
The expl3 package and LATEX3 programming∗

The LATEX3 Project†

Released 2012/08/29

Abstract
This document gives an introduction to a new set of programming conventions

that have been designed to meet the requirements of implementing large scale TEX
macro programming projects such as LATEX. These programming conventions are
the base layer of LATEX3.
The main features of the system described are:

• classification of the macros (or, in LATEX terminology, commands) into LATEX
functions and LATEX parameters, and also into modules containing related
commands;

• a systematic naming scheme based on these classifications;
• a simple mechanism for controlling the expansion of a function’s arguments.

This system is being used as the basis for TEX programming within the LATEX3
project. Note that the language is not intended for either document mark-up or
style specification. Instead, it is intended that such features will be built on top of
the conventions described here.
This document is an introduction to the ideas behind the expl3 programming inter-
face. For the complete documentation of the programming layer provided by the
LATEX3 Project, see the accompanying interface3 document.

1 Introduction
The first step to develop a LATEX kernel beyond LATEX2ε is to address how the underlying
system is programmed. Rather than the current mix of LATEX and TEX macros, the
LATEX3 system provides its own consistent interface to all of the functions needed to
control TEX. A key part of this work is to ensure that everything is documented, so that
LATEX programmers and users can work efficiently without needing to be familiar with
the internal nature of the kernel or with plain TEX.

The expl3 bundle provides this new programming interface for LATEX. To make
programming systematic, LATEX3 uses some very different conventions to LATEX2ε or
plain TEX. As a result, programmers starting with LATEX3 will need to become familiar
with the syntax of the new language.
∗This file describes v4160, last revised 2012/08/29.
†E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

The next section shows where this language fits into a complete TEX-based document
processing system. We then describe the major features of the syntactic structure of
command names, including the argument specification syntax used in function names.

The practical ideas behind this argument syntax will be explained, together with the
expansion control mechanism and the interface used to define variant forms of functions.

As we shall demonstrate, the use of a structured naming scheme and of variant forms
for functions greatly improves the readability of the code and hence also its reliability.
Moreover, experience has shown that the longer command names which result from the
new syntax do not make the process of writing code significantly harder.

2 Languages and interfaces
It is possible to identify several distinct languages related to the various interfaces that
are needed in a TEX-based document processing system. This section looks at those we
consider most important for the LATEX3 system.

Document mark-up This comprises those commands (often called tags) that are to
embedded in the document (the .tex file).
It is generally accepted that such mark-up should be essentially declarative. It may
be traditional TEX-based mark-up such as LATEX2ε, as described in [3] and [2], or
a mark-up language defined via html or xml.
One problem with more traditional TEX coding conventions (as described in [1])
is that the names and syntax of TEX’s primitive formatting commands are inge-
niously designed to be “natural” when used directly by the author as document
mark-up or in macros. Ironically, the ubiquity (and widely recognised superiority)
of logical mark-up has meant that such explicit formatting commands are almost
never needed in documents or in author-defined macros. Thus they are used al-
most exclusively by TEX programmers to define higher-level commands, and their
idiosyncratic syntax is not at all popular with this community. Moreover, many of
them have names that could be very useful as document mark-up tags were they
not pre-empted as primitives (e.g. \box or \special).

Designer interface This relates a (human) typographic designer’s specification for a
document to a program that “formats the document”. It should ideally use a
declarative language that facilitates expression of the relationship and spacing rules
specified for the layout of the various document elements.
This language is not embedded in document text and it will be very different in form
to the document mark-up language. For LATEX, this level was almost completely
missing from LATEX2.09; LATEX2ε made some improvements in this area but it is
still the case that implementing a design specification in LATEX requires far more
“low-level” coding than is acceptable.

Programmer interface This language is the implementation language within which
the basic typesetting functionality is implemented, building upon the primitives of
TEX (or a successor program). It may also be used to implement the previous two
languages “within” TEX, as in the current LATEX system.

2

The last layer is covered by the conventions described in this document, which de-
scribes a system aimed at providing a suitable basis for coding LATEX3. Its main distin-
guishing features are summarised here:

• A consistent naming scheme for all commands, including TEX primitives.

• The classification of commands as LATEX functions or LATEX parameters, and also
their division into modules according to their functionality.

• A simple mechanism for controlling argument expansion.

• Provision of a set of core LATEX functions that is sufficient for handling programming
constructs such as queues, sets, stacks, property lists.

• A TEX programming environment in which, for example, all white space is ignored.

3 The naming scheme
LATEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols
_ and : are used in internal macro names to provide structure. In contrast to the plain
TEX format and the LATEX2ε kernel, these extra letters are used only between parts of a
macro name (no strange vowel replacement).

While TEX is actually a macro processor, by convention for the expl3 programming
language we distinguish between functions and variables. Functions can have arguments
and they are either expanded or executed. Variables can be assigned values and they
are used in arguments to functions; they are not used directly but are manipulated
by functions (including getting and setting functions). Functions and variables with a
related functionality (for example accessing counters, or manipulating token lists, etc.)
are collected together into a module.

3.1 Examples
Before giving the details of the naming scheme, here are a few typical examples to indicate
the flavour of the scheme; first some variable names.

\l_tmpa_box is a local variable (hence the l_ prefix) corresponding to a box
register.
\g_tmpa_int is a global variable (hence the g_ prefix) corresponding to an
integer register (i.e. a TEX count register).
\c_empty_tl is the constant (c_) token list variable that is always empty.

Now here is an example of a typical function name.
\seq_push:Nn is the function which puts the token list specified by its second ar-

gument onto the stack specified by its first argument. The different natures of the two
arguments are indicated by the :Nn suffix. The first argument must be a single token
which “names” the stack parameter: such single-token arguments are denoted N. The
second argument is a normal TEX “undelimited argument”, which may either be a single
token or a balanced, brace-delimited token list (which we shall here call a braced token

3

list): the n denotes such a “normal” argument form. The name of the function indicates
it belongs to the seq module.

3.2 Formal naming syntax
We shall now look in more detail at the syntax of these names. A function name in
LATEX3 will have a name consisting of three parts:

\〈module〉_〈description〉:〈arg-spec〉

while a variable will have (up to) four distinct parts to its name:

\〈scope〉_〈module〉_〈description〉_〈type〉

The syntax of all names contains

〈module〉 and 〈description〉

these both give information about the command.
A module is a collection of closely related functions and variables. Typical module

names include int for integer parameters and related functions, seq for sequences and box
for boxes.

Packages providing new programming functionality will add new modules as needed;
the programmer can choose any unused name, consisting of letters only, for a module. In
general, the module name and module prefix should be related: for example, the kernel
module containing box functions is called l3box.

The description gives more detailed information about the function or parameter,
and provides a unique name for it. It should consist of letters and, possibly, _ characters.
In general, the description should use _ to divide up “words” or other easy to follow parts
of the name. For example, the LATEX3 kernel provides \if_cs_exist:N which, as might
be expected, tests if a command name exists.

Where functions for variable manipulation can perform assignments either locally
or globally, the latter case is indicated by the inclusion of a g in the second part of
the function name. Thus \tl_set:Nn is a local function but \tl_gset:Nn acts globally.
Functions of this type are always documented together, and the scope of action may
therefore be inferred from the presence or absence of a g. See the next subsection for
more detail on variable scope.

3.2.1 Separating private and public material

One of the issues with the TEX language is that it doesn’t support name spaces and
encapsulation other than by convention. As a result nearly every internal command in
the LATEX2ε kernel has eventually be used by extension packages as an entry point for
modifications or extensions. The consequences of this is that nowadays it is next to
impossible to change anything in the LATEX2ε kernel (even if it is clearly just an internal
command) without breaking something.

In expl3 we hope to improve this situation drastically by clearly separating pub-
lic interfaces (that extension packages can use and rely on) and private functions and

4

variables (that should not appear outside of their module). There is (nearly) no way
to enforce this without severe computing overhead, so we implement it only through a
naming convention, and some support mechanisms. However, we think that this naming
convention is easy to understand and to follow, so that we are confident that this will
adopted and provides the desired results.

Functions created by a module may either be “public” (documented with a defined
interface) or “private” (to be used only within that module, and thus not formally doc-
umented). It is important that only documented interfaces are used; at the same time,
it is necessary to show within the name of a function or variable whether it is public or
private.

To allow clear separation of these two cases, the following convention is used. Private
functions should be defined with __ added to the beginning of the module name. Thus

\module_foo:nnn

is a public function which should be documented while

__module_foo:nnn

is private to the module, and should not be used outside of that module.
In the same way, private variables should use two __ at the start of the module

name, such that

\l_module_foo_tl

is a public variable and

\l__module_foo_tl

is private.

3.2.2 Using @@ and l3docstrip to mark private code

The formal syntax for internal functions allows clear separation of public and private
code, but includes redundant information (every internal function or variable includes
__〈module〉). To aid programmers, the l3docstrip program introduces the syntax

%<@@=〈module〉>

which then allows @@ (and _@@ in case of variables) to be used as a place holder for
__〈module〉 in code. Thus for example

%<@@=foo>
% \begin{macrocode}
\cs_new:Npn \@@_function:n #1

...
\tl_new:N \l_@@_my_tl
% \end{macrocode}

will be converted by l3docstrip to

5

\cs_new:Npn __foo_function:n #1
...

\tl_new:N \l__foo_my_tl

on extraction. As you can see both _@@ and @@ are mapped to __〈module〉, because we
think that this helps to distinguish variables from functions in the source when the @@
convention is used.

3.2.3 Variables: scope and type

The 〈scope〉 part of the name describes how the variable can be accessed. Variables are
classified as local, global or constant. This scope type appears as a code at the beginning
of the name; the codes used are:

c constants (global variables whose value should not be changed);

g variables whose value should only be set globally;

l variables whose value should only be set locally.

Separate functions are provided to assign data to local and global variables; for
example, \tl_set:Nn and \tl_gset:Nn respectively set the value of a local or global
“token list” variable. Note that it is a poor TEX practice to intermix local and global
assignments to a variable; otherwise you risk exhausting the save stack.1

The 〈type〉 will be in the list of available data-types;2 these include the primitive TEX
data-types, such as the various registers, but to these are added data-types built within
the LATEX programming system.

The data types in LATEX3 are:

bool either true or false (the LATEX3 implementation does not use \iftrue or \iffalse);

box box register;

clist comma separated list;

coffin a “box with handles” — a higher-level data type for carrying out box alignment
operations;

dim “rigid” lengths;

fp floating-point values;

ior an input stream (for reading from a file);

iow an output stream (for writing to a file);

int integer-valued count register;
1See The TEXbook, p. 301, for further information.
2Of course, if a totally new data type is needed then this will not be the case. However, it is hoped

that only the kernel team will need to create new data types.

6

muskip math mode “rubber” lengths;

prop property list;

seq sequence: a data-type used to implement lists (with access at both ends) and stacks;

skip “rubber” lengths;

tl “token list variables”: placeholders for token lists.

When the 〈type〉 and 〈module〉 are identical (as often happens in the more basic modules)
the 〈module〉 part is often omitted for aesthetic reasons.

The name “token list” may cause confusion, and so some background is useful. TEX
works with tokens and lists of tokens, rather than characters. It provides two ways to
store these token lists: within macros and as token registers (toks). The implementation
in LATEX3 means that toks are not required, and that all operations for storing tokens
can use the tl variable type.

Experienced TEX programmers will notice that some of the variable types listed are
native TEX registers whilst others are not. In general, the underlying TEX implementation
for a data structure may vary but the documented interface will be stable. For example,
the prop data type was originally implemented as a toks, but is currently built on top
of the tl data structure.

3.2.4 Variables: guidance

Both comma lists and sequences both have similar characteristics. They both use special
delimiters to mark out one entry from the next, and are both accessible at both ends. In
general, it is easier to create comma lists ‘by hand’ as they can be typed in directly. User
input often takes the form of a comma separated list and so there are many cases where
this is the obvious data type to use. On the other hand, sequences use special internal
tokens to separate entries. This means that they can be used to contain material that
comma lists cannot (such as items that may themselves contain commas!). In general,
comma lists should be preferred for creating fixed lists inside programs and for handling
user input where commas will not occur. On the other hand, sequences should be used
to store arbitrary lists of data.

expl3 implements stacks using the sequence data structure. Thus creating stacks
involves first creating a sequence, and then using the sequence functions which work in
a stack manner (\seq_push:Nn, etc.).

Due to the nature of the underlying TEX implementation, it is possible to assign
values to token list variables and comma lists without first declaring them. However, this
is not supported behaviour . The LATEX3 coding convention is that all variables must be
declared before use.

The expl3 package can be loaded with the check-declarations option to verify that
all variables are declared before use. This has a performance implication and is therefore
intended for testing during development and not for use in production documents.

7

3.2.5 Functions: argument specifications

Function names end with an 〈arg-spec〉 after a colon. This gives an indication of the types
of argument that a function takes, and provides a convenient method of naming similar
functions that differ only in their argument forms (see the next section for examples).

The 〈arg-spec〉 consists of a (possibly empty) list of letters, each denoting one argu-
ment of the function. The letter, including its case, conveys information about the type
of argument required.

All functions have a base form with arguments using one of the following argument
specifiers:

n Unexpanded token or braced token list.
This is a standard TEX undelimited macro argument.

N Single token (unlike n, the argument must not be surrounded by braces).
A typical example of a command taking an N argument is \cs_set, in which the
command being defined must be unbraced.

p Primitive TEX parameter specification.
This can be something simple like #1#2#3, but may use arbitrary delimited argu-
ment syntax such as: #1,#2\q_stop#3. This is used when defining functions.

T,F These are special cases of n arguments, used for the true and false code in conditional
commands.

There are two other specifiers with more general meanings:

D This means: Do not use. This special case is used for TEX primitives. Program-
mers outside the kernel team should not use these functions!

w This means that the argument syntax is “weird” in that it does not follow any
standard rule. It is used for functions with arguments that take non standard
forms: examples are TEX-level delimited arguments and the boolean tests needed
after certain primitive \if. . . commands.

In case of n arguments that consist of a single token the surrounding braces can be
omitted in nearly all situations—functions that force the use of braces even for single
token arguments are explicitly mentioned. However, programmers are encouraged to
always use braces around n arguments, as this makes the relationship between function
and argument clearer.

Further argument specifiers are available as part of the expansion control system.
These are discussed in the next section.

4 Expansion control
Let’s take a look at some typical operations one might want to perform. Suppose we
maintain a stack of open files and we use the stack \g_ior_file_name_seq to keep track
of them (ior is the prefix used for the file reading module). The basic operation here is
to push a name onto this stack which could be done by the operation

8

\seq_gpush:Nn \g_ior_file_name_seq {#1}

where #1 is the filename. In other words, this operation would push the file name as is
onto the stack.

However, we might face a situation where the filename is stored in a variable of
some sort, say \l_ior_curr_file_tl. In this case we want to retrieve the value of the
variable. If we simply use

\seq_gpush:Nn \g_ior_file_name_seq \l_ior_curr_file_tl

we will not get the value of the variable pushed onto the stack, only the variable name
itself. Instead a suitable number of \exp_after:wN would be necessary (together with
extra braces) to change the order of expansion,3 i.e.

\exp_after:wN
\seq_gpush:Nn

\exp_after:wN
\g_ior_file_name_seq

\exp_after:wN
{ \l_ior_curr_file_tl }

The above example is probably the simplest case but already shows how the code
changes to something difficult to understand. Furthermore there is an assumption in
this: that the storage bin reveals its contents after exactly one expansion. Relying on
this means that you cannot do proper checking plus you have to know exactly how a
storage bin acts in order to get the correct number of expansions. Therefore LATEX3
provides the programmer with a general scheme that keeps the code compact and easy
to understand.

To denote that some argument to a function needs special treatment one just uses
different letters in the arg-spec part of the function to mark the desired behaviour. In
the above example one would write

\seq_gpush:NV \g_ior_file_name_seq \l_ior_curr_file_tl

to achieve the desired effect. Here the V (the second argument) is for “retrieve the value
of the variable” before passing it to the base function.

The following letters can be used to denote special treatment of arguments before
passing it to the base function:

c Character string used as a command name.
The argument (a token or braced token list) must, when fully expanded, pro-
duce a sequence of characters which is then used to construct a command name
(via \csname . . . \endcsname). This command name is the single token that is
passed to the function as the argument. Hence

\seq_gpush:cV { g_file_name_seq } \l_tmpa_tl

is equivalent to
3\exp_after:wN is the LATEX3 name for the TEX \expandafter primitive.

9

\seq_gpush:NV \g_file_name_seq \l_tmpa_tl.

Remember that c arguments are fully expanded by TEX when creating csnames.
This means that (a) the entire argument must be expandable and (b) any variables
will be converted to their content. So the preceding examples are also equivalent
to

\tl_new:N \g_file_seq_name_tl
\tl_gset:Nn \g_file_seq_name_tl { g_file_name_seq }
\seq_gpush:cV { \tl_use:N \g_file_seq_name_tl } \l_tmpa_tl.

(Token list variables are expandable and we could omit the accessor function \tl_-
use:N. Other variable types require the appropriate \<var>_use:N functions to be
used in this context.)

V Value of a variable.
This means that the contents of the register in question is used as the argument,
be it an integer, a length-type register, a token list variable or similar. The value
is passed to the function as a braced token list.

v Value of a register, constructed from a character string used as a command name.
This is a combination of c and V which first constructs a control sequence from the
argument and then passes the value of the resulting register to the function.

x Fully-expanded token or braced token list.
This means that the argument is expanded as in the replacement text of an \edef,
and the expansion is passed to the function as a braced token list. Expansion takes
place until only unexpandable tokens are left. x-type arguments cannot be nested.

o One-level-expanded token or braced token list.
This means that the argument is expanded one level, as by \expandafter, and the
expansion is passed to the function as a braced token list. Note that if the original
argument is a braced token list then only the first token in that list is expanded.
In general, using V should be preferred to using o for simple variable retrieval.

f Expanding the first token recursively in a braced token list.
Almost the same as the x type except here the token list is expanded fully until
the first unexpandable token is found and the rest is left unchanged. Note that if
this function finds a space at the beginning of the argument it will gobble it and
not expand the next token.

4.1 Simpler means better
Anyone who programs in TEX is frustratingly familiar with the problem of arranging that
arguments to functions are suitably expanded before the function is called. To illustrate
how expansion control can bring instant relief to this problem we shall consider two
examples copied from latex.ltx.

10

\global\expandafter\let
\csname\cf@encoding \string#1\expandafter\endcsname
\csname ?\string#1\endcsname

This first piece of code is in essence simply a global \let whose two arguments firstly
have to be constructed before \let is executed. The #1 is a control sequence name such
as \textcurrency. The token to be defined is obtained by concatenating the characters
of the current font encoding stored in \cf@encoding, which has to be fully expanded,
and the name of the symbol. The second token is the same except it uses the default
encoding ?. The result is a mess of interwoven \expandafter and \csname beloved of
all TEX programmers, and the code is essentially unreadable.

Using the conventions and functionality outlined here, the task would be achieved
with code such as this:

\cs_gset_eq:cc
{ \cf@encoding \token_to_str:N #1 } { ? \token_to_str:N #1 }

The command \cs_gset_eq:cc is a global \let that generates command names out of
both of its arguments before making the definition. This produces code that is far more
readable and more likely to be correct first time. (\token_to_str:N is the LATEX3 name
for \string.)

Here is the second example.

\expandafter
\in@

\csname sym#3%
\expandafter

\endcsname
\expandafter

{%
\group@list}%

This piece of code is part of the definition of another function. It first produces two
things: a token list, by expanding \group@list once; and a token whose name comes
from ‘sym#3’. Then the function \in@ is called and this tests if its first argument occurs
in the token list of its second argument.

Again we can improve enormously on the code. First we shall rename the func-
tion \in@, which tests if its first argument appears within its second argument, according
to our conventions. Such a function takes two normal “n” arguments and operates on
token lists: it might reasonably be named \tl_test_in:nn. Thus the variant func-
tion we need will be defined with the appropriate argument types and its name will be
\tl_test_in:cV. Now this code fragment will be simply:

\tl_test_in:cV { sym #3 } \group@list

This code could be improved further by using a sequence \l_group_seq rather than
the bare token list \group@list. Note that, in addition to the lack of \expandafter,
the space after the } will be silently ignored since all white space is ignored in this
programming environment.

11

4.2 New functions from old
For many common functions the LATEX3 kernel will provide variants with a range of
argument forms, and similarly it is expected that extension packages providing new
functions will make them available in all the commonly needed forms.

However, there will be occasions where it is necessary to construct a new such vari-
ant form; therefore the expansion module provides a straightforward mechanism for the
creation of functions with any required argument type, starting from a function that
takes “normal” TEX undelimited arguments.

To illustrate this let us suppose you have a “base function” \demo_cmd:Nnn that takes
three normal arguments, and that you need to construct the variant \demo_cmd:cnx, for
which the first argument is used to construct the name of a command, whilst the third
argument must be fully expanded before being passed to \demo_cmd:Nnn. To produce
the variant form from the base form, simply use this:

\cs_generate_variant:Nn \demo_cmd:Nnn { cnx }

This defines the variant form so that you can then write, for example:

\demo_cmd:cnx { abc } { pq } { \rst \xyz }

rather than . . . well, something like this!

\def \tempa {{pq}}%
\edef \tempb {\rst \xyz}%
\expandafter

\demo@cmd:nnn
\csname abc%

\expandafter
\expandafter

\expandafter
\endcsname

\expandafter
\tempa

\expandafter
{%

\tempb
}%

Another example: you may wish to declare a function \demo_cmd_b:xcxcx, a variant
of an existing function \demo_cmd_b:nnnnn, that fully expands arguments 1, 3 and 5,
and produces commands to pass as arguments 2 and 4 using \csname. The definition
you need is simply

\cs_generate_variant:Nn \demo_cmd_b:nnnnn { xcxcx }

This extension mechanism is written so that if the same new form of some existing
command is implemented by two extension packages then the two definitions will be
identical and thus no conflict will occur.

12

5 The distribution
At present, the expl3 modules are designed to be loaded on top of LATEX2ε. In time, a
LATEX3 format will be produced based on this code. This allows the code to be used in
LATEX2ε packages now while a stand-alone LATEX3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly
stable. The syntax conventions and functions provided are now ready for
wider use. There may still be changes to some functions, but these will be
minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they reach maturity.
At present, the expl3 bundle consists of a number of modules, most of which are loaded
by including the line:

\RequirePackage{expl3}

in a LATEX2ε package, class or other file. The expl3 modules regarded as stable, and
therefore suitable for basing real code on, are as follows:

l3basics This contains the basic definition modules used by the other packages.

l3box Primitives for dealing with boxes.

l3clist Methods for manipulating comma-separated token lists.

l3coffins Augmented box constructs for alignment operations.

l3expan This is the argument expansion module discussed earlier in this document.

l3int This implements the integer data-type int.

l3keys For processing lists of the form { key1=val1 , key2=val2 }, intended to work
as a LATEX3 version of xkeyval/kvoptions, although with input syntax more like that
of pgfkeys.

l3msg Communicating with the user: includes low-level hooks to allow messages to be
filtered (higher-level interface for filtering to be written!).

l3names This sets up the basic naming scheme and renames all the TEX primitives.

l3prg Program control structures such as boolean data type bool, generic do-while loops,
and conditional flow.

l3prop This implements the data-type for “property lists” that are used, in particular,
for storing key/value pairs.

l3quark A “quark” is a command that is defined to expand to itself! Therefore they
must never be expanded as this will generate infinite recursion; they do however
have many uses, e.g. as special markers and delimiters within code.

l3seq This implements data-types such as queues and stacks.

13

l3skip Implements the “rubber length” datatype skip, the “rigid length” datatype dim,
and the math mode “rubber length” datatype muskip.

l3tl This implements a basic data-type, called a token-list variable (tl var.), used for
storing named token lists: these are TEX macros with no arguments.

l3token Analysing token lists and token streams, including peeking ahead to see what’s
coming next and inspecting tokens to detect which kind they are.

6 Moving from LATEX 2ε to LATEX3
To help programmers to use LATEX3 code in existing LATEX2ε package, some short notes
on making the change are probably desirable. Suggestions for inclusion here are welcome!
Some of the following is concerned with code, and some with coding style.

• expl3 is mainly focussed on programming. This means that some areas still re-
quire the use of LATEX2ε internal macros. For example, you may well need
\@ifpackageloaded, as there is currently no native LATEX3 package loading mod-
ule.

• User level macros should be generated using the mechanism available in the xparse
package, which is part of the l3package bundle, available from CTAN or the LATEX3
SVN repository.

• At an internal level, most functions should be generated \long (using \cs_new:Npn)
rather than “short” (using \cs_new_nopar:Npn). However, functions which take
no arguments should be set “short”.

• Where possible, declare all variables and functions (using \cs_new:Npn, \tl_new:N,
etc.) before use.

• Prefer “higher-level” functions over “lower-level”, where possible. So for example
use \cs_if_exist:N(TF) and not \if_cs_exist:N.

• Use space to make code readable. In general, we recommend a layout such as:

\cs_new:Npn \foo_bar:Nn #1#2
{

\cs_if_exist:NTF #1
{ __foo_bar_aux_i:n {#2} }
{ __foo_bar_aux_ii:nn {#2} { literal } }

}

where spaces are used around { and } except for isolated #1, #2, etc.

• Put different code items on separate lines: readability is much more useful than
compactness.

• Use long, descriptive names for functions and variables, and for auxiliary functions
use the parent function name plus aux, aux_i, aux_ii and so on.

• If in doubt, ask the team via the LaTeX-L list: someone will soon get back to you!

14

7 Load-time options for expl3
To support code authors, the expl3 package for LATEX2ε includes a small number of load-
time options. These all work in a key–value sense, recognising the true and false values.
Giving the option name alone is equivalent to using the option with the true value.

All variables used in LATEX3 code should be declared. This is enforced by TEXcheck-declarations
for variable types based on TEX registers, but not for those which are constructed us-
ing macros as the underlying storage system. The check-declarations option enables
checking for all variable assignments, issuing an error if any variables are assigned without
being initialised.

The log-functions option is used to enable recording of every new function name inlog-functions
the .log file. This is useful for debugging purposes, as it means that there is a complete
list of all functions created by each module loaded (with the exceptions of a very small
number required by the bootstrap code for LATEX3).

The native-drivers option instructs LATEX3 not to use the LATEX2ε graphics drivernative-drivers
code. Setting this option true uses the driver code intended for a LATEX3 format.

8 The LATEX3 Project
Development of LATEX3 is carried out by The LATEX3 Project. Over time, the membership
of this team has naturally varied. Currently, the members are

• Johannes Braams

• David Carlisle

• Robin Fairbairns

• Bruno Le Floch

• Thomas Lotze

• Frank Mittelbach

• Will Robertson

• Chris Rowley

• Rainer Schöpf

• Joseph Wright
while former members are

• Michael Downes

• Denys Duchier

• Morten Høgholm

• Alan Jeffrey

• Martin Schröder

15

References
[1] Donald E Knuth The TEXbook. Addison-Wesley, Reading, Massachusetts, 1984.

[2] Goossens, Mittelbach and Samarin. The LATEX Companion. Addison-Wesley, Read-
ing, Massachusetts, 1994.

[3] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

[4] Frank Mittelbach and Chris Rowley. “The LATEX3 Project”. TUGboat, Vol. 18, No. 3,
pp. 195–198, 1997.

9 expl3 implementation
1 〈*package〉

Load etex as otherwise we are likely to get into trouble with registers. Some inserts
are reserved also as these have to be from the standard pool.

2 \RequirePackage{etex}
3 \reserveinserts{32}

Do the package identification: this will turn on code syntax.
4 \ProvidesExplPackage
5 {\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

\expl@create@bool@option
\l@expl@check@declarations@bool

\l@expl@log@functions@bool
\l@expl@native@drivers@bool

Options to be set up. These have to be done by hand as there is no expl3 yet: the logging
option is needed before loading l3basics!

6 \newcommand \expl@create@bool@option [2]
7 {
8 \DeclareOption {#1} { \renewcommand* #2 { 1 } }
9 \DeclareOption { #1 = true } { \renewcommand* #2 { 1 } }

10 \DeclareOption { #1 = false } { \renewcommand* #2 { 0 } }
11 \newcommand* #2 { 0 }
12 }
13 \expl@create@bool@option { check-declarations } \l@expl@check@declarations@bool
14 \expl@create@bool@option { log-functions } \l@expl@log@functions@bool
15 \expl@create@bool@option { native-drivers } \l@expl@native@drivers@bool
16 \let \expl@create@bool@option \@undefined
17 \ProcessOptions \relax

(End definition for \expl@create@bool@option This function is documented on page ??.)
We already loaded l3names at the beginning of the dtx file. We now load the base

of LATEX3, stopping once token list variables are defined.
18 \RequirePackage { l3basics, l3expan, l3tl }

__cs_check_exists:N When used as a package, there is an option to be picky and to check definitions exist.
This part of the process is done now, so that variable types based on tl (for example
clist, seq and prop) will inherit the appropriate definitions.

19 \ifodd \l@expl@check@declarations@bool \relax
20 \cs_new_protected:Npn __cs_check_exists:N #1

16

21 {
22 \cs_if_exist:NF #1
23 {
24 __msg_kernel_error:nnx { check } { non-declared-variable }
25 { \token_to_str:N #1 }
26 }
27 }

No \tl_map_... yet as the mechanisms are not fully in place. Thus instead do a more
low level set up for a mapping, as in l3basics.

28 \cs_set_protected:Npn __cs_tmp:w #1
29 {
30 \if_meaning:w ? #1
31 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
32 \fi:
33 \use:x
34 {
35 \cs_set_protected:Npn #1 \exp_not:n { ##1 ##2 }
36 {
37 __cs_check_exists:N \exp_not:n {##1}
38 \exp_not:o { #1 {##1} {##2} }
39 }
40 }
41 __cs_tmp:w
42 }
43 __cs_tmp:w
44 \tl_set:Nn \tl_set:No \tl_set:Nx
45 \tl_gset:Nn \tl_gset:No \tl_gset:Nx
46 \tl_put_left:Nn \tl_put_left:NV
47 \tl_put_left:No \tl_put_left:Nx
48 \tl_gput_left:Nn \tl_gput_left:NV
49 \tl_gput_left:No \tl_gput_left:Nx
50 \tl_put_right:Nn \tl_put_right:NV
51 \tl_put_right:No \tl_put_right:Nx
52 \tl_gput_right:Nn \tl_gput_right:NV
53 \tl_gput_right:No \tl_gput_right:Nx
54 ? \q_recursion_stop

The two set_eq functions are done by hand as the internals there are a bit different.
55 \cs_set_protected:Npn \tl_set_eq:NN #1#2
56 {
57 __cs_check_exists:N #1
58 __cs_check_exists:N #2
59 \cs_set_eq:NN #1 #2
60 }
61 \cs_set_protected:Npn \tl_gset_eq:NN #1#2
62 {
63 __cs_check_exists:N #1
64 __cs_check_exists:N #2
65 \cs_gset_eq:NN #1 #2
66 }

17

There is also a need to check all three arguments of the concat functions: a token list
#2 or #3 equal to \scan_stop: would lead to problems later on.

67 \cs_set_protected:Npn \tl_concat:NNN #1#2#3
68 {
69 __cs_check_exists:N #1
70 __cs_check_exists:N #2
71 __cs_check_exists:N #3
72 \tl_set:Nx #1 { \exp_not:o {#2} \exp_not:o {#3} }
73 }
74 \cs_set_protected:Npn \tl_gconcat:NNN #1#2#3
75 {
76 __cs_check_exists:N #1
77 __cs_check_exists:N #2
78 __cs_check_exists:N #3
79 \tl_gset:Nx #1 { \exp_not:o {#2} \exp_not:o {#3} }
80 }
81 \fi

(End definition for __cs_check_exists:N)
The second part of the file can now be loaded, stopping once the boolean data type

is defined.
82 \RequirePackage { l3seq, l3int, l3quark, l3prg }

Booleans are not based on token lists but do need checking: another block of code.
83 \ifodd \l@expl@check@declarations@bool \relax
84 \cs_set_protected:Npn \bool_set_true:N #1
85 {
86 __cs_check_exists:N #1
87 \cs_set_eq:NN #1 \c_true_bool
88 }
89 \cs_set_protected:Npn \bool_set_false:N #1
90 {
91 __cs_check_exists:N #1
92 \cs_set_eq:NN #1 \c_false_bool
93 }
94 \cs_set_protected:Npn \bool_gset_true:N #1
95 {
96 __cs_check_exists:N #1
97 \cs_gset_eq:NN #1 \c_true_bool
98 }
99 \cs_set_protected:Npn \bool_gset_false:N #1

100 {
101 __cs_check_exists:N #1
102 \cs_gset_eq:NN #1 \c_false_bool
103 }
104 \cs_set_protected:Npn \bool_set_eq:NN #1
105 {
106 __cs_check_exists:N #1
107 \cs_set_eq:NN #1
108 }

18

109 \cs_set_protected:Npn \bool_gset_eq:NN #1
110 {
111 __cs_check_exists:N #1
112 \cs_gset_eq:NN #1
113 }
114 \cs_set_protected:Npn \bool_set:Nn #1#2
115 {
116 __cs_check_exists:N #1
117 \tex_chardef:D #1 = \bool_if_p:n {#2}
118 }
119 \cs_set_protected:Npn \bool_gset:Nn #1#2
120 {
121 __cs_check_exists:N #1
122 \tex_global:D \tex_chardef:D #1 = \bool_if_p:n {#2}
123 }
124 \fi

Now everything else can be loaded.
125 \RequirePackage
126 {
127 l3clist,
128 l3token,
129 l3prop,
130 l3msg,
131 l3file,
132 l3skip,
133 l3keys,
134 l3fp,
135 l3box,
136 l3coffins,
137 l3color,
138 l3luatex,
139 l3candidates
140 }

The error message for variables cannot be created before now: this means that expl3
itself may cause some odd errors.
141 \bool_if:nT { \l@expl@check@declarations@bool }
142 {
143 __msg_kernel_new:nnnn { check } { non-declared-variable }
144 { The~variable~#1~has~not~been~declared~\msg_line_context:. }
145 {
146 Checking~is~active,~and~you~have~tried~do~so~something~like: \\
147 \ \ \tl_set:Nn ~ #1 ~ \{ ~ ... ~ \} \\
148 without~first~having: \\
149 \ \ \tl_new:N ~ #1 \\
150 \\
151 LaTeX~will~create~the~variable~and~continue.
152 }
153 }

19

\color The \color macro must be defined for showing coffin poles, so a no-op version is provided
here.
154 \AtBeginDocument
155 {
156 \cs_if_exist:NF \color
157 { \DeclareRobustCommand \color [2] [] { } }
158 }
(End definition for \color This function is documented on page ??.)

If the native drivers are being used, they can be loaded now.
159 \bool_if:nTF { \l@expl@native@drivers@bool }
160 {
161 \xetex_if_engine:TF
162 { \file_input:n { l3xdvipdfmx.def } }
163 {
164 \RequirePackage { ifpdf }
165 \ifpdf
166 \file_input:n { l3pdfmode.def }
167 \else
168 \file_input:n { l3dvips.def }
169 \fi
170 }
171 }

\box_rotate:Nn
\box_resize:Nnn

\box_resize_to_ht_plus_dp:Nn
\box_resize_to_wd:Nn

\box_scale:Nnn

If not, alter various definitions to use the graphics package instead. The package is loaded
right at the start of the hook as there is otherwise a potential issue with (x)color: see
http://groups.google.com/group/comp.text.tex/msg/c9de8913c756ef4c.
172 {
173 \tl_gput_left:Nn \@begindocumenthook { \RequirePackage { graphics } }
174 __msg_kernel_new:nnnn { box } { clipping-not-available }
175 { Box~clipping~not~available. }
176 {
177 The~\box_clip:N~function~is~only~available~when~loading~expl3~
178 with~the~"native-drivers"~option.
179 }
180 \cs_set_protected:Npn \box_clip:N #1
181 {
182 \hbox_set:Nn #1 { \box_use:N #1 }
183 __msg_kernel_error:nn { box } { clipping-not-available }
184 }
185 \cs_set_protected:Npn \box_rotate:Nn #1#2
186 { \hbox_set:Nn #1 { \rotatebox {#2} { \box_use:N #1 } } }
187 \cs_set_protected:Npn \box_resize:Nnn #1#2#3
188 {
189 \hbox_set:Nn #1
190 {
191 \resizebox *
192 { __dim_eval:w #2 __dim_eval_end: }
193 { __dim_eval:w #3 __dim_eval_end: }
194 { \box_use:N #1 }

20

http://groups.google.com/group/comp.text.tex/msg/c9de8913c756ef4c

195 }
196 }
197 \cs_set_protected:Npn \box_resize_to_ht_plus_dp:Nn #1#2
198 {
199 \hbox_set:Nn #1
200 {
201 \resizebox * { ! } { __dim_eval:w #2 __dim_eval_end: }
202 { \box_use:N #1 }
203 }
204 }
205 \cs_set_protected:Npn \box_resize_to_wd:Nn #1#2
206 {
207 \hbox_set:Nn #1
208 {
209 \resizebox * { __dim_eval:w #2 __dim_eval_end: } { ! }
210 { \box_use:N #1 }
211 }
212 }
213 \cs_set_protected:Npn \box_scale:Nnn #1#2#3
214 {
215 \hbox_set:Nn #1
216 {
217 \exp_last_unbraced:Nx \scalebox
218 { { \fp_eval:n {#2} } [\fp_eval:n {#3}] }
219 { \box_use:N #1 }
220 }
221 }
222 }
(End definition for \box_rotate:Nn and others. These functions are documented on page ??.)

\ExplSyntaxOff
\ExplSyntaxOn

These are redefined here to reduce unnecessary work when switching. The definition for
\ExplSyntaxOff copies the code from earlier, so that category codes are restored.
223 \cs_set_protected_nopar:Npn \ExplSyntaxOn
224 {
225 \bool_if:NF \l__kernel_expl_bool
226 {
227 \cs_set_protected_nopar:Npx \ExplSyntaxOff
228 {
229 \char_set_catcode:nn { 9 } { \char_value_catcode:n { 9 } }
230 \char_set_catcode:nn { 32 } { \char_value_catcode:n { 32 } }
231 \char_set_catcode:nn { 34 } { \char_value_catcode:n { 34 } }
232 \char_set_catcode:nn { 36 } { \char_value_catcode:n { 36 } }
233 \char_set_catcode:nn { 38 } { \char_value_catcode:n { 38 } }
234 \char_set_catcode:nn { 58 } { \char_value_catcode:n { 58 } }
235 \char_set_catcode:nn { 94 } { \char_value_catcode:n { 94 } }
236 \char_set_catcode:nn { 95 } { \char_value_catcode:n { 95 } }
237 \char_set_catcode:nn { 124 } { \char_value_catcode:n { 124 } }
238 \char_set_catcode:nn { 126 } { \char_value_catcode:n { 126 } }
239 \tex_endlinechar:D = \tex_the:D \tex_endlinechar:D \scan_stop:

21

240 \bool_set_false:N \l__kernel_expl_bool
241 \cs_set_protected_nopar:Npn \ExplSyntaxOff { }
242 }
243 }
244 \char_set_catcode_ignore:n { 9 } % tab
245 \char_set_catcode_ignore:n { 32 } % space
246 \char_set_catcode_other:n { 34 } % double quote
247 \char_set_catcode_math_toggle:n { 36 } % dollar
248 \char_set_catcode_alignment:n { 38 } % ampersand
249 \char_set_catcode_letter:n { 58 } % colon
250 \char_set_catcode_math_superscript:n { 94 } % circumflex
251 \char_set_catcode_letter:n { 95 } % underscore
252 \char_set_catcode_other:n { 124 } % pipe
253 \char_set_catcode_space:n { 126 } % tilde
254 \tex_endlinechar:D = 32 \scan_stop:
255 \bool_set_true:N \l__kernel_expl_bool
256 }
257 \cs_set_protected_nopar:Npx \ExplSyntaxOff
258 {
259 \exp_not:o \ExplSyntaxOff
260 \cs_set_protected_nopar:Npn \ExplSyntaxOff { }
261 }
(End definition for \ExplSyntaxOff and \ExplSyntaxOn These functions are documented on page ??.)

262 〈/package〉

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\@begindocumenthook 173
\@undefined . 16
\\ 146, 147, 148, 149, 150
\{ . 147
\} . 147
__cs_check_exists:N 19, 20,

37, 57, 58, 63, 64, 69, 70, 71, 76, 77,
78, 86, 91, 96, 101, 106, 111, 116, 121

__cs_tmp:w 28, 41, 43
__dim_eval:w 192, 193, 201, 209
__dim_eval_end: 192, 193, 201, 209
__msg_kernel_error:nn 183
__msg_kernel_error:nnx 24
__msg_kernel_new:nnnn 143, 174

\␣ . 147, 149

A
\AtBeginDocument 154

B
\bool_gset:Nn 119
\bool_gset_eq:NN 109
\bool_gset_false:N 99
\bool_gset_true:N 94
\bool_if:NF . 225
\bool_if:nT . 141
\bool_if:nTF 159
\bool_if_p:n 117, 122
\bool_set:Nn 114
\bool_set_eq:NN 104

22

\bool_set_false:N 89, 240
\bool_set_true:N 84, 255
\box_clip:N 177, 180
\box_resize:Nnn 172, 187
\box_resize_to_ht_plus_dp:Nn . . 172, 197
\box_resize_to_wd:Nn 172, 205
\box_rotate:Nn 172, 185
\box_scale:Nnn 172, 213
\box_use:N . . . 182, 186, 194, 202, 210, 219

C
\c_false_bool 92, 102
\c_true_bool 87, 97
\char_set_catcode:nn 229, 230,

231, 232, 233, 234, 235, 236, 237, 238
\char_set_catcode_alignment:n 248
\char_set_catcode_ignore:n 244, 245
\char_set_catcode_letter:n 249, 251
\char_set_catcode_math_superscript:n

. 250
\char_set_catcode_math_toggle:n . . . 247
\char_set_catcode_other:n 246, 252
\char_set_catcode_space:n 253
\char_value_catcode:n 229, 230,

231, 232, 233, 234, 235, 236, 237, 238
check-declarations (option) 15
\color 154, 156, 157
\cs_gset_eq:NN 65, 97, 102, 112
\cs_if_exist:NF 22, 156
\cs_new_protected:Npn 20
\cs_set_eq:NN 59, 87, 92, 107
\cs_set_protected:Npn 28, 35, 55,

61, 67, 74, 84, 89, 94, 99, 104, 109,
114, 119, 180, 185, 187, 197, 205, 213

\cs_set_protected_nopar:Npn 223, 241, 260
\cs_set_protected_nopar:Npx . . . 227, 257

D
\DeclareOption 8, 9, 10
\DeclareRobustCommand 157

E
\else . 167
\exp_after:wN 31
\exp_last_unbraced:Nx 217
\exp_not:n 35, 37
\exp_not:o 38, 72, 79, 259
\expl@create@bool@option

. 6, 6, 13, 14, 15, 16
\ExplFileDate . 5

\ExplFileDescription 5
\ExplFileName . 5
\ExplFileVersion 5
\ExplSyntaxOff 223, 227, 241, 257, 259, 260
\ExplSyntaxOn 223, 223

F
\fi . 81, 124, 169
\fi: . 32
\file_input:n 162, 166, 168
\fp_eval:n . 218

H
\hbox_set:Nn . . 182, 186, 189, 199, 207, 215

I
\if_meaning:w 30
\ifodd . 19, 83
\ifpdf . 165

L
\l@expl@check@declarations@bool

. 6, 13, 19, 83, 141
\l@expl@log@functions@bool 6, 14
\l@expl@native@drivers@bool . . 6, 15, 159
\l__kernel_expl_bool 225, 240, 255
\let . 16
log-functions (option) 15

M
\msg_line_context: 144

N
native-drivers (option) 15
\newcommand 6, 11

O
check-declarations 15
log-functions 15
native-drivers 15

P
\ProcessOptions 17
\ProvidesExplPackage 4

Q
\q_recursion_stop 54

R
\relax . 17, 19, 83
\renewcommand 8, 9, 10
\RequirePackage . . 2, 18, 82, 125, 164, 173
\reserveinserts 3

23

\resizebox 191, 201, 209
\rotatebox . 186

S
\scalebox . 217
\scan_stop: 239, 254

T
\tex_chardef:D 117, 122
\tex_endlinechar:D 239, 254
\tex_global:D 122
\tex_the:D . 239
\tl_concat:NNN 67
\tl_gconcat:NNN 74
\tl_gput_left:Nn 48, 173
\tl_gput_left:No 49
\tl_gput_left:NV 48
\tl_gput_left:Nx 49
\tl_gput_right:Nn 52
\tl_gput_right:No 53
\tl_gput_right:NV 52
\tl_gput_right:Nx 53
\tl_gset:Nn . 45
\tl_gset:No . 45

\tl_gset:Nx 45, 79
\tl_gset_eq:NN 61
\tl_new:N . 149
\tl_put_left:Nn 46
\tl_put_left:No 47
\tl_put_left:NV 46
\tl_put_left:Nx 47
\tl_put_right:Nn 50
\tl_put_right:No 51
\tl_put_right:NV 50
\tl_put_right:Nx 51
\tl_set:Nn 44, 147
\tl_set:No . 44
\tl_set:Nx 44, 72
\tl_set_eq:NN 55
\token_to_str:N 25

U
\use:x . 33
\use_none_delimit_by_q_recursion_stop:w

. 31

X
\xetex_if_engine:TF 161

24

	1 Introduction
	2 Languages and interfaces
	3 The naming scheme
	3.1 Examples
	3.2 Formal naming syntax
	3.2.1 Separating private and public material
	3.2.2 Using @@ and l3docstrip to mark private code
	3.2.3 Variables: scope and type
	3.2.4 Variables: guidance
	3.2.5 Functions: argument specifications

	4 Expansion control
	4.1 Simpler means better
	4.2 New functions from old

	5 The distribution
	6 Moving from LaTeX2e to LaTeX3
	7 Load-time options for expl3
	8 The LaTeX3 Project
	References
	9 expl3 implementation
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	X

