
The l3regex package: regular expressions in TEX∗

The LATEX3 Project†

Released 2014/07/17

1 l3regex documentation
The l3regex package provides regular expression testing, extraction of submatches, split-
ting, and replacement, all acting on token lists. The syntax of regular expressions is
mostly a subset of the pcre syntax (and very close to posix), with some additions due
to the fact that TEX manipulates tokens rather than characters. For performance rea-
sons, only a limited set of features are implemented. Notably, back-references are not
supported.

Let us give a few examples. After

\tl_set:Nn \l_my_tl { That~cat. }
\regex_replace_once:nnN { at } { is } \l_my_tl

the token list variable \l_my_tl holds the text “This cat.”, where the first occurrence
of “at” was replaced by “is”. A more complicated example is a pattern to add a comma
at the end of each word:

\regex_replace_all:nnN { \w+ } { \0 , } \l_my_tl

The \w sequence represents any “word” character, and + indicates that the \w sequence
should be repeated as many times as possible (at least once), hence matching a word in
the input token list. In the replacement text, \0 denotes the full match (here, a word).

If a regular expression is to be used several times, it can be compiled once, and
stored in a regex variable using \regex_const:Nn. For example,

\regex_const:Nn \c_foo_regex { \c{begin} \cB. (\c[^BE].*) \cE. }

stores in \c_foo_regex a regular expression which matches the starting marker for an
environment: \begin, followed by a begin-group token (\cB.), then any number of tokens
which are neither begin-group nor end-group character tokens (\c[^BE].*), ending with
an end-group token (\cE.). As explained in the next section, the parentheses “capture”
the result of \c[^BE].*, giving us access to the name of the environment when doing
replacements.
∗This file describes v5218, last revised 2014/07/17.
†E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

1.1 Syntax of regular expressions
Most characters match exactly themselves, with an arbitrary category code. Some charac-
ters are special and must be escaped with a backslash (e.g., * matches a star character).
Some escape sequences of the form backslash–letter also have a special meaning (for
instance \d matches any digit). As a rule,

• every alphanumeric character (A–Z, a–z, 0–9) matches exactly itself, and should
not be escaped, because \A, \B, . . . have special meanings;

• non-alphanumeric printable ascii characters can (and should) always be escaped:
many of them have special meanings (e.g., use \(, \), \?, \.);

• spaces should always be escaped (even in character classes);

• any other character may be escaped or not, without any effect: both versions will
match exactly that character.

Note that these rules play nicely with the fact that many non-alphanumeric characters are
difficult to input into TEX under normal category codes. For instance, \\abc\% matches
the characters \abc% (with arbitrary category codes), but does not match the control
sequence \abc followed by a percent character. Matching control sequences can be done
using the \c{〈regex〉} syntax (see below).

Any special character which appears at a place where its special behaviour cannot
apply matches itself instead (for instance, a quantifier appearing at the beginning of a
string), after raising a warning.

Characters.

\x{hh...} Character with hex code hh...

\xhh Character with hex code hh.

\a Alarm (hex 07).

\e Escape (hex 1B).

\f Form-feed (hex 0C).

\n New line (hex 0A).

\r Carriage return (hex 0D).

\t Horizontal tab (hex 09).

Character types.

. A single period matches any token.

\d Any decimal digit.

\h Any horizontal space character, equivalent to [\ \^^I]: space and tab.

\s Any space character, equivalent to [\ \^^I\^^J\^^L\^^M].

2

\v Any vertical space character, equivalent to [\^^J\^^K\^^L\^^M]. Note that \^^K
is a vertical space, but not a space, for compatibility with Perl.

\w Any word character, i.e., alpha-numerics and underscore, equivalent to [A-Za-z0-9_].

\D Any token not matched by \d.

\H Any token not matched by \h.

\N Any token other than the \n character (hex 0A).

\S Any token not matched by \s.

\V Any token not matched by \v.

\W Any token not matched by \w.

Of those, ., \D, \H, \N, \S, \V, and \W will match arbitrary control sequences.
Character classes match exactly one token in the subject.

[...] Positive character class. Matches any of the specified tokens.

[^...] Negative character class. Matches any token other than the specified characters.

x-y Within a character class, this denotes a range (can be used with escaped characters).

[:〈name〉:] Within a character class (one more set of brackets), this denotes the posix character
class 〈name〉, which can be alnum, alpha, ascii, blank, cntrl, digit, graph,
lower, print, punct, space, upper, word, or xdigit.

[:^〈name〉:] Negative posix character class.

For instance, [a-oq-z\cC.] matches any lowercase latin letter except p, as well as control
sequences (see below for a description of \c).

Quantifiers (repetition).

? 0 or 1, greedy.

?? 0 or 1, lazy.

* 0 or more, greedy.

*? 0 or more, lazy.

+ 1 or more, greedy.

+? 1 or more, lazy.

{n} Exactly n.

{n,} n or more, greedy.

{n,}? n or more, lazy.

3

{n, m} At least n, no more than m, greedy.

{n, m}? At least n, no more than m, lazy.

Anchors and simple assertions.

\b Word boundary: either the previous token is matched by \w and the next by \W,
or the opposite. For this purpose, the ends of the token list are considered as \W.

\B Not a word boundary: between two \w tokens or two \W tokens (including the
boundary).

^or \A Start of the subject token list.

$, \Z or \z End of the subject token list.

\G Start of the current match. This is only different from ^ in the case of multi-
ple matches: for instance \regex_count:nnN { \G a } { aaba } \l_tmpa_int
yields 2, but replacing \G by ^ would result in \l_tmpa_int holding the value 1.

Alternation and capturing groups.

A|B|C Either one of A, B, or C.

(...) Capturing group.

(?:...) Non-capturing group.

(?|...) Non-capturing group which resets the group number for capturing groups in each
alternative. The following group will be numbered with the first unused group
number.

The \c escape sequence allows to test the category code of tokens, and match control
sequences. Each character category is represented by a single uppercase letter:

• C for control sequences;

• B for begin-group tokens;

• E for end-group tokens;

• M for math shift;

• T for alignment tab tokens;

• P for macro parameter tokens;

• U for superscript tokens (up);

• D for subscript tokens (down);

• S for spaces;

• L for letters;

4

• O for others; and

• A for active characters.

The \c escape sequence is used as follows.

\c{〈regex〉} A control sequence whose csname matches the 〈regex〉, anchored at the beginning
and end, so that \c{begin} matches exactly \begin, and nothing else.

\cX Applies to the next object, which can be a character, character property, class,
or group, and forces this object to only match tokens with category X (any of
CBEMTPUDSLOA. For instance, \cL[A-Z\d] matches uppercase letters and digits of
category code letter, \cC. matches any control sequence, and \cO(abc) matches
abc where each character has category other.

\c[XYZ] Applies to the next object, and forces it to only match tokens with category X, Y,
or Z (each being any of CBEMTPUDSLOA). For instance, \c[LSO](..) matches two
tokens of category letter, space, or other.

\c[^XYZ] Applies to the next object and prevents it from matching any token with category
X, Y, or Z (each being any of CBEMTPUDSLOA). For instance, \c[^O]\d matches digits
which have any category different from other.

The category code tests can be used inside classes; for instance, [\cO\d \c[LO][A-F]]
matches what TEX considers as hexadecimal digits, namely digits with category other,
or uppercase letters from A to F with category either letter or other. Within a group
affected by a category code test, the outer test can be overridden by a nested test: for
instance, \cL(ab\cO*cd) matches ab*cd where all characters are of category letter,
except * which has category other.

The \u escape sequence allows to insert the contents of a token list directly into
a regular expression or a replacement, avoiding the need to escape special characters.
Namely, \u{〈tl var name〉} matches the exact contents of the token list 〈tl var〉. Within
a \c{...} control sequence matching, the \u escape sequence only expands its argument
once, in effect performing \tl_to_str:v. Quantifiers are not supported directly: use a
group.

The option (?i) makes the match case insensitive (identifying A–Z with a–z; no
Unicode support yet). This applies until the end of the group in which it appears,
and can be reverted using (?-i). For instance, in (?i)(a(?-i)b|c)d, the letters a
and d are affected by the i option. Characters within ranges and classes are affected
individually: (?i)[Y-\\] is equivalent to [YZ\[\\yz], and (?i)[^aeiou] matches any
character which is not a vowel. Neither character properties, nor \c{...} nor \u{...}
are affected by the i option.

In character classes, only [, ^, -,], \ and spaces are special, and should be escaped.
Other non-alphanumeric characters can still be escaped without harm. Any escape se-
quence which matches a single character (\d, \D, etc.) is supported in character classes.
If the first character is ^, then the meaning of the character class is inverted; ^ appear-
ing anywhere else in the range is not special. If the first character (possibly following a
leading ^) is] then it does not need to be escaped since ending the range there would

5

make it empty. Ranges of characters can be expressed using -, for instance, [\D 0-5]
and [^6-9] are equivalent.

Capturing groups are a means of extracting information about the match. Paren-
thesized groups are labelled in the order of their opening parenthesis, starting at 1. The
contents of those groups corresponding to the “best” match (leftmost longest) can be
extracted and stored in a sequence of token lists using for instance \regex_extract_-
once:nnNTF.

The \K escape sequence resets the beginning of the match to the current position in
the token list. This only affects what is reported as the full match. For instance,

\regex_extract_all:nnN { a \K . } { a123aaxyz } \l_foo_seq

results in \l_foo_seq containing the items {1} and {a}: the true matches are {a1} and
{aa}, but they are trimmed by the use of \K. The \K command does not affect capturing
groups: for instance,

\regex_extract_once:nnN { (. \K c)+ \d } { acbc3 } \l_foo_seq

results in \l_foo_seq containing the items {c3} and {bc}: the true match is {acbc3},
with first submatch {bc}, but \K resets the beginning of the match to the last position
where it appears.

1.2 Syntax of the replacement text
Most of the features described in regular expressions do not make sense within the re-
placement text. Escaped characters are supported as inside regular expressions. The
whole match is accessed as \0, and the first 9 submatches are accessed as \1, . . . , \9.
Further submatches are accessed through \g{〈number〉} where 〈number〉 is any non-
negative integer. If there are fewer than 〈number〉 capturing groups, the submatch is
empty.

For instance,

\tl_set:Nn \l_my_tl { Hello,~world! }
\regex_replace_all:nnN { ([er]?l|o) . } { \(\0\-\-\1\) } \l_my_tl

results in \l_my_tl holding H(ell--el)(o,--o) w(or--o)(ld--l)!
Submatches keep the same category codes as in the original token list. The characters

inserted by the replacement have category code 12 (other) by default, with the exception
of space characters. Spaces inserted through \␣ have category code 10, while spaces
inserted through \x20 or \x{20} have category code 12. The escape sequence \c allows
to insert characters with arbitrary category codes, as well as control sequences.

\cXY Produces the character Y (which can be given as an escape sequence such as \t
for tab, or \(or \) for a parenthesis) with category code X, which must be one of
CBEMTPUDSLOA.

\c{〈text〉} Produces the control sequence with csname 〈text〉. The 〈text〉 may contain refer-
ences to the submatches \0, \1, etc.

6

The escape sequence \u{〈tl var name〉} allows to insert the contents of the token list
with name 〈tl var name〉 directly into the replacement, avoiding the need to escape special
characters. Within the construction \c{〈text〉}, the \u escape sequence only expands its
argument once, in effect performing \tl_to_str:v. Submatches can be used within the
argument of \u. For instance,

\tl_set:Nn \l_my_one_tl { first }
\tl_set:Nn \l_my_two_tl { \emph{second} }
\tl_set:Nn \l_my_tl { one , two , one , one }
\regex_replace_all:nnN { [^,]+ } { \u{l_my_\0_tl} } \l_my_tl

results in \l_my_tl holding first,\emph{second},first,first.

1.3 Pre-compiling regular expressions
If a regular expression is to be used several times, it is better to compile it once rather
than doing it each time the regular expression is used. The compiled regular expression
is stored in a variable. All of the l3regex module’s functions can be given their regular
expression argument either as an explicit string or as a compiled regular expression.

\regex_new:N 〈regex var〉

Creates a new 〈regex var〉 or raises an error if the name is already taken. The declaration
is global. The 〈regex var〉 will initially be such that it never matches.

\regex_new:N

\regex_set:Nn 〈regex var〉 {〈regex〉}

Stores a compiled version of the 〈regular expression〉 in the 〈regex var〉. For instance,
this function can be used as

\regex_new:N \l_my_regex
\regex_set:Nn \l_my_regex { my\ (simple\)? reg(ex|ular\ expression) }

The assignment is local for \regex_set:Nn and global for \regex_gset:Nn. Use
\regex_const:Nn for compiled expressions which will never change.

\regex_set:Nn
\regex_gset:Nn
\regex_const:Nn

\regex_show:n {〈regex〉}

Shows how l3regex interprets the 〈regex〉. For instance, \regex_show:n {\A X|Y} shows

+-branch
anchor at start (\A)
char code 88

+-branch
char code 89

indicating that the anchor \A only applies to the first branch: the second branch is not
anchored to the beginning of the match.

\regex_show:n
\regex_show:N

7

1.4 Matching
All regular expression functions are available in both :n and :N variants. The former
require a “standard” regular expression, while the later require a compiled expression as
generated by \regex_(g)set:Nn.

\regex_match:nnTF {〈regex〉} {〈token list〉} {〈true code〉} {〈false code〉}

Tests whether the 〈regular expression〉 matches any part of the 〈token list〉. For instance,

\regex_match:nnTF { b [cde]* } { abecdcx } { TRUE } { FALSE }
\regex_match:nnTF { [b-dq-w] } { example } { TRUE } { FALSE }

leaves TRUE then FALSE in the input stream.

\regex_match:nnTF
\regex_match:NnTF

\regex_count:nnN {〈regex〉} {〈token list〉} 〈int var〉

Sets 〈int var〉 within the current TEX group level equal to the number of times 〈regular
expression〉 appears in 〈token list〉. The search starts by finding the left-most longest
match, respecting greedy and ungreedy operators. Then the search starts again from the
character following the last character of the previous match, until reaching the end of
the token list. Infinite loops are prevented in the case where the regular expression can
match an empty token list: then we count one match between each pair of characters.
For instance,

\int_new:N \l_foo_int
\regex_count:nnN { (b+|c) } { abbababcbb } \l_foo_int

results in \l_foo_int taking the value 5.

\regex_count:nnN
\regex_count:NnN

1.5 Submatch extraction

\regex_extract_once:nnN {〈regex〉} {〈token list〉} 〈seq var〉
\regex_extract_once:nnNTF {〈regex〉} {〈token list〉} 〈seq var〉 {〈true code〉} {〈false
code〉}

Finds the first match of the 〈regular expression〉 in the 〈token list〉. If it exists, the
match is stored as the zeroeth item of the 〈seq var〉, and further items are the contents
of capturing groups, in the order of their opening parenthesis. The 〈seq var〉 is assigned
locally. If there is no match, the 〈seq var〉 is cleared. The testing versions insert the 〈true
code〉 into the input stream if a match was found, and the 〈false code〉 otherwise. For
instance, assume that you type

\regex_extract_once:nnNTF { \A(La)?TeX(!*)\Z } { LaTeX!!! } \l_foo_seq
{ true } { false }

Then the regular expression (anchored at the start with \A and at the end with \Z)
will match the whole token list. The first capturing group, (La)?, matches La, and the
second capturing group, (!*), matches !!!. Thus, \l_foo_seq will contain the items
{LaTeX!!!}, {La}, and {!!!}, and the true branch is left in the input stream.

\regex_extract_once:nnNTF
\regex_extract_once:NnNTF

8

\regex_extract_all:nnN {〈regex〉} {〈token list〉} 〈seq var〉
\regex_extract_all:nnNTF {〈regex〉} {〈token list〉} 〈seq var〉 {〈true code〉} {〈false
code〉}

Finds all matches of the 〈regular expression〉 in the 〈token list〉, and stores all the sub-
match information in a single sequence (concatenating the results of multiple \regex_-
extract_once:nnN calls). The 〈seq var〉 is assigned locally. If there is no match, the
〈seq var〉 is cleared. The testing versions insert the 〈true code〉 into the input stream if
a match was found, and the 〈false code〉 otherwise. For instance, assume that you type

\regex_extract_all:nnNTF { \w+ } { Hello,~world! } \l_foo_seq
{ true } { false }

Then the regular expression will match twice, and the resulting sequence contains the
two items {Hello} and {world}, and the true branch is left in the input stream.

\regex_extract_all:nnNTF
\regex_extract_all:NnNTF

\regex_split:nnN {〈regular expression〉} {〈token list〉} 〈seq var〉
\regex_split:nnNTF {〈regular expression〉} {〈token list〉} 〈seq var〉 {〈true code〉}
{〈false code〉}

Splits the 〈token list〉 into a sequence of parts, delimited by matches of the 〈regular
expression〉. If the 〈regular expression〉 has capturing groups, then the token lists that
they match are stored as items of the sequence as well. The assignment to 〈seq var〉 is
local. If no match is found the resulting 〈seq var〉 has the 〈token list〉 as its sole item. If
the 〈regular expression〉 matches the empty token list, then the 〈token list〉 is split into
single tokens. The testing versions insert the 〈true code〉 into the input stream if a match
was found, and the 〈false code〉 otherwise. For example, after

\seq_new:N \l_path_seq
\regex_split:nnNTF { / } { the/path/for/this/file.tex } \l_path_seq
{ true } { false }

the sequence \l_path_seq contains the items {the}, {path}, {for}, {this}, and
{file.tex}, and the true branch is left in the input stream.

\regex_split:nnNTF
\regex_split:NnNTF

1.6 Replacement

\regex_replace_once:nnN {〈regular expression〉} {〈replacement〉} 〈tl var〉
\regex_replace_once:nnNTF {〈regular expression〉} {〈replacement〉} 〈tl var〉 {〈true
code〉} {〈false code〉}

Searches for the 〈regular expression〉 in the 〈token list〉 and replaces the first match with
the 〈replacement〉. The result is assigned locally to 〈tl var〉. In the 〈replacement〉, \0
represents the full match, \1 represent the contents of the first capturing group, \2 of
the second, etc.

\regex_replace_once:nnNTF
\regex_replace_once:NnNTF

9

\regex_replace_all:nnN {〈regular expression〉} {〈replacement〉} 〈tl var〉
\regex_replace_all:nnNTF {〈regular expression〉} {〈replacement〉} 〈tl var〉 {〈true
code〉} {〈false code〉}

Replaces all occurrences of the \regular expression in the 〈token list〉 by the
〈replacement〉, where \0 represents the full match, \1 represent the contents of the
first capturing group, \2 of the second, etc. Every match is treated independently, and
matches cannot overlap. The result is assigned locally to 〈tl var〉.

\regex_replace_all:nnNTF
\regex_replace_all:NnNTF

1.7 Bugs, misfeatures, future work, and other possibilities
The following need to be done now.

• Change user function names!

• Clean up the use of messages.

• Rewrite the documentation in a more ordered way, perhaps add a bnf?

Additional error-checking to come.

• Currently, a{\x34} is recognized as a{4}.

• Cleaner error reporting in the replacement phase.

• Add tracing information.

• Detect attempts to use back-references.

• Test for the maximum register \c_max_register_int.

• Find out whether the fact that \W and friends match the end-marker leads to bugs.
Possibly update __regex_item_reverse:n.

• Enforce that \cC can only be followed by a match-all dot.

• The empty cs should be matched by \c{}, not by \c{csname.?endcsname\s?}.

Code improvements to come.

• Change \skip to \dimen for the array of active threads, and shift the array of
submatch informations so that it starts at \skip0.

• Optimize \c{abc} for matching a specific control sequence.

• Only build ...̧ once.

• Use \skip for the left and right state stacks when compiling a regex.

• Should __regex_action_free_group:n only be used for greedy {n,} quantifier?
(I think not.)

• Quantifiers for \u and assertions.

10

• Improve digit grabbing for the \g escape in replacement. Allow arbitrary integer
expressions for all those numbers?

• When matching, keep track of an explicit stack of current_state and current_-
submatches.

• If possible, when a state is reused by the same thread, kill other subthreads.

• Use \dimen registers rather than \l__regex_balance_tl to build __regex_-
replacement_balance_one_match:n.

• Reduce the number of epsilon-transitions in alternatives.

• Optimize simple strings: use less states (abcade should give two states, for abc and
ade). [Does that really make sense?]

• Optimize groups with no alternative.

• Optimize states with a single __regex_action_free:n.

• Optimize the use of __regex_action_success: by inserting it in state 2 directly
instead of having an extra transition.

• Optimize the use of \int_step_... functions.

• Groups don’t capture within regexes for csnames; optimize and document.

• Decide and document what \c{\c{...}} should do in the replacement text, similar
questions for \u.

• Better “show” for anchors, properties, and catcode tests.

• Does \K really need a new state for itself?

• When compiling, use a boolean in_cs and less magic numbers.

• Instead of checking whether the character is special or alphanumeric using its char-
acter code, check if it is special in regexes with \cs_if_exist tests.

The following features are likely to be implemented at some point in the future.

• Allow \cL(abc) in replacement text.

• General look-ahead/behind assertions.

• Regex matching on external files.

• Conditional subpatterns with look ahead/behind: “if what follows is [. . .], then
[. . .]”.

• (*..) and (?..) sequences to set some options.

• UTF-8 mode for pdfTEX.

11

• Newline conventions are not done. In particular, we should have an option for . not
to match newlines. Also, \A should differ from ^, and \Z, \z and $ should differ.

• Unicode properties: \p{..} and \P{..}; \X which should match any “extended”
Unicode sequence. This requires to manipulate a lot of data, probably using tree-
boxes.

The following features of pcre or Perl will probably not be implemented.

• \ddd, matching the character with octal code ddd;

• Callout with (?C...), we cannot run arbitrary user code during the matching,
because the regex code uses registers in an unsafe way;

• Conditional subpatterns (other than with a look-ahead or look-behind condition):
this is non-regular, isn’t it?

• Named subpatterns: TEX programmers have lived so far without any need for
named macro parameters.

The following features of pcre or Perl will definitely not be implemented.

• \cx, similar to TEX’s own \^^x;

• Comments: TEX already has its own system for comments.

• \Q...\E escaping: this would require to read the argument verbatim, which is not
in the scope of this module.

• Atomic grouping, possessive quantifiers: those tools, mostly meant to fix catas-
trophic backtracking, are unnecessary in a non-backtracking algorithm, and difficult
to implement.

• Subroutine calls: this syntactic sugar is difficult to include in a non-backtracking al-
gorithm, in particular because the corresponding group should be treated as atomic.
Also, we cannot afford to run user code within the regular expression matching,
because of our “misuse” of registers.

• Recursion: this is a non-regular feature.

• Back-references: non-regular feature, this requires backtracking, which is pro-
hibitively slow.

• Backtracking control verbs: intrinsically tied to backtracking.

• \C single byte in UTF-8 mode: XeTEX and LuaTEX serve us characters directly,
and splitting those into bytes is tricky, encoding dependent, and most likely not
useful anyways.

12

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

R
\regex_const:Nn 7
\regex_count:nnN 8
\regex_extract_all:nnNTF 9
\regex_extract_once:nnNTF 8
\regex_gset:Nn 7
\regex_match:nnTF 8
\regex_new:N . 7
\regex_replace_all:nnNTF 10

\regex_replace_once:nnNTF 9
\regex_set:Nn . 7
\regex_show:n . 7
\regex_split:nnNTF 9

T
TEX and LATEX 2ε commands:

\dimen 10, 11
\skip . 10

13

	1 l3regex documentation
	1.1 Syntax of regular expressions
	1.2 Syntax of the replacement text
	1.3 Pre-compiling regular expressions
	1.4 Matching
	1.5 Submatch extraction
	1.6 Replacement
	1.7 Bugs, misfeatures, future work, and other possibilities

	Index
	R
	T

