The expl3 package and ETEX3 programming*

The IATEX3 Project!
Released 2011/09/05

Abstract

This document gives an introduction to a new set of programming conventions
that have been designed to meet the requirements of implementing large scale TEX
macro programming projects such as ETEX. These programming conventions are
the base layer of ETEX3.

The main features of the system described are:

« classification of the macros (or, in XTEX terminology, commands) into B TEX
functions and KTEX parameters, and also into modules containing related
commands;

e a systematic naming scheme based on these classifications;

e a simple mechanism for controlling the expansion of a function’s arguments.
This system is being used as the basis for TEX programming within the KTEX3
project. Note that the language is not intended for either document mark-up or
style specification. Instead, it is intended that such features will be built on top of
the conventions described here.

This document is an introduction to the ideas behind the expl3 programming inter-
face. For the complete documentation of the programming layer provided by the
KTEX3 Project, see the accompanying source3 document.

1 Introduction

The first step to develop a IMTEX kernel beyond ETEX 2¢ is to address how the underlying
system is programmed. Rather than the current mix of ITEX and TEX macros, the
ITREX3 system provides its own consistent interface to all of the functions needed to
control TEX. A key part of this work is to ensure that everything is documented, so that
ETEX programmers and users can work efficiently without needing to be familiar with
the internal nature of the kernel or with plain TEX.

The expl3 bundle provides this new programming interface for IXTEX. To make
programming systematic, IXTEX3 uses some very different conventions to IMTEX 2¢ or
plain TeX. As a result, programmers starting with ITEX3 will need to become familiar
with the syntax of the new language.

*This file describes v2729, last revised 2011/09/05.

TE-mail: latex-team@Ilatex-project.org

mailto:latex-team@latex-project.org

The next section shows where this language fits into a complete TEX-based document
processing system. We then describe the major features of the syntactic structure of
command names, including the argument specification syntax used in function names.

The practical ideas behind this argument syntax will be explained, together with the
expansion control mechanism and the interface used to define variant forms of functions.

As we shall demonstrate, the use of a structured naming scheme and of variant forms
for functions greatly improves the readability of the code and hence also its reliability.
Moreover, experience has shown that the longer command names which result from the
new syntax do not make the process of writing code significantly harder.

2 Languages and interfaces

It is possible to identify several distinct languages related to the various interfaces that
are needed in a TEX-based document processing system. This section looks at those we
consider most important for the BTEX3 system.

Document mark-up This comprises those commands (often called tags) that are to
embedded in the document (the .tex file).

It is generally accepted that such mark-up should be essentially declarative. It may
be traditional TEX-based mark-up such as BTEX 2¢, as described in [3] and [2], or
a mark-up language defined via HTML or XML.

One problem with more traditional TEX coding conventions (as described in [1])
is that the names and syntax of TEX’s primitive formatting commands are inge-
niously designed to be “natural” when used directly by the author as document
mark-up or in macros. Ironically, the ubiquity (and widely recognised superiority)
of logical mark-up has meant that such explicit formatting commands are almost
never needed in documents or in author-defined macros. Thus they are used al-
most exclusively by TEX programmers to define higher-level commands, and their
idiosyncratic syntax is not at all popular with this community. Moreover, many of
them have names that could be very useful as document mark-up tags were they
not pre-empted as primitives (e.g. \box or \special).

Designer interface This relates a (human) typographic designer’s specification for a
document to a program that “formats the document”. It should ideally use a
declarative language that facilitates expression of the relationship and spacing rules
specified for the layout of the various document elements.

This language is not embedded in document text and it will be very different in form
to the document mark-up language. For ITEX, this level was almost completely
missing from TEX2.09; BTEX 2¢ made some improvements in this area but it is
still the case that implementing a design specification in I¥TEX requires far more
“low-level” coding than is acceptable.

Programmer interface This language is the implementation language within which
the basic typesetting functionality is implemented, building upon the primitives of
TEX (or a successor program). It may also be used to implement the previous two
languages “within” TEX, as in the current I TEX system.

The last layer is covered by the conventions described in this document, which de-
scribes a system aimed at providing a suitable basis for coding I TEX3. Its main distin-
guishing features are summarised here:

¢ A consistent naming scheme for all commands, including TEX primitives.

e The classification of commands as IMTEX functions or KTEX parameters, and also
their division into modules according to their functionality.

e A simple mechanism for controlling argument expansion.

e Provision of a set of core XTEX functions that is sufficient for handling programming
constructs such as queues, sets, stacks, property lists.

¢ A TgX programming environment in which, for example, all white space is ignored.

3 The naming scheme

ETEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols
_and : are used in internal macro names to provide structure. In contrast to the plain
TEX format and the BTEX 2¢ kernel, these extra letters are used only between parts of a
macro name (no strange vowel replacement).

While TEX is actually a macro processor, by convention for the expl3 programming
language we distinguish between functions and variables. Functions can have arguments
and they are either expanded or executed. Variables can be assigned values and they
are used in arguments to functions; they are not used directly but are manipulated
by functions (including getting and setting functions). Functions and variables with a
related functionality (for example accessing counters, or manipulating token lists, etc.)
are collected together into a module.

3.1 Examples

Before giving the details of the naming scheme, here are a few typical examples to indicate
the flavour of the scheme; first some variable names.

\1_tmpa_box is a local variable (hence the 1_ prefix) corresponding to a box
register.

\g_tmpa_int is a global variable (hence the g_ prefix) corresponding to an
integer register (i.e. a TEX count register).

\c_empty_t1 is the constant (c_) token list variable that is always empty.

Now here is an example of a typical function name.

\seq_push:Nn is the function which puts the token list specified by its second ar-
gument onto the stack specified by its first argument. The different natures of the two
arguments are indicated by the :Nn suffix. The first argument must be a single token
which “names” the stack parameter: such single-token arguments are denoted N. The
second argument is a normal TEX “undelimited argument”, which may either be a single
token or a balanced, brace-delimited token list (which we shall here call a braced token

list): the n denotes such a “normal” argument form. The name of the function indicates
it belongs to the seq module.

3.2 Formal naming syntax

We shall now look in more detail at the syntax of these names. A function name in
IXTREX3 will have a name consisting of three parts:

\(module)_(description) : {arg-spec)
while a variable will have (up to) four distinct parts to its name:
\(scope)_(module)_{description)_{type)
The syntax of all names contains
(module) and (description)

these both give information about the command.

A module is a collection of closely related functions and variables. Typical module
names include int for integer parameters and related functions, seq for sequences and box
for boxes.

Packages providing new programming functionality will add new modules as needed;
the programmer can choose any unused name, consisting of letters only, for a module. In
general, the module name and module prefix should be related: for example, the kernel
module containing box functions is called 13box.

The description gives more detailed information about the function or parameter,
and provides a unique name for it. It should consist of letters and, possibly, _ characters.
In general, the description should use _ to divide up “words” or other easy to follow parts
of the name. For example, the IXTEX3 kernel provides \if _cs_exist:N which, as might
be expected, tests if a command name exists.

As a semi-formalized concept the letter g is sometimes used to prefix certain parts of
the (description) to mark the function as “globally acting”, e.g., \int_set:Nn is a local
operation while \int_gset:Nn is a global operation. This of course goes hand in hand
with when to use 1_ and g_ variable prefixes.

3.2.1 Variables: scope and type

The (scope) part of the name describes how the variable can be accessed. Variables are
classified as local, global or constant. This scope type appears as a code at the beginning
of the name; the codes used are:

¢ constants (global variables whose value should not be changed);
g variables whose value should only be set globally;

1 variables whose value should only be set locally.

Separate functions are provided to assign data to local and global variables; for
example, \tl_set:Nn and \tl_gset:Nn respectively set the value of a local or global
“token list” variable. Note that it is a poor TEX practise to intermix local and global
assignments to a variable; otherwise you risk exhausting the save stack.'

The (type) will be in the list of available data-types;> these include the primitive
TEX data-types, such as the various registers, but to these will be added data-types built
within the I TEX programming system.

The data types in N TEX3 are:

bool either true or false (the I¥TEX3 implementation does not use \iftrue or \iffalse);
box box register;
clist comma separated list;

coffin a “box with handles” — a higher-level data type for carrying out box alignment
operations;

dim “rigid” lengths;

fp floating-point values;

int integer-valued count register;

prop property list;

seq sequence: a data-type used to implement lists (with access at both ends) and stacks;
skip “rubber” lengths;

stream an input or output stream (for reading from or writing to, respectively);

tl “token list variables”: placeholders for token lists.

When the (type) and (module) are identical (as often happens in the more basic modules)
the (module) part is often omitted for aesthetic reasons.

The name “token list” may cause confusion, and so some background is useful. TEX
works with tokens and lists of tokens, rather than characters. It provides two ways to
store these token lists: within macros and as token registers (toks). The implementation
in ITEX3 means that toks are not required, and that all operations for storing tokens
can us the t1 variable type.

Experienced TEX programmers will notice that some of the variable types listed are
native TEX registers whilst others are not. In general, the underlying TEX implementation
for a data structure may vary but the documented interface will be stable. For example,
the prop data type was originally implemented as a toks, but is currently built on top
of the t1 data structure.

1See The TgpXbook, p. 301, for further information.
20f course, if a totally new data type is needed then this will not be the case. However, it is hoped
that only the kernel team will need to create new data types.

3.2.2 Variables: guidance

Both comma lists and sequences both have similar characteristics. They both use special
delimiters to mark out one entry from the next, and are both accessible at both ends. In
general, it is easier to create comma lists ‘by hand’ as they can be typed in directly. User
input often takes the form of a comma separated list and so there are many cases where
this is the obvious data type to use. On the other hand, sequences use special internal
tokens to separate entries. This means that they can be used to contain material that
comma lists cannot (such as items that may themselves contain commas!). In general,
comma lists should be preferred for creating fixed lists inside programs and for handling
user input where commas will not occur. On the other hand, sequences should be used
to store arbitrary lists of data.

expl3 implements stacks using the sequence data structure. Thus creating stacks
involves first creating a sequence, and then using the sequence functions which work in
a stack manner (\seq_push:Nn, etc.).

Due to the nature of the underlying TEX implementation, it is possible to assign
values to token list variables and comma lists without first declaring them. However, this
is mot supported behaviour. The IZTEX3 coding convention is that all variables must be
declared before use.

The expl3 package can be loaded with the check-declarations option to verify that
all variables are declared before use. This has a performance implication and is therefore
intended for testing during development and not for use in production documents.

3.2.3 Functions: argument specifications

Function names end with an (arg-spec) after a colon. This gives an indication of the types
of argument that a function takes, and provides a convenient method of naming similar
functions that differ only in their argument forms (see the next section for examples).

The (arg-spec) consists of a (possibly empty) list of letters, each denoting one argu-
ment of the function. The letter, including its case, conveys information about the type
of argument required.

All functions have a base form with arguments using one of the following argument
specifiers:

n Unexpanded token or braced token list.
This is a standard TEX undelimited macro argument.

N Single token (unlike n, the argument must not be surrounded by braces).
A typical example of a command taking an N argument is \cs_set, in which the
command being defined must be unbraced.

p Primitive TEX parameter specification.
This can be something simple like #1#2#3, but may use arbitrary delimited argu-
ment syntax such as: #1,#2\q_stop#3. This is used when defining functions.

T,F These are special cases of n arguments, used for the true and false code in conditional
commands.

There are two other specifiers with more general meanings:

D This means: Do not use. This special case is used for TEX primitives and other
commands that are provided for use only while bootstrapping the IXTEX kernel.
Programmers outside the kernel team should not use these functions!

w This means that the argument syntax is “weird” in that it does not follow any
standard rule. It is used for functions with arguments that take non standard
forms: examples are TEX-level delimited arguments and the boolean tests needed
after certain primitive \if... commands.

In case of n arguments that consist of a single token the surrounding braces can be
omitted in nearly all situations—functions that force the use of braces even for single
token arguments are explicitly mentioned. However, programmers are encouraged to
always use braces around n arguments, as this makes the relationship between function
and argument clearer.

Further argument specifiers are available as part of the expansion control system.
These are discussed in the next section.

4 Expansion control

Let’s take a look at some typical operations one might want to perform. Suppose we
maintain a stack of open files and we use the stack \g_ior_file_name_seq to keep track
of them (io is the file reading and writing module: it uses the module prefix ior for
reading functions and variables). The basic operation here is to push a name onto this
stack which could be done by the operation

\seq_gpush:Nn \g_ior_file_name_seq {#1}

where #1 is the filename. In other words, this operation would push the file name as is
onto the stack.

However, we might face a situation where the filename is stored in a variable of
some sort, say \1_ior_curr_file_t1l. In this case we want to retrieve the value of the
variable. If we simply use

\seq_gpush:Nn \g_io_file_name_seq \l_io_curr_file_tl

we will not get the value of the variable pushed onto the stack, only the variable name
itself. Instead a suitable number of \exp_after:wN would be necessary (together with
extra braces) to change the order of expansion,?, i.e.

\exp_after:wN
\seq_gpush:Nn
\exp_after:wN
\g_io_file_name_seq
\exp_after:wN
{ \1_io_curr_file_tl1 }

3\exp_after:wl is the IATEX3 name for the TEX \expandafter primitive.

The above example is probably the simplest case but already shows how the code
changes to something difficult to understand. Furthermore there is an assumption in
this: that the storage bin reveals its contents after exactly one expansion. Relying on
this means that you cannot do proper checking plus you have to know exactly how a
storage bin acts in order to get the correct number of expansions. Therefore ATEX3
provides the programmer with a general scheme that keeps the code compact and easy
to understand.

To denote that some argument to a function needs special treatment one just uses
different letters in the arg-spec part of the function to mark the desired behaviour. In
the above example one would write

\seq_gpush:NV \g_io_file_name_seq \1_io_curr_file_tl

to achieve the desired effect. Here the V (the second argument) is for “retrieve the value
of the variable” before passing it to the base function.

The following letters can be used to denote special treatment of arguments before
passing it to the base function:

c Character string used as a command name.
The argument (a token or braced token list) must, when fully expanded, pro-
duce a sequence of characters which is then used to construct a command name
(via \csname ...\endcsname). This command name is the single token that is
passed to the function as the argument. Hence

\seq_gpush:cV { g_file_name_seq } \1_tmpa_tl
is equivalent to
\seq_gpush:NV \g_file_name_seq \1_tmpa_t1"

Remember that ¢ arguments are fully expanded by TEX when creating csnames.
This means that (a) the entire argument must be expandable and (b) any variables
will be converted to their content. So the preceding examples are also equivalent
to

\tl_new:N \g_file_seq_name_tl
\tl_gset:Nn \g_file_seq_name_tl { g_file_name_seq }
\seq_gpush:cV { \g_file_seq_name_tl } \1_tmpa_t1.

(Token list variables are expandable and do not require an accessor function. Other
variable types require the appropriate \<var>_use:N functions to be used in this
context.)

V Value of a variable.
This means that the contents of the register in question is used as the argument,
be it an integer, a length-type register, a token list variable or similar. The value
is passed to the function as a braced token list.

v Value of a register, constructed from a character string used as a command name.
This is a combination of ¢ and V which first constructs a control sequence from the
argument and then passes the value of the resulting register to the function.

x Fully-expanded token or braced token list.
This means that the argument is expanded as in the replacement text of an \edef,
and the expansion is passed to the function as a braced token list. This means that
expansion takes place until only unexpandable tokens are left.

o One-level-expanded token or braced token list.
This means that the argument is expanded one level, as by \expandafter, and the
expansion is passed to the function as a braced token list. Note that if the original
argument is a braced token list then only the first token in that list is expanded.
In general, using V should be preferred to using o for simple variable retrieval.

f Almost the same as the x type except here the token list is expanded fully until the
first unexpandable token is found and the rest is left unchanged. Note that if this
function finds a space at the beginning of the argument it will gobble it and not
expand the next argument.

4.1 Simpler means better

Anyone who programs in TEX is frustratingly familiar with the problem of arranging that
arguments to functions are suitably expanded before the function is called. To illustrate
how expansion control can bring instant relief to this problem we shall consider two
examples copied from latex.ltx.

\global\expandafter\let
\csname\cf@encoding \string#1\expandafter\endcsname
\csname 7\string#1\endcsname

This first piece of code is in essence simply a global \let whose two arguments firstly
have to be constructed before \let is executed. The #1 is a control sequence name such
as \textcurrency. The token to be defined is obtained by concatenating the characters
of the current font encoding stored in \cf@encoding, which has to be fully expanded,
and the name of the symbol. The second token is the same except it uses the default
encoding 7. The result is a mess of interwoven \expandafter and \csname beloved of
all TEX programmers, and the code is essentially unreadable.

Using the conventions and functionality outlined here, the task would be achieved
with code such as this:

\cs_gset_eq:cc
{ \cf@encoding \token_to_str:N #1 } { 7 \token_to_str:N #1 }

The command \cs_gset_eq:cc is a global \let that generates command names out of
both of its arguments before making the definition. This produces code that is far more
readable and more likely to be correct first time. (\token_to_str:N is the ¥ TEX3 name
for \string.)

Here is the second example.

\expandafter
\in@
\csname sym#3J,
\expandafter
\endcsname
\expandafter
{
\group@list}y,

This piece of code is part of the definition of another function. It first produces two
things: a token list, by expanding \group@list once; and a token whose name comes
from ‘sym#3’. Then the function \in@ is called and this tests if its first argument occurs
in the token list of its second argument.

Again we can improve enormously on the code. First we shall rename the func-
tion \in@ according to our conventions. A function such as this but taking two normal
“n” arguments might reasonably be named \seq_test_in:Nn; thus the variant func-
tion we need will be defined with the appropriate argument types and its name will be
\seq_test_in:cV. Now this code fragment will be simply:

\seq_test_in:cV { sym #3 } \1_group_seq

Note that, in addition to the lack of \expandafter, the space after the } will be silently
ignored since all white space is ignored in this programming environment.

4.2 New functions from old

For many common functions the I¥TEX3 kernel will provide variants with a range of
argument forms, and similarly it is expected that extension packages providing new
functions will make them available in the all the commonly needed forms.

However, there will be occasions where it is necessary to construct a new such vari-
ant form; therefore the expansion module provides a straightforward mechanism for the
creation of functions with any required argument type, starting from a function that
takes “normal” TEX undelimited arguments.

To illustrate this let us suppose you have a “base function” \demo_cmd : Nnn that takes
three normal arguments, and that you need to construct the variant \demo_cmd: cnx, for
which the first argument is used to construct the name of a command, whilst the third
argument must be fully expanded before being passed to \demo_cmd:Nnn. To produce
the variant form from the base form, simply use this:

\cs_generate_variant:Nn \demo_cmd:Nnn { cnx }
This defines the variant form so that you can then write, for example:
\demo_cmd:cnx { abc } { pq } { \rst \xyz }

rather than ... well, something like this!

10

\def \tempa {{pq}}%
\edef \tempb {\rst \xyz}/
\expandafter
\demo@cmd : nnn
\csname abc}
\expandafter
\expandafter
\expandafter
\endcsname
\expandafter
\tempa
\expandafter
{%
\tempb
Y%
Another example: you may wish to declare a function \demo_cmd_b:xcxcx, a variant
of an existing function \demo_cmd_b:nnnnn, that fully expands arguments 1, 3 and 5,

and produces commands to pass as arguments 2 and 4 using \csname. The definition
you need is simply

\cs_generate_variant:Nn \demo_cmd_b:nnnnn { xcxcx }

This extension mechanism is written so that if the same new form of some existing
command is implemented by two extension packages then the two definitions will be
identical and thus no conflict will occur.

5 The distribution

At present, the expl3 modules are designed to be loaded on top of INTEX 2¢. In time, a
ITREX3 format will be produced based on this code. This allows the code to be used in
KTEX 2¢ packages now while a stand-alone IMTEX3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly
stable. The syntax conventions and functions provided are now ready for
wider use. There may still be changes to some functions, but these will be
minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they reach maturity.
At present, the expl3 bundle consists of a number of modules, most of which are loaded
by including the line:

\RequirePackage{expl3}

in a IXTEX 2¢ package, class or other file. The expl3 modules regarded as stable, and
therefore suitable for basing real code on, are as follows:

13basics This contains the basic definition modules used by the other packages.

183box Primitives for dealing with boxes.

11

13clist Methods for manipulating comma-separated token lists.

13coffins Augmented box constructs for alignment operations.

13expan This is the argument expansion module discussed earlier in this document.
13int This implements the integer data-type int.

13io A module providing low level input and output functions.

18keys For processing lists of the form { keyl=vall , key2=val2 }, intended to work
as a WTEX3 version of xkeyval/kvoptions, although with input syntax more like that
of pgfkeys.

13msg Communicating with the user: includes low-level hooks to allow messages to be
filtered (higher-level interface for filtering to be written!).

I83names This sets up the basic naming scheme and renames all the TEX primitives.

13prg Program control structures such as boolean data type bool, generic do-while loops,
case-switches, sorting routines and stepwise loops.

13prop This implements the data-type for “property lists” that are used, in particular,
for storing key/value pairs.

13quark A “quark” is a command that is defined to expand to itself! Therefore they
must never be expanded as this will generate infinite recursion; they do however
have many uses, e.g. as special markers and delimiters within code.

13seq This implements data-types such as queues and stacks.

13skip Implements the “rubber length” datatype skip and the “rigid length” datatype
dim.

13t] This implements a basic data-type, called a token-list variable (t1 var.), used for
storing named token lists: these are TEX macros with no arguments.

13token Analysing token lists and token streams, including peeking ahead to see what’s
coming next and inspecting tokens to detect which kind they are.

6 Moving from ETEX 2 to ETEX3

To help programmers to use N TEX3 code in existing ITEX 2¢ package, some short notes
on making the change are probably desirable. Suggestions for inclusion here are welcome!
Some of the following is concerned with code, and some with coding style.

e expl3 is mainly focussed on programming. This means that some areas still re-
quire the use of KIEX2c internal macros. For example, you may well need
\@ifpackageloaded, as there is currently no native XTEX3 package loading mod-
ule.

12

7

User level macros should be generated using the mechanism available in the xparse
package, which is available from CTAN or the ETEX3 SVN repository.

At an internal level, most functions should be generated \long (using \cs_new:Npn)
rather than “short” (using \cs_new_nopar:Npn). The exceptions are:

— Functions which take no arguments;

— Functions which are used with pre-set arguments which therefore cannot be
\long: this is mainly the case with auxiliary functions.

Where possible, declare all variables and functions (using \cs_new:Npn, \t1_new:N,
etc.) before use.

Prefer “higher-level” functions over “lower-level”, where possible. So for example
use \cs_if_exist:N(TF) in preference \if_cs_exist:N.

Use space to make code readable. In general, we recommend a layout such as:

\cs_new:Npn \foo_bar:Nn #1#2

{
\cs_if_exist:NTF #1
{ \foo_bar_aux_i:n {#2} }
{ \foo_bar_aux_ii:nn {#2} { literal } }
}

where spaces are used around { and } except for isolated #1, #2, etc.

Put different code items on separate lines: readability is much more useful than
compactness.

Use long, descriptive names for functions and variables, and for auxiliary functions
use the parent function name plus aux, aux_i, aux_ii and so on.

If in doubt, ask the team via the LaTeX-L list: someone will soon get back to you!

The ETEX3 Project

Development of XTEX3 is carried out by The IMTEX3 Project. Over time, the membership
of this team has naturally varied. Currently, the members are

Johannes Braams
David Carlisle
Robin Fairbairns
Morten Hggholm
Bruno Le Floch

Thomas Lotze

13

o Frank Mittelbach

« Will Robertson

¢ Chris Rowley

o Rainer Schopf

o Joseph Wright
while former members are

o Michael Downes

e Denys Duchier

e Alan Jeffrey

e Martin Schroder

References

[1] Donald E Knuth The TgXbook. Addison-Wesley, Reading, Massachusetts, 1984.

[2] Goossens, Mittelbach and Samarin. The BTEX Companion. Addison-Wesley, Read-
ing, Massachusetts, 1994.

[3] Leslie Lamport. BTgX: A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

[4] Frank Mittelbach and Chris Rowley. “The IWTEX3 Project”. TUGboat, Vol. 18, No. 3,
pp. 195-198, 1997.

8 expl3 implementation

1 (*package)

Load etex as otherwise we are likely to get into trouble with registers. Some inserts
are reserved also as these have to be from the standard pool.

> \RequirePackage{etex}
5 \reserveinserts{32}

We want calc to allow IMTEX 2 to do e-TgX-like setting (which will be native in
BTEX3).

+ \RequirePackage{calc}

The coffins system requires basic colour support along with graphics scaling and so
on. When used as a package, it makes sense to load the IMTEX 2¢ drivers. This is done
on a “minimal” basis, to avoid for example option clashes.

s \RequirePackage{color,graphics}

14

Do the package identification: this will turn on code syntax.
¢ \ProvidesExplPackage
7 {\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

\@1@expl@checkdeclarations@hool A couple of package options to be provided. These have to be done by hand as there is
\@l@expl@log@functions@bool no expl3 yet: the logging option is needed before loading 13basics!

s \newcommand* \@l@expl@check@declarations@bool { 0 }
o \newcommand*\@1Q@expl@log@functions@bool { 0 }

o \DeclareOption { check-declarations }

11 { \def \@l@expl@check@declarations@bool { 1 } }
12 \DeclareOption { log-functions }

13 {\def \@l@expl@log@functions@bool { 1 } }

12 \ProcessOptions \relax

—

(End definition for \@1@expl@check@declarations@bool. This function is documented on page 77.)
We already loaded [3names at the beginning of the dtx file. We now load the base
of TREX3, stopping once token list variables are defined.

15 \RequirePackage{ 1l3basics, l3expan, 13tl }

\tl_check_exists:N When used as a package, there is an option to be picky and to check definitions exist.
This part of the process is done now, so that variable types based on t1 (for example
clist, seq and prop) will inherit the appropriate definitions.

16 \ifodd \@l@expl@check@declarations@bool \relax
17 \cs_new_protected:Npn \tl_check_exists:N #1

18 {

19 \cs_if_exist:NF #1

20 {

21 \msg_kernel_error:nnx { check } { non-declared-variable }
2 { \token_to_str:N #1 }

23 }

2 }

25 \cs_set_protected:Npn \tl_set:Nn #1#2

26 {

27 \tl_check_exists:N #1

28 \cs_set_nopar:Npx #1 { \exp_not:n {#2} }
29 }

30 \cs_set_protected:Npn \tl_set:Nx #1#2

31 {

32 \tl_check_exists:N #1

33 \cs_set_nopar:Npx #1 {#2}

34 }

35 \cs_set_protected:Npn \tl_gset:Nn #1#2

36 {

37 \tl_check_exists:N #1

38 \cs_gset_nopar:Npx #1 { \exp_not:n {#2} }
39 }

s \cs_set_protected:Npn \tl_gset:Nx #1#2

a1 {

a2 \tl_check_exists:N #1

53 \cs_gset_nopar:Npx #1 {#2}

15

44 3
s \cs_set_protected:Npn \tl_set_eq:NN #1#2

46 {

a7 \tl_check_exists:N #1

a8 \tl_check_exists:N #2

a9 \cs_set_eq:NN #1 #2

50 3

si \cs_set_protected:Npn \tl_gset_eq:NN #1#2
52 {

53 \tl_check_exists:N #1

54 \tl_check_exists:N #2

55 \cs_gset_eq:NN #1 #2

56 3

57 \fi
(End definition for \tl_check_exists:N. This function is documented on page 77.)
The rest of the code can now be loaded.

52 \RequirePackage{
50 13seq,

60 13int,

61 13quark,
2 13prg,

63 13clist,
64 13token,
65 13prop,

e 13msg,

67 13io,

68 13file,

69 13skip,

70 1l3keys,

71 13fp,

72 13box,

73 13coffins,
74 13color,
75 131luatex
76 }

The error message for variables cannot be created before now: this means that expl3
itself may cause some odd errors.

77 \bool_if:nT { \@l@expl@check@declarations@bool }

78 {

79 \msg_kernel_new:nnnn { check } { non-declared-variable }

80 { The~variable~#1~has~not~been~declared~\msg_line_context:. }
81 {

82 Checking~is~active,~and~you~have~tried~do~so~something~like: \\
83 \ \ \tl_set:Nn #1 ~

84 \iow_char:N \{ ~ ... ~ \iow_char:N \} \\

85 without~first~having: \\

8 \ \ \tl_new:N #1 \\

87 \\

88 LaTeX~will~create~the~variable~and~continue.

16

\ExplSyntax0ff These are redefined here to reduce unnecessary work when switching. The definition for
\ExplSyntaxOn \ExplSyntaxOff copies the code from earlier, so that category codes are restored.

o1 \cs_set_protected_nopar:Npn \ExplSyntaxOn

o q

03 \bool_if:NF \1_expl_status_bool

94 {

95 \cs_set_protected_nopar:Npx \ExplSyntaxOff

9% {

o7 \char_set_catcode:nn { 9 } { \char_value_catcode:n { 9 } }
98 \char_set_catcode:nn { 32 } { \char_value_catcode:n { 32 } }
99 \char_set_catcode:nn { 34 } { \char_value_catcode:n { 34 } }
100 \char_set_catcode:nn { 38 } { \char_value_catcode:n { 38 } }
101 \char_set_catcode:nn { 58 } { \char_value_catcode:n { 58 } }
102 \char_set_catcode:nn { 94 } { \char_value_catcode:n { 94 } }
103 \char_set_catcode:nn { 95 } { \char_value_catcode:n { 95 } }
104 \char_set_catcode:nn { 124 } { \char_value_catcode:n { 124 } }
105 \char_set_catcode:nn { 126 } { \char_value_catcode:n { 126 } }
106 \tex_endlinechar:D = \tex_the:D \tex_endlinechar:D \scan_stop:
107 \bool_set_false:N \1_expl_status_bool

108 \cs_set_protected_nopar:Npn \ExplSyntaxOff { }

109 }

110 }

111 \char_set_catcode_ignore:n {91} % tab

112 \char_set_catcode_ignore:n {32} 7 space

113 \char_set_catcode_other:n {34 } 7 double quote

114 \char_set_catcode_alignment:n { 38 } Y’ ampersand

115 \char_set_catcode_letter:n {58} ¥% colon

116 \char_set_catcode_math_superscript:n { 94 } ¥ circumflex

117 \char_set_catcode_letter:n { 95 } ¥ underscore

118 \char_set_catcode_other:n { 124 } 7% pipe

119 \char_set_catcode_space:n { 126 } % tilde

120 \tex_endlinechar:D = 32 \scan_stop:

121 \bool_set_true:N \1_expl_status_bool

122 T

123 \cs_set_protected_nopar:Npx \ExplSyntax0ff

124 {

125 \exp_not:o \ExplSyntaxO0ff

126 \cs_set_protected_nopar:Npn \ExplSyntaxOff { }

127 }

(End definition for \ExplSyntax0ff and \ExplSyntaxOn. These functions are documented on page
??)

s (/package)

17

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\@lQ@expl@check@declarations@bool . ..
................. 8,8, 11, 16, 77
\@1l@expl@log@functions@bool 8,9, 13
N 82, 84-87
N 84
N} 84
AL e 83, 86
B
\bool if:NF 93
\bool_if:nT 7
\bool_set_false:N 107
\bool_set_true:N 121
C
\char_set_catcode:nn 97-105
\char_set_catcode_alignment:n 114
\char_set_catcode_ignore:n 111, 112
\char_set_catcode_letter:n 115, 117

\char_set_catcode_math_superscript:n

......................... 116
\char_set_catcode_other:n 113, 118
\char_set_catcode_space:n 119
\char_value_catcode:n 97-105
\cs_gset_eq:NN 55
\cs_gset_nopar:Npx 38, 43
\cs_if_exist:NF 19
\cs_new_protected:Npn 17
\cs_set_eq:NN 49
\cs_set_nopar:Npx 28, 33

\cs_set_protected:Npn 25, 30, 35, 40, 45, 51

\cs_set_protected_nopar:Npn 91, 108, 126
\cs_set_protected_nopar:Npx 95,123
D
\DeclareOption 10, 12
\def ... 11, 13
E
\exp_mnot:n 28, 38
\exp_not:o 125
\ExplFileDate 7
\ExplFileDescription 7
\ExplFileName 7

\ExplFileVersion 7

\ExplSyntax0ff 91, 95, 108, 123, 125, 126

\ExplSyntaxOn 91, 91
F

Nl 57
I

\ifodd 16

\iow_char:N 84
L

\1_expl_status_bool 93, 107, 121
M

\msg_kernel_error:nnx 21

\msg_kernel _new:nnnn 79

\msg_line_context: 80
N

\newcommand 8,9
P

\ProcessOptions 14

\ProvidesExplPackage 6
R

\relax 14, 16

\RequirePackage 2,4,5, 15, 58

\reserveinserts 3
S

\scan_stop: 106, 120
T

\tex_endlinechar:D 106, 120

\tex_the:D 106

\tl_check_exists:N
16, 17, 27, 32, 37, 42, 47, 48, 53, 54

\tl_gset:Nn 35
\tl_gset:Nx 40
\tl_gset_eq:NN 51
\tl_new:N 86
\tl_set:Nn 25, 83
\tl_set:Nx 30
\tl_set_eq:NN 45
\token_to_str:N 22

	1 Introduction
	2 Languages and interfaces
	3 The naming scheme
	3.1 Examples
	3.2 Formal naming syntax
	3.2.1 Variables: scope and type
	3.2.2 Variables: guidance
	3.2.3 Functions: argument specifications

	4 Expansion control
	4.1 Simpler means better
	4.2 New functions from old

	5 The distribution
	6 Moving from LaTeX2e to LaTeX3
	7 The LaTeX3 Project
	References
	8 expl3 implementation
	Index
	Symbols
	B
	C
	D
	E
	F
	I
	L
	M
	N
	P
	R
	S
	T

