
The l3build package
Checking and building packages∗

The LATEX3 Project†

Released 2015/12/20

Contents
1 The l3build system 1

1.1 Introduction 1
1.2 Main build commands 2
1.3 Example build scripts 7
1.4 Variables 7
1.5 Dependencies 11
1.6 Output normalisation 11

2 Writing test files 13
2.1 Metadata and structural

commands 13

2.2 Commands to help write tests 13
2.3 Showing box content 15

3 Alternative test formats 15
3.1 Generating test files with

DocStrip 15
3.2 Specifying expectations . . . 17

4 Release-focussed features 17
4.1 Automatic version modifica-

tion 17
4.2 Typesetting documentation . 18

1 The l3build system
1.1 Introduction
The l3build system is a Lua script for building TEX packages, with particular emphasis
on regression testing. It is written in cross-platform Lua code, so can be used by any
modern TEX distribution with the texlua interpreter. A package for building with l3build
can be written in any TEX dialect; its defaults are set up for LATEX packages written in
the DocStrip style. (Caveat: minimal testing has yet been performed for non-LATEX
packages.)

Test files are written as standalone TEX documents using the regression-test.tex
setup file; documentation on writing these tests is discussed in Section 2.

The l3build.lua script is not designed to be executed directly; each package will
define its own build.lua script as a driver file which both sets variables (such as the
name of the package) and then calls the main l3build.lua script internally.
∗This file describes v6326, last revised 2015/12/20.
†E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

A standard package layout might look something like the following:

abc/
abc.dtx
abc.ins
build.lua
README.md
support/
testfiles/

Most of this should look fairly self-explanatory. The top level support/ directory (op-
tional) would contain any necessary files for compiling documentation, running regression
tests, and so on.

The l3build system is also capable of building and checking bundles of packages. To
avoid confusion, we refer to either a standalone package or a package within a bundle as
a module.

For example, within the LATEX3 project we have the l3packages bundle which contains
the xparse, xtemplate, etc., modules. These are all built and distributed as one bundle
for installation, distribution via CTAN and so forth.

Each module in a bundle will have its own build script, and a bundle build script
brings them all together. A standard bundle layout would contain the following structure.

mybundle/
build.lua
support/
yyy/ zoo/

build.lua build.lua
README.md README.md
testfiles/ testfiles/
yyy.dtx zoo.dtx
yyy.ins zoo.ins

All modules within a bundle must use the same build script name.
In a small number of cases, the name used by CTAN for a module or bundle is

different from that used in the installation tree. For example, the LATEX2ε kernel is
called latex-base by CTAN but is located inside 〈texmf〉/tex/latex/base. This can be
handled by using ctanpkg for the name required by CTAN to override the standard value.

The testfiles/ folder is local to each module, and its layout consists of a series of
regression tests with their outputs.

testfiles/
test1.lvt
test1.tlg
...
support/

my-test.cls

2

Again, the support/ directory contains any files necessary to run some or all of these
tests.

When the build system runs, it creates a directory build/ for various unpacking,
compilation, and testing purposes. For a module, this build folder can be in the main
directory of the package itself, but for a bundle it should be common for the bundle
itself and for all modules within that bundle. A build/ folder can be safety deleted; all
material within is re-generated for each command of the l3build system.

1.2 Main build commands
In the working directory of a bundle or module, the following commands can be executed:

• check
• check 〈name(s)〉
• cmdcheck
• clean
• doc
• install
• save 〈name(s)〉

These commands are described below.
As well as these commands, the system recognises the options

• –engine (-e) Sets the engine to use for testing

• –halt-on-error (-H) Specifies that checks should stop as soon as possible, rather
than running all requested tests

• –quiet (-q) Suppresses output from unpacking

$ texlua build.lua check
The check command runs the entire test suite. This involves iterating through each .lvt
file in the test directory (specified by the testfiledir variable), compiling each test in
a “sandbox” (a directory specified by testdir), and comparing the output against each
matching predefined .tlg file.

If changes to the package or the typesetting environment have affected the results,
the check for that file fails. A diff of the expected to actual output should then be
inspected to determine the cause of the error; it is located in the testdir directory
(default maindir .. "/build/test").

On Windows, the diff program is not available and so fc is used instead (generating
an .fc file). Setting the environmental variables diffexe and diffext can be used to
adjust the choice of comparison made: the standard values are

Windows diffext = fc, diffexe = fc /n

*nix diffext = diff, diffexe = diff -c --strip-trailing-cr

The following files are moved into the “sandbox” for the check process:

3

• all installfiles after unpacking;

• all checkfiles after unpacking;

• any files in the directory testsuppdir;

• any files that match checksuppfiles in the supportdir.

This range of possibilities allow sensible defaults but significant flexibility for defining
your own test setups.

Checking can be performed with any or all of the ‘engines’ pdftex, xetex, and
luatex. By default, each test is executed with all three, being compared against the .tlg
file produced from the pdftex engine (these defaults are controlled by the checkengines
and stdengine variable respectively). The format used for tests can be altered by setting
checkformat: the default setting latex means that tests are run using e.g. pdflatex,
whereas setting to plain will run tests using e.g. pdftex. (Currently, this should be
one of latex or plain.) To perform the check, the engine typesets each test checkruns
times. More detail on this in the documentation on save. Options passed to the binary
are defined in the variable checkopts.

By default, texmf trees are searched for input files when checking. This can be
disabled by setting checksearch to false: isolation provides confidence that the tests
cannot accidentally be running with incorrect files installed in the main distribution or
hometexmf.

$ texlua build.lua check 〈name(s)〉

Checks only the test 〈name(s)〉.lvt. All engines specified by checkengines are tested
unless the command line option –engine (or -e) has been given to limit testing to a
single engine.

$ texlua build.lua cmdcheck
For l3doc-based sources, allows checking that the commands defined in the code part (by
cmdchkfiles) are documented in the description part. This is performed by passing the
check option to the l3doc class, typesetting the file(s) to check with engine stdengine
with options cmdchkopts, and checking the resultant .cmds file(s). Dependencies are
specified also with checkdeps.

$ texlua build.lua clean
This command removes all temporary files used for package bundling and regression test-
ing. In the standard layout, these are all files within the directories defined by localdir,
testdir, typesetdir and unpackdir, as well as all files defined in the cleanfiles vari-
able in the same directory as the script. The defaults are .pdf files from typesetting
(doc) and .zip files from bundling (ctan).

$ texlua build.lua ctan
Creates an archive of the package and its documentation, suitable for uploading to CTAN
The archive is compiled in distribdir, and if the results are successful the resultant .zip

4

file is moved into the same directory as the build script. If packtdszip is set true then
the building process includes a .tds.zip file containing the ‘TEX Directory Structure’
layout of the package or bundle. The archive therefore may contain two ‘views’ of the
package:

abc.zip/
abc/

abc.dtx
abc.ins
abc.pdf
README.md

abc.tds.zip/
doc/latex/abc/

abc.pdf
README.md

source/latex/abc/
abc.dtx
abc.ins

tex/latex/abc/
abc.sty

The files copied into the archive are controlled by a number of variables. The ‘root’ of
the TDS structure is defined by tdsroot, which is "latex" by default. Plain users would
redefine this to "plain" (or perhaps "generic"), for example. The build process for a
.tds.zip file currently assumes a ‘standard’ structure in which all extracted files should
be placed inside the tex tree in a single directory, as shown above. If the module includes
any BibTEX or MakeIndex styles these will be placed in the appropriate subtrees.

The doc tree is constructed from:

• all files matched by demofiles,

• all files matched by docfiles,

• all files matched by typesetfiles with their extension replaced with .pdf,

• all files matched by textfiles,

• all files matched by bibfiles.

The source tree is constructed from all files matched by typesetfiles and sourcefiles.
The tex tree from all files matched by installfiles.

Files that should always be excluded from the archive are matched against the
excludefiles variable; by default this is {"*~"}, which match Emacs’ autosave files.

Binary files should be specified with the binaryfiles variable (default {"*.pdf",
"*.zip"}); these are added to the zip archive without normalising line endings (text files
are automatically converted to Unix-style line endings).

To create the archive, by default the binary zipexe is used ("zip") with options
zipopts (-v -r -X). The intermediate build directories ctandir and tdsdir are used
to construct the archive.

5

$ texlua build.lua doc
Compiles documentation files in the typesetdir directory. In the absence of one or more
file names, all documentation is typeset; a file list may be given at the command line for
selective typesetting. If the compilation is successful the .pdf is moved back into the
main directory.

The documentation compilation is performed with the typesetexe binary (default
pdflatex), with options typesetopts. Additional TEX material defined in typesetcmds
is passed to the document (e.g., for writing \\PassOptionsToClass{l3doc}{letterpaper},
and so on—note that backslashes need to be escaped in Lua strings).

Files that match typesetsuppfiles in the support directory (supportdir) are
copied into the build/local directory (localdir) for the typesetting compilation pro-
cess. Additional dependencies listed in the typesetdeps variable (empty by default) will
also be installed.

If typesetsearch is true (default), standard texmf search trees are used in the
typesetting compilation. If set to false, all necessary files for compilation must be included
in the build/local sandbox.

$ texlua build.lua install
Copies all package files (defined by installfiles) into the user’s home texmf tree in
the form of the TEX Directory Structure.

$ texlua build.lua save 〈name(s)〉

This command runs through the same execution as check for a specific test(s)
〈name(s)〉.lvt. This command saves the output of the test to a .tlg file. This file
is then used in all subsequent checks against the 〈name〉.lvt test.

If the –engine (or -e) is specified (one of pdftex, xetex, or luatex), the saved
output is stored in 〈name〉.〈engine〉.tlg. This is necessary if running the test through a
different engine produces a different output. A normalisation process is performed when
checking to avoid common differences such as register allocation; full details are listed in
section 1.6.

$ texlua build.lua setversion
Modifies the content of files specified by versionfiles to allow automatic updating of
the file date and version. The latter are specified using the -d and -v command line
options and if not given will default to the current date in ISO format (YYYY-MM-DD)
and -1, respectively. As detailed below, the standard set up has no search pattern defined
for this target and so no action will be taken unless a version type for substitution is set
up (using versionform or by defining a custom function).

$ texlua build.lua unpack
This is an internal target that is normally not needed on user level. It unpacks all files
into the directory defined by unpackdir. This occurs before other build commands such
as doc, check, etc.

6

The unpacking process is performed by executing the unpackexe (default tex) with
options unpackopts on all files defined by the unpackfiles variable; by default, all files
that match {"*.ins"}.

If additional support files are required for the unpacking process, these can be enu-
merated in the unpacksuppfiles variable. Dependencies for unpacking are defined with
unpackdeps.

By default this process allows files to be accessed in all standard texmf trees; this
can be disabled by setting unpacksearch to false.

1.3 Example build scripts
An example of a standalone build script for a package that uses self-contained .dtx files
is shown in Figure 1. Here, the module only is defined, and since it doesn’t use .ins
files so the variable unpackfiles is redefined to run tex on the .dtx files instead to
generate the necessary .sty files. There are some PDFs in the repository that shouldn’t
be part of a CTAN submission, so they’re explicitly excluded, and here unpacking is done
‘quietly’ to minimise console output when building the package. Finally, because this is
a standalone package, we assume that l3build is installed in the main TEX distribution
and find the Lua script by searching for it.

An example of a bundle build script for l3packages is shown in Figure 2. Note for
LATEX3 we use a common file to set all build variables in one place, and the path to the
l3build.lua script is hard-coded so we always use our own most recent version of the
script. An example of an accompanying module build script is shown in Figure 3.

Under a Unix-like platform, you may wish to run ‘chmod +x build.lua’ on these
files, which allows a simpler command line use. Instead of writing

texlua build.lua check
for example, you would simply write

./build.lua check

1 #!/ usr/bin/env texlua
2

3 -- Build script for breqn
4

5 module = "breqn"
6

7 unpackfiles = {"*.dtx"}
8 excludefiles = {"*/breqn -abbr -test.pdf",
9 "*/ eqbreaks.pdf"}

10 unpackopts = "-interaction=batchmode"
11

12 kpse.set_program_name("kpsewhich")
13 dofile(kpse.lookup("l3build.lua"))

Figure 1: The build script for the breqn package.

7

1 #!/ usr/bin/env texlua
2

3 -- Build script for LaTeX3 " l3packages " files
4

5 -- Identify the bundle : there is no module as this is the " driver "
6 bundle = "l3packages"
7

8 -- Location of main directory : use Unix -style path separators
9 maindir = ".."

10

11 -- Load the common build code: this is the one place that a path
12 -- needs to be hard -coded
13 dofile (maindir .. "/l3build/l3build -config.lua")
14 dofile (maindir .. "/l3build/l3build.lua")

Figure 2: The build script for the l3packages bundle.

1 #!/ usr/bin/env texlua
2

3 -- Build script for LaTeX3 " xparse " files
4

5 -- Identify the bundle and module :
6 bundle = "l3packages"
7 module = "xparse"
8

9 -- Location of main directory : use Unix -style path separators
10 -- Should match that defined by the bundle.
11 maindir = "../.."
12

13 -- Load the common build code: this is the one place that a path
14 -- needs to be hard -coded
15 dofile (maindir .. "/l3build/l3build -config.lua")
16 dofile (maindir .. "/l3build/l3build.lua")

Figure 3: The build script for the xparse module.

1 @echo off
2 texlua build.lua %*

Figure 4: Windows batch file wrapper for running the build process.

8

instead. (Or even omit the ./ depending on your path settings.) Windows users can
achieve a similar effect by creating a file build.bat as show in Figure 4.

1.4 Variables
This section lists all variables defined in the l3build.lua script that are available for
customisation.

Variable Default Description

module "" The name of the module.
bundle "" The name of the bundle in which the module belongs.
ctanpkg bundle Name of the bundle on CTAN

modules { } The list of all modules in a bundle (when not
auto-detecting)

exclmodules { } Directories to be excluded from automatic module detection

maindir "." The top level directory for this module or bundle.
supportdir maindir .. "/support" Where copies of files to support check/doc compilation are

stored.
testfiledir maindir .. "/testfiles" Where the tests are.
testsuppdir testfiledir .. "/support" Where support files for the tests are.

localdir maindir .. "/build/local" Generated folder where support files are placed to allow
“sandboxed” TEX runs.

testdir maindir .. "/build/test" Generated folder where tests are run.
typesetdir maindir .. "/build/doc" Generated folder where typesetting is run.
unpackdir maindir .. "/build/unpack" Generated folder where unpacking occurs.
distribdir maindir .. "/build/distrib" Generated folder where the archive is created.
ctandir distribdir .. "/ctan" Generated folder where files are organised for CTAN.
tdsdir distribdir .. "/tds" Generated folder where files are organised for a TDS.
tdsroot "latex" Root directory of the TDS structure for the bundle/module

to be installed into.

bibfiles {"*.bst"} BibTEX database files.
binaryfiles {"*.pdf", "*.zip"} Files to be added in binary mode to zip files.
bstfiles {"*.bst"} BibTEX style files.
checkfiles { } Extra files unpacked purely for tests
checksuppfiles Files needed for performing regression tests.
cmdchkfiles { } Files need to perform command checking (l3doc-based

documentation only).
cleanfiles {"*.log", "*.pdf", "*.zip"} Files to delete when cleaning.
demofiles { } Files which show how to use a module.
docfiles { } Files which are part of the documentation but should not

be typeset.
excludefiles {"*~"} Files to ignore entirely (default for Emacs backup files).
installfiles {"*.sty"} Files to install to the TEX tree and similar tasks.
makeindexfiles {"*.ist"} MakeIndex files to be included in a TDS-style zip

9

Variable Default Description

sourcefiles {"*.dtx", "*.ins"} Files to copy for unpacking.
textfiles {"*.md", "*.txt"} Plain text files to send to CTAN as-is.
typesetfiles {"*.dtx"} Files to typeset for documentation.
typesetsuppfiles { } Files needed to support typesetting when “sandboxed”.
unpackfiles {"*.ins"} Files to run to perform unpacking.
unpacksuppfiles { } Files needed to support unpacking when “sandboxed”.
versionfiles {"*.dtx"} Files for automatic version editing.

bakext ".bak" Extension of backup files.
lvtext ".lvt" Extension of test files.
tlgext ".tlg" Extension of test file output.
lvtext ".lve" Extension of auto-generating test file output.
logext ".log" Extension of checking output, before processing it into a

.tlg.

checkdeps { } List of build unpack dependencies for checking.
typesetdeps { } . . . for typesetting docs.
unpackdeps { } . . . for unpacking.

checkengines {"pdftex", "xetex", "luatex"} Engines to check with check by default.
stdengine "pdtex" Engine to generate .tlg file from.
checkformat "latex" Format to use for tests.

typesetexe "pdflatex" Executable for compiling doc(s).
unpackexe "tex" Executable for running unpack.
zipexe "zip" Executable for creating archive with ctan.

checkopts "-interaction=batchmode" Options based to engine when running checks.
cmdchkopts "-interaction=batchmode" Options based to engine when running command checks.
typesetopts "-interaction=nonstopmode" Options based to engine when typesetting.
unpackopts "" Options based to engine when unpacking.
zipopts "-v -r -X" Options based to zip program.

checksearch true Look in tds dirs for checking?
typesetsearch true Look in tds dirs for typesetting docs?
unpacksearch true Look in tds dirs for unpacking?

glossarystyle "gglo.ist" MakeIndex style file for glossary/changes creation
indexstyle "gind.ist" MakeIndex style for index creation

biberexe "biber" Biber executable
biberopts "" Biber options
bibtexexe "bibtex8" BibTEX executable
bibtexopts "-W" BibTEX options
makeindexexe "makeindex" MakeIndex executable
makeindexopts "" MakeIndex options

asciiengines {"pdftex"} Engines which should log as sure ASCII

10

Variable Default Description

checkruns 1 How many times to run a check file before comparing the
log.

packtdszip false Build a TDS-style zip file for CTAN?
scriptname "build.lua" Name of script used in dependencies.
typesetcmds "" Instructions to be passed to TEX when doing typesetting.
versionform "" Nature of version strings for auto-replacement.

1.5 Dependencies
If you have multiple packages that are developed separately but still interact in some
way, it’s often desirable to integrate them when performing regression tests. For LATEX3,
for example, when we make changes to l3kernel it’s important to check that the tests for
l3packages still run correctly, so it’s necessary to include the l3kernel files in the build
process for l3packages.

In other words, l3packages is dependent on l3kernel, and this is specified in l3build
by setting appropriately the variables checkdeps, typesetdeps, and unpackdeps. The
relevant parts of the LATEX3 repository is structured as the following.

l3/
l3kernel/

build.lua
expl3.dtx
expl3.ins
...
testfiles/

l3packages/
build.lua
xparse/

build.lua
testfiles/
xparse.dtx
xparse.ins

support/

For LATEX3 build files, maindir is defined as top level folder l3, so all support files
are located here, and the build directories will be created there. To set l3kernel as a
dependency of l3package, within l3packages/xparse/build.lua the equivalent of the
following is set:

maindir = "../.."
checkdeps = {maindir .. "/l3kernel"}

This ensures that the l3kernel code is included in all processes involved in unpacking
and checking and so on. The name of the script file in the dependency is set with the
scriptname variable; by default these are "build.lua".

11

1.6 Output normalisation
To allow test files to be used between different systems (e.g. when multiple developers
are involved in a project), the log files are normalised before comparison during checking.
This removes some system-dependent data but also some variations due to different
engines. This normalisation consists of two parts: removing (“ignoring”) some lines and
modifying others to give consistent test. Currently, the following types of line are ignored:

• Lines before the \START, after the \END and within \OMIT/\TIMO blocks

• Entirely blank lines, including those consisting only of spaces.

• Lines containing file dates in format 〈yyyy〉/〈mm〉/〈dd〉.

• Lines starting \openin or \openout.

Modifications made in lines are:

• Removal of the name of the test file itself.

• Removal of the pdftex.map load information given during first page shipout.

• Removal spaces at the start of lines.

• Removal of ./ at start of file names.

• Standardisation of the list of units known to TEX (pdfTEX and LuaTEX add a small
number of additional units which are not known to TEX90 or X ETEX).

• Standardisation of \csname\endcsname␣ to \csname\endcsname (the former is for-
mally correct, but the latter was produced for many years due to a TEX bug).

• Conversion of on line 〈number〉 to on line ... to allow flexibility in changes to
test files.

•

LuaTEX makes several additional changes to the log file. As normalising these may
not be desirable in all cases, they are handled separately. When creating LuaTEX-specific
test files (either with LuaTEX as the standard engine or saving a LuaTEX-specific .tlg file)
no further normalisation is undertaken. On the other hand, for cross-engine comparison
the following normalisation is applied:

• Removal of additional (unused) \discretionary points.

• Removal of U+... notation for missing characters.

• Removal of display for display math boxes (included by TEX90/pdfTEX/X ETEX).

• Removal of Omega-like direction TLT information.

• Removal of additional whatsit containing local paragraph information (\localinterlinepenalty,
etc.).

12

• Rounding of glue set to four decimal places (glue set may be slightly different in
LuaTEX compared to other engines).

• Conversion of low chars (1 to 31) to ^^ notation.

When making comparisons between 8-bit and Unicode engines it is useful to format
the top half of the 8-bit range such that it appears in the log as ^^〈char〉 (the exact
nature of the 8-bit output is otherwise dependent on the active code page). This may be
controlled using the asciiengines option. Any engines named here will use a .tcx file
to produce only ASCII chars in the log output, whilst for other engines normalisation is
carried out from UTF-8 to ASCII. If the option is set to an empty table the latter process
is skipped: suitable for cases where only Unicode engines are in use.

2 Writing test files
Test files are written in a TEX dialect using the support file regression-test.tex,
which should be \input at the very beginning of each test. Additional customisations
to this driver can be included in a local regression-test.cfg file, which will be loaded
automatically if found.

The macros loaded by regression-test.tex set up the test system and provide a
number of commands to aid the production of a structured test suite. The basis of the test
suite is to output material into the .log file, from which a normalised test output (.tlg)
file is produced by the build command save. A number of commands are provided for
this; they are all written in uppercase to help avoid possible conflicts with other package
commands.

2.1 Metadata and structural commands
Any commands that write content to the .log file that should be ignored can be sur-
rounded by \OMIT . . . \TIMO. At the appropriate location in the document where the
.log comparisons should start (say, after \begin{document}), the test suite must con-
tain the \START macro. The test should then include \AUTHOR{〈authors details〉} in case
a test file fails in the future and needs to be re-analysed.

Some additional diagnostic information can then be included as metadata for the con-
ditions of the test. The desired format can be indicated with \FORMAT{〈format name〉},
and any packages or classes loaded can be indicated with

\CLASS[〈options〉]{〈class name, version〉}
\PACKAGE[〈options〉]{〈package name, version〉}

These do not provide information that is useful for automated checking; after all, packages
change their version numbers frequently. Rather, including this information in a test
indicates the conditions under which the test was definitely known to pass at a certain
time in the past.

The \END command signals the end of the test (but read on). Some additional
diagnostic information is printed at this time to debug if the test did not complete
‘properly’ in terms of mismatched brace groups or \if. . . \fi groups.

13

In a LATEX document, \end{document} will implicitly call \END at the very end of
the compilation process. If \END is used directly (replacing \end{document} in the test),
the compilation will halt almost immediately, and various tasks that \end{document}
usually performs will not occur (such as potentially writing to the various .toc files, and
so on). This can be an advantage if there is additional material printed to the log file in
this stage that you wish to ignore, but it is a disadvantage if the test relies on various
auxiliary data for a subsequent typesetting run. (See the checkruns variable for how
these tests would be test up.)

2.2 Commands to help write tests
A simple command \CHECKCOMMAND\〈macro〉 is provided to check whether a particular
\〈macro〉 is defined, undefined, or equivalent to \relax. This is useful to flag either
that internal macros are remaining local to their definitions, or that defined commands
definitely are defined, or even as a reminder that commands you intend to define in a
future package need to be tested once they appear.

\TYPE is used to write material to the .log file, like LATEX’s \typeout, but it allows
‘long’ input. The following commands are defined to use \TYPE to output strings to the
.log file.

• \SEPARATOR inserts a long line of = symbols to break up the log output.

• \NEWLINE inserts a linebreak into the log file.

• \TRUE, \FALSE, \YES, \NO output those strings to the log file.

• \ERROR is not defined but is commonly used to indicate a code path that should
never be reached.

• The \TEST{〈title〉}{〈contents〉} command surrounds its 〈contents〉 with some
\SEPARATORs and a 〈title〉.

• \TESTEXP surrounds its contents with \TYPE and formatting to match \TEST; this
can be used as a shorthand to test expandable commands.

• TODO: would a \TESTFEXP command (based on \romannumeral expansion) be
useful as well?

An example of some of these commands is shown following.

\TEST{bool_set,~lazy~evaluation}
{
\bool_set:Nn \l_tmpa_bool
{
\int_compare_p:nNn 1=1
&& \bool_if_p:n
{
\int_compare_p:nNn 2=3 ||
\int_compare_p:nNn 4=4 ||

14

\int_compare_p:nNn 1=\ERROR % is skipped
}
&& \int_compare_p:nNn 2=2
}

\bool_if:NTF \l_tmpa_bool \TRUE \FALSE
}

This test will produce the following in the output.

==
TEST 8: bool_set, lazy evaluation
==
TRUE
==

(Only if it’s the eighth test in the file of course, and assuming expl3 coding conventions
are active.)

2.3 Showing box content
The commands introduced above are only useful for checking algorithmic or logical cor-
rectness. Many packages should be tested based on their typeset output instead; TEX
provides a mechanism for this by printing the contents of a box to the log file. The
regression-test.tex driver file sets up the relevant TEX parameters to produce as
much output as possible when showing box output.

A plain TEX example of showing box content follows.

\input regression-test.tex\relax
\START
\setbox0=\hbox{\rm hello \it world $a=b+c$}
\showbox0
\END

This produces the output shown in Figure 5 (left side). It is clear that if the definitions
used to typeset the material in the box changes, the log output will differ and the test
will no longer pass.

The equivalent test in LATEX2ε using expl3 is similar.

\input{regression-test.tex}
\documentclass{article}
\usepackage{expl3}
\START
\ExplSyntaxOn
\box_new:N \l_tmp_box
\hbox_set:Nn \l_tmp_box {hello~ \emph{world}~ $a=b+c$}
\box_show:N \l_tmp_box
\ExplSyntaxOff
\END

15

> \box0=
\hbox(6.94444+0.83333)x90.56589
.\tenrm h
.\tenrm e
.\tenrm l
.\tenrm l
.\tenrm o
.\glue 3.33333 plus 1.66666 minus 1.11111
.\tenit w
.\tenit o
.\tenit r
.\tenit l
.\tenit d

.\glue 3.57774 plus 1.53333 minus 1.0222

.\mathon

.\teni a

.\glue(\thickmuskip) 2.77771 plus 2.77771

.\tenrm =

.\glue(\thickmuskip) 2.77771 plus 2.77771

.\teni b

.\glue(\medmuskip) 2.22217 plus 1.11108 minus 2.22217

.\tenrm +

.\glue(\medmuskip) 2.22217 plus 1.11108 minus 2.22217

.\teni c

.\mathoff

! OK.
l.9 \showbox0

> \box71=
\hbox(6.94444+0.83333)x91.35481
.\OT1/cmr/m/n/10 h
.\OT1/cmr/m/n/10 e
.\OT1/cmr/m/n/10 l
.\OT1/cmr/m/n/10 l
.\OT1/cmr/m/n/10 o
.\glue 3.33333 plus 1.66666 minus 1.11111
.\OT1/cmr/m/it/10 w
.\OT1/cmr/m/it/10 o
.\OT1/cmr/m/it/10 r
.\OT1/cmr/m/it/10 l
.\OT1/cmr/m/it/10 d
.\kern 1.03334
.\glue 3.33333 plus 1.66666 minus 1.11111
.\mathon
.\OML/cmm/m/it/10 a
.\glue(\thickmuskip) 2.77771 plus 2.77771
.\OT1/cmr/m/n/10 =
.\glue(\thickmuskip) 2.77771 plus 2.77771
.\OML/cmm/m/it/10 b
.\glue(\medmuskip) 2.22217 plus 1.11108 minus 2.22217
.\OT1/cmr/m/n/10 +
.\glue(\medmuskip) 2.22217 plus 1.11108 minus 2.22217
.\OML/cmm/m/it/10 c
.\mathoff

! OK.
<argument> \l_tmp_box

l.12 \box_show:N \l_tmp_box

Figure 5: Output from displaying the contents of a simple box to the log file, using plain
TEX (left) and expl3 (right). Some blank lines have been added to the plain TEX version
to help with the comparison.

The output from this test is shown in Figure 5 (right side). There is marginal difference
(mostly related to font selection and different logging settings in LATEX) between the plain
and expl3 versions.

When examples are not self-contained enough to be typeset into boxes, it is possible
to ask TEX to output the entire contents of a page. Insert \showoutput for LATEX or
set \tracingoutput positive for plain TEX; ensure that the test ends with \newpage or
equivalent because TEX waits until the entire page is finished before outputting it.

TODO: should we add something like \TRACEPAGES to be format-agnostic here?
Should this perhaps even be active by default?

16

1 \input regression -test.tex\relax
2 \START
3 \TEST{counter -math}{
4 % <*test >
5 \OMIT
6 \newcounter{numbers}
7 \setcounter{numbers }{2}
8 \addtocounter{numbers }{2}
9 \stepcounter{numbers}

10 \TIMO
11 \typeout {\ arabic{numbers }}
12 % </test >
13 %<expect > \ typeout {5}
14 }
15 \END

Figure 6: Test and expectation can be specified side-by-side in a single .dtx file.

1 \generate {\file{\ jobname.lvt}{\ from{\ jobname.dtx}{test}}
2 \file{\ jobname.lve}{\ from{\ jobname.dtx}{ expect }}}

Figure 7: Test and expectation are generated from a .dtx file of the same name.

3 Alternative test formats
3.1 Generating test files with DocStrip
It is possible to pack tests inside source files. Tests generated during the unpacking
process will be available to the check and save commands as if they were stored in the
testfiledir. Any explicit test files inside testfiledir take priority over generated
ones with the same names.

3.2 Specifying expectations
Regression tests check whether changes introduced in the code modify the test output.
Especially while developing a complex package there is not yet a baseline to save a test
goal with. It might then be easier to formulate the expected effects and outputs of tests
directly. To achieve this, you may create an .lve instead of a .tlg file.1 It is processed
exactly like the .lvt to generate the expected outcome. The test fails when both differ.

Combining both features enables contrasting the test with its expected outcome in
a compact format. Listing 6 exemplary tests TEXs counters. Listing 7 shows the relevant
part of an .ins file to generate it.

1Mnemonic: lvt: test, lve: expectation

17

1 function setversion_update_line(line , date , version)
2 local i
3 -- No real regex so do it one type at a time
4 for _,i in pairs({"Class", "File", "Package"}) do
5 if string.match(
6 line ,
7 "^\\ Provides" .. i .. "{[a-zA-Z0 -9% -]+}%[[^%]]*%]$"
8) then
9 line = string.gsub(line , "%[%d%d%d%d/%d%d/%d%d", "["

10 .. string.gsub(date , "%-", "/")
11 line = string.gsub(
12 line , "(%[%d%d%d%d/%d%d/%d%d)␣[^␣]*", "%1␣" .. version
13)
14 break
15 end
16 end
17 return line
18 end

Figure 8: Example setversion_update_line function.

4 Release-focussed features
4.1 Automatic version modification
As detailed above, the setversion target will automatically edit source files to modify
date and version. This behaviour is governed by variable "". As standard, no automatic
replacement takes place, but setting "" will allow this to happen, with options

• ProvidesPackage Searches for lines using the LATEX2ε \ProvidesPackage, \ProvidesClass
and \ProvidesFile identifiers (as a whole line).

• ProvidesExplPackage Searches for lines using the expl3 \ProvidesExplPackage,
\ProvidesExplClass and \ProvidesExplFile identifiers (at the start of a line).

• filename Searches for lines using \def\filename, \def\filedate, . . . , formula-
tion.

• ExplFileName Searches for lines using \def\ExplFileName, \def\ExplFileDate,
. . . , formulation.

For more complex cases, the programmer may directly define the Lua function
setversion_update_line(), which takes as arguments the line of the source, the sup-
plied date and the supplied version. It should return a (possibly unmodified) line and
may use one, both or neither of the date and version to update the line. Typically,
setversion_update_line should match to the exact pattern used by the programmer
in the source files. For example, for code using macros for the date and version a suitable
function might read as shown in Figure 8.

18

4.2 Typesetting documentation
As part of the overall build process, l3build will create PDF documentation as described
earlier. The standard build process for PDFs will attempt to run Biber, BibTEX and
MakeIndex as appropriate (the exact binaries used are defined by "biber", "bibtex8"
and "makeindex"). However, there is no attempt to create an entire PDF creation system
in the style of latexmk or similar.

For package authors who have more complex requirements than those covered by the
standard set up, the Lua script offers the possibility for customisation. The Lua function
typeset may be defined before reading l3build.lua and should take one argument,
the name of the file to be typeset. Within this function, the auxiliary Lua functions
biber, bibtex, makeindex and tex can be used, along with custom code, to define a
PDF typesetting pathway. The functions biber and bibtex take a single argument: the
name of the file to work with minus any extension. The tex takes as an arugment the
full name of the file. The most complex function makeindex requires the name, input
extension, putput extension, log extension and style name. For example, Figure 9 shows
a simple script which might apply to a case where multiple BibTEX runs are needed
(perhaps where citations can appear within other references).

1 #!/ usr/bin/env texlua
2

3 -- Build script with custom PDF route
4

5 module = "mymodule"
6

7 function typeset (file)
8 local name = string.match (file , "^(.*)%.") or name
9 local errorlevel = tex (file)

10 if errorlevel == 0 then
11 -- Return a non -zero errorlevel if anything goes wrong
12 errorlevel = (
13 bibtex (name) +
14 tex (file) +
15 bibtex (name) +
16 tex (file) +
17 tex (file)
18)
19 end
20 return errorlevel
21 end
22

23 kpse.set_program_name("kpsewhich")
24 dofile(kpse.lookup("l3build.lua"))

Figure 9: A customised PDF creation script.

19

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\〈macro〉 13, 13

A
\AUTHOR . 13

C
\CHECKCOMMAND 13
\CLASS . 13

E
\END . 11
\ERROR . 14

F
\FALSE . 14
\fi . 13
\FORMAT . 13

I
\if . 13

N
\NEWLINE . 14
\newpage . 15
\NO . 14

O
\OMIT . 11
\openin . 12
\openout . 12

P
\PACKAGE . 13
\ProvidesClass 18
\ProvidesExplClass 18
\ProvidesExplFile 18
\ProvidesExplPackage 18
\ProvidesFile 18
\ProvidesPackage 18

R
\relax . 13
\romannumeral 14

S
\SEPARATOR 14, 14
\showoutput . 15
\START . 11

T
\TEST . 14, 14
\TESTEXP . 14
\TESTFEXP . 14
\TIMO . 11
\TRACEPAGES . 15
\tracingoutput 15
\TRUE . 14
\TYPE . 14, 14, 14
\typeout . 14

Y
\YES . 14

20

	Contents
	1 The l3build system
	1.1 Introduction
	1.2 Main build commands
	1.3 Example build scripts
	1.4 Variables
	1.5 Dependencies
	1.6 Output normalisation

	2 Writing test files
	2.1 Metadata and structural commands
	2.2 Commands to help write tests
	2.3 Showing box content

	3 Alternative test formats
	3.1 Generating test files with DocStrip
	3.2 Specifying expectations

	4 Release-focussed features
	4.1 Automatic version modification
	4.2 Typesetting documentation

