KOMA-Script

a versatile KTEX 2¢ bundle

Note: This document is a translation of the German KOMA-Script manual. Several
authors has been involved to this translation. Some of them are native English speakers,
others like me are not. Improvement of the translation by native speakers or experts would

be welcome always!

The Guide

KOMA -Script

Markus Kohm Jens-Uwe-Morawski

2012-05-15

Authors of the KOMA-Script Bundle: Frank Neukam, Markus Kohm, Axel Kielhorn

Legal Notes:

There is no warranty for any part of the documented Software. The authors have taken
care in the preparation of this book, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or
programs contained here.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the authors were
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

English translation of this manual by: Kevin Pfeiffer, Gernot Hassenpflug, Krickette
Murabayashi, Markus Kohm, Jens-Uwe Morawski, Harald Bongartz, Georg Grandke,
Raimund Kohl, Stephan Hennig, Karl-Heinz Zimmer, and Christoph Bier.

Free screen version without any optimization of paragraph and page breaks

This guide is part of KOMA-Script, which is free under the terms and conditions of KTEX
Project Public License Version 1.3c. A version of this license, which is valid to KOMA-
Script, is part of KOMA-Script (see 1ppl.txt). Distribution of this manual —even if it is
printed —is allowed provided that all parts of KOMA-Script are distributed. Distribution
without the other parts of KOMA-Script needs a explicit, additional authorization by the
authors.

To All Friends of Typography!

Preface to new English KOMA-Script Guide

Preface to new English KOMA -Script Guide

This is not a translation of the preface of the German KOMA-Script guide, because this
translation of the German KOMA-Script guide is still a work in progress. Currently the
chapters of part I and chapter 10, chapter 11, chapter 14, chapter 15, chapter 16, chapter 17
are up-to-date. There may still be dead-links and broken references at these chapters, because
the referenced information in chapters of other parts could be missing.

The descriptions in chapter 12, chapter 13 aren’t translations from the German manual
but are primary descriptions from the implementation of these packages. They should be
up-to-date — sometimes even more than the chapters from the German manual.

So this English guide is complete but nevertheless not as good as the German one, because
my English is not as good as my German. Currently there’s only one editor for the English
guide, Krickette Murabayashi, who improves my translation for free. Many thanks to her for
her very good job! Nevertheless, additional editors or translators would be welcome!

Contents

Preface to new English KOMA-Script Guide

1. Introduction
1.1. Preface. e
1.2. Structure of the Guide.
1.3. History of KOMA-Script
1.4. Special Thanks i
1.5, Legal Notes
1.6. Imstallation e
1.7. Bug Reports and Other Requests
1.8. Additional Information

Part I:

KOMA -Script for Authors

2.

Construction of the Page Layout with typearea

2.1. Fundamentals of Page Layout
2.2. Page Layout Construction by Dividing
2.3. Page Layout Construction by Drawing a Circle
2.4. Early or late Selection of Options
2.5. Compatibility with Earlier Versions of KOMA-Script

2.6. Options and Macros to Influence the Page Layout
2.7. Paper Format Selection
2.8, DS o it
The Main Classes: scrbook, scrreprt, and scrartcl

3.1. Early or late Selection of Options
3.2. Compatibility with Earlier Versions of KOMA-Script

3.3. Draft Mode
3.4. Page Layout........
3.5. Selection of the Document Font Size.....................
3.6. Text Markup
3.7. Document Titles
3.8, Abstract.
3.9. Table of Contents

Contents

3.10.
3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.
3.22.
3.23.
3.24.

The
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.
4.19.
4.20.
4.21.
4.22.

Contents

Paragraph Markup 65
Detection of Odd and Even Pages. 67
Head and Foot Using Predefined Page Styles 68
Interleaf Pages 72
Footnotes 75
Demarcation 79
Structuring of Documents 80
Dicta .. 97
LSt . o 99
Math .o 107
Floating Environments of Tables and Figures 108
Margin Notes 124
AppPendix . ..o 125
Bibliography 125
Index ..o 128
New Letter Class scrittr2 130
Variables e 130
Pseudo-Lengths 135
Farly or late Selection of Options 135
Compeatibility with Earlier Versions of KOMA-Script. 136
Draft Mode 136
Page Layout. 136
General Structure of Letter Documents 136
Selection of Document or Letter Font Size 145
Text Markupot 147
Note Paper e 150
Paragraph Markup 178
Detection of Odd and Even Pages. 179
Head and Foot Using Predefined Page Style 179
Interleaf Pages 182
Footnoteso o 182
) 1 183
Math .o 183
Floating Environments of Tables and Figures 183
Margin Notes . . . oo 183
ClOSIIIg .« v e 183
Letter Class Option Files e 186
Address Files and Circular Letters 191

Contents

Adapting Page Headers and Footers with scrpage2

5.1. Basic Functionality
5.1.1. Predefined Page Styles
5.1.2. Manual and Running Headings
5.1.3. Formatting of Header and Footer
5.1.4. Package Options e

5.2. Defining Own Page Styles i
5.2.1. The Interface for Beginners
5.2.2. The Interface for Experts i
5.2.3. Managing Page Styles

Weekday and Time Using scrdate and scrtime

6.1. The Day of the Week Using scrdate

6.2. Getting the Time with Package

Access to Address Files with scraddr

7.0, OVeIVIEW . vttt e e e e

T2, USAgE o ottt

7.3. Package Warning Options

Creating Address Files from a Address Database

Making Basic Feature of the KOMA -Script Classes Available with Package
scrextend while Using Other Classes

9.1. Early or late Selection of Options
9.2. Compatibility with Earlier Versions of KOMA-Script.
9.3. Optional, Extended Features...........
9.4. Draft Mode e
9.5. Selection of the Document Font Size
9.6. Text Markup
9.7. Document Titles
9.8. Detection of Odd and Even Pages. i ..
9.9. Head and Foot Using Predefined Page Styles
9.10. Interleaf Pageso
9.11. FoOtnoteso
0.12. Dicta .o oo
013, LSt e vt e

9.14. Margin Notes oot

216
216
219

221
221
222
223

224

11

Part II:
KOMA-Script for Advanced Users and Experts

10.

11.

12,

13.

14.

15.

Basic Functions at Package scrbase

10.1. Loading the Package
10.2. Keys as Attributes of Families and their Members
10.3. Conditional Execution
10.4. Definition of Language-Dependent Terms
10.5. Identification of KOMA-Script
10.6. Extension of the WXIEX Kernel
10.7. Extension of the Mathematical Features of e-TEX

Control Package Dependencies with scrlfile

11.1. About Package Dependencies
11.2. Actions Prior to and After Loading.
11.3. Replacing Files at Input
11.4. Prevent File Loading

Spare and Replace Files Using scrwfile

12.1. General Modifications of the IIEX Kernel
12.2. The Single File Feature L.
12.3. The Clone File Write Feature
12.4. State of Development Note

Management of Tables and Lists of Contents Using tocbasic

13.1. Basic Commands
13.2. Creating a Table of Contents or List of Something
13.3. Internal Commands for Class and Package Authors
13.4. A Complete Example
13.5. Everything with One Command Only......................

Hacks for Third-Party Packages by Package scrhack

14.1. State of Development Note
14.2. Early or late Selection of Options
14.3. Usage of tocbasic
14.4. Special Case hyperref

Additional Information about package typearea

15.1. Expert Commands.
15.2. Local Settings with File typearea.cfg.....................
15.3. More or Less Obsolete Options and Commands

Contents

248

.......... 248
.......... 249
.......... 253
.......... 256

258

.......... 258
.......... 259
.......... 259
.......... 260

261

.......... 261
.......... 264
.......... 270
.......... 272
.......... 274

278

.......... 278
.......... 278
.......... 278
.......... 279

12

16.

Additional Information about the Main Classes scrbook, scrreprt, and
scrartcl as well as the Package scrextend

16.1. Additional Information to User Commands

16.2. Cooperation and Coexistence of KOMA-Script and Other Packages

16.3. Expert CommandsS.t

16.4. More or Less Obsolete Options and Commands
17. Additional Information about the Letter Class scrittr2
17.1. Pseudo-Lengths for Experienced Users
17.1.1. Folding Marks
17.1.2. Letterhead
17.1.3. Addressee. . ..ot
17.1.4. Sender’s Extensionsc. ...
17.1.5. Business Line o
17.1.6. Subject ...
1707 CloSINg .« v v e e e e e e e
17.1.8. Letter Footer,
17.2. Variables for Experienced Users
17.3. 1lco-Files for Experienced Users,
17.3.1. Survey of Paper Size
17.3.2. Visualization of Positions
17.4. Language SUppoOrtt
17.5. From Obsolete scrlettr to Current scrlttr2
A. Japanese Letter Support for scrittr2
A.1. Japanese standard paper and envelope sizes
A.1.1. Japanese paper SIZES v it
A.1.2. Japanese envelope Sizes
A.2. Provided lcofiles
A.3. Examples of Japanese letter usage
A3.1. Example 1. ..o
A3.2. Example 2:.
Change Log
Bibliography
Index
General Indexo
Index of Commands, Environments, and Variables

Index of Lengths and Counters.

Contents

13

Contents
Index of Elements with Capability of Font Adjustment 348
Index of Files, Classes, and Packages 349

Index of Class and Package Options

14

List of Figures

List of Figures

2.1.

3.1.
3.3.
3.2.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.

4.12.

Double-sided layout with the box construction of the classical division factor
of 9, after subtraction of a binding correction.

Parameters that control the footnote layout
Example: Usage of \captionaboveof inside another floating environment
Example: A rectangle
Example: Figure beside description
Example: Description centered beside figure
Example: Figure title top beside
Example: Default figure caption
Example: Figure caption with slightly hanging indention
Example: Figure caption with hanging indention and line break
Example: Figure caption with hanging indention at the second line

General structure of a letter document with several individual letters........
General structure of a single letter within a letter document
Example: letter with addressee and opening
Example: letter with addressee, opening, text, and closing
Example: letter with addressee, opening, text, closing, and postscript
Example: letter with addressee, opening, text, closing, postscript, and
distribution list
Example: letter with addressee, opening, text, closing, postscript,

distribution list, and enclosure
Example: letter with addressee, opening, text, closing, postscript,

distribution list, enclosure, and insane large font size.....................
schematic display of the note paper with the most important commands and
variables for the drafted elements
Example: letter with addressee, opening, text, closing, postscript,

distribution list, enclosure, and hole puncher mark
Example: letter with sender, addressee, opening, text, closing, postscript,
distribution list, and enclosure
Example: letter with sender, separation rule, addressee, opening, text,

closing, signature, postscript, distribution list, enclosure, and puncher hole
ALK . oo

15

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

5.1.
5.2.

17.1.

List of Figures

Example: letter with extended sender, separation rule, addressee, opening,

text, closing, signature, postscript, distribution list, enclosure, and puncher

hole mark; standard vs. extended letterhead 162
Example: letter with extended sender, separation rule, addressee, opening,

text, closing, signature, postscript, distribution list, enclosure, and puncher

hole mark; left vs. right aligned letterhead 163
Example: letter with extended sender, logo, separation rule, addressee,

opening, text, closing, signature, postscript, distribution list, enclosure, and
puncher hole mark; left vs. right aligned vs. centered sender............... 165
Example: letter with extended sender, logo, addressee, additional sender
information, opening, text, closing, signature, postscript, distribution list,
enclosure, and puncher hole mark 170
Example: letter with extended sender, logo, addressee, additional sender
information, place, date, opening, text, closing, signature, postscript,

distribution list, enclosure, and puncher hole mark 174
Example: letter with extended sender, logo, addressee, additional sender
information, place, date, subject, opening, text, closing, signature, postscript,
distribution list, enclosure, and puncher hole mark 177
Example: letter with extended sender, logo, addressee, additional sender
information, place, date, subject, opening, text, closing, modified signature,
postscript, distribution list, enclosure, and puncher hole mark 185
Example: letter with extended sender, logo, addressee, additional sender
information, place, date, subject, opening, text, closing, modified signature,
postscript, distribution list, enclosure, and puncher hole mark using a 1co-file . 188

Commands for modification of scrpage2 page styles elements 198
Example of a user defined, line dominated page style..................... 211

Schematic of the pseudo-lengths for a letter 296

16

List of Tables

List of Tables

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

3.1.
3.2.

3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.
3.22.

4.1.
4.2.

4.3.

Type-area dimensions dependent on DIV for Ad 31
Predefined settings of DIV for Ad 32
Symbolic values for the DIV option and the DIV argument to \typearea 34
Symoblic BCOR arguments for \typearea.......... 36
Standard values for simple switches in KOMA-Script 37
Output driver for option pagesize=output driver 44
Class cOTTesSpONdenCe. . . .o v vttt e e 47
Elements whose type style can be changed with the KOMA-Script command

\setkomafont or \addtokomafontttt 51
Font defaults for the elements of the title. 58
Main title 59
Possible values of option toc 62
Font style defaults of the elements of the table of contents 64
Possible values of option parskip......... ... 66
Default values for the elements of a page style 69
Macros to set up page style of special pages. 71
Available numbering styles of page numbers. 72
Available values for option footnotes 75
Available values for option open 81
Available values for option headings 82
Available values of option numbers 84
Default font sizes for different levels of document structuring 88
Default settings for the elements of a dictum 97
Available values for option captions 109
Font defaults for the elements of figure or table captions 113
Example: Measure of the rectangle in figure 3.2. 114
Available values for option 1istof 123
Available values of option bibliography 127
Available values of option index 128
Alphabetical list of all supported variables in scrlttr2. 130
Alphabetical list of elements whose font can be changed in scrlttr2 using the

commands \setkomafont and \addtokomafont......................... 148

Combinable values for the configuration of folding marks with option
Foldmarks . . oo e 152

17

4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.

9.1.
10.1.
13.1.

16.1.

16.2.

16.3.

17.1.
17.2.
17.3.

Al
A2.
A3.
AA4.
A5,
A.6.
AT

List of Tables

Available values for option fromalign with scrlttr2 155
Possible values of option fromrule with scrlttr2. 155
Predefined descriptions of the variables of the letterhead 160
Predefined description and content of the separators at the letterhead 161
available values for option addrfield using scrlttr2 166
Predefined font style for the elements of the address field. 167
available values for option priority inscrittr2 168
Possible values of option locfield with scrlttr2. o ... 169
Possible value of option refline with scrlttr2 171
predefined descriptions of variables of the reference line................... 172
font style default of elements of the reference line 173
predefined descriptions of subject-related variables 174
available values of option subject with scrlttr2 175
available values of option pagenumber with scrlttr2 181
predefined lco-files 189
optional available extended features of scrextend 226
Overview of usual language dependent terms 244
Options for command \DeclareNewTOCottuuiiiunmnnnnenn.. 275

defaults of the commands for the vertical distances of chapter headings with

scrbook and scrreprt. 286
defaults of the commands for the vertical distances of part headings with

scrbook and scrreprt. 286
defaults of the commands for the vertical distances of part headings with

SCrartCl . o o 286
Pseudo-lengths provided by class scrlttr2 291
Language-dependent forms of the date 313
Default settings for language-dependent terms 314
ISO and JIS standard paper sizes 317
Japanese B-series variants. 317
Main Japanese contemporary stationary 318
Japanese ISO envelope Sizeso 319
Japanese envelope sizes 3 320
Supported Japanese envelope types and the window sizes and locations 322

1co files provided by scrlttr2 for Japanese window envelopes 323

18

Chapter 1.

Introduction

This chapter includes important information about the structure of the manual and the history
of KOMA-Script, which begins years before the first version. You will also find information
for those who have not installed KOMA-Script or encounter errors.

1.1. Preface

KOMA-Script is very complex. This is evidenced by the fact that it consists of not only a single
class or a single package, but a bundle of many classes and packages. Although the classes are
designed as a counterpart to the standard classes, that does not necessarily mean that they
only have the commands, environments, and setting of the standard classes or imitate their
appearance. The capabilities of KOMA-Script surpass the capabilities of the standard classes
considerably. Some of them are to be regarded as a supplement to the basic skills of the INTEX
kernel.

The foregoing means that the documentation of KOMA-Script has to be extensive. In
addition, KOMA-Script usually is not taught. That means there is no teacher who knows
his students and can therefore choose the teaching and learning materials and adapt them
accordingly. It would be easy to write the documentation for any specific audience. The
difficulty is, however, that the guide must service all potential audiences. We, the authors,
have tried to create a guide that is suited for the computer scientist as well as the secretary
or the fishmonger. We have tried, although this is actually an impossible task. The result
consists of several compromises and we hope that you will keep this in mind when using it.
Your suggestions for improvement are, of course, always welcome.

Despite the volume of the manual, it is recommended to consult the documentation. Atten-
tion is drawn to the multi-part index at the end of this document. In addition to this guide,
documentation includes all the text documents that are part of the bundle. See manifest.tex
for a list of all of them.

1.2. Structure of the Guide

This manual consists of several parts. There’s a part for average users, another part for
advanced users and experts, and an appendix with additional examples and information for
those who always want to know more.

Part I is recommended for all KOMA-Script users. This means that you may find here
even some information for newcomers to INTEX. In particular, this part is enhanced by many
examples to the average user that are intended to illustrate the explanations. Do not be afraid
to try these examples yourself and in modifying them to find out how KOMA-Script works.

19

scrartcl

Chapter 1.

Nevertheless the KOMA-Script user guide is not intended to be a I¥TEX primer. Those new
to IWTEX should look at The Not So Short Introduction to BTEX 2¢ | | or BTEX 2¢
for Authors | | or a WTEX reference book. You will also find useful information in
the many BTEX FAQs, including the TgX Frequently Asked Questions on the Web |].
Although the length of the TEX Frequently Asked Questions on the Web is considerably long,
it is nevertheless quite useful not only to those having problems using I¥TEX or KOMA-Script.

Part II is recommended for advanced KOMA-Script users. These are all of you who already
know KTEX, maybe worked with KOMA-Script for a while, and want to learn more about
KOMA-Script internals, interaction of KOMA-Script with other packages, and how to use
KOMA-Script as an answer to special demands. For this purpose we will have a closer look
at some aspects from part I again. In addition some instructions that have been implemented
for advanced users and experts, especially, will be documented. This is complemented by the
documentation of packages that are normally hidden to the user insofar as they do their work
under the surface of the classes and user packages. These packages are specifically designed
to be used by other authors of classes and packages.

The appendix, which may be found only in the German book version, contains information
which is beyond what is covered in part I and part II. Advanced users may find background in-
formation on issues of typography to give them a basis for their own decisions. In addition, the
appendix provides examples for aspiring authors of packages. These examples are less intended
to be simply transferred. Rather, they convey knowledge of planning and implementation of
projects as well as some basic IXTEX instructions for authors of packages.

If you are only interested in using a single KOMA-Script class or package you can probably
successfully avoid reading the entire guide. Each class and package typically has its own
chapter; however, the three main classes (scrbook, scrrprt, and scrartcl) are introduced together
in chapter 3. Where an example or note only applies to one or two of the three classes, e.g.,
scrartcl, it is called out in the margin, as shown here with scrartcl.

The primary documentation for KOMA-Script is in German and has been translated for your
convenience; like most of the IBTEX world, its commands, environments, options, etc., are in
English. In a few cases, the name of a command may sound a little strange, but even so, we hope
and believe that with the help of this guide, KOMA-Script will be usable and useful to you.

1.3. History of KOMA-Script

In the early 1990s, Frank Neukam needed a method to publish an instructor’s lecture notes. At
that time BITEX was I¥TEX2.09 and there was no distinction between classes and packages —
there were only styles. Frank felt that the standard document styles were not good enough
for his work; he wanted additional commands and environments. At the same time he was
interested in typography and, after reading Tschichold’s Ausgewdhlte Aufsdatze tiber Fragen der
Gestalt des Buches und der Typographie (Selected Articles on the Problems of Book Design and
Typography) |], he decided to write his own document style—and not just a one-time

20

Chapter 1.

solution to his lecture notes, but an entire style family, one specifically designed for European
and German typography. Thus Script was born.

Markus Kohm, the developer of KOMA-Script, came across Script in December 1992 and
added an option to use the A5 paper format. At that time neither the standard style nor
Script provided support for A5 paper. Therefore it did not take long until Markus made the
first changes to Script. This and other changes were then incorporated into Script-2, released
by Frank in December 1993.

Beginning in mid-1994, IATEX 2¢ became available and brought with it many changes. Users
of Script-2 were faced with either limiting their usage to I¥TEX 2¢’s compatibility mode or
giving up Script altogether. This situation led Markus to put together a new IWTEX 2¢ package,
released on 7 July 1994 as KOMA-Script; a few months later Frank declared KOMA-Script to
be the official successor to Script. KOMA-Script originally provided no letter class, but this
deficiency was soon remedied by Axel Kielhorn, and the result became part of KOMA-Script
in December 1994. Axel also wrote the first true German-language user guide, which was
followed by an English-language guide by Werner Lemberg.

Since then much time has passed. IXTEX has changed in only minor ways, but the IXTEX
landscape has changed a great deal; many new packages and classes are now available and
KOMA-Script itself has grown far beyond what it was in 1994. The initial goal was to pro-
vide good KTEX classes for German-language authors, but today its primary purpose is to
provide more-flexible alternatives to the standard classes. KOMA-Script’s success has led
to e-mail from users all over the world, and this has led to many new macros—all needing
documentation; hence this “small guide.”

1.4. Special Thanks

Acknowledgements in the introduction? No, the proper acknowledgements can be found in
the addendum. My comments here are not intended for the authors of this guide—and
those thanks should rightly come from you, the reader, anyhow. I, the author of KOMA-
Script, would like to extend my personal thanks to Frank Neukam. Without his Script family,
KOMA-Script would not have come about. I am indebted to the many persons who have
contributed to KOMA-Script, but with their indulgence, I would like to specifically mention
Jens-Uwe Morawski and Torsten Kriiger. The English translation of the guide is, among many
other things, due to Jens’s untiring commitment. Torsten was the best beta-tester I ever had.
His work has particularly enhanced the usability of scrlttr2 and scrpage2. Many thanks to all
who encouraged me to go on, to make things better and less error-prone, or to implement
additional features.

Thanks go as well to DANTE, Deutschsprachige Anwendervereinigung TEX e.V, (the
German-Language TEX User Group). Without the DANTE server, KOMA-Script could not
have been released and distributed. Thanks as well to everybody in the TEX newsgroups and
mailing lists who answer questions and have helped me to provide support for KOMA-Script.

21

Chapter 1.

1.5. Legal Notes

KOMA-Script was released under the IATEX Project Public License. You will find it in the file
lppl.txt. An unofficial German-language translation is also available in 1ppl-de.txt and is
valid for all German-speaking countries.

This document and the KOMA-Script bundle are provided “as is” and without warranty of
any kind.

1.6. Installation

The three most important TEX distributions, MacTEX, MiKTgX, and TEX Live, make KOMA-
Script available by their package management software. It is recommended to make installa-
tions and updates of KOMA-Script using these tools. Nevertheless the manual installation
without using the package managers has been described in the file INSTALL.txt, that is part
of every legal KOMA-Script bundle. You should also read the documentation that comes with
the TEX distribution you are using.

1.7. Bug Reports and Other Requests

If you think you have found an error in the documentation or a bug in one of the KOMA-Script
classes, one of the KOMA-Script packages, or another part of KOMA-Script, please do the
following: first have a look on CTAN to see if a newer version of KOMA-Script is available; if
a newer version is available, install the applicable section and try again.

If you are using the most recent version of KOMA-Script and still have a bug, please provide
a short INTEX document that demonstrates the problem. You should only use the packages
and definitions needed to demonstrate the problem; do not use any unusual packages.

By preparing such an example it often becomes clear whether the problem is truly a KOMA-
Script bug or something else. To find out the version numbers of all packages in use, simply
put \listfiles in the preamble of your example and read the end of the log-file.

Please report KOMA-Script (only) bugs to komascript@gmx.info. If you want to ask your
question in a Usenet group, mailing list, or Internet forum, you should also include such an
example as part of your question.

1.8. Additional Information

Once you become an experienced KOMA-Script user you may want to look at some more
advanced examples and information. These you will find on the KOMA-Script documentation
web site |]. The main language of the site is German, but nevertheless English is welcome.

mailto:komascript@gmx.info

Part I.
KOMA -Script for Authors

In this part you may find information for authors of articles, reports, books, and letters. It is
assumed that the average user is less interested in the implementation of KOMA-Script or in
the problems of implementing KOMA-Script. Also, the average user isn’t interested in obsolete
options and instructions. He wants to know how he can achieve things using current options
and instructions. Some users may be interested in typographic background information.

In this part, the few passages that contain additional information and justification, and
therefore are of less interest for the impatient reader, have been set in sans serif font and can be
skipped if necessary. For those who are interested in more information about implementation,
side effects with other packages, and obsolete options and instructions, please refer to part 11
on page 231. Furthermore, that part of the KOMA-Script guide describes all the features that
were created specially for writers of packages and classes.

23

Chapter 2.

Construction of the Page Layout with typearea

Many KTEX classes, including the standard classes, present the user with the largely fixed
configuration of margins and typearea. With the standard classes, the configuration deter-
mined is very much dependent on the chosen font size. There are separate packages, such as
geometry (see | 1), which give the user complete control, but also full responsibility, of
the settings of typearea and margins.

KOMA-Script takes a somewhat different approach with its typearea package. Here the
user is given several construction setting and automatization possibilities based on established
typography standards in order to help guide him or her in making a good choice.

It should be noted that the typearea package makes use of the scrbase package. The latter
is explained in the expert section of this document in chapter 10 from page 231 onwards. The
majority of the rules documented there are however not directed at the user, but rather at
authors of classes and packages.

2.1. Fundamentals of Page Layout

If you look at a single page of a book or other printed materials, you will see that it consists of
top, bottom, left, and right margins, a (running) head area, the text block, and a (running) foot
area. There is also a space between the head area and the text block, and between the text block
and the foot area. The relations between these areas are called the page layout.

The literature contains much discussion of different algorithms and heuristic approaches for
constructing a good page layout |]. Often mentioned is an approach which involves diagonals
and their intersections. The result is a page where the text block proportions are related to the
proportions of the page. In a single-sided document, the left and the right margin should have
equal widths. The relation of the upper margin to the lower margin should be 1:2. In a double-sided
document (e.g. a book) however, the complete inner margin (the margin at the spine) should be
the same as each of the two outer margins; in other words, a single page contributes only half of
the inner margin.

In the previous paragraph, we mentioned and emphasized the page. Erroneously, it is often
thought that with the page format the page is the same as the paper format. However, if you look
at a bound document, it is obvious that part of the paper vanishes in the binding and is no longer
part of the visible page. For the page layout, it is not the format of the paper which is important,
it is the impression of the visible page to the reader. Therefore, it is clear that the calculation
of the page layout must account for the “lost” paper in the binding and add this amount to the
width of the inner margin. This is called the binding correction. The binding correction is therefore
calculated as part of the gutter, not the visible inner margin.

The binding correction depends on the process of actually producing the document and thus

24

Chapter 2.

cannot be calculated in general. Every production process needs its own parameter. In professional
binding, this parameter is not too important since the printing is done on oversized paper which is
then cropped to the right size. The cropping is done in a way so that the relations for the visible
double-sided page are as explained above.

Now we know about the relations of the individual parts of a page. However, we do not yet
know about the width and the height of the text block. Once we know one of these values, we can
calculate all the other values from the paper format and the page format or the binding correction.

textblock height : textblock width = page height : page width
top margin : foot margin =1 : 2
left margin : right margin=1:1
half inner margin : outer margin=1:2
page width = paper width — binding correction
top margin + bottom margin = page height — textblock height
left margin + right margin = page width — textblock width
half inner margin + outer margin = page width — textblock width

half inner margin + binding correction = gutter

The values left margin and right margin only exist in a single-sided document while
half inner margin and outer margin only exist in a double-sided document. In these equations,
we work with half inner margin since the full inner margin belongs to a double-page. Thus, one
page has only half of the inner margin, half inner margin.

The question of the width of the textblock is also discussed in the literature. The optimum
width depends on several factors:

= size, width, type of the font used
= line spacing

= word length

= available room

The importance of the font becomes clear once you think about the meaning of serifs. Serifs are
fine strokes finishing off the lines of the letters. Letters whose main strokes run orthogonal to the
text line disturb the flow rather than keeping and leading the eye along the line. Those letters
then have serifs at the ends of the vertical strokes so that the horizontal serifs can help lead the
eye horizontally. In addition, they help the eye to find the beginning of the next line more quickly.
Thus, the line length for a serif font can be slightly longer than for a sans serif font.

With leading is meant the vertical distance between individual lines of text. In IATEX, the leading
is set at about 20% of the font size. With commands like \linespread or, better, packages like

25

Chapter 2.

setspace (see []), the leading can be changed. A wider leading helps the eye to follow the
line. A very wide leading, on the other hand, disturbs reading because the eye has to move a
wide distance between lines. Also, the reader becomes uncomfortable because of the visible stripe
effect. The uniform gray value of the page is thereby spoiled. Still, with a wider leading, the lines
can be longer.

The literature gives different values for good line lengths, depending on the author. To some
extent, this is related to the native language of the author. Since the eye jumps from word to
word, short words make this task easier. Considering all languages and fonts, a line length of 60
to 70 characters, including spaces and punctuation, forms a usable compromise. This requires
well-chosen leading, but IATEX's default is usually good enough. Longer line lengths should only
be considered for highly-developed readers who spend several hours daily reading. However, even
for such readers, line lengths greater than 80 characters are unsuitable. In any case, the leading
must be appropriately chosen. An extra 5% to 10% is recommended as a good rule of thumb.
With fonts such as Palatino, which require some 5% more leading even at normal line lengths,
even more can be required.

Before looking at the actual construction of the page layout, there are just some minor things
left to know. IATEX does not start the first line in the text block of a page at the upper edge of the
text block, but sets the baseline at a defined distance from the top of the text block. Also, IATEX
knows the commands \raggedbottom and \flushbottom. \raggedbottom specifies that the
last line of a page should be positioned wherever it was calculated. This means that the position
of this line can be different on each page, up to the height of one line—in combination of the
end of the page with titles, figures, tables or similar, even more. In double-sided documents this
is usually undesirable. \flushbottom makes sure that the last line is always at the lower edge of
the text block. To achieve this, IATEX sometimes needs to stretch vertical glue more than allowed.
Paragraph skip is such a stretchable, vertical glue, even when set to zero. In order to not stretch
the paragraph skip on normal pages where it is the only stretchable glue, the height of the text
block should be set to a multiple of the height of the text line, including the distance from the
upper edge of the text block to the first line.

This concludes the introduction to page layout as handled by KOMA-Script. Now, we can
begin with the actual construction.

2.2. Page Layout Construction by Dividing

The easiest way to make sure that the text area has the same ratios as the page is as follows:

= First, subtract the part BCOR, required for the binding correction, from the inner edge of
the paper, and divide the rest of the page vertically into DIV rows of equal height.

= Next, divide the page horizontally into the same number (DIV) of columns.

= Then, take the uppermost row as the upper margin and the two lowermost rows as the lower

26

Chapter 2.

1 1
2 2
3 3
4 4
5 page-layout-left page layout right 5
6 6
7 7
8 8
[
9 [9
[

Figure 2.1.: Double-sided layout with the box construction of the classical division factor of 9, after
subtraction of a binding correction

margin. If you are printing double-sided, you similarly take the innermost column as the inner
margin and the two outermost columns as the outer margin.

= Then add the binding correction BCOR to the inner margin.

What now remains of the page is the text area. The width and the height of the text area and
margins result automatically from the number of rows and columns DIV. Since the margins always
need three stripes, DIV must be necessarily greater than three. In order that the text area occupy
at least twice as much space as the margins, DIV should really be equal to or greater than 9. With
this value, the construction is also known as the classical division factor of 9 (see figure 2.1).

In KOMA-Script, this kind of construction is implemented in the typearea package, where the
bottom margin may drop any fractions of a line in order to conform with the minor condition for
the text area height mentioned in the previous paragraph, and thereby to minimize the mentioned
problem with \flushbottom. For A4 paper, DIV is predefined according to the font size (see
table 2.2, page 32). If there is no binding correction (BCOR = 0pt), the results roughly match
the values of table 2.1, page 31.

In addition to the predefined values, one can specify BCOR and DIV as options when loading the
package (see section 2.4, from page 29 onwards). There is also a command to explicitly calculate
the type area by providing these values as parameters (also see section 2.4, page 35).

The typearea package can automatically determine the optimal value of DIV for the font and
leading used. Again, see section 2.4, page 32.

27

Chapter 2.

2.3. Page Layout Construction by Drawing a Circle

In addition to the page layout construction method previously described, a somewhat more classical
method can be found in the literature. The aim of this method is not only to obtain identical
ratios in the page proportions, but it is considered optimal when the height of the text block is the
same as the width of the page. The exact method is described in |].

A disadvantage of this late Middle Age method is that the width of the text area is no longer
dependent on the font. Thus, one doesn’t choose the text area to match the font, but the author
or typesetter has to choose the font according to the text area. This can be considered a “must”.

In the typearea package this construction is changed slightly. By using a special (normally
meaningless) DIV value or a special package option, a DIV value is chosen to match the perfect
values of the late Middle Age method as closely as possible. See also section 2.4, page 32.

2.4. Early or late Selection of Options

In this section a peculiarity of KOMA-Script is presented, which, apart from the typearea
package, is also relevant to other KOMA-Script packages and classes. Such that the user can
find all information corresponding to a single package or a single class in the relevant chapter,
this section is found almost identically in several chapters. Users who are not only interested
in a particular package or class, but wish to gain an overview of KOMA-Script as a whole,
may read the section in one chapter and may thereafter skip it wherever coming across it in
the document.

\documentclass[option list]{KOMA-Script class}
\usepackage[option list]{package list}

In TRX, provision is made for the user to pass class options as a comma-separated list of
keywords as optional arguments to \documentclass. Apart from being passed to the class,
these options are also passed on to all packages which can understand the options. Provision
is also made for the user to pass optional arguments as a comma-separated list of keywords
as optional arguments to \usepackage. KOMA-Script expands the option mechanism for the
KOMA-Script classes and various packages to use further possibilities. Thus, most KOMA-
Script options can also take a value. An option may have not only the form Option, but
may also have the form option=value. Apart from this difference \documentclass and
\usepackage function the same in KOMA-Script as described in | | or any introduction
to BTEX, for example [?].

When using a KOMA-Script class, no options should be passed on unnecessary, explicit
loading of the typearea or scrbase packages. The reason for this is that the class already loads
these packages without options and IANTEX refuses multiple loadings of a package with different
option settings.

28

Chapter 2.

\KOMAoptions{option list}
\KOMAoption{option}{value list}

KOMA-Script offers most class and package options the opportunity to change the value of

options even after loading of the class or package. One may then change the values of a list of
options at will with the \KOMAoptions command. Each option in the option list has the
form option=value.

Some options also have a default value. If one does not give a value, i.e., gives the option
simply in the form option, then the default value will be used.

Some options can assume several values simultaneously. For such options there exists the
possibility, with the help of \KOMAoption, to pass a single option a list of values. The
individual values are given as a comma-separated value list.

If in the option list one sets an option to a disallowed value, or the value list contains
an invalid value, then an error is produced. If IATEX is run in an interactive mode, then it stops at
this point. Entering "h" displays a help screen, in which also the valid values for the corresponding
option are given.

If a value includes an equal sign or a comma, then the walue must be enclosed in curly
brackets.

To implement this possibility KOMA-Script uses the commands \FamilyOptions and
\FamilyOption with the family “KOMA". More information on these commands is found in sec-
tion 10.2, page 234.

2.5. Compatibility with Earlier Versions of KOMA -Script

Those who achieve their documents in source code set utmost value to the fact that future
IXTEX runs will yield exactly the same result. Nevertheless, in some cases improvement and bug
corrections of packages will result in changes of the behaviour and make-up. But sometimes
this is not wanted.

version=value
version=first
version=last

v3 D6

Since version 2.96a of KOMA-Script, for scrlttr2 since version 2.9t, and for typearea since
version 3.01b, it’s your choice if your source code should result in the same make-up at fu-
ture ITEX runs or if you like to participate in all improvements of new releases. You may
select the compatible version of KOMA-Script with option version. Compatibility to the
lowest supported KOMA-Script release may be achieved by version=first or version=2.9
or version=2.9t. Setting value to an unknown release number will result in a warning
message and selects version=first for safety.

With version=last the most recent version will be selected at every IATEX run. Be warned,
though, that using version=last poses possibilities of compatibility issues for future IXTEX

29

Chapter 2.

runs. Option version without any value means the same. This is the default behaviour as
long as you don’t use any deprecated options.

If you use a deprecated option of KOMA-Script 2, KOMA-Script 3 will switch to
version=first automatically. This will also result in a warning message that explains how to
prevent this switching. Alternatively you may select another adjustment using option version
with the wanted compatibility after the deprecated option.

Compeatibility is primarily make-up compatibility. New features not related to the mark-up
will be available even if you switch compatibility to a version before first implementation of
the feature. Option version doesn’t influence make-up changes that are motivated by bug
fixes. If you need bug compatibility you should physically save the used KOMA-Script version
together with your document.

Please note that you can’t change option version anymore after loading the package
typearea. Therefore, the usage of option version within the argument of \KOMAoptions or
\KOMAoption is not recommended and will cause an error.

2.6. Options and Macros to Influence the Page Layout

The package typearea offers two different user interfaces to influence type area construction.
The more important method is to load the package with options. For information on how to
load packages and to give package options, please refer to the INTEX literature, e. g. |]
and [], or the examples given here. Since the typearea package is loaded automatically
when using the KOMA-Script main classes, the package options can be given as class options
(see section 3.1).

In this section the protocol class will be used, not an existing KOMA-Script class but a
hypothetical one. This documentation assumes that ideally there exists a class for every
specific task.

’ BCOR=correction ‘

With the aid of the option BCOR=correction one may specify the absolute value of the binding
correction, i.e., the width of the area which will be lost from the paper width in the binding
process. This value is then automatically taken into account in the page layout construction
and in the final output is added to the inner (or the left) margin. For the correction
specification any measurement unit understood by TEX is valid.

Example: Assume one is creating a financial report, which should be printed out single-sided
on A4 paper, and finally kept in a clamp folder. The clamp will hide 7.5 mm. The
stack of pages is very thin, thus through paging at most another 0.75 mm will be
lost. Therefore, one may write:

\documentclass [adpaper] {report}
\usepackage [BCOR=8.25mm] {typearea}

30

Chapter 2.

or

\documentclass [a4paper,BCOR=8.25mm] {report}
\usepackage{typearea}

when using BCOR as a global option.

When using a KOMA-Script class, the explicit loading of the typearea package can
be omitted:

\documentclass [BCOR=8.25mm] {scrreprt}

The option adpaper could be omitted with scrreprt, since this is a predefined setting
for all KOMA-Script classes.

If the option is only later set to a new value, one may then use, for example, the
following:

\documentclass{scrreprt}
\KOMAoptions{BCOR=8.25mm}

Thus, at the loading of the scrreprt class standard settings will be used. When
changing the setting with the use of the command \KOMAoptions or \KOMAoption
a new page layout with new margins will automatically be calculated.

Please note that when using this option with one of the KOMA-Script classes as in the
example above, it must be used either as a class option, or passed via \KOMAoptions or
\KOMAoption after loading the class. The typearea package should neither be loaded explicitly
with \usepackage when using a KOMA-Script class, nor should the option be given as an
optional argument thereto. If the option is changed via \KOMAoptions or \KOMAoption after
loading the package, the textblock and margins are automatically recalculated anew.

DIV=Factor

With the aid of the option DIV=Factor the number of stripes into which the page is divided
horizontally and vertically during the page layout construction is set. The exact construction
method is found in section 2.2. Of importance is that the larger the Factor, the larger the
text block and the smaller the margins. Any integer value greater than 4 is valid for Factor.
Please note that large values can lead to unfulfillment of various minor conditions in the type-
area, depending on further options chosen. Thus, in an extreme case, the header may fall
outside of the page. Users applying the option DIV=Factor are themselves responsible for
fulfillment of the marginal conditions and setting of a typographically aesthetic line length.
In table 2.1 are found the type-area sizes for several DIV factors for an A4 page without
binding correction. Here the minor conditions dependent on font size are not considered.

Example: Assume one wants to write a meeting protocol, using the protocol class. The
document should be double-sided. In the company 12 pt Bookman font is used.

31

Chapter 2.

Table 2.1.: Type-area dimensions dependent on DIV for A4

Type-area Margins
DIV width [mm] height [mm] top [mm]| inner [mm]
6 105,00 148,50 49,50 35,00
7 120,00 169,71 42,43 30,00
8 131,25 185,63 37,13 26,25
9 140,00 198,00 33,00 23,33
10 147,00 207,90 29,70 21,00
11 152,73 216,00 97.00 19,09
12 157,50 22275 24,75 17,50
13 161,54 228,46 22,85 16,15
14 165,00 233,36 21,21 15,00
15 168,00 237,60 19,80 14,00

This font, which belongs to the standard PostScript fonts, is activated in IXNTEX
with the command \usepackage{bookman}. The Bookman font is a very wide
font, meaning that the individual characters have a large width relative to their
height. Therefore, the predefined value for DIV in typearea is insufficient. Instead
of the value of 12 it appears after thorough study of this entire chapter that a value
of 15 should be most suitable. The protocol will not be bound but punched and
kept in a folder. Thus, no binding correction is necessary. One may then write:

\documentclass[adpaper,twoside] {protocol}
\usepackage{bookman}
\usepackage [DIV=15] {typearea}

On completion, it is decided that the protocols will from now on be collected and
bound quarterly into book format. The binding is to be a simple glue binding,
because it is only done to conform with ISO 9000 and nobody is actually going to
read them. For the binding including space lost in turning the pages, an average
of 12mm is required. Thus, one may change the options of the typearea package
accordingly, and use the class for protocols conforming to ISO 9000 regulations:

\documentclass [adpaper,twoside] {is09000p}
\usepackage{bookman}
\usepackage [DIV=15,BCOR=12mm] {typearea}

Of course, it is equally possible to use here a KOMA-Script class:

\documentclass[twoside,DIV=15,BCOR=12mm] {scrartcl}
\usepackage{bookman}

The adpaper option can be left out when using the scrartcl class, as it is predefined

32

Chapter 2.

Table 2.2.: Predefined settings of DIV for A4

base font size: 10pt 11pt 12pt
DIV: 8 10 12

in all KOMA-Script classes.

Please note that when using the DIV option with one of the KOMA-Script classes as in
the example above, it must be used either as a class option, or passed via \KOMAoptions or
\KOMAoption after loading the class. The typearea package should neither be loaded explicitly
with \usepackage when using a KOMA-Script class, nor should the option be given as an
optional argument thereto. If the option is changed via \KOMAoptions or \KOMAoption after
loading the package, the textblock and margins are automatically recalculated anew.

DIV=calc
DIV=classic

As already mentioned in section 2.2, for A4 paper there are fixed predefined settings for the
DIV value. These can be found in table 2.2. If a different paper format is chosen, then the
typearea package independently calculates an appropriate DIV value. Of course this same
calculation can be applied also to A4. To obtain this result, one simply uses the DIV=calc
option in place of the DIV=Factor option. This option can just as easily be explicity given
for other paper formats. If one desires an automatic calculation, this also makes good sense,
since the possibility exists to configure different predefined settings in a configuration file (see
section 15.2). An explicit passing of the DIV=calc option then overwrites such configuration
settings.

The classical page layout construction, the Middle Age book design canon, mentioned in
section 2.3, is similarly selectable. Instead of the DIV=Faktor or DIV=calc option, one may
use the DIV=classic option. A DIV value closest to the Middle Age book design canon is
then chosen.

Example: In the example using the Bookman font with the DIV=Factor option, exactly
that problem of choosing a more appropriate DIV value for the font arose. As a
variation on that example, one could simply leave the choice of such a value to the
typearea package:

\documentclass [adpaper,twoside] {protocol}
\usepackage{bookman}
\usepackage [DIV=calc]{typearea}

Please note that when using this option with one of the KOMA-Script classes as in the
example above, it must be used either as a class option, or passed via \KOMAoptions or

33

Chapter 2.

\KOMAoption after loading the class. The typearea package should neither be loaded explicitly
with \usepackage when using a KOMA-Script class, nor should the option be given as an
optional argument thereto. If the option is changed via \KOMAoptions or \KOMAoption after
loading the package, the textblock and margins are automatically recalculated anew.

DIV=current
DIV=last

Readers who have followed the examples with acuity actually already know how to calculate
a DIV value dependent on the chosen font, when a KOMA-Script class is used together with
a font package.

The problem is that the KOMA-Script class already loads the typearea package itself. Thus, it
is not possible to pass options as optional arguments to \usepackage. |t would also be pointless
to pass the DIV=calc option as an optional argument to \documentclass. This option would be
evaluated immediately on loading the typearea package and as a result the text block and margin
would be chosen according to the IATEX standard font and not for the later loaded font. However,
it is quite possible to recalculate the text block and margins anew after loading the font, with the
aid of \KOMAoptions{DIV=calc} or \KOMAoption{DIV}{calc}. Via calc an appropriate DIV
value for a good line length is then chosen.

As it is often more practical to set the DIV option not after loading the font, but at a more
visible point, such as when loading the class, the typearea package offers two further symbolic
values for this option.

With DIV=current a renewed calculation of text block and margin is requested, in which
the currently set DIV will be used. This is less of interest for renewed type-area calculations
after loading a different font; it is rather more useful for determining, for example, after
changing the leading, while keeping DIV the same, that the marginal condition is fulfilled that
\textheight less \topskip is a multiple of \baselineskip.

With DIV=1last a renewed calculation of text block and margin is requested, where exactly
the same setting is used as in the last calculation.

Example: Let us take up the previous example again, in which a good line length is required
for a type-area using the Bookman font. At the same time, a KOMA-Script class is
to be used. This is easily possible using the symbolic value 1last and the command
\KOMAoptions:

\documentclass [BCOR=12mm,DIV=calc,twoside]{scrartcl}
\usepackage{bookman}
\KOMAoptions{DIV=last}
If it should later be decided that a different DIV value is required, then only the
setting of the optional argument to \documentclass need be changed.

Chapter 2.

Table 2.3.: Possible symbolic values for the DIV option or the DIV argument to \typearea [BCOR]I{DIV}

areaset
Recalculate page layout.

calc
Recalculate type-area including choice of appropriate DIV value.
classic
Recalculate type-area using Middle Age book design canon (circle-based calculation).
current
Recalculate type-area using current DIV value.
default
Recalculate type-area using the standard value for the current page format and
current font size. If no standard value exists, calc is used.
last

Recalculate type-area using the same DIV argument as was used in the last call.

A summary of all possible symbolic values for the DIV option can be found in table 2.3.
At this point it is noted that the use of the fontenc package can also lead to IXTEX loading a
different font.

Often the renewed type-area calculation is required in combination with a change in the
line spacing (leading). Since the type-area should be calculated such that an integer number
of lines fit in the text block, a change in the leading normally requires a recalculation of the
page layout.

Example: For a thesis document, a font of size 10 pt and a spacing of 1.5 lines is required. By
default, IXTEX sets the leading for 10 pt at 2 pt, in other words 1.2 lines. Therefore,
an additional stretch factor of 1.25 is needed. Additionally, a binding correction
of 12mm is stipulated. Then the solution could be written as follows:

\documentclass[10pt,twoside,BCOR=12mm,DIV=calc]{scrreprt}
\linespread{1.25}
\KOMAoptions{DIV=last}

Since typearea always executes the command \normalsize itself upon calcula-
tion of a new type-area, it is not necessary to activate the chosen leading with
\selectfont after \linespread, since this will be used already in the recalcula-
tion.

When using the setspace package (see |]), the same example would appear
as follows:

35

Chapter 2.

\documentclass[10pt,twoside,BCOR=12mm,DIV=calc]{scrreprt}
\usepackage{setspace}

\onehalfspacing

\KOMAoptions{DIV=last}

As can be seen, with the use of the setspace package one no longer neesds to know
the correct stretch value.

At this point it should be noted that the line spacing for the title page should be
reset to the normal value.

\documentclass[10pt,twoside,BCOR=12mm,DIV=calc]{scrreprt}
\usepackage{setspace}
\onehalfspacing
\KOMAoptions{DIV=last}
\begin{document}
\title{Title}
\author{Markus Kohm}
\begin{spacing}{1}
\maketitle
\tableofcontents
\end{spacing}
\chapter{0k}
\end{document}

See further also the notes in section 2.8.

Please note that when using this option with one of the KOMA-Script classes as in the
example above, it must be used either as a class option, or passed via \KOMAoptions or
\KOMAoption after loading the class. The typearea package should neither be loaded explicitly
with \usepackage when using a KOMA-Script class, nor should the option be given as an
optional argument thereto. If the option is changed via \KOMAoptions or \KOMAoption after
loading the package, the textblock and margins are automatically recalculated anew.

\typearea [BCOR]{DIV}
\recalctypearea

If the DIV option or the BCOR option is set after loading of the typearea package, then internally
the command \typearea is called. When setting the DIV option the symbolic value current
is used internally for BCOR, which for reasons of completeness is found also in table 2.4. When
setting the BCOR option, the symbolic value last is used internally for DIV. If it is instead desired
that the text block and margins should be recalculated using the symbolic value current for DIV,
then \typearea{current}{current} can be used directly.

If both BCOR and DIV need changing, then it is recommended to use \typearea,
since then the text block and margins are recalculated only once. With

36

Chapter 2.

Table 2.4.: Possible symbolic BCOR arguments for \typearea [BCOR]1{DIV}

current
Recalculate type-area with the currently valid BCOR value.

\KOMAoptions{DIV=DIV ,BCOR=BCOR} the text block and margins are recalculated once
for the change to DIV and again for the change to BCOR.

The command \typearea is currently defined so as to make it possible to change the type-
area anywhere within a document. Several assumptions about the structure of the IATEX kernel
are however made and internal definitions and sizes of the kernel changed. There is a definite
possibility, but no guarantee, that this will continue to function in future versions of IATEX 2¢.
When used within the document, a page break will result.

Since \typearea{current}{last} or \KOMAoptions{DIV=1last} are often needed for recal-
culation of the type-area, there exists specially the abbreviated command \recalctypearea.

Example: If one finds the notation
\KOMAoptions{DIV=last}
or

\typearea[current]{last}

for the recalculation of text block and margins too complicated for reasons of the
many special characters, then one may use more simply the following.

\recalctypearea

twoside=simple switch
twoside=semi

As already explained in section 2.1, the margin configuration is dependent on whether the
document is to be typeset single- or double-sided. For single-sided typesetting, the left and
right margins are equally wide, whereas for double-sided printing the inner margin of one
page is only half as wide as the corresponding outer margin. In order to implement this
distinction, the typearea package must be given the twoside option, if the document is to be
typeset double-sided. Being a simple switch, any of the standard values for simple switches
in table 2.5 are valid. If the option is passed without a value, the value true is assumed,
so double-sided typesetting is carried out. Deactivation of the option leads to single-sided
typesetting.

Apart from the values in table 2.5 the value semi can also be given. The value semi results
in a double-sided typesetting with single-sided margins and single-sided, i. e., not alternating,
margin notes.

The option can also be passed as class option in \documentclass, as package option to
\usepackage, or even after loading of the typearea package with the use of \KOMAoptions or

37

Chapter 2.

Table 2.5.: Standard values for simple switches in KOMA-Script

Value Description

1

true’ activates the option
on activates the option
yes activates the option
false deactivates the option
off deactivates the option
no deactivates the option

IThis value will be used also, if you use the option without assigning any value.

\KOMAoption. Use of the option after loading the typearea package results automatically in
recalculation of the type-area using \recalctypearea (see page 35). If double-sided typeset-
ting was active before the option was set, then before the recalculation a page break is made
to the next odd page.

’ twocolumn=simple switch ‘

For the calculation of a good type-area with the help of DIV=calc it is useful to know in
advance if the document is to be typeset one-column or two-column. Since the observations
about line length in section 2.1 then apply to each column, the width of a type-area in a
two-column document can be up to double that in a one-column document.

To implement this difference, the typearea package must be told via the twocolumn option
whether the document is to be two-column. Since thisis a simple switch, any of the standard
values for simple switches from table 2.5 is valid. If the option is passed without a value, the
value true is assumed, i.e., two-column typesetting. Deactivation of the option results in
one-column typesetting.

The option can also be passed as class option in \documentclass, as package option to
\usepackage, or even after loading of the typearea package with the use of \KOMAoptions or
\KOMAoption. Use of the option after loading the typearea package results automatically in
recalculation of the type-area using \recalctypearea (see page 35).

headinclude=simple switch
footinclude=simple switch

So far we have discussed how the type-area is calculated and the relationship of the margins to
one another and between margins and text block. However, one important question has not been
answered: What constitutes the margins?

At first glance the question appears trivial: Margins are those parts on the right, left, top and
bottom which remain empty. But this is only half the story. Margins are not always empty. There
may be margin notes, for example (see \marginpar command in [| or section 3.21).

38

Chapter 2.

One could also ask whether headers and footers belong to the upper and lower margins or to
the text. This can not be answered unambiguously. Of course an empty footer or header belongs
to the margins, since they can not be distinguished from the rest of the margin. A header or
footer that contains only a page number® will optically appear more like a margin. For the optical
appearance it is not important whether headers or footers are easily recognized as such during
reading. Of importance is only how a well-filled page appears when viewed out of focus. One could
use the glasses of one's far-sighted grandparents, or, lacking those, adjust one's vision to infinity
and look at the page with one eye only. Those wearing spectacles will find this much easier, of
course. If the footer contains not only the page number, but other material like a copyright notice,
it will optically appear more like a part of the text body. This needs to be taken into account when
calculating text layout.

For the header this is even more complicated. The header frequently contains running headings.?
In the case of running headings with long chapter and section titles, the header lines will be very
long and appear to be part of the text body. This effect becomes even more significant when the
header contains not only the chapter or section title but also the page number. With material on
the right and left side, the header will no longer appear as an empty margin. It is more difficult if
the pagination is in the footer, and the length of the titles varies so that the header may appear
as a margin on one page and as text on another. However, these pages should not be treated
differently under any circumstances, as this would lead to vertically jumping headers. In this case
it is probably best to count the header as part of the text.

The decision is easy when text and header or footer are separated from the text body by a
line. This will give a “closed” appearance and header or footer become part of the text body.
Remember: It is irrelevant that the line improves the optical separation of text and header or
footer; only the appearance when viewed out of focus is important.

The typearea package cannot make the decision whether or not to count headers and footers
as part of the text body or the margin. Options headinclude and footinclude cause the
header or footer to be counted as part of the text. These options, being a simple switch,
understand the standard values for simple switches in table 2.5. One may use the options
without specifying a value, in which case the value true is used for the simple switch, i.e.,
the header or footer is counted as part of the text.

Readers who are unsure about the the correct setting should re-read the above explanations.
Default is usually headinclude=false and footinclude=false, but this can change depend-
ing on KOMA-Script class and KOMA-Script packages used (see section 3.1 and chapter 5).

Please note that when using these options with one of the KOMA-Script classes as in the
example above, they must be used either as a class option, or passed via \KOMAoptions or
\KOMAoption after loading the class. Changing of these options after loading the typearea
package does not result in an automatic recalculation of the type-area. Instead, the changes

!Pagination refers to the indication of the page number.
2Running headings refer to the repetition of a title in titling font, which is more often typeset in the page
header, less often in the page footer.

39

v3.00

Chapter 2.

only take effect at the next recalculation of the type-area. For recalculation of the type-area,
refer to the DIV option with the values last or current (see page 33) or the \recalctypearea
command (see page 35).

’ mpinclude=simple switch ‘

Besides documents where the head and foot are part of the text area, there are also documents
where the margin-note area must be counted as part of the text body as well. The option
mpinclude does exactly this. The option, as a simple switch, understands the standard
values for simple switches in table 2.5. One may also pass this option without specifying a
value, in which case the value true for simple switch is assumed.

The effect of mpinclude=true is that one width-unit of the text body is taken for the
margin-note area. Using option mpinclude=false, the default setting, the normal margin is
used for the margin-note area. The width of that area is one or one and a half width-unit,
depending on whether one-sided or double-sided page layout has been chosen. The option
mpinclude=true is mainly for experts and so is not recommended.

In the cases where the option mpinclude is used, often a wider margin-note area is required.
In many cases not the whole margin-note width should be part of the text area, for example if
the margin is used for quotations. Such quotations are typeset as ragged text with the flushed
side where the text body is. Since ragged text gives no homogeneous optical impression, the long
lines can reach right into the normal margin. This can be done using option mpinclude and by
an enlargement of length \marginparwidth after the type-area has been set up. The length can
be easily enlarged with the command \addtolength. How much the length has to be enlarged
depends on the special situation and it requires some flair. This is another reason the mpinclude
option is primarily left for experts. Of course one can set up the margin-width to reach a third
right into the normal margin; for example, using

\setlength{\marginparwidth}{1.5\marginparwidth}

gives the desired result.

Currently there is no option to enlarge the margin by a given amount. The only solution is to
either not use the option mpinclude or to set mpinclude to false, and after the type-area has
been calculated, one reduces the width of the text body \textwidth and enlarges the margin width
\marginparwidth by the same amount. Unfortunately, this cannot be combined with automatic
calculation of the DIV value. In contrast DIV=calc (see page 32) heeds mpinclude.

Please note that when using this option with one of the KOMA-Script classes as in the
example above, it must be used either as a class option, or passed via \KOMAoptions or
\KOMAoption after loading the class. Changing of this option after loading the typearea package
does not result in an automatic recalculation of the type-area. Instead, the changes only take
effect at the next recalculation of the type-area. For recalculation of the type-area, refer to the
DIV option with the values last or current (see page 33) or the \recalctypearea command
(see page 35).

40

Chapter 2.

headlines=number of lines
headheight=height

We have seen how to calculate the type-area using the typearea package and how to specify
whether header and footer are part of the text or the margins. However, in particular for the
header, we still have to specify the height. This is achieved with the options headlines and
headheight.

The option headlines is set to the number of header lines. The typearea package uses a
default of 1.25. This is a compromise, large enough for underlined headers (see section 3.1)
and small enough that the relative weight of the top margin is not affected too much when the
header is not underlined. Thus in most cases you may leave headlines at its default value
and adapt it only in special cases.

Example: Assume that you want to use a header with two lines. Normally this would result
in an “overfull \vbox” warning for each page. To prevent this from happening,
the typearea package is told to calculate an appropriate type-area:

\documentclass [adpaper]{article}
\usepackage [headlines=2.1]{typearea}

If you use a KOMA-Script class, it is recommended to pass this option directly as
a class option:

\documentclass[adpaper,headlines=2.1]{scrartcl}

Commands that can be used to define the contents of a header with two lines are
described in chapter 5.

In some cases it is useful to be able to specify the header height not in lines but directly as a
length measurement. This is accomplished with the aid of the alternative option headheight.
For height any lengths and sizes that IATEX understands are valid. It should be noted though
that when using a ATEX length such as \baselineskip its value at the time of the calculation
of the type-area and margins, not at the time of setting of the option, is decisive.

Please note that when using these options with one of the KOMA-Script classes as in the
example above, they must be used either as a class option, or passed via \KOMAoptions or
\KOMAoption after loading the class. Changing of these options after loading the typearea
package does not result in an automatic recalculation of the type-area. Instead, the changes
only take effect at the next recalculation of the type-area. For recalculation of the type-area,
refer to the DIV option with the values last or current (see page 33) or the \recalctypearea
command (see page 35).

’ \areaset [BCOR]{Width}{Height } ‘

So far we have seen how a good or even very good type-area is calculated and how the typearea
package can support these calculations, giving you at the same time the freedom to adapt the

41

Chapter 2.

layout to your needs. However, there are cases where the text body has to fit exactly some
specified dimensions. At the same time the margins should be well spaced and a binding
correction should be possible. The typearea package offers the command \areaset for this
purpose. As parameters this command accepts the binding correction and the width and
height of the text body. Width and position of the margins will then be calculated auto-
matically, taking account of the options headinclude, headinclude=false, footinclude
and footinclude=false where needed. On the other hand, the options headlines and
headheight are ignored!

Example: Assume a text, printed on A4 paper, should have a width of exactly 60 characters
of typewriter font and a height of exactly 30 lines. This could be achieved as
follows:

\documentclass [adpaper,1ipt]{article}
\usepackage{typearea}

\newlength{\CharsLX}) Width of 60 characters
\newlength{\LinesXXX}/ Height of 30 lines
\settowidth{\CharsLX}{\texttt{1234567890}}
\setlength{\CharsLX}{6\CharsLX}
\setlength{\LinesXXX}{\topskip}
\addtolength{\LinesXXX}{29\baselineskip}
\areaset{\CharsLX}{\LinesXXX}

You need only 29 instead of 30, because the base line of the topmost text line
is \topskip below the top margin of the type area, as long as the height of the
topmost line is less than \topskip. Thus, the uppermost line does not require any
height. The descenders of characters on the lowermost line, on the other hand,
hang below the dimensions of the type-area.

A poetry book with a square text body with a page length of 15 cm and a binding
correction of 1cm could be achieved like this:
\documentclass{poetry}

\usepackage{typearea}
\areaset[1cm] {15cm}{15cm}

In rare cases it is useful to be able to reconstruct the current type-area anew. This is possible

via the option DIV=areaset, where \KOMAoptions{DIV=areaset} corresponds to the
\areaset [current]{\textwidth}{\textheight}

command. The same result is obtained if one uses DIV=1last and the typearea was last set
with \areaset.

The typearea package was not made to set up predefined margin values. If you have to do
so you may use package geometry (see [D).

42 Chapter 2.

2.7. Paper Format Selection

The paper format is a definitive characteristic of any document. As already mentioned in
the description of the supported page layout constructions (see section 2.1 to section 2.3 from
page 23 onwards), the entire page division and document layout depends on the paper format.
Whereas the ITEX standard classes are restricted to a few formats, KOMA-Script supports
in conjunction with the typearea package even exotic paper sizes.

’paper=format

The option paper is the central element for format selection in KOMA-Script. Format sup-
ports first of all the American formats letter, legal, and executive. In addition, it supports
the ISO formats of the series A, B, C, and D, for example A4 or — written in lowercase — a4.

Landscape formats are supported by specifying the option again, this time with value
landscape or seascape. The difference is that application dvips rotates at landscape by
-90 °, while it rotates by 490 ° at seascape. So you may use seascape whenever a PostScript
viewer application shows landscape pages upside-down. But you may see the difference only
if you also use option pagesize, which will be described next.
Additionally, the format can also be specified in the form height :width. Note that
until version 3.0la height and width has been interchanged. This is important if you use
compatibility settings (see option version, section 2.5, page 28).

Example: Assume one wishes to print on ISO AS file cards in landscape orientation. Margins
should be very small, no header or footer will be used.

\documentclass{article}

\usepackage [headinclude=false,footinclude=false,
paper=A8,landscape] {typearea}

\areaset{7cm}{5cm}

\pagestyle{empty}

\begin{document}

\section*{Supported Paper Sizes}

letter, legal, executive, a0, al \dots\ %

b0, bl \dots\ cO, c1 \dots\ dO, dl1 \dots

\end{document}

If the file cards have the special format (height:width) 5cm:3cm, this can be
achieved using the following code.

\documentclass{article}

\usepackage [headinclude=false,footinclude=false, /
paper=A8,paper=5cm:3cm] {typearea}t

\areaset{4cm}{2.4cm}

\pagestyle{empty}

\begin{document}

43

Chapter 2.

\section*{Supported Paper Sizes}

letter, legal, executive, a0, al \dots\ 7
b0, bl \dots\ cO0, c1 \dots\ dO, di \dots
\end{document}

As part of the predefined defaults, KOMA-Script uses A4 paper in portrait orientation. This
is in contrast to the standard classes, which by default use the American letter paper format.

Please note that when using these options with one of the KOMA-Script classes, it must
be used either as a class option, or passed via \KOMAoptions or \KOMAoption after loading
the class. Changing of this option after loading the typearea package does not result in an
automatic recalculation of the type-area. Instead, the changes only take effect at the next
recalculation of the type-area. For recalculation of the type-area, refer to the DIV option with
the values last or current (see page 33) or the \recalctypearea command (see page 35).

’ pagesize=output driver ‘

The above-mentioned mechanisms for choice of paper format only affect the output insofar as
internal IATEX lengths are set. The typearea package then uses them in the division of the page
into type-area and margins. The specification of the DVI formats, however, does not include any
indications of paper format. If printing is done directly from DVI format to a low-level printer
language such as PCL or ESC/P2, this is usually not an issue since with this output also the
zero-position is at the top left, identical to DVI. If, however, translation is made into a language
such as PostScript or PDF, in which the zero-position is at a different point, and in which also the
paper format should be specified in the output data, then this information is missing. To solve this
problem, the respective drivers use a predefined paper size, which the user can change either by
means of an option or via a corresponding command in the TEX source file. When using the DVI
driver dvips the information can be given in the form of a \special command. With pdf TEX or
VTEX one sets instead two lengths.

With option pagesize you may select an output driver for writing the paper size into
the destination document. Supported output drivers are listed at table 2.6. The default is
pagesize=false. Usage of option pagesize without value is same like pagesize=auto.

Example: Assume that a document should be available both as a DVI data file and in PDF
format for online viewing. Then the preamble might begin as follows:
\documentclass{article}
\usepackage [paper=A4,pagesize]{typearea}

If the pdfTEX engine is used and PDF output is activated, then the two lengths
\pdfpagewidth and \pdfpageheight are set appropriately. If, however, a DVI
data file is created —regardless of whether by IWTEX or by pdfIXTEX —then a
\special is written at the start of this data file.

It is recommended always to specify this option. Generally the method without output
driver, or with auto or automedia, is useful.

44

Chapter 2.

Table 2.6.: Output driver for option pagesize=output driver

auto
Uses output driver pdftex if pdfTEX-specific registers \pdfpagewidth and
\pdfpageheight are defined. In addition, output driver dvips will be used.
automedia

Almost the same as auto but if the VTEX-specific registers \mediawidth and
\mediaheight are defined, they will be set additionally.

false, no, off
Doesn’t set any output driver and doesn’t send page size information to the output
driver.

dvipdfmx
Writes paper size into DVI files using \special{pagesize=width ,height}. The
name of the output driver is dvipdfmx because application dvipdfmx handles such
specials not only at document preamble but at the document body too.

dvips
Using this option at the document preamble sets paper size using
\special{pagesize=width ,height}. While application dvips cannot han-
dle changes of paper size at the inner document pages a hack is needed to achieve
such changes. Use changes of paper size after \begin{document} on your own risk,
if you are using dvips!

pdftex
Sets paper size using the pdfTEX-specific registers \pdfpagewidth and
\pdfpageheight. You may do this at any time in your document.

2.8. Tips

For theses many rules exist that violate even the most elementary rules of typography. The
reasons for such rules include typographical incompetence of those making them, but also
the fact that they were originally meant for mechanical typewriters. With a typewriter or
a primitive text processor dating back to the early 1980s, it was not possible to produce
typographically correct output without extreme effort. Thus rules were created that appeared
to be achievable and still allowed easy correction. To avoid short lines made worse by ragged
margins, the margins were kept narrow and the line spacing was increased to 1.5 for corrections.
Before the advent of modern text processing systems, single-spaced would have been the only
alternative —other than with TEX. In such a single-spaced document even correction signs
would have been difficult to add. When computers became more widely available for text

45

Chapter 2.

processing, some students tried to use a particularly “nice” font to make their work look
better than it really was. They forgot however that such fonts are often more difficult to read
and therefore unsuitable for this purpose. Thus two bread-and-butter fonts became widely
used which neither fit together nor are particularly suitable for the job. In particular Times
is a relatively narrow font which was developed at the beginning of the 20" century for the
narrow columns of British newspapers. Modern versions usually are somewhat improved. But
still the Times font required in many rules does not really fit to the margin sizes prescribed.

IXTEX already uses sufficient line spacing, and the margins are wide enough for corrections.
Thus a page will look generous, even when quite full of text.

To some extent, the questionable rules are difficult to implement in KTEX. A fixed number
of characters per line can be kept only when a non-proportional font is used. There are very
few good non-proportional fonts available. Hardly a text typeset in this way looks really good.
In many cases font designers try to increase the serifs on the ‘i’ or ‘I’ to compensate for the
different character width. This cannot work and results in a fragmented and agitated-looking
text. If one uses INTEX for one’s paper, some of these rules have to be either ignored or at
least interpreted generously. For example one may interpret “60 characters per line” not as a
fixed, but as an average or maximal value.

As executed, record regulations are usually intended to obtain a usable result even if the
author does not know what needs to be considered. Usable frequently means readable and
correctable. In the author’s opinion the type-area of a text set with IXTEX and the typearea
package meets these criteria well right from the start. Thus if one is confronted with regulations
which deviate obviously substantially from it, then the author recommends submitting an
extract from the text to the responsible person and inquiring whether it is permitted to
submit the work despite deviations in the format. If necessary the type area can be moderately
adapted by modification of option DIV. The author advises against the use of \areaset for
this purpose however. In the worst case one may make use of the geometry package (see
[|), which is not part of KOMA-Script, or change the type-area parameters of KTEX.
One may find the values determined by typearea in the log file of one’s document. Thus
moderate adjustments should be possible. However, one should make absolutely sure that
the proportions of the text area correspond approximately to those of the page including
consideration of the binding correction.

If it should prove absolutely necessary to set the text with a line spacing of 1.5, then one
should not under any circumstances redefine \baselinestretch. Although this procedure
is recommended all too frequently, it has been obsolete since the introduction of KTEX 2¢ in
1994. In the worst case one may use the instruction \linespread. The author recommends
the package setspace (see |]), which is not part of KOMA-Script. Also one should let
typearea recalculate a new type-area after the conversion of the line spacing. However, one
should switch back to the normal line spacing for the title, preferably also for the table contents
and various listings —as well as the bibliography and the index. The setspace package offers
for this a special environment and its own instructions.

46

Chapter 2.

The typearea package, even with option DIV=calc, calculates a very generous text area.
Many conservative typographers will state that the resulting line length is still excessive. The
calculated DIV value may be found in the log file for the respective document. Thus one can
select a smaller value easily after the first KTEX run.

The question is not infrequently put to the author, why he spends an entire chapter dis-
cussing type-area calculations, when it would be very much simpler to merely give the world a
package with which anyone can adjust the margins like in a word processor. Often it is added
that such a package would in any case be the better solution, since everyone can judge for them-
selves how good margins are to be chosen, and that the margins calculated by KOMA-Script
are anyway not that great. The author takes the liberty of translating a suitable quotation
from |]. One may find the original German words in the German scrguide.

The practice of doing things oneself is long-since widespread, but the results are
often dubious because layman typographers do not see what is incorrect and can-
not know what is important. Thus one becomes accustomed to incorrect and poor
typography. [...] Now the objection could be made that typography is dependent
on taste. If it concerned decoration, perhaps one could let that argument slip by;
however, since typography is primarily concerned with information, errors cannot
only irritate, but may even cause damage.

47

Chapter 3.

The Main Classes: scrbook, scrreprt, and scrartcl

The main classes of the KOMA-Script bundle are designed as counterparts to the standard
TEX classes. This means that the KOMA-Script bundle contains replacements for the three
standard classes: book, report, and article. There is also a replacement for the standard
class letter. The document class for letters is described in a separate chapter, because it is
fundamentally different from the three main classes (see chapter 4).

The simplest way to use a KOMA-Script class instead of a standard one is to substitute
the class name in the \documentclass command according to table 3.1. For example, you
may replace \documentclass{book} by \documentclass{scrbook}. Normally, the document
should be processed without errors by IATEX, just like before the substitution. The look,
however, should be different. Additionally, the KOMA-Script classes provide new possibilities
and options that are described in the following sections.

Allow me an observation before proceeding with the descriptions of the options. It is often
the case that at the beginning of a document one is often unsure which options to choose for
that specific document. Some options, for instance the choice of paper size, may be fixed from
the beginning. But already the question of the size of the text area and the margins could be
difficult to answer initially. On the other hand, the main business of an author — planning the
document structure, writing the text, preparing figures, tables, lists, index, and other data—
should be almost independent of those settings. As an author you should concentrate initially
on this work. When that is done, you can concentrate on the fine points of presentation.
Besides the choice of options, this means correcting hyphenation, optimizing page breaks, and
the placement of tables and figures.

3.1. Early or late Selection of Options

All of what is described in section 2.4 is generally applicable.

3.2. Compatibility with Earlier Versions of KOMA -Script

It applies, mutatis mutandis, what is written in section 2.5.

Table 3.1.: Correspondence between standard classes and

KOMA-Script classes standard class KOMA-Script class
article scrartcl
report scrreprt
book scrbook

letter scrlttr2

48

Chapter 3.

3.3. Draft Mode

Many classes and packages provide a draft mode aside from the final typesetting mode. The
difference of draft and final mode may be as manifold as the classes and package that support
these modes. For instance, the graphics and the graphicx packages don’t actually output the
graphics in their own draft mode. Instead they output a framed box of the appropriate size
containing only the graphic’s file name (see | D).

’ draft=simple switch ‘

This option is normally used to distinguish between the draft and final versions of a document.

simple switch value may be any standard value from table 2.5, page 37. In particular,
switching on the option activates small black boxes that are set at the end of overly long
lines. The boxes help the untrained eye to find paragraphs that have to be treated manually.
With the default draft=false option no such boxes are shown. Such overly long lines often
vanish using package microtype |].

3.4. Page Layout

Each page of a document is separated into several different layout elements, e.g., margins,
head, foot, text area, margin note column, and the distances between all these elements.
KOMA-Script additionally distinguishes the page as a whole also known as the paper and
the viewable area of the page. Without doubt, the separation of the page into the several
parts is one of the basic features of a class. Nevertheless at KOMA-Script the classes delegate
that business to the package typearea. This package may be used with other classes too. In
difference to those other classes the KOMA-Script classes load typearea on their own. Because
of this, there’s no need to load the package explicitly with \usepackage while using a KOMA-
Script class. Nor would this make sense or be useful. See also section 3.1.

Some settings of KOMA-Script classes do influence the page layout. Those effects will be
documented at the corresponding settings.

For more information about page size, separation of pages into margins and type area, and
about selection of one or two column typesetting see the documentation of package typearea.
You may find it at chapter 2 from page 23 onwards.

\flushbottom
\raggedbottom

In double-sided documents, it's preferred to have the same visual baseline in not only the first lines
of the text areas in a double-side spread, but also in the last lines. If pages consist of text without
paragraphs or headlines only, this is the result in general. But a paragraph distance of half of a
line would be enough to prevent achieving this, if the difference in the number of paragraphs on
each page of the double-page spread is odd-numbered. In this case at least some of the paragraph

49

Chapter 3.

distances need to be shrunk or stretched to fit the rule again. TEX knows shrinkable and stretchable
distances for this purpose. IATEX provides an automatism for this kind of vertical adjustment.

Using double-sided typesetting with option twoside (see section 2.4, page 36) switches on
vertical adjustment also. Alternatively, vertical adjustment may be switched on at any time
valid from the current page using \flushbottom. \raggedbottom would have the opposite
effect, switching off vertical adjustment from the current page on. This is also the default at
one-sided typesetting.

By the way, KOMA-Script uses a slightly modified kind of abdication of vertical adjustment.
This has been done to move footnotes to the bottom of the text area instead of having them
close to the last used text line.

3.5. Selection of the Document Font Size

The main document font size is one of the basic decisions for the document layout. The
maximum width of the text area, and therefore splitting the page into text area and margins,
depends on the font size as stated in chapter 2. The main document font will be used for most
of the text. All font variations either in mode, weight, declination, or size should relate to the
main document font.

’ fontsize=size ‘

In contrast to the standard classes and most other classes that provide only a very limited
number of font sizes, the KOMA-Script classes offer the feature of selection of any desired
size for the main document font. In this context, any well known TEX unit of measure may
be used and using a number without unit of measure means pt.

If you use this option inside the document, the main document font size and all dependent
sizes will change from this point. This may be useful, e.g., if the appendix should be set
using smaller fonts on the whole. It should be noted that changing the main font size does
not result in an automatic recalculation of type area and margins (see \recalctypearea,
section 2.4, page 35). On the other hand, each recalculation of type area and margins will be
done on the basis of the current main font size. The effects of changing the main font size to
other additionally loaded packages depend on those packages. This may even result in error
messages or typesetting errors, which cannot be considered a fault of KOMA-Script.

This option is not intended to be a substitution for \fontsize (see []). Also, you
should not use it instead of one of the main font depending font size commands \tiny up to
\Huge!

The default at scrbook, scrreprt, and scrartcl is fontsize=11pt. In contrast, the default of
the standard classes would be 10pt. You may attend to this if you switch from a standard
class to a KOMA-Script class.

50

Chapter 3.

3.6. Text Markup

ITEX offers different possibilities for logical and direct markup of text. Selection of the font
family commands, as well as choosing the font size and width is supported. More information
about the standard font facilities may be found at |], [], and [].

Tezt
\textsubscript{Tezt}

The BETEX-Kern already defines the command \textsuperscript to superscript text. Un-
fortunately, KTEX itself does not offer a command to produce text in subscript instead of
superscript. KOMA-Script defines \textsubscript for this purpose.

Example:

You are writing a text on human metabolism. From time to time you have to
give some simple chemical formulas in which the numbers are in subscript. For
enabling logical markup you first define in the document preamble or in a separate
package:

\newcommand*{\molec} [2] {#1\textsubscript{#2}}
Using this you then write:

The cell produces its energy partly from reaction of \molec C6\molec
H{12}\molec 06 and \molec 02 to produce \molec H2\Molec 0O{} and
\molec C{}\molec 02. However, arsenic (\molec{As}{}) has a quite
detrimental effect on the metabolism.

The output looks as follows:

The cell produces its energy from reaction of C¢H1206 and Og to produce

Hy0 and CO;. However, arsenic (As) has a quite detrimental effect on
the metabolism.

Some time later you decide that the chemical formulas should be typeset in sans
serif. Now you can see the advantages of using logical markup. You only have the
redefine the \molec command:

\newcommand*{\molec}[2] {\textsf{#1\textsubscript{#2}}}

Now the output in the whole document changes to:

The cell produces its energy partly from reaction of CgH120¢ and O to

produce HO and CO,. However, arsenic (As) has a quite detrimental
effect on the metabolism.

In the example above, the notation “\molec C6" is used. This makes use of the fact that
arguments consisting of only one character do not have to be enclosed in parentheses. That is why

51 Chapter 3.

“\molec C6" is similar to “\molec{C}{6}". You might already know this from indices or powers
in mathematical environments, such as “$x~2$" instead of “$x~{2}$" for “z2".

\setkomafont{element }{commands }
\addtokomafont{element }{commands}
\usekomafont{element}

With the help of the two commands \setkomafont and \addtokomafont, it is possible to
define the commands that change the characteristics of a given element. Theoretically, all
possible statements including literal text could be used as commands. You should, however,
absolutely limit yourself to those statements that really switch only one font attribute. This
will usually be the commands \normalfont, \rmfamily, \sffamily, \ttfamily, \mdseries,
\bfseries, \upshape, \itshape, \slshape, and \scshape, as well as the font size commands
\Huge, \huge, \LARGE, \Large, \large, \normalsize, \small, \footnotesize, \scriptsize,
and \tiny. The description of these commands can be found in [I, [|, or
[]. Color switching commands like \normalcolor (see |] and |]) are also
acceptable. The behavior when using other commands, especially those that make redefinitions
or generate output, is not defined. Strange behavior is possible and does not represent a bug.

The command \setkomafont provides a font switching command with a completely new
definition. In contrast to this, the \addtokomafont command merely extends an existing
definition. It is recommended to not use both commands inside the document body, but
only in the document preamble. Usage examples can be found in the paragraphs on the
corresponding element. Names and meanings of the individual items are listed in table 3.2.
The default values are shown in the corresponding paragraphs.

The command \usekomafont can change the current font specification to the one currently
used with the specified element .

Example: Assume that you want to use for the element captionlabel the same font speci-
fication that is used with descriptionlabel. This can be easily done with:

\setkomafont{captionlabel}{/
\usekomafont{descriptionlabell}/
}

You can find other examples in the paragraphs on each element.

Table 3.2.: Elements whose type style can be changed with the KOMA-Script command \setkomafont
or \addtokomafont

caption
text of a table or figure caption (see section 3.20, page 111)

52

Chapter 3.

Table 3.2.: Elements whose type style can be changed (continuation)

captionlabel
label of a table or figure caption; used according to the element caption (see sec-
tion 3.20, page 111)

chapter
title of the sectional unit \chapter (see section 3.16, page 85)

chapterentry
table of contents entry of the sectional unit \chapter (see section 3.9, page 63)

chapterentrypagenumber
page number of the table of contents entry of the sectional unit \chapter, variation
on the element chapterentry (see section 3.9, page 63)

chapterprefix
chapter number line at setting chapterprefix=true or appendixprefix=true (see
section 3.16, page 80)

descriptionlabel
labels, i.e., the optional argument of \item in the description environment (see
section 3.18, page 101)

dictum
dictum, wise saying, or smart slogan (see section 3.17, page 97)

dictumauthor
author of a dictum, wise saying, or smart slogan; used according to the element
dictumtext (see section 3.17, page 97)

dictumtext
another name for dictum

disposition
all sectional unit titles, i.e., the arguments of \part down to \subparagraph and
\minisec, including the title of the abstract; used before the element of the corre-
sponding unit (see section 3.16 ab page 80)

footnote
footnote text and marker (see section 3.14, page 76)

53

Chapter 3.

Table 3.2.: Elements whose type style can be changed (continuation)

footnotelabel
mark of a footnote; used according to the element footnote (see section 3.14,
page 76)

footnotereference
footnote reference in the text (see section 3.14, page 76)

footnoterule
horizontal rule above the footnotes at the end of the text area (see section 3.14,
page 79)

labelinglabel
labels, i.e., the optional argument of \item in the labeling environment (see sec-
tion 3.18, page 102)

labelingseparator
separator, i.e., the optional argument of the 1abeling environment; used according
to the element labelinglabel (see section 3.18, page 102)

minisec
title of \minisec (see section 3.16 ab page 90)

pagefoot
only used if package scrpage? has been loaded (see chapter 5, page 201)

pagehead
another name for pageheadfoot

pageheadfoot
the head of a page, but also the foot of a page (see section 3.12 ab page 68)

pagenumber
page number in the header or footer (see section 3.12)

pagination
another name for pagenumber

paragraph
title of the sectional unit \paragraph (see section 3.16, page 85)

54

Chapter 3.

Table 3.2.: Elements whose type style can be changed (continuation)

part
title of the \part sectional unit, without the line containing the part number (see
section 3.16, page 85)

partentry

table of contents entry of the sectional unit \part (see section 3.9, page 63)

partentrypagenumber
Page number of the table of contents entry of the sectional unit \part variation on
the element partentry (see section 3.9, page 63)

partnumber
line containing the part number in a title of the sectional unit \part (see section 3.16,
page 85)

section
title of the sectional unit \section (see section 3.16, page 85)

sectionentry
table of contents entry of sectional unit \section (only available in scrartcl, see
section 3.9, page 63)

sectionentrypagenumber
page number of the table of contents entry of the sectional unit \section, variation
on element sectionentry (only available in scrartcl, see section 3.9, page 63)

sectioning
another name for disposition

subject
categorization of the document, i.e., the argument of \subject on the main title
page (see section 3.7, page 57)

subparagraph
title of the sectional unit \subparagraph (see section 3.16, page 85)

subsection
title of the sectional unit \subsection (see section 3.16, page 85)

subsubsection
title of the sectional unit \subsubsection (see section 3.16, page 85)

55

Chapter 3.

Table 3.2.: Elements whose type style can be changed (continuation)

subtitle
subtitle of the document, i.e., the argument of \subtitle on the main title page
(see section 3.7, page 57)

title
main title of the document, i. e., the argument of \title (for details about the title
size see the additional note in the text of section 3.7 from page 57)

3.7. Document Titles

In general we distinguish two kinds of document titles. First known are title pages. In this
case the document title will be placed together with additional document information, like the
author, on a page of its own. Besides the main title page, several further title pages may exist,
like the half-title or bastard title, publisher data, dedication, or similar. The second known
kind of document title is the in-page title. In this case, the document title is placed at the top
of a page and specially emphasized, and may be accompanied by some additional information
too, but it will be followed by more material in the same page, for instance by an abstract, or
the table of contents, or even a section.

’ titlepage=simple switch ‘

Using \maketitle (see page 56), this option switches between document title pages and in-
page title. For simple switch, any value from table 2.5, page 37 may be used.

The option titlepage=true or titlepage makes ITEX use separate pages for the titles.
Command \maketitle sets these pages inside a titlepage environment and the pages nor-
mally have neither header nor footer. In comparison with standard KTEX, KOMA-Script
expands the handling of the titles significantly.

The option titlepage=false specifies that an in-page title is used. This means that the
title is specially emphasized, but it may be followed by more material on the same page, for
instance by an abstract or a section.

The default of classes scrbook and scrreprt is usage of title pages. Class scrartcl, on the other
hand, uses in-page titles as default.

\begin{titlepage}

\end{titlepage}

With the standard classes and with KOMA-Script, all title pages are defined in a special
environment, the titlepage environment. This environment always starts a new page—in

56

Chapter 3.

the two-sided layout a new right page—and in single column mode. For this page, the style
is changed by \thispagestyle{empty}, so that neither page number nor running heading are
output. At the end of the environment the page is automatically shipped out. Should you not
be able to use the automatic layout of the title pages provided by \maketitle, that will be
described next; it is advisable to design a new one with the help of this environment.

Example: Assume you want a title page on which only the word “Me” stands at the top on
the left, as large as possible and in bold —no author, no date, nothing else. The
following document creates just that:

\documentclass{scrbook}
\begin{document}
\begin{titlepage}
\textbf{\Huge Me}
\end{titlepage}
\end{document}

It’s simple, isn’t it?

| \maketitle[page number] |

While the the standard classes produce at least one title page that may have the three items
title, author, and date, with KOMA-Script the \maketitle command can produce up to six
pages. In contrast to the standard classes, the \maketitle macro in KOMA-Script accepts an
optional numeric argument. If it is used, this number is made the page number of the first title
page. However, this page number is not output, but affects only the numbering. You should
choose an odd number, because otherwise the whole count gets mixed up. In my opinion there
are only two meaningful applications for the optional argument. On the one hand, one could
give to the half-title the logical page number —1 in order to give the full title page the number
1. On the other hand, it could be used to start at a higher page number, for instance, 3, 5, or
7, to accommodate other title pages added by the publishing house. The optional argument
is ignored for in-page titles. However, the page style of such a title page can be changed by
redefining the \titlepagestyle macro. For that see section 3.12, page 70.

The following commands do not lead immediately to the ship-out of the titles. The typeset-
ting and ship-out of the title pages are always done by \maketitle. By the way, you should
note that \maketitle should not be used inside a titlepage environment. Like shown in the
examples, one should use either \maketitle or titlepage only, but not both.

The commands explained below only define the contents of the title pages. Because of this,
they have to be used before \maketitle. It is, however, not necessary and, when using, e. g.,
the babel package, not recommended to use these in the preamble before \begin{document}
(see []). Examples can be found at the end of this section.

57

Chapter 3.

[\extratitle{half-title} |

In earlier times the inner book was often not protected from dirt by a cover. This task was then
taken over by the first page of the book which carried mostly a shortened title called the half-title.
Nowadays the extra page is often applied before the real full title and contains information about
the publisher, series number and similar information.

With KOMA-Script it is possible to include a page before the real title page. The
half-title can be arbitrary text — even several paragraphs. The contents of the half-title
are output by KOMA-Script without additional formatting. Their organisation is completely
left to the user. The back of the half-title remains empty. The half-title has its own title page
even when in-page titles are used. The output of the half-title defined with \extratitle takes
place as part of the titles produced by \maketitle.

Example: Let’s go back to the previous example and assume that the spartan “Me” is the
half-title. The full title should still follow the half-title. One can proceed as follows:

\documentclass{scrbook}

\begin{document}
\extratitle{\textbf{\Huge Mel}}
\title{It’s me}
\maketitle

\end{document}

You can center the half-title horizontally and put it a little lower down the page:

\documentclass{scrbook}
\begin{document}
\extratitle{\vspace*{4\baselineskip}
\begin{center}\textbf{\Huge Mel}\end{center}}
\title{It’s me}
\maketitle
\end{document}

The command \title is necessary in order to make the examples above work
correctly. It is explained next.

\titlehead{title head}
\subject{subject}
\title{title}
\subtitle{subtitle}
\author{author}
\date{date}
\publishers{publisher}
\and

\thanks{ footnote}

The contents of the full title page are defined by seven elements. The output of the full title
page occurs as part of the title pages of \maketitle, whereas the now listed elements only

58 Chapter 3.

Table 3.3.: Font defaults for

the elements of the title Element name Default
subject \normalfont\normalcolor\bfseries\Large
title \usekomafont{disposition}
subtitle \usekomafont{title}\large

define the corresponding elements.
The title head is defined with the command \titlehead. It is typeset in regular justifi-
cation and full width at the top of the page. It can be freely designed by the user.
v2.95 The subject is output immediately above the title. Thereby the font switching of element
subject will be used. The default, that may be found in table 3.3, may be changed using the
commands \setkomafont and \addtokomafont (see section 3.6, page 51).
v2.8p The title is output with a very large font size. Besides the change of size, the settings for
the element title also take effect. By default these settings are identical to the settings for
the element disposition (see table 3.2, page 51). The default settings may be changed using
the commands \setkomafont and \addtokomafont (see section 3.6, page 51). The font size
is, however, not affected (see table 3.2, page 59).
m The subtitle is set just below the title, in a font determined by the element subtitle.
The default, seen in table 3.3, can be changed with the help of the commands \setkomafont
and \addtokomafont (see section 3.6, page 51).

Below the subtitle appears the author. Several authors can be specified in the argument
of \author. They should be separated by \and.

Below the author or authors appears the date. The default value is the present date, as
produced by \today. The \date command accepts arbitrary information—even an empty
argument.

Finally comes the publisher. Of course this command can also be used for any other
information of little importance. If necessary, the \parbox command can be used to typeset
this information over the full page width like a regular paragraph instead of centering it. Then
it is to be considered equivalent to the title head. However, note that this field is put above
any existing footnotes.

Footnotes on the title page are produced not with \footnote, but with \thanks. They serve
typically for notes associated with the authors. Symbols are used as footnote markers instead
of numbers. Note, that \thanks has to be used inside the argument of another command,
e.g., at the argument author of the command \author.

With the exception of titlehead and possible footnotes, all the items are centered hori-
zontally. The information is summarised in table 3.4.

Example: Assume you are writing a dissertation. The title page should have the university’s
name and address at the top, flush left, and the semester, flush right. As usual, a
title is to be used, including author and delivery date. The adviser must also be

Chapter 3.

Table 3.4.: Font size

and horizontal posi- Element Command Font Orientation

tioning of the ele-

ments in the main ti- Litle head \titlehead \normalsize justified

tle page in the or- Subject \subject \usekomafont{subject} centered

der of their vertical Title \title \huge\usekomafont{title} centered

position from top to Subtitle \subtitle \usekomafont{subtitle} centered

bottom when type- Aythors \author \Large centered

set with \maketitle Date \date \Large centered
Publishers \publishers \Large centered

indicated, together with the fact that the document is a dissertation. This can be
obtained as follows:

\documentclass{scrbook}
\usepackage [english]{babel}
\begin{document}
\titlehead{{\Large Unseen University
\hfill SS~2002\\}

Higher Analytical Institute\\

Mythological Rd\\

34567 Etherworld}
\subject{Dissertation}
\title{Digital space simulation with the DSP\,56004}
\subtitle{Short but sweet?}
\author{Fuzzy George}
\date{30. February 2002}
\publishers{Adviser Prof. John Eccentric Doe}
\maketitle
\end{document}

A frequent misunderstanding concerns the role of the full title page. It is often erroneously
assumed that the cover or dust cover is meant. Therefore, it is frequently expected that the title
page does not follow the normal page layout, but has equally large left and right margins.

However, if one takes a book and opens it, one notices very quickly at least one title page under
the cover within the so-called inner book. Precisely these title pages are produced by \maketitle.

As is the case with the half-title, the full title page belongs to the inner book, and therefore
should have the same page layout as the rest of the document. A cover is actually something that
should be created in a separate document. The cover often has a very individual format. It can
also be designed with the help of a graphics or DTP program. A separate document should also
be used because the cover will be printed on a different medium, possibly cardboard, and possibly
with another printer.

60

scrartcl,
scrreprt

oot

Chapter 3.

\uppertitleback{titlebackhead?}
\lowertitleback{titlebackfoot}

With the standard classes, the back of the title page of a double-side print is left empty.
However, with KOMA-Script the back of the full title page can be used for other information.
Exactly two elements which the user can freely format are recognized: titlebackhead and
titlebackfoot. The head can reach up to the foot and vice versa. If one takes this manual as
an example, the exclusion of liability was set with the help of the \uppertitleback command.

’ \dedication{dedication}

KOMA-Script provides a page for dedications. The dedication is centered and uses a slightly
larger type size. The back is empty like the back page of the half-title. The dedication page
is produced by \maketitle and must therefore be defined before this command is issued.

Example: This time assume that you have written a poetry book and you want to dedicate
it to your wife. A solution would look like this:

\documentclass{scrbook}
\usepackage [english] {babel}
\begin{document}
\extratitle{\textbf{\Huge In Lovel}}
\title{In Love}
\author{Prince Ironheart}
\date{1412}
\lowertitleback{This poem book was set with/
the help of {\KOMAScript} and {\LaTeX}}
\uppertitleback{Selfmockery Publishers}
\dedication{To my treasure hazel-hen\\
in eternal love\\
from your dormouse.}
\maketitle
\end{document}

Please use your own favorite pet names.

3.8. Abstract

Particularly with articles, more rarely with reports, there is a summary directly under the
title and before the table of contents. When using an in-page title, this summary is normally
a kind of left- and right-indented block. In contrast to this, a kind of chapter or section is
printed using title pages.

’ abstract=simple switch ‘

In the standard classes the abstract environment sets the text “Abstract” centered before

61

scrartcl,
scrreprt

Chapter 3.

the summary text. This was normal practice in the past. In the meantime, newspaper reading
has trained readers to recognize a displayed text at the beginning of an article or report as
the abstract. This is even more true when the text comes before the table of contents. It is
also surprising when precisely this title appears small and centered. KOMA-Script provides
the possibility of including or excluding the abstract’s title with the options abstract. For
simplex switch, any value from table 2.5, page 37 may be used.

Books typically use another type of summary. In that case there is usually a dedicated
summary chapter at the beginning or end of the book. This chapter is often combined with
the introduction or a description of wider prospects. Therefore, the class scrbook has no
abstract environment. A summary chapter is also recommended for reports in a wider sense,
like a Master’s or Ph.D. thesis.

\begin{abstract}

\end{abstract}

Some KTEX classes offer a special environment for this summary, the abstract environment.
This is output directly, as it is not a component of the titles set by \maketitle. Please note
that abstract is an environment, not a command. Whether the summary has a heading or
not is determined by the option abstract (see above).

With books (scrbook) the summary is frequently a component of the introduction or a
separate chapter at the end of the document. Therefore no abstract environment is provided.
When using the class scrreprt it is surely worth considering whether one should not proceed
likewise. See commands \chapter* and \addchap or \addchap* at section 3.16 from page 89
onwards.

When using an in-page title (see option titlepage, section 3.7, page 55), the abstract is set
using the environment quotation (see section 3.18, page 104) internally. Thereby paragraphs
will be set with intention of the first line. If that first paragraph of the abstract should not be
intended, this indent may be disabled using \noindent just after \begin{abstract}.

3.9. Table of Contents

The table of contents is normally set after the document title and an optional existing abstract.
Often one may find additional lists of floating environments, e. g., the list of tables and the
list of figures, after the table of contents (see section 3.20).

’ toc=selection ‘

It is becoming increasingly common to find entries in the table of contents for the lists of tables
and figures, for the bibliography, and, sometimes, even for the index. This is surely also related
to the recent trend of putting lists of figures and tables at the end of the document. Both lists
are similiar to the table of contents in structure and intention. I'm therefore sceptical of this

62

v2.8q

v3.00

Chapter 3.

evolution. Since it makes no sense to include only one of the lists of tables and figures in the
table of contents, there exists only one selection listof that causes entries for both types
of lists to be included. This also includes any lists produced with version 1.2e or later of the
float package (see |]) or the floatrow (see |]). All these lists are unnumbered, since
they contain entries that reference other sections of the document. If one wants to ignore this
general agreement, one may use selection listofnumbered.

The option index=totoc causes an entry for the index to be included in the table of contents.
The index is unnumbered since it too only includes references to the contents of the other
sectional units. KOMA-Script does not have support to ignore this general agreement.

The bibliography is a different kind of listing. It does not list the contents of the present
document but refers instead to external documents. For that reason, it could be argued
that it qualifies as a chapter (or section) and, as such, should be numbered. The option
toc=bibliographynumbered has this effect, including the generation of the corresponding
entry in the table of contents. I personally think that this reasoning would lead us to consider
a classical list of sources also to be a separate chapter. On the other hand, the bibliography
is finally not something that was written by the document’s author. In view of this, the
bibliography merits nothing more than an unnumbered entry in the table of contents, and
that can be achieved with toc=bibliography.

The table of contents is normally set up so that different sectional units have different
indentations. The section number is set left-justified in a fixed-width field. This default setup
is selected with the option toc=graduated.

When there are many sections, the corresponding numbering tends to become very wide, so
that the reserved field overflows. The German FAQ [Wik] suggests that the table of contents
should be redefined in such a case. KOMA-Script offers an alternative format that avoids the
problem completely. If the option toc=flat is selected, then no variable indentation is applied
to the titles of the sectional units. Instead, a table-like organisation is used, where all unit
numbers and titles, respectively, are set in a left-justified column. The space necessary for the
unit numbers is thus determined automatically.

The table 3.5 shows an overview of possible values for selection of toc.

Table 3.5.: Possible values of option toc to set form and contents of the table of contents

bibliography, bib
The bibliography will be represented by an entry at the table of contents, but will
not be numbered.

bibliographynumbered, bibnumbered, numberedbibliography, numberedbib
The bibliography will be represented by an entry at the table of contents and will
be numbered.

63 Chapter 3.

Table 3.5.: Possible values of option toc (continuation)

flat, left
The table of contents will be set in table form. The numbers of the headings will be
at the first column, the heading text at the second column, and the page number at
the third column. The amount of space needed for the numbers of the headings will
be determined by the detected needed amount of space at the previous KITEX run.

graduated, indent, indented
The table of contents will be set in hierarchical form. The amount of space for the
heading numbers is limited.

index, idx
The index will be represented by an entry at the table of contents, but will not be
numbered.

listof
The lists of floating environments, e. g., the list of figures and the list of tables, will
be represented by entries at the table of contents, but will not be numbered.

listofnumbered, numberedlistof
The lists of floating environments, e. g., the list of figures and the list of tables, will
be represented by entries at the table of contents and will be numbered.

nobibliography, nobib
The bibliography will not be represented by an entry at the table of contents.

noindex, noidx
The index will not be represented by an entry at the table of contents.

nolistof
The lists of floating environments, e. g., the list of figures and the list of tables, will
not be represented by entries at the table of contents.

’ \tableofcontents ‘

The production of the table of contents is done by the \tableofcontents command. To get
a correct table of contents, at least two I¥TEX runs are necessary after every change. The
contents and the form of the table of contents may be influenced with the above described
option toc. After changing the settings of this option, at least two IATEX runs are needed
again.

The entry for the highest sectional unit below \part, i.e., \chapter with scrbook and
scrreprt or \section with scrartcl is not indented. There are no dots between the text of the

64

Chapter 3.
Table 3.6.: Font style de-
faults of the elements of Element Default font style
the table of contents
partentry \usekomafont{disposition}\large
partentrypagenumber
chapterentry \usekomafont{disposition}
chapterentrypagenumber
sectionentry \usekomafont{disposition}

sectionentrypagenumber

sectional unit heading and the page number. The typographic reasons for this are that the
font is usually different, and the desire for appropriate emphasis. The table of contents of this
manual is a good example of these considerations. The font style is, however, affected by the
settings of the element partentry, and for classes scrbook and scrreprt by chapterentry, and
for class scrartcl by sectionentry. The font style of the page numbers may be set dissenting
from these elements using partentrypagenumber and chapterentrypagenumber respectively
sectionentrypagenumber (see section 3.6, page 51, and table 3.2, page 51). The default
settings of the elements may be found at table 3.6.

tocdepth

Normally, the units included in the table of contents are all the units from \part to
\subsection for the classes scrbook and scrreprt or from \part to \subsubsection for the
class scrartcl. The inclusion of a sectional unit in the table of contents is controlled by the
counter tocdepth. This has the value —1 for \part, 0 for \chapter, and so on. By increment-
ing or decrementing the counter, one can choose the lowest sectional unit level to be included
in the table of contents. The same happens with the standard classes.

The user of the scrpage2 package (see chapter 5) does not need to remember the numerical
values of each sectional unit. They are given by the values of the macros \chapterlevel,
\sectionlevel, and so on, down to \subparagraphlevel.

Example: Assume that you are preparing an article that uses the sectional unit
\subsubsection. However, you don’t want this sectional unit to appear in the
table of contents. The preamble of your document might contain the following:

\documentclass{scrartcl}
\setcounter{tocdepth}{2}

You set the counter tocdepth to 2 because you know that this is the value for
\subsection. If you know that scrartcl normally includes all levels down to
\subsubsection in the table of contents, you can simply decrement the counter
tocdepth by one:

\documentclass{scrartcl}
\addtocounter{tocdepth}{-1}

65

Chapter 3.

How much you should add to or subtract from the tocdepth counter can also be
found by looking at the table of contents after the first IIEX run.

A small hint in order that you do not need to remember which sectional unit has which number:
in the table of contents count the number of units required extra or less and then, as in the
above example, use \addtocounter to add or subtract that number to or from tocdepth.

3.10. Paragraph Markup

The standard classes normally set paragraphs indented and without any vertical inter-
paragraph space. This is the best solution when using a regular page layout, like the ones
produced with the typearea package. If neither indentation nor vertical space is used, only
the length of the last line would give the reader a reference point. In extreme cases, it is
very difficult to detect whether a line is full or not. Furthermore, it is found that a marker
at the paragraph’s end tends to be easily forgotten by the start of the next line. A marker
at the paragraph’s beginning is more easily remembered. Inter-paragraph spacing has the
drawback of disappearing in some contexts. For instance, after a displayed formula it would
be impossible to detect if the previous paragraph continues or if a new one begins. Also, when
starting to read at the top of a new page it might be necessary to look at the previous page
in order determine if a new paragraph has been started or not. All these problems disappear
when using indentation. A combination of indentation and vertical inter-paragraph spacing
is extremely redundant and therefore should be avoided. The indentation is perfectly suffi-
cient by itself. The only drawback of indentation is the reduction of the line length. The
use of inter-paragraph spacing is therefore justified when using short lines, for instance in a
newspaper.

’ parskip=manner ‘

Once in a while there are requests for a document layout with vertical inter-paragraph spac-
ing instead of indentation. The KOMA-Script classes provide with option parskip several
capabilities to use inter-paragraph spacing instead of paragraph indent.

The manner consists of two elements. The first element is either full or half, meaning the
space amount of one line or only half of a line. The second element is “x”, “+” or , and
may be omitted. Without the second element the last line of a paragraph will end with white
space of at least 1 em. With the plus character as second element the white space amount will
be a third, and with the asterisk a fourth, of the width of a normal line. The minus variant
doesn’t take care about the white space at the end of the last line of a paragraph.

The setting may be changed at any place inside the document. In this case the command
\selectfont will be called implicitly. The change will be valid and may be seen from the
next paragraph.

Besides the resulting eight possible combinations for manner, the values for simple switches
shown at table 2.5, page 37 may be used. Switching on the option would be the same as

w_»

Chapter 3.

using full without annex and therefore will result in inter-paragraph spacing of one line with
at least 1em white space at the end of the last line of each paragraph. Switching off the
options would reactivate the default of 1em indent at the first line of the paragraph instead
of paragraph spacing. All the possible values of option parskip are shown in table 3.7.

Table 3.7.: Possible values of option parskip to select the paragraph mark

false, off, no
paragraph indentation instead of vertical space; the last line of a paragraph may be
arbitrarily filled

full, true, on, yes
one line vertical space between paragraphs; there must be at least 1 em free space in
the last line of a paragraph

full-
one line vertical space between paragraphs; the last line of a paragraph may be
arbitrarily filled

full+
one line vertical space between paragraphs; there must be at least a third of a line
free space at the end of a paragraph

fullx*
one line vertical space between paragraphs; there must be at least a quarter of a line
free space at the end of a paragraph

half
half a line vertical space between paragraphs; there must be at least 1 em free space
in the last line of a paragraph

half-
one line vertical space between paragraphs

half+
half a line vertical space between paragraphs; there must be at least a third of a line
free space at the end of a paragraph

halfx*

half a line vertical space between paragraphs; there must be at least a quarter of a
line free space at the end of a paragraph

67

Chapter 3.

Table 3.7.: Possible values of option parskip (continuation)

never
there will be no inter-paragraph spacing even if additional vertical spacing is needed
for the vertical adjustment with \flushbottom

All eight full and half option values also change the spacing before, after, and inside
list environments. This avoids the problem of these environments or the paragraphs inside
them having a larger separation than the separation between the paragraphs of normal text.
Additionally, these options ensure that the table of contents and the lists of figures and tables
are set without any additional spacing.

The default behaviour of KOMA-Script follows parskip=false. In this case, there is no
spacing between paragraphs, only an indentation of the first line by 1em.

3.11. Detection of Odd and Even Pages

In double-sided documents we distinguish left and right pages. Left pages always have an
even page number, right pages always have an odd page number. Thus, they are most often
referred to as even and odd pages in this guide. This also means that the detection of a left
or right page is same as detection of even and odd page numbers.

There’s no distinction in left and right pages in single-sided documents. Nevertheless there
are pages with even or odd page numbers.

’ \ifthispageodd{true part}{false part} ‘

If one wants to find out with KOMA-Script whether a text falls on an even or odd page, one
can use the \ifthispageodd command. The true part argument is executed only if the
command falls on an odd page. Otherwise the false part argument is executed.

Example: Assume that you simply want to show whether a text will be placed onto an even
or odd page. You may achieve that using

This page has an \ifthispageodd{odd}{even}
wiBREC WA RSEilt in the output

This page has an odd page number.

Because the \ifthispageodd command uses a mechanism that is very similar to a label
and a reference to it, at least two IXTEX runs are required after every text modification. Only
then the decision is correct. In the first run a heuristic is used to make the first choice.

At section 16.1, page 282 experts may find more information about the problems detecting
left and right pages or even and odd page number.

68

scrbook,
scrreprt

scrartcl

Chapter 3.

3.12. Head and Foot Using Predefined Page Styles

One of the general characteristics of a document is the page style. In IATEX this means mostly
the contents of headers and footers.

headsepline=simple switch
footsepline=simple switch

In order to have or not to have a rule separating the header from the text body, use the option
headsepline with any value shown in table 2.5, page 37. Activation of the option will result
in such a separation line. Similarly, activation of option footsepline switches on a rule above
the foot line. Deactivation of any of the options will deactivate the corresponding rule.

These options have no effect with the page styles empty and plain, because there is no
header in this case. Such a line always has the effect of visually bringing header and text
body closer together. That doesn’t mean that the header must now be moved farther from
the text body. Instead, the header should be considered as belonging to the text body for the
purpose of page layout calculations. KOMA-Script takes this into account by automatically
passing the option headinclude to the typearea package whenever the headsepline option is
used. KOMA-Script behaves similar to footinclude using footsepline. Package scrpage2
(see chapter 5) adds additional features to this.

\pagestyle{page style}
\thispagestyle{local page style}

Usually one distinguishes four different page styles:

empty is the page style with entirely empty headers and footers. In KOMA-Script this is
completely identical to the standard classes.

headings is the page style with running headings in the header. These are headings for which
titles are automatically inserted into the header. With the classes scrbook and scrreprt
the titles of chapters and sections are repeated in the header for double-sided layout —
with KOMA-Script on the outer side, with the standard classes on the inner side. The
page number is set on the outer side of the footer with KOMA-Script; with the standard
classes it is set on the inner side of the header. In one-sided layouts only the titles of
the chapters are used and are, with KOMA-Script, centered in the header. The page
numbers are set centered in the footer with KOMA-Script. scrartcl behaves similarly, but
starting a level deeper in the section hierarchy with sections and subsections, because
the chapter level does not exist in this case.

While the standard classes automatically set running headings always in capitals,
KOMA-Script applies the style of the title. This has several typographic reasons. Cap-
itals as a decoration are actually far too strong. If one applies them nevertheless, they

69

Chapter 3.

Table 3.8.: Default values for the ele-

ments of a page style Element Default value
pagefoot
pageheadfoot \normalfont\normalcolor\slshape
pagenumber \normalfont\normalcolor

should be set in a one point smaller type size and with tighter spacing. The standard
classes do not take these points into consideration.

Beyond this KOMA-Script classes support rules below the head and above the foot using
options headsepline and footsepline which are described above.

myheadings corresponds mostly to the page style headings, but the running headings are
not automatically produced —they have to be defined by the user. The commands
\markboth and \markright can be used for that purpose (see below).

plain is the page style with empty header and only a page number in the footer. With the
standard classes this page number is always centered in the footer. With KOMA-Script
the page number appears on double-sided layout on the outer side of the footer. The
one-sided page style behaves like the standard setup.

The page style can be set at any time with the help of the \pagestyle command and takes
effect with the next page that is output. If one uses \pagestyle just before a command, that
results in an implicit page break and if the new page style should be used at the resulting new
page first, a \cleardoublepage just before \pagestyle will be useful. But usually one sets
the page style only once at the beginning of the document or in the preamble.

To change the page style of the current page only, one uses the \thispagestyle command.
This also happens automatically at some places in the document. For example, the instruction
\thispagestyle{\chapterpagestyle} is issued implicitly on the first page of a chapter.

Please note that the change between automatic and manual running headings is no longer
performed by page style changes when using the scrpage2 package, but instead via special
instructions. The page styles headings and myheadings should not be used together with
this package (see chapter 5, page 200).

In order to change the font style used in the header, footer, or for the page number, please
use the interface described in section 3.6, page 51. The same element is used for header
and footer, which you can designate with pageheadfoot. The element for the page number
within the header or footer is called pagenumber. The element pagefoot, that is additionally
supported by the KOMA-Script classes, will be used only if a page style has been defined that
has text at the foot line, using package scrpage? (see chapter 5, page 201).

The default settings can be found in table 3.8.

Example: Assume that you want to set header and footer in a smaller type size and in italics.

70

Chapter 3.

However, the page number should not be set in italics but bold. Apart from the
fact that the result will look horrible, you can obtain this as follows:

\setkomafont{pageheadfoot}{/
\normalfont\normalcolor\itshape\small

}
\setkomafont{pagenumber}{\normalfont\bfseries}

If you want only that, in addition to the default slanted variant, a smaller type
size is used, it is sufficient to use the following;:

\addtokomafont{pagehead}{\small}

As you can see, the last example uses the element pagehead. You can achieve the
same result using pageheadfoot instead (see table 3.2 on page 51).

It is not possible to use these methods to force capitals to be used automatically for the
running headings. For that, please use the scrpage2 package (see chapter 5, page 208).

If you define your own page styles, the commands \usekomafont{pageheadfootl,
\usekomafont{pagenumber}, and \usekomafont{pagefoot} can be useful. If you do not
use the KOMA-Script package scrpage2 (see chapter 5) for that, but, for example, the package
fancyhdr (see | 1), you can use these commands in your definitions. Thereby you can re-
main compatible with KOMA-Script as much as possible. If you do not use these commands
in your own definitions, changes like those shown in the previous examples have no effect. The
package scrpage? takes care to keep the maximum possible compatibility with other packages
itself.

\markboth{left mark}{right mark}
\markright{right mark}

With page style myheadings, there’s no automatic setting of the running head. Instead of this
one would set it with the help of commands \markboth and \markright. Thereby left mark
normally will be used at the head of even pages and right mark at the heads of odd pages.
With one-sided printing, only the right mark exists. Using package scrpage2, the additional
command \markleft exists.

The commands may be used with other page styles too. Combination with automatic
running head, e. g., with page style headings, limits the effect of the commands until the next
automatic setting of the corresponding marks.

\titlepagestyle
\partpagestyle
\chapterpagestyle
\indexpagestyle

For some pages, a different page style is chosen with the help of the command \thispagestyle.
Which page style this actually is, is defined by these four macros, of which \partpagestyle

71

Chapter 3.

Table 3.9.: Macros to set up page style of special pages

\titlepagestyle
Page style for a title page when using in-page titles.

\partpagestyle
Page style for the pages with \part titles.

\chapterpagestyle
Page style for the first page of a chapter.

\indexpagestyle
Page style for the first page of the index.

scrbook, and \chapterpagestyle are found only with classes scrbook and scrreprt, but not in scrartcl.
scrreprt The default value for all four cases is plain. The meaning of these macros can be taken from
table 3.9. The page styles can be redefined with the \renewcommand macro.

Example:

Assume that you want the pages with a \part heading to have no number. Then
you can use the following command, for example in the preamble of your document:

\renewcommand*{\partpagestyle}{empty}

As mentioned previously on page 68, the page style empty is exactly what is re-
quired in this example. Naturally you can also use a user-defined page style.

Assume you have defined your own page style for initial chapter pages with the
package scrpage2 (see chapter 5). You have given to this page style the fit-
ting name chapter. To actually use this style, you must redefine the macro
\chapterpagestyle accordingly:

\renewcommand*{\chapterpagestyle}{chapter}

Assume that you want the table of contents of a book to have no page numbers.
However, everything after the table of contents should work again with the page
style headings, as well as with plain on every first page of a chapter. You can
use the following commands:

\clearpage

\pagestyle{empty}
\renewcommand*{\chapterpagestyle}{empty}
\tableofcontents

\clearpage

\pagestyle{headings}
\renewcommand*{\chapterpagestyle}{plain}

Instead of the above you may do a local redefinition using a group. The advantage

72

Chapter 3.
Table 3.10.: Available numbering
numbering style example description styles of page numbers
arabic 8 Arabic numbers
roman viii lower-case Roman numbers
Roman VIII upper-case Roman numbers
alph h letters
Alph H capital letters

will be that you don’t need to know the current page style before the change to
switch back at the end.

\clearpage

\begingroup
\pagestyle{empty}
\renewcommand*{\chapterpagestyle}{empty}
\tableofcontents
\clearpage

\endgroup

But notice that you never should put a numbered head into a group. Otherwise
you may get funny results with commands like \1abel.
Whoever thinks that it is possible to put running headings on the first page of a chapter by
using the command

\renewcommand*{\chapterpagestyle}{headings}
should read more about the background of \rightmark at section 16.1, page 282.

’ \pagenumbering{numbering stylel

This command works the same way in KOMA-Script as in the standard classes. More precisely
it is a feature neither of the standard classes nor of the KOMA-Script classes but of the IXTEX
kernel. You can specify with this command the numbering style of page numbers.

The changes take effect immediately, hence starting with the page that contains the com-
mand. It is recommended to use \cleardoubleoddpage to close the last page and start a new
odd page before. The possible settings can be found in table 3.10.

Using the command \pagenumbering also resets the page counter. Thus the page number
of the next page which TEX outputs will have the number 1 in the style numbering style.

3.13. Interleaf Pages

Interleaf pages are pages that are intended to stay blank. Originally these pages were really
completely white. IXTEX, on the other hand, by default sets those pages with the current valid

73

Chapter 3.

page style. So those pages may have a head and a pagination. KOMA-Script provides several
extensions to this.

Interleaf pages may be found in books mostly. Because chapters in books commonly start
on odd pages, sometimes a left page without contents has to be added before. This is also the
reason that interleaf pages only exist in double-sided printing. The unused back sides of the
one-sided printings aren’t interleaf pages, really, although they may seem to be such pages.

cleardoublepage=page style
cleardoublepage=current

With this option, you may define the page style of the interleaf pages created by the
\cleardoublepage to break until the wanted page. Every already defined page style
(see section 3.12 from page 68 and chapter 5 from page 196) may be used. Besides this,
cleardoublepage=current is valid. This case is the default until KOMA-Script 2.98¢ and
results in interleaf page without changing the page style. Since KOMA-Script 3.00 the default
follows the recommendation of most typographers and has been changed to blank interleaf
pages with page style empty unless you switch compatibility to an earlier version (see option
version, section 3.2, page 28).

Example: Assume you want interleaf pages almost empty but with pagination. This means

you want to use page style plain. You may use following to achieve this:
\KOMAoption{cleardoublepage=plain}

More information about page style plain may be found at section 3.12, page 69.

\clearpage

\cleardoublepage
\cleardoublepageusingstyle{page style}
\cleardoubleemptypage
\cleardoubleplainpage
\cleardoublestandardpage
\cleardoubleoddusingstyle{page stylel}
\cleardoubleoddemptypage
\cleardoubleoddplainpage
\cleardoubleoddstandardpage
\cleardoubleevenusingstyle{page style}
\cleardoubleevenemptypage
\cleardoubleevenplainpage
\cleardoubleevenstandardpage

The IMTEX kernel contains the \clearpage command, which takes care that all not yet output
floats are output, and then starts a new page. There exists the instruction \cleardoublepage
which works like \clearpage but which, in the double-sided layouts (see layout option twoside
in section 2.4, page 36) starts a new right-hand page. An empty left page in the current page
style is output if necessary.

74

Chapter 3.

With \cleardoubleoddstandardpage, KOMA-Script works as described above. The
\cleardoubleoddplainpage command changes the page style of the empty left page to plain
in order to suppress the running head. Analogously, the page style empty is applied to the
empty page with \cleardoubleoddemptypage, suppressing the page number as well as the
running head. The page is thus entirely empty. If another page style is wanted for the
interleaf page is may be set with the argument of \cleardoubleoddusingpagestyle. Every
already defined page style (see chapter 5) may be used.

Sometimes chapters should not start on the right-hand page but the left-hand page.
This is in contradition to the classic typography; nevertheless, it may be suitable, e.g.,
if the double-page spread of the chapter start is of special contents. KOMA-Script there-
for provides the commands \cleardoubleevenstandardpage, \cleardoubleevenplainpage,
\cleardoubleevenemptypage, and \cleardoubleevenusingstyle, which are equivalent to
the odd-page commands.

However, the approach used by the KOMA-Script commands \cleardoublestandardpage,
\cleardoubleemptypage, \cleardoubleplainpage, and \cleardoublepageusingstyle is
dependent on the option cleardoublepage described above and is similar to one of the corre-
sponding commands above. The same is valid for the standard command \cleardoublepage,
that may be either \cleardoubleoddpage or \cleardoubleevenpage.

Example: Assume you want to set next in your document a double-page spread with a picture
at the left-hand page and a chapter start at the right-hand page. The picture
should have the same size as the text area without any head line or pagination.
If the last chapter ends with a left-hand page, an interleaf page has to be added,
which should be completely empty.

First you will use
\KOMAoptions{cleardoublepage=empty}

to make interleaf pages empty. You may use this setting at the document pream-
ble already. As an alternative you may set it as the optional argument of
\documentclass.

At the relevant place in your document, you’ll write:

\cleardoubleevenemptypage
\thispagestyle{empty}
\includegraphics[width=\textwidth,
height=\textheight, %
keepaspectratio] 4
{picture}
\chapter{Chapter Headline}

The first of these lines switches to the next left page. If needed it also adds a
completely blank right-hand page. The second line makes sure that the following

75 Chapter 3.

Table 3.11.: Available values for option footnotes setting up footnotes

multiple
At sequences of immediately following footnote marks, consecutive marks will be
separated by \multfootsep.

nomultiple
Immediately following footnotes will be handled like single footnotes and not sepa-
rated from each other.

left-hand page will be set using page style empty too. From third down to sixth line,
an external picture of wanted size will be loaded without deformation. Package
graphicx will be needed for this command. The last line starts a new chapter on
the next page which will be a right-hand one.

3.14. Footnotes

KOMA-Script, unlike the standard classes, provides features for configuration of the footnote
block format.

’ footnotes=setting ‘

Footnotes will be marked with a tiny superscript number in text by default. If more than
one footnote falls at the same place, one may think that it is only one footnote with a very
large number instead of multiple footnotes (i.e., footnote 12 instead of footnotes 1 and 2).
Using footnotes=multiple will separate multiple footnotes immediately next to each other
by a separator string. The predefined separator at \multfootsep is a single comma without
space. The whole mechanism is compatible with package footmisc, Version 5.3d (see | D-
It is related not only to footnotes placed using \footnote, but \footnotemark too.

Command \KOMAoptions or \KOMAoption may be used to switch back to the default
footnotes=nomultiple at any time. If any problems using another package that influences
footnotes occur, it is recommended not to use the option anywhere and not to change the
setting anywhere inside the document.

A summary of the available setting values of footnotes may be found at table 3.11,
page 75.

76

Chapter 3.

\footnote [number]{tezt}
\footnotemark [number]
\footnotetext [number]{tezt}
\multiplefootnoteseparator
\multfootsep

Similar to the standard classes, footnotes in KOMA-Script are produced with the
\footnote command, or alternatively the paired usage of the commands \footnotemark
and \footnotetext. As in the standard classes, it is possible that a page break occurs within
a footnote. Normally this happens if the footnote mark is placed so near the bottom of a
page as to leave IATEX no choice but to break the footnote onto the next page. KOMA-Script,
unlike the standard classes, can recognize and separate consecutive footnotes automatically.
See the previously documented option footnotes for this.

If you want to set the separator manually, you may use \multiplefootnoteseparator.
Note that this command shouldn’t be redefined, because it has been defined not only to be
the separator string but also the type style, i.e., font size and superscript. The separator
string without type style may be found at \multfootsep. The predefined default is

\newcommand*{\multfootsep}{,}

and may be changed by redefining the command.

Example: Assume you want to place two footnotes following a single word. First you may
try

Word\footnote{lst footnote}\footnote{2nd footnote}

for this. Assume that the footnotes will be numbered with 1 and 2. Now the reader
may think it’s a single footnote 12, because the 2 immediately follows the 1. You
may change this using

\KOMAoptions{footnotes=multiple}

which would switch on the automatic recognition of footnote sequences. As an
alternative you may use

Word\footnote{lst footnotel}/
\multiplefootnoteseparator
\footnote{2nd footnote}

This should give you the wanted result even if the automatic solution would fail
or couldn’t be used.

Further, assume you want the footnotes separated not only by a single comma,
but by a comma and a white space. In this case you may redefine

\renewcommand*{\multfootsep}{, \nobreakspace}

at the document preamble. \nobreakspace instead of a usual space character has
been used in this case to avoid paragraph or at least page breaks within footnote

77

Chapter 3.

sequences.

’\footref{reference}

Sometimes there are single footnotes to multiple text passages. The least sensible way to

typeset this would be to repeatedly use \footnotemark with the same manually set number.
The disadvantages of this method would be that you have to know the number and manually fix
all the \footnotemark commands, and if the number changes because of adding or removing
a footnote before, each \footnotemark would have to be changed. Because of this, KOMA-
Script provides the use of the \1abel mechanism in such cases. After simply setting a \label
inside the footnote, \footref may be used to mark all the other text passages with the same
footnote mark.

Example: Maybe you have to mark each trade name with a footnote which states that it is
a registered trade name. You may write, e. g.,

Company SplishSplash\footnote{This is a registered trade name.
A1l rights are reserved.\label{refnotel}}

produces not only SplishPlump\footref{refnote}

but also SplishPlash\footref{refnote}.

This will produce the same footnote mark three times, but only one footnote
text. The first footnote mark is produced by \footnote itself, and the following
two footnote marks are produced by the additional \footref commands. The
footnote text will be produced by \footnote.

Because of setting the additional footnote marks using the \label mechanism, changes of the
footnote numbers will need at least two IXTEX runs to ensure correct numbers for all \footref
marks.

\deffootnote[mark width]{indent }{parindent}{definition}
\deffootnotemark{definition}
\thefootnotemark

Footnotes are formatted slightly differently in KOMA-Script to in the standard classes. As
in the standard classes the footnote mark in the text is depicted using a small superscripted
number. The same formatting is used in the footnote itself. The mark in the footnote is
type-set right-aligned in a box with width mark width. The first line of the footnote follows
directly.

All following lines will be indented by the length of 4ndent. If the optional parameter
mark width is not specified, it defaults to indent. If the footnote consists of more than one
paragraph, then the first line of a paragraph is indented, in addition to indent, by the value
of parindent.

Figure 3.1 illustrates the layout parameters. The default configuration of the KOMA-Script
classes is:

78

Chapter 3.

mark width .
first paragraph of a footnote
indent

|
indent
Figure 3.1.: Parameters that con- : i:‘ parunaen next paragraph of a footnote
[

trol the footnote layout

\deffootnote[lem]{1.5em}{lem}
{\thefootnotemarkl}

\textsuperscript controls both the superscript and the smaller font size. Command
\thefootnotemark is the current footnote mark without any formatting.

The font element footnote determines the font of the footnote including the footnote mark.
Using the element footnotelabel the font of the footnote mark can be changed separately
with the commands \setkomafont and \addtokomafont (see section 3.6, page 51). Please
refer also to table 3.2, page 51. Default setting is no change in the font.

The footnote mark in the text is defined separately from the mark in front of the actual
footnote. This is done with \deffootnotemark. Default setting is:

\deffootnotemark{/
\thefootnotemark}

In the above the font for the element footnotereference is applied (see table 3.2, page 51).
Thus the footnote marks in the text and in the footnote itself are identical. The font can be
changed with the commands \setkomafont and \addtokomafont (see section 3.6, page 51).

Example: A feature often asked for is footnote marks which are neither in superscript nor in
a smaller font size. They should not touch the footnote text but be separated by
a small space. This can be accomplished as follows:

\deffootnote{lem}{lem}{\thefootnotemark\ }

The footnote mark and the following space are therefore set right-aligned into a
box of width 1em. The following lines of the footnote text are also indented by
lem from the left margin.

Another often requested footnote layout is left-aligned footnote marks. These can
be obtained with:

\deffootnote{1l.5em}{1em}{/
\makebox[1.5em] [1]{\thefootnotemark}}

If you want however only to change the font for all footnotes, for example to sans
serif, you can solve this problem simply by using the commands \setkomafont
and \addtokomafont (see section 3.6, page 51:

\setkomafont{footnote}{\sffamily}

79 Chapter 3.

As demonstrated with the examples above, the simple user interface of KOMA-Script provides
a great variety of different footnote formattings.

’ \setfootnoterule[thickness]{length} ‘

Generally a horizontal rule will be placed between the text area and the footnote area.
But normally this rule is not as long as the width of the typing area. With Command
\setfootnoterule you may change the thickness and the width of that rule. Thereby the
parameters thickness and length will be evaluated not at definition time but when setting
the rule itself. If optional argument thickness ha been omitted the thickness of the rule will
not be changed. Empty arguments thickness or length are also allowed and do not change
the corresponding parameter. Using implausible values may result in warning messages not
only setting the arguments but also when KOMA-Script uses the parameters.

With element footnoterule the color of the rule may be changed using the commands
\setkomafont and \addtokomafont (see section 3.6, page 51). Default is no change of font
or color. For color changes a color package like xcolor would be needed.

scrbook 3.15. Demarcation

Sometimes books are roughly separated into front matter, main matter, and back matter.
KOMA-Script provides this for scrbook also.

\frontmatter
\mainmatter
\backmatter

The macro \frontmatter introduces the front matter in which roman numerals are used for
the page numbers. Chapter headings in a front matter are not numbered. The section titles
which would be numbered start at chapter 0, and would be consecutively numbered across
chapter boundaries. However, this is of no import, as the front matter is used only for the
title pages, table of contents, lists of figures and tables, and a foreword. The foreword can
thus be set as a normal chapter. A foreword should never be divided into sections but kept
as short as possible. Therefore, in the foreword there is no need for a deeper structuring than
the chapter level.

In case the user sees things differently and wishes to use numbered sections in the chapters
v2.97¢| of the front matter, as of version 2.97e the section numbering no longer contains the chapter
number. This change only takes effect when the compatibility option is set to at least ver-
sion 2.97e (see option version, section 3.2, page 28). It is explicity noted that this creates a
confusion with chapter numbers! The use of \addsec and \section* (see section 3.16, page 89
and page 90) are thus, in the author’s opinion, far more preferable.
v2.97¢ As of version 2.97e the numbering of float environments, such as tables and figures, and
equation numbers in the front matter also contain no chapter number part. To take effect this
too requires the corresponding compatibility setting (see option version, section 3.2, page 28).

80

scrbook,
scrreprt

scrbook,
scrreprt

Chapter 3.

\mainmatter introduces the main matter with the main text. If there is no front matter,
then this command can be omitted. The default page numbering in the main matter uses
Arabic numerals (re)starting in the main matter at 1.

The back matter is introduced with \backmatter. Opinions differ in what should be part
of the back matter. So in some cases you will find only the bibliography, in some cases only
the index, and in other cases both of these as well as the appendices. The chapters in the
back matter are similar to the chapters in the front matter, but page numbering is not reset.
If you do require separate page numbering you may use the command \pagenumbering from
section 3.12, page 72.

3.16. Structuring of Documents

Structuring of documents means to divide them into parts, chapters, sections, and several
other structural elements.

open=method

KOMA-Script classes scrbook and scrreprt give you the choice of where to start a new chapter
with double-sided printing. By default scrreprt starts a new chapter at the next page. This is
like method any. However, scrbook starts new chapters at the next right-hand page. This is
like method right and is usually used in books. But sometimes chapters should start at the
left-hand page of a double-page spread. This would be accomplished with method left. An
overview of the supported methods may be found at table 3.12.

Besides the implicit usage of \cleardoublepage at chapter starts, the option influences
also the explicit usage of the commands \cleardoublepage, \cleardoublepageusingstyle,
\cleardoublestandardpage, \cleardoubleplainpage, and \cleardoubleemptypage. See
section 3.12, page 73 for more information about these. Since KITEX doesn’t differentiate
between left-hand and right-hand pages in single-sided printing, the option doesn’t have any
influence in that case.

In class scrartcl the section is the first structural element below the part. Because of this,
scrartcl doesn’t support this option.

chapterprefix=simple switch
appendixprefix=simple switch

With the standard classes book and report, a chapter title consists of a line with the word
“Chapter”! followed by the chapter number. The title itself is set left-justified on the following
lines. The same effect is obtained in KOMA-Script with the option chapterprefix. Any
value from table table 2.5, page 37 may be used as simple switch. The default, however,
is chapterprefix=false, which is opposite of the behaviour of the standard classes, which

!"When using another language the word “Chapter” is naturally translated to the appropriate language.

81

scrbook,
scrreprt

Chapter 3.

Table 3.12.: Available values for option open to select page breaks with interleaf pages

any
Commands \cleardoublepageusingstyle, \cleardoublestandardpage,
\cleardoubleplainpage, \cleardoubleemptypage, and \cleardoublepage
result in a single page break and therefor are same like \clearpage.

left
Commands \cleardoublepageusingstyle, \cleardoublestandardpage,
\cleardoubleplainpage, \cleardoubleemptypage, and \cleardoublepage
result in a page break and add an interleaf page if needed to reach the next left-hand

page.

right
Commands \cleardoublepageusingstyle, \cleardoublestandardpage,
\cleardoubleplainpage, \cleardoubleemptypage, and \cleardoublepage
result in a page break and add an interleaf page if needed to reach the next
right-hand page.

would correspond to chapterprefix=true. These options also affect the automatic running
titles in the headers (see section 3.12, page 68).

Sometimes one wishes to have the chapter titles in simplified form according to
chapterprefix=false. But at the same time, one wishes a title of an appendix to be pre-
ceded by a line with “Appendix” followed by the appendix letter. This is achieved by using
the appendixprefix option (see table 2.5, page 37). Since this results in an inconsistent
document layout, I advise against using this option.

The font style of the chapter number line wusing chapterprefix=true or
appendixprefix=true may be changed with element chapterprefix using commands
\setkomafont and \addtokomafont (see section 3.6, page 51). Default is the usage of
element chapter (see page 85, as well as table 3.15, page 88).

’ headings=selection ‘

The font size used for the titles is relatively big, both with the standard classes and with
KOMA-Script. Not everyone likes this choice; moreover it is especially problematic for small
paper sizes. Consequently, KOMA-Script provides, besides the large title font size defined by
the headings=big option, the two options headings=normal and headings=small, that allow
for smaller title font sizes. The font sizes for headings resulting from these options for scrbook
and scrreprt are shown in table 3.15, page 88. For scrartcl, smaller font sizes are generally used.
The spacing before and after chapter titles is also influenced by these options.

Chapter titles are also influenced by the options headings=twolinechapter
and headings=onelinechapter, that are same as chapterprefix=true and

82

scrbook,
scrreprt

Chapter 3.

chapterprefix=false (see above). The appendix titles are influenced by
headings=twolineappendix and headings=onelineappendix, that are the same as
the options appendixprefix=true and appendixprefix=false (see also above).

The method of beginning new chapters may be switched by headings=openany,
headings=openright, and headings=openleft alternatively to option open with the values
any, right, and left (see above).

Another special feature of KOMA-Script is the handling of the optional argument of the
structural commands \part, \chapter, etc., down to \subparagraph. Function and mean-
ing may be influenced by the options headings=optiontohead, headings=optiontotoc, and
headings=optiontoheadandtoc.

A summary of all the available selections of option headings may be found in table 3.13.
Examples are at the following description of the structural commands.

Table 3.13.: Available values for option headings to select different kinds of structural headings

big
Use very large headings with large distances above and below.

normal
Use mid-size headings with medium distances above and below.

onelineappendix, noappendixprefix, appendixwithoutprefix,
appendixwithoutprefixline
Chapter headings at the appendix will be set like other headings too.

onelinechapter, nochapterprefix, chapterwithoutprefix,
chapterwithoutprefixline
Chapter headings will be set like other headings too.

openany
Parts, chapter, index, and back matter use \clearpage instead of
\cleardoublepage.

openleft

The commands \cleardoublepageusingstyle, \cleardoublestandardpage,
\cleardoubleplainpage, \cleardoubleemptypage, and \cleardoublepage
generate a page break and if needed insert an interleaf page to reach the next
left-hand page at double-page printing. Part, chapter, index and back matter use
\cleardoublepage.

83

v3.10

Chapter 3.

Table 3.13.: Available values for option headings (continuation)

openright
The commands \cleardoublepageusingstyle, \cleardoublestandardpage,
\cleardoubleplainpage, \cleardoubleemptypage, and \cleardoublepage
generate a page break and if needed insert an interleaf page to reach the next
right-hand page at double-page printing. Part, chapter, index and back matter use
\cleardoublepage.

optiontohead
The advanced functionality of the optional argument of the structural commands
\part down to \subparagraph will be activated. By default the optional argument
will be used for the running head only.

optiontoheadandtoc, optiontotocandhead
The advanced functionality of the optional argument of the structural commands
\part down to \subparagraph will be activated. By default the optional argument
will be used for the running head and the table of contents.

optiontotoc
The advanced functionality of the optional argument of the structural commands
\part down to \subparagraph will be activated. By default the optional argument
will be used for the table of contents only.

small
Use small headings with small distances above and below.

twolineappendix, appendixprefix, appendixwithprefix, appendixwithprefixline
Chapters at the appendix will be set with a number line with the contents of
\chapterformat.

twolinechapter, chapterprefix, chapterwithprefix, chapterwithprefixline
Chapters will be set with a number line with the contents of \chapterformat.

’ numbers=selection ‘

In German, according to DUDEN, the numbering of sectional units should have no period at the
end if only arabic numbers are used (see [, R3]). On the other hand, if roman numerals or
letters are appear in the numbering, then a period should appear at the end of the numbering (see
[, R4]). KOMA-Script has an internal mechanism that tries to implement this somewhat
complex rule. The resulting effect is that, normally, after the sectional commands \part and
\appendix a switch is made to numbering with an ending period. The information is saved in the
aux file and takes effect on the next IATEX run.

84

scrbook,

Chapter 3.

Table 3.14.: Available values of option numbers for selection of the period at the end of numbers of
structural headings

autoendperiod, autoenddot, auto
KOMA-Script decides, whether or not to set the period at the end of the numbers.
The numbers consists in Arabic digits only, the period will be omitted. If there are
alphabetic characters or roman numbers the period will always be set. References
to numbers will be set without ending period always.

endperiod, withendperiod, periodatend, enddot, withenddot, dotatend
All numbers of structural commands and all dependent numbers will be set with
ending period. Only references will be set without the ending period.

noendperiod, noperiodatend, noenddot, nodotatend
All the numbers are without ending period.

In some cases the mechanism for placing or leaving off the ending period may fail, or
other languagues may have different rules. Therefore it is possible to activate the use of
the ending period manually with the option numbers=endperiod or to deactivate it with
numbers=noendperiod. Default is numbers=autoendperiod with auto detection whether to
set the period or not.

Please note that the mechanism only takes effect on the next IXTEX run. Therefore, before
trying to use these options to forcibly control the numbering format, a further run without
changing any options should be made.

The available values are summarized in table 3.14. Unlike most other selections, this option
may be changed at the document preamble, before \begin{document}, only.

chapteratlists
chapteratlists=wvalue

As mentioned in section 3.20, page 121, normally, every chapter entry generated with \chapter
introduces vertical spacing into the lists of floats. Since version 2.96a this applies also for the
command \addchap, if no compatibility option to an earlier version was chosen (see option
version in section 3.2, page 28).

Furthermore, now the option chapteratlists can be used to change the spacing, by passing
the desired distance as value. The default setting with listof=chaptergapsmall is 10 pt.
If chapteratlists=entry or chapteratlists without value is specified, then instead of a
vertical distance, the chapter entry itself will be entered into the lists. This will be done even
if there’s no floating environment inside of the chapter.

Please note that changes to the option will only become effective in the lists following two
more KTEX runs.

85

Chapter 3.

\part [short version]{heading}

\chapter [short version]l{heading}
\section[short version]l{heading}
\subsection[short version]{heading}
\subsubsection[short version]{heading}
\paragraph[short version]{heading}
\subparagraph[short version]{heading?

The standard sectioning commands in KOMA-Script work in a similar fashion to those of the
standard classes. Thus, an alternative entry for the table of contents and running headings
can be specified as an optional argument to the sectioning commands.

In addition to this, with option headings=optiontohead, KOMA-Script doesn’t use the
optional argument short version at the table of contents, but for the running head only.
Nevertheless, such a running head needs an appropriate page style. See section 3.12 and
chapter 5 about this. With option headings=optiontotoc, KOMA-Script doesn’t use the
optional argument short wersion for the running head, but at the table of contents. Nev-
ertheless, the entry will be shown only if counter tocdepth (see section 3.9, page 64) is great
enough. With option headings=optiontoheadandtoc, KOMA-Script uses the optional argu-
ment short version in both the table of contents and running head. All these three selections
will also activate the extended interpretation of the optional argument short version, which
isn’t active by default.

The extended interpretation of the optional argument determines whether there’s an equal-
ity sign in short wersion. If so, the optional argument will be interpreted as option
list instead of simple short wversion. Thereby the two options head=running head and
tocentry=table of contents entry are supported. Commas or equality signs inside of the
values of those options will be accepted only if they are enclosed by braces.

Please note that this mechanism is only functional as long as KOMA-Script controls the
described commands. From using a package that controls the sectioning commands or the
internal IATEX kernel commands for sectioning commands, KOMA-Script can no longer provide
this extended mechanism. This is also valid for the always active extension of KOMA-Script
to not create entries to the table of contents if the text of the entry is empty. If you really
want an entry with empty heading text, you may use an invisible entry like \mbox{} instead.

Example: Assume you’re writing a document with some very extensive chapter headings.
These headings should be shown in the table of contents too. But for the running
head you want only single-line short headings. You will do this using the optional
argument of \chapter.

\chapter[short version of chapter heading]
{The Structural Sectioning Command
for Chapters Supports not only the
Heading Text itself but also a
Short Version with Selectable
Usage}

86

Chapter 3.

Sometimes later you become aware that the automatic line breaking of this heading
is somehow inappropriate. Therefore you want to make the breaking yourself. Nev-
ertheless, the automatic line breaking should be still used at the table of contents.
With
\chapter [head={short version of chapter heading},
tocentry={The Structural Sectioning
Command for Chapters Supports not
only the Heading Text itself but
also a Short Version with
Selectable Usagel}]
{The Structurall\
Sectioning Command for Chapters\\
Supports not only\\
the Heading Text itself\\
but also\\
a Short Version\\
with Selectable Usage}

you use independent entries for table of contents, running head, and the chapter
heading itself. The arguments of the options head and tocentry have been en-
closed into braces, so the contents of the options cannot influence the interpretation
of the optional argument.

The recommendation of the braces in the example above will make more sense
with one more example. Assume you're using option headings=optiontotoc and
now have a heading;:

\section[head=\emph{value}]
{Option head=\emph{valuel}}

This would result in the entry “Option head=wvalue” at the table of contents but
“value” at the running head. But surely you wanted the entry “head=wvalue” at
the table of contents and the complete heading text at the running head. You may
do this using braces:

\section[head{=}\emph{value}]
{Option head=\emph{valuel}}

A similar case would be a comma. With the same headings option like before:

\section[head=0, 1, 2, 3, \dots]
{Natural Numbers Including the Zero}

would result in an error, because the comma would be interpreted as the separator
between the single options of the option list “0, 1, 2, 3, \dots”. But writing

\section[head={0, 1, 2, 3, \dots}]
{Natural Numbers Including the Zero}

87

scrbook,
scrreprt

scrbook,
scrreprt

scrbook,
scrreprt

Chapter 3.

will change “0, 1, 2, 3, \dots” into the argument of option head.

The title of the level part (\part) is distinguished from other sectioning levels by being
numbered independently from the other parts. This means that the chapter level (in scrbook or
scrreprt), or the section level (in scrartcl) is numbered consecutively over all parts. Furthermore,
for classes scrbook and scrreprt, the title of the part level together with the corresponding
preamble (see \setpartpreamble, page 95) is set on a separate page.

\chapter only exists in book or report classes, that is, in classes book, scrbook, report and
scrreport, but not in the article classes article and scrartcl. In addition to this, the command
\chapter in KOMA-Script differs substantially from the version in the standard class. In the
standard classes the chapter number is used together with the prefix “Chapter”, or the corre-
sponding word in the appropriate language, on a separate line above the actual chapter title
text. This overpowering style is replaced in KOMA-Script by a simple chapter number before
the chapter heading text, but can be reverted by the option chapterprefix (see page 80).

Please note that \part and \chapter in classes scrbook and scrreprt change the page style for
one page. The applied page style in KOMA-Script is defined in the macros \partpagestyle
and \chapterpagestyle (see section 3.12, page 70).

The font of all headings can be changed with the commands \setkomafont and
\addtokomafont (see section 3.6, page 51). In doing this, generally the element disposition is
used, followed by a specific element for every section level (see table 3.2, page 51). The font for
the element disposition is predefined as \normalcolor\sffamily\bfseries. The default
font size for the specific elements depends on the options headings=big, headings=normal
and headings=small (see page 81). The defaults are listed in table 3.15.

Example: Suppose you are using the class option headings=big and notice that the very big
headings of document parts are too bold. You could change this as follows:
\setkomafont{disposition}{\normalcolor\sffamily}

\part{Appendices}
\addtokomafont{disposition}{\bfseries}

Using the command above you only switch off the font attribute bold for a heading
“Appendices”. A much more comfortable and elegant solution is to change all
\part headings at once. This is done either by:

\addtokomafont{part}{\normalfont\sffamily}
\addtokomafont{partnumber}{\normalfont\sffamily}

or simply using;:

\addtokomafont{part}{\mdseries}
\addtokomafont{partnumber}{\mdseries}

The last version is to be preferred because it gives you the correct result even when
you make changes to the disposition element, for instance:

88

Chapter 3.

Table 3.15.: Default font sizes for differ-

ent levels of document structuring in clags option element default
scrbook and scrreprt

headings=big part \Huge
partnumber \huge
chapter \huge
section \Large
subsection \large
subsubsection \normalsize
paragraph \normalsize

subparagraph \normalsize

headings=normal part \huge
partnumber \huge
chapter \LARGE
section \Large
subsection \large

subsubsection \normalsize
paragraph \normalsize
subparagraph \normalsize

headings=small part \LARGE
partnumber \LARGE
chapter \Large
section \large
subsection \normalsize
subsubsection \normalsize
paragraph \normalsize

subparagraph \normalsize

\setkomafont{disposition}{\normalcolor\bfseries}

With this change it is possible to set all section levels at once to no longer use sans
serif fonts.

Please be warned of misusing the possibilities of font switching to mix fonts, font sizes and
font attributes excessively. Picking the most suitable font for a given task is a hard task even
for professionals and has almost nothing to do with the personal tastes of non-experts. Please
refer to the citation at the end of section 2.8, page 46 and to the following explanation.

It is possible to use different font types for different section levels in KOMA-Script. Non-
experts in typography should for very good typographical reasons refrain absolutely from using
these possibilities.

There is a rule in typography which states that one should mix as few fonts as possible. Using

89

scrbook,
scrreprt

Chapter 3.

sans serif for headings already seems to be a breach of this rule. However, one should know that
bold, large serif letters are much too heavy for headings. Strictly speaking, one would then have
to at least use a normal instead of a bold or semi-bold font. However, in deeper levels of the
structuring, a normal font may then appear too lightly weighted. On the other hand, sans serif
fonts in headings have a very pleasant appearance and in fact find acceptance almost solely for
headings. That is why sans serif is the carefully chosen default in KOMA-Script.

More variety should, however, be avoided. Font mixing is only for professionals. In case you
want to use other fonts than the standard TEX fonts—regardless of whether these are CM, EC,
or LM fonts—you should consult an expert, or for safety's sake redefine the font for the element
disposition as seen in the example above. The author of this documentation considers the com-
monly encountered combinations Times and Helvetica or Palatino with Helvetica as unfavourable.

\part*{Heading
\chapter*{Heading}
\section*{Heading}
\subsection*{Heading}
\subsubsection*{Heading}
\paragraph*{Heading}
\subparagraph*{Heading }

All disposition commands have starred versions, which are unnumbered, and produce section
headings which do not show up in the table of contents or in the running heading. The
absence of a running heading often has an unwanted side effect. For example, if a chapter
which is set using \chapter* spans several pages, then the running heading of the previous
chapter suddenly reappears. KOMA-Script offers a solution for this which is described below.
\chapter* only exists in book and report classes, that is, book, scrbook, report and scrreport,
but not the article classes article and scrartcl.

Please note that \part and \chapter change the page style for one page. The applied
style is defined in the macros \partpagestyle and \chapterpagestyle in KOMA-Script (see
section 3.12, page 70).

As for the possibilities of font switching, the same explanations apply as were given above
for the unstarred variants. The structuring elements are named the same since they do not
indicate variants but structuring levels.

In the standard classes there are no further structuring commands. In particular, there are
no commands which can produce unnumbered chapters or sections which show up in the table
of contents and in the running heading.

90

book,
scrreprt

Chapter 3.

\addpart [Short version]{Heading}
\addpart*{Heading}
\addchap [Skort version]{Heading}
\addchap*{Heading}
\addsec[Short version]{Heading}
\addsec*{Heading}

In addition to the commands of the standard classes, KOMA-Script offers the new commands
\addsec and \addchap. They are similar to the standard commands \chapter and \section,
except that they are unnumbered. They thus produce both a running heading and an entry
in the table of contents.

The starred variants \addchap* and \addsec* are similar to the standard commands
\chapter* and \section* except for a tiny but important difference: The running head-
ings are deleted. This eliminates the side effect of obsolete headers mentioned above. Instead,
the running headings on following pages remain empty. \addchap and \addchap* of course
only exist in book and report classes, namely book, scrbook, report and scrreport, but not in
the article classes article and scrartcl.

Similarly, the command \addpart produces an unnumbered document part with an entry in
the table of contents. Since the running headings are already deleted by \part and \part* the
problem of obsolete headers does not exist. The starred version \addpart#* is thus identical
to \part* and is only defined for consistency reasons.

Please note that \addpart and \addchap and their starred versions change the page style
for one page. The particular page style is defined in the macros \partpagestyle and
\chapterpagestyle (see section 3.12, page 70).

As for the possibilities of font switching, the same explanations apply as given above for
the normal structuring commands. The elements are named the same since they describe not
variants but structuring levels.

[\minisec{Heading} |

Sometimes a heading is wanted which is highlighted but also closely linked to the following
text. Such a heading should not be separated by a large vertical skip.

The command \minisec is designed for this situation. This heading is not associated with
any structuring level. Such a mini section does not produce an entry in the table of contents
nor does it receive any numbering.

The font type of the structuring command \minisec can be changed using the element
disposition (see table 3.2, page 51) and minisec. Default setting of element minisec is
empty, so the default of the element disposition is active.

Example: You have developed a kit for building a mouse trap and want the documentation
separated into a list of necessary items and an assembly description. You could
write the following:

Chapter 3.

\minisec{Items needed}

\begin{flushleft}

1 plank ($100\times 50 \times 12$)\\
spring-plug of a beer-bottle\\
spring of a ball-point pen\\
drawing pin\\
screws\\
hammer\\

1 knife
\end{flushleft}

N R

\minisec{Assembly}

At first one searches the mouse-hole and puts the drawing pin
directly behind the hole. Thus the mouse cannot escape during the
following actions.

Then one knocks the spring-plug with the hammer into the mouse-hole.
If the spring-plug’s size is not big enough in order to shut the
mouse-hole entirely, then one can utilize the plank instead and
fasten it against the front of the mouse-hole utilizing the two
screws and the knife. Instead of the knife one can use a
screw-driver instead.

Which gives:
%
Items needed

1 plank (100 x 50 x 12)

1 spring-plug of a beer-bottle

1 spring of a ball-point pen

1 drawing pin

2 screws

1 hammer

1 knife

Assembly
At first one searches the mouse-hole and puts the drawing pin directly be-
hind the hole. Thus the mouse cannot escape during the following actions.
Then one knocks the spring-plug with the hammer into the mouse-hole.
If the spring-plug’s size is not big enough in order to shut the mouse-hole
entirely, then one can utilize the plank instead and fasten it against the
front of the mouse-hole utilizing the two screws and the knife. Instead of
the knife one can use a screw-driver instead.

\raggedsection
\raggedpart

In the standard classes, headings are set as justified text. That means that hyphenated words
can occur and headings with more than one line are stretched up to the text border. This is a

92

scrbook,
scrreprt

Chapter 3.

rather uncommon approach in typography. KOMA-Script therefore formats the headings left
aligned with hanging indentation using \raggedsection with the definition:

\newcommand*{\raggedsection}{\raggedright}

This command can be redefined with \renewcommand.

Example: You prefer justified headings, so you write in the preamble of your document:
\renewcommand*{\raggedsection}{}
or more compactly:
\let\raggedsection\relax

You will get a formatting of the headings which is very close to that of the standard
classes. It will become even closer when you combine this change with the change
of the element disposition mentioned above.

Unlike all others, the headings of parts (\part) will be horizontally centered instead of set
ragged right. This is because command \raggedpart is defined as

\let\raggedpart\centering

You may also redefine this using \renewcommand too.

Example: You don’t want different alignment at headings of \part. So you put
\renewcommand*{\raggedpart}{\raggedsection}

into the preamble of your document. In this case, and unlike in the example
above, \let has not been used, because \let would give \raggedpart the cur-
rent meaning of \raggedsection. Further changes of \raggedsection would
then stay disregarded at the usage of \raggedpart. Doing the redefinition us-
ing \renewcommand gives \raggedpart the meaning of \raggedsection not at
definition time, but each time \raggedpart will be used.

\partformat

\chapterformat

\othersectionlevelsformat{sectioning name}{}{counter output}
\autodot

KOMA-Script has added a further logical level on top of \thesectioning name to the out-
put of the sectioning numbers. The counters for the respective heading are not merely out-
put. They are formatted using the commands \partformat, \chapterformat, and the com-
mand \othersectionlevelsformat that expect three arguments. Of course the command
\chapterformat like \thechapter does not exist in the class scrartcl but only in the classes
scrbook and scrreprt.

As described for option numbers at the beginning of this section (see page 83), periods in
section numbers should be handled for the German-speaking region according to the rules

93

Chapter 3.

given in |]. The command \autodot in KOMA-Script ensures that these rules are
being followed. In all levels except for \part, a dot is followed by a further \enskip. This
corresponds to a horizontal skip of 0.5 em.

The command \othersectionlevelsformat takes as first