
The l3build package
Checking and building packages

The LATEX3 Project∗

Released 2018/01/10

Contents
1 The l3build system 1

1.1 Introduction 1
1.2 Main build commands 3
1.3 Example build scripts 8
1.4 Variables 8
1.5 Multiple sets of tests 12
1.6 Dependencies 12
1.7 Non-standard source layouts 13
1.8 Output normalisation 13

2 Writing test files 15
2.1 Metadata and structural

commands 15
2.2 Commands to help write tests 15
2.3 Showing box content 17
2.4 Testing entire pages 17
2.5 Additional test tasks 19
2.6 Epoch setting 19

3 Alternative test formats 19
3.1 Generating test files with

DocStrip 19
3.2 Specifying expectations . . . 19

4 Release-focussed features 20
4.1 Automatic version modifica-

tion 20
4.2 Typesetting documentation . 21

5 Lua interfaces 22
5.1 Global variables 23
5.2 Utility functions 23
5.3 System-dependent strings . . 24
5.4 Components of l3build . . . 25
5.5 Customising the manifest file 25

5.5.1 Custom manifest groups 25
5.5.2 Sorting within each

manifest group 27
5.5.3 File descriptions 27
5.5.4 Custom formatting . . . 28

Index 28

1 The l3build system
1.1 Introduction
The l3build system is a Lua script for building TEX packages, with particular emphasis
on regression testing. It is written in cross-platform Lua code, so can be used by any
modern TEX distribution with the texlua interpreter. A package for building with l3build
can be written in any TEX dialect; its defaults are set up for LATEX packages written in
the DocStrip style. (Caveat: minimal testing has yet been performed for non-LATEX
packages.)

∗E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

Test files are written as standalone TEX documents using the regression-test.tex
setup file; documentation on writing these tests is discussed in Section 2.

The l3build.lua script is not designed to be executed directly; each package will
define its own build.lua script as a driver file which both sets variables (such as the
name of the package) and then calls the main l3build.lua script internally.

A standard package layout might look something like the following:

abc/
abc.dtx
abc.ins
build.lua
README.md
support/
testfiles/

Most of this should look fairly self-explanatory. The top level support/ directory (op-
tional) would contain any necessary files for compiling documentation, running regression
tests, and so on.

The l3build system is also capable of building and checking bundles of packages. To
avoid confusion, we refer to either a standalone package or a package within a bundle as
a module.

For example, within the LATEX3 project we have the l3packages bundle which contains
the xparse, xtemplate, etc., modules. These are all built and distributed as one bundle
for installation, distribution via CTAN and so forth.

Each module in a bundle will have its own build script, and a bundle build script
brings them all together. A standard bundle layout would contain the following structure.

mybundle/
build.lua
support/
yyy/ zoo/

build.lua build.lua
README.md README.md
testfiles/ testfiles/
yyy.dtx zoo.dtx
yyy.ins zoo.ins

All modules within a bundle must use the same build script name.
In a small number of cases, the name used by CTAN for a module or bundle is

different from that used in the installation tree. For example, the LATEX2ε kernel is
called latex-base by CTAN but is located inside 〈texmf〉/tex/latex/base. This can be
handled by using ctanpkg for the name required by CTAN to override the standard value.

The testfiles/ folder is local to each module, and its layout consists of a series of
regression tests with their outputs.

testfiles/
test1.lvt
test1.tlg
...
support/

my-test.cls

2

Again, the support/ directory contains any files necessary to run some or all of these
tests.

When the build system runs, it creates a directory build/ for various unpacking,
compilation, and testing purposes. For a module, this build folder can be in the main
directory of the package itself, but for a bundle it should be common for the bundle
itself and for all modules within that bundle. A build/ folder can be safety deleted; all
material within is re-generated for each command of the l3build system.

1.2 Main build commands
In the working directory of a bundle or module, the following commands can be executed:

• check
• check 〈name(s)〉
• cmdcheck
• clean
• ctan
• doc 〈name(s)〉
• install
• save 〈name(s)〉
• setversion
• unpack

These commands are described below.
As well as these commands, the system recognises the options

• –config (-c) Configuration(s) to use for testing

• –date Date to use when setting version data

• –dry-run Runs the install target but does not copy any files: simply lists those
that would be installed

• –engine (-e) Sets the engine to use for testing

• –epoch Sets the epoch for typesetting and testing

• –force (-f) Force checks to run even if sanity checks fail, e.g. when –engine is not
given in {"pdftex", "xetex", "luatex"}

• –halt-on-error (-H) Specifies that checks should stop as soon as possible, rather
than running all requested tests; the difference file is printed in the terminal directly
in the case of failure

• –pdf (-p) Test PDF file against a reference version rather than using a log com-
parison

• –quiet (-q) Suppresses output from unpacking

• –rerun Run tests without unpacking/set up

• –shuffle Shuffle the order in whichs tests run

• –texmfhome Sets the location of the user tree for installing

3

• –version (-v) Version string to use when setting version data

$ texlua build.lua check
The check command runs the entire test suite. This involves iterating through each .lvt
file in the test directory (specified by the testfiledir variable), compiling each test in
a “sandbox” (a directory specified by testdir), and comparing the output against each
matching predefined .tlg file.

If changes to the package or the typesetting environment have affected the results,
the check for that file fails. A diff of the expected to actual output should then be
inspected to determine the cause of the error; it is located in the testdir directory
(default builddir .. "/test").

On Windows, the diff program is not available and so fc is used instead (generating
an .fc file). Setting the environmental variables diffexe and diffext can be used to
adjust the choice of comparison made: the standard values are

Windows diffext = fc, diffexe = fc /n

*nix diffext = diff, diffexe = diff -c --strip-trailing-cr

The following files are moved into the “sandbox” for the check process:

• all installfiles after unpacking;

• all checkfiles after unpacking;

• any files in the directory testsuppdir;

• any files that match checksuppfiles in the supportdir.

This range of possibilities allow sensible defaults but significant flexibility for defining
your own test setups.

Checking can be performed with any or all of the ‘engines’ pdftex, xetex, and
luatex. By default, each test is executed with all three, being compared against the .tlg
file produced from the pdftex engine (these defaults are controlled by the checkengines
and stdengine variable respectively). The format used for tests can be altered by setting
checkformat: the default setting latex means that tests are run using e.g. pdflatex,
whereas setting to plain will run tests using e.g. pdftex. (Currently, this should be
one of latex or plain.) To perform the check, the engine typesets each test checkruns
times. More detail on this in the documentation on save. Options passed to the binary
are defined in the variable checkopts.

By default, texmf trees are searched for input files when checking. This can be
disabled by setting checksearch to false: isolation provides confidence that the tests
cannot accidentally be running with incorrect files installed in the main distribution or
hometexmf.

$ texlua build.lua check 〈name(s)〉

Checks only the test 〈name(s)〉.lvt. All engines specified by checkengines are tested
unless the command line option –engine (or -e) has been given to limit testing to a
single engine. Normally testing is preceded by unpacking source files and copying the
result plus any additional support to the test directory: this may be skipped using the
-s option.

4

$ texlua build.lua check -p
Rather than the log-based checking carried out by the standard check target, running
with the -p option carries out a binary comparison of the PDF files produced by type-
setting against those saved in testfiledir.

This functionality requires TEX Live 2016 or later as it needs support from the
engines not available in earlier releases.

$ texlua build.lua clean
This command removes all temporary files used for package bundling and regression test-
ing. In the standard layout, these are all files within the directories defined by localdir,
testdir, typesetdir and unpackdir, as well as all files defined in the cleanfiles vari-
able in the same directory as the script. The defaults are .pdf files from typesetting
(doc) and .zip files from bundling (ctan).

$ texlua build.lua ctan
Creates an archive of the package and its documentation, suitable for uploading to CTAN
The archive is compiled in distribdir, and if the results are successful the resultant .zip
file is moved into the same directory as the build script. If packtdszip is set true then
the building process includes a .tds.zip file containing the ‘TEX Directory Structure’
layout of the package or bundle. The archive therefore may contain two ‘views’ of the
package:

abc.zip/
abc/

abc.dtx
abc.ins
abc.pdf
README.md

abc.tds.zip/
doc/latex/abc/

abc.pdf
README.md

source/latex/abc/
abc.dtx
abc.ins

tex/latex/abc/
abc.sty

The files copied into the archive are controlled by a number of variables. The ‘root’ of
the TDS structure is defined by tdsroot, which is "latex" by default. Plain users would
redefine this to "plain" (or perhaps "generic"), for example. The build process for a
.tds.zip file currently assumes a ‘standard’ structure in which all extracted files should
be placed inside the tex tree in a single directory, as shown above. If the module includes
any BibTEX or MakeIndex styles these will be placed in the appropriate subtrees.

The doc tree is constructed from:

• all files matched by demofiles,

• all files matched by docfiles,

• all files matched by typesetfiles with their extension replaced with .pdf,

5

• all files matched by textfiles,

• all files matched by bibfiles.

The source tree is constructed from all files matched by typesetfiles and sourcefiles.
The tex tree from all files matched by installfiles.

Files that should always be excluded from the archive are matched against the
excludefiles variable; by default this is {"*~"}, which match Emacs’ autosave files.

Binary files should be specified with the binaryfiles variable (default {"*.pdf",
"*.zip"}); these are added to the zip archive without normalising line endings (text files
are automatically converted to Unix-style line endings).

To create the archive, by default the binary zipexe is used ("zip") with options
zipopts (-v -r -X). The intermediate build directories ctandir and tdsdir are used
to construct the archive.

$ texlua build.lua doc
Compiles documentation files in the typesetdir directory. In the absence of one or more
file names, all documentation is typeset; a file list may be given at the command line for
selective typesetting. If the compilation is successful the .pdf is moved back into the
main directory.

The documentation compilation is performed with the typesetexe binary (default
pdflatex), with options typesetopts. Additional TEX material defined in typesetcmds
is passed to the document (e.g., for writing \\PassOptionsToClass{l3doc}{letterpaper},
and so on—note that backslashes need to be escaped in Lua strings).

Files that match typesetsuppfiles in the support directory (supportdir) are
copied into the build/local directory (localdir) for the typesetting compilation pro-
cess. Additional dependencies listed in the typesetdeps variable (empty by default) will
also be installed.

Source files specified in sourcefiles and typesetsourcefiles are unpacked before
the typesetting takes place. (In most cases typesetsourcefiles will be empty, but may
be used where there are files to unpack only for typesetting.)

If typesetsearch is true (default), standard texmf search trees are used in the
typesetting compilation. If set to false, all necessary files for compilation must be included
in the build/local sandbox.

$ texlua build.lua doc 〈name(s)〉

Typesets only the files with the 〈name(s)〉 given, which should be the root name without
any extension.

$ texlua build.lua install
Copies all package files (defined by installfiles) into the user’s home texmf tree in
the form of the TEX Directory Structure. The location of the user tree can be adjusted
using the --texmfhome swtich: the standard setting is the location set as TEXMFHOME.

$ texlua build.lua save 〈name(s)〉

This command runs through the same execution as check for a specific test(s)
〈name(s)〉.lvt. This command saves the output of the test to a .tlg file. This file
is then used in all subsequent checks against the 〈name〉.lvt test.

6

If the –engine (or -e) is specified (one of pdftex, xetex, or luatex), the saved
output is stored in 〈name〉.〈engine〉.tlg. This is necessary if running the test through a
different engine produces a different output. A normalisation process is performed when
checking to avoid common differences such as register allocation; full details are listed in
section 1.8.

If the recordstatus variable is set true, additional information will be added to
the .tlg to record the “exit status” of the typesetting compilation of the .lvt file. If the
typesetting compilation completed without throwing an error (due to TEX programming
errors, for example), the “exit status” is zero, else non-zero.

$ texlua build.lua save -p 〈name(s)〉

This version of save will store the PDF files produced from 〈name(s)〉.lvt in addition
to the .tlg file, and thus allows binary comparison of the result of typesetting.

This functionality requires TEX Live 2016 or later as it needs support from the
engines not available in earlier releases.

$ texlua build.lua manifest
Generates a ‘manifest’ file which lists the files of the package as known to l3build. The file-
name of this file (by default "MANIFEST.md") can be set with the variable manifestfile.

The intended purpose of this manifest file is to include it within a package as meta-
data. This would allow, say, for the copyright statement for the package to refer to the
manifest file rather than requiring the author to manually keep a file list up-to-date in
multiple locations. The manifest file can be structured and documented with a degree of
flexibility. Additional information is described in Section 5.5.

In order for manifest to detect derived and typeset files, it should be run after
running unpack and doc. If manifest is run after also running ctan it will include the
files included in the CTAN and TDS directories as well.

Presently, this means that if you wish to include an up-to-date manifest file as part
of a ctan release, you must run ctan / manifest / ctan. Improvements to this process
are planned for the future.

$ texlua build.lua setversion
Modifies the content of files specified by versionfiles to allow automatic updating of
the file date and version. The latter are specified using the -d and -v command line
options and if not given will default to the current date in ISO format (YYYY-MM-DD)
and -1, respectively. As detailed below, the standard set up has no search pattern defined
for this target and so no action will be taken unless a version type for substitution is set
up (using versionform or by defining a custom function).

$ texlua build.lua unpack
This is an internal target that is normally not needed on user level. It unpacks all files
into the directory defined by unpackdir. This occurs before other build commands such
as doc, check, etc.

The unpacking process is performed by executing the unpackexe (default tex) with
options unpackopts on all files defined by the unpackfiles variable; by default, all files
that match {"*.ins"}.

7

If additional support files are required for the unpacking process, these can be enu-
merated in the unpacksuppfiles variable. Dependencies for unpacking are defined with
unpackdeps.

By default this process allows files to be accessed in all standard texmf trees; this
can be disabled by setting unpacksearch to false.

1.3 Example build scripts
An example of a standalone build script for a package that uses self-contained .dtx files
is shown in Figure 1. Here, the module only is defined, and since it doesn’t use .ins
files so the variable unpackfiles is redefined to run tex on the .dtx files instead to
generate the necessary .sty files. There are some PDFs in the repository that shouldn’t
be part of a CTAN submission, so they’re explicitly excluded, and here unpacking is done
‘quietly’ to minimise console output when building the package. Finally, because this is
a standalone package, we assume that l3build is installed in the main TEX distribution
and find the Lua script by searching for it.

An example of a bundle build script for l3packages is shown in Figure 2. Note for
LATEX3 we use a common file to set all build variables in one place, and the path to the
l3build.lua script is hard-coded so we always use our own most recent version of the
script. An example of an accompanying module build script is shown in Figure 3.

Under a Unix-like platform, you may wish to run ‘chmod +x build.lua’ on these
files, which allows a simpler command line use. Instead of writing

texlua build.lua check
for example, you would simply write

./build.lua check
instead. (Or even omit the ./ depending on your path settings.) Windows users can
achieve a similar effect by creating a file build.bat as show in Figure 4.

1.4 Variables
This section lists all variables defined in the l3build.lua script that are available for
customisation.

1 #!/usr/bin/env texlua
2

3 -- Build script for breqn
4

5 module = "breqn"
6

7 unpackfiles = {"*.dtx"}
8 excludefiles = {"*/breqn -abbr -test.pdf",
9 "*/ eqbreaks.pdf"}

10 unpackopts = "-interaction=batchmode"
11

12 kpse.set_program_name("kpsewhich")
13 dofile(kpse.lookup("l3build.lua"))

Figure 1: The build script for the breqn package.

8

1 #!/usr/bin/env texlua
2

3 -- Build script for LaTeX3 " l3packages " files
4

5 -- Identify the bundle : there is no module as this is the " driver "
6 bundle = "l3packages"
7

8 -- Location of main directory : use Unix -style path separators
9 maindir = ".."

10

11 -- Load the common build code: this is the one place that a path
12 -- needs to be hard -coded
13 dofile (maindir .. "/l3build/l3build -config.lua")
14 dofile (maindir .. "/l3build/l3build.lua")

Figure 2: The build script for the l3packages bundle.

1 #!/usr/bin/env texlua
2

3 -- Build script for LaTeX3 " xparse " files
4

5 -- Identify the bundle and module :
6 bundle = "l3packages"
7 module = "xparse"
8

9 -- Location of main directory : use Unix -style path separators
10 -- Should match that defined by the bundle.
11 maindir = "../.."
12

13 -- Load the common build code: this is the one place that a path
14 -- needs to be hard -coded
15 dofile (maindir .. "/l3build/l3build -config.lua")
16 dofile (maindir .. "/l3build/l3build.lua")

Figure 3: The build script for the xparse module.

1 @echo off
2 texlua build.lua %*

Figure 4: Windows batch file wrapper for running the build process.

9

Variable Default Description

module "" The name of the module
bundle "" The name of the bundle in which the module belongs

(where relevant)
ctanpkg module/bundle Name of the CTAN package matching this module

modules {} The list of all modules in a bundle (when not
auto-detecting)

exclmodules {} Directories to be excluded from automatic module detection

maindir "." Top level directory for the module/bundle
docfiledir "." Directory containing documentation files
sourcfiledir "." Directory containing source files
supportdir maindir .. "/support" Directory containing general support files
testfiledir "./testfiles" Directory containing test files
testsuppdir testfiledir .. "/support" Directory containing test-specific support files

builddir maindir .. "/build" Directory for building and testing
distribdir builddir .. "/distrib" Directory for generating distribution structure
localdir builddir .. "/local" Directory for extracted files in “sandboxed” TEX runs
testdir builddir .. "/test" Directory for running tests
typesetdir builddir .. "/doc" Directory for building documentation
unpackdir builddir .. "/unpack" Directory for unpacking sources

ctandir distribdir .. "/ctan" Directory for organising files for CTAN
tdsdir distribdir .. "/tds" Directory for organised files into TDS structure
tdsroot "latex" Root directory of the TDS structure for the bundle/module

to be installed into

auxfiles {"*.aux", "*.lof", "*.lot",
"*.toc"}

Secondary files to be saved as part of running tests

bibfiles {"*.bib"} BibTEX database files
binaryfiles {"*.pdf", "*.zip"} Files to be added in binary mode to zip files
bstfiles {"*.bst"} BibTEX style files
checkfiles { } Extra files unpacked purely for tests
checksuppfiles Files needed for performing regression tests
cleanfiles {"*.log", "*.pdf", "*.zip"} Files to delete when cleaning
demofiles {} Files which show how to use a module
docfiles {} Files which are part of the documentation but should not

be typeset
excludefiles {"*~"} Files to ignore entirely (default for Emacs backup files)
installfiles {"*.sty","*.cls"} Files to install to the TEX tree and similar task
makeindexfiles {"*.ist"} MakeIndex files to be included in a TDS-style zip
sourcefiles {"*.dtx", "*.ins"} Files to copy for unpacking
textfiles {"*.md", "*.txt"} Plain text files to send to CTAN as-is
typesetdemofiles {} Files to typeset before the documentation for inclusion in

main documentation files
typesetfiles {"*.dtx"} Files to typeset for documentation
typesetsuppfiles {} Files needed to support typesetting when “sandboxed”
typesetsourcefiles{} Files to copy to unpacking when typesetting.
unpackfiles {"*.ins"} Files to run to perform unpacking.
unpacksuppfiles {} Files needed to support unpacking when “sandboxed”

10

Variable Default Description

versionfiles {"*.dtx"} Files for automatic version editing

bakext ".bak" Extension of backup files
dviext ".dvi" Extension of DVI files
lvtext ".lvt" Extension of test files
tlgext ".tlg" Extension of test file output
lveext ".lve" Extension of auto-generating test file output
logext ".log" Extension of checking output, before processing it into a

.tlg
pdfext ".pdf" Extension of PDF file for checking and saving
psext ".ps" Extension of PostScript files

checkdeps {} List of dependencies for running checks
typesetdeps {} List of dependencies for typesetting docs
unpackdeps {} List of dependencies for unpacking

checkengines {"pdftex", "xetex", "luatex"} Engines to check with check by default
stdengine "pdftex" Engine to generate .tlg file from
checkformat "latex" Format to use for tests

checkconfigs {} Configurations to use for tests
stdconfig 〈Main script〉 Standard test configuration

typesetexe "pdflatex" Executable for compiling doc(s)
unpackexe "tex" Executable for running unpack
zipexe "zip" Executable for creating archive with ctan

checkopts "-interaction=nonstopmode" Options based to engine when running checks.
typesetopts "-interaction=nonstopmode" Options based to engine when typesetting.
unpackopts "" Options based to engine when unpacking.
zipopts "-v -r -X" Options based to zip program.

checksearch true Switch to search the system texmf for during checking
typesetsearch true Switch to search the system texmf for during typesetting
unpacksearch true Switch to search the system texmf for during unpacking

glossarystyle "gglo.ist" MakeIndex style file for glossary/changes creation
indexstyle "gind.ist" MakeIndex style for index creation

biberexe "biber" Biber executable
biberopts "" Biber options
bibtexexe "bibtex8" BibTEX executable
bibtexopts "-W" BibTEX options
makeindexexe "makeindex" MakeIndex executable
makeindexopts "" MakeIndex options

forcecheckepoch "true" Force epoch when running tests
forcedocepoch "false" Force epoch when typesetting

asciiengines {"pdftex"} Engines which should log as sure ASCII
checkruns 1 Number of runs to complete for a test before comparing the

log
epoch 1463734800 Epoch (Unix date) to set for test runs
maxprintline 79 Length of line to use in log files

11

1 -- Special config for these tests
2 checksearch = true
3 checkengines = {"xetex","luatex"}
4 testfiledir = "testfiles -TU"

Figure 5: The build script for the xparse module.

Variable Default Description

packtdszip false Switch to build a TDS-style zip file for CTAN
scriptname "build.lua" Name of script used in dependencies
typesetcmds "" Instructions to be passed to TEX when doing typesetting.
typsetcycles 3 Number of cycles of typesetting to carry out.
versionform "" Nature of version strings for auto-replacement.
recordstatus false Switch to include error level from test runs in .tlg files
manifestfile "MANIFEST.md" Filename to use for the manifest file.

1.5 Multiple sets of tests
In most cases, a single set of tests will be appropriate for the module, with a common
set of configuration settings applying. However, there are situations where you may need
entirely independent sets of tests which have different setting values, for example using
different formats or where the entire set will be engine-dependent. To support this, l3build
offers the possibility of using multiple configurations for tests. This is supported using
the checkconfigs table. This is used to list the names of each configuration (.lua file)
which will be used to run tests.

For example, for the core LATEX2ε tests the main test files are contained in a
directory testfiles. To test font loading for X ETEX and LuaTEX there are a sec-
ond set of tests in testfiles-TU which use the short build-TU.lua file shown in
Figure 5. To run both sets of tests, the main build.lua file contains the setting
checkconfigs = {"build", "config-TU"}. This will cause l3build to run first using
no additional settings (i.e. reading the normal build.lua file alone), then running also
loading the settings from config-TU.lua.

To allow selection of a one or more configurations, and to allow saving of .tlg files
in non-standard configurations, the --config (-c) option may be used. This works in
the same way as --engine: it takes a comma list of configurations to apply, overriding
checkconfigs.

Note that the setting stdconfig is used to determine the vanilla configuration: this
will typically be the name of the main script (usually build for a standard build.lua
file).

1.6 Dependencies
If you have multiple packages that are developed separately but still interact in some
way, it’s often desirable to integrate them when performing regression tests. For LATEX3,
for example, when we make changes to l3kernel it’s important to check that the tests for
l3packages still run correctly, so it’s necessary to include the l3kernel files in the build
process for l3packages.

12

In other words, l3packages is dependent on l3kernel, and this is specified in l3build
by setting appropriately the variables checkdeps, typesetdeps, and unpackdeps. The
relevant parts of the LATEX3 repository is structured as the following.

l3/
l3kernel/

build.lua
expl3.dtx
expl3.ins
...
testfiles/

l3packages/
build.lua
xparse/

build.lua
testfiles/
xparse.dtx
xparse.ins

support/

For LATEX3 build files, maindir is defined as top level folder l3, so all support files
are located here, and the build directories will be created there. To set l3kernel as a
dependency of l3package, within l3packages/xparse/build.lua the equivalent of the
following is set:

maindir = "../.."
checkdeps = {maindir .. "/l3kernel"}

This ensures that the l3kernel code is included in all processes involved in unpacking
and checking and so on. The name of the script file in the dependency is set with the
scriptname variable; by default these are "build.lua".

1.7 Non-standard source layouts
A variety of source layouts are supported. In general, a “flat” layout with all source
files “here” is most convenient. However, l3build supports placement of both code and
documentation source files in other locations using the sourcefiledir and docfiledir
variables. For pre-built trees, the glob syntax **/*.〈ext〉 may be useful in these cases:
this enables recursive searching in the appropriate tree locations.

A series of example layouts and matching build.lua files are available from https:
//github.com/latex3/l3build/tree/master/examples.

1.8 Output normalisation
To allow test files to be used between different systems (e.g. when multiple developers
are involved in a project), the log files are normalised before comparison during checking.
This removes some system-dependent data but also some variations due to different
engines. This normalisation consists of two parts: removing (“ignoring”) some lines and
modifying others to give consistent test. Currently, the following types of line are ignored:

• Lines before the \START, after the \END and within \OMIT/\TIMO blocks

13

https://github.com/latex3/l3build/tree/master/examples
https://github.com/latex3/l3build/tree/master/examples

• Entirely blank lines, including those consisting only of spaces.

• Lines containing file dates in format 〈yyyy〉/〈mm〉/〈dd〉.

• Lines starting \openin or \openout.

Modifications made in lines are:

• Removal spaces at the start of lines.

• Removal of ./ at start of file names.

• Standardisation of the list of units known to TEX (pdfTEX and LuaTEX add a small
number of additional units which are not known to TEX90 or X ETEX).

• Standardisation of \csname\endcsname␣ to \csname\endcsname (the former is for-
mally correct, but the latter was produced for many years due to a TEX bug).

• Conversion of on line 〈number〉 to on line ... to allow flexibility in changes to
test files.

• Conversion of register numbers in assignment lines \〈register〉=\〈type〉〈number〉
to \〈type〉〈...〉

• Conversion of box numbers in \show lines > \box〈number〉= to > \box...=

LuaTEX makes several additional changes to the log file. As normalising these may
not be desirable in all cases, they are handled separately. When creating LuaTEX-specific
test files (either with LuaTEX as the standard engine or saving a LuaTEX-specific .tlg file)
no further normalisation is undertaken. On the other hand, for cross-engine comparison
the following normalisation is applied:

• Removal of additional (unused) \discretionary points.

• Normalisation of some \discretionary data to a TEX90 form.

• Removal of U+... notation for missing characters.

• Removal of display for display math boxes (included by TEX90/pdfTEX/X ETEX).

• Removal of Omega-like direction TLT information.

• Removal of additional whatsit containing local paragraph information (\localinterlinepenalty,
etc.).

• Rounding of glue set to four decimal places (glue set may be slightly different in
LuaTEX compared to other engines).

• Conversion of low chars (0 to 31) to ^^ notation.

When making comparisons between 8-bit and Unicode engines it is useful to format
the top half of the 8-bit range such that it appears in the log as ^^〈char〉 (the exact
nature of the 8-bit output is otherwise dependent on the active code page). This may be
controlled using the asciiengines option. Any engines named here will use a .tcx file
to produce only ASCII chars in the log output, whilst for other engines normalisation is
carried out from UTF-8 to ASCII. If the option is set to an empty table the latter process
is skipped: suitable for cases where only Unicode engines are in use.

14

2 Writing test files
Test files are written in a TEX dialect using the support file regression-test.tex,
which should be \input at the very beginning of each test. Additional customisations
to this driver can be included in a local regression-test.cfg file, which will be loaded
automatically if found.

The macros loaded by regression-test.tex set up the test system and provide a
number of commands to aid the production of a structured test suite. The basis of the test
suite is to output material into the .log file, from which a normalised test output (.tlg)
file is produced by the build command save. A number of commands are provided for
this; they are all written in uppercase to help avoid possible conflicts with other package
commands.

2.1 Metadata and structural commands
Any commands that write content to the .log file that should be ignored can be sur-
rounded by \OMIT . . . \TIMO. At the appropriate location in the document where the
.log comparisons should start (say, after \begin{document}), the test suite must con-
tain the \START macro. The test should then include \AUTHOR{〈authors details〉} in case
a test file fails in the future and needs to be re-analysed.

Some additional diagnostic information can then be included as metadata for the con-
ditions of the test. The desired format can be indicated with \FORMAT{〈format name〉},
and any packages or classes loaded can be indicated with

\CLASS[〈options〉]{〈class name, version〉}
\PACKAGE[〈options〉]{〈package name, version〉}

These do not provide information that is useful for automated checking; after all, packages
change their version numbers frequently. Rather, including this information in a test
indicates the conditions under which the test was definitely known to pass at a certain
time in the past.

The \END command signals the end of the test (but read on). Some additional
diagnostic information is printed at this time to debug if the test did not complete
‘properly’ in terms of mismatched brace groups or \if. . . \fi groups.

In a LATEX document, \end{document} will implicitly call \END at the very end of
the compilation process. If \END is used directly (replacing \end{document} in the test),
the compilation will halt almost immediately, and various tasks that \end{document}
usually performs will not occur (such as potentially writing to the various .toc files, and
so on). This can be an advantage if there is additional material printed to the log file in
this stage that you wish to ignore, but it is a disadvantage if the test relies on various
auxiliary data for a subsequent typesetting run. (See the checkruns variable for how
these tests would be test up.)

2.2 Commands to help write tests
A simple command \CHECKCOMMAND\〈macro〉 is provided to check whether a particular
\〈macro〉 is defined, undefined, or equivalent to \relax. This is useful to flag either
that internal macros are remaining local to their definitions, or that defined commands
definitely are defined, or even as a reminder that commands you intend to define in a
future package need to be tested once they appear.

15

\TYPE is used to write material to the .log file, like LATEX’s \typeout, but it allows
‘long’ input. The following commands are defined to use \TYPE to output strings to the
.log file.

• \SEPARATOR inserts a long line of = symbols to break up the log output.

• \NEWLINE inserts a linebreak into the log file.

• \TRUE, \FALSE, \YES, \NO output those strings to the log file.

• \ERROR is not defined but is commonly used to indicate a code path that should
never be reached.

• The \TEST{〈title〉}{〈contents〉} command surrounds its 〈contents〉 with some
\SEPARATORs and a 〈title〉.

• \TESTEXP surrounds its contents with \TYPE and formatting to match \TEST; this
can be used as a shorthand to test expandable commands.

• TODO: would a \TESTFEXP command (based on \romannumeral expansion) be
useful as well?

• \BEGINTEST{〈title〉} . . . \ENDTEST is an environment form of \TEST, allowing ver-
batim material, etc. to appear.

An example of some of these commands is shown following.

\TEST{bool_set,~lazy~evaluation}
{
\bool_set:Nn \l_tmpa_bool
{
\int_compare_p:nNn 1=1
&& \bool_lazy_any_p:n
{
{ \int_compare_p:nNn 2=3 }
{ \int_compare_p:nNn 4=4 }
{ \int_compare_p:nNn 1=\ERROR } % is skipped

}
&& \int_compare_p:nNn 2=2

}
\bool_if:NTF \l_tmpa_bool \TRUE \FALSE
}

This test will produce the following in the output.

==
TEST 8: bool_set, lazy evaluation
==
TRUE
==

(Only if it’s the eighth test in the file of course, and assuming expl3 coding conventions
are active.)

16

2.3 Showing box content
The commands introduced above are only useful for checking algorithmic or logical cor-
rectness. Many packages should be tested based on their typeset output instead; TEX
provides a mechanism for this by printing the contents of a box to the log file. The
regression-test.tex driver file sets up the relevant TEX parameters to produce as
much output as possible when showing box output.

A plain TEX example of showing box content follows.

\input regression-test.tex\relax
\START
\setbox0=\hbox{\rm hello \it world $a=b+c$}
\showbox0
\END

This produces the output shown in Figure 6 (left side). It is clear that if the definitions
used to typeset the material in the box changes, the log output will differ and the test
will no longer pass.

The equivalent test in LATEX2ε using expl3 is similar.

\input{regression-test.tex}
\documentclass{article}
\usepackage{expl3}
\START
\ExplSyntaxOn
\box_new:N \l_tmp_box
\hbox_set:Nn \l_tmp_box {hello~ \emph{world}~ $a=b+c$}
\box_show:N \l_tmp_box
\ExplSyntaxOff
\END

The output from this test is shown in Figure 6 (right side). There is marginal difference
(mostly related to font selection and different logging settings in LATEX) between the plain
and expl3 versions.

When examples are not self-contained enough to be typeset into boxes, it is possible
to ask TEX to output the entire contents of a page. Insert \showoutput for LATEX or
set \tracingoutput positive for plain TEX; ensure that the test ends with \newpage or
equivalent because TEX waits until the entire page is finished before outputting it.

TODO: should we add something like \TRACEPAGES to be format-agnostic here?
Should this perhaps even be active by default?

2.4 Testing entire pages
There may be occasions where creating entire test pages is necessary to observe the test
output required. That is best achieved by applying \showoutput and forcing a complete
page to be produced, for example

\input{regression-test.tex}
\documentclass{article}
\usepackage{expl3}
\START
\showoutput

17

> \box0=
\hbox(6.94444+0.83333)x90.56589
.\tenrm h
.\tenrm e
.\tenrm l
.\tenrm l
.\tenrm o
.\glue 3.33333 plus 1.66666 minus 1.11111
.\tenit w
.\tenit o
.\tenit r
.\tenit l
.\tenit d

.\glue 3.57774 plus 1.53333 minus 1.0222

.\mathon

.\teni a

.\glue(\thickmuskip) 2.77771 plus 2.77771

.\tenrm =

.\glue(\thickmuskip) 2.77771 plus 2.77771

.\teni b

.\glue(\medmuskip) 2.22217 plus 1.11108 minus 2.22217

.\tenrm +

.\glue(\medmuskip) 2.22217 plus 1.11108 minus 2.22217

.\teni c

.\mathoff

! OK.
l.9 \showbox0

> \box71=
\hbox(6.94444+0.83333)x91.35481
.\OT1/cmr/m/n/10 h
.\OT1/cmr/m/n/10 e
.\OT1/cmr/m/n/10 l
.\OT1/cmr/m/n/10 l
.\OT1/cmr/m/n/10 o
.\glue 3.33333 plus 1.66666 minus 1.11111
.\OT1/cmr/m/it/10 w
.\OT1/cmr/m/it/10 o
.\OT1/cmr/m/it/10 r
.\OT1/cmr/m/it/10 l
.\OT1/cmr/m/it/10 d
.\kern 1.03334
.\glue 3.33333 plus 1.66666 minus 1.11111
.\mathon
.\OML/cmm/m/it/10 a
.\glue(\thickmuskip) 2.77771 plus 2.77771
.\OT1/cmr/m/n/10 =
.\glue(\thickmuskip) 2.77771 plus 2.77771
.\OML/cmm/m/it/10 b
.\glue(\medmuskip) 2.22217 plus 1.11108 minus 2.22217
.\OT1/cmr/m/n/10 +
.\glue(\medmuskip) 2.22217 plus 1.11108 minus 2.22217
.\OML/cmm/m/it/10 c
.\mathoff

! OK.
<argument> \l_tmp_box

l.12 \box_show:N \l_tmp_box

Figure 6: Output from displaying the contents of a simple box to the log file, using plain
TEX (left) and expl3 (right). Some blank lines have been added to the plain TEX version
to help with the comparison.

18

1 function runtest_tasks(name)
2 return "biber␣" .. name
3 end

Figure 7: Example runtest_tasks function.

% Test content here
\vfil\break
\END

2.5 Additional test tasks
A standard test will run the file 〈name〉.lvt using one or more engines, but will not carry
out any additional processing. For some tests, for example bibliography generation, it
may be desirable to call one or more tools in addition to the engine. This can be arranged
by defining runtest_tasks, a function taking one argument, the name of the current
test (this is equivalent to TEX’s \jobname, i.e. it lacks an extension). The function
runtest_tasks is is into a call to the system to run the engine. As such, it should take
return a string with the appropriate command(s) and option(s). If more than one task
is required, these should be separated by use of os_concat, a string variable defined by
l3build as the correct concatenation marker for the system. An example of runtest_tasks
suitable for calling Biber is shown in Listing 7.

2.6 Epoch setting
To produce predictable output when suing dates, the test system offers the ability to
set the epoch to a known value. The 1463734800 variable may be given as a raw value
(a simple integer) or as a date in ISO format. The two flags "true" and "false" then
determine whether this is applied in testing and typesetting, respectively.

The epoch may also be given as a command line option, -E, which again takes either
a date or raw epoch. When given, this will automatically activate forcing of the epoch
in both testing and typesetting.

3 Alternative test formats
3.1 Generating test files with DocStrip
It is possible to pack tests inside source files. Tests generated during the unpacking
process will be available to the check and save commands as if they were stored in the
testfiledir. Any explicit test files inside testfiledir take priority over generated
ones with the same names.

3.2 Specifying expectations
Regression tests check whether changes introduced in the code modify the test output.
Especially while developing a complex package there is not yet a baseline to save a test
goal with. It might then be easier to formulate the expected effects and outputs of tests

19

1 \input regression -test.tex\relax
2 \START
3 \TEST{counter -math}{
4 % <*test >
5 \OMIT
6 \newcounter{numbers}
7 \setcounter{numbers }{2}
8 \addtocounter{numbers }{2}
9 \stepcounter{numbers}

10 \TIMO
11 \typeout {\ arabic{numbers }}
12 % </test >
13 %<expect > \ typeout {5}
14 }
15 \END

Figure 8: Test and expectation can be specified side-by-side in a single .dtx file.

1 \generate {\file{\ jobname.lvt}{\ from{\ jobname.dtx}{test}}
2 \file{\ jobname.lve}{\ from{\ jobname.dtx}{ expect }}}

Figure 9: Test and expectation are generated from a .dtx file of the same name.

directly. To achieve this, you may create an .lve instead of a .tlg file.1 It is processed
exactly like the .lvt to generate the expected outcome. The test fails when both differ.

Combining both features enables contrasting the test with its expected outcome in
a compact format. Listing 8 exemplary tests TEXs counters. Listing 9 shows the relevant
part of an .ins file to generate it.

4 Release-focussed features
4.1 Automatic version modification
As detailed above, the setversion target will automatically edit source files to modify
date and version. This behaviour is governed by variable versionform. As standard, no
automatic replacement takes place, but setting versionform will allow this to happen,
with options

• ProvidesPackage — Searches for lines using the LATEX2ε \ProvidesPackage,
\ProvidesClass and \ProvidesFile identifiers (as a whole line).

• ProvidesExplPackage—Searches for lines using the expl3 \ProvidesExplPackage,
\ProvidesExplClass and \ProvidesExplFile identifiers (at the start of a line).

• filename — Searches for lines using \def\filename, \def\filedate, . . . , formu-
lation.

• ExplFileDate — Searches for lines using \def\ExplFileDate, . . . , formulation.
1Mnemonic: lvt: test, lve: expectation

20

1 function setversion_update_line(line , date , version)
2 -- No real regex so do it one type at a time
3 for _,i in pairs ({"Class", "File", "Package"}) do
4 if string.match(
5 line ,
6 "^\\ Provides" .. i .. "{[a-zA-Z0 -9% -]+}%[[^%]]*%]$"
7) then
8 line = string.gsub(line , "%[%d%d%d%d/%d%d/%d%d", "["
9 .. string.gsub(date , "%-", "/")

10 line = string.gsub(
11 line , "(%[%d%d%d%d/%d%d/%d%d)␣[^␣]*", "%1␣" .. version
12)
13 break
14 end
15 end
16 return line
17 end

Figure 10: Example setversion_update_line function.

For more complex cases, the programmer may directly define the Lua function
setversion_update_line(), which takes as arguments the line of the source, the sup-
plied date and the supplied version. It should return a (possibly unmodified) line and
may use one, both or neither of the date and version to update the line. Typically,
setversion_update_line should match to the exact pattern used by the programmer
in the source files. For example, for code using macros for the date and version a suitable
function might read as shown in Figure 10.

4.2 Typesetting documentation
As part of the overall build process, l3build will create PDF documentation as described
earlier. The standard build process for PDFs will attempt to run Biber, BibTEX and
MakeIndex as appropriate (the exact binaries used are defined by "biber", "bibtex8"
and "makeindex"). However, there is no attempt to create an entire PDF creation system
in the style of latexmk or similar.

For package authors who have more complex requirements than those covered by the
standard set up, the Lua script offers the possibility for customisation. The Lua function
typeset may be defined before reading l3build.lua and should take one argument,
the name of the file to be typeset. Within this function, the auxiliary Lua functions
biber, bibtex, makeindex and tex can be used, along with custom code, to define a
PDF typesetting pathway. The functions biber and bibtex take a single argument: the
name of the file to work with minus any extension. The tex takes as an argument the
full name of the file. The most complex function makeindex requires the name, input
extension, output extension, log extension and style name. For example, Figure 11 shows
a simple script which might apply to a case where multiple BibTEX runs are needed
(perhaps where citations can appear within other references).

Where there are complex requirements for pre-compiled demonstration files, the hook
typeset_demo_hook() is available: it runs after copying files to the typesetting location
but before the main typesetting run. This may be used for example to script a very large

21

number of demonstrations using a single source (see the beamer package for an example
of this).

5 Lua interfaces
Whilst for the majority of users the simple variable-based control methods outlined above
will suffice, for more advanced applications there will be a need to adjust behavior by using
interfaces within the Lua code. This section details the global variables and functions
provided.

1 #!/usr/bin/env texlua
2

3 -- Build script with custom PDF route
4

5 module = "mymodule"
6

7 function typeset(file)
8 local name = jobname(file)
9 local errorlevel = tex (file)

10 if errorlevel == 0 then
11 -- Return a non -zero errorlevel if anything goes wrong
12 errorlevel =(
13 bibtex(name) +
14 tex(file) +
15 bibtex(name) +
16 tex(file) +
17 tex(file)
18)
19 end
20 return errorlevel
21 end
22

23 kpse.set_program_name("kpsewhich")
24 dofile(kpse.lookup("l3build.lua"))

Figure 11: A customised PDF creation script.

22

5.1 Global variables

The options table holds the values passed to l3build at the command line. The possible
entries in the table are given in the table below.

Entry Type
date String
engine Table
files Table
force Boolean
halt Boolean
help Boolean
pdf Boolean
quiet Boolean
rerun Boolean
testfiledir Table
version String

options

5.2 Utility functions
The utility functions are largely focussed on file operations, though a small number of
others are provided. File paths should be given in Unix style (using / as a path separator).
File operations take place relative to the path from which l3build is called. File operation
syntax is largely modelled on Unix command line commands but reflect the need to work
on Windows in a flexible way.

abspath(〈target〉)

Returns a string which gives the absolute location of the 〈target〉 directory.
abspath()

dirname(〈file〉)

Returns a string comprising the path to a 〈file〉 with the name removed (i.e. up to the
last /). Where the 〈file〉 has no path data, "." is returned.

dirname()

basename(〈file〉)

Returns a string comprising the full name of the 〈file〉 with the path removed (i.e. from
the last / onward).

basename()

cleandir(〈dir〉)

Removes any content within the 〈dir〉; returns an error level.
cleandir()

cp(〈glob〉, 〈source〉, 〈destination〉)

Copies files matching the 〈glob〉 from the 〈source〉 directory to the 〈destination〉; returns
an error level.

cp()

23

direxists(〈dir〉)

Tests if the 〈dir〉 exists; returns a boolean value.
direxists()

fileexists(〈file〉)

Tests if the 〈file〉 exists; returns a boolean value.
fileexists()

filelist(〈path〉, [〈glob〉])

Returns a table containing all of the files with the 〈path〉 which match the 〈glob〉; if the
latter is absent returns a list of all files in the 〈path〉.

filelist()

jobname(〈file〉)

Returns a string comprising the jobname of the file with the path and extension removed
(i.e. from the last / up to the last .).

jobname()

mkdir(〈dir〉)

Creates the 〈dir〉; returns an error level.
mkdir()

ren(〈dir〉, 〈source〉, 〈destination〉)

Renames the 〈source〉 file to the 〈destination〉 name within the 〈dir〉; returns an error
level.

ren()

rm(〈dir〉, 〈glob〉)

Removes files in the 〈dir〉 matching the 〈glob〉; returns an error level.
rm()

run(〈dir〉, 〈cmd〉)

Executes the 〈cmd〉, starting it in the 〈dir〉; returns an error level.
run()

splitpath(〈file〉)

Returns two strings split at the last /: the dirname() and the basename().
splitpath()

unix_to_win(〈path〉)

Returns a string comprising the 〈path〉 with / characters replaced by \\ and thus suitable
for use with Windows-specific commands which require this form of path.

unix_to_win()

5.3 System-dependent strings
To support creation of additional functionality, the following low-level strings are exposed
by l3build: these all have system-dependent definitions and avoid the need to test os.type
during the construction of system calls.

The concatenation operation for using multiple commands in one system call, e.g.

os.execute("tex " .. file .. os_concat .. "tex " .. file)

os_concat

24

The location to redirect commands which should produce no output at the terminal:
almost always used preceded by >, e.g.

os.execute("tex " .. file .. " > " .. os_null)

os_null

The separator used when setting an environment variable to multiple paths, e.g.

os.execute(os_setenv .. " PATH=../a" .. os_pathsep .. "../b")

os_pathsep

The command to set an environmental variable, e.g.

os.execute(os_setenv .. " PATH=../a")

os_setenv

A command to generate a series of 200 lines each containing the character y: this is useful
as the Unix yes command cannot be used inside os.execute (it does not terminate).

os_yes

5.4 Components of l3build

call(〈dirs〉, 〈target〉, [〈options〉])

Runs the l3build 〈target〉 (a string) for each directory in the 〈dirs〉 (a table). This will
pass command line options for the parent script to the child processes. The 〈options〉
table should take the same form as the global 〈options〉, described above. If it is absent
then the global list is used. Note that any entry for the target in this table is ignored.

call()

5.5 Customising the manifest file
The default setup for the manifest file creating with the manifest target attempt to
reflect the defaults for l3build itself. The groups (and hence the files) displayed can be
completely customised by defining a new setup function which creates a Lua table with
the appropriate settings (§5.5.1).

The formatting within the manifest file can be customised by redefining a number
of Lua functions. This includes how the files are sorted within each group (§5.5.2), the
inclusion of one-line descriptions for each file (§5.5.3), and the details of the formatting
of each entry (§5.5.4).

To perform such customisations, either include the re-definitions directly within your
package’s build.lua file, or make a copy of l3build-manifest-setup.lua, rename it,
and load it within your build.lua using dofile().

5.5.1 Custom manifest groups

The setup code for defining each group of files within the manifest looks something like
the following:

manifest_setup = function()
local groups = {
{

subheading = "Repository files",

25

Table 2: Table entries used in the manifest setup table for a group.
Entry Description
name The heading of the group
description The description printed below the heading
files Files to include in this group
exclude Files to exclude (default {excludefiles})
dir The directory to search (default maindir)
rename An array with a gsub redefinition for the filename
skipfiledescription Whether to extract file descriptions from these files

(default false)

Table 3: Table entries used in the manifest setup table for a subheading.
Entry Description
subheading The subheading
description The description printed below the subheading

description = [[
Files located in the package development repository.

]],
},
{

name = "Source files",
description = [[

These are source files generating the package files.
]],
files = {sourcefiles},

},
{

name = "Typeset documentation source files",
description = [[

These files are typeset using LaTeX to produce the PDF documentation for the package.
]],
files = {typesetfiles,typesetsourcefiles,typesetdemofiles},

},
...

}
return groups

end

The groups variable is an ordered array of tables which contain the metadata about
each ‘group’ in the manifest listing. The keys supported in these tables are outlined in
Table 2 and Table 3 See the complete setup code in l3build-manifest-setup.lua for
examples of these in use.

26

5.5.2 Sorting within each manifest group

Within a single group in the manifest listing, files can be matched against multiple
variables. For example, for sourcefiles={*.dtx,*.ins} the following (unsorted) file
listing might result:

• foo.dtx

• bar.dtx

• foo.ins

• bar.ins
This listing can be sorted using two separate functions by the default manifest code. The
first, default, is to sort alphabetically within a single variable match. This keeps all files
of a single extension contiguous in the listing. To edit how this sort is performed, redefine
the manifest_sort_within_match function.

The second approach to sorting is to apply a sorting function to the entire set of
matched files. (This happens after any sorting is applied for each match.) By default this
is a no-op but can be edited by redefining the manifest_sort_within_group function.
For example:
manifest_sort_within_group = function(files)
local f = files
table.sort(f)
return f

end

This will produce an alphabetical listing of files:
• bar.dtx

• bar.ins

• foo.dtx

• foo.ins

5.5.3 File descriptions

By default the manifest contains lists of files, and with a small addition these
lists can be augmented with a one-line summary of each file. If the Lua function
manifest_extract_filedesc is defined, it will be used to search the contents of each
file to extract a description for that file. For example, perhaps you are using multiple
.dtx files for a project and the argument to the first \section in each can be used as a
file description:
manifest_extract_filedesc = function(filehandle,filename)

local all_file = filehandle:read("*all")
local matchstr = "\\section{(.-)}"

filedesc = string.match(all_file,matchstr)

return filedesc
end

27

(Note the matchstr above is only an example and doesn’t handle nested braces.)

5.5.4 Custom formatting

After the manifest code has built a complete listing of files to print, a series of file writing
operations are performed which create the manifest file. The following functions can be
re-defined to change the formatting of the manifest file:

• manifest_write_opening: Write the heading of the manifest file and its opening
paragraph.

• manifest_write_subheading: Write a subheading and description

• manifest_write_group_heading: Write the section heading of the manifest group
and the group description

• manifest_write_group_file: Write the filename (when not writing file descrip-
tions)

• manifest_write_group_file_descr: Write the filename and the file description

Full descriptions of their usage and arguments can be found within the l3build-manifest-setup.lua
code itself.

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\〈macro〉 . 15
\〈register〉 . 14
\〈type〉 . 14

A
abspath() . 23
\AUTHOR . 15

B
basename() . 23
\BEGINTESTF . 16
\box . 14

C
call() . 25
\CHECKCOMMAND 15
\CLASS . 15
cleandir() . 23
cp() . 23

D
direxists() . 24
dirname() . 23

E
\END . 13
\ENDTESTF . 16
\ERROR . 16

F
\FALSE . 16
\fi . 15
fileexists() 24
filelist() . 24
\FORMATF . 15

I
\if . 15

J
\jobname . 19
jobname() . 24

M
mkdir() . 24

N
\NEWLINE . 16
\newpage . 17

28

\NO . 16

O
\OMITF . 13
\openin . 14
\openout . 14
options . 23
os commands:

os_concat 24
os_null . 25
os_pathsep 25
os_setenv 25
os_yes . 25

P
\PACKAGE . 15
\ProvidesClass 20
\ProvidesExplClass 20
\ProvidesExplFile 20
\ProvidesExplPackage 20
\ProvidesFile 20
\ProvidesPackage 20

R
\relax . 15
ren() . 24
rm() . 24

\romannumeral 16
run() . 24

S
\SEPARATOR . 16
\showoutput . 17
splitpath() . 24
\STARTF . 13

T
\TESTEXP . 16
\TESTF . 16
\TESTFEXP . 16
\TIMO . 13
\TRACEPAGES . 17
\tracingoutput 17
\TRUE . 16
\TYPE . 16
\typeout . 16

U
unix commands:

unix_to_win() 24

Y
\YES . 16

29

	Contents
	1 The l3build system
	1.1 Introduction
	1.2 Main build commands
	1.3 Example build scripts
	1.4 Variables
	1.5 Multiple sets of tests
	1.6 Dependencies
	1.7 Non-standard source layouts
	1.8 Output normalisation

	2 Writing test files
	2.1 Metadata and structural commands
	2.2 Commands to help write tests
	2.3 Showing box content
	2.4 Testing entire pages
	2.5 Additional test tasks
	2.6 Epoch setting

	3 Alternative test formats
	3.1 Generating test files with DocStrip
	3.2 Specifying expectations

	4 Release-focussed features
	4.1 Automatic version modification
	4.2 Typesetting documentation

	5 Lua interfaces
	5.1 Global variables
	5.2 Utility functions
	5.3 System-dependent strings
	5.4 Components of l3build
	5.5 Customising the manifest file
	5.5.1 Custom manifest groups
	5.5.2 Sorting within each manifest group
	5.5.3 File descriptions
	5.5.4 Custom formatting

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	I
	J
	M
	N
	O
	P
	R
	S
	T
	U
	Y

