The [3galley package
Galley code”

The I¥TEX3 Project!
Released 2012/08/29

1 Introduction

In IATEX3 terminology a galley is a rectangular area which receives text and other material
filling it from top. The vertically extend of a galley is normally not restricted: instead
certain chunks are taken off the top of an already partially filled galley to form columns
or similar areas on a page. This process is typically asynchronous but there are ways to
control or change its behaviour.

Examples for galleys are “the main galley”, where the continuous document data
gets formatted into and from which columns and pages are constructed, and “vertical box
galleys”, such as the body of a minipage environment. The latter galleys are typically
not split after formatting, though there can be exceptions.

2 Formatting layers

The present module is mainly concerned with the formatting of text in galleys. The
mechanism by which this is achieved uses four (somewhat) distinct layers, some of which
can be addressed using the templates provided here.

2.1 Layer one: external dimensions

The bottom layer of the system is the external dimensions of the galley. Normally only
the horizontal dimension is fixed externally, while the vertical (filling) dimension is un-
specified. The external dimensions are fixed when starting a new galley, and are therefore
not modifiable within the galley.

There are no templates for setting this layer directly, although the external val-
ues are influenced by other parts of the system (for example when creating minipage
environments).

*This file describes v4155, last revised 2012/08/29.

TE-mail: latex-team@Ilatex-project.org


mailto:latex-team@latex-project.org

\1l_galley_width_dim

\galley_level:

2.2 Layer two: internal dimensions

The second layer is the internal dimensions of the galley: the measure used for paragraph
text and the position of the paragraph relative to the edges of the galley.

This layer is normally accessed by higher-level templates via the object type measure.
Changes made using level two templates will often extend for large parts of a document
(up to and including the entire document).

2.3 Layer three: paragraph shape

The third layer defines the paragraph shape within the measure as provided by the second
layer. In the absence of any specification for that layer the paragraph shape used will be
that of a rectangular area of the width of the current measure.

There are some restrictions imposed on the shape of a paragraph by the underlying
TEX mechanisms. For example, cut out sections in paragraphs can be specified from the
top of the paragraph but not from the bottom.

2.4 Layer four: formatting inside the paragraph

The forth layer deals with the paragraph formatting aspects such as hyphenation and
justification within the paragraph (this is sometimes referred to as “h&j” or “hj”). This
layer is somewhat distinct from the galley as such, but is handled in the same place as
there is, internally, interaction between the different layers.

3 Code interfaces

3.1 Galley layers

The total width of a galley, set either by the page geometry code for the main vertical

galley or when creating an independent galley, such as a minipage.
variable

\galley_level:

Sets up a vertical box to contain a new galley level. The box should be “colour safe”,
which is automatic for ITEX3 coffins but must be included manually (using \color_-

group_begin: and \color_group_end:) in “raw” vertical boxes.
function



3.2 Measure

(right margin)}
(right margin)}

\galley_margins_set_absolute:nn \galley_margins_set_absolute:nn {(left margin)
\galley_margins_set_relative:nn \galley_margins_set_relative:nn {(left margin)

}{
P A{

Sets the width of the measure to have the (left margin) and (right margin) specified by
the arguments, both of which are (dimension expressions). The relative function will
adjust the text width within any existing margins, whereas the absolute measure sets
the margins based on the edges of the galley only. One or both of the (margins) may be

negative, to specify and outdent.
function

3.3 Between paragraphs

\g_galley_previous_par_lines_int

The number of lines in the preceding conceptual paragraph. This may not correspond
to the TEX \prevgraf primitive value as one conceptual paragraph may contain several

TEX \par primitive tokens.
variable

\g_galley_restore_running_tl

When galley settings need to be reset at the end of a paragraph, the appropriate detail
should be added to this token list. It is inserted immediately before the start of each
paragraph, and can therefore be used to clear otherwise global settings. The token list

itself is also cleared as part of this process.
variable

\g_galley_no_break_next_bool

Indicates that no page break should be allowed between the current paragraph and the

next paragraph.
variable

\g_galley_omit_next_indent_bool

Indicates that the indent should be omitted from the start of the next paragraph started.
function

\1_galley_interpar_penalty_int

The (penalty) for a break between paragraphs. The (penalty) should be in the range
—10000 to 10000, where —10000 forces a page break, 0 has no effect at all and 10000
forbids a page break. Note that setting \g_galley_no_break_next_bool to true will

override any setting of \1_galley_interpar_penalty_int.
variable



\1_galley_interpar_vspace_skip

\galley_set_user_penalty:n

\galley_set_user_vspace:n

Stretchable space to be inserted between paragraphs, set at the design or template level.
variable

\galley_set_user_penalty:n {(penalty)}

Sets the (penalty) for a break between the current and next paragraph on a one-off basis.
This function is intended for user-level adjustments to design, and takes precedent over

both settings from \galley_set_penalty:n and from \galley_no_break_next:.
function

\galley_set_user_vspace:n {(space)}

Sets the (space) f to be inserted between the current and next paragraph on a one-off
basis. This function is intended for user-level adjustments to design, and otherwise is

analogous to \galley_set_vspace:n.
function

3.4 Paragraph shape

\galley_parshape_multi_par:nnnN  \galley_parshape_multi_par:nnnN {(unaltered lines)} {(left indents)}

:nVVN  {(right indents)} (resume flag)

\galley_parshape_single_par:nnnN \galley_parshape_single_par:nnnN {(unaltered lines)} {(left indents)}

:nVVN {(right indents)} (resume flag)

Sets the current paragraph shape to create an arbitrary paragraph shape. The paragraph
shape is set such that there are (unaltered lines) which have width and indent as set by
the measure. The “altered” lines are then defined by the comma-separated lists of (left
indents) and (right indents). These are both indents from the edge of the measure, and
may be negative, and should both contain the same number of items. If the (resume flag)
is true, after the last altered line the paragraph shape returns to that of the measure.
On the other hand, if the flag is false then the shape of the last line is retained for the
rest of the paragraph. For example,

\galley_parshape_set_multi_par:nnnN { 1 }
{2pt, 4pt,6ptr{2pt, 4pt, 6 pt} \c_true_bool

would create a paragraph shape in which the first line is the full width of the measure,
the second line is indented by 2 pt on each side, the third line by by 4 pt and the fourth
line and subsequent lines by 6 pt from the edge of the measure on each side.

The single_par version applies only to a single paragraph, while the multi_par
function sets the paragraph shape on an ongoing basis within the scope of the current

TEX group.

function



\galley_parshape_fixed_lines:nnn \galley_parshape_fixed_lines:nnn {(unaltered lines)} {(left indents)}

:nvV  {(right indents)}

\1_galley_line_left_skip
\1_galley_line_right_skip

\1_galley_par_begin_skip
\1_galley_par_end_skip

\1_galley_par_indent_dim

Sets the paragraph shape to create an arbitrary paragraph shape which will apply to an
exact number of lines. The paragraph shape is set such that there are (unaltered lines)
which have width and indent as set by the measure. The “altered” lines are then defined
by the comma-separated lists of (left indents) and (right indents). These are both indents
from the edge of the measure, and may be negative, and should both contain the same
number of items. The altered lines will apply to one or more paragraphs, such that the
entire indent specification is honoured before the standard measure resumes.

function
3.5 Formatting inside the paragraph

The settings described here apply “inside” the paragraph, and so are active irrespective
of any paragraph shape within the measure.

Stretchable space added to the appropriate side each line in a paragraph.

variable

Stretchable space added to the beginning of the first line and end of the last line of a
paragraph, respectively.
variable

Fixed space added to the start of each paragraph except for those where \g_galley_-

omit_next_indent_bool is true.
variable



\1_galley_last_line_fit_int

Determines how the inter-word stretch is set for the last line of a paragraph when
1. The value of \1_galley_par_end_skip contains an infinite (fil) component;

2. The values of \1_galley_line_left_skip and \1_galley_line_right_skip do
not contain an infinite (£il) component.

Under these circumstances, \1_galley_last_line_fit_int is active, and applies as
follows:

e Set to 0, the last line of the paragraph is set with the inter-word spacing at natural
width;

e Set to a 1000 (or above), the inter-word spacing in the last line is stretched by the
same factor as that applied to the penultimate line;

e Set to n between these extremes, the inter-word spacing in the last line is stretched
by n/1000 times the factor used for the penultimate line.

variable

\galley_set_interword_spacing:N \galley_set_interword_spacing:N (fixed spacing bool)

Sets the inter-word spacing used based on the values supplied by the current font. If the
(fized spacing bool) flag is true then no stretch is permitted between words, otherwise
the stretch specified by the font designer is used.

function
3.6 Display material

Material which is set in “display-style” require additional settings to control the relation-
ship with the surrounding material.

\galley_display_begin: \galley_display_begin:
\galley_display_end:

\galley_display_end:
Sets up a group to contain display-style material. Unlike an independent galley level,

settings are inherited from the surroundings. However, the interaction of a display block

with the paragraphs before and after it can be adjusted independent of the design of text.
function

3.7 Hyphenation

\1_galley_hyphen_left_int THIS IS A HACK: SEE CODE!
variable




3.8 Line breaking

\1_galley_binop_penalty_int

Penalty charged if an inline math formula is broken at a binary operator.
variable

\1_galley_double_hyphen_demerits_int

Extra demerit charge of two (or more) lines in succession end in a hyphen.
variable

\1_galley_emergency_stretch_skip

Additional stretch assumed for each line if no better line breaking can be found without
it. This stretch is not actually added to lines, so its use may result in underfull box

warnings.
variable

\1_galley_final_hyphen_demerits_int

Extra demerit charge if the second last line is hyphenated.
variable

\1_galley_linebreak_badness_int

Boundary that if exceeded will cause TEX to report an underfull line.
variable

\1_galley_linebreak_fuzz_dim

Boundary below which overfull lines are not reported.
variable

\1_galley_linebreak_penalty_int

Extra penalty charged per line in the paragraph. By making this penalty higher TEX

will try harder to produce compact paragraphs.
variable

\1_galley_linebreak_pretolerance_int

Maximum tolerance allowed for individual lines to break the paragraph without attempt-

ing hyphenation.
variable

\1_galley_linebreak_tolerance_int

Maximum tolerance allowed for individual lines when breaking a paragraph while at-
tempting hyphenation (if this limit can’t be met \1_galley_emergency_stretch_skip
comes into play).



variable

\1l_galley_mismatch_demerits_int

Extra demerit charge if two visually incompatible lines follow each other.
variable

\1_galley_relation_penalty_int

Penalty charged if an inline math formula is broken at a relational symbol.
variable

\galley_break_line:Nn \galley_break_line:Nn (boolean) {(dim expr)}

Breaks the current line, filling the remaining space with £i1 glue. If the (boolean) is true
then a page break is possible after the broken line. Vertical space as given by the {dim

expr) will be inserted between the broken line and the next line.
function

3.9 Paragraph breaking

\1_galley_parbreak_badness_int

Boundary that if exceeded will cause TEX to report an underfull vertical box.
variable

\1_galley_parbreak_fuzz_dim

Boundary below which overfull vertical boxes are not reported.
variable

\1_galley_broken_penalty_int

Penalty for page breaking after a hyphenated line.
variable

\1_galley_pre_display_penalty_int

Penalty for breaking between immediately before display math material.
variable

\1_galley_post_display_penalty_int

Penalty for breaking between immediately after display math material.
variable



\galley_set_club_penalties:n \galley_set_club_penalties:n {(penalty list)}

:(V]v)
\galley_set_display_club_penalties:n
H(V]v)
\galley_set_display_widow_penalties:n
:(V]v)

\galley_set_widow_penalties:n
:(V]v)

Set the penalties for breaking lines at the beginning and end of (partial) paragraphs. In
each case, the (penalty list) is a comma-separated list of penalty values. The list applies
as follows:

club Penalties for breaking after the first, second, third, etc. line of the paragraph.

display_club Penalties for breaking after the first, second, third, etc. line after a display math
environment.

display_club Penalties for breaking before the last, penultimate, antepenultimate, etc. line before
a display math environment.

widow Penalties for breaking before the last, penultimate, antepenultimate, etc. line of the
paragraph.

In all cases, these penalties apply in addition to the general interline penalty or to any

“special” line penalties.
function

\galley_set_interline_penalty:n \galley_set_interline_penalty:n {(penalty)}

Sets the standard interline penalty applied between lines of a paragraph. This value is

added to any (display) club or widow penalty in force.
function

\galley_set_interline_penalties:n \galley_set_interline_penalties:n {(penalty list)}
'

Sets “special” interline penalties to be used in place of the standard value, specified as a
comma-separated (penalty list). The (penalties) apply to the first, second, third, etc. line

of the paragraph.
function

\galley_save_club_penalties:N \galley_save_club_penalties:N {(comma list)}
\galley_save_display_club_penalties:N

\galley_save_display_widow_penalties:N

\galley_save_interline_penalties:N

\galley_save_widow_penalties:N

These functions save the current value of the appropriate to the comma list specified,

within the current TEX group.
function



\galley_interline_penalty: % \galley_interline_penalty:

Expands to the current interline penalty as a (integer denotation).
XP

4 Hooks and insertion points

\g_galley_par_begin_hook_t1l

Token list inserted at the beginning of every paragraph in horizontal mode. This is

inserted after any paragraph indent but before any other horizontal mode material.
variable

\g_galley_par_end_hook_tl Token list inserted at the end of every paragraph in horizontal mode.
variable

\g_galley_par_after_hook_tl

Token list inserted after each paragraph. This is used for resetting galley parameters,

and is therefore cleared after use.
variable

\g_galley_whatsit_next_tl Token list for whatsits to be inserted at the very beginning of the next paragraph started.
variable

\g_galley_whatsit_previous_tl

Token list for whatsits to be inserted at the very end of the last paragraph started.
variable

5 Additional effects

\@@_end_par:n \@@_end_par:n {(tokens)}

Adds the (tokens) to the material collected for the last paragraph before finalising the last
paragraph in the usual way. This function should therefore be the first non-expandable

entry used when a function needs to add tokens to the preceding paragraph.
function

10



6 Internal variables

Some of the internal variables for the galley mechanism may be of interest to the pro-
grammer. These should all be treated as read-only values and accessed only through the
defined interfaces described above.

\1_galley_total_left_margin_dim

The total margin between the left side of the galley and the left side of the text block.
This may be negative if the measure is set to overlap the text beyond the edge of the
galley.

variable

\1_galley_total_right_margin_dim

\1_galley_text_width_dim

The total margin between the right side of the galley and the right side of the text block.
This may be negative if the measure is set to overlap the text beyond the edge of the
galley.

variable

The width of a line of text within the galley, taking account of any margins added. This

may be larger than \1_galley_width_dim if the margins are negative.
variable

7 13galley Implementation

At the implementation level, there are a number of challenges which have to be overcome
in order to make the galley easy to use at the designer and user levels. Inserting material
into the main vertical list is in many ways an irreversible operation. Inserting items
as they appear in the source is therefore not desirable. Instead, inserting vertical-mode
material needs to be delayed until the start of the “next” paragraph. This is particularly
notable for invisible items such as whatsits and specials, which will otherwise cause
changes in spacing. Delaying insertion enables user-supplied settings to override design
settings in a reliable fashion. This can be achieved as the design-level material can be
ignored if a user value is supplied. There is a need to allow proper nesting of galleys, which
means that all of the above needs to be set up so that it can be saved and restored. All of
these manipulations require altering the meaning of the \par token, which is particularly
awkward as TEX inserts a token called \par rather than one with a particular meaning.
This makes moving \par to somewhere “safe” extremely challenging.

Added to all of this complexity, there is a need to deal with “display-like” material.
The most obvious example is the way lists are handled. These use \par tokens to achieve
the correct appearance, but at the same time

Text
\begin{itemize}
\item An item

11



\end{itemize}
More text

should form one visual paragraph while

Text

\begin{itemize}
\item An item

\end{itemize}

More text

should be shown as two paragraphs. This requires an additional level of handling so that
the \par token used to end the list in the first case does not start a new paragraph in a
visual sense while the second does.

Another factor to bear in mind is that \tex_everypar:D may be executed inside a
group. For example, a paragraph starting

{Text} here

will insert the tokens such that the current group level is 1 higher for “Text” than for
“here”. The result of this is that it’s very important to watch how flags are set and reset.
This can only be done reliably on a global level, which then has a knock-on effect on the
rest of the implementation.

At a TEX level, settings can only apply to the current paragraph, but conceptually
there is a need to allow for both single-paragraph and “running” settings. Whenever the
code switches galley level both of these need to be correctly saved.

1 (*initex | package)
> (0@=galley)
s (*package)

+ \ProvidesExplPackage
5 {\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

s (/package)

7.1 Support items

Functions or settings which are needed by the galley but perhaps also elsewhere.
The default hyphenation character should be set and hyphenation should be enabled.
7 (*initex)
s \tex_defaulthyphenchar:D 45 \scan_stop:
o (/initex)

12



7.2 Galley settings

Settings for application by the galley respect the usual TEX grouping and so are all local
variables.

\1_ galley parshape left indent clist Setting up paragraph shape interacts with setting up the measure. The only way to keep
\1_ galley parshape right indent clist things flexible is to have a rather “rich” set of data available.
\1__galley parshape multipar bool 1, \clist_new:N \1__galley_parshape_left_indent_clist
\1__galley parshape resume std_bool 11 \clist_new:N \1__galley_parshape_right_indent_clist
\1__galley parshape fixed lines bool 12 \bool_new:N \1__galley_parshape_multipar_bool
13 \bool_new:N \1__galley_parshape_resume_std_bool
1 \bool_new:N \1__galley_parshape_fixed_lines_bool
15 \int_new:N \1_galley_parshape_std_lines_int
(End definition for \1__galley_parshape_left_indent_clist and \1__galley_parshape_right_indent_clist
These functions are documented on page 77.)

\1_galley_text_width_dim The width of the current measure: the “running” setting can be inherited from I4TEX 2¢.
16 (*initex)
17 \dim_new:N \1_galley_text_width_dim
18 (/initex)
o (*package)
20 \cs_new_eq:NN \1_galley_text_width_dim \linewidth
21 {/package)
(End definition for \1_galley_text_width_dim This variable is documented on page 11.)

-

\1 galley total left margin din Margins of the current text within the galley: these plus the galley width are one way

\1_galley total right margin din to define the measure width. See also the text width, which is an alternative view (and
should be in sync with this one!).

> (*initex)

25 \dim_new:N \1_galley_total_left_margin_dim

+ (/initex)

s (*package)

s \cs_new_eq:NN \1_galley_total_left_margin_dim \@totalleftmargin

27 (/package)
25 \dim_new:N \1_galley_total_right_margin_dim

N

N

N

(End definition for \1_galley_total_left_margin_dim and \1_galley_total_right_margin_dim These
variables are documented on page 11.)

\1 galley interpar penalty int Items between paragraphs at the design level.
\1_galley interpar vspace skip  , \int_new:N \1_galley_interpar_penalty_int
30 \skip_new:N \1_galley_interpar_vspace_skip

(End definition for \1_galley_interpar_penalty_int and \1_galley_interpar_vspace_skip These
variables are documented on page 4.)

\1_galley_width_dim The external size of a galley is the stored in the TEX primitive \tex_hsize:D, which is
renamed. This will only ever be reset by the code constructing a new galley, for example
the start of a minipage. This value will be set for the main galley by the page layout
system.

51 \cs_new_eq:NN \1_galley_width_dim \tex_hsize:D
(End definition for \1_galley_width_dim This variable is documented on page 2.)

13



\g__galley_begin_level_bool
\1__galley_begin_level_bool

\g_galley omit next_indent_bool
\1__galley omit_next_indent_bool

\g__galley_parshape_set_bool
\1__galley_parshape_set_bool

\g_galley_no_break_next_bool
\1__galley no_break_next_bool

\g_galley_par_begin_hook_tl
\1__galley _galley par_begin hook t1
\g_galley_par_end_hook_tl
\l__galley galley par end hook tl

\g_galley_par_after_hook_tl
\1__galley_par_after_hook_tl

7.3 Galley data structures

In contrast to settings, the data structures used by the galley are all set globally. To
allow different galley levels to exist, a local variant is defined for each one to save the
value when starting a new level.

Indicates that the galley is at the very beginning of the level, and that no material has
yet been set. As a result, the global version is set true to begin with.

3> \bool_new:N \g__galley_begin_level_bool

33 \bool_new:N \1__galley_begin_level_bool

(End definition for \g__galley_begin_level_bool and \1__galley_begin_level_bool These variables
are documented on page ?77.)

A global flag is needed for suppressing indentation of the next paragraph. This does not
need a “running” version since that should be handled using the justification object:
the two concepts are related but not identical. The flag here is needed in cases such as
the very first paragraph in a galley or immediately following a heading.

3 \bool_new:N \g_galley_omit_next_indent_bool

55 \bool_new:N \1__galley_omit_next_indent_bool

(End definition for \g_galley_omit_next_indent_bool and \1__galley_omit_next_indent_bool These
variables are documented on page ?7.)

This is not a setting for paragraph shape, but rather a tracker for the galley system.
36 \bool_new:N \g__galley_parshape_set_bool
57 \bool_new:N \1__galley_parshape_set_bool

(End definition for \g__galley_parshape_set_bool and \1__galley_parshape_set_bool These variables
are documented on page ?77.)

Dealing with the no-break flag is pretty much the same as the case for the indent: this
applies on a single paragraph basis.

35 \bool_new:N \g_galley_no_break_next_bool

50 \bool_new:N \1__galley_no_break_next_bool

(End definition for \g_galley_no_break_next_bool and \1__galley_no_break_next_bool These vari-
ables are documented on page 77?.)

Hooks for user-level code: these are not used by the galley itself.
20 \tl_new:N \g_galley_par_begin_hook_tl

s \tl_new:N \1__galley_galley_par_begin_hook_tl

2 \tl_new:N \g_galley_par_end_hook_tl

23 \tl_new:N \1__galley_galley_par_end_hook_tl

(End definition for \g_galley_par_begin_hook_t1 and others. These variables are documented on page
??.)

This one is used by the galley: it happens “after” the current paragraph, and is used for
reset purposes.

2 \tl_new:N \g_galley_par_after_hook_tl

45 \tl_new:N \1__galley_par_after_hook_tl

(End definition for \g_galley_par_after_hook_tl and \1__galley_par_after_hook_tl These variables
are documented on page ?77.)

14



\g_galley previous par lines int
\l__galley previous par lines int

\g_galley_restore_running_ tl
\l__galley restore ruming tl

\g_galley_whatsit_next_tl
\1__galley_whatsit_next_tl
\g_galley whatsit previous tl
\l_galley whatsit_previous_tl

\g__galley_interpar penalty user tl
\1__galley_interpar penalty user tl

\g__galley_interpar_vspace user_tl
\1__galley interpar vspace user_tl

The number of lines in the previous typeset paragraph. This is reset at the start of
the paragraph and added to when each \tex_par:D primitive is used: ITEX uses the
primitive in places that do not end a (conceptual) paragraph.

s \int_new:N \g_galley_previous_par_lines_int

sz \int_new:N \1__galley_previous_par_lines_int

(End definition for \g_galley_previous_par_lines_int and \1__galley_previous_par_lines_int These
variables are documented on page 77.)

When a parameter is altered from the “running” value to a different “current” one, there
needs to be a method to restore the “running” value. This is done by adding the necessary
assignment to a token list, which can be executed when needed. At the same time, this
information is itself part of the galley parameter structure, and so there has to be a local
save version.

s \tl_new:N \g_galley_restore_running_ tl

2 \tl_new:N \1__galley_restore_running_tl

(End definition for \g_galley_restore_running_tl and \1__galley_restore_running_tl These vari-
ables are documented on page 77?.)

Whatsits only apply on a per-paragraph basis and so there is no need to differentiate
between current and running values. However, there is a need to differentiate between
whatsits that attach to the previous (completed) paragraph and those that attach to the
next paragraph.

so \tl_new:N \g_galley_whatsit_next_tl

st \tl_new:N \1__galley_whatsit_next_tl

s> \tl_new:N \g_galley_whatsit_previous_tl

53 \tl_new:N \1__galley_whatsit_previous_tl

(End definition for \g_galley_whatsit_next_tl and others. These variables are documented on page
??.)

The user may want to over-ride the penalty for a break between paragraphs, for example
to prevent a break when the overall design allows one. This is handled using an additional
penalty.

s \tl_new:N \g__galley_interpar_penalty_user_tl

ss \tl_new:N \1__galley_interpar_penalty_user_tl

(End definition for \g__galley_interpar_penalty_user_tl and \1__galley_interpar_penalty_user_tl
These variables are documented on page 77.)

Arbitrary vertical space can be inserted by the user on a one-off basis. This is used in
place of any running space between paragraphs.

s6 \tl_new:N \g__galley_interpar_vspace_user_tl

s7 \tl_new:N \1__galley_interpar_vspace_user_tl

(End definition for \g__galley_interpar_vspace_user_tl and \1__galley_interpar_vspace_user_tl
These variables are documented on page 77.)

15



\__galley_initialise variables:

\__galley_initialise settings:

\__galley_save_parameters:
\__galley restore parameters:

7.4 Independent galley levels

As well as the main vertical list, independent galleys are required for items such as
minipages and marginal notes. Each of these galleys requires an independent set of
global data structures. This is achieved by storing the data structures in local variables.
The later are only used to save and restore the global value, and so TEX grouping will
manage the values correctly. This implies that each galley level must form a group: galley
levels are tied to vertical boxes and so this is a reasonable requirements.

At the start of a galley level, both the global and local variables will need to be reset to
standard values. For example, the measure is set to the galley width and any paragraph
shape is cleared.

s \cs_new_protected_nopar:Npn \__galley_initialise_variables:

59 {

60 \bool_gset_true:N \g__galley_begin_level_bool

61 \tl_gclear:N \g__galley_interpar_penalty_user_tl
62 \tl_gclear:N \g__galley_interpar_vspace_user_tl
63 \bool_gset_true:N \g_galley_omit_next_indent_bool
64 \bool_gset_false:N \g_galley_no_break_next_bool
65 \tl_gclear:N \g_galley_par_begin_hook_tl

66 \tl_gclear:N \g_galley_par_end_hook_tl

67 \tl_gclear:N \g_galley_par_after_hook_tl

68 \bool_gset_false:N \g__galley_parshape_set_bool
69 \int_gzero:N \g_galley_previous_par_lines_int

70 \tl_gclear:N \g_galley_restore_running_ tl

7 \tl_gclear:N \g_galley_whatsit_previous_tl

7 \tl_gclear:N \g_galley_whatsit_next_tl

73 }

7 \__galley_initialise_variables:

(End definition for \__galley_initialise_variables: This function is documented on page ?77.)

This sets the local values of the various galley settings.

s \cs_new_protected_nopar:Npn \__galley_initialise_settings:

~

76 {

7 \dim_set_eq:NN \1_galley_text_width_dim \1_galley_width_dim
78 \dim_zero:N \1_galley_total_left_margin_dim

79 \dim_zero:N \1_galley_total_right_margin_dim

80 }

(End definition for \__galley_initialise_settings: This function is documented on page 77.)

Saving and restoring parameters is carried out by a series of copy functions.

51 \cs_new_protected_nopar:Npn \__galley_save_parameters:

82 {

83 \bool_set_eq:NN \1__galley_begin_level_bool

84 \g__galley_begin_level_bool

85 \tl_set_eq:NN \1__galley_interpar_penalty_user_tl
86 \g__galley_interpar_penalty_user_tl

87 \tl_set_eq:NN \1__galley_interpar_vspace_user_tl
88 \g__galley_interpar_vspace_user_tl

16



125

126

127

128

129

130

}

\bool_set_eq:NN \1__galley_omit_next_indent_bool
\g_galley_omit_next_indent_bool

\bool_set_eq:NN \1__galley_no_break_next_bool
\g_galley_no_break_next_bool

\tl_set_eq:NN \1__galley_galley_par_begin_hook_tl
\g_galley_par_begin_hook_tl

\tl_set_eq:NN \1__galley_galley_par_end_hook_tl
\g_galley_par_end_hook_tl

\tl_set_eq:NN \1__galley_par_after_hook_tl
\g_galley_par_after_hook_tl

\bool_set_eq:NN \1__galley_parshape_set_bool
\g__galley_parshape_set_bool

\int_set_eq:NN \1__galley_previous_par_lines_int
\g_galley_previous_par_lines_int

\tl_set_eq:NN \1__galley_restore_running_tl
\g_galley_restore_running_tl

\tl_set_eq:NN \1__galley_whatsit_previous_tl
\g_galley_whatsit_previous_tl

\tl_set_eq:NN \1__galley_whatsit_next_tl
\g_galley_whatsit_next_tl

\cs_new_protected_nopar:Npn \__galley_restore_parameters:

{

\bool_gset_eq:NN \g__galley_begin_level_bool
\1__galley_begin_level_bool

\tl_gset_eq:NN \g__galley_interpar_penalty_user_tl
\1__galley_interpar_penalty_user_tl

\tl_gset_eq:NN \g__galley_interpar_vspace_user_tl
\1__galley_interpar_vspace_user_tl

\bool_gset_eq:NN \g_galley_omit_next_indent_bool
\1__galley_omit_next_indent_bool

\bool_gset_eq:NN \g_galley_no_break_next_bool
\1__galley_no_break_next_bool

\tl_gset_eq:NN \g_galley_par_begin_hook_tl
\1__galley_galley_par_begin_hook_tl

\tl_gset_eq:NN \g_galley_par_end_hook_tl
\1__galley_galley_par_end_hook_tl

\tl_gset_eq:NN \g_galley_par_after_hook_tl
\1__galley_par_after_hook_tl

\bool_gset_eq:NN \g__galley_parshape_set_bool
\1__galley_parshape_set_bool

\int_gset_eq:NN \g_galley_previous_par_lines_int
\1__galley_previous_par_lines_int

\tl_gset_eq:NN \g_galley_restore_running_tl
\1__galley_restore_running_tl

\tl_gset_eq:NN \g_galley_whatsit_previous_tl
\1__galley_whatsit_previous_tl

\tl_gset_eq:NN \g_galley_whatsit_next_tl
\1__galley_whatsit_next_tl

17



(End definition for \__galley_save_parameters: and \__galley_restore_parameters: These functions
are documented on page 77.)

\galley_level: Galley levels are created by saving all of the current global settings, starting a group then
initialising both the local and global variables.

130 \cs_new_protected_nopar:Npn \galley_level:

140 {

141 \__galley_save_parameters:

142 \group_begin:

143 \__galley_initialise_variables:

144 \__galley_initialise_settings:

145 \group_insert_after:N \__galley_level_end:
146 }

At the end of the level, the global values are restored using the saved local versions, hence
the position of the close-of-group instruction. As this code can be inserted automatically,
at the point of use only the start of a galley level needs to be marked up: the end must
come in a fixed location. All of this relies on the the “colour safe” group used inside a

box.

17 \cs_new_protected_nopar:Npn \__galley_level_end:
148 {

149 \par

150 \__galley_restore_parameters:

151 \group_end:

152 }

(End definition for \galley_level: This function is documented on page 2.)

7.5 The \par token

\s__par_omit Used to indicate that a paragraph should be omitted.
153 \__scan_new:N \s__par_omit

(End definition for \s__par_omit This variable is documented on page 77?.)

\__galley_std_par: The idea here is to expand the next token in exactly the same way as TEX would do
anyway. The f-type expansion will ignore any protection, but will stop at a scan marker.
Thus the code can test for an “omit paragraph” marker.

152 \cs_new_protected_nopar:Npn \__galley_std_par:

155 {

156 \s__par_omit

157 \exp_after:wN \__galley_std_par_aux_i: \tex_romannumeral:D - ‘0
158 }

150 \cs_new_protected:Npn \__galley_std_par_aux_i:
160 {

161 \peek_meaning:NTF \s__par_omit

162 { \__galley_std_par_aux:N }

163 { \__galley_std_par_aux_ii: }

164 }

165 \cs_new_protected:Npn \__galley_std_par_aux:N #1
166 {

18



\__galley_end_par:n

167 \str_if_eq_x:nnF {#1} { \s__par_omit }

168 {

169 \__galley_std_par_aux_ii:
170 #1

171 }

172 }

No marker, so really insert a paragraph. In vertical mode,

173 \cs_new_protected_nopar:Npn \__galley_std_par_aux_ii:

we o

175 \mode_if_vertical:TF

176 { \tex_par:D }

In horizontal mode, the paragraph shape is set “just in time” before inserting \tex_-
par:D. The \tex_par:D is inside a group to preserve some dynamic settings (for example
\etex_interlinepenalties). Once the paragraph has been typeset, the number of lines
is added to the running total. It’s possible that the conceptual paragraph contains display-
like material, and simply setting the number of lines equal to \tex_prevgraf:D would
“loose” these.

177 {

178 \g_galley_par_end_hook_tl

179 \__galley_set_measure_and_parshape:

180 \group_begin:

181 \tex_par:D

182 \group_end:

183 \int_gadd:Nn \g_galley_previous_par_lines_int \tex_prevgraf:D
184 }

185 \g_galley_par_after_hook_tl

186 \tl_gclear:N \g_galley_par_after_hook_tl

The non-breaking penalty is needed here as within the \tex_everypar:D hook there is
an additional \tex_par:D. This leads to an extra \tex_parskip:D, which will leave an
unwanted break-point here otherwise.

187 \tex_penalty:D \c_ten_thousand
188 }

(End definition for \__galley_std_par: This function is documented on page 77.)

Inserts tokens such that they are appended to the end of the last paragraph, using the
paragraph-omitting system.
120 \cs_new_protected:Npn \__galley_end_par:n #1

190 {

101 \s__par_omit

192 \bool_if:nF \g__galley_begin_level_bool
193 {

194 #1

195 \__galley_std_par:

196 }

197 }

(End definition for \__galley_end_par:n This function is documented on page 77.)

19



\par

\@par

\galley_display_begin:
\galley_display_end:

The meaning of the token \par itself starts off as a standard paragraph.
105 \cs_set_protected_nopar:Npn \par { \__galley_std_par: }

(End definition for \par This function is documented on page ?7.)

KTREX 2¢ requires a “long term” version of \par, which is stored as \@par. Things are
done a bit differently by IXTEX3 and so this will only be needed in package mode.

199 (*package)

20 \tl_set:Nn \@par { \__galley_std_par: }

201 {/package)

(End definition for \@par This function is documented on page ?7.)

7.6 Display levels

Display items within the galley are a bit like galley levels: they may have different
paragraph settings to the main part of the galley. On the other hand, unlike independent
galleys they should inherit the settings from the surrounding material. They may also
start and end with special spacing values.

202 \cs_new_protected_nopar:Npn \galley_display_begin:

203 {

204 \group_begin:

205 \__galley_save_parameters:

206 \mode_if_vertical:TF

207 {

208 \__galley_display_penalty:N \1_galley_display_begin_par_penalty_tl
209 \__galley_display_vspace:N \1l_galley_display_begin_par_vspace_tl
210 }

211 {

212 \__galley_display_penalty:N \1_galley_display_begin_penalty_tl

213 \__galley_display_vspace:N \1l_galley_display_begin_vspace_tl

214 }

215 \par

216 }

Two short-cuts for setting up any special penalty or vertical space. The idea is that the
standard value is saved to the “restore” token list, before setting up the value to the
special value needed in this one case.

217 \cs_new_protected:Npn \__galley_display_penalty:N #1

218 {

219 \tl_if_empty:NF #1

220 {

21 \tl_gput_right:Nx \g_galley_restore_running_tl
222 {

223 \int_gset:Nn \exp_not:N \g_galley_penalty_int
224 { \int_use:N \g_galley_penalty_int }

225 }

226 \int_gset:Nn \g_galley_penalty_int {#1}

227 }

228 }

20



29 \cs_new_protected:Npn \__galley_display_vspace:N #1

230 {

231 \tl_if_empty:NF #1

232 {

233 \tl_gput_right:Nx \g_galley_restore_running_tl
234

235 \skip_gset:Nn \exp_not:N \g_galley_vspace_skip
236 { \skip_use:N \g_galley_vspace_skip }

237 }

238 \skip_gset:Nn \g_galley_vspace_int {#1}

239 }

220 }

The \par token at the end of the display needs to go in at the same group level as
the text, hence this function cannot be placed using \group_insert_after:N. Resetting
the meaning of the \par token needs to be carried out after the group used for the
environment.

211 \cs_new_protected_nopar:Npn \galley_display_end:

242 {

243 \par

244 \__galley_restore_parameters:

245 \group_end:

246 \group_insert_after:N \__galley_display_par_setup:
247 }

The method used here is to assume that the next piece of horizontal mode material will
follow on from the displayed output without an intervening \par token (probably a blank
line). The meaning of the \par token is then altered so that a check can be made to see
if this assumption was correct.

25 \cs_new_protected_nopar:Npn \__galley_display_par_setup:

249 {

250 \bool_gset_false:N \g_galley_omit_next_indent_bool
251 \cs_set_eq:NN \par \__galley_display_par:

252 }

The “special” meaning of the paragraph token starts by putting things back to normal:
there should never need to be more than one special paragraph marker in one group. If
TEX is in vertical mode, then there has been a paragraph token inserted, most likely by a
blank line. Thus the next piece of material is a separate conceptual paragraph from the
display. In that case, the assumption from above is undone and the indent is turned back
on. On the other hand, for the case where TEX is in horizontal mode then a \tex_par:D
primitive is required in the same way as in \galley_standard_par:.

253 \cs_new_protected_nopar:Npn \__galley_display_par:

254 {

255 \cs_set_eq:NN \par \__galley_std_par:

256 \mode_if_vertical:TF

257 {

258 \par

259 \bool_gset_false:N \g_galley_omit_next_indent_bool

260 \__galley_display_penalty:N \1_galley_display_end_par_penalty_tl

21



\everypar

261 \__galley_display_vspace:N \1l_galley_display_end_par_vspace_tl

262 }

263 {

264 \__galley_set_measure_and_parshape:

265 \group_begin:

266 \tex_par:D

267 \group_end:

268 \int_gadd:Nn \g_galley_previous_par_lines_int \tex_prevgraf:D
269 \__galley_display_penalty:N \1_galley_display_end_penalty_tl
270 \__galley_display_vspace:N \1l_galley_display_end_vspace_tl
271 }

272 }

(End definition for \galley_display_begin: and \galley_display_end: These functions are docu-
mented on page 6.)

7.7 Insertions using \tex_everypar:D

The key to the entire galley mechanism is hooking into the \tex_everypar:D token
register. This requires that the original is moved out of the way, with appropriate hooks
left attached for further modification by other modules and by the user. This is all done
such that there is no danger of accidentally deactivating the galley mechanism.

When used on top of N TEX 2¢ the original primitive name needs to be available without
the risk of completely overwriting the new mechanism. This is implemented as a token
register in case low-level TEX is used. The TEX primitive is set here as otherwise the
ETEX 2¢ \@nodocument is never removed from the register. This precaution is not be
needed for a stand-alone format.

273 (¥initex)

o7z \tex_everypar:D J, TEMP

275 {

276 \bool_if:NTF \g__galley_begin_level_bool
277 { \__galley_start_paragraph_first: }
278 { \__galley_start_paragraph_std: }

279 }

20 (/initex)

251 (*package)

262 \cs_undefine:N \everypar
253 \newtoks \everypar

252 \AtBeginDocument

285 {

286 \tex_everypar:D

287 {

288 \bool_if:NTF \g__galley_begin_level_bool
289 { \__galley_start_paragraph_first: }
200 { \__galley_start_paragraph_std: }

201 \tex_the:D \everypar

292 }

293 }

20: {/package)

22



\g__galley_last_box

\__galley start paragraph std:

\__galley start paragraph first:

(End definition for \everypar This function is documented on page 77.)

7.8 The galley mechanism

A temporary box to hold the box inserted by TEX when a paragraph is inserted with an
indent. The galley actually inserts the space (i.e. \tex_parindent:D is globally zero),
but there is still an empty box to test for.
205 \box_new:N \g__galley_last_box
(End definition for \g__galley_last_box This variable is documented on page 77.)

The “start of paragraph” routines are fired by \tex_everypar:D. This can take place
within a group in a construction such as

end of last par.

{\Large Start} of par
and so anything applied here must be done globally.

The routine at the start of a paragraph starts by removing any (empty) indent box
from the vertical list. As there may be vertical mode items still to insert, a \tex_-
par:D primitive is used to get back into vertical mode before they are tidied up. To
get back again to horizontal mode, \tex_noindent:D can be used. To avoid an infinite
loop, \tex_everypar:D is locally cleared before doing that. Back in horizontal mode,
the horizontal mode items can be tidied up before sorting out any items which have been
set on a single-paragraph basis.

206 \cs_new_protected_nopar:Npn \__galley_start_paragraph_std:

297 {

298 \group_begin:

209 \box_gset_to_last:N \g__galley_last_box
300 \tex_par:D

301 \__galley_insert_vertical_items:

302 \tex_everypar:D { }

303 \tex_noindent:D

304 \group_end:

305 \int_gzero:N \g_galley_previous_par_lines_int
306 \__galley_insert_horizontal_items:

307 \__galley_restore_running_parameters:

308 }

End definition for \__galley_start_paragraph_std:
= Y. paragrap.

For the very first paragraph in a galley, the code needs to avoid adding any unnecessary
vertical items at the top as it will interfere with vertical positioning in \tex_vtop:D.

30 \cs_new_protected_nopar:Npn \__galley_start_paragraph_first:

310 {

311 \bool_gset_false:N \g__galley_begin_level_bool
312 \mode_if_horizontal:TF

313 {

314 \group_begin:

23



\__galley insert vertical items
\__galley_insert_vspace:

315 \box_gset_to_last:N \g__galley_last_box

316 \tex_par:D

317 \__galley_insert_vspace:

318 \tex_everypar:D { }

319 \tex_noindent:D

320 \group_end:

321 }

322 { \__galley_insert_vspace: }

323 \__galley_insert_horizontal_items:

304 \__galley_restore_running_parameters:
325 }

(End definition for \__galley_start_paragraph_first:)

The aim here is to insert the vertical items such that they attach to the correct place.
This function is used as part of the \tex_everypar:D mechanism, meaning that the
immediately-preceding item on the vertical list is the \tex_parskip:D, always zero-length
but an implicit penalty. So any whatsits “attached” to the previous paragraph should
stay glued on. After the whatsits, a penalty for breaking will be inserted. This will be the
user penalty if supplied, or the running penalty unless the no-break flag is set. Finally,
the inter-paragraph space is applied.

326 \cs_new_protected_nopar:Npn \__galley_insert_vertical_items:

327 {

328 \g_galley_whatsit_previous_tl

329 \tl_gclear:N \g_galley_whatsit_previous_tl

330 \tl_if_empty:NTF \g__galley_interpar_penalty_user_tl

331 {

332 \bool_if:NTF \g_galley_no_break_next_bool

333 { \tex_penalty:D \c_ten_thousand }

334 { \tex_penalty:D \1_galley_interpar_penalty_int }
335 }

336 {

337 \tex_penalty:D

338 \__int_eval:w \g__galley_interpar_penalty_user_tl \__int_eval_end:
339 \tl_gclear:N \g__galley_interpar_penalty_user_tl

340 3

341 \bool_gset_false:N \g_galley_no_break_next_bool

342 \__galley_insert_vspace:

343 }

Inserting vertical space is set up as a separate function as it comes up in a few places.
The idea here is that any user-set space will override the design value, and only one space
is ever inserted.

34 \cs_new_protected_nopar:Npn \__galley_insert_vspace:

345 {

346 \tl_if_empty:NTF \g__galley_interpar_vspace_user_tl

347 { \skip_vertical:N \1_galley_interpar_vspace_skip }

348 {

349 \skip_vertical:n { \g__galley_interpar_vspace_user_tl }

350 \tl_gclear:N \g__galley_interpar_vspace_user_tl

24



351 }
352 ¥

(End definition for \__galley_insert_vertical_items and \__galley_insert_vspace:)

\__galley insert horizontal items: Horizontal mode objects start with the whatsits for the next paragraph. An indent is
then included if the removed box was not void.

353 \cs_new_protected_nopar:Npn \__galley_insert_horizontal_items:

s {

355 \g_galley_whatsit_next_tl

356 \tl_gclear:N \g_galley_whatsit_next_tl

357 \bool_if:NF \g_galley_omit_next_indent_bool

358 {

350 \box_if_empty:NF \g__galley_last_box

360 { \hbox_to_wd:nn \1_galley_par_indent_dim { } }
361 ¥

362 \skip_horizontal:N \1_galley_par_begin_skip

363 \g_galley_par_begin_hook_tl

364 \bool_gset_false:N \g_galley_omit_next_indent_bool
365 }

(End definition for \__galley_insert_horizontal_items:)

\__galley restore running parameters: Restoring the ongoing parameters just means using the token list variable in which the
appropriate assignments are stored. The list can then be cleared.

366 \cs_new_protected_nopar:Npn \__galley_restore_running_parameters:

367 {

368 \g_galley_restore_running_tl

369 \tl_gclear:N \g_galley_restore_running_tl
370 }

(End definition for \__galley_restore_running parameters:)

7.9 Measure

\galley margins set absolute:nn Setting the measure is just a question of adjusting margins, either in a relative or absolute
\galley margins_set_relative:m semnse.

371 \cs_new_protected:Npn \galley_margins_set_absolute:nn #1#2

372 {

373 \dim_set:Nn \1_galley_total_left_margin_dim {#1}
374 \dim_set:Nn \1_galley_total_right_margin_dim {#2}
375 \dim_set:Nn \1_galley_text_width_dim

376 {

377 \1_galley_width_dim

378 - \1_galley_total_left_margin_dim

379 - \l_galley_total_right_margin_dim

380 3

381 }

;22 \cs_new_protected:Npn \galley_margins_set_relative:nn #1#2
383 {

384 \dim_add:Nn \1_galley_total_left_margin_dim {#1}

25



385 \dim_add:Nn \1_galley_total_right_margin_dim {#2}

386 \dim_set:Nn \1_galley_text_width_dim
387 {

388 \1_galley_width_dim

389 - \1_galley_total_left_margin_dim
390 - \l_galley_total_right_margin_dim
391 }

392 }

(End definition for \galley_margins_set_absolute:nn and \galley_margins_set_relative:nn These
functions are documented on page 3.)

7.10 Paragraph shape

\galley parshape fixed lines:nnn Setting the paragraph shape is easy as most of the real work is done later. So this is just
\galley parshape fixed lines:nWV a case of saving the various pieces of data to the correct locations.

\galley parshape multi par:nmoll 5o, \cs_new_protected:Npn \galley_parshape_fixed_lines:nnn #1#2#3
\galley parshape multi par:nVUN 500  {
\galley parshape single par:mmnN 305 \bool_gset_true:N \g__galley_parshape_set_bool
\galley parshape single par:nVVN 396 \bool_set_true:N \1__galley_parshape_fixed_lines_bool
307 \int_set:Nn \1_galley_parshape_std_lines_int {#1}
308 \clist_set:Nn \1__galley_parshape_left_indent_clist {#2}
309 \clist_set:Nn \1__galley_parshape_right_indent_clist {#3}
400 \bool_set_true:N \1__galley_parshape_resume_std_bool
401 }
202 \cs_new_protected:Npn \galley_parshape_multi_par:nnnN #1#2#3#4
403 {
404 \bool_gset_true:N \g__galley_parshape_set_bool
405 \bool_set_true:N \1__galley_parshape_multipar_bool
406 \bool_set_false:N \1__galley_parshape_fixed_lines_bool
407 \int_set:Nn \1_galley_parshape_std_lines_int {#1}
a08 \clist_set:Nn \1__galley_parshape_left_indent_clist {#2}
400 \clist_set:Nn \1__galley_parshape_right_indent_clist {#3}
410 \bool_set_eq:NN \1__galley_parshape_resume_std_bool #4
411 }
212 \cs_new_protected:Npn \galley_parshape_single_par:nnnN #1#2#3#4
413 {
a14 \bool_gset_true:N \g__galley_parshape_set_bool
415 \bool_set_false:N \1__galley_parshape_multipar_bool
416 \bool_set_false:N \1__galley_parshape_fixed_lines_bool
a7 \int_set:Nn \1_galley_parshape_std_lines_int {#1}
418 \clist_set:Nn \1__galley_parshape_left_indent_clist {#2}
419 \clist_set:Nn \1__galley_parshape_right_indent_clist {#3}
420 \bool_set_eq:NN \1__galley_parshape_resume_std_bool #4
421 }

2> \cs_generate_variant:Nn \galley_parshape_fixed_lines:nnn { nVV }
23 \cs_generate_variant:Nn \galley_parshape_multi_par:nnnN { nVV }
24 \cs_generate_variant:Nn \galley_parshape_single_par:nnnN { nVV }

(End definition for \galley_parshape_fixed_lines:nnn and others. These functions are documented
on page 77.)

26



\__galley set measure and parshape:

\__galley_generate_parshape:

To set the paragraph shape for the current paragraph, there is a check to see if the
measure alone should be used. If not, then the shape may be built by paragraph or
based on the number of lines required.

25 \cs_new_protected_nopar:Npn \__galley_set_measure_and_parshape:

426 {

427 \bool_if:NTF \g__galley_parshape_set_bool

428 {

429 \bool_if:NTF \1__galley_parshape_fixed_lines_bool
430 {

431 \int_compare:nNnTF \g_galley_previous_par_lines_int > \c_zero
432 { \__galley_generate_parshape_lines: }

433 { \__galley_generate_parshape: }

434 }

435 {

436 \bool_gset_eq:NN \g__galley_parshape_set_bool
437 \1__galley_parshape_multipar_bool

438 \__galley_generate_parshape:

439 }

440 }

441 {

442 \tex_global:D \tex_parshape:D

a43 \c_one

a44 \dim_use:N \1_galley_total_left_margin_dim

445 \c_space_tl

a46 \dim_use:N \1_galley_text_width_dim

447 T

448 }

(End definition for \__galley_set_measure_and_parshape: )

For a shape to apply on a paragraph basis, the two user-supplied comma lists are taken
and converted into left-side offsets and line lengths. This is all dependent on the current
measure.

1o \cs_new_protected_nopar:Npn \__galley_generate_parshape:

450 {

451 \tex_global:D \tex_parshape:D

452 \__int_eval:w

453 \1_galley_parshape_std_lines_int +

454 \int_min:nn

455 { \clist_count:N \1__galley_parshape_left_indent_clist }
456 { \clist_count:N \1__galley_parshape_right_indent_clist }
457 \bool_if:NT \1__galley_parshape_resume_std_bool { + 1 }

458 \__int_eval_end:

459 \prg_replicate:nn \1_galley_parshape_std_lines_int

460 {

a61 \dim_use:N \1_galley_total_left_margin_dim

162 \c_space_tl

463 \dim_use:N \1_galley_text_width_dim

464 \c_space_t1l

465 }

27



\__galley_generate parshape lines:

466

467

468

469

470

488

489

490

491

492

493

\__galley_set_parshape_map: oo
\1__galley_parshape_left_indent_clist
\1__galley_parshape_right_indent_clist

\bool_if:NT \1__galley_parshape_resume_std_bool

{
\c_space_tl
\dim_use:N \1_galley_total_left_margin_dim
\c_space_t1l
\dim_use:N \1_galley_text_width_dim
}

¥
\cs_new:Npn \__galley_set_parshape_map:nn #1#2
{ \__galley_set_parshape_map_aux:nw { } #1 , \g_mark #2 , \g_stop }
\cs_generate_variant:Nn \__galley_set_parshape_map:nn { oo }
\cs_new:Npn \__galley_set_parshape_map_aux:nw #1#2 , #3 \q_mark #4 , #5 \g_stop
{
\bool_if:nTF { \tl_if_empty_p:n {#3} || \tl_if_empty_p:n {#5} }
{
#1
\dim_eval:n { \1_galley_total_left_margin_dim + ( #2 ) }
\c_space_tl
\dim_eval:n { \1_galley_text_width_dim - ( ( #2 ) + ( #4 ) ) }
}
{
\__galley_set_parshape_map_aux:nw
{
#1
\dim_eval:n { \1_galley_total_left_margin_dim + ( #2 ) }
\c_space_tl
\dim_eval:n { \1_galley_text_width_dim - ( ( #2 ) + ( #4 ) ) }
\c_space_t1l
}
#3 \gq_mark #5 \qg_stop

}

(End definition for \__galley_generate_parshape: This function is documented on page 77.)

The idea here is to construct a paragraph shape based on the remaining lines from the
shape in the previous paragraph. If the previous paragraph was sufficiently long, then
life is “back to normal” and the standard shape is set. If a special shape is needed, this
is recovered from the paragraph shape using the e-TEX primitives.

501

\cs_new_protected_nopar:Npn \__galley_generate_parshape_lines:
{
\int_compare:nNnTF \tex_parshape:D > \g_galley_previous_par_lines_int
{
\tex_global:D \tex_parshape:D
\__int_eval:w \tex_parshape:D - \g_galley_previous_par_lines_int
\__int_eval_end:
\int_step_function:nnnN

28



\galley_set_user_penalty:n
\galley_set_user_vspace:n

\parskip

509 { \g_galley_previous_par_lines_int + \c_one }

510 \c_one \tex_parshape:D \__galley_generate_parshape_lines:n
511 }

512 {

513 \bool_gset_false:N \g__galley_parshape_set_bool
514 \tex_global:D \tex_parshape:D

515 \c_one

516 \dim_use:N \1_galley_total_left_margin_dim

517 \c_space_tl

518 \dim_use:N \1_galley_text_width_dim

519 }

520 }

s21 \cs_new:Npn \__galley_generate_parshape_lines:n #1

522 {

523 \etex_parshapeindent:D #1

524 ~

525 \etex_parshapelength:D #1

526 }

(End definition for \__galley_generate_parshape_lines: This function is documented on page 77.)

7.11 Between paragraphs

User supplied penalties and spaces only apply for a single paragraph. In both cases, the
input values need to be checked for the correct form but are stored as token lists. The
x-type expansion deals with this nicely.

527 \cs_new_protected:Npn \galley_set_user_penalty:n #1

58 { \tl_gset:Nx \g__galley_interpar_penalty_user_tl { \int_eval:n {#1} } }

520 \cs_new_protected:Npn \galley_set_user_vspace:n #1

s { \tl_gset:Nx \g__galley_interpar_vspace_user_tl { \skip_eval:n {#1} } }
(End definition for \galley_set_user_penalty:n and \galley_set_user_vspace:n These functions are
documented on page 4.)

For the package, the \parskip primitive is moved out of the way as the code above is
handling things.

531 (*package)

532 \dim_set:Nn \parskip \c_zero_dim

533 \cs_undefine:N \parskip

532 \skip_new:N \parskip

5 (/package)

(End definition for \parskip This function is documented on page 77.)

52

7.12 Formatting inside the paragraph

Justification is more complex than is necessarily desirable as the various TEX parameters
here interact in ways which mean that clear separation between different areas is not so
easy.

29



\1_galley_line_left_skip
\1_galley_line_right_skip
\1_galley_par_begin_skip
\1_galley_par_end_skip
\1_galley_par_indent_dim

\1_galley_last_line_fit_int

\galley_set_interword spacing:N

\1_galley_hyphen_left_int

The variables for setting paragraph shape: essentially, these are the TEX set.

536 \cs_new_eq:NN \1_galley_line_left_skip \tex_leftskip:D

s37 \cs_new_eq:NN \1_galley_line_right_skip \tex_rightskip:D

533 \dim_new:N \1_galley_par_begin_skip

s30 \cs_new_eq:NN \1_galley_par_end_skip \tex_parfillskip:D

ss0 \cs_new_eq:NN \1_galley_par_indent_dim \tex_parindent:D

(End definition for \1_galley_line_left_skip and others. These variables are documented on page 5.)

One from e-TEX.
sa0 \cs_new_eq:NN \1_galley_last_line_fit_int \etex_lastlinefit:D
(End definition for \1_galley_last_line_fit_int This variable is documented on page 6.)

7.13 Inter-word spacing

Setting the spacing between words and between sentences is important for achieving the
correct output from ragged and centered output. At the same time, as far as possible
the aim is to retain the spacing specified by the font designer and not to use arbitrary
values (cf. the approach in The TgXbook, p. 101).

The approach taken to setting a fixed space is to use the information from the current
font to set the spacing. This means that only \tex_spacefactor:D needs to be set, while
\tex_xspacefactor:D is left alone. However, this is only necessary for fonts which have
a stretch component to the inter-word spacing in the first place, i.e. monospaced fonts
require no changes. The code therefore checks whether there is any stretch, and if there is
uses the fixed component to set \tex_spaceskip:D. If there is a stretch component (non-
zero \tex_fontdimen:D 3), then the \teX_spaceskip:D is set to the fixed component
from the font.

522 \cs_new_protected:Npn \galley_set_interword_spacing:N #1

543 {

544 \bool_if:NTF #1

545 { % TODO Hook for font changes required!

546 \dim_compare:nNnTF { \tex_fontdimen:D \c_three \tex_font:D }
547 = \c_zero_dim

548 { \tex_spaceskip:D \c_zero_dim }

549 { \tex_spaceskip:D \tex_fontdimen:D \c_two \tex_font:D }
550 }

551 { \tex_spaceskip:D \c_zero_dim }

552 }

(End definition for \galley_set_interword_spacing:N This function is documented on page 6.)

7.14 Hyphenation

Currently something of a hack: this links in with language and fonts, so is not so straight-
forward to handle.

553 \int_new:N \1_galley_hyphen_left_int

554 (*package)

555 \int_set:Nn \1_galley_hyphen_left_int { \tex_lefthyphenmin:D }

s (/package)

&

30



\1_galley_binop_penalty_int
\1_galley double hyphen demerits_int
\1_galley_emergency stretch_skip

\1 galley final hyphen demerits int

\1 galley linebreak badness int
\1_galley_linebreak_fuzz_dim
\l galley linebreak penalty int

\1_galley linebreak pretolerance int
\1_galley linebreak tolerance int

\l galley mismatch demerits int

\l galley relation penalty int

\galley_break_line:Nn

\1_galley_broken_penalty_int
\1_galley_interline penalty int

\1 galley parbreak badness int
\1_galley_parbreak_fuzz_dim
\1 galley post_display penalty int
\1_galley_pre_display penalty int

(End definition for \1_galley_hyphen_left_int This variable is documented on page 6.)

7.15 Line breaking

All TEX primitives renamed.

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

(End definition for \1_galley_binop_penalty_int and others. These variables are documented on page
8.)

557 \CS_new_eq:
\cs_new_eq:
550 \CS_new_eq:
560 \CS_new_eq:
\cs_new_eq:
562 \CS_new_eq:
563 \CS_new_eq:
s64 \CS_new_eq:
565 \CS_new_eq:
s66 \CS_new_eq:
\cs_new_eq:

\1_galley_binop_penalty_int
\1_galley_double_hyphen_demerits_int
\1_galley_emergency_stretch_skip
\1_galley_final_hyphen_demerits_int
\1_galley_linebreak_badness_int
\1_galley_linebreak_fuzz_dim
\1_galley_linebreak_penalty_int
\1_galley_linebreak_pretolerance_int
\1_galley_mismatch_demerits_int
\1_galley_relation_penalty_int
\1_galley_linebreak_tolerance_int

\tex_binoppenalty:D
\tex_doublehyphendemerits:D
\tex_emergencystretch:D
\tex_finalhyphendemerits:D
\tex_hbadness:D
\tex_hfuzz:D
\tex_linepenalty:D
\tex_pretolerance:D
\tex_adjdemerits:D
\tex_relpenalty:D

567 \tex_tolerance:D

Terminating a line early without a new paragraph requires a few steps. First, any skips
are removed, then any additional space to add is places on the surrounding vertical list.
Finally, the current line is ended, using a penalty to prevents an overful line ending \\
giving a totally-blank one in the output. The boolean argument is used to indicate that
a break is allowed after the blank line.

ses \cs_new_protected:Npn \galley_break_line:Nn #1#2
569 {
570 \mode_if_vertical:TF
{ \__msg_kernel_error:nn { galley } { no-line-to-end } }
572 {
573 \tex_unskip:D
\bool_if:NF #1
{ \tex_vadjust:D { \tex_penalty:D \c_ten_thousand } }
576 \dim_compare:nNnF {#2} = \c_zero_dim
{ \tex_vadjust:D { \skip_vertical:n {#2} } }
\tex_penalty:D \c_ten_thousand
579 \tex_hfil:D
\tex_penalty:D -\c_ten_thousand

(End definition for \galley_break_line:Nn This function is documented on page 8.)

7.16 Paragraph breaking

TEX primitives renamed cover some of this.
ss3 \cs_new_eq:NN \1_galley_broken_penalty_int
+ \cs_new_eq:NN \1_galley_interline_penalty_int
ses \cs_new_eq:NN \1_galley_parbreak_badness_int
\cs_new_eq:NN \1_galley_parbreak_fuzz_dim

\tex_brokenpenalty:D
\tex_interlinepenalty:D
\tex_vbadness:D
\tex_vfuzz:D

31



\l galley club penalties clist
\l galley line penalties clist

\galley set display widow penalties:n
\galley_set_display widow _penalties:V
\galley_set_display widow _penalties:v
\galley set widow penalties:n
\galley set widow penalties:V
\galley set widow penalties:v

\galley_set_club_penalties:n
\galley_set_club_penalties:V
\galley_set_club_penalties:v
\galley set interline penalties:n
\galley set interline penalties:V
\galley set interline penalties:v

ss7 \cs_new_eq:NN \1_galley_post_display_penalty_int \tex_postdisplaypenalty:D
ses \cs_new_eq:NN \1_galley_pre_display_penalty_int \tex_predisplaypenalty:D

(End definition for \1_galley_broken_penalty_int and others. These variables are documented on page
8.)

These are used to keep a track of information which cannot be extracted out of the
primitives due to the overlapping nature of the meanings.

se0 \clist_new:N \1_galley_club_penalties_clist

s00 \clist_new:N \1_galley_line_penalties_clist

(End definition for \1_galley_club_penalties_clist and \1_galley_line_penalties_clist These
functions are documented on page 77.)

By far the easiest penalties to deal with are those for widows. These work exactly as
the names imply, with the display version only used immediately before display math,
and the standard penalty used at the end of a paragraph. Thus there is only the need
to convert the argument into the correct form, and add a 0 penalty at the end to nullify
the effect of repeating the last value.

so1 \cs_new_protected:Npn \galley_set_display_widow_penalties:n #1
592 {

503 \etex_displaywidowpenalties:D

504 \__int_eval:w \clist_count:n {#1} + \c_one \__int_eval_end:
505 \clist_map_function:nN {#1} \galley_set_aux:n

596 \c_zero

597 }

sos \cs_generate_variant:Nn \galley_set_display_widow_penalties:n { V , v }
500 \cs_new_protected:Npn \galley_set_widow_penalties:n #1

600 {

601 \etex_widowpenalties:D

602 \__int_eval:w \clist_count:n {#1} + \c_one \__int_eval_end:
603 \clist_map_function:nN {#1} \galley_set_aux:n

604 \c_zero

605 }

o6 \cs_generate_variant:Nn \galley_set_widow_penalties:n { V , v }
c07 \cs_new:Npn \galley_set_aux:n #1 { #1 ~ }

(End definition for \galley_set_display_widow_penalties:n and others. These functions are docu-
mented on page 77.)

Setting club or special line penalties is easy, as these are handled mainly by the interline
set up function. The two concepts are essentially the same, but having two takes makes
some special effects easier to carry out.

s0s \cs_new_protected:Npn \galley_set_club_penalties:n #1

609 {

610 \clist_set:Nn \1_galley_club_penalties_clist {#1}

611 \__galley_calc_interline_penalties:

612 }

613 \cs_generate_variant:Nn \galley_set_club_penalties:n { V , v }
614 \cs_new_protected:Npn \galley_set_interline_penalties:n #1

615 {

616 \clist_set:Nn \1_galley_line_penalties_clist {#1}

32



\galley set display club penalties:n
\galley set display club penalties:V
\galley_set_display_club penalties:v

\galley set_interline penalty:n

617 \__galley_calc_interline_penalties:
618 }

619 \cs_generate_variant:Nn \galley_set_interline_penalties:n { V , v }

(End definition for \galley_set_club_penalties:n and others. These functions are documented on
page 77.)

Setting the display club penalties means first setting the primitive, then recalculating the
interline array to allow for these new values.

s20 \cs_new_protected:Npn \galley_set_display_club_penalties:n #1
621 {

622 \etex_clubpenalties:D

623 \__int_eval:w \clist_count:n {#1} + \c_one \__int_eval_end:
624 \clist_map_function:nN {#1} \galley_set_aux:n

625 \c_zero

626 \__galley_calc_interline_penalties:

627 }

0 \cs_generate_variant:Nn \galley_set_display_club_penalties:n { V , v }

(End definition for \galley_set_display_club_penalties:n, \galley_set_display_club_penalties:V,
and \galley_set_display_club_penalties:v These functions are documented on page 77.)

Dealing with the general interline penalty is handled in one shot. The idea is that for lines
with no special penalty, the old general penalty is removed and the new one is added. If
there is currently no shape set, then after adding the general interline value the generic
build system is invoked (in case the \etex_interlinepenalties:D has accidentally been
cleared).

e0 \cs_new_protected:Npn \galley_set_interline_penalty:n #1

630 {

631 \int_compare:nNnTF { \etex_interlinepenalties:D \c_zero } = \c_zero

632 {

633 \etex_interlinepenalties:D \c_one \__int_eval:w #1 \__int_eval_end:
634 \__galley_calc_interline_penalties:

635

636 {

637 \cs_set:Npn \__galley_set_interline_penalty_ii:n ##1

638 {

639 \__int_eval:w

640 \etex_interlinepenalties:D ##1

641 - \etex_interlinepenalties:D \etex_interlinepenalties:D \c_zero
642 + #1

643 \__int_eval_end:

644 }

645 \exp_args:Nf \__galley_set_interline_penalty:nn

646 { \clist_count:N \1_galley_line_penalties_clist } {#1}

647 3

648 }

619 \cs_new_protected:Npn \__galley_set_interline_penalty:nn #1#2
650 {

651 \etex_interlinepenalties:D

652 \etex_interlinepenalties:D \c_zero

33



\__galley calc interline penalties:

653 \int_step_function:nnnN \c_one \c_one {#1}

654 \__galley_set_interline_penalty_i:n

655 \int_step_function:nnnN { #1 + \c_one } \c_one

656 { \etex_interlinepenalties:D \c_zero - \c_one }

657 \__galley_set_interline_penalty_ii:n

658 \__int_eval:w #2 \__int_eval_end:

659 }

o0 \cs_new:Npn \__galley_set_interline_penalty_i:n #1

661 { \etex_interlinepenalties:D \__int_eval:w #1 \__int_eval_end: }
6> \cs_new:Npn \__galley_set_interline_penalty_ii:n #1 { }

(End definition for \galley_set_interline_penalty:n This function is documented on page 9.)

The underlying interline penalty array has to deal with club penalties, display club penal-
ties and any special line penalties, and include the general interline penalty. These re-
quirements lead to a rather complex requirement on how many lines to deal with. This
is needed twice, so an f-type expansion is used to make life a little less complex.

63 \cs_new_protected_nopar:Npn \__galley_calc_interline_penalties:

664 1

665 \exp_args:Nff \__galley_calc_interline_penalties:nn

666 {

667 \int_eval:n

668 {

660 \int_max:nn

670 {

671 \clist_count:N \1_galley_club_penalties_clist
672 + \c_one

673 }

674 {

675 \int_max:nn

676 {

677 \clist_count:N \1_galley_line_penalties_clist
678 + \c_one

679 }

680 { \etex_clubpenalties:D \c_zero }

681 }

682 }

683 }

684 { \clist_count:N \1_galley_line_penalties_clist }

685 }

The idea is now to calculate the correct penalties. Two auxiliary functions are used: one
for any “special penalty” lines and a second for normal lines. At the end of the process,
the standard interline penalty is always included.

636 \Ccs_new_protected:Npn \__galley_calc_interline_penalties:nn #1#2

687 {

688 \etex_interlinepenalties:D #1 ~

689 \int_step_function:nnnN \c_one \c_one {#2}

690 \__galley_calc_interline_penalties_i:n

691 \int_step_function:nnnN { #2 + \c_one } \c_one { #1 - \c_one }

34



692 \__galley_calc_interline_penalties_ii:n
693 \etex_interlinepenalties:D \etex_interlinepenalties:D \c_zero

694 }

o5 \cs_new:Npn \__galley_calc_interline_penalties_i:n #1

696 {

697 \__int_eval:w

698 \clist_item:Nn \1_galley_line_penalties_clist {#1}
699 + 0 \clist_item:Nn \1_galley_club_penalties_clist {#1}
700 - \etex_clubpenalties:D #1 ~

701 \__int_eval_end:

702 }

703 \cs_new:Npn \__galley_calc_interline_penalties_ii:n #1

704 {

705 \__int_eval:w

706 \etex_interlinepenalties:D \etex_interlinepenalties:D \c_zero
707 + 0 \clist_item:Nn \1_galley_club_penalties_clist {#1}
708 - \etex_clubpenalties:D #1 ~

700 \__int_eval_end:

710 }

(End definition for \__galley_calc_interline_penalties: This function is documented on page ?7.)

\galley save club penalties:N Saving the array penalties varies in complexity depending on how they are stored inter-
\galley save interline penalties:N mnally. The first two are easy: these are simply copies.
\galley_save display_club penalties:N i, \cs_new_protected:Npn \galley_save_club_penalties:N #1
\galley save display widow pemalties:N 7,1  { \clist_set_eq:NN #1 \1_galley_club_penalties_clist }
\galley save widow penalties:N 713 \cs_new_protected:Npn \galley_save_interline_penalties:N #1
714 { \clist_set_eq:NN #1 \1_galley_line_penalties_clist }

These all require appropriate mappings, using the fact that \clist_set:Nx will tidy up

the excess comma.
\galley_interline_penalty:

7

s \cs_new_protected:Npn \galley_save_display_club_penalties:N #1

716 {

717 \clist_set:Nx #1

718 {

719 \int_step_function:nnnN \c_one \c_one

720 { \etex_clubpenalties:D \c_zero - \c_one }
721 \galley_save_display_club_penalties:_aux:n
722 }

723 }

724 \cs_new:Npn \galley_save_display_club_penalties:_aux:n #1
75 { \int_use:N \etex_clubpenaltes:D \__int_eval:w #1 \__int_eval_end: , }
76 \cs_new_protected:Npn \galley_save_display_widow_penalties:N #1

727 {

728 \clist_set:Nx #1

729 {

730 \int_step_function:nnnN \c_one \c_one

731 { \etex_displaywidowpenalties:D \c_zero - \c_one }
732 \galley_save_display_widow_penalties:_aux:n

733 3

73 }

35



735 \cs_new:Npn \galley_save_display_widow_penalties:_aux:n #1

726 { \int_use:N \etex_displaywidowpenalties:D \__int_eval:w #1 \__int_eval_end: , }
737 \cs_new_protected:Npn \galley_save_widow_penalties:N #1

738 {

739 \clist_set:Nx #1

740 {

741 \int_step_function:nnnN \c_one \c_one

742 { \etex_widowpenalties:D \c_zero - \c_one }

743 \galley_save_widow_penalties:_aux:n

744 }

745 }

726 \cs_new:Npn \galley_save_widow_penalties:_aux:n #1
7 { \int_use:N \etex_widowpenalties:D \__int_eval:w #1 \__int_eval_end: , }

N

This one is not an array, but is stored in a primitive, so there is a simple conversion. The
general interline penalty is always the last value in the primitive array.

75 \cs_new_protected_nopar:Npn \galley_interline_penalty:
70 { \int_use:N \etex_interlinepenalties:D \etex_interlinepenalties:D \c_zero }

(End definition for \galley_save_club_penalties:N and others. These functions are documented on
page 10.)

7.17 Messages

750 \__msg_kernel_new:nnn { galley } { no-line-to-end }
751 { There’s~no~line~here~to~end. }

7.18 KTEX 2¢ functions
2 (*package)

\clearpage The \clearpage macro needs to place material into the correct structures rather than
directly onto the main vertical list. Other than that it is the same as the INTEX 2¢ version.

753 \RenewDocumentCommand \clearpage { }

754 {

755 \mode_if_vertical:T

756 {

757 \int_compare:nNnT \@dbltopnum = \c_minus_one
758 {

759 \dim_compare:nNnT \tex_pagetotal:D < \topskip
760 { \tex_hbox:D { } }

761 }

762 }

763 \newpage

764 \tl_gput_right:Nn \g_galley_whatsit_next_tl

765 { \iow_shipout:Nx \c_minus_one { } }

766 \tex_vbox:D { }

767 \galley_set_user_penalty:n { -\@Mi }

768 }

(End definition for \clearpage This function is documented on page 77?.)

36



\nobreak
\noindent
\vspace

\\

\newline

\__galleypar

\@afterheading

In package mode, some of I¥TEX 2¢’s functions are re-implemented using the galley sys-
tem. Not all of the optional arguments currently work!

760 \RenewDocumentCommand \nobreak { }
770 { \bool_gset_true:N \g_galley_no_break_next_bool }

The \noindent primitive will causes problems, as it is used by KTEX 2 documents to
implicitly leave vertical mode as well as to prevent indentation. Rather than patch every
place where we need leave vertical mode, at the moment we stick with the primitive as
well as setting the galley flag.

771 \RenewDocumentCommand \noindent { }

772 {

773 \tex_noindent:D

774 \bool_gset_rfalse:N \g_galley_omit_next_indent_bool
775 }

776 \RenewDocumentCommand \vspace { s m }

777 {

778 \IfBooleanTF #1

779 { \galley_set_user_vspace:n {#2} }

780 { \galley_set_user_vspace:n {#2} }

781 }

(End definition for \nobreak This function is documented on page 77.)

These functions pass their arguments straight through to the internal implementation
(which is currently just the BTEX 2¢ one recoded).

7> \RenewDocumentCommand \\ { s 0 { 0 pt } }

73 { \galley_break_line:Nn #1 {#2} }

722 \RenewDocumentCommand \newline { }

755 {1 \galley_break_line:Nn \c_true_bool { O pt } }

(End definition for \\ This function is documented on page ?7.)

7.19 HKETEX 2¢ fixes

Purely for testing, some internal IXTEX 2¢ functions are altered to work with the mech-
anism here. This material is not comprehensive: additions are made as-needed for test
purposes.

The primitive is moved as otherwise the clever skipping code will fail.

76 \cs_set_eq:NN \__galleypar \__galley_std_par:
(End definition for \__galleypar This function is documented on page 77.)

Set some flags and hope for the best!
7s7 \cs_set_protected_nopar:Npn \@afterheading

788 {

789 \bool_gset_true:N \g_galley_no_break_next_bool

790 \if@afterindent

791 \else

792 \bool_gset_true:N \galley_omit_next_indent_bool
703 \fi

794 }

37



\@hangfrom

\@normalcr

(End definition for \@afterheading This function is documented on page ?7.)

The \tex_handindent:D primitive is no longer used, so the paragraph shape is set in
a different way. As a result, the label is part of the same paragraph as the main body,

hence the need to leave vertical mode.
705 \cs_set_protected:Npn \@hangfrom #1

796 {

797 \bool_gset_true:N \g_galley_omit_next_indent_bool
798 \leavevmode

799 \setbox \@tempboxa = \hbox { {#1} }

800 \galley_parshape_single_par:nnnN

801 \c_one

802 { \box_wd:N \@tempboxa }

803 \c_zero_dim

804 \c_false_bool

805 \bool_gset_true:N \g_galley_no_break_next_bool

806 \bool_gset_true:N \g_galley_omit_next_indent_bool

807 \box \@tempboxa
808 }

(End definition for \@hangfrom This function is documented on page 77?.)

This is needed as \@parboxrestore sets \\ equal to \@normalcr, and the new definition

must be used
s09 \cs_set_eq:Nc \@normalcr { \token_to_str:N \\ }

(End definition for \@normalcr This function is documented on page 77?.)

s10 (/package)
sir {/initex | package)

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols ..
\@@_end _par:n ................... 10
NOMi ..o 767 ..
\@afterheading .............. 787, 787
\@dbltopnum . ................... 757 ..
\@Ghangfrom ................. 795, 795
\@normalcr ................. 809, 809 ..
\@par . ............... .. .. .. 199, 200
\@tempboxa ............. 799, 802, 807
\@totalleftmargin ............... 26 ..
AN\ 782, 809

\__galley_calc_interline_penalties: ..

38

\__galley_display_par:
\__galley_display_par_setup:
\__galley_display_penalty:N

611, 617, 626, 634, 663, 663

\__galley_calc_interline_penalties:nn

663, 665, 686

\__galley_calc_interline_penalties_i:n

663, 690, 695

\__galley_calc_interline_penalties_ii:n

663, 692, 703
202, 251, 253

202, 208, 212, 217, 260, 269



\__galley_display_vspace:N
202, 209, 213, 229, 261, 270
\__galley_end_par:n 189, 189
\__galley_generate_parshape:
433, 438, 449
\__galley_generate_parshape_lines:

432, 501,
\__galley_generate_parshape_lines:n
501, 510,
\__galley_initialise_settings:

449

5

01

.................. 521
75, 75,
\__galley_initialise_variables: .. ..
58, b8, 74,
\__galley_insert_horizontal_items:
3