Methods for defining variants
Introducing the variants
Manipulating the first argument
Manipulating two arguments
Manipulating three arguments
Unbraced expansion

Preventing expansion
Controlled expansion

Internal functions and variables

The 13tl package: Token lists

Creating and initialising token list variables

Adding data to token list variables
Modifying token list variables
Reassigning token list category codes
Token list conditionals

Mapping to token lists

Using token lists

Working with the content of token lists
The first token from a token list
Using a single item

Viewing token lists

Constant token lists

Scratch token lists

Internal functions

VII The I3str package:Strings

iii

23
24
24
25
27
27
28
29
30

31

33
33
34
35
35
36
38
40
40
42
44
44
45
45

45

46

Building strings

Adding data to string variables
2.1 String conditionals L Lo

Working with the content of strings
String manipulation

Viewing strings

Constant token lists

Scratch strings
7.1 Internal string functions L oL L

VIII The I13seq package: Sequences and stacks

1

2

10
11
12

13

IX

Creating and initialising sequences
Appending data to sequences
Recovering items from sequences
Recovering values from sequences with branching
Modifying sequences

Sequence conditionals

Mapping to sequences

Using the content of sequences directly
Sequences as stacks

Sequences as sets

Constant and scratch sequences
Viewing sequences

Internal sequence functions

The 13int package: Integers
Integer expressions
Creating and initialising integers

Setting and incrementing integers

iv

46

47
47

49
52
53
54

54
54

56
56
57
57
58
59
60
60
62
63
64
65
66

66

67
67
68

69

4 Using integers

5 Integer expression conditionals
6 Integer expression loops

7 Integer step functions

8 Formatting integers

9 Converting from other formats to integers

10 Viewing integers

11 Constant integers

12 Scratch integers

13 Primitive conditionals

14 Internal functions

X The I3flag package: expandable flags

1 Setting up flags

2 Expandable flag commands

XI The 13quark package: Quarks

1 Introduction to quarks and scan marks

1.1 Quarks

2 Defining quarks

3 Quark tests

4 Recursion

5 An example of recursion with quarks
6 Internal quark functions

7 Scan marks

XII The 13prg package: Control structures

1 Defining a set of conditional functions

2 The boolean data type

69
70
71
73
73
75
76
77
77
78

78

80
80

81

82

82
82

82
83
83
84
85

85

87
87

89

Boolean expressions
Logical loops

Producing multiple copies
Detecting TEX’s mode
Primitive conditionals

Internal programming functions

XIII The 13clist package: Comma separated lists

1

2

10

Creating and initialising comma lists
Adding data to comma lists

Modifying comma lists

Comma list conditionals

Mapping to comma lists

Using the content of comma lists directly
Comma lists as stacks

Using a single item

Viewing comma lists

Constant and scratch comma lists

XIV The I3token package: Token manipulation

1

2

Creating character tokens

Manipulating and interrogating character tokens
Generic tokens

Converting tokens

Token conditionals

Peeking ahead at the next token

Decomposing a macro definition

Description of all possible tokens

vi

91
93
94
94
94

95

96
96
97
98
99
99
101
102
103
103

104

105
105
106
109
110
110
113
116

117

9

Internal functions

XV The I3prop package: Property lists

1

2

10

11

Creating and initialising property lists

Adding entries to property lists

Recovering values from property lists

Modifying property lists

Property list conditionals

Recovering values from property lists with branching
Mapping to property lists

Viewing property lists

Scratch property lists

Constants

Internal property list functions

XVI The I3msg package: Messages

1

2

XVII The I3file package: File and I/O operations

1

Creating new messages

Contextual information for messages
Issuing messages

Redirecting messages

Low-level message functions
Kernel-specific functions
Expandable errors

Internal I3msg functions

File operation functions

1.1 Input—output stream management
1.2 Reading from files Lo

vii

119

120
120
121
121
122
122
123
123
124
125
125

125

126
126
127
128
130
131
132
134

134

2 Writing to files 139

2.1 Wrapping lines inoutput L oL 141

2.2 Constant input—output streams 142

2.3 Primitive conditionals Lo oo 142

2.4 Internal file functions and variables 142

2.5 Internal input-output functions 142
XVIII The I3skip package: Dimensions and skips 144
1 Creating and initialising dim variables 144
2 Setting dim variables 145
3 Utilities for dimension calculations 145
4 Dimension expression conditionals 146
5 Dimension expression loops 148
6 Using dim expressions and variables 149
7 Viewing dim variables 151
8 Constant dimensions 151
9 Scratch dimensions 151
10 Creating and initialising skip variables 152
11 Setting skip variables 152
12 Skip expression conditionals 153
13 Using skip expressions and variables 153
14 Viewing skip variables 153
15 Constant skips 154
16 Scratch skips 154
17 Inserting skips into the output 154
18 Creating and initialising muskip variables 155
19 Setting muskip variables 155
20 Using muskip expressions and variables 156
21 Viewing muskip variables 156
22 Constant muskips 157

viii

23

24

25

XIX The I3keys package: Key—value interfaces

1

2

Scratch muskips
Primitive conditional

Internal functions

Creating keys

Sub-dividing keys

Choice and multiple choice keys
Setting keys

Handling of unknown keys
Selective key setting

Utility functions for keys

Low-level interface for parsing key—val lists

XX The 13fp package: floating points

1

2

10

XXI The I3sort package: Sorting functions

Creating and initialising floating point variables

Setting floating point variables

Using floating point numbers

Floating point conditionals

Floating point expression loops

Some useful constants, and scratch variables
Floating point exceptions

Viewing floating points

Floating point expressions

9.1 Input of floating point numbers
9.2 Precedence of operators
9.3 Operations

Disclaimer and roadmap

ix

157
157

158

159
160
164
164
167
167
168
169

170

172
173
173
174
175
177
178
179
180

180
180
181
182

188

191

1 Controlling sorting

XXII The I13box package: Boxes
1 Creating and initialising boxes

2 Using boxes

3 Measuring and setting box dimensions
4 Box conditionals

5 The last box inserted

6 Constant boxes

7 Scratch boxes

8 Viewing box contents

9 Horizontal mode boxes

10 Vertical mode boxes

11 Primitive box conditionals

XXIITI The 13coffins package: Coffin code layer
1 Creating and initialising coffins

2 Setting coffin content and poles

3 Joining and using coffins

4 Measuring coffins

5 Coffin diagnostics
5.1 Constants and variables

XXIV The 13color package: Color support

1 Color in boxes

XXV The I3sys package:System /runtime functions
1 The name of the job

2 Date and time

191

192
192
193
193
194
194
195
195
195
195
197

198

200
200
200
201

202

205
205

205

3 Engine 205

4 Output format 206
XXVI The I13deprecation package: Deprecation errors 207
1 I3deprecation documentation 207

XXVII The I3candidates package: Experimental additions to

13kernel 208
1 Important notice 208
2 Additions to 13box 208

2.1 Affine transformationso 208

2.2 Viewing partofabox L L 210
3 Additions to 13clist 211
4 Additions to 13coffins 211
5 Additions to I3file 211
6 Additions to 13int 213
7 Additions to 13msg 213
8 Additions to 13prop 213
9 Additions to 13seq 214
10 Additions to I13skip 215
11 Additions to I13tl 215
12 Additions to I3tokens 220

XXVIII The I3luatex package:LuaTeX-specific functions 221

1 Breaking out to Lua 221
1.1 TgEX code interfaces L Lo 221
1.2 Luainterfaces 222
XXIX The 13drivers package: Drivers 223
1 Box clipping 223

2 Box rotation and scaling 223

Xi

3 Color support

4 Drawing

4.1
4.2
4.3
4.4
4.5
4.6

Index

Path construction
Stroking and filling
Stroke options
Color
Inserting TEX material
Coordinate system transformations

xii

224

224
225
225
226
227
228
228

229

Part 1
Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the IMTEX3 programming language is found in expl3.pdf.

1 Naming functions and variables

ETREX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

D The D specifier means do not use. All of the TEX primitives are initially \let to a D
name, and some are then given a second name. Only the kernel team should use
anything with a D specifier!

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example
\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are in
general not expandable, unless specifically noted.

f The f specifier stands for full expansion, and in contrast to x stops at the first non-
expandable item (reading the argument from left to right) without trying to expand
it. For example, when setting a token list variable (a macro used for storage), the
sequence

\tl_set:Nn \1_mya_tl { A }
\tl_set:Nn \1_myb_tl { B }
\tl_set:Nf \1_mya_tl { \1l_mya_tl \1_myb_tl }

will leave \1_mya_t1 with the content A\1_myb_t1, as A cannot be expanded and
so terminates expansion before \1_myb_t1 is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some arbitrary string).

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

c Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module! name and then a descriptive part. Variables end with a short
identifier to show the variable type:

bool Either true or false.
box Box register.
clist Comma separated list.

coffin a “box with handles” — a higher-level data type for carrying out box alignment
operations.

dim “Rigid” lengths.

fp floating-point values;

1The module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

\ExplSyntaxOn
\ExplSyntax0ff

int Integer-valued count register.
prop Property list.

seq “Sequence”: a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.
stream An input or output stream (for reading from or writing to, respectively).

t1l Token list variables: placeholder for a token list.

1.1 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and a
“token list variable” are in truth one and the same. On the other hand, some “variables”
are actually registers that must be initialised and their values set and retrieved with
specific functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntax0ff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the

function takes no arguments and so the name of the function is simply reprinted.
For programming functions, which use _ and : in their name there are a few addi-

tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

\seq_new:N \seq_new:N (sequence)
‘° When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration

should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type argument (in plain TEX terms, inside an \edef), as well
as within an f-type argument. These fully expandable functions are indicated in the
documentation by a star:

\cs_to_str:N * \cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a (control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN 3 \seq_map_function:NN (seq) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\sys_if_engine_xetex:TF x \sys_if_engine_xetex:TF {(true code)} {(false code)}

The underlining and italic of TF indicates that \xetex_if_engine:T, \xetex_if_engine:F
and \xetex_if_engine:TF are all available. Usually, the illustration will use the TF vari-
ant, and so both (true code) and (false code) will be shown. The two variant forms T
and F take only (true code) and (false code), respectively. Here, the star also shows that
this function is expandable. With some minor exceptions, all conditional functions in

the expl3 modules should be defined in this way.
Variables, constants and so on are described in a similar manner:

\1_tmpa_tl A short piece of text will describe the variable: there is no syntax illustration in this case.
In some cases, the function is similar to one in I#TEX 2¢ or plain TEX. In these cases,
the text will include an extra “TgpXhackers note” section:

\token_to_str:N x \token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or TEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way unless they impact on the
expected behaviour.

3 Formal language conventions which apply generally

As this is a formal reference guide for ITEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left

in the input stream: this will typically be part of a larger logical construct.

4 TEX concepts not supported by IBXTEX3

The TeX concept of an “\outer” macro is not supported at all by ITEX3. As such, the
functions provided here may break when used on top of IXTEX 2¢ if \outer tokens are
used in the arguments.

\ExplSyntax0On
\ExplSyntax0ff

Updated: 2011-08-13

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2017-03-19

\1__kernel_expl_bool

Part 11
The I13bootstrap package
Bootstrap code

1 Using the KTEX3 modules

The modules documented in source3 are designed to be used on top of KTEX 2¢ and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions. These modules will also form the basis of the IXTEX3 format, but work in
this area is incomplete and not included in this documentation at present.

As the modules use a coding syntax different from standard I¥TEX 2¢ it provides a
few functions for setting it up.

\ExplSyntaxOn (code) \ExplSyntax0ff

The \ExplSyntaxOn function switches to a category code régime in which spaces are
ignored and in which the colon (:) and underscore (_) are treated as “letters”, thus
allowing access to the names of code functions and variables. Within this environment,
~ is used to input a space. The \ExplSyntax0ff reverts to the document category code
régime.

\RequirePackage{expl3}

\ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

These functions act broadly in the same way as the corresponding IATEX 2¢ kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntaxOn for the remainder of the code with the file. At the end
of the file, \ExplSyntax0ff will be called to reverse this. (This is the same concept as
KTEX 2 provides in turning on \makeatletter within package and class code.) The
(date) should be given in the format (year)/{month)/(day). If the (version) is given then

it will be prefixed with v in the package identifier line.
To summarize: Every single package using this syntax should identify itself using

one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual I TEX 2¢ category codes and the
KTEX3 category code scheme is reloaded when needed afterwards.

1.1 Internal functions and variables

A boolean which records the current code syntax status: true if currently inside a code
environment. This variable should only be set by \ExplSyntaxOn/\ExplSyntaxOff.

Part 111
The I13names package
Namespace for primitives

1 Setting up the KTEX3 programming language

This module is at the core of the M TEX3 programming language. It performs the following
tasks:

o defines new names for all TEX primitives;
o switches to the category code régime for programming;
e provides support settings for building the code as a TEX format.

This module is entirely dedicated to primitives, which should not be used directly
within ITEX3 code (outside of “kernel-level” code). As such, the primitives are not
documented here: The TpXbook, TgX by Topic and the manuals for pdfTEX, X#TEX and
LuaTgX should be consulted for details of the primitives. These are named based on the
engine which first introduced them:

\tex_... Introduced by TEX itself;
\etex_... Introduced by the e-TEX extensions;
\pdftex_... Introduced by pdfTEX;
\xetex_... Introduced by XHTEX;
\luatex_... Introduced by LuaTgX;
\utex_... Introduced by X#TEX and LuaTlgX;
\ptex_... Introduced by pTEX;
\uptex_. .. Introduced by upTEX.

\prg_do_nothing: x

\scan_stop:

\group_begin:
\group_end:

\group_insert_after:N

Part IV
The I3basics package
Basic definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

2 Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends.
The list of (tokens) to be inserted will be empty at the beginning of a group: multiple
applications of \group_insert_after:N may be used to build the inserted list one (token)
at a time. The current group level may be closed by a \group_end: function or by a
token with category code 2 (close-group). The later will be a } if standard category codes

apply.

3 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” will be fully expanded inside an x expansion.
In contrast, “protected” functions are not expanded within x expansions.

3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen will be checked and an error raised if it is already in
use. The name of a function can be checked at the point of definition using the \cs_-
new... functions: this is recommended for all functions which are defined for the first
time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, ...).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and will result in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and will not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset :Npn. The definition
is global and will not result in an error if the function is already defined.

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an x-type expansion.

Finally, the functions in Subsections 3.2 and 3.3 are primarily meant to define base
functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 2.

\cs_new:

Npn

:cpn

\cs_new:

Npx

1cpx

\cs_new_nopar:

Npn

:cpn

\cs_new_nopar:

Npx

1cpx

\cs_new_protected:

Npn

:cpn

\cs_new_protected:

Npx

1cpx

3.2 Defining new functions using parameter text

\cs_new:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error will result if the (function) is already defined.

\cs_new_nopar:Npn (function) (parameters) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error will result if the (function) is already defined.

\cs_new_protected:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error will result if the (function) is already defined.

\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npn (function) (parameters) {({code)}

:cpn

\cs_new_protected_nopar:Npx

1cpx

\cs_set:

Npn

:cpn

\cs_set:

Npx

1cpx

\cs_set_nopar:

Npn

:cpn

\cs_set_nopar:

Npx

1cpx

\cs_set_protected:

Npn

:cpn

\cs_set_protected

:Npx

1cpx

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type argument. The definition is global and an error will
result if the (function) is already defined.

\cs_set:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Npn (function) (parameters) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The assignment
of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an x-type argument.

10

\cs_set_protected_nopar:Npn \cs_set_protected_nopar:Npn (function) (parameters) {{code)}

:cpn

\cs_set_protected_nopar:Npx

1cpx

\cs_gset:Npn

:cpn

\cs_gset :Npx

1cpx
\cs_gset_nopar:Npn
:cpn
\cs_gset_nopar:Npx
1cpx
\cs_gset_protected:Npn
:cpn
\cs_gset_protected:Npx
1cpx

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The as-
signment of a meaning to the (function) is restricted to the current TEX group level. The
(function) will not expand within an x-type argument.

\cs_gset:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_protected:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group level:
the assignment is global. The (function) will not expand within an x-type argument.

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {{code)}

:cpn

\cs_gset_protected_nopar:Npx

1cpx

\cs_new:Nn

: (cn|Nx|cx)

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group level:
the assignment is global. The (function) will not expand within an x-type argument.

3.3 Defining new functions using the signature

\cs_new:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error will result if the (function) is already defined.

11

\cs_new_nopar:Nn
: (cn|Nx|cx)

\cs_new_protected:Nn
: (cn|Nx|cx)

\cs_new_nopar:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error will result if the (function) is already defined.

\cs_new_protected:Nn (function) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error will result if the (function) is already defined.

\cs_new_protected_nopar:Nn \cs_new_protected_nopar:Nn (function) {<code>}

: (cn|Nx|cx)

\cs_set:Nn
: (cn|Nx|cx)

\cs_set_nopar:Nn
: (cn|Nx|cx)

\cs_set_protected:Nn
: (cn|Nx|cx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type argument. The definition is global and an error will
result if the (function) is already defined.

\cs_set:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is restricted to the current TEX group level.

12

\cs_set_protected_nopar:Nn \cs_set_protected_nopar:Nn (function) {(code)}
: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type argument. The assignment of a meaning to the (function) is
restricted to the current TEX group level.

\cs_gset:Nn \cs_gset:Nn (function) {(code)}
: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is global.

\cs_gset_nopar:Nn \cs_gset_nopar:Nn (function) {(code)}
: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is global.

\cs_gset_protected:Nn \cs_gset_protected:Nn (function) {(code)}
: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is global.

\cs_gset_protected_nopar:Nn \cs_gset_protected_nopar:Nn (function) {(code)}
: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type argument. The assignment of a meaning to the (function) is
global.

\cs_generate_from_arg_count:NNnn \cs_generate_from_arg_count:NNnn (function) (creator) (number)
:(cNnn|Ncnn) (code)

Updated: 2012-01-14

Uses the (creator) function (which should have signature Npn, for example \cs_new:Npn)
to define a (function) which takes (number) arguments and has (code) as replacement
text. The (number) of arguments is an integer expression, evaluated as detailed for
\int_eval:n.

13

\cs_new_eq:NN
: (Nc|eNlcc)

\cs_set_eq:NN
: (Ne|eNlce)

\cs_gset_eq:NN
: (Nc|eNlcc)

\cs_undefine:N
ic

Updated: 2011-09-15

\cs_meaning:N *
icok

Updated: 2011-12-22

3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN (cs1) (cs2)
\cs_new_eq:NN (csi) (token)

Globally creates (control sequence;) and sets it to have the same meaning as (control
sequenceg) or (token). The second control sequence may subsequently be altered without
affecting the copy.

\cs_set_eq:NN (cs1) (cs2)
\cs_set_eq:NN (csi) (token)

Sets (control sequence;) to have the same meaning as (control sequences) (or (token)).
The second control sequence may subsequently be altered without affecting the copy.
The assignment of a meaning to the (control sequence;) is restricted to the current TEX
group level.

\cs_gset_eq:NN (cs1) (cs2)
\cs_gset_eq:NN (csi) (token)

Globally sets (control sequence;) to have the same meaning as (control sequences) (or
(token)). The second control sequence may subsequently be altered without affecting the
copy. The assignment of a meaning to the (control sequence;) is not restricted to the
current TEX group level: the assignment is global.

3.5 Deleting control sequences

There are occasions where control sequences need to be deleted. This is handled in a
very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

3.6 Showing control sequences

\cs_meaning:N (control sequence)

This function expands to the meaning of the (control sequence) control sequence. This
will show the (replacement text) for a macro.

TEXhackers note: This is TEX’s \meaning primitive. The c variant correctly reports
undefined arguments.

14

\cs_show:N
:c

Updated: 2017-02-14

\cs_log:N
ic

New: 2014-08-22
Updated: 2017-02-14

\use:c «*

\cs_if_exist_use:N «
:c *
\cs_if_exist_use:NTF x*
:cTF %

New: 2012-11-10

\cs:w *
\cs_end: «*

\cs_show:N (control sequence)
Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_log:N (control sequence)

Writes the definition of the (control sequence) in the log file. See also \cs_show:N which
displays the result in the terminal.

3.7 Converting to and from control sequences

\use:c {(control sequence name)}

Converts the given (control sequence name) into a single control sequence token. This
process requires two expansions. The content for (control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically, they will be
of category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

As an example of the \use:c function, both

\use:c { abc}
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc}
\use:c { \tl_use:N \1_my_tl1l }

would be equivalent to

\abc
after two expansions of \use:c.
\cs_if_exist_use:N (control sequence)

\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type), and if it is inserts the (control sequence) into the input stream
followed by the (true code). Otherwise the (false code) is used.

\cs:w (control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for {control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically, they will be
of category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TEXhackers note: These are the TEX primitives \csname and \endcsname.

As an example of the \cs:w and \cs_end: functions, both

15

\cs:w a b ¢ \cs_end:
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc}
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to
\abc

after one expansion of \cs:w.

\cs_to_str:N * \cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code 12
(other), except spaces, of category code 10. The sequence will not include the current
escape token, cf. \token_to_str:N. Full expansion of this function requires exactly 2
expansion steps, and so an x-type expansion, or two o-type expansions will be required
to convert the (control sequence) to a sequence of characters in the input stream. In most
cases, an f-expansion will be correct as well, but this loses a space at the start of the
result.

4 Using or removing tokens and arguments

Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then in absorbing them the outer set will be removed. At the same
time, the category code of each token is set when the token is read by a function (if it
is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

\use:n * \use:n {(group:)}

\use:nn * \use:nn {(group:)} {(group:)}

\use:nnn * \use:nnn {(group:)} {(group:)} {(groups)}

\use:nnnn * \use:nnnn {(group:)} {{(group:)} {(groups)} {(groups)}
As illustrated, these functions will absorb between one and four arguments, as indicated
by the argument specifier. The braces surrounding each argument will be removed leaving
the remaining tokens in the input stream. The category code of these tokens will also be
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } }
will result in the input stream containing
abc { def }

i.e. only the outer braces will be removed.

16

\use_i:nn *
\use_ii:nn *
\use_i:nnn %
\use_ii:nnn *
\use_iii:nnn *
\use_i:nnnn *
\use_ii:nnnn
\use_iii:nnnn *
\use_iv:nnnn *
\use_i_ii:nnn *
\use_none:n *
\use_none:nn *
\use_none:nnn *
\use_none:nnnn *
\use_none:nnnnn *
\use_none:nnnnnn *
\use_none:nnnnnnn = *
\use_none:nnnnnnnn *
\use_none:nnnnnnnnn *

\use_i:nn {(argi)} {(argz)}

These functions absorb two arguments from the input stream. The function \use_i:nn
discards the second argument, and leaves the content of the first argument in the input
stream. \use_ii:nn discards the first argument and leaves the content of the second
argument in the input stream. The category code of these tokens will also be fixed (if
it has not already been by some other absorption). A single expansion is needed for the
functions to take effect.

\use_i:nnn {(argi)} {(arg:)} {(args)}

These functions absorb three arguments from the input stream. The function \use_i:nnn
discards the second and third arguments, and leaves the content of the first argument in
the input stream. \use_ii:nnn and \use_iii:nnn work similarly, leaving the content of
second or third arguments in the input stream, respectively. The category code of these
tokens will also be fixed (if it has not already been by some other absorption). A single
expansion is needed for the functions to take effect.

\use_i:nnnn {(argi)} {(arg:)} {(args)} {(args)}

These functions absorb four arguments from the input stream. The function \use_-
i:nnnn discards the second, third and fourth arguments, and leaves the content of the
first argument in the input stream. \use_ii:nnnn, \use_iii:nnnn and \use_iv:nnnn
work similarly, leaving the content of second, third or fourth arguments in the input
stream, respectively. The category code of these tokens will also be fixed (if it has not
already been by some other absorption). A single expansion is needed for the functions
to take effect.

\use_i_ii:nnn {(argi)} {(arg:)} {(args)}

This functions will absorb three arguments and leave the content of the first and second
in the input stream. The category code of these tokens will also be fixed (if it has not
already been by some other absorption). A single expansion is needed for the functions
to take effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
will result in the input stream containing
abc { def }

i.e. the outer braces will be removed and the third group will be removed.

\use_none:n {(group:)}

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

17

\use:x \use:x {(expandable tokens)}

Updated: 2011-12-31 Fully

expands the (expandable tokens) and inserts the result into the input stream at the

current location. Any hash characters (#) in the argument must be doubled.

4.1

Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q_nil:w * \use_none_delimit_by_q_nil:w (balanced text) \q_nil

\use_none_delimit_by_q_stop

W * \use_none_delimit_by_q_stop:w (balanced text) \gq_stop

\use_none_delimit_by_q_recursion_stop:w * \use_none_delimit_by_q_recursion_stop:w (balanced text)

\q_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.

\use_i_delimit_by_q_nil:nw
\use_i_delimit_by_q_stop:nw

% \use_i_delimit_by_q_nil:nw {(inserted tokens)} (balanced text)
* \q_nil

\use_i_delimit_by_q_recursion_stop:nw * \use_i_delimit_by_q_stop:nw {(inserted tokens)} (balanced

text) \g_stop
\use_i_delimit_by_q_recursion_stop:nw {(inserted tokens)}
(balanced text) \g_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

5

Predicates and conditionals

I¥TEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending

on its result, either the code supplied as the (true code) or the (false code). These
arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abcl} {(true code)} {(false code)}

a function that will turn the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carry out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it will usually be accompanied by T and F functions as well. These are
provided for convenience when the branch only needs to go a single way. Package
writers are free to choose which types to define but the kernel definitions will always
provide all three versions.

Important to note is that these branching conditionals with (frue code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they will be accompanied by a “predicate” for the same test as described
below.

18

Predicates “Predicates” are functions that return a special type of boolean value which
can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {(false code)}

For each predicate defined, a “branching conditional” will also exist that behaves
like a conditional described above.

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and BTEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

\c_true_bool Constants that represent true and false, respectively. Used to implement predicates.
\c_false_bool

5.1 Tests on control sequences

\cs_if_eq_p:NN x \cs_if_eq_p:NN {(cs1)} {(cs2)}
\cs_if_eq:NNTF x \cs_if_eq:NNTF {(cs1)} {(cs2)} {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true if they are the
same, i.e. if they have exactly the same definition when examined with \cs_show:N.

\cs_if_exist_p:N x \cs_if_exist_p:N (control sequence)
:c % \cs_if_exist:NTF (control sequence) {(true code)} {(false code)}
\cs_if_exist:NTF x T . .
: ests whether the (control sequence) is currently defined (whether as a function or another
roIF * control sequence type). Any valid definition of (control sequence) will evaluate as true.
\cs_if_free_p:N x \cs_if_free_p:N (control sequence)
:c % \cs_if_free:NTF (control sequence) {{true code)} {(false code)}
\cs_if_free:NTF x T . . .
Corp . Tests whether the (control sequence) is currently free to be defined. This test will be

false if the (control sequence) currently exists (as defined by \cs_if_exist:N).

19

\if_true: *
\if_false: *
\else: *
\fi: *
\reverse_if:N *

\if _meaning:w *

\if:w *
\if_charcode:w
\if_catcode:w *

*

*

\if_cs_exist:N
\if_cs_exist:w *

\if_mode_horizontal:
\if _mode_vertical:
\if_mode_math:
\if_mode_inner:

5.2 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions will
often contain a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if _int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We will prefix primitive conditionals with \if_.

\if_true: (true code) \else: (false code) \fi:
\if_false: (true code) \else: (false code) \fi:
\reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false code).
\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. The function \or: is documented in 13int and used in
case switches.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is e-TEX’s \unless

\if_meaning:w (argi) (arge) (true code) \else: (false code) \fi:

\if_meaning:w executes (true code) when (arg;) and (arge) are the same, otherwise it
executes (false code). (arg;) and (arge) could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TEXhackers note: This is TEX’s \ifx.

\if:w (tokeni) (tokenz) (true code) \else: (false code) \fi:
\if _catcode:w (token;) (tokens) (true code) \else: (false code) \fi:

These conditionals will expand any following tokens until two unexpandable tokens are
left. If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if_catcode:w tests if the category codes of the two tokens are the same whereas \if :w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if :w.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:
\if _cs_exist:w (tokens) \cs_end: (true code) \else: (false code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

\if_mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Sim-
ilar for the other functions.

20

__chk_if_exist_cs:N

__chk_if_ free_cs:N

__chk_if_exist_var:N

__chk_log:x

__chk_suspend_log:
__chk_resume_log:

__cs_count_signature:N *
Cok
__cs_split_function:NN «

6 Internal kernel functions

__chk_if_exist_cs:N (cs)

This function checks that (cs) exists according to the criteria for \cs_if_exist_p:N, and
if not raises a kernel-level error.

__chk_if_free_cs:N (cs)

This function checks that (cs) is free according to the criteria for \cs_if_free_p:N, and
if not raises a kernel-level error.

__chk_if_exist_var:N (var)

This function checks that (var) is defined according to the criteria for \cs_if_free_p:N,
and if not raises a kernel-level error. This function is only created if the package option
check-declarations is active.

__chk_log:x {(message text)}

If the log-functions option is active, this function writes the (message text) to the log
file using \iow_log:x. Otherwise, the (message text) is ignored using \use_none:n.

__chk_suspend_log: ... __chk_log:x ... __chk_resume_log:

Any __chk_log:x command between __chk_suspend_log: and __chk_resume_log:
is suppressed. These commands can be nested.

\

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (number) of tokens in the (signature) is then left in the input
stream. If there was no (signature) then the result is the marker value —1.

cs_count_signature:N (function)

\

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). This information is then placed in the input stream after the
(processor) function in three parts: the (name), the (signature) and a logic token indi-
cating if a colon was found (to differentiate variables from function names). The (name)
will not include the escape character, and both the (name) and (signature) are made
up of tokens with category code 12 (other). The (processor) should be a function with
argument specification :nnN (plus any trailing arguments needed).

cs_split_function:NN (function) (processor)

__cs_get_function_name:N % __cs_get_function_name:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (name) is then left in the input stream without the escape
character present made up of tokens with category code 12 (other).

__cs_get_function_signature:N % __cs_get_function_signature:N <function>

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (signature) is then left in the input stream made up of tokens
with category code 12 (other).

21

__cs_tmp:w

__kernel_register_show:N
]

__kernel_register_log:N
:c

Updated: 2015-08-03

__prg_case_end:nw *

Function used for various short-term usages, for instance defining functions whose defini-
tion involves tokens which are hard to insert normally (spaces, characters with category
other).

__kernel _register_show:N (register)

Used to show the contents of a TEX register at the terminal, formatted such that internal
parts of the mechanism are not visible.

__kernel _register_log:N (register)

Used to write the contents of a TEX register to the log file in a form similar to __-
kernel_register_show:N.

__prg_case_end:nw {(code)} (tokens) \q_mark {(true code)} \q_mark {(false code)}
\q_stop

Used to terminate case statements (\int_case:nnTF, etc.) by removing trailing (tokens)
and the end marker \q_stop, inserting the (code) for the successful case (if one is found)
and either the true code or false code for the over all outcome, as appropriate.

22

Part V
The 13expan package
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the I¥TEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions from the \exp_ mod-
ule. They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo will expand the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
\1_tmpa_tl

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_generate_variant:Nn \seq_gpush:Nn { No }
results in the definition of \seq_gpush:No
\cs_new:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is uncritical as the \cs_generate_variant:Nn
function will only create new definitions if there is not already one available. Therefore
adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

23

\cs_generate_variant:Nn

Updated: 2015-08-06

2 Methods for defining variants

\cs_generate_variant:Nn (parent control sequence) {(variant argument specifiers)}

This function is used to define argument-specifier variants of the (parent control sequence)
for I¥TEX3 code-level macros. The (parent control sequence) is first separated into the
(base name) and (original argument specifier). The comma-separated list of (variant
argument specifiers) is then used to define variants of the (original argument specifier)
where these are not already defined. For each (variant) given, a function is created which
will expand its arguments as detailed and pass them to the (parent control sequence). So
for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { ¢ }

will create a new function \foo:cn which will expand its first argument into a control
sequence name and pass the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

would generate the functions \foo:NV and \foo:cV in the same way. The \cs_-
generate_variant:Nn function can only be applied if the (parent control sequence) is
already defined. Only n and N arguments can be changed to other types. If the (parent
control sequence) is protected or if the (variant) involves x arguments, then the (variant
control sequence) will also be protected. The (variant) is created globally, as is any
\exp_args:N(variant) function needed to carry out the expansion.

3 Introducing the variants

The available internal functions for argument expansion come in two flavours, some of
them are faster then others. Therefore (when speed is important) it is usually best to
follow the following guidelines when defining new functions that are supposed to come
with variant forms:

e Arguments that might need expansion should come first in the list of arguments to
make processing faster.

o Arguments that should consist of single tokens should come first.

o Arguments that need full expansion (i.e., are denoted with x) should be avoided if
possible as they can not be processed expandably, i.e., functions of this type will
not work correctly in arguments that are themselves subject to x expansion.

e In general, unless in the last position, multi-token arguments n, £, and o will need
special processing when more than one argument is being expanded. This special
processing is not fast. Therefore it is best to use the optimized functions, namely
those that contain only N, ¢, V, and v, and, in the last position, o, f, with possible
trailing N or n, which are not expanded.

The V type returns the value of a register, which can be one of t1, int, skip, dim,
toks, or built-in TEX registers. The v type is the same except it first creates a control
sequence out of its argument before returning the value.

24

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only
when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The £ type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and £-
expansion provides an alternative that expands as much as can be done in such contexts.
For instance, say that we want to evaluate the integer expression 3+4 and pass the result
7 as an argument to an expandable function \example:n. For this, one should define a
variant using \cs_generate_variant:Nn \example:n { f }, then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }

will result in the call \example:n { 3 , \int_eval:n { 3 + 4 } } while using \example:x
instead results in \example:n { 3 , 7 } at the cost of being protected. If you use this
type of expansion in conditional processing then you should stick to using TF type func-
tions only as it does not try to finish any \if... \fi: itself!

If is important to note that both f- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the emphfirst non-expandable token. This
means for example that both

\tl_set:No \1_tmpa_tl { { \g_tmpb_tl } }
and
\tl_set:Nf \1_tmpa_tl { { \g_tmpb_tl } }

leave \g_tmpb_t1 unchanged: { is the first token in the argument and is non-expandable.

4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

25

\exp_args:No *

\exp_args:Nc *
\exp_args:cc *

\exp_args:NV «*

\exp_args:Nv *

\exp_args:Nf

\exp_args:Nx

\exp_args:No (function) {(tokens)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded once, and the result is inserted in braces into the input stream af-
ter reinsertion of the (function). Thus the (function) may take more than one argument:
all others will be left unchanged.

\exp_args:Nc (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. (An internal error will occur if such a conversion is not possible). The
result is inserted into the input stream after reinsertion of the (function). Thus the
(function) may take more than one argument: all others will be left unchanged.

The :cc variant constructs the (function) name in the same manner as described for
the (tokens).

\exp_args:NV (function) (variable)

This function absorbs two arguments (the names of the (function) and the (variable)).
The content of the (variable) are recovered and placed inside braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one argument:
all others will be left unchanged.

\exp_args:Nv (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. (An internal error will occur if such a conversion is not possible). This
control sequence should be the name of a (variable). The content of the (variable) are re-
covered and placed inside braces into the input stream after reinsertion of the (function).
Thus the {function) may take more than one argument: all others will be left unchanged.

\exp_args:Nf (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are fully expanded until the first non-expandable token or space is found, and
the result is inserted in braces into the input stream after reinsertion of the (function).
Thus the (function) may take more than one argument: all others will be left unchanged.

\exp_args:Nx (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and ex-
haustively expands the (tokens) second. The result is inserted in braces into the input
stream after reinsertion of the (function). Thus the (function) may take more than one
argument: all others will be left unchanged.

26

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNo
NNc
NNv
NNV
NN
Nco
Ncf
Ncc
NVV

b S S S S S S I 3

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

Nno
NnV
Nnf
Noo
Nof
Noc
Nff
Nfo
Nnc

b S S R R e I

Updated: 20

12-01-14

\exp_args:NNx
\exp_args:Nnx
\exp_args:Ncx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNo
NNNV
Nccc
NcNc
NcNo
Ncco

L D S S

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNoo
NNno
Nnno
Nnnc
Nooo

* ok o A F

5 Manipulating two arguments

\exp_args:NNc (tokeni) (tokens) {(tokens)}

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Noo (token) {(tokensi)} {(tokenssz)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions need special (slower) processing.

\exp_args:NNx (tokeni) (tokens) {(tokens)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable.

6 Manipulating three arguments

\exp_args:NNNo (tokeni) (token:) (tokens) {(tokens)}

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

\exp_args:NNoo (token:) (tokens) {(tokens)} {(tokens)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc. These
functions need special (slower) processing.

27

\exp_args:NNNx
\exp_args:NNnx
\exp_args:NNox
\exp_args:Nnnx
\exp_args:Nnox
\exp_args:Noox
\exp_args:Ncnx
\exp_args:Nccx

New: 2015-08-12

\exp_args:NNnx (token:) (tokenz) {(tokensi)} {(tokensi)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

7 Unbraced expansion

\exp_last_unbraced:NV

: (N£|No|Nv)

\exp_last_unbraced:Nco

: (NcV|NNV|NNo)

\exp_last_unbraced:Nno

:(Noo|Nfo)
\exp_last_unbraced:NNNV

:NNNo
\exp_last_unbraced:NnNo

\exp_last_unbraced:Nno (token) (tokensi) (tokenss)

* Ok o b X ok X o X

Updated: 2012-02-12

\exp_last_unbraced:Nx

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, and :Nfo variants need
special (slower) processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \foo_bar:w { } \g_stop leads to an infinite loop, as the quark is f-
expanded.

\exp_last_unbraced:Nx (function) {(tokens)}

This functions fully expands the (tokens) and leaves the result in the input stream after
reinsertion of (function). This function is not expandable.

\exp_last_two_unbraced

:Noo * \exp_last_two_unbraced:Noo (token) (tokens:) {(tokensz)}

This function absorbs three arguments and expand the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

28

\exp_after:wN x

\exp_not:N *

\exp_not:c *

\exp_not:n *

\exp_not:V *

\exp_not:v *

\exp_after:wN (tokem) (tokens)

Carries out a single expansion of (tokens) (which may consume arguments) prior to
the expansion of (token;). If (tokens) is a TEX primitive, it will be executed rather
than expanded, while if (tokeny) has not expansion (for example, if it is a character)
then it will be left unchanged. It is important to notice that (token;) may be any single
token, including group-opening and -closing tokens ({ or } assuming normal TEX category
codes). Unless specifically required, expansion should be carried out using an appropriate
argument specifier variant or the appropriate \exp_arg:N function.

TEXhackers note: This is the TEX primitive \expandafter renamed.

8 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves will not appear after the expansion has completed.

\exp_not:N (token)
Prevents expansion of the (token) in a context where it would otherwise be expanded,

for example an x-type argument.

TEXhackers note: This is the TEX \noexpand primitive.

\exp_not:c {(tokens)}

Expands the (tokens) until only unexpandable content remains, and then converts this
into a control sequence. Further expansion of this control sequence is then inhibited.

\exp_not:n {(tokens)}
Prevents expansion of the (tokens) in a context where they would otherwise be expanded,

for example an x-type argument.

TgXhackers note: This is the e-TEX \unexpanded primitive. Hence its argument must
be surrounded by braces.

\exp_not:V (variable)

Recovers the content of the (variable), then prevents expansion of this material in a
context where it would otherwise be expanded, for example an x-type argument.

\exp_not:v {(tokens)}

Expands the (tokens) until only unexpandable content remains, and then converts this
into a control sequence (which should be a (variable) name). The content of the (variable)
is recovered, and further expansion is prevented in a context where it would otherwise
be expanded, for example an x-type argument.

29

\exp_not:o x \exp_not:o {(tokens)}

Expands the (tokens) once, then prevents any further expansion in a context where they
would otherwise be expanded, for example an x-type argument.

\exp_not:f * \exp_not:f {(tokens)}

Expands (tokens) fully until the first unexpandable token is found. Expansion then
stops, and the result of the expansion (including any tokens which were not expanded)
is protected from further expansion.

\exp_stop_f: x \foo_bar:f { (tokens) \exp_stop_f: (more tokens) }

Updated: 2011-06-03 This function terminates an f-type expansion. Thus if a function \foo_bar:f starts an

~ f-type expansion and all of (tokens) are expandable \exp_stop_f: will terminate the
expansion of tokens even if (more tokens) are also expandable. The function itself is an
implicit space token. Inside an x-type expansion, it will retain its form, but when typeset
it produces the underlying space ().

9 Controlled expansion

The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to
calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. You will find
these commands used throughout the kernel code, but we hope that outside the kernel
there will be little need to resort to them. Instead the argument manipulation methods
document above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to
expand several tokens in one go. The next set of commands provide this functionality.
Be aware that it is absolutely required that the programmer has full control over the
tokens to be expanded, i.e., it is not possible to use these functions to expand unknown
input as part of (expandable-tokens) as that will break badly if unexpandable tokens are
encountered in that place!

\exp:w * \exp:w (expandable-tokens) \exp_end:

w Expands (expandable-tokens) until reaching \exp_end: at which point expansion stops.

New: 2015-08-23 T'he full expansion of (expandable-tokens) has to be empty. If any token in (ezpandable-tokens)
or any token generated by expanding the tokens therein is not expandable the expansion
will end prematurely and as a result \exp_end: will be misinterpreted later on.>

In typical use cases the \exp_end: will be hidden somewhere in the replacement text
of {expandable-tokens) rather than being on the same expansion level than \exp:w, e.g.,
you may see code such as

\exp:w \@O_case:NnTF #1 {#2} { } { }

where somewhere during the expansion of \@@_case:NnTF the \exp_end: gets generated.

30

\exp:w *
\exp_end_continue_f:w *

New: 2015-08-23

\exp:w *
\exp_end_continue_f:nw *

New: 2015-08-23

\1__exp_internal_tl

\exp:w (expandable-tokens) \exp_end_continue_f:w (further-tokens)

Expands (ezpandable-tokens) until reaching \exp_end_continue_f :w at which point ex-
pansion continues as an f-type expansion expanding (further-tokens) until an unexpand-
able token is encountered (or the f-type expansion is explicitly terminated by \exp_-
stop_£f:). As with all f-type expansions a space ending the expansion will get removed.

The full expansion of (expandable-tokens) has to be empty. If any token in
(expandable-tokens) or any token generated by expanding the tokens therein is not ex-
pandable the expansion will end prematurely and as a result \exp_end_continue_f:w
will be misinterpreted later on.?

In typical use cases {expandable-tokens) contains no tokens at all, e.g., you will see
code such as

\exp_after:wN { \exp:w \exp_end_continue_f:w #2 }

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical
reasons this has to happen using two tokens (if they would be hidden inside another
command \exp_after:wN would only expand the command but not trigger any additional
f-expansion).

You might wonder why there are two different approaches available, after all the
effect of

\exp:w (expandable-tokens) \exp_end:
can be alternatively achieved through an f-type expansion by using \exp_stop_f:, i.e.
\exp:w \exp_end_continue_f:w (expandable-tokens) \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and
less expansion internally) so in places where such performance really matters and where
we want to explicitly stop the expansion at a defined point the first form is preferable.

\exp:w (expandable-tokens) \exp_end_continue_f:nw (further-tokens)

The difference to \exp_end_continue_f :w is that we first we pick up an argument which
is then returned to the input stream. If (further-tokens) starts with a brace group then
the braces are removed. If on the other hand it starts with space tokens then these space
tokens are removed while searching for the argument. Thus such space tokens will not
terminate the f-type expansion.

10 Internal functions and variables

The \exp_ module has its private variables to temporarily store results of the argument
expansion. This is done to avoid interference with other functions using temporary
variables.

2Due to the implementation you might get the character in position 0 in the current font (typically
“¢”) in the output without any error message!
3In this particular case you may get a character into the output as well as an error message.

31

PP A g G 4
S <d Mmoo ow =B

\cs_set:Npn \exp_args:Ncof { \::c \::o \::f \::: }

Internal forms for the base expansion types. These names do not conform to the general
XTREX3 approach as this makes them more readily visible in the log and so forth.

32

\tl_new:N

:C

\tl_const:Nn
: (Nx|cnlcx)

\tl_clear:N

:c
\tl_gclear:N
:c

Part VI
The 13tl package
Token lists

TEX works with tokens, and ITEX3 therefore provides a number of functions to deal with
lists of tokens. Token lists may be present directly in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored in a so-called “token list variable”, which have the suffix t1: a token
list variable can also be used as the argument to a function, for example

\foo:N \1_some_tl

In both cases, functions are available to test an manipulate the lists of tokens, and these
have the module prefix t1. In many cases, function which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”,
or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single
non-space token or a brace group, with optional leading explicit space characters (each
item is thus itself a token list). A token is either a normal N argument, or , {, or }
(assuming normal TEX category codes). Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, 1 and d), but thirteen tokens ({, H, e, 1, 1, o, },), w,
o, r, 1 and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

1 Creating and initialising token list variables

\tl_new:N (tl var)

Creates a new (tl var) or raises an error if the name is already taken. The declaration is
global. The (¢l var) will initially be empty.

\tl_const:Nn (t1 var) {(token list)}

Creates a new constant (¢l var) or raises an error if the name is already taken. The value
of the (¢l var) will be set globally to the (token list).

\tl_clear:N (tl var)

Clears all entries from the (t var).

33

\tl_clear_new:N

e
\tl_gclear_new:N
ic

\tl_set_eq:NN
:(cN|N¢|ec)
\tl_gset_eq:NN
: (cN|Nclcc)

\t1l_concat:NNN
iccc
\tl_gconcat :NNN
iccc

New: 2012-05-18

\tl_if_exist_p:N «*
ic oK
\tl_if_exist:NTF *
:cTF *

New: 2012-03-03

\tl_clear_new:N (tl var)

Ensures that the (¢l var) exists globally by applying \t1_new:N if necessary, then applies
\tl_(g)clear:N to leave the (¢ var) empty.

\tl_set_eq:NN (tl1 var;) (tl vars)

Sets the content of (¢l var;) equal to that of (tl vars).

\tl_concat:NNN (tl1 vari) (tl vars) (tl vars)

Concatenates the content of (tl vary) and (¢l vars) together and saves the result in
(tl vary). The (#l vary) will be placed at the left side of the new token list.

\tl_if_exist_p:N (tl var)
\tl_if_exist:NTF (tl var) {(true code)} {(false code)}

Tests whether the (tl var) is currently defined. This does not check that the (¢ var)
really is a token list variable.

2 Adding data to token list variables

\tl_set:Nn

\tl_set:Nn (tl var) {(tokens)}

: (NV|Nv|No|Nf |Nx|cn|cV|cv|co|cf|cx)

\tl_gset:Nn

: (NV|Nv|No|Nf|Nx|cn|cV|cv|co|cE|cx)

Sets (tl var) to contain (tokens), removing any previous content from the variable.

\tl_put_left:Nn

\tl_put_left:Nn (tl1 var) {(tokens)}

: (NV|No|Nx|cn|cV|co|cx)

\tl_gput_left:Nn

: (NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the left side of the current content of (¢ var).

\tl_put_right:Nn

\tl_put_right:Nn (tl1 var) {(tokens)}

: (NV|No|Nx|cn|cV|co|cx)

\tl_gput_right:Nn

: (NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the right side of the current content of (¢ var).

34

\tl_replace_once:Nnn

:cnn
\tl_greplace_once:Nnn
:cnn

Updated: 2011-08-11

\tl_replace_all:Nnn

:cnn
\tl_greplace_all:Nnn
:cnn

Updated: 2011-08-11

\tl_remove_once:Nn

icn
\tl_gremove_once:Nn
:cn

Updated: 2011-08-11

\tl_remove_all:Nn

:cn
\tl_gremove_all:Nn
:cn

Updated: 2011-08-11

3 Modifying token list variables

\tl_replace_once:Nnn (tl1 var) {(old tokens)} {(new tokens)}

Replaces the first (leftmost) occurrence of (old tokens) in the (tl var) with (new tokens).
(Old tokens) cannot contain {, } or # (more precisely, explicit character tokens with
category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_replace_all:Nnn (tl var) {(old tokens)} {(new tokens)}

Replaces all occurrences of (old tokens) in the (] var) with (new tokens). (Old tokens)
cannot contain {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function
operates from left to right, the pattern (old tokens) may remain after the replacement
(see \t1l_remove_all:Nn for an example).

\tl_remove_once:Nn (t1 var) {(tokens)}

Removes the first (leftmost) occurrence of (tokens) from the (¢ var). (Tokens) cannot
contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_remove_all:Nn (tl1 var) {(tokens)}

Removes all occurrences of (tokens) from the (¢ var). (Tokens) cannot contain {, } or #
(more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-
group), and tokens with category code 6). As this function operates from left to right,
the pattern (tokens) may remain after the removal, for instance,

\tl_set:Nn \1_tmpa_t1l {abbccd} \tl_remove_all:Nn \1_tmpa_t1l {bc}

will result in \1_tmpa_t1 containing abcd.

4 Reassigning token list category codes

These functions allow the rescanning of tokens: re-apply TEX'’s tokenization process to
apply category codes different from those in force when the tokens were absorbed. Whilst
this functionality is supported, it is often preferable to find alternative approaches to
achieving outcomes rather than rescanning tokens (for example construction of token
lists token-by-token with intervening category code changes).

35

\tl_set_rescan:Nnn

\tl_set_rescan:Nnn (t1 var) {(setup)} {(tokens)}

: (Nno|Nnx|cnn|cno|cnx)

\tl_gset_rescan:Nnn

: (Nno|Nnx|cnn|cno|cnx)

Updated: 2015-08-11

\tl_rescan:nn

Updated: 2015-08-11

\tl_if_blank_p:n
:(V]o)

\tl_if_blank:nTF
:(V|o)TF

* ok A

Sets (tl var) to contain (tokens), applying the category code régime specified in the (setup)
before carrying out the assignment. (Category codes applied to tokens not explicitly
covered by the (setup) will be those in force at the point of use of \t1_set_rescan:Nnn.)
This allows the (# var) to contain material with category codes other than those that
apply when (tokens) are absorbed. The (setup) is run within a group and may contain
any valid input, although only changes in category codes are relevant. See also \tl_-
rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \tl_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file. Only the case of a single line is supported in LuaTgX because
of a bug in this engine.

\tl_rescan:nn {(setup)} {(tokens)}

Rescans (tokens) applying the category code régime specified in the (setup), and leaves
the resulting tokens in the input stream. (Category codes applied to tokens not explicitly
covered by the (setup) will be those in force at the point of use of \t1_rescan:nn.) The
(setup) is run within a group and may contain any valid input, although only changes in
category codes are relevant. See also \t1l_set_rescan:Nnn, which is more robust than
using \t1l_set:Nn in the (tokens) argument of \t1_rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \t1l_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file. Only the case of a single line is supported in LuaTEX because
of a bug in this engine.

5 Token list conditionals

\tl_if_blank_p:n {(token list)}
\tl_if_blank:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) consists only of blank spaces (i.e. contains no item). The test is
true if (token list) is zero or more explicit space characters (explicit tokens with character
code 32 and category code 10), and is false otherwise.

36

\tl_if_empty_p:N
H
\tl_if_empty:NTF
:cTF

* o ot

\tl_if_empty_p:n
:(V]o)

\tl_if_empty:nTF
:(V|o)TF

*
*
*
*

New: 2012-05-24
Updated: 2012-06-05

\tl_if_eq_p:NN
:(Nc|eNlce)

\tl_if_eq:NNTF
: (Nc|cN|ce)TF

b S S

\tl_if_eq:nnTF

\tl_if_in:NnTF
:cnTF

\tl_if_in:nnTF
:(Vn|on|no)TF

\tl_if_single_p:N
e
\tl_if_single:NTF

*
*
*

:cTF %

Updated: 2011-08-13

\tl_if_empty_p:N (t1 var)
\tl_if_empty:NTF (tl var) {(true code)} {(false code)}

Tests if the (token list variable) is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:n {(token list)}
\tl_if_empty:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) is entirely empty (i.e. contains no tokens at all).

\tl_if_eq_p:NN (tl1 var;) (tl varp)

\tl_if_eq:NNTF (t1 vari) (tl vars) {(true code)} {(false code)}

Compares the content of two (token list variables) and is logically true if the two contain
the same list of tokens (i.e. identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \1_tmpa_tl { abc }
\tl_set:Nx \1_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NNTF \1_tmpa_tl \1_tmpb_tl { true } { false }

yields false.

\tl_if_eq:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token list;) and (token listy) contain the same list of tokens, both in respect of
character codes and category codes.

\tl_if_in:NnTF (t1 var) {(token list)} {(true code)} {(false code)}

Tests if the (token list) is found in the content of the (¢l var). The (token list) cannot
contain the tokens {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token listy) is found inside (token list;). The (token listy) cannot contain the
tokens {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_if_single_p:N (tl var)

\tl_if_single:NTF (t1 var) {(true code)} {(false code)}

Tests if the content of the (¢ var) consists of a single item, i.e. is a single normal token
(neither an explicit space character nor a begin-group character) or a single brace group,
surrounded by optional spaces on both sides. In other words, such a token list has token
count 1 according to \tl_count:N.

37

\tl_if_single_p:n *
\tl_if_single:nTF *

Updated: 2011-08-13

\tl_case:Nn *
:cn K
\tl_case:NnTF *
:enTF %

New: 2013-07-24

o

\t1l_map_function:NN 3¢
:cN %

Updated: 2012-06-29

\tl_map_function:nN 3

Updated: 2012-06-29

\tl_map_inline:Nn
:cn

Updated: 2012-06-29

\tl_map_inline:nn

Updated: 2012-06-29

\tl_if_single_p:n {(token list)}

\tl_if_single:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) has exactly one item, i.e. is a single normal token (neither an
explicit space character nor a begin-group character) or a single brace group, surrounded
by optional spaces on both sides. In other words, such a token list has token count 1
according to \t1l_count:n.

\tl_case:NnTF (test token list variable)
{
(token list variable casei) {(code casei)}
(token list variable cases) {(code casez)}

(token list variable case,) {{code case,)}

}
{(true code)}
{(false code)}

This function compares the (test token list variable) in turn with each of the (token
list variable cases). If the two are equal (as described for \t1_if_eq:NNTF) then the
associated (code) is left in the input stream. If any of the cases are matched, the (true
code) is also inserted into the input stream (after the code for the appropriate case),
while if none match then the (false code) is inserted. The function \tl_case:Nn, which
does nothing if there is no match, is also available.

6 Mapping to token lists

\tl_map_function:NN (tl1 var) (function)

Applies (function) to every (item) in the (tl var). The (function) will receive one ar-
gument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:nN.

\tl_map_function:nN (token list) (function)

Applies (function) to every (item) in the (token list), The (function) will receive one
argument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:NN.

\tl_map_inline:Nn (t1 var) {(inline function)}

Applies the (inline function) to every (item) stored within the (¢l var). The (inline
function) should consist of code which will receive the (item) as #1. One in line mapping
can be nested inside another. See also \t1_map_function:NN.

\tl_map_inline:nn (token list) {(inline function)}

Applies the (inline function) to every (item) stored within the (token list). The (inline
function) should consist of code which will receive the (item) as #1. One in line mapping
can be nested inside another. See also \t1_map_function:nN.

38

\tl_map_variable:NNn \tl_map_variable:NNn (tl var) (variable) {(function)}

clin Applies the (function) to every (item) stored within the (tl var). The (function) should

Updated: 2012-06-29 consist of code which will receive the (item) stored in the (variable). One variable map-
ping can be nested inside another. See also \t1_map_inline:Nn.

\tl_map_variable:nNn \tl_map_variable:nNn (token list) (variable) {(function)}

Updated: 2012-06-29 Applies the (function) to every (item) stored within the (token list). The (function)
should consist of code which will receive the (item) stored in the (variable). One variable
mapping can be nested inside another. See also \t1l_map_inline:nn.

\tl_map_break: 3 \tl_map_break:

Updated: 2012-06-29 Used to terminate a \tl_map_. .. function before all entries in the (token list variable)
have been processed. This will normally take place within a conditional statement, for
example

\tl_map_inline:Nn \1l_my_tl
{
\str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
% Do something useful

}

See also \t1_map_break:n. Use outside of a \t1_map_... scenario will lead to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the (tokens) are inserted into the input stream.
This will depend on the design of the mapping function.

\tl_map_break:n ¥ \tl_map_break:n {(tokens)}

Updated: 2012-06-29 Used to terminate a \t1_map_... function before all entries in the (token list variable)
have been processed, inserting the (tokens) after the mapping has ended. This will
normally take place within a conditional statement, for example

\tl_map_inline:Nn \1l_my_tl
{
\str_if_eq:nnT { #1 } { bingo }
{ \tl_map_break:n { <tokens> } }
% Do something useful

}
Use outside of a \t1_map_. .. scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the (tokens) are inserted into the input stream.
This will depend on the design of the mapping function.

39

\tl_to_str:n *

\tl_to_str:N =%
ic %

\tl_use:N x

ic %
\tl_count:n *
:(V|o) *

New: 2012-05-13

7 Using token lists

\tl_to_str:n {(token list)}

Converts the (token list) to a (string), leaving the resulting character tokens in the input
stream. A (string) is a series of tokens with category code 12 (other) with the exception
of spaces, which retain category code 10 (space).

TgEXhackers note: Converting a (token list) to a (string) yields a concatenation of the
string representations of every token in the (token list). The string representation of a control
sequence is

o an escape character, whose character code is given by the internal parameter \escapechar,
absent if the \escapechar is negative or greater than the largest character code;

o the control sequence name, as defined by \cs_to_str:N;

e a space, unless the control sequence name is a single character whose category at the time
of expansion of \t1_to_str:n is not “letter”.

The string representation of an explicit character token is that character, doubled in the case
of (explicit) macro parameter characters (normally #). In particular, the string representation
of a token list may depend on the category codes in effect when it is evaluated, and the value
of the \escapechar: for instance \tl_to_str:n {\a} normally produces the three character
“backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the
escape character is negative and a is currently not a letter.

\tl_to_str:N (tl1 var)

Converts the content of the (¢l var) into a series of characters with category code 12
(other) with the exception of spaces, which retain category code 10 (space). This (string)
is then left in the input stream. For low-level details, see the notes given for \t1l_to_-
str:n.

\tl_use:N (tl var)

Recovers the content of a (tl var) and places it directly in the input stream. An error
will be raised if the variable does not exist or if it is invalid. Note that it is possible to
use a (tl var) directly without an accessor function.

8 Working with the content of token lists

\tl_count:n {(tokens)}

Counts the number of (items) in (tokens) and leaves this information in the input stream.
Unbraced tokens count as one element as do each token group ({...2}). This process will
ignore any unprotected spaces within (tokens). See also \tl_count:N. This function
requires three expansions, giving an (integer denotation,).

40

\tl_count:N *
icox

New: 2012-05-13

\tl_reverse:n *
:(V|o) *

Updated: 2012-01-08

\tl_reverse:N

e
\tl_greverse:N
:c

Updated: 2012-01-08

\tl_reverse_items:n *

New: 2012-01-08

\tl_trim_spaces:n *

New: 2011-07-09
Updated: 2012-06-25

\tl_trim_spaces:N

:c
\tl_gtrim_spaces:N
e

New: 2011-07-09

\tl_count:N (tl1 var)

Counts the number of token groups in the (¢l var) and leaves this information in the
input stream. Unbraced tokens count as one element as do each token group ({...}).
This process will ignore any unprotected spaces within the (¢ var). See also \t1_count:n.
This function requires three expansions, giving an (integer denotation).

\tl_reverse:n {(token list)}

Reverses the order of the (items) in the (token list), so that (itemy)(items) (items)
... (itemy,) becomes (item,,). .. (itemg){items){item;). This process will preserve unpro-
tected space within the (token list). Tokens are not reversed within braced token groups,
which keep their outer set of braces. In situations where performance is important,
consider \tl_reverse_items:n. See also \tl_reverse:N.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list will not expand further when appearing in an x-type argument expansion.

\tl_reverse:N (tl1 var)

Reverses the order of the (items) stored in (tl wvar), so that (item){itemz)(items)
... (itemy,) becomes (item,,). .. (items)(items)(item;). This process will preserve unpro-
tected spaces within the (token list variable). Braced token groups are copied without
reversing the order of tokens, but keep the outer set of braces. See also \t1_reverse:n,
and, for improved performance, \t1l_reverse_items:n.

\tl_reverse_items:n {(token list)}

Reverses the order of the (items) stored in (tl var), so that {(item) (itemsa) I (items)}
... {(item,)} becomes {(item,)} ... {(items)}{(itemo)}{(item1)}. This process will
remove any unprotected space within the (token list). Braced token groups are copied
without reversing the order of tokens, and keep the outer set of braces. Items which are
initially not braced are copied with braces in the result. In cases where preserving spaces
is important, consider the slower function \t1l_reverse:n.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list will not expand further when appearing in an x-type argument expansion.

\tl_trim_spaces:n {(token list)}

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and leaves the result in the input
stream.

TgXhackers note: The result is returned within \unexpanded, which means that the
token list will not expand further when appearing in an x-type argument expansion.

\tl_trim_spaces:N (tl1 var)

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the content of the (¢l var). Note that this therefore
resets the content of the variable.

41

\tl_sort:Nn

icn
\tl_gsort:Nn
icn

New: 2017-02-06

\tl_sort:nN *

New: 2017-02-06

\tl_head:N *
\tl_head:n *
((Vlv|E) *

Updated: 2012-09-09

\tl_sort:Nn (tl1 var) {(comparison code)}

Sorts the items in the (¢ var) according to the (comparison code), and assigns the result
to (¢l var). The details of sorting comparison are described in Section 1.

\tl_sort:nN {(token list)} (conditional)

Sorts the items in the (token list), using the (conditional) to compare items, and leaves
the result in the input stream. The (conditional) should have signature :nnTF, and return
true if the two items being compared should be left in the same order, and false if the
items should be swapped. The details of sorting comparison are described in Section 1.

TEXhackers note: The result is returned within \exp_not :n, which means that the token
list will not expand further when appearing in an x-type argument expansion.

9 The first token from a token list

Functions which deal with either only the very first item (balanced text or single normal
token) in a token list, or the remaining tokens.

\tl_head:n {(token list)}

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded; for example

\tl_head:n { abc }
and
\tl_head:n { ~ abc }

will both leave a in the input stream. If the “head” is a brace group, rather than a single
token, the braces will be removed, and so

\tl_head:n { ~ { ~ab } c }

yields ab. A blank (token list) (see \t1_if_blank:nTF) will result in \t1_head:n leaving
nothing in the input stream.

TgXhackers note: The result is returned within \exp_not:n, which means that the token
list will not expand further when appearing in an x-type argument expansion.

42

\tl_head:w x \tl_head:w (token list) { } \g_stop

Leaves in the input stream the first (item) in the (token list), discarding the rest of
the (token list). All leading explicit space characters (explicit tokens with character
code 32 and category code 10) are discarded. A blank (token list) (which consists only
of space characters) will result in a low-level TEX error, which may be avoided by the
inclusion of an empty group in the input (as shown), without the need for an explicit
test. Alternatively, \t1_if_blank:nF may be used to avoid using the function with a
“blank” argument. This function requires only a single expansion, and thus is suitable
for use within an o-type expansion. In general, \t1_head:n should be preferred if the
number of expansions is not critical.

\tl_tail:N * \tl_tail:n {(token list)}
\tl_tail:n *

(Vlv]E) « Discards all leading explicit space characters (explicit tokens with character code 32 and

category code 10) and the first (item) in the (token list), and leaves the remaining tokens
Updated: 2012-09-01 ip the input stream. Thus for example

\tl_tail:n { a ~ {bc} 4 }
and
\tl_tail:n { ~ a ~ {bc} d }

will both leave ,{bc}d in the input stream. A blank (token list) (see \t1_if_blank:nTF)
will result in \t1_tail:n leaving nothing in the input stream.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list will not expand further when appearing in an x-type argument expansion.

\tl_if_head_eq_catcode_p:nN * \tl_if_head_eq_catcode_p:nN {(token list)
\tl_if_head_eq_catcode:nNTF x \tl_if_head_eq_catcode:nNTF {(token list)
{(true code)} {(false code)}

(test token)

}
} (test token)

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same category code as the (test token).
In the case where the (token list) is empty, the test will always be false.

\tl_if_head_eq_charcode_p:nN \tl_if_head_eq_charcode_p:nN {(token list)

* (test token)
:fN % \tl_if_head_eq_charcode:nNTF {(token list)

*

*

}
} (test token)
\tl_if_head_eq_charcode:nNTF {(true code)} {(false code)}

ENTF

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same character code as the (test token).
In the case where the (token list) is empty, the test will always be false.

\tl_if_head_eq_meaning_p:nN + \tl_if_head_eq_meaning_p:nN {(token list)} (test token)
\tl_if_head_eq_meaning:nNTF * \tl_if_head_eq_meaning:nNTF {(token list)} (test token)
{(true code)} {(false code)}

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same meaning as the (test token). In
the case where (token list) is empty, the test will always be false.

43

\tl_if_head_is_group_p:n *
\tl_if_head_is_group:nTF *

New: 2012-07-08

\tl_if_head_is_group_p:n {(token list)}

\tl_if_head_is_group:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit begin-group character (with
category code 1 and any character code), in other words, if the (token list) starts with a
brace group. In particular, the test is false if the (token list) starts with an implicit token
such as \c_group_begin_token, or if it is empty. This function is useful to implement
actions on token lists on a token by token basis.

\tl_if_head_is_N_type_p:n % \tl_if_head_is_N_type_p:n {(token list)}
\tl_if_head_is_N_type:nTF * \tl_if_head_is_N_type:nTF {(token 1list)} {(true code)} {(false code)}

New: 2012-07-08

\tl_if_head_is_space_p:n *
\tl_if_head_is_space:nTF *

Updated: 2012-07-08

\tl_item:nn *
\tl_item:Nn *
icn o+

New: 2014-07-17

\tl_show:N
:c

Updated: 2015-08-01

Tests if the first (token) in the (token list) is a normal N-type argument. In other words, it
is neither an explicit space character (explicit token with character code 32 and category
code 10) nor an explicit begin-group character (with category code 1 and any character
code). An empty argument yields false, as it does not have a “normal” first token. This
function is useful to implement actions on token lists on a token by token basis.

\tl_if_head_is_space_p:n {(token list)}
\tl_if_head_is_space:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit space character (explicit token
with character code 12 and category code 10). In particular, the test is false if the
(token list) starts with an implicit token such as \c_space_token, or if it is empty. This
function is useful to implement actions on token lists on a token by token basis.

10 Using a single item

\tl_item:nn {(token list)} {(integer expression)}

Indexing items in the (token list) from 1 on the left, this function will evaluate the (integer
expression) and leave the appropriate item from the (t