
KOMA-Script
a versatile LATEX2ε bundle

Note: This document is part of KOMA-Script 3 but was written
for KOMA-Script 2.98. Several features of KOMA-Script 2 are
obsolete (but may still be used) with KOMA-Script 3. In this case this
documentation sometimes describes obsolete things. Several features of
KOMA-Script 3 are new but may not be found at this manual. This
manual will be updated with respect to the available ressources. Any
request for help shall be sent to komascript at gmx.info.

The Guide

KOMA-Script

Markus Kohm Jens-Uwe-Morawski

2009-01-26

Authors of the KOMA-Script Bundle: Frank Neukam, Markus Kohm, Axel Kielhorn

Legal Notes:

There is no warranty for any part of the documented Software. The
authors have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information
or programs contained here.
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations ap-
pear in this book, and the authors were aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

English translation of this manual by: Kevin Pfeiffer, Gernot Hassenpflug,
Markus Kohm, Jens-Uwe Morawski, Karl-Heinz Zimmer, Christoph Bier,
Harald Bongartz, Georg Grandke, Raimund Kohl, and Stephan Hennig.

Free screen version without any optimization of paragraph and page
breaks
This guide is part of KOMA-Script, which is free under the terms and
conditions of LATEX Project Public License Version 1.3c. A version of
this license, which is valid to KOMA-Script, is part of KOMA-Script
(see lppl.txt). Distribution of this manual—even if it is printed— is
allowed provided that all parts of KOMA-Script are distributed. Distribu-
tion without the other parts of KOMA-Script needs a explicit, additional
authorization by the authors.

To All Friends of Typography!

7 Contents

Contents

1. Introduction 13
1.1. Preface . 13
1.2. Structure of the Guide . 13
1.3. History of KOMA-Script . 14
1.4. Special Thanks . 14
1.5. Legal Notes . 15
1.6. Installation . 15
1.7. Bugreports and Other Requests . 15
1.8. Additional Information . 16

2. Construction of the Page Layout with typearea 17
2.1. Fundamentals of Page Layout . 17
2.2. Page Layout Construction by Dividing 20
2.3. Page Layout Construction by Drawing a Circle 21
2.4. Early or late Selection of Options 21
2.5. Options and Macros to Influence the Page Layout 23
2.6. Paper Format Selection . 37
2.7. Tips . 40

3. The Main Classes scrbook, scrreprt and scrartcl 43
3.1. The Options . 43

3.1.1. Options for Compatibility 46
3.1.2. Options for Page Layout . 47
3.1.3. Options for Document Layout 48
3.1.4. Options for Font Selection 52
3.1.5. Options Affecting the Table of Contents 53
3.1.6. Options for Lists of Floats 55
3.1.7. Options Affecting the Formatting 56

3.2. General Document Characteristics 59
3.2.1. Changing Fonts . 59
3.2.2. Page Style . 64

3.3. Titles . 71
3.4. The Table of Contents . 77
3.5. Lists of Floats . 79
3.6. Main Text . 80

3.6.1. Separation . 80

8 Contents

3.6.2. Structuring the Document 81
3.6.3. Footnotes . 94
3.6.4. Lists . 96
3.6.5. Margin Notes . 106
3.6.6. Tables and Figures . 107
3.6.7. Logical Markup of Text . 118

3.7. Appendix . 120
3.8. Obsolete Commands . 122

4. Adapting Page Headers and Footers with scrpage2 124
4.1. Basic Functionality . 124

4.1.1. Predefined Page Styles . 125
4.1.2. Manual and Running Headings 129
4.1.3. Formatting of Header and Footer 130
4.1.4. Package Options . 135

4.2. Defining Own Page Styles . 139
4.2.1. The Interface for Beginners 139
4.2.2. The Interface for Experts 140
4.2.3. Managing Page Styles . 145

5. Weekday and Time Using scrdate and scrtime 146
5.1. The Name of the Current Day of the Week Using scrdate 146
5.2. Getting the Time with Package scrtime 147

6. The New Letter Class scrlttr2 149
6.1. Looking Back on the Old Letter Class 149
6.2. Options . 149

6.2.1. Defining Options Later . 150
6.2.2. Options for Compatibility 150
6.2.3. Page Layout Options . 151
6.2.4. Other Layout Options . 152
6.2.5. Font Options . 153
6.2.6. Options for Letterhead and Address 156
6.2.7. Options for the Letterfoot 162
6.2.8. Formatting Options . 163
6.2.9. The Letter Class Option Files 163

6.3. General Document Properties . 169
6.3.1. Font Selection . 169
6.3.2. Page Style . 170
6.3.3. Variables . 172

9 Contents

6.3.4. The Pseudo-Lengths . 177
6.3.5. The General Structure of a Letter Document 182

6.4. The Letter Declaration . 183
6.4.1. Foldmarks . 183
6.4.2. The Letterhead . 186
6.4.3. The Letterfoot . 189
6.4.4. The Address . 191
6.4.5. The Sender’s Extensions . 195
6.4.6. The Reference Fields Line 196
6.4.7. The Title and the Subject Line 198
6.4.8. Further Settings . 200

6.5. The Text . 200
6.5.1. The Opening . 201
6.5.2. Footnotes . 201
6.5.3. Lists . 201
6.5.4. Margin Notes . 201
6.5.5. Text Emphasis . 202

6.6. The Closing Part . 202
6.6.1. Closing . 202
6.6.2. Postscript, Carbon Copy and Enclosures 203

6.7. Language Support . 204
6.7.1. Language Selection . 205
6.7.2. Language-Dependent Terms 206
6.7.3. Defining and Changing Language-dependent Terms 208

6.8. Address Files and Circular Letters 209
6.9. From scrlettr to scrlttr2 . 214

7. Access to Address Files with scraddr 216
7.1. Overview . 216
7.2. Usage . 217
7.3. Package Warning Options . 218

8. Creating Address Files from a Address Database 220

9. Control Package Dependencies with scrlfile 221
9.1. About Package Dependencies . 221
9.2. Actions Prior to and After Loading 222

10. Package tocbasic for Class and Package Authors 226
10.1. Legal Note . 226

10 Contents

10.2. Using Package tocbasic . 226
10.2.1. Basic Commands . 227
10.2.2. Creating a List of Something 230
10.2.3. Internal Commands for Class and Package Authors 234

A. Japanese Letter Support for scrlttr2 236
A.1. Japanese standard paper and envelope sizes 236

A.1.1. Japanese paper sizes . 236
A.1.2. Japanese envelope sizes . 238

A.2. Provided lco files . 242
A.3. Examples of Japanese letter usage 242

A.3.1. Example 1: . 244
A.3.2. Example 2: . 244

Bibliography 246

Index 249
General Index . 249
Index of Commands, Environments, and Variables 251
Index of Lengths and Counters . 257
Index of Elements with Capability of Font Adjustment 257
Index of Files, Classes, and Packages . 258
Index of Class and Package Options . 259

11 List of Tables

List of Tables

2.1. Type-area dimensions dependent on DIV for A4 25
2.2. Predefined settings of DIV for A4 . 27
2.3. Symbolic values for the DIV option and the DIV argument

to \typearea . 29
2.4. Symoblic BCOR arguments for \typearea 30
2.5. Standard values for simple switches in KOMA-Script 32

3.1. Class correspondence . 43
3.2. Obsolete vs. Recommended Options 44
3.3. Default options of the KOMA-Script classes 46
3.4. Elements, whose type style can be changed with the

KOMA-Script command \setkomafont or \addtokomafont 61
3.5. Default values for the elements of a page style 66
3.6. Macros to set up page style of special pages 67
3.7. Available numbering styles of page numbers 71
3.8. Font defaults for the elements of the title 74
3.9. Main title . 75
3.10. Default font sizes for different levels of document

structuring . 83
3.11. Default settings for the elements of a dictum 93
3.12. Font defaults for the elements of figure or table captions . . 111

6.1. Possible values of option cleardoublepage with scrlttr2 . . 152
6.2. Possible values of option pagenumber with scrlttr2 154
6.3. Possible values of option parskip with scrlttr2 155
6.4. Possible values of option fromalign with scrlttr2 157
6.5. Possible values of option fromrule with scrlttr2 157
6.6. Possible values of option subject with scrlttr2 159
6.7. Possible values of option locfield with scrlttr2 160
6.8. Combined values for the configuration of foldmarks with

the option foldmarks . 161
6.9. Possible value of option refline with scrlttr2 162
6.10. The predefined lco files . 166
6.11. Alphabetical list of elements whose font can be changed

in scrlttr2 using the commands \setkomafont and
\addtokomafont . 169

12 List of Tables

6.12. Alphabetical list of all supported variables in scrlttr2 172
6.13. Pseudo-lengths provided by class scrlttr2 178
6.14. The sender’s predefined labels for the letterhead 188
6.15. predefined labels and contents of hyphens for sender’s

data in the letterhead . 189
6.16. predefined labels of typical variables of the reference fields

line. The content of the macros depend on language. 198
6.17. Predefined labels of subject-related variables. 199
6.18. Language-dependent forms of the date 207
6.19. Default settings for languages english and ngerman 208

A.1. ISO and JIS standard paper sizes . 237
A.2. Japanese B-series variants . 237
A.3. Main Japanese contemporary stationary 238
A.4. Japanese ISO envelope sizes . 239
A.5. Japanese envelope sizes 3 . 240
A.6. Supported Japanese envelope types and the window sizes

and locations . 243
A.7. lco files provided by scrlttr2 for Japanese window envelopes 244

13 Chapter 1.

Introduction

1.1. Preface

The KOMA-Script bundle is actually several packages and classes. It pro-
vides counterparts or replacements for the standard LATEX classes such as
article, book, etc. (see chapter 3), but offers many additional features and
its own unique look and feel.
The KOMA-Script user guide is intended to serve the advanced as well

as the inexperienced LATEX user and is accordingly quite large. The result
is a compromise and we hope that you will keep this in mind when using
it. Your suggestions for improvement are, of course, always welcome.

1.2. Structure of the Guide

The KOMA-Script user guide is not intended to be a LATEX primer. Those
new to LATEX should look at The Not So Short Introduction to LATEX2ε
[OPHS99] or LATEX2ε for Authors [Tea01] or a LATEX reference book. You
will also find useful information in the many LATEX FAQs, including the
TEX Frequently Asked Questions on the Web [FAQ].
In this guide you will find supplemental information about LATEX and

KOMA-Script in (sans serif) paragraphs like this one. The information given
in these explanatory sections is not essential for using KOMA-Script, but
if you experience problems you should take a look at it—particularly before
sending a bug report.
If you are only interested in using a single KOMA-Script class or package

you can probably successfully avoid reading the entire guide. Each class
and package typically has its own chapter; however, the three main classes
(scrbook, scrrprt, and scrartcl) are introduced together in chapter three.
Where an example or note only applies to one or two of the three classes,
it is called out in the margin.Like

this. The primary documentation for KOMA-Script is in German and has been
translated for your convenience; like most of the LATEX world, its commands,
environments, options, etc., are in English. In a few cases, the name of a
command may sound a little strange, but even so, we hope and believe that
with the help of this guide KOMA-Script will be usable and useful to you.

14 Chapter 1.

1.3. History of KOMA-Script

In the early 1990s, Frank Neukam needed a method to publish an instruc-
tor’s lecture notes. At that time LATEX was LATEX2.09 and there was no
distinction between classes and packages— there were only styles. Frank
felt that the standard document styles were not good enough for his work;
he wanted additional commands and environments. At the same time he
was interested in typography and, after reading Tschichold’s Ausgewählte
Aufsätze über Fragen der Gestalt des Buches und der Typographie (Selected
Articles on the Problems of Book Design and Typography) [Tsc87], he de-
cided to write his own document style—and not just a one-time solution
to his lecture notes, but an entire style family, one specifically designed for
European and German typography. Thus Script was born.
Markus Kohm, the developer of KOMA-Script, came across Script in

December 1992 and added an option to use the A5 paper format. This
and other changes were then incorporated into Script-2, released by Frank
in December 1993.
Beginning in mid-1994, LATEX2ε became available and brought with it

many changes. Users of Script-2 were faced with either limiting their usage
to LATEX2ε’s compatibility mode or giving up Script altogether. This situa-
tion led Markus to put together a new LATEX2ε package, released on 7 July
1994 as KOMA-Script; a few months later Frank declared KOMA-Script
to be the official successor to Script. KOMA-Script originally provided
no letter class, but this deficiency was soon remedied by Axel Kielhorn,
and the result became part of KOMA-Script in December 1994. Axel also
wrote the first true German-language user guide, which was followed by
an English-language guide by Werner Lemberg.
Since then much time has passed. LATEX has changed in only minor ways,

but the LATEX landscape has changed a great deal; many new packages and
classes are now available and KOMA-Script itself has grown far beyond
what it was in 1994. The initial goal was to provide good LATEX classes
for German-language authors, but today its primary purpose is to provide
more-flexible alternatives to the standard classes. KOMA-Script’s success
has led to e-mail from users all over the world, and this has led to many
new macros—all needing documentation; hence this “small guide.”

1.4. Special Thanks

Acknowledgements in the introduction? No, the proper acknowledgements
can be found in the addendum. My comments here are not intended for

15 Chapter 1.

the authors of this guide—and those thanks should rightly come from you,
the reader, anyhow. I, the author of KOMA-Script, would like to extend
my personal thanks to Frank Neukam. Without his Script family, KOMA-
Script would not have come about. I am indebted to the many persons
who have contributed to KOMA-Script, but with their indulgence, I would
like to specifically mention Jens-Uwe Morawski and Torsten Krüger. The
English translation of the guide is, among many other things, due to Jens’s
untiring commitment. Torsten was the best beta-tester I ever had. His
work has particularly enhanced the usability of scrlttr2 und scrpage2. Many
thanks to all who encouraged me to go on, to make things better and less
error-prone, or to implement additional features.
Thanks go as well to DANTE, Deutschsprachige Anwendervereini-

gung TEX e.V, (the German-Language TEX User Group). Without the
DANTE server, KOMA-Script could not have been released and dis-
tributed. Thanks as well to everybody in the TEX newsgroups and mail-
ing lists who answer questions and have helped me to provide support for
KOMA-Script.

1.5. Legal Notes

KOMA-Script was released under the LATEX Project Public License. You
will find it in the file lppl.txt. An unofficial German-language transla-
tion is also available in lppl-de.txt and is valid for all German-speaking
countries.
This document and the KOMA-Script bundle are provided “as is” and

without warranty of any kind.

1.6. Installation

Installation information can be found in the file INSTALL.txt. You should
also read the documentation that comes with the TEX distribution you are
using.

1.7. Bugreports and Other Requests

If you think you have found an error in the documentation or a bug in
one of the KOMA-Script classes, one of the KOMA-Script packages, or
another part of KOMA-Script, please do the following: first have a look
on CTAN to see if a newer version of KOMA-Script is available; in this
case install the applicable section and try again.

16 Chapter 1.

If you are using the most recent version of KOMA-Script and still have
a bug, please provide a short LATEX document that demonstrates the prob-
lem. You should only use the packages and definitions needed to demon-
strate the problem; do not use any unusual packages.
By preparing such an example it often becomes clear whether the prob-

lem is truly a KOMA-Script bug or something else. Please report KOMA-
Script (only) bugs to the author of KOMA-Script. Please use komabug.tex,
an interactive LATEX document, to generate your bug report and send it
to the address you may find at komabug.tex.
If you want to ask your question in a newsgroup or mailing list, you

should also include such an example as part of your question, but in this
case, using komabug.tex is not necessary. To find out the version numbers
of all packages in use, simply put \listfiles in the preamble of your
example and read the end of the log-file.

1.8. Additional Information

Once you become an experienced KOMA-Script user you may want to look
at some more advanced examples and information. These you will find on
the KOMA-Script documentation web site [KDP]. The main language of
the site is German, but nevertheless English is welcome.

17 Chapter 2.

Construction of the Page Layout with typearea

Many LATEX classes, including the standard classes, present the user with
the largely fixed configuration of margins and typearea. With the stan-
dard classes, the configuration determined is very much dependent on the
chosen font size. There do exist separate packages, such as geometry (see
[Ume00]), which give the user complete control, but also full responsibility,
for the settings of typearea and margins.
KOMA-Script takes a somewhat different approach with its typearea

package. Here the user is given several construction setting and automati-
zation possibilities based on established typography standards in order to
help guide him or her in making a good choice.
It should be noted that the typearea package makes use of the scrbase

package. The latter is explained in the expert section of this document
in ?? from ?? onwards. The majority of the rules documented there are
however not directed at the user, but rather at class- and package authors.

2.1. Fundamentals of Page Layout

If you look at a single page of a book or other printed materials, you will see
that it consists of top, bottom, left and right margins, a (running) head area,
the text block and a (running) foot area. There is also a space between the
head area and the text block, and between the text block and the foot area.
The relations between these areas are called the page layout.
The literature contains much discussion of different algorithms and heuris-

tic approaches for constructing a good page layout. Often mentioned is an
approach which involves diagonals and their intersections. The result is a page
where the text block proportions are related to the proportions of the page.
In a single-sided document, the left and the right margin should have equal
widths. The relation of the upper margin to the lower margin should be 1:2.
In a double-sided document (e. g. a book) however, the complete inner margin
(the margin at the spine) should be the same as each of the two outer margins;
in other words, a single page contributes only half of the inner margin.
In the previous paragraph, we mentioned and emphasized the page. Erro-

neously, it is often thought that with the page format the page is also meant
the paper format. However, if you look at a bound document, it is obvious
that part of the paper vanishes in the binding and is no longer part of the
visible page. For the page layout, it is not the format of the paper which is

18 Chapter 2.

important, it is the impression of the visible page to the reader. Therefore, it is
clear that the calculation of the page layout must account for the “lost” paper
in the binding and add this amount to the width of the inner margin. This
is called the binding correction. The binding correction is therefore calculated
as part of the gutter , not however of the visible inner margin.
The binding correction depends on the process of actually producing the

document and thus cannot be calculated in general. Every production process
needs its own parameter. In professional binding, this parameter is not too
important since the printing is done on oversized paper which is then cropped
to the right size. The cropping is done in a way so that the relations for the
visible double-sided page are as explained above.
Now we know about the relations of the individual parts of a page. However,

we do not yet know about the width and the height of the text block. Once
we know one of these values, we can calculate all the other values from the
paper format and the page format or the binding correction.

textblock height : textblock width = page height : page width
top margin : foot margin = 1 : 2
left margin : right margin = 1 : 1

half inner margin : outer margin = 1 : 2
page width = paper width− binding correction

top margin + bottom margin = page height− textblock height
left margin + right margin = page width− textblock width

half inner margin + outer margin = page width− textblock width
half inner margin + binding correction = gutter

The values left margin and right margin only exist in a single-sided document
while half inner margin and outer margin only exist in a double-sided docu-
ment. In these equations, we work with half inner margin since the full inner
margin belongs to a double-page. Thus, one page has only half of the inner
margin, half inner margin.
The question of the width of the textblock is also discussed in the literature.

The optimum width depends on several factors:

• size, width, type of the font used

• line spacing

• word length

19 Chapter 2.

• available room

The importance of the font becomes clear once you think about the meaning
of serifs. Serifs are fine strokes finishing off the lines of the letters. Letters
whose main strokes run orthogonal to the text line disturb the flow rather than
keeping and leading the eye along the line. Those letters then have serifs at
the ends of the vertical strokes so that the horizontal serifs can help lead the
eye horizontally. In addition, they help the eye to find the beginning of the
next line more quickly. Thus, the line length for a serif font can be slightly
longer than for a sans serif font.
With leading is meant the vertical distance between individual lines of text.

In LATEX, the leading is set at about 20% of the font size. With commands
like \linespread or, better, packages like setspace (see [Tob00]), the leading
can be changed. A wider leading helps the eye to follow the line. A very wide
leading, on the other hand, disturbs reading because the eye has to move a
wide distance between lines. Also, the reader becomes uncomfortable because
of the visible stripe effect. The uniform gray value of the page is thereby
spoiled. Still, with a wider leading, the lines can be longer.
The literature gives different values for good line lengths, depending on the

author. To some extent, this is related to the native language of the author.
Since the eye jumps from word to word, short words make this task easier.
Considering all languages and fonts, a line length of 60 to 70 characters,
including spaces and punctuation, forms a usable compromise. This requires
well-chosen leading, but LATEX’s default is usually good enough. Longer line
lengths should only be considered for highly-developed readers who spend
several hours daily reading. However, even for such, line lengths greater than
80 characters are unsuitable. In any case, the leading must be appropriately
chosen. An extra 5% to 10% are recommended as a good rule of thumb. With
fonts such as Palatino, which require some 5% more leading even at normal
line lengths, even more can be required.
Before looking at the actual construction of the page layout, there are just

some minor things left to know. LATEX does not start the first line in the text
block of a page at the upper edge of the text block, but sets the baseline
at a defined distance from the top of the text block. Also, LATEX knows the
commands \raggedbottom and \flushbottom. \raggedbottom specifies
that the last line of a page should be positioned wherever it was calculated.
This means that the position of this line can be different on each page, up
to the height of one line— in combination of the end of the page with titles,
figures, tables or similar, even more. In double-sided documents this is usually
undesirable. \flushbottom makes sure that the last line is always at the

20 Chapter 2.

lower edge of the text block. To achieve this, LATEX sometimes needs to
stretch vertical glue more than allowed. Paragraph skip is such a stretchable,
vertical glue, even when set to zero. In order to not stretch the paragraph
skip on normal pages where it is the only stretchable glue, the height of the
text block should be set to a multiple of the height of the text line, including
the distance from the upper edge of the text block to the first line.
This concludes the introduction to page layout as handled by KOMA-

Script. Now, we can begin with the actual construction.

2.2. Page Layout Construction by Dividing

The easiest way to make sure that the text area has the same ratios as the
page is as follows: first, one subtracts the part BCOR, required for the binding
correction, from the inner edge of the paper, and divides the rest of the page
vertically into DIV rows of equal height; next, one divides the page horizontally
into the same number (DIV) of columns; then, one takes the uppermost row
as the upper margin and the two lowermost rows as the lower margin (if one
is printing double-sided, one must similarly take the innermost column as the
inner margin and the two outermost columns as the outer margin); then, one
adds the binding correction BCOR to the inner margin. What now remains
of the page is the text area. The width and the height of the text area and
margins result automatically from the number of rows and columns DIV. Since
the margins always need three stripes, DIV must be necessarily greater than
three. In order that the text area occupy at least twice as much space as the
margins, DIV should really be equal to or greater than 9. With this value, the
construction is also known as the classical division factor of 9 (see figure 2.1).
In KOMA-Script, this kind of construction is implemented in the typearea

package, where the bottom margin may drop any fractions of a line in order
to conform with the minor condition for the text area height mentioned in
the previous paragraph, and thereby to minimize the mentioned problem with
\flushbottom. For A4 paper, DIV is predefined according to the font size
(see table 2.2, page 27). If there is no binding correction (BCOR = 0pt), the
results roughly match the values of table 2.1, page 25.
In addition to the predefined values, one can specify BCOR and DIV as

options when loading the package (see section 2.4, from page 23 onwards).
There is also a command to explicitly calculate the type area by providing
these values as parameters (also see section 2.4, page 30).
The typearea package can automatically determine the optimal value of

DIV for the font and leading used. Again, see section 2.4, page 26.

21 Chapter 2.

binding
correction

page layout left page layout right

9

8

7

6

5

4

3

2

1 987654321

9

8

7

6

5

4

3

2

19 8 7 6 5 4 3 2

Figure 2.1.: Double-sided layout with the box construction of the classical division
factor of 9, after subtraction of a binding correction

2.3. Page Layout Construction by Drawing a Circle

In addition to the page layout construction method previously described, a
somewhat more classical method can be found in the literature. The aim of
this method is not only to obtain identical ratios in the page proportions, but
it is considered optimal when the height of the text block is the same as the
width of the page. The exact method is described in [Tsc87].
A disadvantage of this late Middle Age method is that the width of the text

area is no longer dependent on the font. Thus, one doesn’t choose the text
area to match the font, but the author or typesetter has to choose the font
according to the text area. This can be considered a “must”.
In the typearea package this construction is changed slightly. By using a

special (normally meaningless) DIV value or a special package option, a DIV
value is chosen to match the perfect values of the late Middle Age method as
closely as possible. See also section 2.4, page 26.

2.4. Early or late Selection of Options

In this section a peculiarity of KOMA-Script is presented, which apart
from the typearea package is also relevant to other KOMA-Script packages

22 Chapter 2.

and classes. Such that the user can find all information corresponding to a
single package or a single class in the relevant chapter, this section is found
almost identically in several chapters. Users who are not only interested
in a particular package or class, but wish to gain an overview of KOMA-
Script as a whole, may read the section in one chapter and may thereafter
skip it wherever coming across it in the document.

\documentclass[option list]{KOMA-Script class }
\usepackage[option list]{package list }

In LATEX provision is made for the user to pass class options as a comma-
separated list of keywords as optional arguments to \documentclass.
angeben. Apart from being passed to the class, these options are also
passed on to all packages which can understand the options. Provision is
also made for the use to pass optional arguments as a comma-separated
list of keywords as optional arguments to \usepackage. KOMA-Script
expands the option mechanism for die KOMA-Script classes und variousv3.00
packages to use further possibilities. Thus, most KOMA-Script options
can also take a value. An option may have not only the form Option ,
but may also have the form option =value . Apart from this difference
\documentclass and \usepackage function the same in KOMA-Script as
described in [Tea01] oder any introduction to LATEX, for example [?].
When using a KOMA-Script class no options should be passed on un-

necessary, explicit loading of the typearea or scrbase packages. The reason
for this is that the class already loads these packages without options and
LATEX refuses multiple loading of a package with different option settings.

\KOMAoptions{option list }
\KOMAoption{option }{value list }

KOMA-Script offers most class and package options the opportunity tov3.00
change the value of options even after loading of the class or package.
One may than change the values of a list of options at will with the
\KOMAoptions command. Each option in the option list has the form
option =value .
Some options also have a default value. If one does not give a value,

i. e., gives the option simply in the form option , then the default value
will be used.
Some options can assume several values simultaneously. For such options

there exists the possibility, with the help of \KOMAoption, to pass a single
option a list of values. The individual values are given as a comma-
separated value list .

23 Chapter 2.

If in the option list one sets an option to a disallowed value, or the
value list contains an invalid value, then an error is produced. If LATEX is
run in an interactive mode, then it stops at this point. Entering “h” displays
a help screen, in which also the valid values for the corresponding option are
given.
If a value includes an equal sign or a comma, then the value must be

enclosed in curly brackets.
To implement this possibility KOMA-Script uses the commands

\FamilyOptions and \FamilyOption with the family “KOMA”. More infor-
mation on these commands is found in ??, ??.

2.5. Options and Macros to Influence the Page Layout

The package typearea offers two different user interfaces to influence type
area construction. The more important method is to load the package with
options. For information on how to load packages and to give package op-
tions, please refer to the LATEX literature, e. g. [OPHS99] and [Tea01], or
the examples given here. Since the typearea package is loaded automati-
cally when using the KOMA-Script main classes, the package options can
be given as class options (see section 3.1).
In this section the protocol class will be used, not an existing KOMA-

Script class but a hypothetical one. This documentation assumes that
ideally there exists a class for every specific task.

BCOR=correction

With the aid of the option BCOR=correction one may specify the absolutev3.00
value of the binding correction, i. e., the width of the area which will be
lost from the paper width in the binding process. This value is then au-
tomatically taken into account in the page layout construction and in the
final output is added to the inner (or the left) margin. For the correction
specification any measurement unit understood by TEX is valid.

Example: Assume one is creating a financial report, which should be
printed out single-sided on A4 paper, and finally kept in a clamp folder.
The clamp will hide 7.5mm. The stack of pages is very thin, thus through
paging at most another 0.75mm will be lost. Therefore, one may write:
\documentclass[a4paper]{report}
\usepackage[BCOR=8.25mm]{typearea}

or

24 Chapter 2.

\documentclass[a4paper,BCOR=8.25mm]{report}
\usepackage{typearea}

when using BCOR as a global option.
When using a KOMA-Script class, the explicit loading of the typearea
package can be omitted:
\documentclass[BCOR=8.25mm]{scrreprt}

The option a4paper could be omittied with scrreprt, since this is a pre-
defined setting for all KOMA-Script classes.
If the option is only later set to a new value, one may then use, for
example, the following:
\documentclass{scrreprt}
\KOMAoptions{BCOR=8.25mm}

Thus, at the loading of the scrreprt class standard settings will be used.
When changing the setting with the use of the command \KOMAoptions
or \KOMAoption a new page layout with new margins will automatically
be calculated.

Please note that when using this option with one of the KOMA-Script
classes as in the example above, it must be used either as a class option,
or passed via \KOMAoptions or \KOMAoption after loading the class. The
typearea package should neither be loaded explicitly with \usepackage
when using a KOMA-Script class, nor should the option be given as an
optional argument thereto. If the option is changed via \KOMAoptions
or \KOMAoption after loading the package, the textblock and margins are
automatically recalculated anew.

DIV=Factor

With the aid of the option DIV=Factor the number of stripes into whichv3.00
the page is divided horizontally and vertically during the page layout con-
struction is set. The exact construction method is found in section 2.2.
Of importance is that the larger the Factor , the larger the text block
and the smaller the margins. Any integer value greater than 4 is valid for
Factor . Please note that large values can lead to unfulfillment of various
minor conditions in the type-area, depending on further options chosen.
Thus, in an extreme case, the header may fall outside of the page. Users
applying the option DIV=Factor are themselves responsible for fulfillmen

25 Chapter 2.

Table 2.1.: Type-area dimensions dependent on DIV for A4

Type-area Margins
DIV width [mm] height [mm] top [mm] inner [mm]
6 105,00 148,50 49,50 35,00
7 120,00 169,71 42,43 30,00
8 131,25 185,63 37,13 26,25
9 140,00 198,00 33,00 23,33
10 147,00 207,90 29,70 21,00
11 152,73 216,00 27,00 19,09
12 157,50 222,75 24,75 17,50
13 161,54 228,46 22,85 16,15
14 165,00 233,36 21,21 15,00
15 168,00 237,60 19,80 14,00

of the marginal conditions and setting of a typographically aesthetic line
length.
In table 2.1 are found the type-area sizes for several DIV factors for A4

page without binding correction. Here the minor conditions dependent on
font size are not considered.

Example: Assume one wants to write a meeting protocol, using the
protocol class. The document should be double-sided. In the com-
pany 12 pt Bookman font is used. This font, which belongs to the
standard PostScript fonts, is activated in LATEX with the command
\usepackage{bookman}. The Bookman font is a very wide font, meaning
that the individual characters have a large width relative to their height.
Therefore, the predefined value for DIV in typearea is insufficient. Instead
of the value of 12 it appears after thorough study of this entire chapter
that a value of 15 should be most suitable. The protocol will not be
bound but punched and kept in a folder. Thus, no binding correction is
necessary. One may then write:

\documentclass[a4paper,twoside]{protocol}
\usepackage{bookman}
\usepackage[DIV=15]{typearea}

On completion, it is decided that the protocols will from now on be col-
lected and bound quarterly into book format. The binding is to be a
simple glue binding, because it is only done to conform with ISO9000

26 Chapter 2.

and nobody is actually going to read them. For the binding including
space lost in turning the pages, an average of 12mm is required. Thus,
one may change the options of the typearea package accordingly, and use
the class for protocols conforming to ISO9000 regulations:
\documentclass[a4paper,twoside]{iso9000p}
\usepackage{bookman}
\usepackage[DIV=15,BCOR=12mm]{typearea}

Of course, it is equally possible to use here a KOMA-Script class:
\documentclass[twoside,DIV=15,BCOR=12mm]{scrartcl}
\usepackage{bookman}

The a4paper option can be left out when using the scrartcl class, as it is
predefined in all KOMA-Script classes.

Please note that when using the DIV option with one of the KOMA-
Script classes as in the example above, it must be used either as a class op-
tion, or passed via \KOMAoptions or \KOMAoption after loading the class.
The typearea package should neither be loaded explicitly with \usepackage
when using a KOMA-Script class, nor should the option be given as an
optional argument thereto. If the option is changed via \KOMAoptions
or \KOMAoption after loading the package, the textblock and margins are
automatically recalculated anew.

DIV=calc
DIV=classic

As already mentioned in section 2.2, for A4 paper there are fixed predefinedv3.00
settings for the DIV value. These can be found in table 2.2. If a different
paper format is chosen, then the typearea package independently calculates
an appropriate DIV value. Of course this same calculation can be applied
also to A4. To obtain this result, one simply uses the DIV=calc option in
place of the DIV=Factor option. This option can just as easily be explicity
given for other paper formats. If one desires an automatic calculation, this
also makes good sense, since the possibility exists to configure different
predefined settings in a configuration file (see ??). An explicit passing of
the DIV=calc option then overwrites such configuration settings.
The classical page layout construction, the Middle Age book design

canon, mentioned in section 2.3, is similarly selectable. Instead of the
DIV=Faktor or DIV=calc option, one may use the DIV=classic option.
A DIV value closest to the Middle Age book design canon is then chosen.

27 Chapter 2.

Table 2.2.: Predefined settings of DIV for A4

base font size: 10 pt 11 pt 12 pt
DIV: 8 10 12

Example: In the example using the Bookman font with the DIV=Factor
option, exactly that problem of choosing a more appropriate DIV value
for the font arose. As a variation on that example, one could simply leave
the choice of such a value to the typearea package:
\documentclass[a4paper,twoside]{protocol}
\usepackage{bookman}
\usepackage[DIV=calc]{typearea}

Please note that when using this option with one of the KOMA-Script
classes as in the example above, it must be used either as a class option,
or passed via \KOMAoptions or \KOMAoption after loading the class. The
typearea package should neither be loaded explicitly with \usepackage
when using a KOMA-Script class, nor should the option be given as an
optional argument thereto. If the option is changed via \KOMAoptions
or \KOMAoption after loading the package, the textblock and margins are
automatically recalculated anew.

DIV=current
DIV=last

Readers who have followed the examples with acuity actually alreadyv3.00
know how to calculate a DIV value dependent on the chosen font, when a
KOMA-Script class is used together with a font package.
The problem is that the KOMA-Script class already loads the typearea

package itself. Thus, it is not possible to pass options as optional argu-
ments to \usepackage. It would also be pointless to pass the DIV=calc
option as an optional argument to \documentclass. This option would be
evaluated immediately on loading the typearea package and as a result the
text block and margin would be chosen according to the LATEX standard font
and not for the later loaded font. However, it is quite possible to recalcu-
late the text block and margins anew after loading the font, with the aid
of \KOMAoptions{DIV=calc} or \KOMAoption{DIV}{calc}. Via calc an
appropriate DIV value for an good line length is then chosen.
As it is often more practical to set the DIV option not after loading the

font, but at a more visible point, such as when loading the class, the typearea
package offers two further symbolic valies for this option.

28 Chapter 2.

With DIV=current a renewed calculation of text block and margin isv3.00
requested, in which the currently-set DIV will be used. This is less of in-
terest for renewed type-area calculations after loading a different font; it is
rather more useful for determining, for example, after changing the lead-
ing, while keeping DIV the same, that the marginal condition is fulfilled
that \textheight less \topskip is a multiple of \baselineskip.
With DIV=last a renewed calculation of text block and margin is re-v3.00

quested, where exactly the same setting is used as in the last calculation.

Example: Let us take up the previous example again, in which a good
line length is required for a type-area using the Bookman font. At the
same time, a KOMA-Script class is to be used. This is easily possible
using the symbolic value last and the command \KOMAoptions:
\documentclass[BCOR=12mm,DIV=calc,twoside]{scrartcl}
\usepackage{bookman}
\KOMAoptions{DIV=last}

If it should later be decided that a different DIV value is required, then
only the setting of the optional argument to \documentclass need be
changed.

A summary of all possible symbolic values for the DIV option can be
founf in table 2.3. At this point it is noted that the use of the fontenc
package can also lead to LATEX loading a different font.
Often the renewed type-area calculation is required in combination with

a change in the line spacing (leading). Since the type-area should be cal-
culated such that an integer number of lines fit in the text block, a change
in the leading normally requires a recalculation of the page layout.

Example: For a thesis document, a font of size 10 pt and a spacing of 1.5
lines is required. By default, LATEX sets the leading for 10 pt at 2 pt, in
other words 1.2 lines. Therefore, an additional stretch factor of 1.25 is
needed. Additionally, a binding correction of 12mm is stipulated. Then
the solution could be written as follows:
\documentclass[10pt,twoside,BCOR=12mm,DIV=calc]{scrreprt}
\linespread{1.25}
\KOMAoptions{DIV=last}

Since typearea always executes the command \normalsize itself upon
calculation of a new type-area, it is not necessary to activate the chosen
leading with \selectfont after \linespread, sicne this will be used
already in the recalculation.

29 Chapter 2.

Table 2.3.: Possible symbolic values for the DIV option or the DIV argument to
\typearea[BCOR]{DIV }

areaset
Recalculate page layout.

calc
Recalculate type-area including choice of appropriate DIV value.

classic
Recalculate type-area using Middle Age book design canon
(circle-based calculation).

current
Recalculate type-area using current DIV value.

default
Recalculate type-area using the standard value for the current
page format and current font size. If no standard value exists,
calc is used.

last
Recalculate type-area using the same DIV argument as was used
in the last call.

When using the setspace package (see [Tob00]), the same example would
appear as follows:
\documentclass[10pt,twoside,BCOR=12mm,DIV=calc]{scrreprt}
\usepackage{setspace}
\onehalfspacing
\KOMAoptions{DIV=last}

As can be seen, with the use of the setspace package one no longer neesds
to know the correct stretch value.
At this point it should be noted that the line spacing for the title page
should be reset to the normal value.
\documentclass[10pt,twoside,BCOR=12mm,DIV=calc]{scrreprt}
\usepackage{setspace}
\onehalfspacing
\KOMAoptions{DIV=last}
\begin{document}
\title{Title}
\author{Markus Kohm}

30 Chapter 2.

Table 2.4.: Possible symbolic BCOR arguments for \typearea[BCOR]{DIV }

current
Recalculate type-area with the currently valid BCOR value.

\begin{spacing}{1}
\maketitle
\tableofcontents

\end{spacing}
\chapter{Ok}
\end{document}

See further also the notes in section 2.7.

Please note that when using this option with one of the KOMA-Script
classes as in the example above, it must be used either as a class option,
or passed via \KOMAoptions or \KOMAoption after loading the class. The
typearea package should neither be loaded explicitly with \usepackage
when using a KOMA-Script class, nor should the option be given as an
optional argument thereto. If the option is changed via \KOMAoptions
or \KOMAoption after loading the package, the textblock and margins are
automatically recalculated anew.

\typearea[BCOR]{DIV }
\recalctypearea

If the DIV option or the BCOR option is set after loading of the typearea
package, then internally the command \typearea is called. When setting the
DIV option the symbolic value current is used internally for BCOR , which for
reasons of completeness is found also in table 2.4. When setting the BCOR op-
tion, the symbolic value last is used internally for DIV . If it is instead desired
that the text block and margins should be recalculated using the symbolic
value current for DIV , then \typearea{current}{current} can be used
directly.
If both BCOR and DIV need changing, then it is recommended to use

\typearea, since then the text block and margins are recalculated only
once. With \KOMAoptions{DIV=DIV ,BCOR=BCOR } the text block and mar-
gins are recalculated once for the change to DIV and again for the change
to BCOR .
The command \typearea is currently defined so as to make it possible to

change the type-area anywhere within a document. Several assumptions about
the structure of the LATEX kernel are however made and internal definitions and

31 Chapter 2.

sizes of the kernel changed. There is a definite possibility, but no guarantee,
that this will continue to function in future versions of LATEX2ε. When used
within the document, a page break will result.
Since \typearea{current}{last} or \KOMAoptions{DIV=last} are of-

ten needed for recalculation of the type-area, there exists specially the
abbreviated command \recalctypearea.v3.00

Example: If one finds the notation
\KOMAoptions{DIV=last}

or
\typearea[current]{last}

for the recalculation of text block and margins too complicated for rea-
sons of the many special characters, then one may use more simply the
following.

\recalctypearea

twoside=switch
twoside=semi

As already explained in section 2.1, the margin configuration is depen-
dent on whether the document is to be typeset single- or double-sided.
For single-sided typesetting, the left and right margins are equally wide,
whereas for double-sided printing the inner margin of one page is only half
as wide as the corresponding outer margin. In order to implement this
distinction, the typearea package must be given the twoside option, if the
document is to be typeset double-sided. Being a switch , any of the stan-
dard values for simple switches in table 2.5 are valid. If the option is passed
without a value, the value true is assumed, so double-sided typesetting is
carried out. Deactivation of the option leads to single-sided typesetting.
Apart from the values in table 2.5 the value semi can also be given. Thev3.00

value semi results in a double-sided typesetting with single-sided margins
and single-sided, i. e., not alternating, margin notes.
The option can also be passed as class option in \documentclass, as

package option to \usepackage, or even after loading of the typearea pack-
age with the use of per \KOMAoptions or \KOMAoption. Use of the option
after loading the typearea package results automatically to a recalculation
of the type-area using \recalctypearea (see page 30). If double-sided

32 Chapter 2.

Table 2.5.: Standard values for simple switches in KOMA-Script

Value Description
true1 activates the option
on activates the option
yes activates the option
false deactivates the option
off deactivates the option
no deactivates the option

1This value will be used also, if you use the option without assigning any value.

typesetting was active before the option was set, then before the recalcu-
lation a page break is made to the next odd page.

twocolumn=switch

For the calculation of a good type-area with the help of DIV=calc it is
useful to know in advance if the document is to be typeset one-column or
two-column. Since the observations about line length in section 2.1 then
apply to each column, the width of a type-area in a two-column document
can be up to double that in a one-column document.
To implement this difference, the typearea package must be told via the

twocolumn option whether the document is to be two-column. Since this is
a switch , any of the standard values for simple switches from table 2.5 is
valid. If the option is passed without a value, the value true is assumed,
i. e., two-column typesetting. Deactivation of the option results in one-
column typesetting.
The option can also be passed as class option in \documentclass, as

package option to \usepackage, or even after loading of the typearea pack-
age with the use of per \KOMAoptions or \KOMAoption. Use of the option
after loading the typearea package results automatically to a recalculation
of the type-area using \recalctypearea (see page 30).

headinclude=switch
footinclude=switch

So far we have discussed how the type-area is calculated and what the rela-
tionship of the margins to one another and between margins and text block.
However, one important question has not been answered: What constitutes
the margins?

33 Chapter 2.

At first glance the question appears trivial: Margins are those parts on the
right, left, top and bottom which remain empty. But this is only half the story.
Margins are not always empty. There may be margin notes, for example (see
\marginpar command in [OPHS99] or section 3.6.5).
One could also ask, whether headers and footers belong to the upper and

lower margins or to the text. This can not be answered unambiguously. Of
course an empty footer or header belong to the margins, since they can not be
distinguished from the rest of the margin. A header or footer, that contains
only a page number1, will optically appear more like a margin. For the optical
appearance it is not important whether headers or footers are easily recognized
as such during reading. Important is only, how a well filled page appears when
viewed out of focus. One could use the glasses of one’s far-sighted grand
parents, or, lacking those, adjust one’s vision to infinity and look at the page
with one eye only. Those wearing spectacles will find this much easier, of
course. If the footer contains not only the page number, but other material
like a copyright notice, it will optically appear more like a part of the text
body. This needs to be taken into account when calculating text layout.
For the header this is even more complicated. The header frequently con-

tains running headings 2. In case of running headings with long chapter and
section titles the header lines will be very long and appear to be part of the text
body. This effect becomes even more significant when the header contains not
only the chapter or section title but also the page number. With material on
the right and left side, the header will no longer appear as an empty margin.
It is more difficult if the pagination is in the footer, and the length of the titles
varies, so that the header may appear as a margin on one page and as text
on another. However, these pages should not be treated differently under any
circumstances, as this would lead to vertically jumping headers. In this case
it is probably best to count the header as part of the text.
The decision is easy when text and header or footer are separated from

the text body by a line. This will give a “closed” appearance and header or
footer become part of the text body. Remember: It is irrelevant that the line
improves the optical separation of text and header or footer, important is only
the appearance when viewed out of focus.
The typearea package can not make the decision whether or not to count

headers and footers as part of the text body or the margin. Options
headinclude and footinclude cause the header or footer to be counted as
part of the text. These options, being a switch , understand the standardv3.00

1Pagination refers to the indication of the page number.
2Running headings refer to the repetition of a title in titling font, which is more often
typeset in the page header, less often in the page footer.

34 Chapter 2.

values for simple switches in table 2.5. One may use the options without
specifying a value, in which case the value true is used for the switch ,
i. e., the header or footer is counted as part of the text.
Readers who are unsure about the the correct setting should re-read

the above explanations. Default is usually headinclude=false and
footinclude=false, but this can change depending on KOMA-Script
class and KOMA-Script packages used (see section 3.1 and chapter 4).
Please note that when using these options with one of the KOMA-Script

classes as in the example above, they must be used either as a class op-
tion, or passed via \KOMAoptions or \KOMAoption after loading the class.
Changing of these options after loading the typearea package does not re-
sult in an automatic recalculation of the type-area. Instead, the changes
only take effect at the next recalculation of the type-area. For recalcu-
lation of the type-area, refer to the DIV option with the values last or
current (see page 27) or the \recalctypearea command (see page 30).

mpinclude=switch

Besides documents where the head and foot is part of the text area, therev2.8q
are also documents where the margin-note area must be counted to the
text body as well. The option mpinclude does exactly this. The option, as
a switch , understands the standard values for simple switches in table 2.5.v3.00
One may also pass this option without specifying a value, in which case
the value true for switch is assumed.
The effect of mpinclude=true is that one width-unit of the text body

is taken for the margin-note area. Using option mpinclude=false, the
default setting, then the normal margin is used for the margin-note area.
The width of that area is one or one and a half width-unit, depending
on whether one-sided or double-sided page layout has been chosen. The
option mpincludetrue is mainly for experts and so not recommended.
In the cases where the option mpinclude is used often a wider margin-note

area is required. In many cases not the whole margin-note width should be
part of the text area, for example if the margin is used for quotations. Such
quotations are typeset as ragged text with the flushed side where the text
body is. Since ragged text gives no homogeneous optical impression the long
lines can reach right into the normal margin. This can be done using option
mpinclude and by an enlargement of length \marginparwidth after the type-
area has been setup. The length can be easily enlarged with the command
\addtolength. How much the the length has to be enlarged depends on
the special situation and it requires some flair. This is another reason the

35 Chapter 2.

mpinclude option is primarily left for experts. Of course one can setup the
margin-width to reach a third right into the normal margin, for example using
\setlength{\marginparwidth}{1.5\marginparwidth}

gives the desired result.
Currently there is no option to enlarge the margin by a given amount. The

only solution is to either not use the option mpinclude or to set mpinclude
to false, and instead after the type-area has been calculated one reduces
the width of the text body \textwidth and enlarges the margin width
\marginparwidth by the same amount. Unfortunately, this can not be com-
bined with automatic calculation of the DIV value. In contrast DIV=calc (see
page 26) heeds mpinclude.
Please note that when using this option with one of the KOMA-Script

classes as in the example above, it must be used either as a class option, or
passed via \KOMAoptions or \KOMAoption after loading the class. Chang-
ing of this option after loading the typearea package does not result in an
automatic recalculation of the type-area. Instead, the changes only take
effect at the next recalculation of the type-area. For recalculation of the
type-area, refer to the DIV option with the values last or current (see
page 27) or the \recalctypearea command (see page 30).

headlines=number of lines
headheight=height

We have seen how to calculate the type-area using the typearea package
and how to specify whether header and footer are part of the text or the
margins. However, in particular for the header, we still have to specify the
height. This is achieved with the options headlines and headheight.v3.00
The option headlines is set to the number of header lines. The typearea

package uses a default of 1.25. This is a compromise, large enough for
underlined headers (see section 3.1) and small enough that the relative
weight of the top margin is not affected too much when the header is not
underlined. Thus in most cases you may leave headlines at its default
value and adapt it only in special cases.

Example: Assume that you want to use a header with two lines. Normally
this would result in a “overfull \vbox” warning for each page. To
prevent this from happening, the typearea package is told to calculate an
appropriate type-area:
\documentclass[a4paper]{article}
\usepackage[headlines=2.1]{typearea}

36 Chapter 2.

If you use a KOMA-Script class it is recommended to pass this option
directly as a class option:
\documentclass[a4paper,headlines=2.1]{scrartcl}

Commands that can be used to define the contents of a header with two
lines are described in chapter 4.

In some cases it is useful to be able to specift the header height not in
lines but directly as a length measurement. This is accomplished with the
aid of the alternative option headheight. For height any lengths and
sizes that LATEX understands are valid. It should be noted though that
when using a LATEX length such as \baselineskip its value at the time
of the calculation of the type-area and margins, not at the time of setting
of the option, is decisive.
Please note that when using these options with one of the KOMA-Script

classes as in the example above, they must be used either as a class op-
tion, or passed via \KOMAoptions or \KOMAoption after loading the class.
Changing of these options after loading the typearea package does not re-
sult in an automatic recalculation of the type-area. Instead, the changes
only take effect at the next recalculation of the type-area. For recalcu-
lation of the type-area, refer to the DIV option with the values last or
current (see page 27) or the \recalctypearea command (see page 30).

\areaset[BCOR]{Width }{Height }

So far we have seen how a good or even very good type-area is calculated
and how the typearea package can support these calculations, giving you
at the same time the freedom to adapt the layout to your needs. How-
ever, there are cases where the text body has to fit exactly some specified
dimensions. At the same time the margins should be well spaced and a
binding correction should be possible. The typearea package offers the com-
mand \areaset for this purpose. As parameters this command accepts
the binding correction and the width and height of the text body. Width
and position of the margins will then be calculated automatically, taking
account of the options headinclude, headinclude=false, footinclude
and footinclude=false where needed. On the ther hand, the options
headlines and headheight are ignored!

Example: Assume a text, printed on A4 paper, should have a width of
exactly 60 characters of typewriter font and a height of exactly 30 lines.
This could be achieved as follows:

37 Chapter 2.

\documentclass[a4paper,11pt]{article}
\usepackage{typearea}
\newlength{\CharsLX}% Width of 60 characters
\newlength{\LinesXXX}% Height of 30 lines
\settowidth{\CharsLX}{\texttt{1234567890}}
\setlength{\CharsLX}{6\CharsLX}
\setlength{\LinesXXX}{\topskip}
\addtolength{\LinesXXX}{29\baselineskip}
\areaset{\CharsLX}{\LinesXXX}

You need only 29 instead of 30, because the base line of the topmost text
line is \topskip below the top margin of the type area, as long as the
height of the topmost line is less than \topskip. Thus, the uppermost
line does not require any height. The descenders of characters on the
lowermost line, on the other hand, hang below the dimensions of the
type-area.

A poetry book with a square text body with a page length of 15 cm and
a binding correction of 1 cm could be achieved like this:
\documentclass{poetry}
\usepackage{typearea}
\areaset[1cm]{15cm}{15cm}

DIV=areaset

In rare cases it is useful to be able to reconstruct the current type-v3.00
area anew. This is possible via the option DIV=areaset, where
\KOMAoptions{DIV=areaset} corresponds to the
\areaset[current]{\textwidth}{\textheight}

command. The same result is obtained if one uses DIV=last and the
typearea was last set with \areaset.
The typearea package was not made to set up predefined margin values.

If you have to do so you may use package geometry (see [Ume00]).

2.6. Paper Format Selection

The paper format is a definitive characteristic of any document. As already
mentioned in the description of the supported page layout constructions
(see section 2.1 to section 2.3 from page 17 onwards), the entire page
division and document layout depends on the paper format. Whereas
the LATEX standard classes are restricted to a few formats, KOMA-Script
supports in conjunction with the typearea package even exotic paper sizes.

38 Chapter 2.

paper=format

The option paper is the central element for format selection in KOMA-v3.00
Script. Format supports first of all the american formats letter, legal
and executive. In addition, it supports the ISO formats of the series A,
B, C and D, for example A4 or—written in lowercase— a4. Landscape
formats are supported by specifying the option again, this time with the
value landscape. Additionally, the format can also be specified in the
form height :width .

Example: Assume one wishes to print on ISO A8 file cards in landscape
orientation. Margins should be very small, no header or footer will be
used.
\documentclass{article}
\usepackage[headinclude=false,footinclude=false,

paper=A8,landscape]{typearea}
\areaset{7cm}{5cm}
\pagestyle{empty}
\begin{document}
\section*{Supported Paper Sizes}
letter, legal, executive, a0, a1 \dots\ %
b0, b1 \dots\ c0, c1 \dots\ d0, d1 \dots
\end{document}

If the file cards have the special format (height:width) 5 cm : 3 cm, this
can be achieved using the following code.

\documentclass{article}
\usepackage[headinclude=false,footinclude=false,%

paper=A8,paper=5cm:3cm]{typearea}
\areaset{4cm}{2.4cm}
\pagestyle{empty}
\begin{document}
\section*{Supported Paper Sizes}
letter, legal, executive, a0, a1 \dots\ %
b0, b1 \dots\ c0, c1 \dots\ d0, d1 \dots
\end{document}

As part of the predefined defaults, KOMA-Script uses A4 paper in por-
trait orientation. This is in contrast to the standard classes, which by
default use the American letter paper format.
Please note that when using this options with one of the KOMA-Script

classes, it must be used either as a class option, or passed via \KOMAoptions
or \KOMAoption after loading the class. Changing of this option after

39 Chapter 2.

loading the typearea package does not result in an automatic recalcula-
tion of the type-area. Instead, the changes only take effect at the next
recalculation of the type-area. For recalculation of the type-area, refer
to the DIV option with the values last or current (see page 27) or the
\recalctypearea command (see page 30).

pagesize=output driver

The above-mentioned mechanisms for choice of paper format only affect the
output insofar as internal LATEX lengths are set. The typearea package then
uses there in the division of the page into type-area and margins. The specifi-
cation of the DVI formats however does not include any indications of paper
format. If printing is done directly from DVI format to a low-level printer
language such as PCL or ESC/P2, this is usually not an issue since with this
output also the zero-position is at the top left, identical to DVI. If however
translation is made into a language such as PostScript or PDF, in which the
zero-position is at a different point, and in which also the paper format should
be specified in the output data, then this information is missing. To solve this
problem, the respective drivers use a predefined paper size, which the user can
change either by means of an option or via a corresponding command in the
TEX source file. When using the DVI driver dvips the information can be
given in the form of a \special command. With pdfTEX or VTEX one sets
instead two lengths.
The option pagesize=dvips writes the paper size as a \special into

die DVI data file. This \special is then evaluated by, for example, dvips.
On the other hand, the option pagesize=pdftex writes the paper size at
the start of the document into the pdfTEX page registers \pdfpagewidth
and \pdfpageheight, so that later when viewing the PDF file the cor-
rect format is chosen. The option pagesize=auto is more flexible and,
depending on whether a PDF or DVI data file is output, uses the mecha-
nism of the option pagesize=dvips or pagesize=pdftex. With the option
pagesize=automedia it may be that \mediawidth and \mediaheight are
also set appropriately. In this way even the demands of VTEX are sup-
ported. If the option pagesize is used with specifying an output driver
then auto is used.

Example: Assume that a document should be available both as a DVI
data file and in PDF format for online viewing. Then the preamble might
begin as follows:
\documentclass{article}
\usepackage[paper=A4,pagesize]{typearea}

40 Chapter 2.

If the pdfTEX engine is used and PDF output is activated, then the two
lengths \pdfpagewidth and \pdfpageheight are set appropriately. If
however a DVI data file is created—regardless of whether by LATEX or
by pdfLATEX—then a \special is written at the start of this data file.

It is recommended always to specify this option. Generally the method
without output driver , or with auto or automedia is useful.

2.7. Tips

In particular for theses many rules exist that violate even the most elemen-
tary rules of typography. The reasons for such rules include typographical
incompetence of those making them, but also the fact that they were orig-
inally meant for mechanical typewriters. With a typewriter or a primitive
text processor dating back to the early ´80s it was not possible to pro-
duce typographically correct output without extreme effort. Thus rules
were created that appeared to be achievable and still allowed easy cor-
rection. To avoid short lines made worse by ragged margins, the margins
were kept narrow and the line spacing was increased to 1.5 for corrections.
Before the advent of modern text processing systems, single-spaced would
have been the only alternative—other than with TEX. In such a single-
spaced document even correction signs would have been difficult to add.
When computers became more widely available for text processing, some
students tried to use a particularly “nice” font to make their work look
better than it really was. They forgot however that such fonts are often
more difficult to read and therefore unsuitable for this purpose. Thus two
bread-and-butter fonts became widely used which neither fit together nor
are particularly suitable for the job. In particular Times is a relatively
narrow font which was developed at the beginning of the 20th century for
the narrow columns of British newspapers. Modern versions usually are
somewhat improved. But still the Times font required in many rules does
not really fit to the margin sizes prescribed.
LATEX already uses sufficient line spacing, and the margins are wide

enough for corrections. Thus a page will look generous, even when quite
full of text.
To some extend the questionable rules are difficult to implement in

LATEX. A fixed number of characters per line can be kept only when a
non-proportional font is used. There are very few good non-proportional
fonts available. Hardly a text typeset in this way looks really good. In
many cases font designers try to increase the serifs on the ‘i’ or ‘l’ to com-

41 Chapter 2.

pensate for the different character width. This can not work and results
in a fragmented and agitated-looking text. If one uses LATEX for one’s
paper, some of these rules have to be either ignored or at least interpreted
generously. For example one may interpret “60 characters per line” not as
a fixed, but as an average or maximal value.
As executed, record regulations are usually intended to obtain a usable

result even if the author does not know what needs to be considered.
Usable means frequently: readable and correctable. In the author’s opinion
the type-area of a text set with LATEX and the typearea package meets these
criteria well right from the start. Thus if one is confronted with regulations
which deviate obviously substantially from it, then the author recommends
submitting an extract from the text to the responsible person and inquiring
whether it is permitted to submit the work despite deviations in the format.
If necessary the type area can be moderately adapted by modification
of option DIV. The author advises against the use of \areaset for this
purpose however. In the worst case one may make use of the geometry
package (see [Ume00]), which is not part of KOMA-Script, or change the
type-area parameters of LATEX. One may find the values determined by
typearea in the log file of one’s document. Thus moderate adjustments
should be possible. However, one should make absolutely sure that the
proportions of the text area correspond approximately to those of the page
including consideration of the binding correction.
If it should prove absolutely necessary to set the text with a line

spacing of 1.5, then one should not under any circumstances redefine
\baselinestretch. Although this procedure is recommended all too fre-
quently, it has been obsolete since the introduction of LATEX2ε in 1994. In
the worst case one may use the instruction \linespread. The author rec-
ommends the package setspace (see [Tob00]), which is not part of KOMA-
Script. Also one should let typearea recalculate a new type-area after the
conversion of the line spacing. However, one should switch back to the
normal line spacing for the title, preferably also for the table contents and
various listings—as well as the bibliography and the index. The setspace
package offers for this a special environment and its own instructions.
The typearea package even with option DIV=calc calculates a very gener-

ous text area. Many conservative typographers will state that the resulting
line length is still excessive. The calculated DIV value may be found in
the log file for the respective document. Thus one can select a smaller
value easily after the first LATEX run.
The question is not infrequently put to the author, why he spends an

entire chapter discussing type-area calculations, when it would be very

42 Chapter 2.

much simpler to merely give the world a package with which anyone can
adjust the margins like in a word processor. Often it is added that such a
package would in any case be the better solution, since everyone can judge
for themselves how good margins are to be chosen, and that the margins
calculated by KOMA-Script are anyway not that great. The author takes
the liberty of translating a suitable quotation from [WF00]. One may find
the original German words in the German scrguide.

The practice of doing things oneself is long-since widespread,
but the results are often dubious because layman typographers
do not see what is incorrect and cannot know what is important.
Thus one becomes accustomed to incorrect and poor typography.
[. . .] Now the objection could be made that typography is de-
pendent on taste. If it concerned decoration, perhaps one could
let that argument slip by; however, since typography is primar-
ily concerned with information, errors cannot only irritate, but
may even cause damage.

43 Chapter 3.

The Main Classes scrbook, scrreprt and scrartcl

Note: Almost all commands of the chapter for experts are missing, be-
cause that chapter is still missing. Some are at this chapter instead.
The main classes of the KOMA-Script bundle are designed as counterparts

to the standard LATEX classes. This means that the KOMA-Script bundle
contains replacements for the three standard classes book, report and article.
There is also a replacement for the standard class letter. The document
class for letters is described in a separate chapter, because it is fundamentally
different from the three main classes (see chapter 6).The names of the KOMA-
Script classes are composed of the prefix “scr” and the abbreviated name of
the corresponding standard class. In order to restrict the length of the names
to eight letters, the vowels, starting with the last one, are left off as necessary.
The table 3.1 shows an overview of the correspondence between the standard
classes and the KOMA-Script classes.
The simplest way to use a KOMA-Script class instead of a standard one

is to substitute the class name in the \documentclass command according
to table 3.1. Normally, the document should be processed without errors
by LATEX, just like before the substitution. The look however should be
different. Additionally, the KOMA-Script classes provide new possibilities
and options that are described in the following sections.

Table 3.1.: Correspondence between standard classes, KOMA-Script classes and
Script styles.

standard class KOMA-Script class
article scrartcl
report scrreprt
book scrbook
letter scrlttr2

3.1. The Options

Note: Since version 3.00 the main classes understand command
\KOMAoptions (see section 6.2, page 150). In the course of the devel-
opment many new options were implemented and old became obsolete.
Only the new options may be used with \KOMAoptions. Unfortunately

44 Chapter 3.

most of them are documented not yet. You may find the obsolete and
corresponding new options at table 3.2.

Note: Following options are still miss-
ing in this chapter: bibliography=setting ,
bibliography=openstyle, bibliography=oldstyle,
captions=bottombeside, captions=centeredbeside,
captions=innerbeside, captions=leftbeside,
captions=outerbeside, captions=rightbeside,
captins=topbeside, fontsize=size , footnotes=multiple,
footnotes=nomultiple, headings=onelineappendix,
headings=twolineappendix, headings=onelinechapter,
headings=twolinechapter, listof=chapterentry,
listof=chaptergapline, listof=chaptergapsmall,
listof=leveldown, listof=nochaptergap, numbers=autoendperiod,
toc=bibliography, toc=bibliographynumbered, toc=index,
toc=listof, toc=listofnumbered, toc=nobibliography, toc=noindex,
toc=nolistof, version=value (see section 6.2.2, page 150).

Table 3.2.: Obsolete vs. Recommended Options

obsolete option recommended option
abstracton abstract
abstractoff abstract=false
parskip- parskip=full-
parskip+ parskip=full+
parskip* parskip=full*
halfparskip parskip=half
halfparskip- parskip=half-
halfparskip+ parskip=half+
halfparskip* parskip=half*
tocleft toc=flat
tocindent toc=graduated
listsleft listof=flat
listsindent listof=graduated
cleardoubleempty cleardoublepage=empty
cleardoubleplain cleardoublepage=plain
cleardoublestandard cleardoublepage=current
pointednumber numbers=enddot
pointlessnumber numbers=noenddot

. . .

45 Chapter 3.

Table 3.2.: Obsolete vs. Recommended Options (continuation)

obsolete Option recommended option
nochapterprefix chapterprefix=false
noappendixprefix appendixprefix=false
bigheadings headings=big
normalheadings headings=normal
smallheadings headings=small
headnosepline headsepline=false
footnosepline footsepline=false
liststotoc listof=totoc
liststotocnumbered listof=numbered
bibtotoc bibliography=totoc
bibtotocnumbered bibliography=totocnumbered
idxtotoc index=totoc
tablecaptionabove captions=tableheading
tablecaptionbelow captions=tablesignature
onelinecaption captions=oneline
noonelinecaption captions=nooneline

This section describes the global options of the three main classes. The
majority of the options can also be found in the standard classes. Since
experience shows that many options of the standard classes are unknown,
their description is included here. This is a departure from the rule that
the scrguide should only describe those aspects whose implementation
differs from the standard one.
Table 3.3 lists those options that are set by default in at least one of the

KOMA-Script classes. The table shows for each KOMA-Script main class
if the option is set by default and if it is even defined for that class. An
undefined option cannot be set, either by default or by the user.
Allow me an observation before proceeding with the descriptions of the

options. It is often the case that at the beginning of a document one is often
unsure which options to choose for that specific document. Some options, for
instance the choice of paper size, may be fixed from the beginning. But already
the question of which DIV value to use could be difficult to answer initially.
On the other hand, this kind of information should be initially irrelevant for
the main tasks of an author: design of the document structure, text writing,
preparation of figures, tables and index. As an author you should concentrate
initially on the contents. When that is done, you can concentrate on the fine

46 Chapter 3.

Table 3.3.: Default options of the KOMA-Script classes

Option scrbook scrreprt scrartcl
abstract= undefined false false
captions= tablesignature tablesignature tablesignature
chapteratlists= 10pt 10pt undefined
chapterprefix= false false undefined
draft= false false false
fontsize= 11pt 11pt 11pt
footsepline= false false false
headings= big big big
headsepline= false false false
listof= graduated graduated graduated
open= right any undefined
paper= a4 a4 a4
parindent default default default
titlepage= true true false
toc= graduated graduated graduated
twocolumn= false false false
twoside= true false false
version= first first first

points of presentation. Besides the choice of options, this means correcting
things like hyphenation, page breaks, and the distribution of tables and figures.
As an example consider table 3.3, which I moved repeatedly between the
beginning and the end of this section. The choice of the actual position will
only be made during the final production of the document.

3.1.1. Options for Compatibility

Users who archive their documents as source code generally place great
value on obtaining exactly the same output in future LATEX runs. However,
in some cases, improvements and corrections to a class can lead to changes
in behaviour, particularly as regards line and page breaks.

version
version=value

Since version 2.96a KOMA-Script offers the choice of whether a source filev2.96a
should output as far as possible identical results in future LATEX runs, or
whether output should be determined according to the latest changes in

47 Chapter 3.

the class. The option version determines with which version compatibility
is to be maintained. The default setting is version 2.9t. The same result
can be achieved by setting
version=first

or
version=2.9

or
version=2.9t.

If an unknown version number is given as value a warning is output and
for safety’s sake the option is set to version=first. With
version=last

the current latest version can be selected. In this case future compatibility
is switched off. If the option is used without a value, then once again the
value of last is assumed.
The question of compatibility is first of all a question of line and page

breaking. New capabilities, which do not affect page breaks, are also avail-
able if the option of compatibility to an older version is selected. The
option has no effect on changes in the page breaking when using a newer
version, which result purely through the correction of errors. If absolute
compatibility including errors is required, then the requisite KOMA-Script
version should be archived along with the document source.
It should be noted that the option version cannot be changed after the

loading of the class.

3.1.2. Options for Page Layout

With the standard classes the page layout is established by the option files
size10.clo, size11.clo, size12.clo (or bk10.clo, bk11.clo, bk12.clo
for the book class) and by fixed values in the class definitions. The KOMA-
Script classes, however, do not use a fixed page layout, but one that depends
on the paper format and font size. For this task all three main classes
use the typearea package (see chapter 2). The package is automatically
loaded by the KOMA-Script main classes. Therefore it is not necessary to
load the package using \usepackage{typearea}. If a LATEX run results
in an error “Option clash for package typearea”, then this is most
likely owing to the use of an explicit command \usepackage[package
options]{typearea}.

48 Chapter 3.

letterpaper
legalpaper
executivepaper
aXpaper
bXpaper
cXpaper
dXpaper
landscape

The basic options for the choice of paper format are not processed directly
by the classes. Instead, they are automatically processed by the typearea
package as global options (see section 2.4, ??). The options a5paper,
a4paper, letterpaper, legalpaper and executivepaper correspond to
the likewise-named options of the standard classes and define the same
paper format. The page layout calculated for each is different, however.
The reason that the options for the A, B, C or D format are not processed by

the typearea is not because they are global options, but because the KOMA-
Script classes explicitly pass them to the typearea package. This is caused
by the way option processing is implemented in the typearea package and by
the operation of the underlying option passing and processing mechanism of
LATEX.
This is also valid for the options, described subsequently, that set the binding

correction, the divisor and the number of header lines.

3.1.3. Options for Document Layout

This subsection deals with all the options that affect the document layout
in general and not only the page layout. Strictly speaking, of course, all
page layout options (see section 3.1.2) are also document layout options.
The reverse is also partially true.

open=value

These option has the same effects like the standard options openany andscrbook,
scrreprt openright. They affect the choice of the page where a chapter can begin,

so they are not available with the scrartcl class, since the next largest unit
below “part” is “section”. The chapter level is not available in scrartcl.
A chapter always begins on a new page. When the option open=any is

active, any page can be used. The option open=right causes the chap-
ter to begin on a new right page. An empty left page may be inserted
automatically in this case. The empty pages are created by the implicit
execution of the LATEX command \cleardoublepage.

49 Chapter 3.

The option open=right has no effect with a one-sided layout, because
only the two-sided layout differentiates between left and right pages. For
this reason it should only be used together with the twoside option.

cleardoublepage=page style
cleardoublepage=current

If one wishes the empty pages created by the \cleardoublepage command
to have no headers but only a page number, or neither headers nor page
number while using the standard classes, the only possibility is to redefine
the command appropriately. KOMA-Script provides options that avoid
this necessity. The option cleardoublepage=current enables the default
\cleardoublepage behaviour. If the option cleardoublepage=plain is
used, then the plain page style is applied to the empty left page. The
option cleardoublepage=empty causes the empty page style to be used.
The page styles are described in section 3.2.2.

titlepage=switch

The values of the option (see table 2.5, page 32) have the same ef-
fect as the standard options titlepage and notitlepage. The option
titlepage=true makes LATEX use separate pages for the titles. These
pages are set inside a titlepage environment and normally have neither
header nor footer. In comparison with standard LATEX, KOMA-Script ex-
pands the handling of the titles significantly (see section 3.3).
The option titlepage=false specifies that an in-page title is used. This

means that the title is specially emphasized, but it may be followed by more
material on the same page, for instance by an abstract or a section.

parskip=full
parskip=full*
parskip=full+
parskip=full-
parskip=half
parskip=half*
parskip=half+
parskip=half-
parindent

The standard classes normally set paragraphs indented and without any verti-
cal inter-paragraph space. This is the best solution when using a regular page
layout, like the ones produced with the typearea package. If neither indenta-
tion nor vertical space is used, only the length of the last line would give the
reader a reference point. In extreme cases, it is very difficult to detect whether

50 Chapter 3.

a line is full or not. Furthermore, it is found that a marker at the paragraph’s
end tends to be easily forgotten by the start of the next line. A marker at the
paragraph’s beginning is more easily remembered. Inter-paragraph spacing has
the drawback of disappearing in some contexts. For instance, after a displayed
formula it would be impossible to detect if the previous paragraph continues
or if a new one begins. Also, when starting to read at the top of a new page
it might be necessary to look at the previous page in order determine if a
new paragraph has been started or not. All these problems disappear when
using indentation. A combination of indentation and vertical inter-paragraph
spacing is redundant and therefore should be avoided. The indentation is per-
fectly sufficient by itself. The only drawback of indentation is the reduction of
the line length. The use of inter-paragraph spacing is therefore justified when
using short lines, for instance in a newspaper.
Independently of the explanation above, there are often requests for

a document layout with vertical inter-paragraph spacing instead of in-
dentation. KOMA-Script provides a large number of related options:
parskip=full, parskip=full-, parskip=full*, parskip=full+ and
parskip=half, parskip=half-, parskip=half* and parskip=half+.
The four full option valuess each define an inter-paragraph spacing of

one line. The four half option values use just a spacing of half a line. In
order to avoid a change of paragraph going unnoticed, for instance after a
page break, three of the options of each set ensure that the last line of a
paragraph is not completely filled. The variants without plus or star sign
ensure a free space of 1 em. The plus variant ensures that at least a third
of the line is free and the star variant ensures that at least a fourth of the
line is free. The minus variants make no special provision for the last line
of a paragraph.
All eight full and half option values also change the spacing before,

after and inside list environments. This avoids the problem of these envi-
ronments or the paragraphs inside them having a larger separation than
the separation between the paragraphs of normal text. Additionally, these
options ensure that the table of contents and the lists of figures and tables
are set without any additional spacing.
The default behaviour of KOMA-Script follows the parindent option.

In this case, there is no spacing between paragraphs, only an indentation
of the first line by 1 em.

51 Chapter 3.

headsepline=switch
footsepline=switch

In order to have a line separating the header from the text body
use the option headsepline (see table 2.5, page 32). The option
headsepline=false has the reverse effect. These options have no effect
with the page styles empty and plain, because there is no header in this
case. Such a line always has the effect of visually bringing header and text
body closer together. That doesn’t mean that the header must now be
moved farther from the text body. Instead, the header should be consid-
ered as belonging to the text body for the purpose of page layout calcula-
tions. KOMA-Script takes this into account by automatically passing the
option headinclude to the typearea package whenever the headsepline
option is used.
The presence of a line between text body and footer is controlled by the

option footsepline, that behaves like the corresponding header functions.
Whenever a line is requested by the footsepline option, the footinclude
option is automatically passed to the typearea package. In contrast to
headsepline, footsepline takes effect when used together with the page
style plain, because the plain style produces a page number in the footer.

chapterprefix
chapterprefix=false

With the standard classes book and report a chapter title consists of a linescrbook,
scrreprt with the word “Chapter”1followed by the chapter number. The title itself

is set left-justified on the following lines. The same effect is obtained in
KOMA-Script with the class option chapterprefix. The default however
is chapterprefix=false. These options also affect the automatic running
titles in the headers (see section 3.2.2).

appendixprefix=switch

Sometimes one wishes to have the chapter titles in simplified form accord-scrbook,
scrreprt ing to chapterprefix=false. But at the same time, one wishes a title

of an appendix to be preceded by a line with “Appendix” followed by the
appendix letter. This is achieved by using the appendixprefix option (see
table 2.5, page 32). Since this results in an inconsistent document layout,
I advise against using this option.
The reverse option appendixprefix=false exists only for completeness’

sake. I don’t know of any sensible use for it.
1When using another language the word “Chapter” is naturally translated to the ap-
propriate language.

52 Chapter 3.

captions=oneline
captions=nooneline

The standard classes differentiate between one-line and multi-line table or
figure captions. One-line captions are centered while multi-line captions
are left-justified. This behavior, which is also the default with KOMA-
Script, corresponds to the option captions=oneline. There is no spe-
cial handling of one-line captions when the captions=nooneline option
is given.
The avoidance of a special treatment for the caption has an additional effect

that is sometimes highly desirable. Footnotes that appear inside a \caption
command often have a wrong number assigned to them. This happens because
the footnote counter is incremented once as soon as the text is measured to
determine if it will be one line or more. When the captions=nooneline
option is used no such measurement is made. The footnote numbers are
therefore correct.
But since KOMA-Script version 2.9 you don’t need the option

captions=nooneline to avoid the above described effect. KOMA-Script
classes contain a workaround, so you can have footnotes inside captions. It
should be mentioned though that when using footnotes inside floating envi-
ronments, the contents of the floating environment should be encapsulated
inside a minipage. That way it is guaranteed that floating environment and
footnote are inseparable.

3.1.4. Options for Font Selection

Font options are those options that affect the font size of the document or
the fonts of individual elements. Options that affect the font style are also
theoretically font options. However KOMA-Script currently has no such
options.

10pt
11pt
12pt
Xpt

The options 10pt, 11pt and 12pt have the same effect as the corresponding
standard options. In contrast to the standard classes, KOMA-Script can
be used to choose other font sizes. However, LATEX provides the necessary
class option files only for 10 pt, 11 pt und 12 pt, and KOMA-Script does
not provide any class option files, so the user must provide any other class
option files. The package extsizes (see [Kil99]), for example, can be used to

53 Chapter 3.

provide a size14.clo class file. Very big font sizes may lead to arithmetic
overflow inside the page layout calculations of the typearea package.

headings=small
headings=normal
headings=big

The font size used for the titles is relatively big, both with the standard
classes and with KOMA-Script. Not everyone likes this choice; moreover it
is specially problematic for small paper sizes. Consequently, KOMA-Script
provides, besides the large title font size defined by the headings=big op-
tion, the two options headings=normal and headings=small, that allow
for smaller title font sizes. The font sizes for headings resulting from these
options for scrbook and scrreprt are shown in table 3.10, page 83. For
scrartcl smaller font sizes are generally used.scrbook,

scrreprt The spacing before and after chapter titles is also influenced by
these options. Chapter titles are also influenced by the options
chapterprefix and chapterprefix=false, and appendix titles by the
options appendixprefix and appendixprefix=false, all of which are
described in section 3.1.3, page 51.

3.1.5. Options Affecting the Table of Contents

KOMA-Script has several options that affect the entries in the table of
contents. The form of the table of contents is fixed but several variations
can be obtained with the options provided.

listof=totoc
index=totoc
bibliography=totoc
bibliography=totocnumbered
listof=numbered

Normally, lists of tables and figures, index and bibliography are not included
in the table of contents. These entries are purposely omitted in classical
typography because, among other things, a very particular placement of these
items is silently assumed, if they are present at all:

• table of contents after the title pages,

• lists of tables and figures after the table of contents,

• index right at the end,

54 Chapter 3.

• bibliography before the index.

Books, in which all these items are present, often include ribbons that can be
used to mark the location of these items in the book, so that the reader only
has to look for them once.
It is becoming increasingly common to find entries in the table of con-

tents for the lists of tables and figures, for the bibliography, and, some-
times, even for the index. This is surely also related to the recent trend
of putting lists of figures and tables at the end of the document. Both
lists are similiar to the table of contents in structure and intention. I’m
therefore sceptical of this evolution. Since it makes no sense to include
only one of the lists of tables and figures in the table of contents, there
exists only one option listof=totoc that causes entries for both types of
lists to be included. This also includes any lists produced with version 1.2e
or later of the float package (see [Lin01]). All these lists are unnumbered,
since they contain entries that reference other sections of the document.
The option index=totoc causes an entry for the index to be included in

the table of contents. The index is unnumbered since it too only includes
references to the contents of the other sectional units.
The bibliography is a different kind of listing. It does not list the contents

of the present document but refers instead to external documents. For that
reason, it could be argued that it qualifies as a chapter (or section) and,
as such, should be numbered. The option bibliography=totocnumbered
has this effect, including the generation of the corresponding entry in the
table of contents. I personally think that this reasoning would lead us to
consider a classical list of sources also to be a separate chapter. On the
other hand, the bibliography is finally not something that was written by
the document’s author. In view of this, the bibliography merits nothing
more than an unnumbered entry in the table of contents, and that can be
achieved with the bibliography=totoc option.
As the author of KOMA-Script already views the optionv2.8q

listof=totoc with open skepticism, and frankly detests option
bibliography=totocnumbered, it should come as no surprise that
he implemented option listof=numbered only under extreme duress.
He fears that as a next step someone will want the table of contents
numbered and entered in the table of contents. Therefore, those looking
in this documentation for a detailed description of option listof=totoc
will search in vain. A similar option for the index would be just as silly,
so its implementation has been determinedly refused so far.

55 Chapter 3.

toc=graduated
toc=flat

The table of contents is normally set up so that different sectional unitsv2.8q
have different indentations. The section number is set left-justified in a
fixed-width field. This setup is selected with the option toc=graduated.
When there are many sections, the corresponding numbering tends to

become very wide, so that the reserved field overflows. The FAQ [RNH02]
suggests that the table of contents should be redefined in such a case.
KOMA-Script offers an alternative format that avoids the problem com-
pletely. If the option toc=flat is selected, then no variable indentation
is applied to the titles of the sectional units. Instead, a table-like organ-
isation is used, where all unit numbers and titles, respectively, are set in
a left-justified column. The space necessary for the unit numbers is thus
determined automatically.
In order to calculate automatically the space taken by the unit numbers

when using the option toc=flat it is necessary to redefine some macros.
It is improbable but not impossible that this leads to problems when using
other packages. If you think this may be causing problems, you should try the
alternative option toc=graduated, since it does not make any redefinitions.
When using packages that affect the format of the table of contents, it is
possible that the use of options toc=flat and toc=graduated too may lead
to problems. When using such packages then, for safety’s sake, one should
refrain from using either of these options as global (class) options.
If the toc=flat option is active, the width of the field for unit numbering

is determined when outputting the table of contents. After a change that
affects the table of contents, at most three LATEX runs are necessary to obtain
a correctly set table of contents.

3.1.6. Options for Lists of Floats

The best known lists of floats are the list of figures and the list of tables.
Additionally, with help from the float package, for instance, it is possible
to produce new float environments with corresponding lists.
Whether KOMA-Script options have any effect on lists of floats produced

by other packages depends mainly on those packages. This is generally the
case with the lists of floats produced by the float package.
Besides the options described here, there are others that affect the lists

of floats though not their formatting or contents. Instead they affect what is
included in the table of contents. The corresponding descriptions can therefore
be found in section 3.1.5.

56 Chapter 3.

listof=graduated
listof=flat

Lists of figures and tables are generally set up so that their numbering usesv2.8q
a fixed space. This corresponds to the use of option listof=graduated.
If the numbers become too large, for instance because many tables

are used, it may happen that the available space is exceeded. Therefore
KOMA-Script supplies an option called listof=flat that is similar to the
toc=flat option. The width of the numbers is automatically determined
and the space for them correspondingly adjusted. Concerning the mode
of operation and the side effects, the observations made in section 3.1.5,
page 55 for the toc=flat option are equally valid in this case. Please note
that when using the listof=flat option several LATEX runs are necessary
before the lists of floats achieve their final form.

chapteratlists
chapteratlists=value

scrbook,
scrreprt Normally, every chapter entry generated with \chapter introduces vertical

v2.96a
spacing into the lists of floats. Since version 2.96a this applies also for the
command \addchap, if no compatibility option to an earlier version was
chosen (see option version in section 3.1.1, page 46).
Furthermore, now the option chapteratlists can be used to change

the spacing, by passing the desired distance as value . The default setting
is 10 pt. If the value is set to entry or no value is specified, then instead
of a vertical distance the chapter entry itself will be entered into the lists.
This option can be changed with \KOMAoptions{chapteratlists } or

\KOMAoptions{chapteratlists=value } even inside the document. It
takes effect from the next heading onwards. However, changes to the
option will only become effective in the lists following two more LATEX
runs.

3.1.7. Options Affecting the Formatting

Formatting options are all those options that affect the form or format-
ting of the document and cannot be assigned to other sections. They are
therefore the remaining options.

abstract=switch

In the standard classes the abstract environment sets the text “Abstract”scrreprt,
scrartcl centered before the summary text. This was normal practice in the past.

In the meantime, newspaper reading has trained readers to recognize a

57 Chapter 3.

displayed text at the beginning of an article or report as the abstract.
This is even more true when the text comes before the table of contents.
It is also surprising when precisely this title appears small and centered.
KOMA-Script provides the possibility of including or excluding the ab-
stract’s title with the options abstract=true and abstract=false (see
table 2.5,page 32).
Books typically use another type of summary. In that case there is usually a

dedicated summary chapter at the beginning or end of the book. This chapter
is often combined with the introduction or a description of wider prospects.
Therefore, the class scrbook has no abstract environment. A summary
chapter is also recommended for reports in a wider sense, like a Master’s or
Ph.D. thesis.

numbers=enddot
numbers=noenddot

In German, according to DUDEN, the numbering of sectional units should have
no dot at the end if only arabic numbers are used (see [DUD96, R 3]). On
the other hand, if roman numerals or letters are appear in the numbering,
then a dot should appear at the end of the numbering (see [DUD96, R 4]).
KOMA-Script has an internal mechanisms that tries to implement this some-
what complex rule. The resulting effect is that, normally, after the sectional
commands \part and \appendix a switch is made to numbering with an
ending dot. The information is saved in the aux file and takes effect on the
next LATEX run.
In some cases the mechanism for placing or leaving off the ending dot

may fail, or other languagues may have different rules. Therefore it is
possible to activate the use of the ending dot manually with the option
numbers=enddot or to deactivate it with numbers=noenddot.
Please note that the mechanism only takes effect on the next LATEX

run. Therefore, before trying to use these options to forcibly control the
numbering format, a further run without changing any options should be
made.
Calling these options dottednumbers and dotlessnumbers or similar

would be more correct. It so happened that the meaning of the chosen
names was not clear to me a few years ago when the options were imple-
mented. Some people asked me not to fix this “funny little mistake” so I
didn’t.

58 Chapter 3.

leqno

Equations are normally numbered on the right. The standard option leqno
causes the standard option file leqno.clo to be loaded. The equations are
then numbered on the left.

fleqn

Displayed equations are normally centered. The standard option fleqn
causes the standard option file fleqn.clo to be loaded. Displayed equa-
tions are then left-justified. This option may not be used at the argument
of \KOMAoptions but at the optional argument of \documentclass.

captions=tablesignature
captions=tableheading

As described in section 3.6.6, page 108, the \caption command acts
with figures like the \captionbelow command. The behaviour with ta-
bles, however, depends on these two options. In the default setting,
captions=tablesignature, the \caption macro acts also with tables like
the \captionbelow command. With the captions=tableheading option,
\caption acts like the \captionabove command.
Note that using any of these options does not change the position of the

caption from above the top of the table to below the bottom of the table
or vica versa. It only affects whether the text is formatted as a caption for
use above or below a table. Whether the text is in fact placed above or
below a table is set through the position of the \caption command inside
the table environment.
Note that when using the float package, the optionsfloat

captions=tablesignature and captions=tableheading cease to
act correctly when \restylefloat is applied to tables. More details of
the float package and \restylefloat can be found in [Lin01]. Additional
support in KOMA-Script for the float package may be found at the
explanation of komaabove in section 3.6.6, page 112.

origlongtable

The package longtable (see [Car98]) sets table captions internally by callinglongtable
the command \LT@makecaption. In order to ensure that these table captions
match the ones used with normal tables, the KOMA-Script classes normally
redefine that command. See section 3.6.6, page 109 for more details. The
redefinition is performed with help of the command \AfterPackage imme-
diately after the loading of package longtable. If the package caption2 (see

59 Chapter 3.

[Som08]) has been previously loaded, the redefinition is not made in order not
to interfere with the caption2 package.
If the table captions produced by the longtable package should not be

redefined by the KOMA-Script classes, activate the origlongtable option.

openbib
bibliography=openstyle
bibliography=oldstyle

The standard option openbib switches to an alternative bibliography for-
mat. The effects are twofold: The first line of a bibliography entry, nor-
mally containing the author’s name, receives a smaller indentation; and
the command \newblock is redefined to produce a paragraph. Without
this option, \newblock introduces only a stretchable horizontal space.

draft=switch

The option draft (see table 2.5, page 32) is normally used to distinguish
between the draft and final versions of a document. In particular, the
option draft=true activates small black boxes that are set at the end of
overly long lines. The boxes help the untrained eye to find paragraphs
that have to be treated manually. With the draft=false option no such
boxes are shown.
Option draft without value is also processed by other packages and

affect their operation. For instance, the graphics and the graphicx packages
don’t actually output the graphics when the option draft is specified.
Instead they output a framed box of the appropriate size containing only
the graphic’s filename (see [Car99b]).

3.2. General Document Characteristics

Some document characteristics do not apply to a particular section of the
document like the titling, the text body or the bibliography, but do affect
the entire document. Some of these characteristics were already described
in section 3.1.

3.2.1. Changing Fonts

KOMA-Script does not use fixed fonts and attributes to emphasize different
elements of the text. Instead there are variables that contain the commands
used for changing fonts and other text attributes. In previous versions of
KOMA-Script the user had to use \renewcommand to redefine those variables.

60 Chapter 3.

It was also not easy to determine the name of the variable affecting an element
given the element’s name. Besides, it was also often necessary to determine
the original definition before proceeding to redefine it.
These difficulties were actually intended, since the interface was not for

users, but only for package authors building their packages on top of KOMA-
Script. The years have shown, however, that the interface was in fact mainly
used by document authors. So a new, simpler interface was created. However,
the author explicitly advises the typographically inexperienced user against
changing font sizes and other graphical characteristics according to his taste.
Knowledge and feeling are basic conditions for the selection and mixture of
different font sizes, attributes and families.

\setkomafont{element }{commands }
\addtokomafont{element }{commands }
\usekomafont{element }

With the help of the two commands \setkomafont and \addtokomafont itv2.8p
is possible to define the commands that change the characteristics of a given
element . Theoretically all possible statements including literal text could
be used as commands . You should however absolutely limit yourself to
those statements that really switch only one font attribute. This will usu-
ally be the commands \normalfont, \rmfamily, \sffamily, \ttfamily,
\mdseries, \bfseries, \upshape, \itshape, \slshape, \scshape and
the font size commands \Huge, \huge, \LARGE, etc. The description of
these commands can be found in [OPHS99], [Tea01] or [Tea00]. Color
switching commands like \normalcolor (see [Car99b]) are also acceptable.
The behavior when using other commands, specially those that make re-
definitions or generate output, is not defined. Strange behavior is possible
and does not represent a bug.
The command \setkomafont provides a font switching command with

a completely new definition. In contrast to this the \addtokomafont com-
mand merely extends an existing definition. It is recommended to not use
both commands in the same document. Usage examples can be found in
the paragraphs on the corresponding element. Names and meanings of the
individual items are listed in table 3.4. The default values are shown in
the corresponding paragraphs.
The command \usekomafont can change the current font specification

to the one currently used with the specified element .

Example: Assume that you want to use for the element captionlabel
the same font specification that is used with descriptionlabel. This
can be easily done with:

61 Chapter 3.

\setkomafont{captionlabel}{\usekomafont{descriptionlabel←↩
}}

You can find other examples in the paragraphs on each element.

Table 3.4.: Elements, whose type style can be changed with the KOMA-Script
command \setkomafont or \addtokomafont

caption
Text of a table or figure caption

captionlabel
Label of a table or figure caption; used according to the element
caption

chapter
Title of the sectional unit \chapter

chapterentry
Table of contents entry of the sectional unit \chapter

chapterentrypagenumber
Page number of the table of contents entry of the sectional unit
\chapter, variation on the element chapterentry

descriptionlabel
Labels, i. e., the optional argument of \item in the description
environment

dictum
wise saying (see command \dictum)

dictumauthor
Author of a wise saying; used according to the element
dictumtext

dictumtext
Another name for dictum

disposition
All sectional unit titles, i. e., the arguments of \part down to
\subparagraph and \minisec, including the title of the abstract;
used before the element of the corresponding unit

. . .

62 Chapter 3.

Table 3.4.: Elements, whose type style can be changed (continuation)

footnote
Footnote text and marker

footnotelabel
Mark of a footnote; used according to the element footnote

footnotereference
Footnote reference in the text

labelinglabel
Labels, i. e., the optional argument of \item in the labeling
environment

labelingseparator
Separator, i. e., the optional argument of the labeling environ-
ment; used according to the element labelinglabel

minisec
Title of \minisec

pagefoot
The foot of a page, but also the head of a page

pagehead
The head of a page, but also the foot of a page

pagenumber
Page number in the header or footer

pagination
Another name for pagenumber

paragraph
Title of the sectional unit \paragraph

part
Title of the \part sectional unit, without the line containing the
part number

partentry
Table of contents entry of the secitonal unit \part

. . .

63 Chapter 3.

Table 3.4.: Elements, whose type style can be changed (continuation)

partentrypagenumber
Page number of the table of contents entry of the sectional unit
\part variation on the element partentry

partnumber
Line containing the part number in a title of the sectional unit
\part

section
Title of the sectional unit \section

sectionentry
Table of contents entry of sectional unit \section (only available
in scrartcl)

sectionentrypagenumber
Page number of the table of contents entry of the sectional unit
\section, variation on element sectionentry (only available in
scrartcl)

sectioning
Another name for disposition

subject
Categorization of the document, i. e., the argument of \subject
on the main title page

subparagraph
Title of the sectional unit \subparagraph

subsection
Title of the sectional unit \subsection

subsubsection
Title of the sectional unit \subsubsection

subtitle
Subtitle of the document, i. e., the argument of \subtitle on
the main title page

. . .

64 Chapter 3.

Table 3.4.: Elements, whose type style can be changed (continuation)

title
Main title of the document, i. e., the argument of \title (for
details about the title size see the additional note in the text
from page 74)

3.2.2. Page Style

One of the general characteristics of a document is the page style. In LATEX
this means mostly the contents of headers and footers.

\pagestyle{empty}
\pagestyle{plain}
\pagestyle{headings}
\pagestyle{myheadings}
\thispagestyle{local page style }

Usually one distinguishes four different page styles.

empty is the page style with entirely empty headers and footers. In
KOMA-Script this is completely identical to the standard classes.

plain is the page style with empty header and only a page number in
the footer. With the standard classes this page number is always
centered in the footer. With KOMA-Script the page number appears
on double-sided layout on the outer side of the footer. The one-sided
page style behaves like the standard setup.

headings is the page style with running headings in the header. These
are headings for which titles are automatically inserted into the
header. With the classes scrbook and scrreprt the titles of chaptersscrbook,

scrreprt and sections are repeated in the header for double-sided layout—
with KOMA-Script on the outer side, with the standard classes on
the inner side. The page number is set on the outer side of the footer
with KOMA-Script, with the standard classes it is set on the inner
side of the header. In one-sided layouts only the titles of the chap-
ters are used and are, with KOMA-Script, centered in the header.
The page numbers are set centered in the footer with KOMA-Script.
scrartcl behaves similarly, but starting a level deeper in the sectionscrartcl
hierarchy with sections and subsections, because the chapter level
does not exist in this case.

65 Chapter 3.

While the standard classes automatically set running headings al-
ways in capitals, KOMA-Script applies the style of the title. This
has several typographic reasons. Capitals as a decoration are actu-
ally far too strong. If one applies them nevertheless, they should be
set in a one point smaller type size and with tighter spacing. The
standard classes do not take these points in consideration.

myheadings corresponds mostly to the page style headings, but the run-
ning headings are not automatically produced, but have to be defined
by the user. The commands \markboth and \markright can be used
for that purpose.

Besides, the form of the page styles headings and myheadings is af-
fected by each of the four class options headsepline, headsepline=false,
footsepline and footsepline=false (see section 3.1.3, page 51). The
page style starting with the current page is changed by the command
\pagestyle. On the other hand \thispagestyle changes only the style
of the current page.
The page style can be set at any time with the help of the \pagestyle

command and takes effect with the next page that is output. Usually
one sets the page style only once at the beginning of the document or
in the preamble. To change the page style of the current page only,
one uses the \thispagestyle command. This also happens automat-
ically at some places in the document. For example, the instruction
\thispagestyle{plain} is issued implicitly on the first page of a chapter.
Please note that the change between automatic and manual running

headings is no longer performed by page style changes when using the
scrpage2 package, but instead via special instructions. The page styles
headings and myheadings should not be used together with this package
(see chapter 4, page 128).
In order to change the type style used in the header, footer or for the

page number, please use the interface described in section 3.2.1. The samev2.8p
element is used for header and footer, which you can designate equivalently
with pagehead or pagefoot. The element for the page number within the
header or footer is called pagenumber. The default settings can be found
in table 3.5.

Example: Assume that you want to set header and footer in a smaller
type size and in italics. However, the page number should not be set in
italics but bold. Apart from the fact that the result will look horrible,
you can obtain this as follows:

66 Chapter 3.

Table 3.5.: Default values for the elements of a page style

Element Default value
pagefoot \normalfont\normalcolor\slshape
pagehead \normalfont\normalcolor\slshape
pagenumber \normalfont\normalcolor

\setkomafont{pagehead}{%
\normalfont\normalcolor\itshape\small

}
\setkomafont{pagenumber}{\normalfont\bfseries}

If you want only that in addition to the default slanted variant a smaller
type size is used, it is sufficient to use the following:

\addtokomafont{pagefoot}{\small}

As you can see, the last example uses the element pagefoot. You can
achieve the same result using pagehead instead (see table 3.4 on page 61).

It is not possible to use these methods to force capitals to be used au-
tomatically for the running headings. For that, please use the scrpage2
package (see chapter 4, page 138).
If you define your own page styles, the commands

\usekomafont{pagehead} and \usekomafont{pagenumber} can be
useful. If you do not use the KOMA-Script package scrpage2 (see
chapter 4) for that, but, for example, the package fancyhdr (see [vO00]),
you can use these commands in your definitions. Thereby you can remain
compatible with KOMA-Script as much as possible. If you do not use
these commands in your own definitions, changes like those shown in the
previous examples have no effect. The packages scrpage and scrpage2 take
care to keep the maximum possible compatibility with other packages.

\titlepagestyle
\partpagestyle
\chapterpagestyle
\indexpagestyle

For some pages a different page style is chosen with the help of the com-
mand \thispagestyle. Which page style this actually is, is defined by
these four macros, of which \partpagestyle and \chapterpagestyle arescrbook,

scrreprt found only with classes scrbook and scrreprt, but not in scrartcl. The default

67 Chapter 3.

Table 3.6.: Macros to set up page style of special pages

\titlepagestyle
Page style for a title page when using in-page titles.

\partpagestyle
Page style for the pages with \part titles.

\chapterpagestyle
Page style for the first page of a chapter.

\indexpagestyle
Page style for the first page of the index.

value for all four cases is plain. The meaning of these macros can be taken
from table 3.6. The page styles can be redefined with the \renewcommand
macro.

Example: Assume that you want the pages with a \part heading to have
no number. Then you can use the following command, for example in the
preamble of your document:

\renewcommand*{\partpagestyle}{empty}

As mentioned previously on page 64, the page style empty is exactly what
is required in this example. Naturally you can also use a user-defined page
style.
Assume you have defined your own page style for initial chapter pages
with the package scrpage2 (see chapter 4). You have given to this page
style the fitting name chapter. To actually use this style, you must
redefine the macro \chapterpagestyle accordingly:

\renewcommand*{\chapterpagestyle}{chapter}

Assume that you want that the table of contents of a book to have no
page numbers. However, everything after the table of contents should
work again with the page style headings, as well as with plain on every
first page of a chapter. You can use the following commands:

\clearpage
\pagestyle{empty}
\renewcommand*{\chapterpagestyle}{empty}
\tableofcontents
\clearpage

68 Chapter 3.

\pagestyle{headings}
\renewcommand*{\chapterpagestyle}{plain}

Instead of the above you may do a local redefinition using a group. The
advantage will be that you don’t need to know the current page style
before the change to switch back at the end.

\clearpage
\begingroup
\pagestyle{empty}
\renewcommand*{\chapterpagestyle}{empty}
\tableofcontents
\clearpage

\endgroup

But notice that you never should put a numbered head into a group.
Otherwise you may get funny results with commands like \label.

Whoever thinks that it is possible to put running headings on the first page
of a chapter by using the command
\renewcommand*{\chapterpagestyle}{headings}

will be surprised at the results. For sure, the page style headings is thereby
applied to the initial page of a chapter. But nevertheless no running headings
appear when using the openright option. The reason for this behaviour can
be found in the LATEX core. There, the command \rightmark, that generates
the marks for right-hand pages, is defined with;
\let\@rightmark\@secondoftwo
\def\rightmark{\expandafter\@rightmark

\firstmark\@empty\@empty}
The right-hand mark is set with \firstmark. \firstmark contains the left-
hand and right-hand marks that were first set for a page. Within \chapter,
\markboth is used to set the left mark to the chapter header and the right
mark to empty. Hence, the first right mark on a chapter beginning with a
right-hand page is empty. Therefore, the running heading is also empty on
those pages.
You could redefine \rightmark in the preamble so that the last mark on

the page is used instead of the first:
\makeatletter
\renewcommand*{\rightmark}{%

\expandafter\@rightmark\botmark\@empty\@empty}
\makeatother

69 Chapter 3.

This would however cause the running heading of the first page of a chapter
to use the title of the last section in the page. This is confusing and should
be avoided.
It is also confusing (and hence should be avoided) to have as running heading

of the first page of a chapter the chapter title instead of the the section title.
Therefore, the current behavior should be considered to be correct.

\clearpage
\cleardoublepage
\cleardoublestandardpage
\cleardoubleplainpage
\cleardoubleemptypage

The LATEX core contains the \clearpage command, which takes care that
all not yet output floats are output, and then starts a new page. There
exists the instruction \cleardoublepage which works like \clearpage
but which, in the double-sided layouts (see layout option twoside in sec-
tion 2.4, page 31) starts a new right-hand page. An empty left page in the
current page style is output if necessary.
With \cleardoublestandardpage KOMA-Script works as described

above. The \cleardoubleplainpage command changes the page style
of the empty left page to plain in order to suppress the running head-
ing. Analogously, the page style empty is applied to the empty page
with \cleardoubleemptypage, suppressing the page number as well
as the runnning heading. The page is thus entirely empty. How-
ever, the approach used by \cleardoublepage is dependent on the
layout options cleardoublepage=current, cleardoublepage=plain and
cleardoublepage=empty described in section 3.1.3, page 49 and acts ac-
cording to the active option.

\ifthispageodd{true }{false } \ifthispagewasoddtrue \elsefalse \fi

A peculiarity of LATEX consists of the fact that it is not possible to determine
on which page the current text will fall. It is also difficult to say whether
the current page has an odd or an even page number. Now some will argue
that there is, nevertheless, the TEX test macro \ifodd which one needs only
to apply to the current page counter. However, this is an error. At the
time of the evaluation of such a test LATEX does not know at all whether the
text just processed will be typeset on the current page or only on the next.
The page breaks take place not while reading the paragraph, but only in the
output routine of LATEX. However, at that moment a command of the form
\ifodd\value{page} would already have been completely evaluated.

70 Chapter 3.

To find out reliably whether a text falls on an even or odd page, one must
usually work with a label and a page reference to this label. One must also
take special precautionary measures during the first LATEX run, when the label
is not yet known.
If one wants to find out with KOMA-Script whether a text falls on an

even or odd page, one can use the \ifthispageodd command. The true
argument is executed only if the command falls on an odd page. Otherwise
the false argument is executed.
More precisely stated, the question is not where the text is, but whether a

page reference to a label placed in this location would refer to an odd or an
even page.

Example: Assume that you want to indicate if an odd or even page is
output. This could be achieved with the command:

This is a page with an \ifthispageodd{odd}{even}
page number.

The output would then be:
This is a page with an even page number.

Because the \ifthispageodd command uses a mechanism that is very
similar to a label and a reference to it, at least two LATEX runs are required
after every text modification. Only then the decision is correct. In the first
run a heuristic is used to make the first choice.
There are situations where the \ifthispageodd command never leads to

the correct result. Suppose that the command is used within a box. A box
is set by LATEX always as a whole. No page breaks take place inside. Assume
further that the true part is very big, but the false part is empty. If we
suppose further that the box with the false part still fits on the current, even
page, but that with the true part it does not. Further assume that KOMA-
Script heuristically decides for the first run that the true part applies. The
decision is wrong and is revised in the next run. The false part is thereby
processed, instead of the true part. The decision must again be revised in
the next run and so on.
These cases are rare. Nevertheless it should not be said that I have not

pointed out that they are possible.
Sometimes you need to know the state of the last decision. This may be

done using the expert command \ifthispagewasodd. This is either same
like \iftrue or \iffalse and may be used like those.

71 Chapter 3.

Table 3.7.: Available numbering styles of page numbers

numbering style example description
arabic 8 Arabic numbers
roman viii lower-case Roman numbers
Roman VIII upper-case Roman numbers
alph h letters
Alph H capital letters

\pagenumbering{numbering style }

This command works the same way in KOMA-Script as in the standard
classes. More precisely it is a command from the LATEX kernel. You can
specify with this command the numbering style of page numbers. The
changes take effect immediately, hence starting with the page that contains
the command. The possible settings can be found in table 3.7. Using the
command \pagenumbering also resets the page counter. Thus the page
number of the next page which TEX outputs will have the number 1 in the
style numbering style .

3.3. Titles

After having described the options and some general issues, we begin the doc-
ument where it usually begins: with the titles. The titles comprise everything
that belongs in the widest sense to the title of a document. Like already men-
tioned in section 3.1.3, page 49, we can distinguish between title pages and
in-page titles. Article classes like article or scrartcl have by default in-page
titles, while classes like report, book, scrreprt and scrbook have title pages
as default. The defaults can be changed with the class option titlepage.

titlepage

With the standard classes and with KOMA-Script all title pages are defined
in a special environment, the titlepage environment. This environment
always starts a new page— in the two-sided layout a new right page. For
this page, the style is changed by \thispagestyle{empty}, so that neither
page number nor running heading are output. At the end of the environ-
ment the page is automatically shipped out. Should you not be able to
use the automatic layout of the title page, it is advisable to design a new
one with the help of this environment.

72 Chapter 3.

Example: Assume you want a title page on which only the word “Me”
stands at the top on the left, as large as possible and in bold—no author,
no date, nothing else. The following document creates just that:

\documentclass{scrbook}
\begin{document}
\begin{titlepage}
\textbf{\Huge Me}

\end{titlepage}
\end{document}

Simple? Right.

\maketitle[page number]

While the the standard classes produce a title page that may have the
three items title, author and date, with KOMA-Script the \maketitle
command can produce up to six pages.
In contrast to the standard classes, the \maketitle macro in KOMA-

Script accepts an optional numeric argument. If it is used, this number is
made the page number of the first title page. However, this page number
is not output, but affects only the numbering. You should choose an
odd number, because otherwise the whole counting gets mixed up. In
my opinion there are only two meaningful applications for the optional
argument. On the one hand, one could give to the half-title the logical
page number −1 in order to give the full title page the number 1. On the
other hand, it could be used to start at a higher page number, for instance,
3, 5, or 7 to accommodate other title pages added by the publishing house.
The optional argument is ignored for in-page titles. However, the page style
of such a title page can be changed by redefining the \titlepagestyle
macro. For that see section 3.2.2, page 66.
The following commands do not lead necessarily to the production of the

titles. The typesetting of the title pages is always done by \maketitle.
The commands explained below only define the contents of the title pages.
It is however not necessary, and when using the babel package not rec-
ommended, to use these in the preamble before \begin{document} (see
[Bra01]). Examples can be found at the end of this section.

\extratitle{half-title }

In earlier times the inner book was often not protected from dirt by a cover.
This task was then taken over by the first page of the book which carried
mostly a shortened title called the half-title. Nowadays the extra page is often

73 Chapter 3.

applied before the real full title and contains information about the publisher,
series number and similar information.
With KOMA-Script it is possible to include a page before the real title

page. The half-title can be arbitrary text—even several paragraphs.
The contents of the half-title are output by KOMA-Script without ad-
ditional formatting. Their organisation is completely left to the user. The
back of the half-title remains empty. The half-title has its own title page
even when in-page titles are used. The output of the half-title defined with
\extratitle takes place as part of the titles produced by \maketitle.

Example: Let’s go back to the previous example and assume that the
spartan “Me” is the half-title. The full title should still follow the half-
title. One can proceed as follows:

\documentclass{scrbook}
\begin{document}
\extratitle{\textbf{\Huge Me}}
\title{It’s me}
\maketitle

\end{document}

You can center the half-title and put it a little lower down the page:
\documentclass{scrbook}
\begin{document}
\extratitle{\vspace*{4\baselineskip}

\begin{center}\textbf{\Huge Me}\end{center}}
\title{It’s me}
\maketitle

\end{document}

The command \title is necessary in order to make the examples above
work correctly. It is explained next.

74 Chapter 3.

Table 3.8.: Font defaults for the elements of the title

Element name Default
subject \normalfont\normalcolor\bfseries\Large
title \usekomafont{disposition}
subtitle \usekomafont{title}\large

\titlehead{Titlehead }
\subject{Subject }
\title{Title }
\subtitle{Subtitle }
\author{Author }
\date{Date }
\publishers{Publisher }
\and
\thanks{Footnote }

The contents of the full title page are defined by seven elements. The
title head is defined with the command \titlehead. It is typeset in
regular paragraph style and full width at the top of the page. It can be
freely designed by the user.
The Subject is output immediately above the Title . A slightly larger

font size than the regular one is used.
The Title is output with a very large font size. Besides the change ofv2.8p

size, the settings for the element title also take effect. By default these
settings are identical to the settings for the element disposition (see
table 3.4, page 61). The font size is however not affected (see table 3.4,
page 75). The default settings can be changed with the commands of
section 3.2.1.
The Subtitle is set just below the title, in a font determined by thev2.97c

element subtitle. The default, seen in table 3.8 can be changed with the
help of the commands in section 3.2.1.
Below the Subtitle appears the Author . Several authors can be spec-

ified in the argument of \author. They should be separated by \and.
Below the author or authors appears the date. The default value is

the present date, as produced by \today. The \date command accepts
arbitrary information or even an empty argument.
Finally comes the Publisher . Of course this command can also be used

for any other information of little importance. If necessary, the \parbox
command can be used to typeset this information over the full page width
like a regular paragraph. Then it is to be considered equivalent to the title

75 Chapter 3.

Table 3.9.: Font size and horizontal positioning of the elements in the main title
page in the order of their vertical position from top to bottom when
typeset with \maketitle

Element Command Font Justification
Title head \titlehead \normalsize Regular paragraph
Subject \subject \usekomafont{subject} centered
Title \title \huge\usekomafont{title} centered
Subtitle \subtitle \usekomafont{subtitle} centered
Authors \author \Large centered
Date \date \Large centered
Publishers \publishers \Large centered

head. However, note that this field is put above any existing footnotes.
Footnotes on the title page are produced not with \footnote, but with

\thanks. They serve typically for notes associated with the authors. Sym-
bols are used as footnote markers instead of numbers.
With the exception of titlehead and possible footnotes, all the items

are centered horizontally. The information is summarised in table 3.9.

Example: Assume you are writing a dissertation. The title page should
have the university’s name and address at the top, flush left, and the
semester flush right. As usual a title is to be used, including author and
delivery date. The adviser must also be indicated, together with the fact
that the document is a dissertation. This can be obtained as follows:

\documentclass{scrbook}
\begin{document}
\titlehead{{\Large Unseen University

\hfill SS~2002\\}
Higher Analytical Institute\\
Mythological Rd\\
34567 Etherworld}

\subject{Dissertation}
\title{Digital space simulation with the DSP\,56004}
\subtitle{short but sweet?}
\author{Fuzzy George}
\date{30. February 2002}
\publishers{Adviser Prof. John Eccentric Doe}
\maketitle

76 Chapter 3.

\end{document}

A frequent misunderstanding concerns the role of the full title page. It is
often erroneously assumed that the cover (or dust cover) is meant. Therefore,
it is frequently expected that the title page does not follow the normal page
layout, but has equally large left and right margins.
However if one takes a book and opens it, one notices very quickly at least

one title page under the cover within the so-called inner book. Precisely these
title pages are produced by \maketitle. As is the case with the half-title,
the full title page belongs to the inner book, and therefore should have the
same page layout as the rest of the document. A cover is actually something
that should be created in a separate document. The cover often has a very
individual format. It can also be designed with the help of a graphics or DTP
program. A separate document should also be used because the cover will be
printed on a different medium, possibly cardboard, and possibly with another
printer.

\uppertitleback{titlebackhead }
\lowertitleback{titlebackfoot }

With the standard classes, the back of the title page is left empty. However,
with KOMA-Script the back of the full title page can be used for other
information. Exactly two elements which the user can freely format are
recognized: titlebackhead and titlebackfoot . The head can reach
up to the foot and vice versa. If one takes this manual as an example,
the exclusion of liability was set with the help of the \uppertitleback
command.

\dedication{dedication }

KOMA-Script provides a page for dedications. The dedication is centered
and uses a slightly larger type size. The back is empty like the back page of
the half-title. The dedication page is produced by \maketitle and must
therefore be defined before this command is issued.

Example: This time assume that you have written a poetry book and you
want to dedicate it to your wife. A solution would look like this:

\documentclass{scrbook}
\begin{document}
\extratitle{\textbf{\Huge In Love}}
\title{In Love}
\author{Prince Ironheart}

77 Chapter 3.

\date{1412}
\lowertitleback{This poem book was set with%

the help of {\KOMAScript} and {\LaTeX}}
\uppertitleback{Selfmockery Publishers}
\dedication{To my treasure hazel-hen\\
in eternal love\\
from your dormouse.}

\maketitle
\end{document}

Please use your own favorite pet names.

abstract

Particularly with articles, more rarely with reports, there is a summaryscrartcl,
scrreprt directly under the title and before the table of contents. Therefore, this

is often considered a part of the titles. Some LATEX classes offer a special
environment for this summary, the abstract environment. This is output
directly, at it is not a component of the titles set by \maketitle. Please
note that abstract is an environment, not a command. Whether the
summary has a heading or not is determined by the option abstract (see
section 3.1.7, page 56)
With books (scrbook) the summary is frequently a component of the

introduction or a separate chapter at the end of the document. Therefore
no abstract environment is provided. When using the class scrreprt it is
surely worth considering whether one should not proceed likewise.

3.4. The Table of Contents

The titles are normally followed by the table of contents. Often the table
of contents is followed by lists of floats, e. g., lists of tables and figures (see
section 3.6.6).

\tableofcontents
\contentsname

The production of the table of contents is done by the \tableofcontents
command. To get a correct table of contents, at least two LATEX runs are
necessary after every change. The option listof=totoc causes the lists
of figures and tables to be included in the table of contents. index=totoc
is the corresponding option for the index. This is rather uncommon in
classical typography. One does find the bibliography included in the table

78 Chapter 3.

of contents slightly more frequently. This can be obtained with the options
bibliography=totoc and bibliography=totocnumbered. These options
are explained in section 3.1.5, page 53.
The table of contents is set as an unnumbered chapter and is therefore

subject to the side effects of the standard \chapter* command, which are
described in section 3.6.2, page 84. However, the running headings for left
and right pages are correctly filled with the heading of the table of contents.
The text of the heading is given by the macro \contentsname. If you make

use of a language package such as babel, please read the documentation of
that package before redefining this macro.
There are two variants for the construction of the table of contents.

With the standard variant, the titles of the sectional units are indented so
that the unit number is flush left to the edge of the text of the next upper
sectional unit. However, the space for the numbers is thereby limited and
is only sufficient for a little more than 1.5 places per unit level. Should this
become a problem, the option toc=flat can be used to set the behaviour
such that all entries in the table of contents are set flush left under one
another. As explained in section 3.1.5, page 55, several LATEX runs are
needed.
The entry for the highest sectional unit below \part, i. e., \chapter with

scrbook and scrreprt or \section with scrartcl is not indented. The font
style is however affected by the settings of the element disposition (see
table 3.4, page 61). There are no dots between the text of the sectional unit
heading and the page number. The typographic reasons for this are that the
font is usually different, and the desire for appropriate emphasis. The table of
contents of this manual is a good example of these considerations.

tocdepth

Normally, the units included in the table of contents are all the units from
\part to \subsection (for the classes scrbook and scrreprt) or from \part
to \subsubsection (for the class scrartcl). The inclusion of a sectional unit
in the table of contents is controlled by the counter tocdepth. This has the
value −1 for \part, 0 for \chapter, and so on. By setting, incrementing or
decrementing the counter, one can choose the lowest sectional unit level to
be included in the table of contents. The same happens with the standard
classes.
The user of the scrpage2 package (see chapter 4) does not need to re-

member the numerical values of each sectional unit. They are given by the
values of the macros \chapterlevel, \sectionlevel and so on down to
\subparagraphlevel.

79 Chapter 3.

Example: Assume that you are preparing an article that uses the sectional
unit \subsubsection. However, you don’t want this sectional unit to
appear in the table of contents. The preamble of your document might
contain the following:

\documentclass{scrartcl}
\setcounter{tocdepth}{2}

You set the counter tocdepth to 2 because you know that this is the
value for \subsection. If you know that scrartcl normally includes all
levels down to \subsubsection in the table of contents, you can simply
decrement the counter tocdepth by one:
\documentclass{scrartcl}
\addtocounter{tocdepth}{-1}

How much you should add to or subtract from the tocdepth counter can
also be found by looking at the table of contents after the first LATEX run.

A small hint in order that you do not need to remember which sec-
tional unit has which number: in the table of contents count the num-
ber of units required extra or less and then, as in the above example, use
\addtocounter to add or subtract that number to or from tocdepth.
KOMA-Script has always attempted to avoid page breaking directly

between a sectional unit and the adjacent next lower unit, for example,
between a chapter title and its first section title. However, the mechanism
worked poorly or not at all until version 2.96. In version 2.96a the mech-v2.96a
anism was much improved and should now always work correctly. There
can be changes in the page breaking in the table of contents as a result
though. Thus, the new mechanism is only active, if the compatibility op-
tion is not set to version 2.96 or less (see option version, section 3.1.1,
page 46). The mechanism also does not work if the commands to generate
the table of contents are redefined, for example, by the use of the package
tocloft.

3.5. Lists of Floats

As a rule, the lists of floats, e. g., list of tables and list of figures, can be
found directly after the table of contents. In some documents, they can
even be found in the appendix. However, the author of this manual prefers
their location after the table of contents, therefore the explanation is given
here.

80 Chapter 3.

\listoftables
\listoffigures
\listtablename
\listfigurename

These commands generate a list of tables or figures. Changes in the
document that modify these lists will require two LATEX runs in order
to take effect. The layout of the lists can be influenced by the options
listof=graduated and listof=flat (see section 3.1.6, page 56). More-
over, the options listof=totoc and listof=numbered have indirect in-
fluence (see section 3.1.5, page 53).
The text of the titles of this tables are stored in the macros \listtablename

and \listfigurename. If you use a language package like babel and want
to redefine these macros, you should read the documentation of the language
package.

3.6. Main Text

This section explains everything provided by KOMA-Script in order to
write the main text. The main text is the part that the author should focus
on first. Of course this includes tables, figures and comparable information
as well.

3.6.1. Separationscrbook

Before getting to the main text we will have a short look at three commands
which exist both in the standard class book and the KOMA-Script class
scrbook. They are used for separation of the front matter , the main matter
and the back matter of a book.

\frontmatter
\mainmatter
\backmatter

The macro \frontmatter introduces the front matter in which roman nu-
merals are used for the page numbers. Chapter headings in a front matter
are not numbered. The section titles would be numbered, start at chapter
0, and would be consecutively numbered across chapter boundaries. How-
ever, this is of no import, as the front matter is used only for the title
pages, table of contents, lists of figures and tables, and a foreword. The
foreword can thus be set as a normal chapter. A foreword should never
be divided into sections but kept as short as possible. Therefore in the
foreword there is no need for a deeper structuring than the chapter level.

81 Chapter 3.

In case the user sees things differently and wishes to use numbered sec-
tions in the chapters of the front matter, as of version 2.97e the sectionv2.97e
numbering no longer contains the chapter number. This change only takes
effect when the compatibility option is set to at least version 2.97e (see op-
tion version, section 3.1.1, page 46). It is explicity noted that this creates
a confusion with chapter numbers! The use of \addsec and \section* (see
section 3.6.2, page 84 and page 85) are thus, in the author’s opinion, far
more preferable.
As of version 2.97e the numbering of float environments, such as tablesv2.97e

and figures, and equation numbers in the front matter also contain no
chapter number part. To take effect this too requires the corresponding
compatibility setting (see option version, section 3.1.1, page 46).
\mainmatter introduces the main matter with the main text. If there

is no front matter then this command can be omitted. The default page
numbering in the main matter uses Arabic numerals (re)starting in the
main matter at 1.
The back matter is introduced with \backmatter. Opinions differ in

what should be part of the back matter. So in some cases you will find
only the bibliography, in some cases only the index, and in other cases
both of these as well as the appendices. The chapters in the back matter
are similar to the chapters in the front matter, but page numbering is
not reset. If you do require separate page numbering you may use the
command \pagenumbering from section 3.2.2, page 71.

3.6.2. Structuring the Document

There are several commands to structure a document into parts, chapters,
sections and so on.

\part[Short version]{Heading }
\chapter[Short version]{Heading }
\section[Short version]{Heading }
\subsection[Short version]{Heading }
\subsubsection[Short version]{Heading }
\paragraph[Short version]{Heading }
\subparagraph[Short version]{Heading }

The standard sectioning commands in KOMA-Script work in a similar
fashion to those of the standard classes. Thus, an alternative entry for
the table of contents and running headings can be specified as an optional
argument to the sectioning commands.

82 Chapter 3.

The title of the level part (\part) is distinguished from other section-
ing levels by being numbered independently from the other parts. This
means that the chapter level (in scrbook or scrreprt), or the section level
(in scrartcl) is numbered consecutively over all parts. Furthermore, for
classes scrbook and scrreprt the title of the part level together with the
corresponding preamble (see \setpartpreamble, page 91) is set on a sep-
arate page.
\chapter only exists in book or report classes, that is, in classes book,scrartcl

scrbook, report and scrreport, but not in the article classes article and
scrartcl. In addition to this, the command \chapter in KOMA-Script dif-
fers substantially from the version in the standard class. In the standard
classes the chapter number is used together with the prefix “Chapter”, or
the corresponding word in the appropriate language, on a separate line
above the actual chapter title test. This overpowering style is replaced in
KOMA-Script by a simple chapter number before the chapter heading text,
can however be reverted by the option chapterprefix (see section 3.1.3,
page 51).
Please note that \part and \chapter in classes scrbook and scrreprt

change the page style for one page. The applied page style in KOMA-scrbook,
scrreprt Script is defined in the macros \partpagestyle and \chapterpagestyle

(see section 3.2.2, page 66).
The font of all headings can be changed with the commandsv2.8p

\setkomafont and \addtokomafont described in section 3.2.1. In
doing this, generally the element disposition is used, followed
by a specific element for every section level (see table 3.4,
page 61). The font for the element disposition is predefined
as \normalfont\normalcolor\sffamily\bfseries. The default font
size for the specific elements depends on the options headings=big,
headings=normal and headings=small (see section 3.1.4, page 53). The
defaults are listed in table 3.10

Example: Suppose you are using the class option headings=big and no-
tice that the very big headings of document parts are too bold. You could
change this as follows:

\setkomafont{disposition}{\normalcolor\sffamily}
\part{Appendices}
\addtokomafont{disposition}{\bfseries}

Using the command above you only switch off the font attribute bold for
a heading “Appendices”. A much more comfortable and elegant solution
is to change all \part headings at once. This is done either by:

83 Chapter 3.

Table 3.10.: Default font sizes for different levels of document structuring in scr-
book and scrreprt

class option element default
headings=big part \Huge

partnumber \huge
chapter \huge
section \Large
subsection \large
subsubsection \normalsize
paragraph \normalsize
subparagraph \normalsize

headings=normal part \huge
partnumber \huge
chapter \LARGE
section \Large
subsection \large
subsubsection \normalsize
paragraph \normalsize
subparagraph \normalsize

headings=small part \LARGE
partnumber \LARGE
chapter \Large
section \large
subsection \normalsize
subsubsection \normalsize
paragraph \normalsize
subparagraph \normalsize

\addtokomafont{part}{\normalfont\sffamily}
\addtokomafont{partnumber}{\normalfont\sffamily}

or simply using:
\addtokomafont{part}{\mdseries}
\addtokomafont{partnumber}{\mdseries}

The last version is to be preferred because it gives you the correct result
even when you make changes to the disposition element, for instance:

\setkomafont{disposition}{\normalcolor\bfseries}

84 Chapter 3.

With this change it is possible to set all section levels at once to no longer
use sans serif fonts.

Please be warned of misusing the possibilities of font switching to mix
fonts, font sizes and font attributes excessively. Picking the most suitable
font for a given task is a hard task even for professionals and has almost
nothing to do with the personal tastes of non-experts. Please refer to the
citation at the end of section 2.7, page 42 and to the following explanation.
It is possible to use different font types for different section levels in KOMA-

Script. Non-experts in typography should for very good typographical reasons
refrain absolutely from using these possibilities.
There is a rule in typography which states that one should mix as few fonts

as possible. Using sans serif for headings already seems to be a breach of
this rule. However, one should know that bold, large serif letters are much
to heavy for headings. Strictly speaking, one would then have to at least use
a normal instead of a bold or semi bold font. However, in deeper levels of
the structuring a normal font may then appear too lightly weighted. On the
other hand, sans serif fonts in headings have a very pleasant appearance and
in fact find acceptance almost solely for headings. That is why sans serif is
the carefully chosen default in KOMA-Script.
More variety should however be avoided. Font mixing is only for profes-

sionals. In case you want to use other fonts than the standard TEX fonts—
regardless of whether these are CM , EC or LM fonts —you should consult an
expert, or for safety’s sake redefine the font for the element disposition as
seen in the example above. The author of this documentation considers the
commonly encountered combinations Times and Helvetica or Palatino with
Helvetica as unfavourable.

\part*{Heading }
\chapter*{Heading }
\section*{Heading }
\subsection*{Heading }
\subsubsection*{Heading }
\paragraph*{Heading }
\subparagraph*{Heading }

All disposition commands have starred versions, which are unnumbered,
and produce section headings which do not show up in the table of contents
or in in the running heading. The absence of a running heading often has
an unwanted side effect. For example, if a chapter which is set using
\chapter* spans several pages, then the running heading of the previous
chapter suddenly reappears. KOMA-Script offers a solution for this which

85 Chapter 3.

is described below. \chapter* only exists in book and report classes, thatscrbook,
scrreprt is, book, scrbook, report and scrreport, but not the article classes article

and scrartcl.
Please note that \part and \chapter change the page style for one

page. The applied style is defined in the macros \partpagestyle and
\chapterpagestyle in KOMA-Script (see section 3.2.2, page 66).
As for the possibilities of font switching, the same explanations apply asv2.8p

were given above for the unstarred variants. The structuring elements are
named the same since they do not indicate variants but structuring levels.

\addpart[Short version]{Heading }
\addpart*{Heading }
\addchap[Short version]{Heading }
\addchap*{Heading }
\addsec[Short version]{Heading }
\addsec*{Heading }

In addition to the commands of the standard classes KOMA-Script of-
fers the new commands \addsec and \addchap. They are similar to the
standard commands \chapter and \section except that they are unnum-
bered. They thus produce both a running heading and an entry in the table
of contents. The starred variants \addchap* and \addsec* are similar to
the standard commands \chapter* and \section* except for a tiny but
important difference: The running headings are deleted. This eliminates
the side effect of obsolete headers mentioned above. Instead, the running
headings on following pages remain empty. \addchap and \addchap* ofscrartcl
course only exist in book and report classes, namely book, scrbook, report
and scrreport, but not in the article classes article and scrartcl.
Similarly, the command \addpart produces an unnumbered document

part with an entry in the table of contents. Since the running headings
are already deleted by \part and \part* the problem of obsolete headers
does not exist. The starred version \addpart* is thus identical to \part*
and is only defined for consistency reasons.
Please note that \addpart and \addchap and their starred versions

change the page style for one page. The particular page style is defined in
the macros \partpagestyle and \chapterpagestyle (see section 3.2.2,
page 66).
As for the possibilities of font switching, the same explanations applyv2.8p

as given above for the normal structuring commands. The elements are
named the same since they describe not variants but structuring levels.

86 Chapter 3.

\minisec{Heading }

Sometimes a heading is wanted which is highlighted but also closely linked
to the following text. Such a heading should not be separated by a large
vertical skip.
The command \minisec is designed for this situation. This heading is

not associated with any structuring level. Such a mini section does not
produce an entry in the table of contents nor does it receive any numbering.

Example: You have developed a kit for building a mouse trap and want
the documentation separated into a list of necessary items and an assem-
bly description. You could write the following:

\minisec{Items needed}

\begin{flushleft}
1 plank ($100\times 50 \times 12$)\\
1 spring-plug of a beer-bottle\\
1 spring of a ball-point pen\\
1 drawing pin\\
2 screws\\
1 hammer\\
1 knife

\end{flushleft}

\minisec{Assembly}
At first one searches the mouse-hole and puts the ←↩
drawing pin

directly behind the hole. Thus the mouse cannot escape ←↩
during the

following actions.

Then one knocks the spring-plug with the hammer into the←↩
mouse-hole.

If the spring-plug’s size is not big enough in order to ←↩
shut the

mouse-hole entirely, then one can utilize the plank ←↩
instead and

fasten it against the front of the mouse-hole utilizing ←↩
the two

screws and the knife. Instead of the knife one can use ←↩
a

87 Chapter 3.

screw-driver instead.

Which gives:
Items needed
1 plank (100× 50× 12)
1 spring-plug of a beer-bottle
1 spring of a ball-point pen
1 drawing pin
2 screws
1 hammer
1 knife

Assembly
At first one searches the mouse-hole and puts the drawing pin
directly behind the hole. Thus the mouse cannot escape during
the following actions.
Then one knocks the spring-plug with the hammer into the

mouse-hole. If the spring-plug’s size is not big enough in order
to shut the mouse-hole entirely, then one can utilize the plank
instead and fasten it against the front of the mouse-hole utilizing
the two screws and the knife. Instead of the knife one can use a
screw-driver instead.

The font type of the structuring command \minisec be changed us-
ing the element disposition (see table 3.4, page 61) and minisec. De-2.96a
fault setting of element minisec is empty, so the default of the element
disposition is active.

\raggedsection

In the standard classes headings are set as justified text. That means that
hyphenated words can occur and headings with more than one line are
stretched up to the text border. This is a rather uncommon approach
in typography. KOMA-Script therefore formats the headings left aligned
with hanging indentation using \raggedsection with the definition:
\newcommand*{\raggedsection}{\raggedright}

This command can be redefined with \renewcommand.

Example: You prefer justified headings, so you write in the preamble of
your document:

\renewcommand*{\raggedsection}{}

or more compactly:
\let\raggedsection\relax

88 Chapter 3.

You will get a formatting of the headings which is very close to that of
the standard classes. It will become even closer when you combine this
change with the change of the element disposition mentioned above.

\partformat
\chapterformat
\othersectionlevelsformat{section name }
\autodot

As you might know, for every counter in LATEX there is a command
\thecountername , which outputs the value of the counter. Depending on
the class the counter for a particular level starting from \section (book,
scrbook, report, scrreprt) or \subsection (article, scrartcl) is composed of
the counter for the next higher level followed by a dot and the Arabic number
of the countername of the respective level.
KOMA-Script has added a further logical level to the output of

the section number. The counters for the respective heading are not
merely output. They are formatted using the commands \partformat,
\chapterformat and \othersectionlevelsformat. Of course the com-scrbook,

scrreprt mand \chapterformat like \thechapter does not exist in the class scrartcl
but only in the classes scrbook and scrreprt.
As described in section 3.1.7, page 57, dots in section numbers should

be handled for the German-speaking region according to the rules given
in [DUD96]. The command \autodot in KOMA-Script ensures that these
rules are being followed. In all levels except for \part a dot is followed by
a further \enskip. This corresponds to a horizontal skip of 0.5 em.
The command \othersectionlevelsformat takes as a parameter the

name of the section level, such as “section ”, “subsection ” . . . Per
default therefore, only the levels \part and \chapter have formatting
commands of their own, while all other section levels are covered by one
general formatting command. This has historical reasons. At the time
that Werner Lemberg suggested a suitable extension of KOMA-Script for
his CJK package, only this differentiation was needed.
The formatting commands can be redefined using \renewcommand to fit

them to your personal needs. The following original definitions are used
by the KOMA-Script classes:
\newcommand*{\partformat}{\partname~\thepart\autodot}
\newcommand*{\chapterformat}{%

\chapappifchapterprefix{\ }\thechapter\autodot\enskip}
\newcommand*{\othersectionlevelsformat}[1]{%

\csname the#1\endcsname\autodot\enskip}

89 Chapter 3.

Example: Assume that when using \part you do not want the word
“Part” written in front of the part number. You could use the follow-
ing command in the preamble of your document:

\renewcommand*{\partformat}{\thepart\autodot}

Strictly speaking, you could do without \autodot at this point and in-
sert a fixed dot instead. As \part is numbered with roman numerals,
according to [DUD96] a dot has to be applied. However, you thereby
give up the possibility to use one of the options numbers=enddot and
numbers=noenddot and optionally depart from the rules. More details
concerning class options can be found in section 3.1.7, page 57.
An additional possibility could be to place the section numbers in the
left margin in such a way that the heading text is left aligned with the
surrounding text. This can be accomplished with:

\renewcommand*{\othersectionlevelsformat}[1]{%
\llap{\csname the#1\endcsname\autodot\enskip}}

The little known TEX command \llap in the definition above puts its ar-
gument left of the current position without changing the position thereby.
A much better LATEX solution would be:
\renewcommand*{\othersectionlevelsformat}[1]{%
\makebox[0pt][r]{%

\csname the#1\endcsname\autodot\enskip}}

See [Tea01] for more information about the optional arguments of
\makebox.

\chapappifchapterprefix{additional text }
\chapapp

These two commands are not only used internally by KOMA-Script butscrbook,
scrreprt

v2.8o

are also provided to the user. Later it will be shown how they can be
used for example to redefine other commands. Using the layout option
chapterprefix (see section 3.1.3, page 51) \chapappifchapterprefix
outputs the word “Chapter” in the main part of the document in the
current language, followed by additional text . In the appendix, the
word “Appendix” in the current language is output instead, followed by
additional text . If the option chapterprefix=false is set, then noth-
ing is output.
The command \chapapp always outputs the word “Chapter”

or “Appendix”. In this case the options chapterprefix and
chapterprefix=false have no effect.

90 Chapter 3.

Since chapters only exist in the classes scrbook and scrreprt these com-
mands only exist in these classes.

\chaptermark{Running heading }
\sectionmark{Running heading }
\subsectionmark{Running heading }
\chaptermarkformat
\sectionmarkformat
\subsectionmarkformat

As mentioned in section 3.2.2 the page style headings works with au-
tomatic running headings. For this, the commands \chaptermark and
\sectionmark, or \sectionmark and \subsectionmark, respectively, are
defined. Every structuring command (\chapter, \section . . .) auto-
matically carries out the respective \...mark command. The parameter
passed contains the text of the section heading. The respective section
number is added automatically in the \...mark command. The format-
ting is done according to the section level with one of the three commands
\chaptermarkformat, \sectionmarkformat or \subsectionmarkformat.
Of course there is no command \chaptermark or \chaptermarkformat inscrbook,

scrreprt scrartcl. Accordingly, \subsectionmark and \subsectionmarkformat ex-
scrartcl ist only in scrartcl. This changes when you use the scrpage2 package (see

chapter 4).
Similar to \chapterformat and \othersectionlevelsformat, the

commands \chaptermarkformat (not in scrartcl), \sectionmarkformat
and \subsectionmarkformat (only in scrartcl) define the formatting of
the sectioning numbers in the automatic running headings. They can be
adapted to your personal needs with \renewcommand. The original defini-
tions for the KOMA-Script classes are:
\newcommand*{\chaptermarkformat}{%

\chapappifchapterprefix{\ }\thechapter\autodot\enskip}
\newcommand*{\sectionmarkformat}{\thesection\autodot\←↩
enskip}

\newcommand*{\subsectionmarkformat}{%
\thesubsection\autodot\enskip}

Example: Suppose you want to prepend the word “Chapter” to the chap-
ter number in the running heading. For example you could insert the
following definition in the preamble of your document :

\renewcommand*{\chaptermarkformat}{%
\chapapp~\thechapter\autodot\enskip}

91 Chapter 3.

As you can see, both the commands \chapappifchapterprefix and
\chapapp explained above are used here.

secnumdepth

Per default, in the classes scrbook and scrreprt the section levels from \part
down to \subsection and in the class scrartcl the levels from \part down
to \subsubsection are numbered. This is controlled by the LATEX counter
secnumdepth. The value −1 represents \part, 0 the level \chapter, and
so on. By defining, incrementing or decrementing this counter you can de-
termine down to which level the headings are numbered. The same applies
in the standard classes. Please refer also to the explanation concerning the
counter tocdepth in section 3.4, page 78.

\setpartpreamble[position][width]{preamble }
\setchapterpreamble[position][width]{preamble }

Parts and chapters in KOMA-Script can be started with a preamble . Thisscrbook,
scrreprt is particularly useful when you are using a two column layout with the class

option twocolumn, since the heading together with the preamble is always
set in a one column layout. The preamble can comprise more than one
paragraph. The command to output the preamble has to be placed before
the respective \part, \addpart, \chapter or \addchap command.

Example: You are writing a report about the condition of a company.
You organize the report in such a way that every department gets its
own partial report. Every one of these parts should be introduced by an
abstract on the corresponding title page. You could write the following:

\setpartpreamble{%
\begin{abstract}

This is a filler text. It serves merely to ←↩
demonstrate the

capabilities of {\KOMAScript}. If you read this text←↩
, you will

get no information.
\end{abstract}

}
\part{Department for Word Processing}

Depending on the settings for the heading font size (see section 3.1.4,
page 53) and the options for the abstract environment (see section 3.1.7,
page 56), the result would look similar to:

92 Chapter 3.

Part III.

Department for Word Processing

Abstract

This is a filler text. It serves merely to demonstrate the
capabilities of KOMA-Script. If you read this text, you will
get no information.

Please note that it is you who is responsible for the spaces between the
heading, preamble and the following text. Please note also that there is
no abstract environment in the class scrbook (see section 3.3, page 77).
The first optional argument position determines the position at whichv2.8p

the preamble is placed with the help of one or two letters. For the vertical
placement there are two possibilities at present:

o: above the heading

u: below the heading

You can insert one preamble above and another below a heading. For the
horizontal placement you have the choice between three alignments:

l: left-aligned

r: right-aligned

c: centered

However, this does not output the text of the preamble in such a man-
ner, but inserts a box whose width is determined by the second optional
argument width . If you leave out this second argument the whole text
width is used. In that case the option for horizontal positioning will have
no effect. You can combine exactly one letter from the vertical with one
letter from the horizontal positioning.

\dictum[author]{dictum }
\dictumwidth
\dictumauthorformat{author }
\raggeddictum
\raggeddictumtext
\raggeddictumauthor

Apart from an introductory paragraph you can use \setpartpreamble orscrbook,
scrreprt

v2.8q

93 Chapter 3.

Table 3.11.: Default settings for the elements of a dictum

Element Default
dictumtext \normalfont\normalcolor\sffamily\small
dictumauthor \itshape

\setchapterpreamble for a kind of aphorism (also known as “dictum”) at
the beginning of a chapter or section. The command \dictum inserts such
an aphorism. This macro can be used as obligatory argument of either the
command \setchapterpreamble or \setpartpreamble. However, this is
not obligatory.
The dictum together with an optional author is inserted in a \parbox

(see [Tea01]) of width \dictumwidth. Yet \dictumwidth is not a length
which can be set with \setlength. It is a macro that can be redefined
using \renewcommand. Default setting is 0.3333\textwidth, which is a
third of the textwidth. The box itself is positioned with the command
\raggeddictum. Default here is \raggedleft, that is, right justified. The
command \raggeddictum can be redefined using \renewcommand.
Within the box the dictum is set using \raggeddictumtext. Default

setting is \raggedright, that is, left justified. Similarly to \raggeddictum
this can be redefined with \renewcommand. The output uses the default
font setting for the element dictumtext, which can be changed with the
commands from section 3.2.1. Default settings are listed in table 3.11.
If there is an author name, it is separated from the dictum by

a line the full width of the \parbox. This is defined by the macro
\raggeddictumauthor. Default is \raggedleft. This command can also
be redefined using \renewcommand. The format of the output is defined
with \dictumauthorformat. This macro expects the \author as argu-
ment. As default \dictumauthorformat is defined as:

\newcommand*{\dictumauthorformat}[1]{(#1)}
Thus the author is set enclosed in rounded parenthesis. For the element
dictumauthor a different font than for the element dictumtext can be
defined. Default settings are listed in table 3.11. Changes can be made us-
ing the commands from section 3.2.1. If \dictum is used within the macro
\setchapterpreamble or \setpartpreamble you have to take care of the
following: the horizontal positioning is always done with \raggeddictum.
Therefore, the optional argument for horizontal positioning which is im-
plemented for these two commands has no effect. \textwidth is not

94 Chapter 3.

the width of the whole text corpus but the actually used text width. If
\dictumwidth is set to .5\textwidth and \setchapterpreamble has an
optional width of .5\textwidth too, you will get a box with a width one
quarter of the text width. Therefore, if you use \dictum it is recommended
to refrain from setting the optional width for \setchapterpreamble or
\setpartpreamble.
If you have more than one dictum one under another, you should sep-

arate them by an additional vertical space, easily accomplished using the
command \bigskip.

Example: You are writing a chapter on an aspect of weather forecasting.
You have come across an aphorism which you would like to place at the
beginning of the chapter beneath the heading. You could write:

\setchapterpreamble[u]{%
\dictum[Anonymous]{Forecasting is the art of saying

what is going to happen and then to explain
why it didn’t.}}

\chapter{Weather forecasting}

The output would look as follows:

17 Weather forecasting
Forecasting is the art of
saying what is going to
happen and then to
explain why it didn’t.

(Anonymous)

If you would rather the dictum span only a quarter of the text width
rather than one third you can redefine \dictumwidth:

\renewcommand*{\dictumwidth}{.25\textwidth}

For a somewhat more sophisticated formatting of left- or right-
aligned paragraphs including hyphenation you can use the pack-
age ragged2e [Sch03].

3.6.3. Footnotes

Footnotes are not limited to the main part of the document. However,
since footnotes are mainly used in the main text they are covered in this
section.

95 Chapter 3.

first paragraph of a footnote

next paragraph of a footnote
- � parindent

- � indent

- � mark width

Figure 3.1.: Parameters that control the footnote layout

\footnote[number]{text }
\footnotemark[number]
\footnotetext[number]{text }

Similarly to the standard classes, footnotes in KOMA-Script are produced
with the \footnote command, or alternatively the pairwise usage of the
commands \footnotemark and \footnotetext. As in the standard classes
it is possible that a page break occurs within a footnote. Normally this
happens if the footnote mark is placed so near the bottom of a page as to
leave LATEX no choice but to break the footnote onto the next page.

\deffootnote[mark width]{indent }{parindent }{definition }
\deffootnotemark{definition }
\thefootnotemark
text

Footnotes are formatted slightly differently in KOMA-Script to in the stan-
dard classes. As in the standard classes the footnote mark in the text is
depicted using a small superscripted number. The same formatting is used
in the footnote itself. The mark in the footnote is type-set right-aligned
in a box with width mark width . The first line of the footnote follows
directly.
All following lines will be indented by the length of indent . If the

optional parameter mark width is not specified, it defaults to indent . If
the footnote consists of more than one paragraph, then the first line of a
paragraph is indented, in addition to indent , by the value of parindent .

Figure 3.1 illustrates the layout parameters once more. The default
configuration of KOMA-Script is:
\deffootnote[1em]{1.5em}{1em}

{\thefootnotemark}
\textsuperscript controls both the superscript and the smaller font size.
\thefootnotemark is the current footnote mark without any formatting.
The font element footnote determines the font of the footnote includingv2.8q

96 Chapter 3.

the footnote mark. Using the element footnotelabel the font of the
footnote mark can be changed separately with the commands mentioned
in section 3.2.1 Please refer also to table 3.4, page 61. Default setting is
no change in the font.
The footnote mark in the text is defined separately from the mark in

front of the actual footnote. This is done with \deffootnotemark. Default
setting is:
\deffootnotemark{%

\thefootnotemark}
In the above the font for the element footnotereference is applied (seev2.8q
table 3.4, page 61). Thus the footnote marks in the text and in the footnote
itself are identical. The font can be changed with the commands described
in section 3.2.1.

Example: A feature often asked for is footnote marks which are neither in
superscript nor in a smaller font size. They should not touch the footnote
text but be separated by a small space. This can be accomplished as
follows:

\deffootnote{1em}{1em}{\thefootnotemark\ }

The footnote mark and the following space are therefore set right-aligned
into a box of width 1 em. The following lines of the footnote text are also
indented by 1 em from the left margin.
Another often requested footnote layout is left-aligned footnote marks.
These can be obtained with:

\deffootnote{1.5em}{1em}{%
\makebox[1.5em][l]{\thefootnotemark}}

If you want however only to change the font for all footnotes, for example
to sans serif, you can solve this problem simply by using the commands
from section 3.1.4:

\setkomafont{footnote}{\sffamily}

As demonstrated with the examples above, the simple user interface of
KOMA-Script provides a great variety of different footnote formattings.

3.6.4. Lists

Both LATEX and the standard classes offer different environments for lists.
Though slightly changed or extended all these list are of course offered in

97 Chapter 3.

KOMA-Script as well. In general all lists—even of different kind—can be
nested up to four levels. From a typographical view, anything more would
make no sense, as more than three levels can no longer be easily perceived.
The recommended procedure in such a case is to split the large list into
several smaller ones.

itemize
\item
\labelitemi
\labelitemii
\labelitemiii
\labelitemiv

The simplest form of a list is an itemize list. The users of a certain disliked
word processing package often refer to this form of a list as bulletpoints.
Presumably, these users are unable to envisage that, depending on the
level, a different symbol from a large dot could be used to introduce each
point. Depending on the level, KOMA-Script uses the following marks:
“•”, “–”, “∗” and “·”. The definition of these symbols is specified in the
macros \labelitemi, \labelitemii, \labelitemiii and \labelitemiv,
all of which can be redefined using \renewcommand. Every item is intro-
duced with \item.

Example: You have a simple list which is nested in several levels. You
write for example:

\minisec{Vehicles}
\begin{itemize}
\item aeroplanes
\begin{itemize}

\item biplane
\item jets
\item transport planes
\begin{itemize}
\item single-engined
\begin{itemize}

\item jet-driven
\item propeller-driven

\end{itemize}
\item multi-engined

\end{itemize}
\item helicopters

\end{itemize}

98 Chapter 3.

\item automobiles
\begin{itemize}

\item racing cars
\item private cars
\item lorries

\end{itemize}
\item bicycles

\end{itemize}

As output you get:
Vehicles

• aeroplanes
– biplanes
– jets
– transport planes

∗ single-engined
· jet-driven
· propeller-driven

∗ multi-engined
– helicopters

• automobiles
– racing cars
– private cars
– lorries

• bicycles

enumerate
\item
\theenumi
\theenumii
\theenumiii
\theenumiv
\labelenumi
\labelenumii
\labelenumiii
\labelenumiv

Another form of a list often used is a numbered list which is already im-
plemented by the LATEX kernel. Depending on the level, the numbering
uses the following characters: Arabic numbers, small letters, small roman
numerals and capital letters. The kind of numbering is defined with the
macros \theenumi down to \theenumiv. The output format is determined

99 Chapter 3.

by the macros \labelenumi to \labelenumiv. While the small letter of
the second level is followed by a round parenthesis, the values of all other
levels are followed by a dot. Every item is introduced with \item.

Example: Replacing every occurrence of an itemize environment with
an enumerate environment in the example above we get the following
result:

Vehicles
1. aeroplanes

a) biplanes
b) jets
c) transport planes

i. single-engined
A. jet-driven
B. propeller-driven

ii. multi-engined
d) helicopters

2. automobiles
a) racing cars
b) private cars
c) lorries

3. bicycles

Using \label within a list you can set labels which are referenced with
\ref. In the example above, a label was set after the jet-driven, single-
engined transport planes with \label{xmp:jets}. The \ref value is
then 1(c)iA.

description
\item[item]

A further list form is the description list. Its main use is the description
of several items. The item itself is an optional parameter in \item. The
fontwhich is responsible for emphasizing the item can be changed withv2.8p
the commands for the element descriptionlabel (see table 3.4, page 61)
described in section 3.2.1. Default setting is \sffamily\bfseries.

Example: Instead of items in sans serif and bold you want them printed
in the standard font in bold. Using

\setkomafont{descriptionlabel}{\normalfont\bfseries}

100 Chapter 3.

you redefine the font accordingly.
An example for a description list is the output of the page styles listed in
section 3.2.2. The heavily abbreviated source code is:

\begin{description}
\item[empty] is the page style without any header or ←↩
footer.
\item[plain] is the page style without headings.
\item[headings] is the page style with running ←↩
headings.
\item[myheadings] is the page style for manual ←↩
headings.

\end{description}

This abbreviated version gives:

empty is the page style without any header or footer.

plain is the page style without headings.

headings is the page style with running headings.

myheadings is the page style for manual headings.

labeling[delimiter]{widest pattern }
\item[keyword]

An additional form of a description list is only available in the KOMA-
Script classes: the labeling environment. Unlike the description en-
vironment, you can provide a pattern whose length determines the in-
dentation of all items. Furthermore, you can put an optional delimiter
between the item and its description. The fontwhich is responsible for em-v3.01
phasizing the item and the separator can be changed with the commands
for the element labelinglabel and labelingseparator (see table 3.4,
page 61) described in section 3.2.1.

Example: Slightly changing the example from the description environ-
ment, we could write:

\setkomafont{labelinglabel}{\ttfamily}
\setkomafont{labelingseparator}{\normalfont}
\begin{labeling}[~--]{myheadings}
\item[empty]

Page style without header and footer
\item[plain]

101 Chapter 3.

Page style for chapter beginnings without headings
\item[headings]

Page style for running headings
\item[myheadings]

Page style for manual headings
\end{labeling}

As result we get:

empty – Page style without header and footer

plain – Page style for chapter beginnings without headings

headings – Page style for running headings

myheadings – Page style for manual headings

As can be seen in this example, a font changing command may be set in
the usual way. But if you don’t want the font of the separator be changed
in the same way like the font of the label, you have to set the font of the
separator different.

Originally this environment was implemented for things like “Precondition,
Assertion, Proof”, or “Given, Required, Solution” that are often used in
lecture hand-outs. By now this environment has found many different
applications. For example, the environment for examples in this guide was
defined with the labeling environment.

verse

Usually the verse environment is not perceived as a list environment be-
cause you do not work with \item commands. Instead, fixed line breaks
are used within the flushleft environment. Yet internally in both the
standard classes as well as KOMA-Script it is indeed a list environment.
In general the verse environment is used for poems. Lines are indented

both left and right. Individual lines of verse are ended by a fixed line break
\\. Verses are set as paragraphs, separated by an empty line. Often also
\medskip or \bigskip is used instead. To avoid a page break at the end
of a line of verse you as usual insert * instead of \\.

Example: As an example, the first lines of “Little Red Riding Hood and
the Wolf” by Roald Dahl:

\begin{verse}
As soon as Wolf began to feel*

102 Chapter 3.

that he would like a decent meal,*
He went and knocked on Grandma’s door.*
When Grandma opened it, she saw*
The sharp white teeth, the horrid grin,*
And Wolfie said, ’May I come in?’

\end{verse}

The result is as follows:

As soon as Wolf began to feel
That he would like a decent meal,
He went and knocked on Grandma’s door.
When Grandma opened it, she saw
The sharp white teeth, the horrid grin,
And Wolfie said, ’May I come in?’

However, if you have very long lines of verse, for instance:
\begin{verse}
Both the philosopher and the house-owner
have always something to repair.\\
\bigskip
Don’t trust a man, my son, who tells you
that he has never lied.

\end{verse}

where a line break occurs within a line of verse:

Both the philosopher and the house-owner have always
something to repair.

Don’t trust a man, my son, who tells you that he has
never lied.

there * can not prevent a page break occurring within a verse at such
a line break. To prevent such a page break, a \nopagebreak would have
to be inserted somewhere in the first line:

\begin{verse}
Both the philosopher and the house-owner\nopagebreak
have always something to repair.\\
\bigskip
Don’t trust a man, my son, who tells you\nopagebreak
that he has never lied.

\end{verse}

In the above example, \bigskip was used to separate the lines of verse.

103 Chapter 3.

quote
quotation

These two environments are also list environments and can be found both
in the standard and the KOMA-Script classes. Both environments use
justified text which is indented both on the left and right side. Usually
they are used to separate long citations from the main text. The difference
between these two lies in the manner in which paragraphs are typeset.
While quote paragraphs are highlighted by vertical space, in quotation
paragraphs the first line is indented. This is also true for the first line of
a quotation environment. To prevent indentation you have to insert a
\noindent command before the text.

Example: You want to highlight a short anecdote. You write the following
quotation environment for this:
A small example for a short anecdote:
\begin{quotation}
The old year was turning brown; the West Wind was
calling;

Tom caught the beechen leaf in the forest falling.
‘‘I’ve caught the happy day blown me by the breezes!
Why wait till morrow-year? I’ll take it when me ←↩
pleases.
This I’ll mend my boat and journey as it chances
west down the withy-stream, following my fancies!’’

Little Bird sat on twig. ‘‘Whillo, Tom! I heed you.
I’ve a guess, I’ve a guess where your fancies lead you←↩
.
Shall I go, shall I go, bring him word to meet you?’’

\end{quotation}

The result is:

104 Chapter 3.

A small example for a short anecdote:

The old year was turning brown; the West Wind was
calling;
Tom caught the beechen leaf in the forest falling.

“I’ve caught the happy day blown me by the breezes!
Why wait till morrow-year? I’ll take it when me
pleases. This I’ll mend my boat and journey as it
chances west down the withy-stream, following my fan-
cies!”
Little Bird sat on twig. “Whillo, Tom! I heed you.

I’ve a guess, I’ve a guess where your fancies lead you.
Shall I go, shall I go, bring him word to meet you?”

Using a quote environment instead you get:

A small example for a short anecdote:

The old year was turning brown; the West Wind was
calling;
Tom caught the beechen leaf in the forest falling. “I’ve
caught the happy day blown me by the breezes! Why
wait till morrow-year? I’ll take it when me pleases.
This I’ll mend my boat and journey as it chances west
down the withy-stream, following my fancies!”
Little Bird sat on twig. “Whillo, Tom! I heed you.
I’ve a guess, I’ve a guess where your fancies lead you.
Shall I go, shall I go, bring him word to meet you?”

addmargin[left indentation]{indentation }
addmargin*[inner indentation]{indentation }

Similar to quote and quotation, the addmargin environment changes the
margin. In contrast to the first two environments, with addmargin the
user can set the width of the indentation. Besides this, this environment
does not change the indentation of the first line nor the vertical spacing
between paragraphs.
If only the obligatory argument indentation is given, both the left

and right margin are expanded by this value. If the optional argument
left indentation is given as well, then at the left margin the value left
indentation is used instead of indentation .
The starred addmargin* only differs from the normal version in a two-

sided layout. Furthermore, the difference only occurs if the optional
argument inner indentation is used. In this case this value inner
indentation is added to the normal inner indentation. For right-hand
pages this is the left margin, for left-hand pages the right margin. Then
the value of indentation determines the width of the opposite margin.

105 Chapter 3.

Both versions of this environment take also negative values for all param-
eters. This has the effect of expanding the environment into the margin.

Example: Suppose you write a documentation which includes short source
code examples. To highlight these you want them separated from the text
by a horizontal line and shifted slightly into the outer margin. First you
define the environment:

\newenvironment{SourceCodeFrame}{%
\begin{addmargin*}[1em]{-1em}%

\begin{minipage}{\linewidth}%
\rule{\linewidth}{2pt}%

}{%
\rule[.25\baselineskip]{\linewidth}{2pt}%
\end{minipage}%

\end{addmargin*}%
}

If you now put your source code in such an environment it will show up
as:

You define yourself the following environment:

\newenvironment{\SourceCodeFrame}{%
\begin{addmargin*}[1em]{-1em}%

\begin{minipage}{\linewidth}%
\rule{\linewidth}{2pt}%

}{%
\rule[.25\baselineskip]{\linewidth}{2pt}%
\end{minipage}%

\end{addmargin*}%
}

This may be feasible or not. In any case it shows the usage of this
environment.

The optional argument of the addmargin* environment makes sure that
the inner margin is extended by 1 em. In turn the outer margin is de-
creased by 1 em. The result is a shift by 1 em to the outside. Instead of
1em you can of course use a length, for example, 2\parindent.

There is one problem with the addmargin* which you should be aware of.
If a page break occurs within an addmargin* environment, the indentation
on the following page will be on the wrong side. This means that suddenly
the inner indentation is applied on the outside of the page. Therefore
it is recommended to prevent page breaks within this environment. This

106 Chapter 3.

can be achieved by using an additional \parbox or, as in the example
above, a minipage. This makes use of the fact that neither the argument
of a \parbox nor the content of a minipage breaks at the end of a page.
Unfortunately this is not without another disadvantage: in some cases
pages can no longer be filled correctly, which has the effect of generating
several warnings.
Incidentally, whether a page is going to be on the left or right side of

the book can not be determined for certain in the first LATEX run. For
details please refer to the explanation of the commands \ifthispageodd
and \ifthispagewasodd in section 3.2.2, page 69.
One concluding remark on list environments: on the internet and during

support it is often asked why such an environment is followed by a indented
paragraph. In fact, this is not the case but is the result of the user demanding
a new paragraph. In LATEX empty lines are interpreted as a new paragraph.
This is also the case before and after list environments. Thus, if you want a
list environment to be set within a paragraph you have to omit empty lines
before and after. To nevertheless separate the environment from the rest of
your text in the LATEX source file, you can insert a comment line before and
after, that is, lines which begin with a percent character and contain nothing
more.

3.6.5. Margin Notes

\marginpar[margin note left]{margin note }
\marginline{margin note }

Usually margin notes in LATEX are inserted with the command \marginpar.
They are placed in the outer margin. In documents with one-sided layout
the right border is used. Though \marginpar can take an optional different
margin note argument in case the output is in the left margin, margin notes
are always set in justified layout. However, experience has shown that
many users prefer left- or right-aligned margin notes instead. To facilitate
this, KOMA-Script offers the command \marginline.

Example: In the introduction, the class name scrartcl can be found in the
margin. This can be produced2 with:

\marginline{\texttt{scrartcl}}

2In fact, instead of \texttt, a semantic highlighting was used. To avoid confusion this
was replaced in the example.

107 Chapter 3.

Instead of \marginline you could have used \marginpar. In fact the
first command is implemented internally as:

\marginpar[\raggedleft\texttt{scrartcl}]
{\raggedright\texttt{scrartcl}}

Thus \marginline is really only an abbreviated writing of the code above.

Unfortunately \marginpar does not always work correctly in two-sided lay-
out. Whether a margin note will end up in the left or right margin is already
decided while evaluating the command \marginpar. If the output routine
now shifts the margin note onto the next page the formatting is no longer
correct. This behaviour is deeply rooted within LATEX and was therefore de-
clared a feature by the LATEX3 team. \marginline suffers from this “feature”
too. The package mparhack (see [SU03]) offers a standard solution for this
problem which naturally benefits also \marginpar and \marginline.
Note that you may not use \marginpar or \marginline within float en-

vironments such as tables or figures. Also, these commands will not function
in displayed math formulas.

3.6.6. Tables and Figures

With the floating environments LATEX offers a very capable and comfortable
mechanism for automatic placement of figures and tables. But often these
floating environments are slightly misunderstood by beginners. They often ask
for a fixed position of a table or figure within the text. However, since these
floating environments are being referenced in the text this is not necessary in
most cases. It is also not sensible because such an object can only be set on
the page if there is enough space left for it. If this is not the case the object
would have to be shifted onto the next page, thereby possibly leaving a huge
blank space on the page before.
Often one finds in a document for every floating object the same optional

argument for positioning the object. This also makes no sense. In such cases
one should rather change the standard parameter globally. For more details
refer to [RNH02].
One last important note before starting this section: most mechanisms

described here which extend the capabilities of the standard classes no
longer work correctly when used together with packages which modify the
typesetting of captions of figures and tables. This should be self evident,
but it is often not understood.

108 Chapter 3.

\caption[entry]{title }
\captionbelow[entry]{title }
\captionabove[entry]{title }

In the standard classes caption text title of tables and figures is in-
serted with the \caption command below the table or figure. In gen-
eral this is correct for figures. Opinions differ as to whether captions
of tables are to be placed above or, consistent with captions of figures,
below the table. That is the reason why KOMA-Script, unlike the stan-
dard classes, offers \captionbelow for captions below and \captionabove
for captions above tables or figures. Using \caption for figures always
produces captions below the figure, whereas with tables the behaviour of
\caption can be modified using the options captions=tableheading and
captions=tablesignature (see section 3.1.7, page 58). For compatibility
reasons the default behaviour of \caption used with tables is similar to
\captionbelow.

Example: Instead of using captions below a table you want to place your
captions above it, because you have tables which span more then one
page. In the standard classes you could only write:

\begin{table}
\caption{This is an example table}
\begin{tabular}{llll}

This & is & an & example.\\\hline
This & is & an & example.\\
This & is & an & example.

\end{tabular}
\end{table}

Then you would get the unsatisfying result:

Table 30.2: This is an example table.
This is an example.
This is an example.
This is an example.

Using KOMA-Script you write instead:
\begin{table}
\captionabove{This is just an example table}
\begin{tabular}{llll}

This & is & an & example.\\\hline
This & is & an & example.\\
This & is & an & example.

109 Chapter 3.

\end{tabular}
\end{table}

Then you get:

Table 30.2: This is just an example table

This is an example.
This is an example.
This is an example.

Since you want all your tables typeset with captions above, you could of
course use the option captions=tableheading instead (see section 3.1.7,
page 58). Then you can use \caption as you would in the standard
classes. You will get the same result as with \captionabove.

Some would argue that you could achieve the same result using the
\topcaption command from the topcapt package (see [Fai99]). However,
that is not the case. The command \topcaption is ignored by packages which
directly redefine the \caption macro. The hyperref package (see [Rah01]) is
one such example. In KOMA-Script, \captionabove and \captionbelow
are so implemented that changes have an effect on both of these commands
as well.
If the longtable package is used, KOMA-Script ensures that captions above

tables which are placed within a longtable environment have the same ap-
pearance as those in a normal table environment. This also means that you
can apply the same settings as in a table environment. Please note that in
the longtable package the maximum width of a table caption can be limited
and the default is set to 4 in (see [Car98]). Used together with KOMA-Script
this mechanism in longtable works only if the class option origlongtable
is set (see section 3.1.7, page 58). If the caption2 or caption package (see
[Som08]) is loaded, table captions are handled by this package.
Please note that \captionabove and \captionbelow, if placed within a

float environment which was defined using the float package, have the exact
same behaviour described in [Lin01] for the \caption command. In this case,
the float style determines whether the caption will be set below or above the
figure or table.

captionbeside[entry]{title }[placement][width][offset]
captionbeside[entry]{title }[placement][width][offset]*

Apart from captions above and below the figure, one often finds captions, inv2.8q
particular with small figures, which are placed beside the figure. In general
in this case both the baseline of the figure and of the caption are aligned

110 Chapter 3.

at the bottom. With some fiddling and the use of two \parbox commands
this could also be achieved in the standard classes. However, KOMA-
Script offers a special environment for this which can be used within the
floating environment. The first optional parameter entry and the obliga-
tory parameter title mean the same as the corresponding parameters of
\caption, \captionabove or \captionbelow. The caption text title is
placed beside the content of the environment in this case.
Whether the caption text title is placed on the left or the right can

be determined by the parameter placement . Exactly one of the following
letters is allowed:

l – left

r – right

i – inner margin in two-sided layout

o – outer margin in two-sided layout

Default setting is to the right of the content of the environment. If either
o or i are used you may need to run LATEX twice to obtain the correct
placement.
Per default the content of the environment and the caption text title

fill the entire available text width. However, using the optional parameter
width , it is possible to adjust the width used. This width could even be
larger than the current text width.
When supplying a width the used width is usually centered with respect

to the text width. Using the optional parameter offset , you can shift the
environment relative to the left margin. A positive value corresponds to a
shift to the right, whereas a negative value corresponds to a shift to the
left. An offset of 0 pt gives you a left-aligned output.
Adding a star to the optional parameter offset makes the the value

mean a shift relative to the right margin on left hand pages in two-sided
layout. A positive value corresponds to a shift towards the outer margin,
whereas a negative value corresponds to a shift towards the inner margin.
An offset of 0 pt means alignment with the inner margin. As mentioned
before, in some cases it takes two LATEX runs for this to work correctly.

Example: An example for the usage of the captionbeside environment
can be found in figure 3.2. This figure was typeset with:
\begin{figure}

111 Chapter 3.

Figure 3.2.: A figure description which is neither above
nor below, but beside the figure

KOMA-Script

\begin{captionbeside}[Example for a figure description←↩
]%

{A figure description which is neither above nor
below, but beside the figure}[i][\linewidth][2em]*
\fbox{%
\parbox[b][5\baselineskip][c]{.25\textwidth}{%

\hspace*{\fill}\KOMAScript\hspace*{\fill}\par}}
\end{captionbeside}
\label{fig:maincls.captionbeside}

\end{figure}

The total width is thus the currently available width \linewidth. How-
ever, this width is shifted 2em to the outside. The caption text or de-
scription is placed on the inner side beside the figure. The figure itself is
shifted 2 em into the outer margin.

The font style for the description and the label—“Figure” or “Table”,v2.8p
followed by the number and the delimiter—can be changed with the com-
mands described in section 3.2.1. The respective elements for this are
caption and captionlabel (see table 3.4, page 61). First the font style
for the element caption is applied to the element captionlabel too. After
this the font style of captionlabel is applied on the respective element.
The default settings are listed in table 3.12.

Example: You want the table and figure descriptions typeset in a smaller
font size. Thus you could write the following in the preamble of your
document:

Table 3.12.: Font defaults for the elements of figure or table captions

element default
caption \normalfont
captionlabel \normalfont

112 Chapter 3.

\addtokomafont{caption}{\small}

Furthermore, you would like the labels to be printed in sans serif and
bold. You add:

\setkomafont{captionlabel}{\sffamily\bfseries}

As you can see, simple extensions of the default definitions are possible.

komaabove
komabelow

If you use the float package the appearance of the float environments is solelyfloat
defined by the float style. This includes whether captions above or below
are used. In the float package there is no predefined style which gives you
the same output and offers the same setting options (see below) as KOMA-
Script. Therefore KOMA-Script defines the two additional styles komaabove
and komabelow. When using the float package these styles can be activated
just like the styles plain, boxed or ruled defined in float. For details re-
fer to [Lin01]. The style komaabove inserts \caption, \captionabove and
\captionbelow above, whereas komabelow inserts them below the float con-
tent.

\captionformat

In KOMA-Script there are different ways to change the formatting of the
caption text. The definition of different font styles was already explained
above. This or the caption delimiter between the label and the label text
itself is specified in the macro \captionformat. In contrast to all other
\...format commands, in this case it does not contain the counter but
only the items which follow it. The original definition is:
\newcommand*{\captionformat}{:\ }

This too can be changed with \renewcommand.

Example: For some inexplicable reasons you want a dash with spaces
before and after instead of a colon followed by a space as label delimiter.
You define:

\renewcommand*{\captionformat}{~--~}

This definition should be put in the preamble of your document.

\figureformat
\tableformat

It was already mentioned that \captionformat does not contain format-
ting for the label itself. This situation should under no circumstances be

113 Chapter 3.

changed using redefinitions of the commands for the output of counters,
\thefigure or \thetable. Such a redefinition would have unwanted side
effects on the output of \ref or the table of contents, list of figures and list
of tables. To deal with the situation, KOMA-Script offers two \...format
commands instead. These are predefined as follows:
\newcommand*{\figureformat}{\figurename~\thefigure\←↩
autodot}

\newcommand*{\tableformat}{\tablename~\thetable\autodot}
They also can be adapted to your personal preferences with
\renewcommand.

Example: From time to time captions without any label and of course
without delimiter are desired. In KOMA-Script it takes only the following
definitions to achieve this:

\renewcommand*{\figureformat}{}
\renewcommand*{\tableformat}{}
\renewcommand*{\captionformat}{}

It should be noted, however, that although no numbering is output, the
internal counters are nevertheless incremented. This becomes important
especially if this redefinition is applied only to selected figure or table
environments.

\setcapindent{indent }
\setcapindent*{xindent }
\setcaphanging

As mentioned previously, in the standard classes the captions are set in
a non-hanging style, that is, in multi-line captions the second and subse-
quent lines start directly beneath the label. The standard classes provide
no direct mechanism to change this behaviour. In KOMA-Script, on the
contrary, beginning at the second line all lines are indented by the width
of the label so that the caption text is aligned.
This behaviour, which corresponds to the usage of \setcaphanging,

can easily be changed by using the command \setcapindent or
\setcapindent*. Here the parameter indent determines the indentation
of the second and subsequent lines.
If you want a line break after the label and before the caption text,

then you can define the indentation xindent of the caption text with the
starred version of the command instead: \setcapindent*.

114 Chapter 3.

KOMA-Script

Figure 3.3.: Equivalent to the
standard setting,
similar to the usage
of \setcaphanging

KOMA-Script

Figure 3.4.: With slightly
hanging indentation start-
ing at the second line using
\setcapindent{1em}

KOMA-Script

Figure 3.5.:
With hanging indentation start-
ing at the second line and line
break before the description us-
ing \setcapindent*{1em}

KOMA-Script

Figure 3.6.:
With indentation in the sec-

ond line only and line break
before the description using
\setcapindent{-1em}

Using a negative value of indent instead, a line break is also inserted
before the caption text and only the first line of the caption text but not
subsequent lines are indented by the absolute value of indent .
Whether one-line captions are set as captions with more than one line or

are treated separately is specified with the class options captions=oneline
and captions=nooneline. For details please refer to the explanations of
these options in section 3.1.3, page 52.

Example: For the examples please refer to figures 3.3 to 3.6. As you can
see the usage of a fully hanging indentation is not advantageous when
combined with narrow column width. To illustrate, the source code for
the second figure is given here with a modified caption text:

\begin{figure}
\setcapindent{1em}
\fbox{\parbox{.95\linewidth}{\centering{\KOMAScript}}}
\caption{Example with slightly indented caption

starting at the second line}
\end{figure}

As can be seen the formatting can also be changed locally within the
figure environment. The change then affects only the current figure.
Following figures once again use the default settings or global settings
set, for example, in the preamble of the document. This also of course
applies to tables.

115 Chapter 3.

\setcapwidth[justification]{width }
\setcapmargin[margin left]{margin }
\setcapmargin*[margin inside]{margin }

Using these three commands you can specify the width and justificationv2.8q
of the caption text. In general the whole text width or column width is
available for the caption.
With the command \setcapwidth you can decrease this width . The

obligatory argument determines the maximum width of the caption. As
an optional argument you can supply exactly one letter which specifies
the horizontal justification. The possible justifications are given in the
following list.

l – left-aligned

c – centered

r – right-aligned

i – alignment at the inner margin in double-sided output

o – alignment at the outer margin in double-sided output

The justification inside and outside corresponds to left-aligned and right-
aligned, respectively, in single-sided output. Within longtable tables the
justification inside or outside does not work correctly. In particular, the
captions on subsequent pages of such tables are aligned according to the
format of the caption on the first page of the table. This is a conceptual
problem in the implementation of longtable.
With the command \setcapmargin you can specify a margin which is

to be left free next to the description in addition to the normal text margin.
If you want margins with different widths at the left and right side you can
specify these using the optional argument margin left . The starred ver-
sion \setcapmargin* defines instead of a margin left a margin inside
in a double-sided layout. In case of longtable tables you have to deal with
the same problem with justification inside or outside as mentioned with
the macro \setcapwidth. Furthermore, the usage of \setcapmargin or
\setcapmargin* switches on the option captions=nooneline (see sec-
tion 3.1.3, page 52) for the captions which are typeset with this margin
setting.
longtable places the caption in a box, which is issued again on subsequent

pages as needed. When outputting a box, the macros needed for its creation
are not reevaluated. That is the reason why it is not possible for KOMA-
Script to swap margin settings for even pages in double-sided layout . This is

116 Chapter 3.

what would be necessary in order to produce a justification which is shifted
towards the outside or inside.
You can also submit negative values for margin and margin left or

margin inside . This has the effect of the caption expanding into the mar-
gin.

Example: A rather odd problem is that of a figure caption which is re-
quired to be both centered and of the same width as the figure itself. If
the width of the figure is known in advance, the solution with KOMA-
Script is quite easy. Supposing the figure has a width of 8 cm, it only
takes:
\setcapwidth[c]{8cm}

directly in front of \caption or \captionbelow. If the width is unknown
then you first have to define a length in the preamble of your document:

\newlength{\FigureWidth}

Having done this you can calculate the width directly with the LATEX
command \settowidth (see [Tea01]) in many cases. A possible solution
would look as follows:

\begin{figure}
\centering%
\settowidth{\FigureWidth}{%

\fbox{\quad\KOMAScript\quad}%
}%

\fbox{\quad\KOMAScript\quad}%
\setcapwidth[c]{\FigureWidth}
\caption{Example of a centered caption below the ←↩
figure}

\end{figure}

However, it is awkward to write the content twice and to call
\setcapwidth for every figure. Yet nothing is easier than defining a
new command in the preamble of your document which hides the three
steps of:
1. defining the width of the argument
2. specifying the width of the caption
3. outputting the argument

in:

117 Chapter 3.

\newcommand{\Figure}[1]{%
\settowidth{\FigureWidth}{#1}%
\setcapwidth[c]{\FigureWidth}%
#1}

Using this command the example abbreviates to:
\begin{figure}
\centering%
\Figure{\fbox{\quad\KOMAScript\quad}}%
\caption{Example of a centered caption below the ←↩
figure}

\end{figure}

However, commands have the disadvantage that errors in the macros
of the argument in case of arguments with more than one line are not
reported with the very accurate line numbers by LATEX. Thus in some
cases the use of an environment has advantages. Then, however, the
question arises of how the width of the content of the environment can
be determined. The solution involves the lrbox environment, described
in [Tea01]:

\newsavebox{\FigureBox}
\newenvironment{FigureDefinesCaptionWidth}{%
\begin{lrbox}{\FigureBox}%

}{%
\end{lrbox}%
\global\setbox\FigureBox=\box\FigureBox%
\aftergroup\SetFigureBox%

}
\newcommand{\SetFigureBox}{%
\Figure{\usebox{\FigureBox}}}

This definition uses the macro \Figure defined above. In the main text
you write:

\begin{figure}
\centering%
\begin{FigureDefinesCaptionWidth}

\fbox{\hspace{1em}\KOMAScript\hspace{1em}}
\end{FigureDefinesCaptionWidth}
\caption{Example of a centered caption below the ←↩
figure}

\end{figure}

118 Chapter 3.

Admittedly, the environment in this example is not necessary. However,
its definition using \global is quite tricky. Most users would probably
not be able to define such an environment without help. Thus, as this
definition can be very useful, it was introduced in the above example.
Even if the captionbeside environment did not exist you could neverthe-
less place the figure caption beside the figure in a quite simple way. For
this \SetFigureBox from the example above would have to be redefined
first:

\renewcommand{\SetFigureBox}{%
\settowidth{\captionwidth}{\usebox{\FigureBox}}%
\parbox[b]{\captionwidth}{\usebox{\FigureBox}}%
\hfill%
\addtolength{\captionwidth}{1em}%
\addtolength{\captionwidth}{-\hsize}%
\setlength{\captionwidth}{-\captionwidth}%
\setcapwidth[c]{\captionwidth}%
}

Finally you only have to put the \caption command in a \parbox too:
\begin{figure}
\centering%
\begin{FigureSetsCaptionWidth}

\fbox{\rule{0pt}{5\baselineskip}%
\hspace{1em}\KOMAScript\hspace{1em}}

\end{FigureSetsCaptionWidth}
\parbox[b]{\FigureWidth}{%

\caption{Example of a centered caption
below the figure}

}
\end{figure}

The \rule command in this example only serves as an invisible support
to produce an example figure with a greater vertical height.

3.6.7. Logical Markup of Text

LATEX offers different possibilities for logical markup of text. Strictly speaking,
a heading is a kind of markup too. However, in this section we are only
concerned with direct markup, i. e., markup which does not have an additional
semantic meaning and which can be used for different purposes. More details

119 Chapter 3.

on the normally defined possibilities can be found in [OPHS99], [Tea01] and
[Tea00].

\textsubscript{text }

In section 3.6.3, page 95, the command \textsuperscript was already
introduced as an integral part of the LATEX kernel. Unfortunately, LATEX
itself does not offer a command to produce text in subscript instead of
superscript. KOMA-Script defines \textsubscript for this purpose.

Example: You are writing a text on human metabolism. From time to
time you have to give some simple chemical formulas in which the numbers
are in subscript. For enabling logical markup you first define in the
document preamble or in a separate package:

\newcommand*{\molec}[2]{#1\textsubscript{#2}}

Using this you then write:
The cell produces its energy partly from reaction of \←↩
molec C6\molec

H{12}\molec O6 and \molec O2 to produce \molec H2\Molec ←↩
O{} and

\molec C{}\molec O2. However, arsenic (\molec{As}{}) ←↩
has a quite

detrimental effect on the metabolism.

The output looks as follows:

The cell produces its energy from reaction of C6H12O6 and O2
to produce H2O and CO2. However, arsenic (As) has a quite
detrimental effect on the metabolism.

Some time later you decide that the chemical formulas should be typeset
in sans serif. Now you can see the advantages of using logical markup.
You only have the redefine the \molec command:

\newcommand*{\molec}[2]{\textsf{#1\textsubscript{#2}}}

Now the output in the whole document changes to:

The cell produces its energy partly from reaction of C6H12O6 and
O2 to produce H2O and CO2. However, arsenic (As) has a quite
detrimental effect on the metabolism.

In the example above, the notation “\molec C6” is used. This makes
use of the fact that arguments consisting of only one character do not

120 Chapter 3.

have to be enclosed in parentheses. That is why “\molec C6” is similar
to “\molec{C}{6}”. You might already know this from indices or powers in
mathematical environments, such as “x^2” instead of “x^{2}” for “x2”.

3.7. Appendix

The last part of a document usually contains the appendix, the bibliogra-
phy and, if necessary, the index.

\appendix

The appendix in the standard as well as the KOMA-Script classes is in-
troduced with \appendix. This command switches, among other things,
the chapter numbering to upper case letters, also ensuring that the rules
according to [DUD96] are followed (for German-speaking regions). These
rules are explained in more detail in the description of the class options
numbers=enddot and numbers=noenddot in section 3.1.7, page 57.
Please note that \appendix is a command, not an environment! This

command does not expect any argument. Sectioning in the appendix uses
\chapter and \section just as does the main text.

\appendixmore

There is a peculiarity within the \appendix command in the KOMA-
Script classes. If the command \appendixmore is defined, this com-
mand is executed also by the \appendix command. Internally the
KOMA-Script classes scrbook and scrreprt take advantage of this behaviour
to implement the options appendixprefix and appendixprefix=false
(see section 3.1.3, page 51). You should take note of this in case
you decide to define or redefine the \appendixmore. In case one of
these options is set, you will receive an error message when using
\newcommand{\appendixmore}{. . . }. This behaviour is intended to pre-
vent you from disabling options without noticing it.

Example: You do not want the chapters in the main part of the classes
scrbook or scrreprt to be introduced by a prefix line (see layout options
chapterprefix and chapterprefix=false in section 3.1.3, page 51).
For consistency you also do not want such a line in the appendix either.
Instead, you would like to see the word “Chapter” in the language of your
choice written in front of the chapter letter and, simultaneously, in the
page headings. Instead of using the either layout option appendixprefix
or appendixprefix=false, you would define in the document preamble:

121 Chapter 3.

\newcommand*{\appendixmore}{%
\renewcommand*{\chapterformat}{%

\appendixname~\thechapter\autodot\enskip}
\renewcommand*{\chaptermarkformat}{%

\appendixname~\thechapter\autodot\enskip}
}

In case you subsequently change your mind and decide to use the option
appendixprefix at a later stage, you will get an error message because of
the already defined \appendixmore command. This behaviour prevents
the definition made above from invisibly changing the settings intended
with the option.
It is also possible to get a similar behaviour of the appendix for the class
scrartcl. You would write in the preamble of your document:

\newcommand*{\appendixmore}{%
\renewcommand*{\othersectionlevelsformat}[1]{%

\ifthenelse{\equal{##1}{section}}{\appendixname~}{}%
\csname the##1\endcsname\autodot\enskip}

\renewcommand*{\sectionmarkformat}{%
\appendixname~\thesection\autodot\enskip}

}

In addition, the package ifthen (see [Car99a]) is required.
Redefined commands are explained in more detail in section 3.6.2, page 88
and page 90.

\setbibpreamble{preamble }

The command \setbibpreamble can be used to set a preamble for the
bibliography. This can be achieved by placing the preamble before the
command for issuing the bibliography. However, it does not have to be
directly in front of it. For example, it could be placed at the begin-
ning of the document. Similar to the class options bibliography=totoc
and bibliography=totocnumbered, this command can only be success-
ful if you have not loaded a package which prevents this by redefin-
ing the thebibliography environment. Even though the natbib package
makes unauthorized use of internal macros of KOMA-Script it could be
achieved that \setbibpreamble works with the current version of natbib
(see [Dal99]).

Example: You want to point out that the sorting of the references in

122 Chapter 3.

the bibliography is not according to their occurrence in the text, but in
alphabetical order. You use the following command:

\setbibpreamble{References are in alphabetical order.
References with more than one author are sorted
according to the first author.\par\bigskip}

The \bigskip command makes sure that the preamble and the first ref-
erence are separated by a large vertical space.

\setindexpreamble{preamble }

Similarly to the bibliography you can use a preamble to the index. This
is often the case if you have more than one index or if you use different
kinds of referencing by highlighting the page numbers in different ways.

Example: You have a document in which terms are both defined and
used. The page numbers of definitions are in bold. Of course you want
to make your reader aware of this fact. Thus you insert a preamble for
the index:

\setindexpreamble{In \textbf{bold} printed page numbers ←↩
are
references to the definition of terms. Other page ←↩
numbers indicate
the use of a term.\par\bigskip}

Please note that the page style of the first page of the index is changed.
The applied page style is defined in the macro \indexpagestyle (see sec-
tion 3.2.2, page 66).
The production, sorting and output of the index is done by the standard

LATEX packages and additional programs. Similar to the standard classes
KOMA-Script only provides the basic macros and environments.

3.8. Obsolete Commands

In this section you will find commands which should not be used any longer.
They are part of older KOMA-Script versions and their use was documented.
For compatibility reasons they can still be used in the current KOMA-Script
release. There are however new mechanisms and user interfaces which you
should use instead. The reason for listing the obsolete macros in this docu-
mentation is only to aid users in understanding old documents. Furthermore,
package authors are free to use these macros in the future.

123 Chapter 3.

\sectfont

This macro sets the font which is used for all section headings and the ab-
stract, the main title and the highest level below \part in the table of con-
tents. Instead, use the commands for the element disposition, described in
section 3.2.1.

\capfont
\caplabelfont

The macro \capfont sets the font which is used for captions in tables and
figures. The macro \caplabelfont sets the font which is used for the label
and numbering of tables and pictures. Instead, use the commands for the
elements caption and captionlabel, described in section 3.2.1.

\descfont

This macro sets the font for the optional item arguments of a description
environment. Instead, use the commands for the element descriptionlabel,
described in section 3.2.1.

124 Chapter 4.

Adapting Page Headers and Footers with scrpage2

As already mentioned in the two previous chapters, KOMA-Script includes
a package to customise the document page header and footer. As of 2001,
this package is no longer scrpage but the much improved and enhanced
successor scrpage2. Therefore, this documentation describes only scrpage2.
The package scrpage is obsolete.
In place of scrpage2 you can of course make use of fancyhdr (see [vO00]).

However, scrpage2 integrated markedly better with the KOMA-Script bundle.
For this reason, and because at the time the forerunner to fancyhdr was
missing many features, scrpage2 was developed. Naturally, scrpage2 is not
limited to use only with the KOMA-Script classes, but can just as easily be
used with other document classes.
Included as part of the basic functionality of scrpage2 are various pre-

defined and configurable page styles.

4.1. Basic Functionality

To understand the following description, an overview of LATEX’s fairly involved
header and footer mechanism is needed. The LATEX kernel defines the page
styles empty, which produces a completely empty header and footer, and
plain, which produces usually only a page number in the footer and an
empty header. Apart from these, many document classes provide the style
headings, which allows more complex style settings and running headings.
The headings style often has a related variant, myheadings, which is similar
except for switching off the running headings and reverting them to manual
control by the user. A more detailed description is given in section 3.2.2 where
it is also noted that some LATEX commands automatically switch to the page
style plain for the current page, independent of what page style was chosen
by the author, and consequently a document needs an appropriate plain page
style.
Therefore scrpage2 defines its own plain and headings page styles,

named scrplain and scrheadings. The manual activation of scrplain
is not necessary, since the activation of scrheadings takes care of it au-
tomatically. Only if one wants to use one’s own page style in combination
with scrplain must the page style scrplain be activated first, i. e., with
\pagestyle{scrplain }\pagestyle{personalPagestyle }.
The original headings page style of the document class is available as

125 Chapter 4.

useheadings. This re-definition is required since scrpage2 uses a differ-
ent way to deal with automatic and manual headings. This way is more
flexible and allows configurations which would usually prove difficult to
implement for inexperienced users. The required commands to work with
the scrpage2 implementation are introduced at the end of section 4.1.1 and
the beginning of section 4.1.2.

4.1.1. Predefined Page Styles

scrheadings
scrplain

Package scrpage2 delivers its own page style, named scrheadings, which
can be activated with the \pagestyle{scrheadings}. When this page
style is in use, an appropriate scrplain page style is used for the plain
page style. In this case appropriate means that this new plain page style
is also configureable by the commands introduced in section 4.1.3, which,
for example, configure the header and footer width. Neither the activation
of scrheadings nor the attendant change to the plain page style influ-
ences the mode of manual or automatic headings (see section 4.1.2). The
scrplain page style can also be activated directly with \pagestyle.

\lehead[scrplain-left-even]{scrheadings-left-even }
\cehead[scrplain-center-even]{scrheadings-center-even }
\rehead[scrplain-right-even]{scrheadings-right-even }
\lefoot[scrplain-left-even]{scrheadings-left-even }
\cefoot[scrplain-center-even]{scrheadings-center-even }
\refoot[scrplain-right-even]{scrheadings-right-even }
\lohead[scrplain-left-odd]{scrheadings-left-odd }
\cohead[scrplain-center-odd]{scrheadings-center-odd }
\rohead[scrplain-right-odd]{scrheadings-right-odd }
\lofoot[scrplain-left-odd]{scrheadings-left-odd }
\cofoot[scrplain-center-odd]{scrheadings-center-odd }
\rofoot[scrplain-right-odd]{scrheadings-right-odd }
\ihead[scrplain-inside]{scrheadings-inside }
\chead[scrplain-centered]{scrheadings-centered }
\ohead[scrplain-outside]{scrheadings-outside }
\ifoot[scrplain-inside]{scrheadings-inside }
\cfoot[scrplain-centered]{scrheadings-centered }
\ofoot[scrplain-outside]{scrheadings-outside }

The page styles include three boxes in both the header and the footer. The
commands modifying the content of these boxes can be seen in figure 4.1.

126 Chapter 4.

even page odd page

\ihead� -

\chead6 6

\ohead

6 6

\ifoot-�

\cfoot
? ?

\ofoot

? ?

\lehead \cehead \rehead \lohead \cohead \rohead

\lefoot \cefoot \refoot \lofoot \cofoot \rofoot

Figure 4.1.: Commands for modification of page styles scrheadings and
scrplain and their relationship to header and footer elements

Commands in the middle column modify the box contents on both odd
and even pages.

Example: If one wants the page number be placed in the middle of the
footer, then following can be used:

\cfoot{\pagemark}

The next example shows how to place both running heading and page
number in the header; the running heading inside and the page number
outside:

\ohead{\pagemark}
\ihead{\headmark}
\cfoot{}

The command \cfoot{} is only required in order to empty the item in
the middle of the footer, which normally contains the page number.

The commands which are associated with only one item can be used for
more advanced settings.

Example: Assuming one has the order to write an annual report for one’s
company, one could use commands like this:

\ohead{\pagemark}

127 Chapter 4.

\rehead{Annual Report 2001}
\lohead{\headmark}
\cefoot{TheCompanyName Inc.}
\cofoot{Department: Development}

In order to keep the data in the footer synchronized with the content of
the document, the footer has to be updated using \cofoot when a new
department is discussed in the report.

As mentioned above, there is a new plain page style which corresponds
to scrheadings. Since it should also be possible to customize this style,
the commands support an optional argument with which the contents of
the appropriate fields of this plain page style can be modified.

Example: The position of the page number for the page style
scrheadings can be declared as follows:

\cfoot[\pagemark]{}
\ohead[]{\pagemark}

When the command \chapter, after it has started a new page, now
switches to the plain page style, then the page number is centered in the
footer.

\clearscrheadings
\clearscrplain
\clearscrheadfoot

If one wants to redefine both the page style scrheadings and the cor-
responding plain page style, frequently one must empty some already
occupied page elements. Since one rarely fills all items with new content,
in most cases several instructions with empty parameters are necessary.
With the help of these three instructions the quick and thorough dele-
tion is possible. While \clearscrheadings only deletes all fields of the
page style scrheadings, and \clearscrplain deletes all fields of the cor-
responding plain page style, \clearscrheadfoot sets all fields of both
page styles to empty.

Example: If one wants to reset the page style to the default KOMA-
Script settings, independent of the actual configuration, only these three
commands are sufficient:

\clearscrheadfoot
\ohead{\headmark}
\ofoot[\pagemark]{\pagemark}

128 Chapter 4.

Without the commands \clearscrheadfoot, \clearscrheadings and
\clearscrplain, 6 commands with 9 empty arguments would be re-
quired:

\ihead[]{}
\chead[]{}
\ohead[]{\headmark}
\ifoot[]{}
\cfoot[]{}
\ofoot[\pagemark]{\pagemark}

Of course, for a specific configuration, some of them could be dropped.

In the previous examples two commands were used which have not been
introduced yet. The description of these commands follows.

\leftmark
\rightmark

These two instructions make it possible to access the running headings,
which are normally meant for the left or for the right page. These two
instruction are not made available by scrpage2, but directly by the LATEX
kernel. When in this section running headings of the left page or the
right page are mentioned, this refers to the contents of \leftmark or
\rightmark, respectively.

\headmark

This command gives access to the content of running headings. In contrast
to \leftmark and \rightmark, one need not regard the proper assignment
to left or right page.

\pagemark

This command returns the formatted page number. The formatting can
be controlled by \pnumfont, introduced in section 4.1.3, page 130, which
\pagemark heeds automatically. Alternatively, \setkomafont can be used
if a KOMA-Script class is used (see section 3.2.1).

useheadings

The package scrpage2 is meant primarily for use of the supplied styles or for
defining one’s own styles. However, it may be necessary to shift back also
to a style provided by the document class. It might appear that this should
be done with \page style{headings}, but this has the disadvantage that

129 Chapter 4.

commands \automark and \manualmark, to be discussed shortly, do not
function as expected. For this reason one should shift back to the original
styles using \page style{useheadings}, which chooses the correct page
styles automatically for both manual and automatic running headings.

4.1.2. Manual and Running Headings

Usually there is a my-version of the headings page style. If such a page
style is active, then the running headings are no longer updated no longer
automatically and become manual headings. With scrpage2 a different
path is taken. Whether the headings are running or manual is determined
by the instructions \automark and \manualmark, respectively. The default
can be set already while loading of the package, with the options automark
and manualmark (see section 4.1.4, page 136).

\manualmark

As the name suggests, \manualmark switches off the updating of the run-
ning headings and makes them manual. It is left to the user to update
and provide contents for the headings. For that purpose the instructions
\markboth and \markright are available.

\automark[right page]{left page }

The macro \automark activates the automatic updating, that is, running
headings. For the two parameters the designations of the document sec-
tioning level whose title is to appear in appropriate place are to be used.
Valid values for the parameters are: part, chapter, section, subsection,v2.2
subsubsection, paragraph, and subparagraph. For most of the classes
use of part will not produce the expected result. So far only KOMA-Script
classes from version 2.9s up are known to support this value.
The optional argument right page is understandably meant only for

two-sided documents. In the one-sided case one should normally not use it.
With the help of the option autooneside one can also set that the optional
argument in one-sided mode is ignored automatically (see section 4.1.4,
page 137).

Example: Assuming that the document uses a book class, whose topmost
section level is chapter, then after a preceding \manualmark

\automark[section]{chapter}

restores the original behaviour. If one prefers lower section levels in run-
ning headings, the following can be used:

130 Chapter 4.

\automark[subsection]{section}

How useful the last declaration is, everybody has to decide for themselves.

For the upper section level, the data of the headings is set by the com-
mand \markboth, while that for the lower section level by \markright or
\markleft. These commands are called indirectly by the sectioning com-
mands. The macro \markleft is provided by the package scrpage2 and is
defined similarly to \markright in the LATEX kernel. Although \markleft is
not defined as an internal command, the direct use is not recommended.

4.1.3. Formatting of Header and Footer

The previous section concerned itself mainly with the contents of the
header and footer. This is of course not sufficient to satisfy formative
ambitions. Therefore we devote this section exclusively to this topic.

\headfont
\pnumfont

The command \headfont contains the commands which determine the
font of header and footer lines. The style of the page number is defined by
the command \pnumfont.

Example: If, for example, one wants the header and footer to be typeset
in bold sans serif, and the page number in a slanted serif style, then one
can use the following definitions:

\renewcommand{\headfont}{\normalfont\sffamily\bfseries}
\renewcommand{\pnumfont}{\normalfont\rmfamily\slshape}

From version 2.8p of the KOMA-Script classes a new unified user interface
scheme is implemented for font attributes. If scrpage2 is used together
with one of these classes, then it is recommended to set up font attributes
in the manner described in section 3.2.1.

Example: Instead of \renewcommand the command \setkomafont should
be used to configure the font attributes. The previous definitions can then
be written as:

\setkomafont{pagehead}\normalfont\sffamily\bfseries}
\setkomafont{pagenumber}{\normalfont\rmfamily\slshape}

131 Chapter 4.

\setheadwidth[shift]{width }
\setfootwidth[shift]{width }

Normally the widths of header and footer lines correspond to the width
of the text body. The commands \setheadwidth and \setfootwidth
enable the user to adapt in a simple manner the widths to his needs.
The mandatory argument width takes the value of the desired width of
the page header or footer, while shift is a length parameter by which
amount the appropriate item is shifted toward the outside page edge.
For the most common situations the mandatory argument width accepts

the following symbolic values:

paper – the width of the paper

page – the width of the page

text – the width of the text body

textwithmarginpar – the width of the text body including margin

head – the current header width

foot – the current footer width

The difference between paper and page is that page means the width of
the paper less the binding correction if the package typearea is used (see
chapter 2). Without typearea both values are identical.

Example: Assume that one wants a layout like that of The
LATEXCompanion, where the header projects into the margin. This can
be obtained with:

\setheadwidth[0pt]{textwithmarginpar}

which appears like this on an odd page:

KOMA-Script 3
This fill text is currently seized by 130 million
receptors in your retina. Thereby the nerve
cells are put in a state of stimulation, which
spreads into the rear part of your brain origi-
nating from

Retina

132 Chapter 4.

If the footer line should have the same width and alignment, then two
ways to set this up are possible. The first way simply repeats the settings
for the case of the footer line:

\setfootwidth[0pt]{textwithmarginpar}

In the second way the symbolic value head is used, since the header
already has the desired settings.

\setfootwidth[0pt]{head}

If no shift is indicated, i. e., without the optional argument, then the
header or footer appears arranged symmetrically on the page. In other
words, a value for the shift is determined automatically to correspond
to the current page shape.

Example: Continuing with the previous example, we remove the optional
argument:

\setheadwidth{textwithmarginpar}

which appears like this on an odd page:

KOMA-Script 3
This fill text is currently seized by 130 million
receptors in your retina. Thereby the nerve
cells are put in a state of stimulation, which
spreads into the rear part of your brain origi-
nating from

Retina

As can be seen, the header is now shifted inward, while the header width
has not changed. The shift is calculated in a way that the configuration
of the typearea become visible also here.

\setheadtopline[length]{thickness }[commands]
\setheadsepline[length]{thickness }[commands]
\setfootsepline[length]{thickness }[commands]
\setfootbotline[length]{thickness }[commands]

Corresponding to the size configuration parameters of header and footer
there are commands to modify the lines above and below the header and
footer.

\setheadtopline – configures the line above the header

133 Chapter 4.

\setheadsepline – configures the line below the header

\setfootsepline – configures the line above the footer

\setfootbotline – configures the line below the footer

The mandatory argument thickness determines how strongly the line
is drawn. The optional argument length accepts the same symbolic values
as width for \setheadwidth, as well as also a normal length expression.
As long as the optional argument length is not assigned a value, the
appropriate line length adapts automatically the width of the header or
the footer.
Use auto in the length argument to restore this automation for the

length of a line.
The optional argument commands may be used to specify additionalv2.2

commands to be executed before the respective line is drawn. For example,
such commands could be used for changing the color of the line. When us-
ing a KOMA-Script class you could also use \setkomafont to specify com-
mands for one of the elements headtopline, headsepline, footsepline,
footbottomline, or footbotline. These can then be extended via
\addtokomafont. See section 3.2.1 for details on the \setkomafont and
\addkomafont commands.

\setheadtopline[auto]{current}
\setheadtopline[auto]{}
\setheadtopline[auto]{}[]

The arguments shown here for the command \setheadtopline are of
course valid for the other three configuration commands too.
If the mandatory parameter has the value current or has been left

empty, then the line thickness is not changed. This may be used to modify
the length of the line without changing its thickness.
If the optional argument commands is omitted, then all command set-

tings that might have been specified before will remain active, while an
empty commands argument will revoke any previously valid commands.

Example: If the header, for example, is to be contrasted by a strong line
of 2 pt above and a normal line of 0.4 pt between header and body, one
can achieve this with:

\setheadtopline{2pt}
\setheadsepline{.4pt}

134 Chapter 4.

KOMA-Script 3
This fill text is currently seized by 130 million
receptors in your retina. Thereby the nerve
cells are put in a state of stimulation, which
spreads into the rear part of your brain origi-
nating from

Retina

To specify that this line is to be drawn also, e. g., in red color, you would
change the commands like this:

\setheadtopline{2pt}[\color{red}]
\setheadsepline{.4pt}[\color{red}]

In this example, as well as in the following one, line color is activated by
applying the syntax of the color package, so this package must of course
be loaded. Since scrpage2 comes without built-in color handling, any
package providing color support may be used.
KOMA-Script classes also support the following way of color specification:

\setheadtopline{2pt}
\setheadsepline{.4pt}
\setkomafont{headtopline}[\color{red}]
\setkomafont{headsepline}[\color{red}]

The automatic adjustment to the header and footer width is illustrated
in the following example:

\setfootbotline{2pt}
\setfootsepline[text]{.4pt}
\setfootwidth[0pt]{textwithmarginpar}

KOMA-Script 3

This fill text is currently seized by 130 million
receptors in your retina. Thereby the nerve
cells are put in a state of stimulation, which
spreads

Retina

Now not everyone will like the alignment of the line above the footer;
instead, one would expect the line to be left-aligned. This can only be

135 Chapter 4.

achieved with a global package option, which will be described together
with other package options in the next section 4.1.4.

4.1.4. Package Options

headinclude
headexclude
footinclude
footexclude

These options determine whether the page header or the page footer are
considered as part of the page body for the calculation of the type area.
The adjustments necessary by the use of these parameters are made by the
package typearea (see section 2.4), if this package is loaded after scrpage2.
Important here is that when using a KOMA-Script class, these options
must be given for the document class and not for the package scrpage2, in
order to be effective.

headtoplineand plainheadtopline
headseplineand plainheadsepline
footseplineand plainfootsepline
footbotlineand plainfootbotline

Basic adjustment of the lines under and over header and footer can be made
with these options. These adjustments are then considered the default for
all page styles defined with scrpage2. If one of these options is used, then
a line thickness 0.4 pt is set.
Since there is a corresponding plain page style to the page style

scrheadings, the corresponding line in the plain style can also be con-
figured with the plain... options. These plain options do however work
only if the corresponding options without plain are activated. Thus,
plainheadtopline shows no effect without the headtopline option set.
With these options, it is to be noted that the appropriate page part,

header or footer, is considered as a part of the text area for the calculation
of the type area in case a line has been activated. This means that, if the
separation line between header and text is activated with headsepline,
then the package typearea calculates the type area in such a way that the
page header is part of the text block automatically.
The conditions for the options of the preceding paragraph apply also

to this automation. That means that the package typearea must be
loaded after scrpage2, or that on use of a KOMA-Script class, the

136 Chapter 4.

options headinclude and footinclude must be set explicitly with
\documentclass in order to transfer header or footer line in the text area.

ilines
clines
olines

With the definition of the line lengths the case can arise where the lengths
are set correctly, but the justification is not as desired because the line
will be centered in the header or footer area. With the package options
presented here, this specification can be modified for all page styles defined
with scrpage2. The option ilines sets the justification in such a way that
the lines align to the inside edge. The option clines behaves like the
default justification, and olines aligns at the outside edge.

Example: The next example illustrates the influence of the option ilines.
Please compare to the example for \setfootsepline on page 134.

\usepackage[ilines]{scrpage2}
\setfootbotline{2pt}
\setfootsepline[text]{.4pt}
\setfootwidth[0pt]{textwithmarginpar}

The mere use of the option ilines leads to the different result shown
below:

KOMA-Script 3

This fill text is currently seized by 130 million
receptors in your retina. Thereby the nerve
cells are put in a state of stimulation, which
spreads

Retina

In contrast to the default configuration, the separation line between text
and footer is now left-aligned, not centered.

automark
manualmark

These options set at the beginning of the document whether to use running
headings or manual ones. The option automark switches the automatic

137 Chapter 4.

updating on, manualmark deactivates it. Without the use of one of the
two options, the setting which was valid when the package was loaded is
preserved, .

Example: You load the package scrpage2 directly after the document class
scrreprt without any package options:

\documentclass{scrreprt}
\usepackage{scrpage2}

Since the default page style of scrreprt is plain, this page style is also
now still active. Futhermore, plain means manual headings. If one now
activates the page style scrheadings with

\pagestyle{scrheadings}

then the manual headings are nevertheless still active.
If you instead use the document class scrbook, then after

\documentclass{scrbook}
\usepackage{scrpage2}

the page style headings is active and the running headings are updated
automatically. Switching to the page style scrheadings keeps this setting
active. The marking commands of scrbook continue to be used.
However, the use of

\usepackage[automark]{scrpage2}

activates running headings independently of the used document class.
The option does not of course affect the used page style plain of the
class scrreprt. The headings are not visible until the page style is changed
to scrheadings, useheadings or another user-defined page style with
headings.

autooneside

This option ensures that the optional parameter of \automark will be
ignored automatically in one-sided mode. See also the explanation of the
command \automark in section 4.1.2, page 129.

komastyle
standardstyle

These options determine the look of the predefined page style
scrheadings. The option komastyle configures a look like that of the

138 Chapter 4.

KOMA-Script classes. This is the default for KOMA-Script classes and
can in this way also be set for other classes.
The option standardstyle configures a page style as it is expected

by the standard classes. Furthermore, the option markuppercase will be
activated automatically, but only if option markusedcase is not given.

markuppercase
markusedcase

In order to achieve the functionality of \automark, the package scrpage2
modifies internal commands which are used by the document structuring
commands to set the running headings. Since some classes, in contrast to
the KOMA-Script classes, write the headings in uppercase letters, scrpage2
has to know how the used document class sets the headings.
Option markuppercase shows scrpage2 that the document class uses

uppercase letters. If the document class does not set the headings in
uppercase letters, then the option markusedcase should be given. These
options are not suitable to force a representation; thus, unexpected effects
may occur if the given option does not match the actual behaviour of the
document class.

nouppercase

In the previous paragraph dealing with markuppercase and
markusedcase, it has been already stated that some document classes
set the running headings in uppercase letters using the commands
\MakeUppercase or \uppercase. Setting the option nouppercase allows
disabling both these commands in the headers and footers. However, this
is valid only for page styles defined by scrpage2, including scrheadings
and its corresponding plain page style.
The applied method is very brutal and can cause that desired changes of

normal letters to uppercase letters do not occur. Since these cases do not
occur frequently, the option nouppercase usually affords a useful solution.

Example: Your document uses the standard class book, but you do not
want the uppercase headings but mixed case headings. Then the preamble
of your document could start with:

\documentclass{book}
\usepackage[nouppercase]{scrpage2}
\pagestyle{scrheadings}

139 Chapter 4.

The selection of the page style scrheadings is necessary, since otherwise
the page style headings is active, which does not respect the settings
made by option nouppercase.

In some cases not only classes but also packages set the running headings
in uppercase letters. Also in these cases the option nouppercase should
be able to switch back to the normal mixed case headings.

4.2. Defining Own Page Styles

4.2.1. The Interface for Beginners

Now one would not like to remain bound to only the provided page styles,
but may wish to define one’s own page styles. Sometimes there will be a
special need, since a specific Corporate Identity may require the declaration
of its own page styles. The easiest way to deal with this is:

\deftripstyle{name }[LO][LI]{HI }{HC }{HO }{FI }{FC }{FO }

The individual parameters have the following meanings:

name – the name of the page style, in order to activate it using the com-
mand \pagestyle{name }

LO – the thickness of the outside lines, i. e., the line above the header and
the line below the footer (optional)

LI – the thickness of the separation lines, i. e., the line below the header
and the line above the foot (optional)

HI – contents of the inside box in the page header for two-sided layout or
left for one-sided layout

HC – contents of the centered box in the page header

HO – contents of the outside box in the page header for two-sided layout
or right for one-sided layout

FI – contents of the inside box in the page footer for two-sided layout or
left for one-sided layout

FC – contents of the centered box in the page footer

FO – contents of the outside box in the page footer for two-sided layout or
right for one-sided layout

140 Chapter 4.

The command \deftripstyle definitely represents the simplest possi-
bility of defining page styles. Unfortunately, there are also restrictions
connected with this, since in a page range using a page style defined via
deftripstyle, no modification of the lines above and below header and footer
can take place.

Example: Assume a two-sided layout, where the running headings are
placed on the inside. Furthermore, the document title, here “Report”,
shall be placed outside in the header, the page number shall be centered
in the footer.

\deftripstyle{TheReport}%
{\headmark}{}{Report}%
{}{\pagemark}{}

If moreover the lines above the header and below the footer shall be drawn
with a thickness of 2 pt, and the text body be separated from header and
footer with 0.4 pt lines, then the definition has to be extended:

\deftripstyle{TheReport}[2pt][.4pt]%
{\headmark}{}{Report}%
{}{\pagemark}{}

Report 2. The Eye 2.1 Retina Report

14 15

2.1 Retina
This fill text is currently
seized by 130 million re-
ceptors in your retina.
Thereby the nerve cells are
put in a state of stimu-
lation, which spreads into
the rear part of your brain
originating from the op-
tic nerve. From there
the stimulation is trans-
mitted in a split second
also in other parts of your
cerebrum. Your frontal
lobe becomes stimulated.
Intention-impulses spread
from there, which your
central nervous

system transforms in ac-
tual deeds. Head and eyes
already react. They follow
the text, taking the infor-
mation present there and
transmit them via the op-
tic nerve.

4.2.2. The Interface for Experts

Simple page styles, as they can be defined with \deftripstyle, are fairly
rare according to experience. Either a professor requires that the thesis
looks like his or her own—and who seriously wants to argue against such a
wish?—or a company would like that half the financial accounting emerges
in the page footer. No problem, the solution is:

141 Chapter 4.

\defpagestyle{name }{header definition }{footer definition }
\newpagestyle{name }{header definition }{footer definition }
\renewpagestyle{name }{header definition }{footer definition }
\providepagestyle{name }{header definition }{footer definition }

These four commands give full access to the capabilities of scrpage2 to
define page styles. Their structure is indentical, they differ only in the
manner of working.

\defpagestyle – defines a new page style. If a page style with this name
already exists it will be overwritten.

\newpagestyle – defines a new page style. If a page style with this name
already exists a error message will be given.

\renewpagestyle – redefines a page style. If a page style with this name
does not exist a error message will be given.

\providepagestyle – defines a new page style only if there is no page
style with that name already present.

Using \defpagestyle as an example, the syntax of the four commands
is explained below.

name – the name of the page style for \pagestyle{name }

header definition – the declaration of the header, consisting of five el-
ement; elements in round parenthesis are optional:
(ALL,ALT){EP }{OP }{OS }(BLL,BLT)

footer definition – the declaration of the footer, consisting of five ele-
ment; elements in round parenthesis are optional:
(ALL,ALT){EP }{OP }{OS }(BLL,BLT)

As can be seen, header and footer declaration have identical structure.
The individual parameters have the following meanings:

ALL – above line length: (header = outside, footer = separation line)

ALT – above line thickness

EP – definition for even pages

OP – definition for odd pages

OS – definition for one-sided layout

142 Chapter 4.

BLL – below line length: (header = separation line, footer = outside)

BLT – below line thickness

If the optional line-parameters are omitted, then the line behaviour re-
mains configurable by the commands introduced in section 4.1.3, page 132.
The three elements EP , OP and OS are boxes with the width of page

header or footer, as appropriate. The corresponding definitions are set
left-justified in the boxes. To set something left- and right-justified into
the boxes, the space between two text elements can be stretched using
\hfill, in order to write the first text element on the left edge and:
{\headmark\hfill\pagemark}
If one would like a third text-element centered in the box, then an ex-

tended definition must be used. The commands \rlap and \llap simply
write the given arguments, but for LATEX they take up no horizontal space.
Only in this way is the middle text really centered.
{\rlap{\headmark}\hfill centered text\hfill\llap{\←↩
pagemark}}

This and the use of the expert interface in connection with other com-
mands provided by scpage2 follows now in the final example.

Example: This examples uses the document class scrbook, which means
that the default page layout is two-sided. The package scrpage2 is loaded
with options automark and headsepline. The first switches on the au-
tomatic update of running headings, the second determines that a sepa-
ration line between header and text body is drawn in the scrheadings
page style.

\documentclass{scrbook}
\usepackage[automark,headsepline]{scrpage2}

The expert interface is used to define two page styles. The page style
withoutLines does not define any line parameters. The second page
style withLines defines a line thicknes of 1 pt for the line above the
header and 0 pt for the separation line between header and text.

\defpagestyle{withoutLines}{%
{Example\hfill\headmark}{\headmark\hfill without lines←↩
}
{\rlap{Example}\hfill\headmark\hfill%
\llap{without lines}}

}{%

143 Chapter 4.

{\pagemark\hfill}{\hfill\pagemark}
{\hfill\pagemark\hfill}

}

\defpagestyle{withLines}{%
(\textwidth,1pt)
{with lines\hfill\headmark}{\headmark\hfill with lines←↩
}
{\rlap{\KOMAScript}\hfill \headmark\hfill%
\llap{with lines}}

(0pt,0pt)
}{%
(\textwidth,.4pt)
{\pagemark\hfill}{\hfill\pagemark}
{\hfill\pagemark\hfill}
(\textwidth,1pt)

}

Right at the beginning of the document the page style scrheadings is
activated. The command \chapter starts a new chapter and automati-
cally sets the page rstyle for this page to plain. Even though not a prime
example, the command \chead shows how running headings can be cre-
ated even on a plain page. However, in principle running headings on
chapter start-pages are to be avoided, since otherwise the special charac-
ter of the plain page style is lost. It is more important to indicate that
a new chapter starts here than that a section of this page has a special
title.
Instead of \leftmark one would expect the use of \rightmark in the pa-
rameter of \chead, since the chapter starts on an even page. But, because
of internal LATEX definitions, this does not work. It only returns an empty
string.

\begin{document}
\pagestyle{scrheadings}
\chapter{Thermodynamics}

\chead[\leftmark]{}

\section{Main Laws}
Every system has an extensive state quantity called
Energy. In a closed system the energy is constant.

144 Chapter 4.

1. Thermodynamics

1.Thermodynamics
1.1 Main Laws
Every System has an extensive state quantity

After starting a new page the page style scrheadings is active and thus
the separation line below the header is visible.

There is a state quatity of a system, called entropy, ←↩
whose temporal

change consists of entropy flow and entropy generation.

1. Thermodynamics

There is a condition unit of a system, called
entropy, whose temporal change consists of en-
tropy flow and entropy generation.

After switching to the next page, the automatic update of the run-
ning headings is disabled using \manualmark, and the page style
withoutLines becomes active. Since no line parameters are given in
the definition of this page style, the default configuration is used, which
draws a separation line between header and text body because scrpage2
was called with headsepline.

Energy Conversion without lines

1.2 Exergy and Anergy
During the transition of a system to an equi-
librium state with its environment, the maxi-
mum work gainable is called exergy.

\manualmark
\pagestyle{withoutLines}

145 Chapter 4.

\section{Exergy and Anergy}\markright{Energy Conversion}
During the transition of a system to an equilibrium ←↩
state

with its environment, the maximum work gainable is ←↩
called

exergy.

At the next page of the document, the page style withLines is activated.
The line settings of its definition are taken in account and the lines are
drawn accordingly.

\pagestyle{mitLinien}
\renewcommand{\headfont}{\itshape\bfseries}
The portion of an energy not convertible in exergy
is named anergy \Var{B}.
\[B = U + T (S_1 - S_u) - p (V_1 - V_u)\]
\end{document}

with lines 1. Thermodynamics

The portion of an energy not convertible in
exergy is named anergy B.

B = U + T (S1 − Su)− p(V1 − Vu)

4.2.3. Managing Page Styles

Before long the work with different page styles will establish a common
set of employed page styles, depending on taste and tasks. In order to
make the management of page styles easier and avoid time-consuming
copy operations each time a new project is started, scrpage2 reads the file
scrpage.cfg after initialisation. This file can contain a set of user-defined
page styles which many projects can share.

146 Chapter 5.

Weekday and Time Using scrdate and scrtime

There are two packages included in KOMA-Script to improve and extend
the handling of date and time over and above what is provided by the
standard commands \today and \date. Like all the other packages from
the KOMA-Script bundle these two packages may be used not only with
KOMA-Script classes but also with the standard and many other classes.

5.1. The Name of the Current Day of the Week Using scrdate

The first problem is the question of the current day of the week. The
answer may be given using the package scrdate.

\todaysname

You should know that with \today one obtains the current date
in a language-dependent spelling. scrdate offers you the command
\todaysname with which one can obtain the name of the current day of
the week in a language-dependent spelling.

Example: In your document you want to show the name of the weekday
on which the dvi file was generated using LATEX. To do this, you write:

I have done the {\LaTeX} run of this document on a \←↩
todaysname.

This will result in, e. g.:
I have done the LATEX run of this document on a Monday.

Note that the package is not able to decline words. The known terms
are the nominative singular that may be used, e. g., in the date of a letter.
Given this limitation, the example above can work correctly only for some
languages.
Tip: The names of the weekdays are saved in capitalized form, i. e., the

first letter is a capital letter, all the others are lowercase letters. But for some
languages you may need the names completely in lowercase. You may achieve
this using the standard LATEX command \MakeLowercase. You simply have
to write \MakeLowercase{\todaysname}.

147 Chapter 5.

\nameday{name }

Analogous to how the output of \today can be modified using \date, so
the output of \todaysname can be changed to name by using \nameday.

Example: You change the current date to a fixed value using \date. You
are not interested in the actual name of the day, but want only to show
that it is a workday. So you set:

\nameday{workday}

After this the previous example will result in:
I have done the LATEX run of this document on a workday.

Currently the package scrdate knows the languages english (english,
american, USenglish, UKenglish and british), german (german, ngerman
and austrian), french, italian, spanish, croatian, finnish, and norsk. If you
want to configure it for other languages, see scrdate.dtx.
In the current implementation it does not matter whether you load scr-

date before or after german, ngerman, babel or similar packages. The cur-
rent language will be set up at \begin{document}.
To explain a little bit more exactly: while you are using a language selection

which works in a compatible way to babel or german, the correct language
will be used by scrdate. If you are using another language selection you will
get (US) english names. In scrdate.dtx you will find the description of the
scrdate commands for defining the names.

5.2. Getting the Time with Package scrtime

The second problem is the question of the current time. The solution may
be found using package scrtime.

\thistime[delimiter]
\thistime*[delimiter]

\thistime results in the current time. The delimiter between the values
of hour, minutes and seconds can be given in the optional argument. The
default symbol of the delimiter is “:”.
\thistime* works in almost the same way as \thistime. The only

difference is that unlike with \thistime, with \thistime* the value of
the minute field is not preceded by a zero when its value is less than 10.
Thus, with \thistime the minute field has always two places.

Example: The line

148 Chapter 5.

Your train departs at \thistime.

results, for example, in:
Your train departs at 10:24.

or:
Your train departs at 23:09.

In contrast to the previous example a line like:
This day is already \thistime*[\ hours and\] minutes ←↩
old.

results in:
This day is already 10 hours and 24 minutes old.

or:
This day is already 12 hours and 25 minutes old.

\settime{time }

\settime sets the output of \thistime and \thistime* to the value time .
Now the optional parameter of \thistime or \thistime* is ignored, since
the result of \thistime or \thistime* was completely determined using
\settime.

12h
24h

Using the options 12h and 24h one can select whether the result of
\thistime and \thistime* is in 12- or in 24-hour format. The default is
24h. The option has no effect on the results of \thistime and \thistime*
if \settime is used.

149 Chapter 6.

The New Letter Class scrlttr2

Since the June 2002 release KOMA-Script provides a completely rewritten
letter class. Although part of the code is identical to that of the main classesv2.8q
described in chapter 3, letters are quite different from articles, reports, books,
and suchlike. That alone justifies a separate chapter about the letter class.
But there is another reason for a chapter on scrlttr2. This class has been
redeveloped from scratch and provides a new user interface different from every
other class the author knows of. This new user interface may be uncommon,
but the author is convinced both experienced and new KOMA-Script users
will benefit from its advantages.

6.1. Looking Back on the Old Letter Class

With the June 2002 release the old letter class scrlettr became obsolete.
It is recommended not to use that class for new applications. There is no
more active development of the old letter class, and support is very restricted.
However, if you really need the documentation of the old letter class, you can
still find it in the file scrlettr.dtx, but only in German. You should run it
through LATEX several times, like this:
latex scrlettr.dtx
latex scrlettr.dtx
latex scrlettr.dtx

Then you obtain the file scrlettr.dvi containing the old German manual.
To facilitate the transition to the new class, there is a compatibility option.

In general, the complete older functionality still remains in the new class.
Without that compatibility option, the user interface and the defaults will be
different. More details on this option are provided in section 6.2.9, table 6.10
and section 6.9.

6.2. Options

The letter class scrlttr2 uses the package keyval to handle options. This is
part of the graphics package (see [Car99b]). Since graphics is part of the
required section of LATEX, it should be found in every LATEX distribution.
Should your TEX distribution contain LATEX, but not the packages graphics
and keyval, please complain to your TEX distributor. If you want to use
scrlttr2, you will have to install the graphics package yourself in that case.

150 Chapter 6.

The special feature of the keyval package is that options can have values.
Thus, you not only need a lot less options, but perhaps also fewer optional
arguments. You will see that when discussing the letter environment in
section 6.4.4, page 194. The class will automatically load the keyval package.
If you need to supply options to the keyval package, you should use the
\PassOptionsToPackage command before \documentclass.

6.2.1. Defining Options Later

This section anticipates a feature of the new letter class. The meaning of
this feature will not become clear until the structure of a document with
more than one letter inside and another feature of scrlttr2 is understood.
However, to keep the number of forward references low, it is reasonable to
describe the feature this early.

\KOMAoptions{option list }

A special feature of the scrlttr2 class is the possibility to change many
options even after loading the class. The \KOMAoptions command serves
this purpose, taking options and their values as arguments. You can list
multiple options, separated by commas, just like in the optional argument
of \documentclass. If an option is only available when loading the class,
i. e., as an optional argument to \documentclass, this will be explicitly
mentioned in the option’s description.
If you set an option to an illegal value within the option list , LATEX will

stop and show an error message. By entering “h” you will get an explanation
that will also list possible values for that particular option.

6.2.2. Options for Compatibility

People who archive their letters in source code format generally place the
highest priority on obtaining exactly the same results in future LATEX runs.
In some cases however, improvements and corrections to the class can lead
to changes in behaviour, particularly as regards page breaking.

version=value

With scrlttr2 there is the choice, whether a source file should give, as farv2.9t
as is technically possible, the same in any future LATEX runs, or whether
the document should be set according to the latest version of the class. To
which version compatibility should be retained is determined by the option
version. The default is version 2.9t. The same effect can be obtained with

151 Chapter 6.

version=first
or
version=2.9

or
version=2.9t

If an unknown version is entered for value , a warning is output and for
safety’s sake version=first is assumed. With
version=last

the current newest version can be selected. In this case future compatibility
is waived. If the option is used without any value, then last is assumed
as well.
The question of compatibility concerns first and foremost page break-

ing. New features which have no effect on page breaking will be available
even when compatibility to an earlier version is chosen by this option.
The option also has no effect on changes in page breaking which result
from the removal of old errors in the new version class. If page breaking
compatibility is required absolutely, to the point of incorporating previous
class errors, then the document should rather be archived together with
the relevant version of KOMA-Script.
It should be noted that the option version can no longer be changed

after loading of the class.

6.2.3. Page Layout Options

In contrast to the old scrlettr class, but in agreement with the other KOMA-
Script classes, the scrlttr2 class refers to the typearea package for the con-
struction of the page layout (see chapter 2). The package will be loaded
by the class automatically, and the class then controls the package. The
necessary options will be explained in this section.

enlargefirstpage

As described later in this chapter, the first page of a letter always uses a
different page layout. The scrlttr2 class provides a mechanism to calcu-
late height and vertical alignment of header and footer of the first page
independently of the following pages. If, as a result, the footer of the first
page would reach into the text area, this text area is automatically made
smaller using the \enlargethispage macro. On the other hand, if the
text area should become larger, supposing that the footer on the first page
allows that, you can also use this option. At best, a little more text will

152 Chapter 6.

Table 6.1.: Possible values of option cleardoublepage for selection of page style
of empty left pages with scrlttr2

empty
switches to page style empty for inserted pages

plain
switches to page style plain for inserted pages

standard
keeps the current page style for inserted pages

then fit on the first page. See also the description of the pseudo-length
firstfootvpos in section 6.4.3, page 189. This option can take the stan-
dard values for simple switches, as listed in table 2.5, page 32. Default is
false.

6.2.4. Other Layout Options

In this subsection, you will find all options, except the specific page layout
options, that have an influence on the layout in general. Strictly speaking,
all page layout options (see 6.2.3) are also layout options, and vice versa
for some of them.

cleardoublepage=style

If you want pages inserted by the \cleardoublepage command to just
contain a page number in the header and footer, or to be empty, this
can be accomplished with this option. There are three different styles
supported that are listed at table 6.1. Default is standard.

headsepline=switch
footsepline=switch

These two options insert a separator line below the header or above the
footer, respectively, on consecutive pages. In the terminology of this man-
ual, all pages of a letter except the first one are consecutive pages. This
option can take the standard values for simple switches, as listed in ta-
ble 2.5, page 32. Default is false. If one of the options is used without
a value, like in the declaration above, this evaluates as true, so the sepa-
rator line will be activated. When used as a \documentclass option, the
option headinclude or footinclude, respectively, will be passed on to
the typearea package (see section 2.4, page 32).

153 Chapter 6.

pagenumber=position

This option defines if and where a page number will be placed on consec-
utive pages. All pages without a letterhead are consecutive pages. This
option affects the page styles headings and plain. It also affects the de-
fault page styles of the scrpage2 package, if set before loading the package
(see chapter 4). It can take values only influencing horizontal, only ver-
tical, or both positions. Possible value are shown in table 6.2. Default is
botcenter.

parskip=value

Especially in letters you often encounter paragraphs marked not with indenta-
tion of the first line, but with a vertical skip between them. This is a matter
of tradition. Apparently, it was easier for a secretary to operate the carriage
return lever twice than to set an indentation using a tab stop or the space
bar. Correct justification is almost impossible using a typewriter, so letters are
traditionally typeset unjustified.
However, typographers like Jan Tschichold take the view that letters, written

using means available to modern typesetting, should take advantage of their
possibilities just like other documents do. Under these circumstances, letters
should also be typeset using paragraph indentation and justification.
As a reaction to many serious requests, scrlttr2 offers the possibility to

mark paragraphs not only by indentation of the first line, but alternatively
by a vertical skip. You can choose between a full or half a line of vertical
space. When using paragraph spacing, it is often useful to keep the last
line of a paragraph shorter so that paragraph recognition will be eased.
All these features are controlled by different values for the parskip option,
shown in table 6.3. Default is false.

6.2.5. Font Options

Fonts options are any options which influence the size of the base font or
of fonts for particular parts of the letter. In theory, options affecting the
font type would also count as font options. At present there is only one
option for font size in scrlttr2.

fontsize=size

Whereas in the main classes you choose the font size for the document using
the 10pt, 12pt, etc., options, in the scrlttr2 class the desired size is set
using the fontsize option. The functionality is however the same. This

154 Chapter 6.

Table 6.2.: Possible values of option pagenumber for the position of the page num-
ber in page styles headings and plain with scrlttr2

bot, foot
page number in footer, horizontal position not changed

botcenter, botcentered, botmittle, footcenter, footcentered,
footmiddle

page number in footer, centered

botleft, footleft
page number in footer, left justified

botright, footright
page number in footer, right justified

center, centered, middle
page number centered horizontally, vertical position not changed

false, no, off
no page number

head, top
page number in header, horizontal position not changed

headcenter, headcentered, headmiddle, topcenter, topcentered,
topmiddle

page number in header, centered

headleft, topleft
page number in header, left justified

headright, topright
page number in header, right justified

left
page number left, vertical position not changed

right
page number right, vertical position not changed

155 Chapter 6.

Table 6.3.: Possible values of option parskip to select the paragraph mark with
scrlttr2

false, off
paragraph indentation instead of vertical space; the last line of a
paragraph may be arbitrarily filled

full, on, true
one line vertical space between paragraphs; there must be at least
1 em free space in the last line of a paragraph

full*
one line vertical space between paragraphs; there must be at least
a quarter of a line free space at the end of a paragraph

full+
one line vertical space between paragraphs; there must be at least
a third of a line free space at the end of a paragraph

full-
one line vertical space between paragraphs; the last line of a
paragraph may be arbitrarily filled

half
half a line vertical space between paragraphs; there must be at
least 1 em free space in the last line of a paragraph

half*
half a line vertical space between paragraphs; there must be at
least a quarter of a line free space at the end of a paragraph

half+
half a line vertical space between paragraphs; there must be at
least a third of a line free space at the end of a paragraph

half-
one line vertical space between paragraphs

156 Chapter 6.

option can only be used with \documentclass, not with \KOMAoptions.
Default is 12pt.

6.2.6. Options for Letterhead and Address

The scrlttr2 class offers numerous extensions for the design of the letter-
head. There are also options for address formatting, extending the possi-
bilities of the standard letter class, although these features could already
be found in the now obsolete scrlettr class.

firsthead=switch

This option determines whether the letterhead will be typeset at all. Thev2.97e
option undestands the standard values for simple keys, given in table 2.5,
page 32. Default is for the letterhead to be set.

fromalign=value

This option defines the placement of the return address in the letterhead
of the first page. Apart from the various options for positioning the return
address in the letterhead, there is also the option of adding the returnv2.97e
address to the sender’s extension. At the same time, this option serves as
a switch to activate or deactivate the extended letterhead options. If these
extensions are deactivated, some other options will have no effect. This
will be noted in the explanations of the respective options. Possible values
for fromalign are shown in table 6.4. Default is left.

fromrule=value

This option is part of the letterhead extensions (see option fromalign
above). It allows you to place a horizontal line within the return address.
The possible values are shown in table 6.5. Default is false. You can not
activate more than one line at a time. Regarding the length of the line,
see section 6.4.8, page 188.

fromphone=switch

This option is part of the letterhead extensions (see option fromalign
above). It defines whether the phone number will be part of the return
address. This option can take the standard values for simple switches, as
listed in table 2.5, page 32. Default is false.

157 Chapter 6.

Table 6.4.: Possible values of option fromalign for setting the position of the
from address in the letterhead with scrlttr2

center, centered, middle
return address centered; an optional logo will be above the ex-
tended return address; letterhead extensions will be activated

false, no, off
standard design will be used for the return address; the letterhead
extensions are deactivated

left
left-justified return address; an optional logo will be right justi-
fied; letterhead extensions will be activated

locationleft, leftlocation
return address is set left-justified in the sender’s extension; a logo,
if applicable, will be placed above it; the letterhead is automati-
cally deactivated but can be reactivated using option firsthead.

locationright, rightlocation, location
return address is set right-justified in the sender’s extension; a
logo, if applicable, will be placed above it; the letterhead is
automatically deactivated but can be reactivated using option
firsthead.

right
right-justified return address; an optional logo will be left justi-
fied; letterhead extensions will be activated

Table 6.5.: Possible values of option fromrule for the position of the rule in the
from address with scrlttr2

afteraddress, below, on, true, yes
rule below the return address

aftername
rule directly below the sender’s name

false, no, off
no rule

158 Chapter 6.

fromfax=switch

This option is part of the letterhead extensions (see option fromalign
above). It defines whether the facsimile number will be part of the return
address. This option can take the standard values for simple switches, as
listed in table 2.5, page 32. Default is false.

fromemail=switch

This option is part of the letterhead extensions (see option fromalign
above). It defines whether the email address will be part of the return
address. This option can take the standard values for simple switches, as
listed in table 2.5, page 32. Default is false.

fromurl=switch

This option is part of the letterhead extensions (see option fromalign
above). It defines whether the URL will be part of the return address.
This option can take the standard values for simple switches, as listed in
table 2.5, page 32. Default is false.

fromlogo=switch

This option is part of the letterhead extensions (see option fromalign
above). It defines whether the logo will be part of the return address.
This option can take the standard values for simple switches, as listed
in table 2.5, page 32. Regarding the placement of the logo, see also the
explanation of the option fromalign above. Default is false.

addrfield=switch

This option defines whether an address field will be set. Default is to
use the address field. This option can take the standard values for simple
switches, as listed in table 2.5, page 32. Default is true.

backaddress=switch

This option defines whether a return address for window envelopes will be
set. Default is to use the return address. If the address field is suppressed
(see option addrfield), there will be no return address either. This option
can take the standard values for simple switches, as listed in table 2.5,
page 32. Default is true.

159 Chapter 6.

Table 6.6.: Possible values of option subject for the position of the subject with
scrlttr2

afteropening
set subject after opening

beforeopening
set subject before opening

centered
set subject centered

left
set subject left-justified

right
set subject right-justified

titled
add title to subject

underlined
set subject underlined (see note in text)

untitled
do not add title to subject

subject=value

This option serves two purposes: first, you can choose if your sub-
ject should have a title, given by the subject variable (see table 6.17,
page 199); second, you can choose if the subject should be set before or
after the opening. Furthermore, the formatting of the subject can be mod-v2.97c
ified. Possible values for this option are shown in table 6.6. It is expressly
noted that when using the setting underlined, the subject must fit on one
line! Defaults are beforeopening and untitled.

locfield=value

scrlttr2 places a field with additional sender attributes next to the address
field. This can be used, for example, for bank account or similar additional
information. Depending on the fromalign option, it will also be used
for the sender logo. The width of this field may be defined within an
lco file (see section 6.2.9). If the width is set to 0 in that file, then the
locfield option can toggle between two presets for the field width. See

160 Chapter 6.

Table 6.7.: Possible values of option locfield for setting the width of the field
with additional sender attributes with scrlttr2

narrow
narrow sender supplement field

wide
wide sender supplement field

the explanation on the locwidth pseudo length in section 6.4.5, page 195.
Possible values for this option are shown in table 6.7. Default is narrow.

foldmarks=value

This option activates or deactivates foldmarks for vertical two-, three- or
four-panel folding, and a single horizontal folding, of the letter, whereby
the folding need not result in equal-sized parts. The position of the four
horizontal and the single vertical marks are configurable via pseudo-lengths
(see section 6.4.1 from page 183 onwards).
The user has a choice: Either one may use the standard values for simple

switches, as described in table 2.5, page 32, to activate or deactivate at
once all configured foldmarks on the left and upper edges of the paper; orv2.97e
one may specify by one or more letters, as listed in table 6.8, the use of the
individual foldmarks independently. Also in the latter case the foldmarks
will only be shown if they have not been switched off generally with one
of false, off or no. The exact positioning of the foldmarks is specified
in the user settings, that is, the lco files (see section 6.2.9) chosen for a
letter. Default values are true and TBMPL.
The exact placement of the fold marks for three-panel letter folding

depends on user settings, that is, the lco files (see section 6.2.9). The
folding need not result in equal-sized parts. This option can take the
standard values for simple switches, as listed in table 2.5, page 32. Default
is true, which implies setting the fold marks.

Example: Assume that you would like to deactivate all foldmarks exept
the punching mark. This you can accomplish with, for example:

\KOMAoption{foldmarks=blmt}

as long as the defaults have not been changed previously. If some changes
might have been made before, then for added safety you may use:

161 Chapter 6.

Table 6.8.: Combined values for the configuration of foldmarks with the option
foldmarks

B
activate upper horizontal foldmark on left paper edge

b
deactivate upper horizontal foldmark on left paper edge

H
activate all horizontal foldmarks on left paper edge

h
deactivate all horizontal foldmarks on left paper edge

L
activate left vertical foldmark on upper paper edge

l
deactivate left vertical foldmark on upper paper edge

M
activate middle horizontal foldmark on left paper edge

m
deactivate middle horizontal foldmark on left paper edge

P
activate punch or center mark on left paper edge

p
deactivate punch or center mark on left paper edge

T
activate lower horizontal foldmark on left paper edge

t
deactivate lower horizontal foldmark on left paper edge

V
activate all vertical foldmarks on upper paper edge

v
deactivate all vertical foldmarks on upper paper edge

162 Chapter 6.

Table 6.9.: Possible value of option refline for setting the width of the reference
fields line with scrlttr2

narrow
reference fields line restricted to type area

wide
reference fields line corresponds to address and sender attributes

\KOMAoption{foldmarks=true,foldmarks=blmtP}

numericaldate=switch

This option toggles between the standard, language-dependent date pre-
sentation, and a short, numerical one. KOMA-Script does not provide the
standard presentation. It should be defined by packages such as german,
babel, or isodate. The short, numerical presentation, on the other hand,
is produced by scrlttr2 itself. This option can take the standard values for
simple switches, as listed in table 2.5, page 32. Default is false, which
results in standard date presentation. In the now obsolete scrlettr class,
the opposite effect was achieved using the orgdate option.

reflinevalue

With the scrlttr2 class, the header, footer, address, and sender attributes
may extend beyond the normal type area to the left and to the right.
This option defines whether that should also apply to the reference fields
line. Normally, the reference fields line contains at least the date, but
it can hold additional data. Possible values for this option are shown in
table 6.9. Default is narrow.

6.2.7. Options for the Letterfoot

The letterfoot is the footer of the first page of the letter. There exist some
special rules for its placement, which are given in the description of the
option enlargefirstpage (see section 6.2.3, page 151) and the pseudo-
length firstfootvpos (siehe section 6.4.3, page 189).

firstfootswitch

This option determines whether the letterfoot is set or not. If the letter-v2.97e
foot is not set then the pseudo-length firstfootvpos is also ignored, and

163 Chapter 6.

instead scrlttr2 assumes that the value is equal to \paperheight. This has
an effect when the option enlargefirstpage (see section 6.4.3, page 189)
is used concurrently.
The option understands the standard values for simple switches, as given

in table 2.5, page 32. Default is the setting of the letterfoot.

6.2.8. Formatting Options

Formatting options are those which influence form or formatting of the
output and do not belong to another section. You might also call them
the miscellaneous options.

draft=switch

This option toggles between the final and the draft version of a docu-
ment. In particular, enabling the draft option activates little black boxes
that will be drawn at the end of overfull lines. These boxes allow the
unpracticed eye to more easily identify paragraphs that need manual in-
tervention. When the draft option is disabled, there will be no such boxes.
This option can take the standard values for simple switches, as listed in
table 2.5, page 32. Default is false, as usual. However, I strongly rec-
ommend enabling the draft option when designing a letter, as for every
other document.

6.2.9. The Letter Class Option Files

Normally, you would not redefine parameters like the distance between the
address field and the top edge of the paper every time you write a letter.
Instead, you would reuse a whole set of parameters for certain occasions.
It will be much the same for the letterhead and footer used on the first
page. Therefore, it is reasonable to save these settings in a separate file.
For this purpose, the scrlttr2 class offers the lco files. The lco suffix is an
abbreviation for letter class option.
In an lco file you can use all commands available to the document

at the time the lco file is loaded. Additionally, it can contain internal
commands available to package writers. For scrlttr2, these are in particular
the commands \@newplength, \@setplength, and \@addtoplength (see
section 6.3.4).
There are already some lco files included in the KOMA-Script distribu-

tion. The DIN.lco, DINmtext.lco, SNleft.lco, and SN.lco files serve to
adjust KOMA-Script to different layout standards. They are well suited

164 Chapter 6.

as templates for your own parameter sets. The KOMAold.lco file, on the
other hand, serves to improve compatibility with the old letter class scr-
lettr. Since it contains internal commands not open to package writers,
you should not use this as a template for your own lco files. You can find
a list of predefined lco files in table 6.10, page 166.
If you have defined a parameter set for a letter standard not yet supported

by KOMA-Script, you are explicitly invited to send this parameter set to the
KOMA-Script support address. Please do not forget to include the permission
for distribution under the KOMA-Script license (see the lppl.txt file). If
you know the necessary metrics for an unsupported letter standard, but are
not able to write a corresponding lco file yourself, you can also contact the
KOMA-Script author, Markus Kohm, directly.

\LoadLetterOption{name }

Usually, the lco files will be loaded by the \documentclass command.
You enter the name of the lco file without suffix as an option. The lco
file will be loaded right after the class file.
However, it is also possible to load an lco file later, or even from within

another lco file. This can be done with the \LoadLetterOption command,
which takes the name of the lco file without suffix as a parameter.

Example: You write a document containing several letters. Most of them
should comply with the German DIN standard. So you start with:

\documentclass{scrlttr2}

However, one letter should use the DINmtext variant, with the address
field placed more toward the top, which results in more text fitting on
the first page. The folding will be modified so that the address field still
matches the address window in a DIN C6/5 envelope. You can achieve
this as follows:

\begin{letter}{Markus Kohm\\
Freiherr-von-Drais-Stra\ss e 66\\68535 Edingen-←↩

Neckarhausen}
\LoadLetterOption{DINmtext}
\opening{Hello,}

Since construction of the page does not start before the \opening com-
mand, it is sufficient to load the lco file before this. In particular, the
laoding need not be done before \begin{letter}. Therefore the changes
made by loading the lco file are local to the corresponding letter.

165 Chapter 6.

If an lco file is loaded via \documentclass, then it may no longer havev2.97
the same name as an option.

Example: You do not want to enter your sender address every time, so
you create an lco file with the necessary data, like this:
\ProvidesFile{mkohm.lco}[2002/02/25 letter class option]
\setkomavar{fromname}{Markus Kohm}
\setkomavar{fromaddress}{Freiherr-von-Drais-Stra\ss e ←↩
66\\

68535 Edingen-Neckarhausen}

The command \setkomavar used above, and the principle of variables
will be explained in detail insection 6.3.3, page 175. In the exam-
ple given here, knowledge of the exact function of the command is
not critical. It is only important to note what can be done with
lco files, less so exactly how this might be accomplished. Please
note that the German sharp s, “ß”, was entered using the TEX macro
\ss, because directly after \documentclass no packages for input
encoding, for example \usepackage[latin1]{inputenc} for Unix or
\usepackage[ansinew]{inputenc} for Windows, and no language pack-
ages, like \usepackage{ngerman} for the new German orthography, are
loaded.
However, if you would always use the same input encoding, you could
also include it into your lco file. This would look as follows:
\ProvidesFile{mkohm.lco}[2002/02/25 letter class option]
\RequirePackage[latin1]{inputenc}
\setkomavar{fromname}{Markus Kohm}
\setkomavar{fromaddress}{Freiherr-von-Drais-Stra\ss e ←↩
66\\

68535 Edingen-Neckarhausen}

There is one distinct disadvantage with this usage: you can no longer
load this lco file later in your document. If you want to have letters
with different senders in one document, you should therefore refrain from
loading packages in your lco file.
Let us further assume that I always typeset letters using the preset pa-
rameters KOMAold. Then I could add the following line to my mkohm.lco
file:

\LoadLetterOption{KOMAold}

166 Chapter 6.

Anyway, now you can preset my sender address using
\documentclass[mkohm]{scrlttr2}

In table 6.10, page 166 you can find a list of all predefined lco files.
If you use a printer that has large unprintable areas on the left or right
side, you might have problems with the SN option. Since the Swiss standard
SN 101 130 defines the address field to be placed 8mm from the right paper
edge, the headline and the sender attributes too will be set with the same
small distance from the paper edge. This also applies to the reference fields
line when using the refline=wide option (see section 6.2.6, page 162). If
you have this kind of problem, create your own lco file that loads SN first
and then changes toaddrhpos (see section 6.4.4, page 192) to a smaller
value. Additionally, also reduce toaddrwidth accordingly.

Table 6.10.: The predefined lco files

DIN
parameter set for letters on A4-size paper, complying with Ger-
man standard DIN 676; suitable for window envelopes in the sizes
C4, C5, C6, and C6/5 (C6 long).

DINmtext
parameter set for letters on A4-size paper, complying with
DIN 676, but using an alternate layout with more text on the
first page; only suitable for window envelopes in the sizes C6 and
C6/5 (C6 long).

KOMAold
parameter set for letters on A4-size paper using a layout close
to the now obsolete scrlettr letter class; suitable for window en-
velopes in the sizes C4, C5, C6, and C6/5 (C6 long); some ad-
ditional commands to improve compatibility with obsolete scr-
lettr commands are defined; scrlttr2 may behave slightly different
when used with this lco file than with the other lco files.

NipponEL
parameter set for Japanese letters in A4 format; suitable for
Japanese window envelopes of types Chou or You 3 or 4, in which
the windows is approximately 90mm wide, 45mm high, and po-
sitioned 22mm from the left and 12mm from the top edge (see
appendix A).

. . .

167 Chapter 6.

Table 6.10.: The predefined lco files (continuation)

NipponEH
parameter set for Japanese letters in A4 format; suitable for
Japanese window envelopes of types Chou or You 3 or 4, in which
the windows is approximately 90mm wide, 55mm high, and po-
sitioned 22mm from the left and 12mm from the top edge (see
appendix A).

NipponLL
parameter set for Japanese letters in A4 format; suitable for
Japanese window envelopes of types Chou or You 3 or 4, in which
the windows is approximately 90mm wide, 45mm high, and po-
sitioned 25mm from the left and 12mm from the top edge (see
appendix A).

NipponLH
parameter set for Japanese letters in A4 format; suitable for
Japanese window envelopes of types Chou or You 3 or 4, in which
the windows is approximately 90mm wide, 55mm high, and po-
sitioned 25mm from the left and 12mm from the top edge (see
appendix A).

NipponRL
parameter set for Japanese letters in A4 format; suitable for
Japanese window envelopes of types Chou or You 3 or 4, in which
the windows is approximately 90mm wide, 45mm high, and po-
sitioned 25mm from the left and 24mm from the top edge (see
appendix A).

KakuLL
parameter set for Japanese letters in A4 format; suitable for
Japanese window envelopes of type Kaku A4, in which the win-
dows is approximately 90mm wide, 45mm high, and positioned
25mm from the left and 24mm from the top edge (see ap-
pendix A).

SN
parameter set for Swiss letters with address field on the right side,
according to SN 010 130; suitable for Swiss window envelopes in
the sizes C4, C5, C6, and C6/5 (C6 long).

. . .

168 Chapter 6.

Table 6.10.: The predefined lco files (continuation)

SNleft
parameter set for Swiss letters with address field on the left side;
suitable for Swiss window envelopes with window on the left side
in the sizes C4, C5, C6, and C6/5 (C6 long).

\LetterOptionNeedsPapersize{option name }{paper size }

As mentioned in section 6.2.3, at present there exist only parameter sets and
lco files for A4-sized paper. In order that you will at least be warned when
using another paper size , you will find a \LetterOptionNeedsPapersize
command in every lco file distributed with KOMA-Script. The first argument
is the name of the lco file without the “.lco” suffix. The second argument
is the paper size for which the lco file is designed.
If several lco files are loaded in succession, a

\LetterOptionNeedsPapersize command can be contained in each
of them, but the \opening command will only check the last given paper
size . As shown in the following example, an experienced user can thus
easily write lco files with parameter sets for other paper sizes. If you do not
plan to set up such lco files yourself, you may just forget about this option
and skip the example.

Example: Suppose you use A5-sized paper in normal, i. e., upright or portrait,
orientation for your letters. We further assume that you want to put them
into standard C6 window envelopes. In that case, the position of the address
field would be the same as for a DIN standard letter on A4-sized paper. The
main difference is that A5 paper needs only one fold. So you want to disable
the upper and lower fold marks. The easiest way to achieve this is to place
the marks outside of the paper area.

\ProvidesFile{paper=a5.lco}[2002/05/02 letter class ←↩
option]

\LetterOptionNeedsPapersize{paper=a5}{a5}
\@setplength{tfoldmarkvpos}{\paperheight}
\@setplength{bfoldmarkvpos}{\paperheight}

Besides this, the placement of the foot, that is, the pseudo-length
firstfootvpos, must be adjusted. It is left to the reader to find an ap-
propriate value. When using such an lco file, you must only take care that
other lco file options, like SN, are declared before the paper size, i. e., before
loading “paper=a5.lco”. Does this seem too complicated? Only before you

169 Chapter 6.

have used it the first time. Anyway, how often do you write letters not using
your standard formats for A4-size or letter-size paper?

By the way, the DIN lco file will always be loaded as the first lco
file. This ensures that all pseudo-lengths will have more or less reasonable
default values.
Please note that it is not possible to use \PassOptionsToPackage to

pass options to packages from within an lco file that have already been
loaded by the class. Normally, this only applies to the typearea, scrlfile,
and keyval packages.

6.3. General Document Properties

Some document properties are not assigned to any particular part of the
document such as to the letterhead or the letter body. Several of these
properties have already been mentioned or explained in section 6.2.

6.3.1. Font Selection

Commands for defining, extending and querying the font of a specific element
can be found in section 3.2.1. These commands work exactly the same in
scrlttr2. The elements which can be influenced in this way are listed in
table 6.11.

Table 6.11.: Alphabetical list of elements whose font can be changed in scrlttr2 using
the commands \setkomafont and \addtokomafont

addressee
name und address in address field

backaddress
return address for a window envelope

descriptionlabel
label, i. e., the optional argument of \item, in a description
environment

foldmark
foldmark on the letter page; intended for color settings

fromaddress
sender’s address in the letterhead

. . .

170 Chapter 6.

Table 6.11.: Elements whose font can be changed (continuation)

fromname
sender’s address in the letterhead if different from fromaddress

fromrule
line in return address field in letterhead; intended for color settings

pagefoot
in most cases the footer, sometimes the header of a page

pagehead
in most cases the header, sometimes the footer of page

pagenumber
page number in the footer or header, inserted with \pagemark

specialmail
mode of dispatch in address field

subject
subject in the opening of the letter

title
title in the opening of the letter

toaddress
variation of the element addressee for setting the adressee address
(less the name) in the adress field

toname
variation of the element addressee for the name (only) of the
addressee in the address field

6.3.2. Page Style

One of the general properties of a document is the page style. Please refer
also to section 3.2.2 and chapter 4.

\pagestyle{empty}
\pagestyle{plain}
\pagestyle{headings}
\pagestyle{myheadings}
\thispagestyle{local page style }

In letters written with scrlttr2 there are four different page styles.

171 Chapter 6.

empty is the page style, in which the header and footer of subsequent
pages (all pages apart from the first) are completely empty. This
page style is also used for the first page, because header and footer
of this page are set by otehr means using the macro \opening (see
section 6.4.2, section 6.4.3, as well as section 6.5.1, page 201).

plain is the page style with only page numbers in the header or footer on
subsequent pages. The placement of these page numbers is deter-
mined by the option pagenumber (see section 6.2.4, page 153).

headings is the page style for running (automatic) headings on subse-
quent pages. The inserted marks are the sender’s name from the
variable fromname and the subject from the variable subject (see
section 6.4.2, page 187 and section 6.4.7, page 199). At which posi-
tion these marks and the page numbers are placed, depends on the
option pagenumber (see section 6.2.4, page 153). The author can
also change these marks manually after the \opening command. To
this end, the commands \markboth and \markright are available
as usual, and with the use of package scrpage2 also \markleft (see
section 4.1.2, page 129) is available.

myheadings is the page style for manual page headings on subsequent
pages. This is very similar to headings, but here the marks must be
set by the author using the commands \markboth and \markright.
With the use of package scrpage2 also \markleft can be utilized.

In the terminology of this manual, subsequent pages are all pages of a
letter except for the first one.
Page styles are also influenced by the option headsepline and

footsepline (see section 6.2.4, page 152). The page style begin-
ning with the current page is switched using \pagestyle. In contrast,
\thispagestyle changes only the page style of the current page. The
letter class itself uses \thispagestyle{empty} within \opening for the
first page of the letter.
For changing the font style of headers or footers you should use the user

interface described in section 3.2.1. For header and footer the same element
is used, which you can name either pagehead or pagefoot. The element
for the page number within the header or footer is named pagenumber.
Default settings are listed in table 3.5, page 66. Please have also a look at
the example in section 3.2.2, page 65.

172 Chapter 6.

\clearpage
\cleardoublepage
\cleardoublestandardpage
\cleardoubleplainpage
\cleardoubleemptypage

Please refer to section 3.2.2, page 69. The function of \cleardoublepage
in scrlttr2 depends on the option cleardoublepage which is described in
more detail in section 6.2.4, page 152.

6.3.3. Variables

Apart from options, commands, environments, counters and lengths, addi-
tional elements have already been introduced in KOMA-Script. A typical
property of an element is the font style and the option to change it (see
section 3.2.1). At this point we now introduce variables. Variables have a
name by which they are called, and they have a content. The content of
a variable can be set independently from time and location of the actual
usage in the same way as the contents of a command can be separated from
its usage. The main difference between a command and a variable is that
a command usually triggers an action, whereas a variable only consists of
plain text which is then output by a command. Furthermore, a variable
can additionally have a description which can be set and output.
This section specifically only gives an introduction to the concept of

variables. The following examples have no special meaning. More detailed
examples can be found in the explanation of predefined variables of the
letter class in the following sections. An overview of all variables is given
in table 6.12.

Table 6.12.: Alphabetical list of all supported variables in scrlttr2

backaddress
return address for window envelopes (section 6.4.4, page 193)

backaddressseparator
separator within the return address (section 6.4.4, page 193)

ccseparator
separator between title of additional addressees, and additional
addressees (section 6.6.2, page 204)

customer
customer number (section 6.4.6, page 197)

. . .

173 Chapter 6.

Table 6.12.: Alphabetical list of all supported variables in scrlttr2 (continued)

date
date (section 6.4.6, page 197)

emailseparator
separator between e-mail name and e-mail address (section 6.4.2,
page 188)

enclseparator
separator between title of enclosure, and enclosures (sec-
tion 6.6.2, page 204)

faxseparator
separator between title of fax, and fax number (section 6.4.2,
page 188)

fromaddress
sender’s address without sender name (section 6.4.2, page 187)

frombank
sender’s bank account (section 6.4.8, page 200)

fromemail
sender’s e-mail (section 6.4.2, page 187)

fromfax
sender’s fax number (section 6.4.2, page 187)

fromlogo
commands for inserting the sender’s logo (section 6.4.2, page 187)

fromname
complete name of sender (section 6.4.2, page 187)

fromphone
sender’s telephone number (section 6.4.2, page 187)

fromurl
a url of the sender (section 6.4.2, page 187)

invoice
invoice number (section 6.4.6, page 197)

. . .

174 Chapter 6.

Table 6.12.: Alphabetical list of all supported variables in scrlttr2 (continued)

location
more details of the sender (section 6.4.5, page 196)

myref
sender’s reference (section 6.4.6, page 197)

place
place (section 6.4.6, page 198)

placeseparator
separator between place and date (section 6.4.6, page 198)

phoneseparator
separator between title of telephone, and telephone number (sec-
tion 6.4.2, page 188)

signature
signature beneath the ending of the letter (section 6.6.1,
page 202)

specialmail
mode of dispatch (section 6.4.4, page 193)

subject
subject (section 6.4.7, page 199)

subjectseparator
separator between title of subject, and subject (section 6.4.7,
page 199)

title
letter title (section 6.4.7, page 198)

toname
complete name of addressee (section 6.4.4, page 194)

toaddress
address of addressee without addressee name (section 6.4.4,
page 194)

yourmail
date of addressee’s mail (section 6.4.6, page 197)

. . .

175 Chapter 6.

Table 6.12.: Alphabetical list of all supported variables in scrlttr2 (continued)

yourref
addressee’s reference (section 6.4.6, page 197)

\newkomavar[description]{name }
\newkomavar*[description]{name }
\removereffields
\defaultreffields
\addtoreffields{name }
With \newkomavar a new variable is defined. This variable is addressed
via name . As an option you can define a description for the variable
name . Using the command \addtoreffields you can add the variable
name to the reference fields line (see section 6.4.6). The description and
the content of the variable are added at the end of the reference fields line.
The starred version \newkomavar* is similar to the unstarred version, with
a subsequent call of the command \addtoreffields. Thus, the starred
version automatically adds the variable to the reference fields line.

Example: Suppose you need an additional field for direct dialling. You
can define this field either with

\newkomavar[Direct dialling]{myphone}
\addtoreffields{myphone}

or more concisely with
\newkomavar*[direct dialling]{myphone}

When you define a variable for the reference fields line you should always
give it a description.
With the command \removereffields all variables in the ference line

can be removed. This also includes the predefined variables of the class.
The reference fields line is then empty except for the date which is always
appended to the end. This can be useful, for example, if you wish to
change the order of the variables in the reference fields line.
The command \defaultreffields acts to reset the reference fields line

to its predefined format. In doing so, all custom-defined variables are
removed from the reference fields line.

\setkomavar{name }[description]{content }
\setkomavar*{name }{description }
With the command \setkomavar you determine the content of the vari-
able name . Using an optional argument you can at the same time change

176 Chapter 6.

the description of the variable. In contrast, \setkomavar* can only set
the description of the variable name .

Example: Suppose you have defined a direct dialling as mentioned above
and you now want to set the content. You write:

\setkomavar{myphone}{-\,11}

In addition, you want to replace the term “direct dialling” with “Connec-
tion”. Thus you add the description:

\setkomavar*{myphone}{Connection}

or you can combine both in one command:
\setkomavar{myphone}[Connection]{-\,11}

By the way: You may delete the content of a variable using an empty
content argument. You can also delete the description using an empty
description argument.

Example: Suppose you have defined a direct dialling as mentioned above
and you now no longer want a description to be set. You write:

\setkomavar*{myphone}{}

You can combine this with the definition of the content:
\setkomavar{myphone}[]{-\,11}

So you may setup the content and delete the description using only one
command.

\usekomavar[command]{name }
\usekomavar*[command]{name }

In some cases it is necessary for the user to access the content or thev2.9i
description of a variable, and not to leave this only up to the class. This is
specially important when you have defined a variable which is not added
to the reference fields line. Using the command \usekomavar you have
access to the content of the variable name , whereas the starred version
\usekomavar* allows you to access the description.
The commands \usekomavar and \usekomavar* are, similarly to all com-

mands where a starred version exists or which can take an optional ar-
gument, not fully expandable. Nevertheless, if used within \markboth,
\markright or similar commands, you need not insert a \protect be-
fore using them. Of course this is also true for \markleft if us-
ing package scrpage2. However, these kinds of commands can not

177 Chapter 6.

be used within commands like \MakeUppercase which directly influ-
ence their argument. \MakeUppercase{\usekomavar{name }} would re-
sult in \usekomavar{NAME }. To avoid this problem you may use com-
mands like \MakeUppercase as an optional argument to \usekomavar or
\usekomavar*. Then you will get the uppercase content of a variable using
\usekomavar[\MakeUppercase]{name }.

\ifkomavarempty{name }{true }{false }
\ifkomavarempty*{name }{true }{false }

With these commands you may check whether or not the expanded contentv2.9i
or description of a variable is empty. The true argument will be executed
if the content or description is empty. Otherwise the false argument will
be executed. The starred variant handles the description of a variable, the
unstarred variant handles the contents.
It is important to know that the content or description of the variable will

be expanded as far as this is possible with \edef. If this results in spaces or
unexpandable macros like \relax, the result will be not empty even where
the use of the variable would not result in any visible output.
Both variants of the command also must not be used as the argument of

\MakeUppercase or other commands which have similar effects to their argu-
ments (see the description of \usekomavar above for more information about
using commands like \usekomavar or \ifkomavarempty at the argument
of \MakeUppercase). However, they are robust enough to be used as the
argument of, e. g., \markboth or \footnote.

6.3.4. The Pseudo-Lengths

TEX works with a fixed number of registers. There are registers for tokens,
for boxes, for counters, for skips and for dimensions. Overall there are 256
registers for each of these categories. For LATEX lengths, which are addressed
with \newlength, skip registers are used. Once all these registers are in use,
you can not define any more additional lengths. The letter class scrlttr2 would
normally use up more than 20 of such registers for the first page alone. LATEX
itself already uses 40 of these registers. The typearea package needs some
of them too; thus, approximately a quarter of the precious registers would
already be in use. That is the reason why lengths specific to letters in scrlttr2
are defined with macros instead of lengths. The drawback of this approach is
that computations with macros is somewhat more complicated than with real
lengths.

178 Chapter 6.

It can be pointed out that the now recommended LATEX installation with
ε-TEX no longer suffers from the above-mentioned limitation. However, that
improvement came too late for scrlttr2.
A list of all pseudo-lengths in scrlttr2 is shown in table 6.13 starting at

page 178. The meaning of the various pseudo-lengths is shown graphically
in figure 6.1. The dimensions used in the figure correspond to the default
settings of scrlttr2. More detailed description of the individual pseudo-
lengths is found in the individual sections of this chapter.

Table 6.13.: Pseudo-lengths provided by class scrlttr2

backaddrheight
height of the return address at the upper edge of the address field
(section 6.4.4, page 193)

bfoldmarkvpos
vertical distance of lower foldmark from top paper edge (sec-
tion 6.4.8, page 183)

firstfootvpos
vertical distance of letterfoot from top paper edge (section 6.4.3,
page 189)

firstfootwidth
width of letterfoot; letterfoot is centered horizontally on letter
paper (section 6.4.3, page 190)

firstheadvpos
vertical distance of letterhead from top paper edge (section 6.4.2,
page 187)

firstheadwidth
width of letter head; letterhead is centered horizontally on letter
paper (section 6.4.2, page 187)

foldmarkhpos
horizontal distance of all foldmarks from left paper edge (sec-
tion 6.4.8, page 185)

fromrulethickness
Thickness of an optional horizontal line in the letterhead (sec-
tion 6.4.2, page 188)

. . .

179 Chapter 6.

Table 6.13.: Pseudo-lengths provided by class scrlttr2 (continued)

fromrulewidth
length of an optional horizontal rule in letterhead (section 6.4.2,
page 188)

locwidth
width of supplemental data field; for zero value width is cal-
culated automatically with respect to option locfield that is
described in section 6.2.6 (section 6.4.5, page 195)

refaftervskip
vertical skip below reference fields line (section 6.4.6, page 197)

refhpos
horizontal distance of reference fields line from left paper edge;
for zero value reference fields line is centered horizontally on letter
paper (section 6.4.6, ??)

refvpos
vertical distance of reference fields line from top paper edge (sec-
tion 6.4.6, page 196)

refwidth
width of reference fields line (section 6.4.6, page 197)

sigbeforevskip
vertical skip between closing and signature (section 6.6.1,
page 202)

sigindent
indentation of signature with respect to text body (section 6.6.1,
page 202)

specialmailindent
left indentation of mode of dispatch within address field (sec-
tion 6.4.4, page 193)

specialmailrightindent
right indentation of mode of dispatch within address field (sec-
tion 6.4.4, page 193)

. . .

180 Chapter 6.

Table 6.13.: Pseudo-lengths provided by class scrlttr2 (continued)

tfoldmarkvpos
vertical distance of upper foldmark from top paper edge (sec-
tion 6.4.8, page 183)

toaddrheight
height of address field (section 6.4.4, page 192)

toaddrhpos
horizontal distance of address field from left paper edge, for pos-
itive values; or negative horizontal distance of address field from
right paper edge, for negative values (section 6.4.4, page 192)

toaddrindent
left and right indentation of address within address field (sec-
tion 6.4.4, page 193)

toaddrvpos
vertical distance of address field from top paper edge (sec-
tion 6.4.4, page 192)

toaddrwidth
width of address field (section 6.4.4, page 192)

\@newplength{name }

This command defines an new pseudo-length. This new pseudo-length is
uniquely identified by its name . If with this command a redefinition of an
already existing pseudo-length is attempted, the commands exits with an
error message.
Since the user in general does not define own pseudo-lengths, this com-

mand is not intended as a user command. Thus, it can not be used within
a document, but it can, for example, be used within an lco file.

\@setplength[factor]{pseudo-length }{value }
\@addtoplength[factor]{pseudo-length }{value }

Using the command \@setplength you can assign the multiple of a value
to a pseudo-length . The factor is given as an optional argument (see
also \setlengthtoplength). The command \@addtoplength adds the
value to a pseudo-length . To assign, or to add the multiple of, one
pseudo-length to another pseudo-length, the command \useplength is

181 Chapter 6.

\baselineskip

\baselineskip

\baselineskip

\textwidth

≥
\f

oo
ts

ki
p

firstheadwidth

fromrulewidth

toaddrwidth locwidth

specialmailindent
specialmailrightindent

toaddrhpos lochpos

toaddrindent toaddrindent

refwidthrefhpos

foldmarkhpos

sigindent

firstfootwidth

to
ad
dr
he
ig
ht

lo
ch
ei
gh

t

+subjectbeforevskip

subjectaftervskip

backaddrheight

refaftervskip

sigbeforevskip

firstheadvpos

toaddrvpos locvpos

refvpos

tfoldmarkvpos

bfoldmarkvpos

firstfootvpos

letterhead

letter footer

return address
mode of dispatch

addressee

supplemental
data

reference fields line

title

subject

opening

letter body

closing

signature

Figure 6.1.: Schematic of the pseudo-lengths for a letter

182 Chapter 6.

used within value . To subtract the value of one pseudo-length from an-
other pseudo-length a minus sign, or -1, is used as the factor .
Since the user in general does not define own pseudo-lengths, this com-

mand is not intended as a user command. Thus, it can not be used within
a document, but can, for example, be used within an lco file.

\useplength{name }

Using this command you can access the value of the pseudo-length with
the given name . This is one of the few user commands in connection with
pseudo-lengths. Of course this command can also be used with an lco file.

\setlengthtoplength[factor]{length }{pseudo-length }
\addtolengthplength[factor]{length }{pseudo-length }

While you can simply prepend a factor to a length, this is not possible
with pseudo-lengths. Suppose you have a length \test with the value
2 pt; then 3\test gives you the value 6 pt. Using pseudo-lengths instead,
3\useplength{test} would give you 32 pt. This is especially annoying if
you want a real length to take the value of a pseudo-length .
Using the command \setlengthtoplength you can assign the multiple

of a pseudo-length to a real length . Here, instead of prepending the
factor to the pseudo-length , it is given as an optional argument. You
should also use this command when you want to assign the negative value
of a pseudo-length to a length . In this case you can either use a minus
sign or -1 as the factor . The command \addtolengthplength works
very similarly; it adds the multiple of a pseudo-length to the length .

6.3.5. The General Structure of a Letter Document

The general structure of a letter document differs somewhat from the struc-
ture of a normal document. Whereas a book document in general contains
only one book, a letter document can contain several letters. As illustrated
in figure 6.2, a letter document consists of a preamble, the individual let-
ters, and the closing.
The preamble comprises all settings that in general concern all letters.

Most of them can also be overwritten in the settings of the individual
letters. The only setting which can not be changed within a single let-
ter is compatibility to prior versions of scrlttr2 (see option version in
section 6.2.2, page 150).
It is recommended that only general settings such as the loading of pack-

ages and the setting of options be placed before \begin{document}. All

183 Chapter 6.

settings that comprise the setting of variables or other text features should
be done after \begin{document}. This is particularly recommended when
the babel package (see [Bra01]) is used, or language-dependent variables
of scrlttr2 are to be changed.
The closing usually consists only of \end{document}. Of course you can

also insert additional comments at this point.
As shown in figure 6.3, every single letter itself consists of an introduc-

tion, the letter body, and the closing. In the introduction, all settings
pertaining only to the current letter are defined. It is important that this
introduction always ends with \opening. Similarly, the closing always
starts with \closing. The two arguments opening and closing can be
left empty, but both commands must be used and must have an argument.
It should be noted that several settings can be changed between the in-

dividual letters. Such changes then have an effect on all subsequent letters.
For reasons of maintainability of your letter documents, it is however not
recommended to use further general settings with limited scope between the
letters.
As already mentioned, all general settings used in the preamble of a letter

document, with the exception of font size, can also be in the preamble of the
individual letters. Therefore, you will not find more detailed explanations
for the possible settings in this section. Please refer to section 6.4.

6.4. The Letter Declaration

The letter declaration gives all settings for the letter itself, as well as for
the first page of the body. The first page consists of more than just the
preliminaries of the letter; in fact, it consists of several different parts.

6.4.1. Foldmarks

Foldmarks are short horizontal lines at the left edge, and short vertical
lines at the upper edge of the paper. KOMA-Script at present supports
three configurable horizontal and one configurable vertical foldmarks. In
addition, there is support for a punchmark or center mark which cannot
be shifted in the vertical direction.

tfoldmarkvpos
mfoldmarkvpos
bfoldmarkvpos

The letter class scrlttr2 knows a total of three vertically-placed configurable
foldmarks. The position of the upper foldmark, taken from the upper edge

184 Chapter 6.

\documentclass[...]{scrlttr2}
. . .

settings for all letters
. . .
\begin{document}
. . .

settings for all letters
. . .

\begin{letter}{addressee }
. . .

content of the individual letter
. . .
\end{letter}

...

\end{document}

Figure 6.2.: General structure of a letter document with several individual letters
(the structure of a single letter is shown in figure 6.3)

\begin{letter}[options]{addressee }
. . .

settings for this letter
. . .
\opening{opening }

. . .
letter text

. . .

\closing{closing }
\ps
. . .

postscript
. . .
\encl{enclosures }
\cc{additional addressees }
\end{letter}

Figure 6.3.: General structure of a single letter within a letter document (see also
figure 6.2)

185 Chapter 6.

of the paper, is governed by the pseudo-length tfoldmarkvpos, that of
the middle foldmark by pseudo-length mfoldmarkvpos, and that of thev2.97e
lower foldmark by pseudo-length bfoldmarkvpos. With the addition of
the punch or centermark, there is still a fourth horizontal mark. This one
is however always placed at the vertical center of the paper.
The upper and lower foldmarks do not serve to divide the paper into

exactly equal thirds. Instead, with their help, the paper should be folded
such that the address field appears correctly in the space available in the
chosen window envelope format, which is determined by choice of lco file.
Several such files are available offering predefined formats. An anomaly is
present with DINmtext: for this format, an envelope format of C6/5 (also
known as “C6 long”) is assumed. Letters written with this option are not
suited to envelopes of formats C5 or C4.
The middle foldmark is not normally required for Western letters. In

Japan, however, a larger number of envelope formats exists, requiring one
more foldmark (see the Japanese lco files). At this point attention is drawn
to the fact that reference to “upper”, “middle”, and “lower” foldmarks
is simply a convenience. In fact, it is not defined that tfoldmarkvpos
must be smaller than mfoldmarkvpos, which in turn must be smaller than
bfoldmarkvpos. If on the other hand one of the pseudo-lengths is set to
null, then the corresponding foldmark will not be set even if the option
foldmarks (see section 6.2.6, page 160) is explicity activated.

tfoldmarklength
mfoldmarklength
bfoldmarklength
pfoldmarklength

These four pseudo-lengths determine the lengths of the four horizontalv2.97e
foldmarks. One exceptional behaviour exists. If the length is given as null,
then the three vertically-configurable pseudo-lengths tfoldmarklength,
mfoldmarklength and bfoldmarklength are set to 2mm in length. The
length of the punchmark, pfoldmarklength, is instead set to 4mm.

foldmarkhpos

This pseudo-length gives the distance of all horizontal foldmarks from the
left edge of the paper. Normally, this is 3.5mm. This value can be changed
in the user’s own lco file, in case the user’s printer has a wider unprintable
left margin. Whether the foldmarks are typeset at all depends on the
option foldmarks (see section 6.2.6, page 160).

186 Chapter 6.

lfoldmarkhpos

Apart from the horizontal foldmarks there is also a vertical fold-v2.97e
mark, whose position from the left margin is set via the pseudo-length
lfoldmarkhpos. This foldmark is used, for example, in Japanese Chou- or
You-format envelopes, when one wishes to use A4 size sheets with them.
This can also be useful for envelopes in C6 format.

lfoldmarklength

The length of the vertical foldmark is set via the pseudo-lengthv2.97e
lfoldmarklength. Here too there is an exceptional behaviour. When
the length is set to null, a length of 4mm is actually used.

foldmarkvpos

This pseudo-length gives the distance of all vertical foldmarks from tehv2.97e
upper edge of the paper. Normally this is 3.5mm, but the value can be
changed in the user’s personal lco file in case the user’s printer has a wider
unprintable top margin. Whether the foldmarks are typeset at all depends
on the option foldmarks (see section 6.2.6, page 160). At present there is
only one vertical foldmark, which is designated the left vertical foldmark.

foldmarkthickness

This pseudo-length determines the thickness of all foldmarks. Defaultv2.97c
value is 0.2 pt, in other words a very thin hairline. In particular, if the
color of the foldmarks is changed, this can be too thin!

foldmark

Via this element the color of the foldmarks can be changed. To do so,v2.97c
the commands to change the font of the element are usd, as described in
section 6.3.1, page 169. The default setting is no change.

6.4.2. The Letterhead

The term letterhead here refers to all of the data pertaining to the sender
and which is set above the addressee’s address. It is usually expected that
this information is set via the page style settings. In fact, this was the
case in the earlier incarnation of the letter class, scrlettr. But with scrlttr2,
the letterhead is made independent of the page style setting, and is set by
the command \opening. The position of the letterhead is absolute and

187 Chapter 6.

independent of the type area. In fact, the first page of a letter, the page
that holds the letterhead, is set using the page style empty.

firstheadvpos

The pseudo-length firstheadvpos gives the distance between the top edge
of the paper and start of the letterhead. This value is set differently in the
various predefined lco files. A typical value is 8mm.

firstheadwidth

The pseudo-length firstheadwidth gives the width of the letterhead. This
value is set differently in the various predefined lco files. While this value
usually depends on the paper width and the distance between the left edge
of the paper and the adressee address field, it was the type area width in
KOMAold.

fromname
fromaddress
fromphone
fromfax
fromemail
fromurl
fromlogo

These variables give all information concerning the sender necessary to
create the letterhead. Which variables will actually be used to finally
build the letterhead can be chosen by use of the letterhead extensions
(see option fromalign in section 6.2.6, page 156) and the options given
there. The variables fromname, fromaddress and fromlogo will be set
in the letterhead without their labels; the variables fromphone, fromfax,
fromemail and fromurl will be set with their labels. The labels are shown
in table 6.14, page 188.
An important hint concerns the sender’s address: within the sender’s

address, parts such as street, P.O. Box, state, country, etc., are separated
with a double backslash. Depending on how the sender’s address is used,
this double backslash will be interpreted differently and therefore is not
strictly always a line break. Paragraphs, vertical spacing and the like are
usually not allowed within the sender’s address declaration. One has to
have very good knowledge of scrlttr2 to use things like those mentioned
above, intelligently. Another point to note is the one should most cer-
tainly set the variables for return address (see section 6.4.4, page 193) and
signature (see section 6.6.1, page 202) oneself.

188 Chapter 6.

Table 6.14.: The sender’s predefined labels for the letterhead

fromemail
\usekomavar*{emailseparator}\usekomavar{emailseparator}

fromfax
\usekomavar*{faxseparator} \usekomavar{faxseparator}

fromname
\headfromname

fromphone
\usekomavar*{phoneseparator}\usekomavar{phoneseparator}

fromurl
\usekomavar*{urlseparator}\usekomavar{urlseparator}

It is possible, by the way, to load an external picture to use as a logo. For
this purpose one can put as content of fromlogo an \includegraphics
command. Naturally, the corresponding package, that is, either graphics
or graphicx (see [Car99b]), has to be loaded in the preamble of the letter
document (see section 6.3.5).

fromrulethickness
fromrulewidth

Depending on the class option fromrule (see section 6.2.6, page 156), a
horizontal rule can be drawn the predefined letterheads under or within the
sender address. If the pseudo-length fromrulewidth has a value of 0 pt,
which is the default in the predefined lco files, the rule length is calculated
automatically taking into account, e. g., letterhead width or an optional
logo. Users can adjust rule length manually in their own lco files by setting
this pseudo-length to positive values using \setplength (see section 6.3.4,
page 180). The default thickness of the line, fromrulethickness, is 0.4 pt.v2.97c

phoneseparator
faxseparator
emailseparator
urlseparator

With these variables, hyphens are defined. If applicable, they are used in
the sender’s data in the letterhead (see table 6.14). As a feature, they are
labeled and the labels also used in the sender’s details of the letterhead.
To look up the predefined labels and their contents, see table 6.15.

189 Chapter 6.

Table 6.15.: predefined labels and contents of hyphens for sender’s data in the
letterhead

name label content
emailseparator \emailname :˜
faxseparator \faxname :˜
phoneseparator \phonename :˜
urlseparator \wwwname :˜

\firsthead{construction }

For most cases, scrlttr2 with its options and variables offers enough pos-
sibilities to create a letterhead. In very rare situations one may wish to
have more freedom in terms of layout. In those situations one will have
to do without predefined letterheads, which could have been chosen via
options. Instead, one needs to create one’s own letterhead from scratch.
To do so, one has to define the preferred construction with the com-
mand \firsthead. Within \firsthead, and with the help of the \parbox
command (see [Tea01]), one can set several boxes side by side, or one
underneath the other. An advanced user will thus be able to create a let-
terhead on his own. Of course the construct may use variables with the
help of \usekomavar.

6.4.3. The Letterfoot

As the first page holds a letterhead of its own, it also holds a footer of
its own. And, as with the letterhead, it will not be set by the page style
settings, but directly with the use of \opening.

firstfootvpos

This pseudo-length gives the distance between the letterfoot and the upper
edge of the paper. This value is set differently in the various predefined
lco files. It also takes care of preventing text from jutting into the footer
area. If needed, it can help to shorten the text height on the first page
using \enlargethispage. Likewise, and if it is needed, the text height can
conversely be extended with the help of the option enlargefirstpage.
This way, the distance between text area and the first letterfoot can be
reduced to the value \footskip. See also section 6.2.3, page 151.
With the compatibility option set up to version 2.9t (see version in2.9t

section 6.2.2, page 150) the footer is set independently of the type area in

190 Chapter 6.

all predefined lco files (see section 6.2.9) except for KOMAold. The option
enlargefirstpage also loses its effect. From version 2.9u onwards the
footer is set in a position at the bottom edge of the paper. In this situation,
the height of the type area also becomes dependent on enlargefirstpage.
If the letterfoot be switched off using option firstfoot (siehe sec-v2.97e

tion 6.2.7, page 162), then the setting of firstfootvpos is ignored, and
instead \paperheight is applied. Thus, there remains a mimimum bottom
margin of length \footskip.

firstfootwidth

This pseudo-length gives the width of the letter’s first page footer. The
value is set equal to that of the pseudo-length firstheadwidth in the
predefined lco files.

\firstfoot{construction }

The first page’s footer is preset to empty. However, with the \firstfoot
command, it is possible to create a construction the same way as when
defining the letterhead with \firsthead.

Example: In the first page’s footer, you may want to set the content of
the variable frombank (the bank account). The double backslash should
be exchanged with a comma at the same time:

\firstfoot{%
\parbox[b]{\linewidth}{%
\centering\def\\{, }\usekomavar{frombank}%

}%
}

For the hyphen you might define a variable of your own if you like. This
is left as an exercise for the reader.
Nowadays it has become very common to create a proper footer in order
to obtain some balance with respect to the letterhead. This can be done
as follows:

\firstfoot{%
\parbox[t]{\textwidth}{\footnotesize
\begin{tabular}[t]{l@{}}%

\multicolumn{1}{@{}l@{}}{Partners:}\\
Jim Smith\\

191 Chapter 6.

Russ Mayer
\end{tabular}%
\hfill
\begin{tabular}[t]{l@{}}%

\multicolumn{1}{@{}l@{}}{Manager:}\\
Jane Fonda\\[1ex]
\multicolumn{1}{@{}l@{}}{Court Of Jurisdiction←↩

:}\\
Great Plains

\end{tabular}%
\ifkomavarempty{frombank}{}{%

\hfill
\begin{tabular}[t]{l@{}}%
\multicolumn{1}{@{}l@{}}{\usekomavar*{frombank←↩

}:}\\
\usekomavar{frombank}

\end{tabular}%
}%

}%
}

This example, by the way, came from Torsten Krüger. With
\setkomavar{frombank}{Account No. 12\,345\,678\\

at Citibank\\
bank code no: 876\,543\,21}

the bank account can be set accordingly. If the footer will have such a
large height then it might happen that you have to shift its position. You
can do this with the pseudo-length firstfootvpos, which is described
above in this section.

In the previous example a multi-line footer was set. With a compati-
bility setting to version 2.9u (see version in section 6.2.2, page 150) the
space will in general not suffice. In that case, you may need to reduce
firstfootvpos (see page 189) appropriately.

6.4.4. The Address

The term address here refers to the addressee’s name and address which are
output in an address field. Additional information can be output within

192 Chapter 6.

this address field, such as dispatch type or a return address; the latter
is especially useful when using window envelopes. The address directly
follows the letterhead.

toaddrvpos
toaddrhpos

These pseudo-lengths define vertical and horizontal position of the address
field relative to the top-left corner of the paper. Values are set differently
in the various predefined lco files, according to standard envelope window
measures. A special feature of toaddrhpos is that with negative values
the offset is that of the right edge of the address field relative to the right
edge of the paper. This can be found, for instance, in the case of SN.
The smallest value of toaddrvpos is found with DINmtext. Care must
be taken to avoid overlap of letterhead and address field. Whether the
address field is output or not can be controlled by class option addrfield
(see section 6.2.6, page 158).

toaddrheight

The pseudo-length toaddrheight defines the height of the address field,
including the dispatch type. If no dispatch type is specified, then the
address is vertically centered in the field. If a dispatch type is specified,
then the address is set below the dispatch type, and vertically centered in
the remaining field height.

toaddrwidth

The pseudo-length toaddrwidth defines the width of the address field.
Values are set differently in the various predefined lco files, according to
standard envelope window measures. Typical values are between 70mm
and 100mm.

Example: Assume that your printer has a very wide left or right margin
of 15mm. In this case, when using the option SN, the letterhead, sender’s
extensions and the address can not be completely printed. Thus, you
create a new lco file with the following content:

\ProvidesFile{SNmmarg.lco}
[2002/06/04 v0.1 my own lco]
\LoadLetterOption{SN}
\@addtoplength{toaddrwidth}{%

-\useplength{toaddrhpos}}
\@setplength{toaddrhpos}{-15mm}

193 Chapter 6.

\@addtoplength{toaddrwidth}{%
\useplength{toaddrhpos}}

\endinput

Then, until you can obtain a printer with smaller page margins, you
simply use the option SNmmarg instead of SN.

toaddrindent

Additional indentation of the address within address field can be controlled
by the pseudo-length toaddrindent. Its value applies to both left and right
margin. Default value is 0 pt.

backaddress
backaddressseparator
backaddrheight

When using window envelopes, the sender’s return address is often included
within the window, placed at the top above the addressee and dispatch type
information, separated by a horizontal rule and set in a smaller font size.
The contents of the return address, stored in the variable backaddress, are
usually built automatically from the variables fromname and fromaddress.
Within the return address, double backslashes are replaced by the content
of the variable backaddressseparator, whose default value is a comma
followed by a non-breaking space.
The height reserved for the return address within the address field is

defined by the pseudo-length backaddrheight. In the predefined lco files,
this is typically set to 5mm. Whether the return address is output or
not is controlled by document class options addrfield (see section 6.2.6,
page 158) and backaddress (see section 6.2.6, page 158).

specialmail
specialmailindent
specialmailrightindent

An optional dispatch type can be output within the address field be-
tween the return address and the addressee address, by setting the variable
specialmail. Left and right alignment are determined by pseudo-lengths
specialmailindent and specialmailrightindent, respectively. In the
predefined lco files provided by KOMA-Script, specialmailindent is set
to rubber length \fill, while specialmailrightindent is set to 1 em.
Thus the dispatch type is set 1 em from the address field’s right margin.

194 Chapter 6.

toname
toaddress

These two variables contain the addressee’s name and address as output
in the address field. Usually you will not access these variables directly,
but their values are taken from the argument to the letter environment.
Please see the important hint on address formatting given in section 6.4.2,
page 187.

letter[options]{addressee }

The letter environment is only one of the key environments of the letter
class. A special scrlttr2 feature are optional arguments to the letter en-
vironment. These options are executed internally via the \KOMAoptions
command.
The addressee is a mandatory argument passed to the letter environ-

ment. Parts of the addressee contents are separated by double backslashes.
The first part of addressee is stored in variable toname, while the rest
is stored in variable toaddress for further use. These parts are output
on individual lines in the address field. Nevertheless, the double backslash
should not be interpreted as a certain line break. Vertical material such
as paragraphs or vertical space is not permitted within addressee , and
could lead to unexpected results and error messages, as is the case also for
the standard letter class.
The letter environment does not actually start the letter output. This

is done by the \opening command.

\AtBeginLetter{commands }

LATEX enables the user to declare commands whose execution is delayed
until a determined point. Such points are called hooks. Known macros
for using hooks are \AtBeginDocument and \AtEndOfClass. The letter
class scrlttr2 provides an additional hook that can be used via the macro
\AtBeginLetter. Originally, hooks were provided for package and class
authors, so they are documented in [Tea99] only, and not in [Tea01]. How-
ever, with letters there are useful applications of \AtBeginLetter as the
following example may illustrate:

Example: It is given that one has to set multiple letters with question-
naires within one document. Questions are numbered automatically
within single letters using a counter. Since, in contrast to page num-
bering, that counter is not known by scrlttr2, it would not be reset at the

195 Chapter 6.

start of each new letter. Given that each questionnaire contains ten ques-
tions, question 1 would get number 11 in the second letter. A solution is
to reset this counter at the beginning of each new letter:

\newcounter{Question}
\newcommand{\Question}[1]{%
\refstepcounter{Question}\par
\@hangfrom{\makebox[2em][r]{\theQuestion:~}}{#1}}

\AtBeginLetter{\setcounter{Question}{0}}

This way question 1 remains question 1, even in the 1001st letter. Of
course definitions like those mentioned above need to be stated either be-
tween macros \makeatletter and \makeatother (see [RNH02]) in letter
declarations (see section 6.3.5 and figure 6.2, page 184), in a unique pack-
age, or in an lco file (see section 6.2.9).

6.4.5. The Sender’s Extensions

Often, especially with business letters, the space for the letterhead or page
footer seems to be too tight to include all you want. To give more details
about the sender, often the space right beside the addressee’s field is used.
In this manual this field is called the sender’s extension

locheight
lochpos
locvpos
locwidth

The pseudo-lengths locwidth and locheight set the width and heightv2.97d
of the sender’s extension field. The pseudo-lengths lochpos and locvpos
determine the distances from the right and upper paper edges. These value
is typically set to 0 pt in the predefined lco files. This does not mean that
the sender’s extension has no width; instead, it means that the actual width
is set with \opening when the paper width, address window width, and
the distance between the left and upper edges of the paper and the address
window are known. The option locfield (see section 6.2.6, page 159) is
also taken into account. As is the case for toaddrhpos, negative values of
lochpos take on a special meaning. In that case, instead of referring to a
distance from the right edge of the paper, lochpos now means a distance
from the left edge of the paper. The meaning is thus the opposite to that
of toaddrhpos (see section 6.4.4, page 192).

196 Chapter 6.

location

The contents of the sender’s extension field is determined by the variable
location. To set this variable’s content, it is permitted to use formatting
commands like \raggedright. One has to consider that depending on the
use of the options fromalign and fromlogo, a part of the space for the
sender’s extension may already be reserved for a logo or return address
(see section 6.2.6, page 156 and page 158).

Example: Assume that you would like to put the names of your partners,
manager, or court of jurisdiction in the sender’s extension field. You can
do this as follows:

\KOMAoptions{locfield=wide}
\setkomavar{location}{\raggedright
\textbf{Partners:}\\
\quad Hugo Mayer\\
\quad Bernd Miller\\[1ex]
\textbf{Manager:}\\
\quad Liselotte Mayer\\[1ex]
\textbf{Court of jurisdiction:}\\
\quad Washington, DC

}

The option locfield=wide is set to make the details fit horizontally.
Sender details like those mentioned in the above example can be written,
together with the common sender address details, into your own lco file.

6.4.6. The Reference Fields Line

Especially with business letters, a line can be found that gives initials, dial
code, customer number, invoice number, or a reference to a previous letter.
In this manual this line is called the reference fields line. The reference
fields line can consist of more than just one line and is set only if one of
those variables mentioned above is given. Only those fields will be set that
are given. To set a seemingly empty field, one needs to give as value at
least a white space or \null. If you want to have your letter without a
reference fields line, then instead of it the label and contents of the variable
date will be set.

refvpos

This pseudo-length gives the distance between the upper edge of the paper
and the reference fields line. Its value is set differently in the various

197 Chapter 6.

predefined lco files. Typical values are between 80.5mm and 98.5mm.

refwidth
refhpos

This pseudo-length gives the width that is available for the reference fields
line. The value is set typically to 0 pt in the predefined lco files. This
value has a special meaning: in no way does it determine that there is no
available width for the business line; instead, this value means that the
width will be calculated with the \opening. Thus the calculated width
depends on the determination of the options refline (see section 6.2.6,
page 162). At the same time, refhpos will be set according to this op-
tion. With refline=wide, the reference fields line is centered, while with
refline=narrow it is aligned on the left.
If refwidth non-null, i. e., the width of the reference fields line is there-

fore not determined by the option refline, then refhpos gives the dis-
tance of the reference fields line from the left edge of the paper. If this
distance is null, then the reference fields line is set so that the ratio between
its distances from the left and right edges of the paper equal the ratio of
distance of the type area from the left and right edges of the paper. Thus,
for a type area horizontally centered on the paper, the reference fields line
too will be centered.
As a rule, these special cases are likely to be of little interest to the

normal user. The simplest rule is as follows: either refhpos is left at null
and so the width and alignment of the reference fields line are left to the
option refline, or refwidth as well as refhpos are set by the user.

refaftervskip

This pseudo-length gives the vertical space that has to be inserted beneath
the reference fields line. The value is set in the predefined lco files. It
directly affects the text height of the first page. A typical value lies between
one and two lines.

yourref
yourmail
myref
customer
invoice
date

These variables are typical reference fields. Their meanings are given in
table 6.12 on page 172. Each variable has also a predefined label, shown

198 Chapter 6.

Table 6.16.: predefined labels of typical variables of the reference fields line. The
content of the macros depend on language.

name label in english
yourref \yourrefname Your reference
yourmail \yourmailname Your letter from
myref \myrefname Our reference
customer \customername Customer No.:
invoice \invoicename Invoice No.:
date \datename date

in table 6.16. The field width that belongs to each variable, adjusts itself
automatically to its label and content.

place
placeseparator

As said before in the introduction of this subsection, the reference fields line
can be omitted. This happens if all variables of the business line are empty
with the exception of the variable for the date. In this case, the content of
place and placeseparator will be set, followed by the content of date.
The predefined content of the placeseparator is a comma followed by a
non-breaking space. If the variable place has no value then the hyphen
remains unset also. The predefined content of date is \today and depends
on the setting of the option numericaldate (see section 6.2.6, page 162).

6.4.7. The Title and the Subject Line

Business letters very often carry a subject line. The subject line indicates
briefly the respect of the letter. Usually the subject should be short and
precise and not run across several lines. Apart fom the subject, such a
letter may also carry a title. Titles find usage most often with irregular
letters such as a warning, an invoice or a reminder.

title

With scrlttr2 a letter can carry an additional title. The title is
centered and set with font size \LARGE directly after and beneath
the reference fields line. The predefined font setup for this element
(\normalcolor\sffamily\bfseries) can be changed with help of the in-
terface described in section 3.2.1. Font size declarations are allowed.

199 Chapter 6.

Table 6.17.: Predefined labels of subject-related variables.

name label
subject \usekomavar*{subjectseparator}%

\usekomavar{subjectseparator}
subjectseparator \subjectname

Example: Assume that you are to write a reminder. Thus you put as
title:

\setkomavar{title}{Reminder}

This way the addressee will recognize a reminder as such.

subject
subjectseparator

In case a subject should be set, the contents of the variable subject need
to be defined. Depending on what the option subject is set to, a label
can be placed in front of the subject contents; also, the vertical posi-
tion of the subject contents can be changed (see section 6.2.6, page 159).
The predefined labels are shown in table 6.17. The predefined value of
subjectseparator is a colon followed by a non-breaking space.
The subject line is set in a separate font. To change this use the user

interface described in section 3.2.1. For the element subject the prede-
termined font in scrlttr2 is \normalfont\normalcolor\bfseries.

Example: Assume you are a board member and want to write a letter to
another member of that board about a few internals of the organization.
You want to clarify with your subject line what this letter is all about,
but without labeling it thus. You can do this as follows:

\setkomavar{subject}[Subject]{%
organization’s internals}

or easier:
\setkomavar{subject}[]{%
about organization’s internals}

Furthermore, if you want to set the subject line not only in bold but also
in sans serif:
\addtokomafont{subject}{\sffamily}

As you can see, it is really easy to solve such problems.

200 Chapter 6.

6.4.8. Further Settings

In this paragraph variables and settings are listed which could not be
assigned to any other part of the letter declaration but somehow belong
to this section.

frombank

This variable at the moment takes on a special meaning: it is not used
internally at this point, and the user can make use of it to set, for example,
his bank account within the sender’s extension field or the footer.

\nexthead{construction }
\nextfoot{construction }

The possibilities that are offered with variables and options in scrlttr2
should be good enough in most cases to create letterheads and footers for
those pages that follow the first letter page. Even more so since you can
additionally change with \markboth and \markright the sender’s state-
ments that scrlttr2 uses to create the letterhead. The term “subsequent
pages” in this manual refers to all pages following the first letter page. The
commands \markboth and \markright can in particular be used together
with pagestyle myheadings. If the package scrpage2 is used then this,
of course, is valid also for pagestyle scrheadings. There the command
\markleft is furthermore available.
At times one wants to have more freedom with creating the letterhead

or footer of subsequent pages. Then one has to give up the possibilities
of predefined letterheads or footers that could have been chosen via the
option pagenumber (see section 6.2.4, page 153). Instead one is free to
create the letterhead and footer of subsequent pages just the way one wants
to have them set. For that, one creates the desired letterhead or footer
construction using the command \nexthead or \nextfoot, respectively.
Within \nexthead and \nextfoot you can, for example, have several boxes
side by side or one beneath the other by use of the \parbox command
(see [Tea01]). A more advanced user should have no problems creating
letterheads of footers of his own. Within construction you can of course
also make use of the variables by using \usekomavar.

6.5. The Text

In contrast to an article, a report or a book, a letter normally has no
chapter or section structure. Even float environments with tables and

201 Chapter 6.

figure are unusual. Therefore, a letter has no table of contents, lists of
figures and tables, index, bibliography, glossary or similar things. The
letter text mainly consists of an opening and the main text. Thereupon
follow the signature, a postscript and various listings.

6.5.1. The Opening

In the early days of computer-generated letters, programs did not have many
capabilities, therefore the letters seldom had an opening. Today the capabili-
ties have been enhanced. Thus personal openings are very common, even in
mass-production advertising letters.

\opening{opening }

This is one of the most important commands in scrlttr2. For the user it
may seem that only the opening is typeset, but the command also typesets
the folding marks, letterhead, address field, reference fields line, subject,
the page footer and others. In short, without \opening there is no letter.

6.5.2. Footnotes

In letters footnotes should be used more sparingly than in normal docu-
ments. However, scrlttr2 is equipped with all mechanisms mentioned in
section 3.6.3 for the main document classes. Therefore they will not be
discussed here again.

6.5.3. Lists

Lists have the same validity in letters as in normal documents. Thus
scrlttr2 provides the same possibilities as mentioned in section 3.6.4 for the
main document classes. Therefore they will not be discussed here again.

6.5.4. Margin Notes

Margin notes are quite uncommon in letters. Therefore the option
mpinclude is not actively supported by scrlttr2. However, scrlttr2 is
equipped with all mechanisms mentioned in section 3.6.5 for the main
document classes. Therefore they will not be discussed here again.

202 Chapter 6.

6.5.5. Text Emphasis

The distinction of text has the same importance in letters as in other
documents. Thus the same rules apply, meaning: emphasize text sparingly.
Even letters should be readable and a letter where each word is typeset in
another font is quite unreadable.
The class scrlttr2 is equipped with all mechanisms mentioned in sec-

tion 3.6.7 for the main document classes. Therefore it will not be discussed
here again.

6.6. The Closing Part

A letter always ends with a closing phrase. Even computer-generated let-
ters without signature have such a phrase. Sometimes this is a sentence
such as, “This letter has been generated automatically and is valid with-
out a signature.”. Sometimes a sentence like this will even be used as a
signature. Thereupon can follow a postscript and various listings.

6.6.1. Closing

The closing consists of three parts: besides the closing phrase there are a
hand-written inscription and the signature, which acts as an explanation
for the inscription.

signature

The variable signature holds an explanation for the inscription. The
content is predefined as \usekomavar{fromname}. The explanation may
consist of multiple lines. The lines should then be separated by a double
backslash. Paragraphs in the explanation are however not permitted.

\closing{closing phrase }

The command \closing not only typesets the closing phrase, but also the
content of the variable signature. The closing phrase may consists of
multiple lines, but paragraphs are not permitted.

sigindent
sigbeforevskip
\raggedsignature

Closing phrase and signature will be typeset in a box. The width of the
box is determined by the length of the longest line of the closing phrase or
signature.

203 Chapter 6.

The box will be typeset with indentation of the length set in pseudo-
length sigindent. In the predefined lco files this length is set to 0mm.
The command \raggedsignature defines the alignment inside the box.

In the predefined lco files the command is either defined as \centering
(all besides KOMAold) or \raggedright (KOMAold). In order to obtain
flush-right or flush-left alignment inside the box, the command can be
redefined in the same way as \raggedsection (see section 3.6.2, page 87).
Between closing phrase and signature a vertical space is inserted, the

height of which is defined in the pseudo-length sigbeforevskip. In the
predefined lco files this is set to 2 lines. In this space you can then write
your inscription.

Example: You are writing as the directorate of a society a letter to all
members. Moreover, you want on the one hand to elucidate that you are
writing in the name of the board of directors, and on the other hand you
want indicate your position on the board of directors.

\setkomavar{signature}{John McEnvy\\
{\small (Vice-President ‘‘The Other Society’’)}}
\closing{Regards\\
(for the board of directors)}

You can of coure set the variable signature in your private lco files.
Otherwise it is advisable to define the variable in the letter preamble (see
section 6.4).

6.6.2. Postscript, Carbon Copy and Enclosures

After the closing can follow some other statements. Besides the postscript,
there are the distribution list of carbon copies, and the reference to enclo-
sures.

\ps

In the time when letters were written by hand it was quite common to use a
postscript because this was the only way to add information which one had
forgotten to mention in the main part of the letter. Of course, in letters
written with LATEX you can insert additional lines easily. Nevertheless, it is still
popular to use the postscript. It gives one a good possibility to underline again
the most important or sometimes the less important things of the particular
letter.
This instruction merely switches to the postscript. Hence, a new para-

graph begins, and a vertical distance—usually below the signature— is

204 Chapter 6.

inserted. The command \ps is followed by normal text. If you want the
postscript to be introduced with the acronym “PS:” , which by the way is
written without a full stop, you have to type this yourself. The acronym
is typeset neither automatically nor optionally by the class scrlttr2.

\cc{distribution list }
ccseparator

With the command \cc it is possible to typeset a distribution list .
The command takes the distribution list as its argument. If the con-
tent of the variable ccseparator is not empty, then the name and the
content of this variable is inserted before distribution list . In this
case the distribution list will be indented appropriately. It is a good
idea to set the distribution list \raggedright and to separate the
individual entries with a double backslash.

Example: You want to indicate that your letter is sent to all members of
a society and to the board of directors:

\cc{%
the board of directors\\
all society members}

This instruction should be written below the \closing instruction from
the previous example, or below a possible postscript.

A vertical space is inserted automatically before the distribution list.

\encl{enclosures }
enclseparator

Enclosures have the same structure as the distribution list. The only
difference is that here the enclosures starts with the name and content of
the variable enclseparator.

6.7. Language Support

The document class scrlttr2 supports many languages. These include Ger-
man (german for old German orthography, ngerman for the new orthog-
raphy, and austrian for Austrian), English (english without specifica-
tion as to whether American or British should be used, american and
USenglish for American, and british and UKenglish for British), French,
Italian, Spanish, Dutch, Croatian, Finnish, and Norsk.v3.02

205 Chapter 6.

6.7.1. Language Selection

If the package babel (see [Bra01]) is used, one can switch between lan-
guages with the command \selectlanguage{language }. Other packages
like german (see [Rai98a]) and ngerman (see [Rai98b]) also define this com-
mand. As a rule though, the language selection takes place already as a
direct consequence of loading such a package. Further information can be
obtained in the documentation of the relevant packages.
There is one thing more to mention about language packages. The package

french (see [Gau03]) redefines not only the terms of section 6.7.2, but also
other, for instance it even redefines the command \opening, since it assumes
that the definition of the standard letter is used. With scrlttr2 this is not the
case, therefore the package french destroys the definition in scrlttr2 and does
not work correctly with KOMA-Script. The author views this is a fault in the
french package.
If one utilizes the babel package in order to switch to language french

while the package french is simultaneously installed, then the same problems
will likely occur, since babel employs definitions from the french package. If
the package french is not installed then there are no problems. Aimilarly, there
is no problem if for babel instead of french other languages like acadian,
canadien, francais or frenchb are chosen.
From babel version 3.7j this problem only occurs when it is indicated ex-

plicitly by means of an option that babel should use the french package.
If it cannot be ascertained that a new version of babel is being used, it is

recommended to use
\usepackage[...,frenchb,...]{babel}

in order to select french.
Other languages can possibly cause similar problems. Currently there are

no known problems with the babel package for the german language and the
various english language selections.

206 Chapter 6.

\captionsenglish
\captionsUSenglish
\captionsamerican
\captionsbritish
\captionsUKenglish
\captionsgerman
\captionsngerman
\captionsaustrian
\captionsfrench
\captionsitalian
\captionsspanish
\captionsdutch
\captionscroatian
\captionsfinnish
\captionsnorsk

If one switches the language then using these commands the language-
dependent terms from section 6.7.2 are redefined. If the used language
selection scheme does not support this then the commands above can be
used directly.

\dateenglish
\dateUSenglish
\dateamerican
\datebritish
\dateUKenglish
\dategerman
\datengerman
\dateaustrian
\datefrench
\dateitalian
\datespanish
\datedutch
\datecroatian
\datefinnish
\datenorsk

The numerical representation of the date (see option numericaldate in
section 6.2.6) will be written depending on the selected language. Some
examples can be found in table 6.18.

6.7.2. Language-Dependent Terms

As is usual in LATEX, the language-dependent terms are defined by com-
mands which are then redefined when one switches the language.

207 Chapter 6.

Table 6.18.: Language-dependent forms of the date

Command Date example
\dateenglish 1/12/1993
\dateUSenglish 12/1/1993
\dateamerican 12/1/1993
\datebritish 1/12/1993
\dateUKenglish 1/12/1993
\dategerman 1. 12. 1993
\datengerman 1. 12. 1993
\dateaustrian 1. 12. 1993
\datefrench 1. 12. 1993
\dateitalian 1. 12. 1993
\datespanish 1. 12. 1993
\datedutch 1. 12. 1993
\datecroatian 1. 12. 1993.
\datefinnish 1.12.1993.
\datenorsk 1.12.1993

\yourrefname
\yourmailname
\myrefname
\customername
\invoicename
\subjectname
\ccname
\enclname
\headtoname
\headfromname
\datename
\pagename
\phonename
\faxname
\emailname
\wwwname
\bankname

The commands above contain the language-dependent terms. These defi-
nitions can be modified in order to support a new language or for private
customization. How this can be done is described in section 6.7.3. The
definitions become active only at \begin{document}. Therefore they are
not available in the LATEX preamble and cannot be redefined there. In

208 Chapter 6.

Table 6.19.: Default settings for languages english and ngerman

Command english ngerman

\bankname Bank account Bankverbindung
\ccname1 cc Kopien an
\customername Customer no. Kundennummer
\datename Date Datum
\emailname Email E-Mail
\enclname1 encl Anlagen
\faxname Fax Fax
\headfromname From Von
\headtoname1 To An
\invoicename Invoice no. Rechnungsnummer
\myrefname Our ref. Unser Zeichen
\pagename1 Page Seite
\phonename Phone Telefon
\subjectname Subject Betrifft
\wwwname Url URL
\yourmailname Your letter of Ihr Schreiben vom
\yourrefname Your ref. Ihr Zeichen

1Normally these terms are defined by language packages like babel. In this case they
are not redefined by scrlttr2 and may differ from the table above.

table 6.19 the default settings for english and ngerman can be found.

6.7.3. Defining and Changing Language-dependent Terms

Normally one has to change or define the language-dependent terms of sec-
tion 6.7.1 in such a way that in addition to the available terms the new or rede-
fined terms are defined. This is made more difficult by the fact that some pack-
ages like german or ngerman redefine those settings when the packages are
loaded. This definitions unfortunately occurs in such a manner as to destroy
all previous private settings. That is also the reason why scrlttr2 delays its
own changes, with \AtBeginDocument until \begin{document}, that is, af-
ter package loading is completed. The user can also use \AtBeginDocument,
or redefine the language-dependent terms after \begin{document}, that is,
not put them in the preamble at all. The class scrlttr2 even provides some
additional commands for defining language-dependent terms.

209 Chapter 6.

\providecaptionname{language }{term }{definition }
\newcaptionname{language }{term }{definition }
\renewcaptionname{language }{term }{definition }

Using one of the commands above, the user can assign a definition for
a particular language to a term . The term is always a macro. The
commands differ dependent on whether a given language or a term within
a given language are already defined or not at the time the command is
called.
If language is not defined, then \providecaptionname does nothing

other than writes a message in the log file. This happens only once for
each language. If language is defined but term is not yet defined for it,
then it will be defined using definition . The term will not be redefined
if the language already has such a definition; instead, an appropriate
message is written to the log file.
The command \newcaptionname has a slightly different behaviour. If

the language is not yet defined, then a new language command (see sec-
tion 6.7.1) will be created and a message written to the log file. If term
is not yet defined in language , then it will be defined using definition .
If term already exists in language , then this results in an error message.
The command \renewcaptionname again behaves differently. It requires

an existing definition of term in language . If neither language nor term
exist or term is unknown in a defined language then a error message will
be given. Otherwise, the term for language will be redefined according
to definition .
The class scrlttr2 itself employs \providecaptionname in order to define

the commands in section 6.7.2.

Example: If you prefer “Your message of” instead of “Your letter of”, you
have to redefine the definition of \yourmailname.

\renewcaptionname{english}{\yourmailname}{%
Your message of}

Since only existing terms in available languages can be redefined, you have
to put the command after \begin{document} or delay the command by
using \AtBeginDocument. Furthermore, you will get an error message if
there is no package used that switches language selection to english .

6.8. Address Files and Circular Letters

When people write circular letters one of the more odious tasks is the
typing of many different addresses. The class scrlttr2, as did its predecessor

210 Chapter 6.

scrlettr as well, provides basic support for this task. Currently there are
plans for much enhanced support.

\adrentry{Lastname }{Firstname }{Address }{Phone }{F1}{F2}{Comment }{Key }

The class scrlttr2 supports the use of address files which contain address
entries, very useful for circular letters. The file extension of the address
file has to be .adr. Each entry is an \adrentry command with eight
parameters, for example:
\adrentry{McEnvy}

{Flann}
{Main Street 1\\ Glasgow}
{123 4567}
{male}
{}
{niggard}
{FLANN}

The 5th and 6th elements, F1 and F2, can be used freely: for example,
for the gender, the academic grade, the birthday, or the date on which
the person joined a society. The last parameter Key should only consist
of uppercase letters in order to not interfere with existing TEX or LATEX
commands.

Example: Mr.McEnvy is one of your most important business partners,
but every day you receive correspondence from him. Before long you
do not want to bother typing his boring address again and again. Here
scrlttr2 can help. Assume that all your business partners have an entry in
your partners.adr address file. If you now have to reply to Mr.McEnvy
again, then you can save typing as follows:

\input{partners.adr}
\begin{letter}{\FLANN}

Your correspondence of today \dots
\end{letter}

Your TEX system must be configured to have access to your address file.
Without access, the \input command results in an error. You can either
put your address file in the same directory where you are running LATEX,
or configure your system to find the file in a special directory.

211 Chapter 6.

\addrentry{Lastname }{Firstname }{Address }{Phone }{F1}{F2}{F3}{F4}{Key }
Over the years people have objected that the \adrentry has only two
free parameters. To cater to this demand, there now exists a new com-
mand called \addrentry—note the additional “d”—which supports four
freely-definable parameters. Since TEX supports maximally nine parame-
ters per command, the comment parameter has fallen away. Other than
this difference, the use is the same as that of \adrentry.
Both \adrentry and \addrentry commands can be freely mixed in the

adr files. However, it should be noted that there are some packages which
are not suited to the use of \addrentry. For example, the adrconv by
Axel Kielhorn can be used to create address lists from adr files, but it
has currently no support for command \addrentry. In this case, the only
choice is to extend the package yourself.
Besides the simple access to addresses, the address files can be easily

used in order to write circular letters. Thus, there is no requirement to
access a complicated database system via TEX.
Example: Suppose you are member of a society and want write an invi-
tation for the next general meeting to all members.

\documentclass{scrlttr2}
\begin{document}
\renewcommand*{\adrentry}[8]{

\begin{letter}{#2 #1\\#3}
\opening{Dear members,} Our next general meeting ←↩

will be on
Monday, August 12, 2002. The following topics are ←↩

\dots
\closing{Regards,}

\end{letter}
}
\input{members.adr}

\end{document}

If the address file contains \addrentry commands too, than an additional
definition for \addrentry is required before loading the address file:

\renewcommand*{\addrentry}[9]{%
\adrentry{#1}{#2}{#3}{#4}{#5}{#6}{#7}{#9}%

}

In this simple example the extra freely-definable parameter is not used,
and therefore \addrentry is defined with the help of \adrentry.

212 Chapter 6.

With some additional programming one can let the content of the letters
depend on the address data. For this the free parameters of the \adrentry
and and \addrentry commands can be used.

Example: Suppose the 5th parameter of the \adrentry command con-
tains the gender of a member (m/f), and the 6th parameter contains what
amount of subscription has not yet been paid by the member. If you
would like to write a more personal reminder to each such member, then
the next example can help you:

\renewcommand*{\adrentry}[8]{
\ifdim #6pt>0pt\relax
% #6 is an amount greater than 0.
% Thus, this selects all members with due subscription←↩
.

\begin{letter}{#2 #1\\#3}
\if #5m \opening{Dear Mr.\,#2,} \fi
\if #5f \opening{Dear Mrs.\,#2,} \fi

Unfortunately we have to remind you that you have
still not paid the member subscription for this
year.

Please remit EUR #6 to the account of the society.
\closing{Regards,}
\end{letter}
\fi

}

As you can see, the letter text can be made more personal by depending
on attributes of the letter’s addressee. The number of attributes is only
restricted by number of two free parameters of the \adrentry command,
or four free parameters of the \addrentry command.

\adrchar{initial letter }
\addrchar{initial letter }

As already mentioned above, it is possible to create address and telephone
lists using adr files. For that, the additional package adrconv by Axel
Kielhorn (see [Kie99]) is needed. This package contains interactive LATEX
documents which help to create those lists.

213 Chapter 6.

The address files have to be sorted already in order to obtain sorted
lists. It is recommended to separate the sorted entries at each different
initial letter of Lastname . As a separator, the commands \adrchar and
\addrchar can be used.. These commands will be ignored if the address
files are utilized in scrlettr2.
Example: Suppose you have the following short address file:

\adrchar{A}
\adrentry{Angel}{Gabriel}

{Cloud 3\\12345 Heaven’s Realm}
{000\,01\,02\,03}{}{}{archangel}{GABRIEL}

\adrentry{Angel}{Michael}
{Cloud 3a\\12345 Heaven’s Realm}
{000\,01\,02\,04}{}{}{archangel}{MICHAEL}

\adrchar{K}
\adrentry{Kohm}{Markus}

{Freiherr-von-Drais-Stra\ss e 66\\68535 Edingen←↩
-Neckarhausen}

{+49~62\,03~1\,??\,??}{}{}{no angel at all}
{KOMA}

This address file can be treated with adrdir.tex of the adrconv pack-
age [Kie99]. The result should look like this:

A
Angel, Gabriel

Cloud 3
12345 Heaven’s Realm
(archangel)

gabriel
000 01 02 03

Angel, Michael
Cloud 3a
12345 Heaven’s Realm
(archangel)

michael
000 01 02 04

The letter in the page header is created by the \adrchar command. The
definition can be found in adrdir.tex.
More about the adrconv package can be found in its documentation. There
you should also find information about whether the current version of adr-

214 Chapter 6.

conv supports the \addrentry and \addrchar commands. Former versions
only know the commands \adrentry and \adrchar.

6.9. From scrlettr to scrlttr2

The first step in the conversion of an old letter written with the scr-
lettr class is to load the appropriate lco file using option KOMAold at
\documentclass. Thereupon most commands of the old class should work.
However, you will encounter some differences in the output, since the page
layout of the old class is not realized exactly. The reason is that the cal-
culation of the type area in scrlettr has some minor bugs. For example,
the position of the folding marks used to depend on the height of the page
header, which again depended on the font size. That was unambiguously
a design error.
There is no compatibility regarding the defined lengths in scrlettr. Thus,

if a user has changed the page layout of scrlettr, then the relevant state-
ments should be deleted or commented out. In some cases, the modifica-
tion of a length can cause an error, since this length is no longer defined
in scrlttr2. The user should delete or comment out such modifications as
well.
After the switch from scrlettr to scrlttr2, the old letter example can

be successfully compiled already alone through the setting of the option
KOMAold:
\documentclass[10pt,KOMAold]{scrlttr2}
\name{{\KOMAScript} team}
\address{Class Alley 1\\12345 {\LaTeX} City}
\signature{Your {\KOMAScript} team}
\begin{document}

\begin{letter}{{\KOMAScript} users\\
Everywhere\\world-wide}

\opening{Dear {\KOMAScript} users,}
the {\KOMAScript} team is proud to announce \dots
\closing{Happy {\TeX}ing}

\end{letter}
\end{document}
The next step is that while wanting the old commands to be still be

available, the layout of the old letter should no longer be used. If, for
example, one wants to sue the layout of the letter class option DIN, then
this option can be given in \documentclass, but is has to be specified

215 Chapter 6.

after the option KOMAold:
\documentclass[10pt,KOMAold,DIN]{scrlttr2}
\name{{\KOMAScript} team}
\address{Class Alley 1\\12345 {\LaTeX} City}
\signature{Your {\KOMAScript} team}
\begin{document}

\begin{letter}{{\KOMAScript} users\\
Everywhere\\world-wide}

\opening{Dear {\KOMAScript} users,}
the {\KOMAScript} team is proud to announce \dots
\closing{Happy {\TeX}ing}

\end{letter}
\end{document}

By using more options this way, you can further influence the layout.
However, the author recommends a more inherent change right away.
The last step is to replace all old commands with their new equivalents,

and to omit the option KOMAold. For this task, it may help to read the
contents of KOMAold.lco. In that file the old commands are defined using
the new commands and variables.
\documentclass{scrlttr2}
\setkomavar{fromname}{{\KOMAScript} team}
\setkomavar{fromaddress}{Class Alley 1\\

12345 {\LaTeX} City}
\setkomavar{signature}{Your {\KOMAScript} team}
\let\raggedsignature=\raggedright
\begin{document}

\begin{letter}{{\KOMAScript} users\\
Everywhere\\
world-wide}

\opening{Dear {\KOMAScript} users,}
the {\KOMAScript} team is proud to announce \dots
\closing{Happy {\TeX}ing}

\end{letter}
\end{document}

This example shows also the possibility to change the alignment of the
signature by redefining the command \raggedsignature. This is always
recommended when the width of the explanation of the signature as de-
fined by the command \setkomavar{signature}{...} is greater than the
width of the argument of \closing.

216 Chapter 7.

Access to Address Files with scraddr

7.1. Overview

The package scraddr is a small extension to the KOMA-Script letter class.
Its aim is to make access to the data of address files more flexible and
easier. Basically, the package implements a new loading mechanism for
address files which contain address entries in the form of \adrentry and
newer \addrentry commands, as described in the previous chapter.

\InputAddressFile{file name }
The command \InputAddressFile is the main command of the scraddr,
and reads the content of the address file given as its parameter. If the file
does not exist the command returns an error message.
For every entry in the address file the command generates a set of macros

for accessing the data. For large address files this will take a lot of TEX
memory.

\adrentry{Lastname }{Firstname }{Address }{Phone }{F1}{F2}{Comment }{Key }
\addrentry{Lastname }{Firstname }{Address }{Phone }{F1}{F2}{F3}{F4}{Key }
\adrchar{initial }
\addrchar{initial }
The structure of the address entries in the address file was discussed in
detail in section 6.8 from page 210 onwards. The division of the address
file with the help of \adrchar or \addrchar, also discussed therein, has
no meaning for scraddr and is simply ignored.
The commands for accessing the data are given by the name of the data

field they are intended for.

\Name{Key }
\FirstName{Key }
\LastName{Key }
\Address{Key }
\Telephone{Key }
\FreeI{Key }
\FreeII{Key }
\Comment{Key }
\FreeIII{Key }
\FreeIV{Key }
These commands give access to data of your address file. The last pa-
rameter, i. e., parameter 8 for the \adrentry entry and parameter 9 for

217 Chapter 7.

the \addrentry entry, is the identifier of an entry, thus the Key has to be
unique and non-blank. The Key should only be composed of letters.
If the file contains more than one entry with the same Key value, the

last occurrence will be used.

7.2. Usage

First of all, we need an address file with valid address entries. In this
example the file has the name lotr.adr and contains the following entries.
\addrentry{Baggins}{Frodo}%

{The Hill\\ Bag End/Hobbiton in the Shire}{}%
{Bilbo Baggins}{pipe-weed}%
{the Ring-bearer}{Bilbo’s heir}{FRODO}

\adrentry{Gamgee}{Samwise}%
{Bagshot Row 3\\Hobbiton in the Shire}{}%
{Rosie Cotton}{taters}%
{the Ring-bearer’s faithful servant}{SAM}

\adrentry{Bombadil}{Tom}%
{The Old Forest}{}%
{Goldberry}{trill queer songs}%
{The Master of Wood, Water and Hill}{TOM}

The 4th parameter, the telephone number, has been left blank. If you
know the story behind these addresses you will agree that a telephone
number makes no sense here, and besides, it should simply be possible to
leave them out. The command \InputAddressFile is used to load the
address file shown above:
\InputAddressFile{lotr}
With the help of the commands introduced in this chapter we can now

write a letter to old Tom Bombadil. In this letter we ask him if he can
remember two fellow-travelers from Elder Days.
\begin{letter}{\Name{TOM}\\\Address{TOM}}

\opening{Dear \FirstName{TOM} \LastName{TOM},}

or \FreeIII{TOM}, how your delightful \FreeI{TOM} ←↩
calls you. Can
you remember Mr.\,\LastName{FRODO}, strictly speaking
\Name{FRODO}, since there was Mr.\,\FreeI{FRODO} too. ←↩
He was

218 Chapter 7.

\Comment{FRODO} in the Third Age and \FreeIV{FRODO} \←↩
Name{SAM},
\Comment{SAM}, has attended him.

Their passions were very worldly. \FirstName{FRODO} ←↩
enjoyed

smoking \FreeII{FRODO}, his attendant appreciated a ←↩
good meal with

\FreeII{SAM}.

Do you remember? Certainly Mithrandir has told you ←↩
much

about their deeds and adventures .
\closing{‘‘O spring-time and summer-time

and spring again after!\\
O wind on the waterfall,
and the leaves’ laughter!’’}

\end{letter}
In the address of letters often both firstname and lastname are required.
Thus, the command \Name{Key} is an abridgement for \FirstName{Key}
\LastName{Key}.
The 5th and 6th parameters of the \adrentry or \adrentry commands

are for free use. They are accessible with the commands \FreeI and
\FreeII. In this example, the 5th parameter contains the name of a person
who is the most important in the life of the entry’s person, the 6th contains
the person’s passion. The 7th parameter is a comment or in general also a
free parameter. The commands \Comment or \FreeIII give access to this
data. Use of \FreeIV is only valid for \addrentry entries; for \adrentry
entries it results in an error. More on this is covered in the next section.

7.3. Package Warning Options

As mentioned above, the command \FreeIV leads to an error if it is used
for \adrentry entries. How scraddr reacts in such a situation is decide by
package options.

219 Chapter 7.

adrFreeIVempty
adrFreeIVshow
adrFreeIVwarn
adrFreeIVstop

These four options allow the user to choose between ignore and rupture
during the LATEX run if \FreeIV has been used with an \adrentry entry.

adrFreeIVempty – the command \FreeIV will be ignored

adrFreeIVshow – “(entry FreeIV undefined at Key)” will be written as
warning in the text

adrFreeIVwarn – writes a warning in the logfile

adrFreeIVstop – the LATEX run will be interrupted with an error message

To choose the desired reaction, one of these options can be given in the
optional argument of the \usepackage command. The default setting is
adrFreeIVshow.

220 Chapter 8.

Creating Address Files from a Address Database

In former versions of KOMA-Script the package addrconv was a permanent
part of the KOMA-Script system. The chief involvement with KOMA-
Script was that with the help of addrconv it was possible from an address
database in BIBTEX format to create address files compatible with the
KOMA-Script letter class or with the package scraddr.
@address{HMUS,

name = {Carl McExample},
title = {Dr.},
city = {Anywhere},
zip = 01234,
country = {Great Britain},
street = {A long Road},
phone = {01234 / 5 67 89},
note = {always forget his birthday},
key = {HMUS},

}
From entries such as that given above, address files can be generated.

For this addrconv employs BIBTEX and various BIBTEX styles. Additionally,
there are some LATEX files which can help to create various telephone and
address lists for printing.
However, the package addrconv was actually an independent package,

since besides what is required for KOMA-Script it includes several more
interesting features. Therefore, the package addrconv has for some time
already been removed from the KOMA-Script system. The package adr-
conv, with a single d, entirely replaces addrconv. If it is not included in
your TEX distribution then it can be downloaded from [Kie99] and you
can install it separately.

221 Chapter 9.

Control Package Dependencies with scrlfile

The introduction of LATEX2ε in 1994 brought many changes in the handling
of LATEX extensions. Today the package author has many macros available to
determine if another package or class is employed and whether specific options
are used. The author can load other packages or can specify options in the
the case that the package is loaded later. This has led to the expectation that
the order in which package are loaded would not be important. Sadly this
hope has not been fulfilled.

9.1. About Package Dependencies

More and more frequently, different packages either newly define or redefine
the same macro again. In such a case the order in which a package is loaded
becomes very important. For the user it sometimes becomes very difficult to
understand the behaviour, and in some cases the user wants only to react to
the loading of a package. This too is not really a simple matter.
Let us take the simple example of loading the package longtable with a

KOMA-Script document class. The longtable package defines table captions
very well suited to the standard classes, but the captions are totally unsuitable
for documents using KOMA-Script and also do not react to the options of
the provided configuration commands. In order to solve this problem, the
longtable package commands which are responsible for the table captions
need to be redefined. However, by the time the longtable package is loaded,
the KOMA-Script class has already been processed.
Until the present, the only way for KOMA-Script to solve this problem was

to delay the redefinition until the beginning of the document with help of the
macro \AtBeginDocument. If the user wants to change the definitions too,
it is recommended to do this in the preamble of the document. However,
this is impossible since later at \begin{document} KOMA-Script will again
overwrite the user definition with its own. Therefore, the user too has to delay
his definition with \AtBeginDocument.
Actually, KOMA-Script should not need to delay the redefinition until

\begin{document}. It would be enough to delay exactly until the package
longtable has been loaded. Unfortunately, the LATEX kernel does not define
appropriate commands. The package scrlfile provides redress here.
Likewise, it might be conceivable that before a package is loaded one would

like to save the definition of a macro in a help-macro, in order to restore its

222 Chapter 9.

meaning after the package has been loaded. The package scrlfile allows this,
too.
The employment of scrlfile is not limited to package dependencies only.

Even dependencies on any other file can be considered. For example, the user
can be warned if the not uncritical file french.ldf has been loaded.
Although the package is particularly of interest for package authors, there

are of course applications for normal LATEX users, too. Therefore, this chapter
gives and explains examples for both groups of users.

9.2. Actions Prior to and After Loading

scrlfile can execute actions both before and after the loading of files. In the
commands used to do this, distinctions are made made between general
files, classes, and packages.

\BeforeFile{file }{instructions }
\AfterFile{file }{instructions }

The macro \BeforeFile ensures that instructions are only executed
before the next time file is loaded. \AfterFile works in a similar fash-
ion, and the instructions will be executed only after the file has been
loaded. If file is never loaded then the instructions will never be
executed.
In order to implement those features scrlfile redefines the well known LATEX

command \InputIfFileExists. If this macro does not have the expected
definition then scrlfile issues a warning. This is for the case that in future LATEX
versions the macro can have a different definition, or that another package
has already redefined it.
The command \InputIfFileExists is used by LATEX every time a

file is to be loaded. This is independent of whether the actual load
command is \include, \LoadClass, \documentclass, \usepackage,
\RequirePackage, or similar. Exceptionally, the command

\input foo

loads the file foo without utilizing \InputIfFileExists. Therefore, one
should always use

\input{foo}

instead. Notice the parentheses surrounding the file name!

223 Chapter 9.

\BeforeClass{class }{instructions }
\BeforePackage{package }{instructions }

These two commands work in the same way as \BeforeFile. The only dif-
ference is that the document class class and the LATEX package package
are specified with their names and not with their file names. That means
that the file extensions .cls and .sty can be omitted.

\AfterClass{class }{instructions }
\AfterClass*{class }{instructions }
\AfterPackage{package }{instructions }
\AfterPackage*{package }{instructions }

The commands \AfterClass and \AfterPackage work in the same way
as \AfterFile. The only difference is that the document class class and
the LATEX package package are specified with their names and not with
their file names. That means that the file extensions .cls and .sty can
be omitted. The starred versions execute the instructions not only at
next time that the class or package is loaded, but also immediately if the
class or package has been loaded already.

Example: In the following, an example for class and package authors shall
be given. It shows how KOMA-Script itself employs the new commands.
The class scrbook contains:
\AfterPackage{hyperref}{%

\@ifpackagelater{hyperref}{2001/02/19}{}{%
\ClassWarningNoLine{scrbook}{%

You are using an old version of hyperref package!%
\MessageBreak%
This version has a buggy hack at many drivers%
\MessageBreak%
causing \string\addchap\space to behave strange.%
\MessageBreak%
Please update hyperref to at least version
6.71b}}}

Old versions of the hyperref package redefine a macro of the scrbook class
in such a way that does not work with newer KOMA-Script versions. New
versions of hyperref desist from making these changes if a new KOMA-
Script version is detected. For the case that hyperref is loaded at a later
stage, therefore, the code in scrbook verifies that a acceptable hyperref
version is used. If not, the command issues a warning.
At other places in three KOMA-Script classes the following can be found:

224 Chapter 9.

\AfterPackage{caption2}{%
\renewcommand*{\setcapindent}{%

After the package caption2 has been loaded, and only if it has been loaded,
KOMA-Script redefines its own command \setcapindent. The exact
code of the redefinition is not important. It should only be noted that
caption2 takes control of the \caption macro and that therefore the nor-
mal definition of the \setcapindent macro would become ineffective.
The redefinition improves the collaboration with caption2.
There are however also useful examples for normal LATEX user. Suppose
a document that should be available as a PS file, using LATEX and dvips,
as well as a PDF file, using pdfLATEX. In addition, the document should
contain hyperlinks. In the list of tables there are entries longer than one
line. This is not a problem for the pdfLATEX method, since here hyperlinks
can be broken across multiple lines. However, if a hyperref driver for dvips
or hyperTEX is used then this is not possible. In this case one desires that
for the hyperref setup linktocpage is used. The decision which hyperref
driver to use happens automatically via hyperref.cfg. The file has, for
example, the following content:

\ProvidesFile{hyperref.cfg}
\@ifundefined{pdfoutput}{\ExecuteOptions{dvips}}

{\ExecuteOptions{pdftex}}
\endinput

All the rest can now be left to \AfterFile.
\documentclass{article}
\usepackage{scrlfile}
\AfterFile{hdvips.def}{\hypersetup{linktocpage}}
\AfterFile{hypertex.def}{\hypersetup{linktocpage}}
\usepackage{hyperref}
\begin{document}
\listoffigures
\clearpage
\begin{figure}
\caption{This is an example for a fairly long figure ←↩
caption, but

which does not employ the optional caption argument ←↩
that would

allow one to write a short caption in the list of ←↩
figures.}

225 Chapter 9.

\end{figure}
\end{document}

If now the hyperref drivers hypertex or dvips are used, then the useful
hyperref option linktocpage will be set. In the pdfLATEX case, the option
will not be set, since in that case another hyperref driver, hpdftex.def,
will be used. That means neither hdvips.def nor hypertex.def will be
loaded.

Furthermore, the loading of package scrlfile and the \AfterFile statement
can be written in a private hyperref.cfg. If you do so, then instead of
\usepackage the macro \RequirePackage ought be used (see [Tea99]).
The new lines have to be inserted directly after the \ProvidesFile line, thus
immediately prior to the execution of the options dvips or pdftex.

226 Chapter 10.

Package tocbasic for Class and Package Authors

Note: This is only a short version of the documentation. The
german KOMA-Script guide does contain a long version with
usefull examples, that should also be translated!
If a package creates it’s list “list of something”—something like “list of

figures”, “list of tables”, “list of listings”, “list of algorithms”, etc. also
known as toc-files—have to do some operations, that are equal for all
those packages. Also it may be usefull for classes and other packages to
know about these additional toc-files. This packages implements some
basic functionality for all those packages. Using this package will also
improve compatibility with KOMA-Script and—let us hope—other classes
and packages.

10.1. Legal Note

You are allowed to destribute this part of KOMA-Script without the main
part of KOMA-Script. The files “scrlogo.dtx” and “tocbasic.dtx” may
be distributed together under the conditions of the LATEX Project Public
License, either version 1.3c of this license or (at your option) any later
version.
The latest version of this license is in

http://www.latex-project.org/lppl.txt and version 1.3c or later is
part of all distributions of LATEX version 2005/12/01 or later.

10.2. Using Package tocbasic

This package was made to be used by class and package authors. Because
of this the package has no options. If different packages would load it
with different options a option clash would be the result. So using options
would’nt be a good idea.
There are two kind of commands. The first kind are basic command.

Those are used to inform other packages about the extensions used for
files that represent a list of something. Classes or packages may use this
information e.g, for putting something to every of those files. Packages
may also ask, if an extension is already in use. This does even work, if
\nofiles was used. The second kind are commands to create the list of
something.

227 Chapter 10.

10.2.1. Basic Commands

Basic commands are used to handle a list of all extensions known for
files representing a list of something. Entries to such files are written
using \addtocontents or \addcontentsline typically. There are also
commands to do something for all known extensions. And there are com-
mands to set or unset features of an extension or the file represented by the
extension. Typically an extension also has an owner. This owner may be
a class or package or a term decided by the author of the class or package
using tocbasic, e.g., KOMA-Script uses the owner float for list of figures
ans list of tables and the default owner for the table of contents.

\ifattoclist{extension }{true part }{false part }

This command may be used to ask, wether a extension is already a known
extension or not. If the extension is already known the true part will
be used, otherwise the false part will be used.

Example: Maybe you want to know if the extension “foo” is already in
use to report an error, if you can not use it:

\ifattoclist{foo}{%
\PackageError{bar}{%

extension ‘foo’ already in use%
}{%

Each extension may be used only
once.\MessageBreak
The class or another package already
uses extension ‘foo’.\MessageBreak
This error is fatal!\MessageBreak
You should not continue!}%

}{%
\PackageInfo{bar}{using extension ‘foo’}%

}

\addtotoclist[owner]{extension }

This command adds the extension to the list of known extensions. If the
optional argument, [owner], was given this owner will be stored to be
the owner of the extension . If you omit the optional argument, tocbasic
tries to find out the filename of the current processed class or package and
stores this as owner. This will fail if \addtotoclist was not used, loading

228 Chapter 10.

a class or package but using a command of a class or package after loading
this class or package. In this case the owner will be set to “.”. Note that
an empty owner is not the same like omitting the optional argument, but
an empty owner.

Example: You want to add the extension “foo” to the list of known ex-
tension, while loading your package with file name “bar.sty”:

\addtotoclist{foo}

This will add the extension “foo” with owner “bar.sty” to the list of
known extensions, if it was not already at the list of known extensions.
If the class or another package already added the extension you will get
the error:

Package tocbasic Error: file extension ‘#2’ cannot be ←↩
used twice

See the tocbasic package documentation for explanation.
Type H <return> for immediate help.

and after typing H <return> you will get the help:
File extension ‘foo’ is already used by a toc-file, ←↩
while bar.sty

tried to use it again for a toc-file.
This may be either an incompatibility of packages, an ←↩
error at a package,

or a mistake by the user.

Maybe you package has a command, that creates list of files dynamically.
In this case you should use the optional argument of \addtotoclist to
set the owner.

\newcommand*{\createnewlistofsomething}[1]{%
\addtotoclist[bar.sty]{#1}%
% Do something more to make this list of something ←↩
available

}

If the user calls know, e.g.

229 Chapter 10.

\createnewlistofsomething{foo}

this would add the extension “foo” with the owner “bar.sty” to the list
of known extension or report an error, if the extension is already in use.
You may use any owner you want. But it should be unique! So, if you
are the author of package float you may use for example owner “float”
instead of owner “float.sty”, so the KOMA-Script options for list of
figure and list of table will also handle the lists of this package, that are
already added to the known extensions, when the option is used.

\AtAddToTocList[owner]{commands }

This command adds the commands to a internal list of commands, that
should be processed, if a toc-file with the given owner will be added to the
list of known extensions using \addtoloclist. If you omit the optional
argument, tocbasic tries to find out the filename of the current processed
class or package and stores this as owner. This will fail if \AtAddToTocList
was not used, loading a class or package but using a command of a class
or package after loading this class or package. In this case the owner will
be set to “.”. Note that an empty owner is not the same like omitting
the optional argument. With an empty owner you may add {commands },
that will be processed at every succefull \addtotoclist, after processing
the commands for the indivdual owner. While processing the commands,
\@currext wil be set to the extension of the currently added extension.

Example: tocbasic itself uses
\AtAddToTocList[]{%

\expandafter\tocbasic@extend@babel
\expandafter{\@currext}%

}

to add every extension to the tocbasic-internal babel handling of
toc-files. The \expandafter are needed, because the argument of
\tocbasic@extend@babel has to expanded! See the description of
\tocbasic@extend@babel at section 10.2.3, page 234 for more informa-
tion.

\removefromtoclist[owner]{extension }

This command removes the extension from the list of known extensions.
If the optional argument, [owner], was given the extension will only be
removed, if it was added by this owner . If you omit the optional argument,

230 Chapter 10.

tocbasic tries to find out the filename of the current processed class or
package and use this as owner. This will fail if \removefromtoclist was
not used, loading a class or package but using a command of a class or
package after loading this class or package. In this case the owner will be
set to “.”. Note that an empty owner is not the same like omitting the
optional argument, but removes the extension without any owner test.

\doforeachtocfile[owner]{commands }

This command processes commands for every known toc-file of the given
owner . While processing the commands \@currext ist the extension of the
current toc-file for every known toc-file. If you omit the optional argument,
[owner], every known toc-file will be used. If the optional argument is
empty, only toc-files with an empty owner will be used.

Example: If you want to type out all known extensions, you may simply
write:

\doforeachtocfile{\typeout{\@currext}}

and if only the extensions of owner “foo” should be typed out:
\doforeachtocfile[foo]{\typeout{\@currext}}

\tocbasicautomode

This command redefines LATEX kernel macro \@starttoc to add all
not yet added extensions to the list of known extensions and use
\tocbasic@starttoc instead of \@starttoc.

10.2.2. Creating a List of Something

At the previous section you’ve seen commands to handle a list of known
extensions and to trigger commands while adding a new extension to this
list. You’ve also seen a command to do something for all known extensions
or all known extensions of one owner. In this section you will see commands
to handle the file corresponding with an extension or the list of known
extensions.

\addtoeachtocfile[owner]{contents }

This command writes contents to every known toc-file of owner . If you
omit the optional argument, contents it written to every known toc-file.

231 Chapter 10.

While writing the contents, \@currext is the extension of the currently
handled toc-file.

Example: You may add a vertical space of one text line to all toc-files.
\addtoeachtocfile{%

\protect\addvspace{\protect\baselineskip}%
}

And if you want to do this, only for the toc-files of owner “foo”:
\addtoeachtocfile[foo]{%

\protect\addvspace{\protect\baselineskip}%
}

\addcontentslinetoeachtocfile[owner]{level }{contentsline }

This command is something like \addcontentsline not only for one file,
but all known toc-files or all known toc-files of a given owner.

Example: You are a class author and want to write the chapter entry not
only to the table of contents toc-file but to all toc-files, while #1 is the
title, that should be written to the files.

\addcontentslinetoeachtocfile{chapter}{%
\protect\numberline{\thechapter}#1}

\listoftoc*{extension }
\listoftoc[list of title]{extension }

This commands may be used to set the “list of” of a toc-file. The star
version \listoftoc* needs only one argument, the extension of the toc-
file. It does setup the vertical and horizontal spacing of paragraphs, calls
before and after hooks and reads the toc-file. You may use it as direct
replacement of the LATEX kernel macro \@starttoc.
The version without star, sets the whole toc-file with title, optional ta-

ble of contents entry, and running heads. If the optional argument [list
of title] was given, it will be used as title term, optional table of con-
tents entry and running head. Note: If the optional argument is empty,
this term will be empty, too! If you omit the optional argument, but
\listofextension name was defined, that will be used.

232 Chapter 10.

Example: You have a new “list of algorithms” with extension loa and
want to show it.

\listof[list of algorithm]{loa}

Maybe you want, that the “list of algorithms” will create an entry at the
table of contents. You may set

\setuptoc{loa}{totoc}

But maybe the “list of algorithms” should not be set with a title. So you
may use

\listof*{loa}

Note that in this case no entry at the table of contents will be created,
even if you’d used the setup command above.

The default heading new following features using \setuptoc:

totoc writes the title of the list of to the table of contents

numbered uses a numbered headings for the list of

leveldown uses not the top level heading (e.g., \chapter with book) but
the first sub level (e.g., \section with book).

\BeforeStartingTOC[extension]{commands }
\AfterStartingTOC[extension]{commands }

This commands may be used to process commands before or after loading
the toc-file with given extension using \listoftoc* or \listoftoc. If
you omit the optional argument (or set an empty one) the general hooks
will be set. The general before hook will be called before the individuel one
and the general after hook will be called after the individuel one. While
calling the hooks \@currext is the extension of the toc-file and should not
be changed.

\BeforeTOCHead[extension]{commands }
\AfterTOCHead[extension]{commands }

This commands may be used to process commands before or after set-
ting the title of a toc-file with given extension using \listoftoc* or
\listoftoc. If you omit the optional argument (or set an empty one) the

233 Chapter 10.

general hooks will be set. The general before hook will be called before the
individuel one and the general after hook will be called after the individuel
one. While calling the hooks \@currext is the extension of the toc-file and
should not be changed.

\listofeachtoc[owner]

This command sets all toc-files or all toc-files of the given owner using
\listoftoc. You should have defined \listofextension name for each
toc-file, otherwise you’ll get a warning.

\MakeMarkcase

This command will be used to change the case of the letters at the running
head. The default is, to use \@firstofone for KOMA-Script classes and
\MakeUppercase for all other classes. If you are the class author you
may define \MakeMarkcase on your own. If scrpage2 or another package,
that defines \MakeMarkcase will be used, tocbasci will not overwrite that
Definition.

\deftocheading{extension }{definition }

This command defines a heading command, that will be used instead of
the default heading using \listoftoc. The heading command has exactly
one argument. You may reference to that argument using #1 at your
defintion .

\setuptoc{extension }{featurelist }
\unsettoc{extension }{featurelist }

This commands set up and unset features binded to an extension . The
featurelist is a comma seperated list of single features. tocbasic does
know following features:

totoc writes the title of the list of to the table of contents

numbered uses a numbered headings for the list of

leveldown uses not the top level heading (e.g., \chapter with book) but
the first sub level (e.g., \section with book).

onecolumn switch to internal one column mode, if the toc is set in internal
two column mode and no leveldown was used.

234 Chapter 10.

nobabel prevents the extension to be added to the babel handling of toc-
files. To make this work, you have to set the feature before adding
the extension to the list of known extension.

Classes and packages may know features, too, e.g, the KOMA-Script
classes know following additional features:

chapteratlist activates special code to be put into the list at start of a
new chapter. This code may either be vertical space or the heading
of the chapter.

\iftocfeature{extension }{feature }{true-part }{false-part }

This command may be used, to test, if a feature was set for extension .
If so the true-part will be processed, otherwise the false-part will be.

10.2.3. Internal Commands for Class and Package Authors

Commands with prefix \tocbasic@ are internal but class and package
authors may use them. But even if you are a class or package author you
should not change them!

\tocbasic@extend@babel{extension }

This command extends the babel handling of toc-files. By default babel
writes language selections only to toc, lot and lof. tocbasic adds every
extension added to the list of known extensions (see \addtotoclist,
section 10.2.1, page 227) using \tocbasic@extend@babel. Note: This
should be called only once per extension . \tocbasic@extend@babel
does nothing, if the feature nobabel was set for extension before using
\addtotoclist.

\tocbasic@starttoc{extension }

This command is something like the LATEX kernel macro \@starttoc,
but does some additional settings before using \@starttoc. It does set
\parskip zu zero, \parindent to zero, \parfillskip to zero plus one
fil, \@currext to the extension , and processes hooks before and after
reading the toc-file.

\tocbasic@@before@hook
\tocbasic@@after@hook

This macros are processed before and after loading a toc-file. If you don’t
use \listoftoc or \listoftoc* or \tocbasic@starttoc to load the toc-
file, you should call these, too. But you should not redefine them!

235 Chapter 10.

\tocbasic@extension @before@hook
\tocbasic@extension @after@hook

This macros are processed before and after loading a toc-file. If you don’t
use \listoftoc or \listoftoc* or \tocbasic@starttoc to load the toc-
file, you should call these, too. But you should not redefine them! The
first macro is processed just before \tocbasic@@before@hook, the second
one just after \tocbasic@@after@hook

\tocbasic@listhead{title }

This command is used by \listoftoc to set the heading of the list,
either the default heading or the indiviually defined heading. If you
define your own list command not using \listoftoc you may use
\tocbasic@listhead. In this case you should define \@currext to be
the extension of the toc-file before using \tocbasic@listhead.

\tocbasic@listhead@extension {title }

This command is used in \tocbasic@listhead to set the individual head-
ings, optional toc-entry, and running head, if it was defined. If it was not
defined it will be defined and used in \tocbasic@listhead.

236 Appendix A.

Japanese Letter Support for scrlttr21

Since version 2.97e scrlttr2 provides support not only for European ISO en-
velope sizes and window envelopes, but also for Japanese envelopes, in the
form of lco files which set the layout of the paper. This chapter docu-
ments the support, and provides a few examples of using the provided lco
files for printing letters intended for Japanese envelopes.

A.1. Japanese standard paper and envelope sizes

The Japan Industrial Standard (JIS) defines paper sizes and envelope sizes
for national use, which both overlap with the ISO and US sizes and include
some metricated traditional Japanese sizes. Envelope window size and
position have not been defined internationally as yet; hence, there exists a
plethora of envelopes with differing window sizes and positions. The below
subsections give some background on Japanese paper sizes and envelopes.

A.1.1. Japanese paper sizes

The JIS defines two main series of paper sizes:

1. the JIS A-series, which is identical to the ISO A-series, but with
slightly different tolerances; and

2. the JIS B-series, which is not identical to the ISO/DIN B-series.
Instead, the JIS B-series paper has an area 1.5 times that of the cor-
responding A-series paper, so that the length ratio is approximately
1.22 times the length of the corresponding A-series paper. The aspect
ratio of the paper is the same as for A-series paper.

Both JIS A-series and B-series paper is widely available in Japan and
most photocopiers and printers are loaded with at least A4 and B4 paper.
The ISO/JIS A-series, and the different ISO and JIS B-series sizes are
listed in table A.1.
There are also a number of traditional paper sizes, which are now used

mostly only by printers. The most common of these old series are the
Shiroku-ban and the Kiku paper sizes. The difference of these types com-
pared to the JIS B-series are shown in table A.2. Finally, there are some

1This chapter has been written originally by Gernot Hassenpflug.

237 Appendix A.

Table A.1.: ISO and JIS standard paper sizes

ISO/JISA W×H in mm ISOB W×H in mm JISB W×H in mm
A0 841×1189 B0 1000×1414 B0 1030×1456
A1 594×841 B1 707×1000 B1 728×1030
A2 420×594 B2 500×707 B2 515×728
A3 297×420 B3 353×500 B3 364×515
A4 210×297 B4 250×353 B4 257×364
A5 148×210 B5 176×250 B5 182×257
A6 105×1481 B6 125×176 B6 128×182
A7 74×105 B7 88×125 B7 91×128
A8 52×74 B8 62×88 B8 64×91
A9 37×52 B9 44×62 B9 45×64
A10 26×37 B10 31×44 B10 32×45
A11 18×26 B11 22×32
A12 13×18 B12 16×22

1Although Japan’s official postcard size appears to be A6, it is actually 100×148mm,
5 millimeters narrower than A6.

common stationary sizes, listed in table A.3. You may come across these
when buying stationary.
The ISO C-series is not a paper size as such, but is a standard devel-

oped for envelopes, intended for the corresponding A-series paper, and is
discussed in the next subsection.

Table A.2.: Japanese B-series variants

Format JIS B-series Shiroku-ban Kiku
Size W×H in mm W×H in mm W×H in mm
4 257×364 264×379 227×306
5 182×257 189×262 151×227
6 128×182 189×262
7 91×128 127×188

238 Appendix A.

Table A.3.: Main Japanese contemporary stationary

Name W×H in mm Usage and Comments
Kokusai-ban 216×280 “international size”

i. e., US letter size
Semi B5 or 177×250 “standard size”
Hyoujun-gata (formerly called “Hyoujun-gata”),

semi B5 is almost identical to ISO B5
Oo-gata 177×230 “large size”
Chuu-gata 162×210 “medium size”
Ko-gata 148×210 “small size”
Ippitsu sen 82×185 “note paper”

A.1.2. Japanese envelope sizes

ISO (International Organization for Standardization) envelope sizes are the
official international metric envelope sizes; however, Japan uses also JIS
and metricated traditional envelope sizes. Sizes identified as nonstandard
do not conform to Universal Postal Union requirements for correspondence
envelopes.

ISO envelope sizes

The ISO C-series envelope sizes, and possibly B-series envelope sizes, are
available in Japan. C-series envelopes can hold the corresponding A-series
paper, while B-series envelopes can hold either the corresponding A-series
paper or the corresponding C-series envelope. The ISO envelope sizes
commonly for Japan are listed in table A.4, with the corresponding paper
they are intended for, and the folding required.

JIS and traditional envelope sizes

The JIS classifies envelopes into three categories based on the general shape
of the envelope, and where the flap is located:

You: these envelopes are of the ‘commercial’ type, rectangular, and cor-
respond largely to Western envelope sizes, and also have the flap on
the long dimension (‘Open Side’) in ‘commercial’ or ‘square’ style.
‘You-kei’ means Western-style.

239 Appendix A.

Table A.4.: Japanese ISO envelope sizes

Name W×H in mm Usage and Comments
C0 917×1297 for flat A0 sheet;

nonstandard
C1 648×917 for flat A1 sheet;

nonstandard
C2 458×648 for flat A2 sheet, A1 sheet folded in half;

nonstandard
C3 324×458 for flat A3 sheet, A2 sheet folded in half;

nonstandard
B4 250×353 C4 envelope
C4 229×324 for flat A4 sheet, A3 sheet folded in half;

very common; nonstandard
B5 176×250 C5 envelope
C5 162×229 for flat A5 sheet, A4 sheet folded in half;

very common; nonstandard
B6 125×176 C6 envelope; A4 folded in quarters;

very common
C6 114×162 for A5 sheet folded in half,

A4 sheet folded in quarters;
very common

C6/C5 114×229 A4 sheet folded in thirds;
very common

C7/6 81×162 for A5 sheet folded in thirds; uncommon;
nonstandard

C7 81×114 for A5 sheet folded in quarters; uncommon;
nonstandard

C8 57×81
C9 40×57
C10 28×40
DL1 110×220 for A4 sheet folded in thirds,

A5 sheet folded in half lengthwise;
very common

1Although DL is not part of the ISO C-series, it is a very widely used standard size.
DL, probably at one time the abbreviation of DIN Lang (Deutsche Industrie Norm,
long), is now identified as “Dimension Lengthwise” by ISO 269.

240 Appendix A.

Chou: these are also ‘commercial’ type envelopes, with the same shape as
the corresponding ‘You’ type, but with the flap on the short dimen-
sion (‘Open End’) in ‘wallet’ style. ‘Chou-kei’ means long-style.

Kaku: these envelopes are more square in appearance and are made for
special use, and correspond to ‘announcement’ envelopes. The flap
is on the long side, in the ‘square’ style. They generally do not fall
under the ordinary envelope postage rates. ‘Kaku-kei’ means square-
style.

The main JIS and traditional envelope sizes and the corresponding paper
and its required folding are listed in table A.5.

Table A.5.: Japanese JIS and other envelope sizes

JIS Name W× in mm Usage and Comments
Chou 1 142×332 for A4 folded in half lengthwise;

nonstandard
Yes Chou 2 119×277 for B5 folded in half lengthwise;

nonstandard
Yes Chou 3 120×235 for A4 folded in thirds;

very common
Chou 31 105×235 for A4 folded in thirds
Chou 30 92×235 for A4 folded in fourths3

Chou 40 90×225 for A4 folded in fourths3

Yes Chou 4 90×205 for JIS B5 folded in fourths3;
very common

Kaku A3 320×440 for A3 flat, A2 folded in half
; nonstandard

Kaku 0 287×382 for B4 flat, B3 folded in half;
nonstandard

Kaku 1 270×382 for B4 flat, B3 folded in half;
nonstandard

Yes Kaku 2 240×332 for A4 flat, A3 folded in half;
nonstandard

Kaku 229×324 for A4 flat, A3 folded in half;
Kokusai A4 same size as ISO C4;

nonstandard
Yes Kaku 3 216×277 for B5 flat, B4 folded in half;

nonstandard
. . .

241 Appendix A.

Table A.5.: Japanese JIS and other envelope sizes (continued)

JIS Name W× in mm Usage and Comments
Yes Kaku 4 197×267 for B5 flat, B4 folded in half;

nonstandard
Yes Kaku 5 190×240 for A5 flat, A4 folded in half

; nonstandard
Yes Kaku 6 162×229 for A5 flat, A4 folded in half;

same size as ISO C5;
nonstandard

Yes Kaku 7 142×205 for B6 flat, B5 folded in half;
nonstandard

Yes Kaku 8 119×197 pay envelope (for salaries, wages)
; common for direct mail

Yes You 01 235×120 for A4 folded in thirds;
or Furusu 10 same size as Chou 3 but with

‘Open Side’ style flap
You 01 197×136 for kyabine1 (cabinet) size photos

(165mm×120mm);
nonstandard

You 12 176×120 for B5 folded in quarters
You 12 173×118 for B5 folded in quarters

Yes You 2 162×114 for A5 folded in half,
A4 folded in quarters;
same size as ISO C6

Yes You 3 148×98 for B6 folded in half
Yes You 4 235×105 for A4 folded in thirds
Yes You 5 217×95 for A4 folded in fourths3

Yes You 6 190×98 for B5 folded in thirds
Yes You 7 165×92 for A4 folded in quarters,

B4 folded in quarters

1Because two different sizes are called You 0, the JIS You 0 is normally called Furusu 10;
Furusu (‘fools’) derives from ‘foolscap’; Kyabine is a metricated traditional Japanese
size.

2Two slightly different sizes are sold as You 1; the smaller size (173mm×118mm) is
the paper-industry standard size.

3Twice in the same direction.

242 Appendix A.

Window variants

There are a large number of window subtypes existing within the frame-
work explained in the previous subsection. The most common window
sizes and locations are listed in table A.6.

A.2. Provided lco files

In scrlttr2 support is provided for Japanese envelope and window sizes
through a number of lco files which customize the foldmarks required for
different envelope sizes and subvariants with different window positions
and sizes.
The provided lco files together with the envelope types for which they

provide support are listed at table A.7. See table A.4 for the full list of
Japanese envelopes and the paper they take, and table A.6 for the common
window sizes and locations. The rightmost column indicates which lco file
provides the support.
The tolerances for location is about 2mm, so it is possible to accommo-

date all the envelope and window variants of table A.6 with just a small
number of lco files. The difference between Chou/You 3 and Chou/You 4
is determined by paper size.

A.3. Examples of Japanese letter usage

Assume you want to write a letter on A4 size paper and will post it in a
Japanese envelope. If the envelope has no window, then it is enough to
determine whether the envelope dimensions match a European one—the
standard DIN.lco style may suffice for many such cases.
If you wish to use a windowed envelope, please note that owing to the

large variety, not all existing subvariants are currently supported. If you
should note that you particular windowed envelope has its window dimen-
sions and positions significantly (more than approximately 2mm) differ-
ent from any of the supported subvariants, please contact the author of
KOMA-Script to obtain support as soon as possible, and in the meanwhile
create a customized lco file for your own use, using one of the existing ones
as a template and reading the KOMA-Script documentation attentively.
If your window envelope subvariant is supported, this is how you would

go about using it: simply select the required lco file and activate the
horizontal and vertical foldmarks as required. Another, independent, mark

243 Appendix A.

Table A.6.: Supported Japanese envelope types and the window sizes and
locations.

Envelope type Window name1 - size2 - location3 lco file4

Chou 3 A 90×45 l 23, t 13 NipponEL
Chou 3 F 90×55 l 23, t 13 NipponEH
Chou 3 Hisago 90×45 l 23, t 12 NipponEL
Chou 3 Mutoh 1 90×45 l 20, t 11 NipponEL
Chou 3 Mutoh 101 90×55 l 20, t 11 NipponEH
Chou 3 Mutoh 2 80×45 l 20, t 11 NipponEL
Chou 3 Mutoh 3 90×45 l 25, t 11 NipponLL
Chou 3 Mutoh 301 90×55 l 25, t 11 NipponLH
Chou 3 Mutoh 6 100×45 l 20, t 11 NipponEL
Chou 3 v.25 90×45 l 24, t 12 NipponLL
Chou 40 A 90×45 l 23, t 13 NipponEL
Chou 4 A 90×45 l 23, t 13 NipponEL
Chou 4 B 80×45 l 98, t 28 NipponRL
Chou 4 C 80×45 l 21, t 13 NipponEL
Chou 4 K 80×45 l 22, t 13 NipponEL
Chou 4 Mutoh 1 80×45 l 40, b 11 —
Chou 4 Mutoh 2 80×45 l 20, t 11 NipponEL
Chou 4 Mutoh 3 90×45 l 20, t 11 NipponEL
Chou 4 Mutoh 6 100×45 l 20, t 11 NipponEL
Chou 4 v.25 80×45 l 20, t 12 NipponEL
Chou 4 v.35 90×45 l 20, t 12 NipponEL
Kaku A4 v.16 95×45 l 20, t 24 KakuLL
You 0 Cruise 6 90×45 l 20, t 12 NipponEL
You 0 Cruise 601 90×55 l 20, t 12 NipponEH
You 0 Cruise 7 90×45 l 20, b 12 NipponEL
You 0 Cruise 8 90×45 l 24, t 12 NipponLL
You 0 v.25 90×45 l 24, t 12 NipponEL
You 0 v.35 90×45 l 23, t 13 NipponEL
You 4 A 90×45 l 23, t 13 NipponEL

1Names (acting as subtype information) are taken from the manufacturer catalog.
2Given as width by height in millimeters.
3Given as offset from left (l) or right (r), followed by offset from bottom (b) or top (t).
4The lco file, which provides support (see table A.7).
5 In the absence of any other information, a numerical variation number for the subtype

name is provided.
6Dimensions apply when envelope is held in portrait mode.

244 Appendix A.

Table A.7.: lco files provided by scrlttr2 for Japanese window envelopes

lco file Supported Window size1 Window location1

NipponEL Chou/You 3 and 4 90×45 l 22, t 12
NipponEH Chou/You 3 and 4 90×55 l 22, t 12
NipponLL Chou/You 3 and 4 90×45 l 25, t 12
NipponLH Chou/You 3 and 4 90×55 l 25, t 12
NipponRL Chou/You 3 and 4 90×45 l 98, t 28
KakuLL Kaku A4 90×45 l 25, t 24

1Window size is given in width by height, location as offset from left (l) or right (r),
followed by offset from bottom (b) or top (t). All Values in millimeters.

is the punching mark which divides a sheet in two horizontally for easy
punching and filing.

A.3.1. Example 1:

Your favourite envelope happens to be a You 3 with window subvariant
Mutoh 3, left over from when the company had its previous name, and
you do not wish them to go to waste. Thus, you write your letter with the
following starting code placed before the letter environment:
\LoadLetterOption{NipponLL}\setkomavar{myref}{NipponLL}
\begin{letter}{Martina Muster\\Address}
...
\end{letter}

A.3.2. Example 2:

You originally designed your letter for a You 3 envelope, but suddenly you
get handed a used electrical company envelope with cute manga characters
on it which you simply cannot pass up. Surprisingly, you find it conforms
fairly closely to the Chou 4 size and C window subvariant, such that you
realize you can alter the following in your document preamble:
\LoadLetterOption{NipponEL}\setkomavar{myref}{NipponEL}
\begin{letter}{Martina Muster\\Address}
...
\end{letter}

245 Appendix A.

Now, scrlttr2 automatically reformats the letter for you to fit the required
envelope.

246 Bibliography

Bibliography

In the following you can find many references. All of them are referenced
from the main text. In many cases the reference points to documents or
directories which can be accessed via Internet. In these cases the reference
includes a URL instead of a publisher. If the reference points to a LATEX
package then the URL is written in the form “CTAN://destination”. The
prefix “CTAN://” means the TEX archive on a CTAN server or mirror.
For example, you can substitute the prefix with ftp://ftp.ctan.org/
tex-archive/. For LATEX packages it is also important to mention that
we have tried to give a version number appropriate to the text that cites
the reference. But for some packages is is very difficult to find a consistent
version number and release date. Additionally the given version is not
always the current version. If you want install new packages take care
that the package is the most up-to-date version and check first whether
the package is already available on your system or not.

[Bra01] Johannes Braams:
Babel, a multilangual package for use with LATEX’s standard
document classes, Februar 2001.
CTAN://macros/latex/required/babel/.

[Car98] David Carlise:
The longtable package, Mai 1998.
CTAN://macros/latex/required/tools/.

[Car99a] David Carlisle:
The ifthen package, September 1999.
CTAN://macros/latex/base/.

[Car99b] David P. Carlisle:
Packages in the ‘graphics’ bundle, Februar 1999.
CTAN://macros/latex/required/graphics/.

[Dal99] Patrick W. Daly:
Natural sciences citations and references, Mai 1999.
CTAN://macros/latex/contrib/natbib/.

[DUD96] DUDEN:
Die deutsche Rechtschreibung. DUDENVERLAG, Mannheim,
21. Auflage, 1996.

ftp://ftp.ctan.org/tex-archive/
ftp://ftp.ctan.org/tex-archive/
ftp://ftp.ctan.org/tex-archive/
ftp://ftp.ctan.org/tex-archive/
ftp://ftp.ctan.org/tex-archive/macros/latex/required/babel/
ftp://ftp.ctan.org/tex-archive/macros/latex/required/tools/
ftp://ftp.ctan.org/tex-archive/macros/latex/base/
ftp://ftp.ctan.org/tex-archive/macros/latex/required/graphics/
ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/natbib/

247 Bibliography

[Fai99] Robin Fairbairns:
topcapt.sty, März 1999.
CTAN://macros/latex/contrib/misc/topcapt.sty.

[FAQ] Tex frequently asked questions on the web.
http://www.tex.ac.uk/faq/.

[Gau03] Bernard Gaulle:
Les distributions de fichiers de francisation pour latex,
Dezember 2003.
CTAN://language/french/.

[KDP] KOMA-Script Homepage.
http://www.komascript.de.

[Kie99] Axel Kielhorn:
adrconv, November 1999.
CTAN://macros/latex/contrib/adrconv/.

[Kil99] James Kilfiger:
extsizes, a non standard LATEX-package, November 1999.
CTAN://macros/latex/contrib/extsizes/.

[Lin01] Anselm Lingnau:
An improved environment for floats, Juli 2001.
CTAN://macros/latex/contrib/float/.

[OPHS99] Tobias Oetker, Hubert Partl, Irene Hyna und Elisabeth
Schlegl:
The Not So Short Introduction to LATEX2ε, April 1999.
CTAN://info/lshort/.

[Rah01] Sebastian Rahtz:
Hypertext marks in LATEX: the hyperref package, Februar
2001.
CTAN://macros/latex/contrib/hyperref/.

[Rai98a] Bernd Raichle:
german package, Juli 1998.
CTAN://language/german/.

[Rai98b] Bernd Raichle:
ngerman package, Juli 1998.
CTAN://language/german/.

[RNH02] Bernd Raichle, Rolf Niepraschk und Thomas Hafner:
DE-TEX-/DANTE-FAQ, Mai 2002.
http://www.dante.de/faq/de-tex-faq/.

ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/misc/topcapt.sty
http://www.tex.ac.uk/faq/
ftp://ftp.ctan.org/tex-archive/language/french/
http://www.komascript.de
ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/adrconv/
ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/extsizes/
ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/float/
ftp://ftp.ctan.org/tex-archive/info/lshort/
ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/hyperref/
ftp://ftp.ctan.org/tex-archive/language/german/
ftp://ftp.ctan.org/tex-archive/language/german/
http://www.dante.de/faq/de-tex-faq/

248 Bibliography

[Sch03] Martin Schröder:
The ragged2e package, Januar 2003.
CTAN://macros/latex/contrib/ms/.

[Som08] Axel Sommerfeldt:
Anpassen der Abbildungs- und Tabellenbeschriftungen mit
Hilfe des caption-Paketes, April 2008.
CTAN://macros/latex/contrib/caption/.

[SU03] Tom Sgouros und Stefan Ulrich:
The mparhack package, Mai 2003.
CTAN://macros/latex/contrib/mparhack/.

[Tea99] LATEX3 Project Team:
LATEX2ε for class and package writers, März 1999.
CTAN://macros/latex/doc/clsguide.pdf.

[Tea00] LATEX3 Project Team:
LATEX2ε font selection, September 2000.
CTAN://macros/latex/doc/fntguide.pdf.

[Tea01] LATEX3 Project Team:
LATEX2ε for authors, Juli 2001.
CTAN://macros/latex/doc/usrguide.pdf.

[Tob00] Geoffrey Tobin:
setspace LATEX package, Dezember 2000.
CTAN://macros/latex/contrib/setspace/.

[Tsc87] Jan Tschichold:
Ausgewählte Aufsätze über Fragen der Gestalt des Buches und
der Typographie. Birkhäuser Verlag, Basel, 2. Auflage, 1987.

[Ume00] Hideo Umeki:
The geometry package, Juni 2000.
CTAN://macros/latex/contrib/geometry/.

[vO00] Piet van Oostrum:
Page layout in LATEX, Oktober 2000.
CTAN://macros/latex/contrib/fancyhdr/.

[WF00] Hans Peter Willberg und Friedrich Forssman:
Erste Hilfe in Typografie. Verlag Hermann Schmidt, Mainz,
2000.

ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/ms/
ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/caption/
ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/mparhack/
ftp://ftp.ctan.org/tex-archive/macros/latex/doc/clsguide.pdf
ftp://ftp.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf
ftp://ftp.ctan.org/tex-archive/macros/latex/doc/usrguide.pdf
ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/setspace/
ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/geometry/
ftp://ftp.ctan.org/tex-archive/macros/latex/contrib/fancyhdr/

249 Index

Index

There are two kinds of page numbers at this index. The bold printed
numbers show the pages of declaration or explanation of the topic. The
normal printed numbers show the pages of using a topic.

General Index

A
address 156–162, 191–195

database . 220
file 209–214, 216, 220
list . 212

aphorism . 93
appendix 51, 89, 120
author . 74

B
back matter . 80
bibliography 81, 120, 121
binding . 17
binding correction 18, 18, 20, 23
boxed (float style) 112

C
caption

of figure . 108
of table . 108

center mark see punchmark
chapter . 48, 89

title . 51
circular letters 209–214
citations . 103
class
→ Index of Files etc. 258

CM fonts . 84
color

in footer . 133
in header . 133

command
→ Index of Commands etc. . . 251

Compatibility 46–47

compatibility 150–151
contents

table of 53, 77, 84
counter

→ Index of Commands etc. . . 251
→ Index of Lengths etc. 257

D
date . 74, 146, 206
dedication . 76
document structure 53
double-sided 17, 64
draft version . 163
DVI . 39

E
EC fonts . 84
element

→ Index of Elements 257
empty (page style) . . . 49, 64–65, 152,

170–171
environment

→ Index of Commands etc. . . 251
equation . 58

number . 81

F
Faltmarke 185, 186
figure . 107

number . 81
file

→ Index of Files etc. 258
final version . 163
float styles

250 General Index

boxed . 112
komaabove 112
komabelow 112
plain . 112
ruled . 112

floating environments 79, 107
foldmark 160, 183, 183
font 59–64, 82–84, 99, 100

size 52, 59–64, 82–84, 153,
169–170

style 111–112, 169–170, 171
footer

color . 133
footnotes . 75, 94
front matter . 80

G
gutter . 18, 18

H
half-title . 72
header . 84

color . 133
heading 86, 90, 91, 138
headings (page style) 64–65,

170–171

I
indentation 50, 106
index . 81, 120

K
komaabove (float style) 112
komabelow (float style) 112

L
language 204–209

-dependent terms 206–209
definition 208
selection . 205

lco . 163–169
leading . 19, 28
length
→ Index of Commands etc. . . 251
→ Index of Lengths etc. 257

letter

class option 163–169
footer 162–163, 189–191
head 156–162, 186–189
Japanese . 236

letters . 149–215
line . 136
line length . 19
list

of figures . 79
of tables . 79

lists . 96–106
LM fonts . 84
logical markup 118

M
macro

→ Index of Commands etc. . . 251
main matter . 80
margin 18, 18, 104

notes . 106
margins . 32
markright . 171
markup . 118
myheadings (page style) 64–65,

170–171, 200

N
numbering 84, 91, 98

O
option

→ Index of Options 259
options 21–23, 150

P
package

→ Index of Files etc. 258
page . 18

counter . 71
layout 47, 151–152
number . 71
style . 64, 125, 139, 140, 152, 153,

200
page footer . 33
page header . 33
page layout 17, 21

251 Index of Commands, Environments, and Variables

page styles
empty . 49, 64–65, 152, 170–171
headings 64–65, 170–171
myheadings . . . 64–65, 170–171,

200
plain . 49, 64–65, 152, 170–171
scrheadings 125–127, 137, 200
scrplain 125–127
useheadings 128–129

pagination . 33
paper . 18

format 37–40
orientation 38

paper format 17, 47
paragraph . 49
PDF . 39
plain (float style) 112
plain (page style) . . . 49, 64–65, 152,

170–171
poems . 101
PostScript . 39
pseudo-length
→ Index of Lengths etc. 257

pseudo-lengths 177–182
publisher . 74
punchmark . 185

R
reference fields line 196–198
rule . 136
ruled (float style) 112
running heading 78, 90
running headings 33

S
scrheadings (page style) . . 125–127,

137, 200

scrplain (page style) 125–127
section

number . 81
sender’s extension 156, 195–196
serifs . 19
structuring . 81
subject . 74, 159
subscript . 119
summary . 56, 77
superscript . 119

T
table . 107

caption . 108
number . 81
of contents 53, 77, 84

telephone list . 212
terms

language-dependent . . . 206–209
text

subscript . 119
superscript 119

text area . 20
textblock height 18
time . 146, 147
title . 53

head . 74
twoside . 107
type style . 65–66
type-area . 32, 36

U
uppercase letters 138
useheadings (page style) . . 128–129

V
variables 172–177

Index of Commands, Environments, and Variables

\@addtoplength 180–182

\@newplength 180

\@setplength 180–182

A
abstract (environment) 77, 91
\addchap . 85
\addchap* . 85

252 Index of Commands, Environments, and Variables

\addcontentslinetoeachtocfile
. 231

addmargin (environment) . . 104–106
\addpart . 85
\addpart* . 85
\addrchar 212–214, 216
\addrentry 211, 216
\Address 216–217
\addsec . 85
\addsec* . 85
\addtoeachtocfile 230–231
\addtokomafont 60–64, 82, 133
\addtolengthplength 182
\addtoreffields 175
\addtotoclist 227–229
\adrchar 212–214, 216
\adrentry 210–211, 216
\AfterClass . 223
\AfterClass* 223
\AfterFile . 222
\AfterPackage 223
\AfterPackage* 223
\AfterStartingTOC 232
\AfterTOCHead 232–233
\and . 74–76
\appendix . 120
\appendixmore 120–121
\areaset . 36–37
\AtAddToTocList 229
\AtBeginLetter 194–195
\author . 74–76
\autodot . 88–89
\automark 129–130, 137

B
backaddress (variable) 172, 193
backaddressseparator (variable)

. 172, 193
\backmatter 80–81
\bankname 207–208
\BeforeClass 223
\BeforeFile . 222
\BeforePackage 223
\BeforeStartingTOC 232
\BeforeTOCHead 232–233

\bigskip 94, 101, 122
boxed

→ General Index 249

C
\capfont . 123
\caplabelfont 123
\caption 58, 108–112
\captionabove 58, 108–112
\captionbelow 58, 108–112
captionbeside (environment)

. 109–111
\captionformat 112
\captionsamerican 206
\captionsaustrian 206
\captionsbritish 206
\captionscroatian 206
\captionsdutch 206
\captionsenglish 206
\captionsfinnish 206
\captionsfrench 206
\captionsgerman 206
\captionsitalian 206
\captionsngerman 206
\captionsnorsk 206
\captionsspanish 206
\captionsUKenglish 206
\captionsUSenglish 206
\cc . 204
\ccname 207–208
ccseparator (variable) 172, 204
\cefoot 125–128
\cehead 125–128
\cfoot . 125–128
\chapapp . 89–90
\chapappifchapterprefix . . . 89–90
\chapter 81–84, 91
\chapter* . 84–85
\chapterformat 88–89
\chaptermark 90–91
\chaptermarkformat 90–91
\chapterpagestyle 66–69
\chead . 125–128
\cleardoubleemptypage 69, 172
\cleardoublepage 48, 69, 172

253 Index of Commands, Environments, and Variables

\cleardoubleplainpage 69, 172
\cleardoublestandardpage 69, 172
\clearpage 69, 172
\clearscrheadfoot 127–128
\clearscrheadings 127–128
\clearscrplain 127–128
\closing . 202
\cofoot 125–128
\cohead 125–128
\Comment 216–217
\contentsname 77–78
customer (variable) . . . 172, 197–198
\customername 207–208

D
\date . 74–76, 147
date (variable) 173, 197–198
\dateamerican 206
\dateaustrian 206
\datebritish 206
\datecroatian 206
\datedutch . 206
\dateenglish 206
\datefinnish 206
\datefrench . 206
\dategerman . 206
\dateitalian 206
\datename 207–208
\datengerman 206
\datenorsk . 206
\datespanish 206
\dateUKenglish 206
\dateUSenglish 206
\dedication 76–77
\defaultreffields 175
\deffootnote 95–96
\deffootnotemark 95–96
\defpagestyle 140–145
\deftocheading 233
\deftripstyle 139–140
\descfont . 123
description (environment) . 99–100
\dictum . 92–94
\dictumauthorformat 92–94
\dictumwidth 92–94

\documentclass 22
\doforeachtocfile 230

E
\emailname 207–208
emailseparator (variable) 173,

188–189
empty

→ General Index 249
\encl . 204
\enclname 207–208
enclseparator (variable) . . 173, 204
\enlargethispage 151
enumerate (environment) 98–99
\extratitle 72–73

F
\faxname 207–208
faxseparator (variable) 173,

188–189
figure (environment) 114
\figureformat 112–113
\firstfoot 190–191
\firsthead . 189
\FirstName 216–217
\flushbottom . 19
\footnote . 95
\footnotemark 95
\footnotetext 95
\footskip

→ Index of Lengths etc. 257
\FreeI . 216–217
\FreeII 216–217
\FreeIII 216–217
\FreeIV 216–217
fromaddress (variable) 173,

187–188
frombank (variable) 173, 200
fromemail (variable) . 173, 187–188
fromfax (variable) 173, 187–188
fromlogo (variable) . . . 173, 187–188
fromname (variable) 171, 173,

187–188
fromphone (variable) . 173, 187–188
fromurl (variable) 173, 187–188
\frontmatter 80–81

254 Index of Commands, Environments, and Variables

H
\headfont . 130
\headfromname 207–208
headings
→ General Index 249

\headmark . 128
\headtoname 207–208

I
\ifattoclist 227
\ifkomavarempty 177
\ifoot . 125–128
\ifthispageodd 69–70
\ifthispagewasodd 69–70
\iftocfeature 234
\ihead . 125–128
\indexpagestyle 66–69
\InputAddressFile 216–217
invoice (variable) 173, 197–198
\invoicename 207–208
\item . 97–101
itemize (environment) 97–98

K
komaabove
→ General Index 249

komabelow
→ General Index 249

\KOMAoption 22–23
\KOMAoptions 22–23, 150

L
\labelenumi 98–99
\labelenumii 98–99
\labelenumiii 98–99
\labelenumiv 98–99
labeling (environment) . . . 100–101
\labelitemi 97–98
\labelitemii 97–98
\labelitemiii 97–98
\labelitemiv 97–98
\LastName 216–217
\lefoot 125–128
\leftmark . 128
\lehead 125–128
letter (environment) 194, 194

\LetterOptionNeedsPapersize
. 168–169

\linespread 19, 28
\listfigurename 80
\listofeachtoc 233
\listoffigures 80
\listoftables 80
\listoftoc 231–232
\listoftoc* 231–232
\listtablename 80
\LoadLetterOption 164–166
location (variable) 174, 196
\lofoot 125–128
\lohead 125–128
\lowertitleback 76

M
\mainmatter 80–81
\MakeMarkcase 233
\maketitle 72–77
\MakeUppercase 177
\manualmark . 129
\marginline 106–107
\marginpar 106–107
\markboth 65, 129, 130, 171, 176, 200
\markleft 130, 176, 200
\markright . . . 65, 129, 130, 176, 200
\medskip . 101
\minisec . 86–87
myheadings

→ General Index 249
myref (variable) 174, 197–198
\myrefname 207–208

N
\Name . 216–217
\nameday . 147
\newcaptionname 209
\newkomavar . 175
\newkomavar* 175
\newpagestyle 140–145
\nextfoot . 200
\nexthead . 200
\noindent . 103
\nopagebreak 102

255 Index of Commands, Environments, and Variables

O
\ohead . 125–128
\opening 171, 201
\othersectionlevelsformat . 88–89

P
\pagemark . 128
\pagename 207–208
\pagenumbering 71
\pagestyle 64–65, 128–129,

170–171
\paperheight
→ Index of Lengths etc. 257

\paragraph 81–84
\paragraph* 84–85
\parbox . 93
\part . 81–84, 91
\part* . 84–85
\partformat 88–89
\partpagestyle 66–69
\pdfpageheight
→ Index of Lengths etc. 257

\pdfpagewidth
→ Index of Lengths etc. 257

\phonename 207–208
phoneseparator (variable) 174,

188–189
place (variable) 174, 198
placeseparator (variable) . 174, 198
plain
→ General Index 249

\pnumfont . 130
\protect . 176
\providecaptionname 209
\providepagestyle 140–145
\ps . 203–204
\publishers 74–76

Q
quotation (environment) . . 103–104
quote (environment) 103–104

R
\raggedbottom 19
\raggeddictum 92–94
\raggeddictumauthor 92–94

\raggeddictumtext 92–94
\raggedleft . 93
\raggedright . 93
\raggedsection 87–88
\raggedsignature 202–203
\recalctypearea 30–31
\refoot 125–128
\rehead 125–128
\removefromtoclist 229–230
\removereffields 175
\renewcaptionname 209
\renewpagestyle 140–145
\rfoot . 125–128
\rightmark . 128
\rofoot 125–128
\rohead 125–128
ruled

→ General Index 249

S
scrheadings

→ General Index 249
scrplain

→ General Index 249
secnumdepth

→ Index of Lengths etc. 257
\sectfont . 123
\section 81–84, 91
\section* . 84–85
\sectionmark 90–91
\sectionmarkformat 90–91
\setbibpreamble 121–122
\setcaphanging 113–114
\setcapindent 113–114
\setcapindent* 113–114
\setcapmargin 115–118
\setcapmargin* 115–118
\setcapwidth 115–118
\setchapterpreamble 91–92
\setfootbotline 132–135
\setfootseptline 132–135
\setfootwidth 131–132
\setheadsepline 132–135
\setheadtopline 132–135
\setheadwidth 131–132

256 Index of Commands, Environments, and Variables

\setindexpreamble 122
\setkomafont 60–64, 82, 133
\setkomavar 175–176
\setkomavar* 175–176
\setlengthtoplength 182
\setpartpreamble 91–92
\settime . 148
\setuptoc 233–234
signature (variable) 174, 202
specialmail (variable) 174, 193
\subject . 74–76
subject (variable) 171, 174, 199
\subjectname 207–208
subjectseparator (variable) . . . 174,

199
\subparagraph 81–84
\subparagraph* 84–85
\subsection 81–84, 91
\subsection* 84–85
\subsectionmark 90–91
\subsectionmarkformat 90–91
\subsubsection 81–84, 91
\subsubsection* 84–85
\subtitle . 74–76

T
\tableformat 112–113
\tableofcontents 77–78
\Telephone 216–217
\textsubscript 119–120
\textsuperscript 95–96, 119
\thanks . 74–76
\theenumi . 98–99
\theenumii 98–99
\theenumiii 98–99
\theenumiv 98–99
\thefootnotemark 95–96
\thispagestyle . . . 64–65, 170–171
\thistime 147–148
\thistime* 147–148
\title . 74–76
title (variable) 174, 198–199
\titlehead 74–76
titlepage (environment) 71–72

\titlepagestyle 66–69
toaddress (variable) 174, 194
\tocbasic@@after@hook . . . 234–235
\tocbasic@@before@hook . 234–235
\tocbasic@extension @after@hook

. 235
\tocbasic@extension @before@hook

. 235
\tocbasic@extend@babel 234
\tocbasic@listhead 235
\tocbasic@listhead@extension

. 235
\tocbasic@starttoc 234
\tocbasicautomode 230
tocdepth

→ Index of Lengths etc. 257
\today . 74, 146
\todaysname . 146
toname (variable) 174, 194
\typearea . 30–31

U
\unsettoc 233–234
\uppertitleback 76
urlseparator (variable) . . . 188–189
useheadings

→ General Index 249
\usekomafont 60–64
\usekomavar 176–177
\usekomavar* 176–177
\usepackage . 22
\useplength . 182

V
verse (environment) 101–103

W
\wwwname 207–208

Y
yourmail (variable) . . . 174, 197–198
\yourmailname 207–208
yourref (variable) 175, 197–198
\yourrefname 207–208

257 Index of Lengths and Counters

Index of Lengths and Counters

B
backaddrheight 178, 193
bfoldmarklength 185
bfoldmarkvpos 178, 183–185

F
firstfootvpos . 162, 178, 189–190,

191
firstfootwidth 178, 190
firstheadvpos 178, 187
firstheadwidth 178, 187
foldmarkhpos 178, 185
foldmarkthickness 186
foldmarkvpos 186
\footskip (length) 190
fromrulethickness 178, 188
fromrulewidth 179, 188

L
lfoldmarkhpos 186
lfoldmarklength 186
locheight . 195
lochpos . 195
locvpos . 195
locwidth 179, 195

M
mfoldmarklength 185
mfoldmarkvpos 183–185

P
\paperheight (length) 190
\pdfpageheight (length) 39
\pdfpagewidth (length) 39
pfoldmarklength 185

R
refaftervskip 179, 197
refhpos 179, 197
refvpos 179, 196–197
refwidth 179, 197

S
secnumdepth (counter) 91
sigbeforevskip 179, 202–203
sigindent 179, 202–203
specialmailindent 179, 193
specialmailrightindent . 179, 193

T
tfoldmarklength 185
tfoldmarkvpos 180, 183–185
toaddrheight 180, 192
toaddrhpos 166, 180, 192
toaddrindent 180, 193
toaddrvpos 180, 192
toaddrwidth 180, 192–193
tocdepth (counter) 78–79

Index of Elements with Capability of Font Adjustment

A
addressee . 169

B
backaddress . 169

C
caption . 61, 111
captionlabel 61, 111
chapter . 61, 83
chapterentry . 61

chapterentrypagenumber 61

D
descriptionlabel 61, 99, 169
dictum . 61
dictumauthor . 61
dictumtext . 61
disposition . . 61, 74, 78, 82, 83, 84,

87, 88

258 Index of Files, Classes, and Packages

F
foldmark 169, 186
footbotline . 133
footbottomline 133
footnote . 62, 95
footnotelabel 62, 96
footnotereference 62, 96
footsepline . 133
fromaddress . 169
fromname . 170
fromrule . 170

H
headsepline . 133
headtopline . 133

L
labelinglabel 62, 100
labelingseparator 62, 100

M
minisec . 62

P
pagefoot 62, 65, 66, 170, 171

pagehead 62, 65, 66, 170, 171
pagenumber 62, 65, 66, 170, 171
pagination . 62
paragraph . 62, 83
part . 62, 83
partentry . 62
partentrypagenumber 63
partnumber 63, 83

S
section . 63, 83
sectionentry . 63
sectionentrypagenumber 63
sectioning . 63
specialmail . 170
subject 63, 170, 199
subparagraph 63, 83
subsection 63, 83
subsubsection 63, 83
subtitle . 63, 74

T
title 64, 74, 170
toaddress . 170
toname . 170

Index of Files, Classes, and Packages

A
addrconv (package) 220
article (class) . 43

B
babel (package) 72, 147, 162, 183, 205
book (class) 43, 138

C
caption (package) 109
caption2 (package) 58, 109
color (package) 134

E
extsizes (package) 52

F
fancyhdr (package) 66
float (package) . . . 54, 55, 58, 109, 112
fontenc (package) 28
french (package) 205

G
geometry (package) 17, 37
german (package) . . 147, 162, 205, 208
graphics (package) 59
graphicx (package) 59

I
ifthen (package) 121
isodate (package) 162

259 Index of Class and Package Options

K
keyval (package) 149

L
letter (class) . 43
longtable (package) 58, 109, 115

M
mparhack (package) 107

N
natbib (package) 121
ngerman (package) . 147, 165, 205, 208

R
report (class) . 43

S
scraddr (package) 216–218

scrartcl (class) 64, 78, 91
scrbook (class) 64, 78, 91
scrdate (package) 146–147
scrlettr (class) . 149
scrlfile (package) 221–225
scrlttr2 (class) 149–215
scrpage (package) 66
scrpage.cfg . 145
scrpage2 (package) . 66, 78, 124–145,

200
scrreprt (class) 64, 78, 91
scrtime (package) 147–148
setspace (package) 19, 41

T
topcapt (package) 109
typearea (package) 47, 131

Index of Class and Package Options

Xpt . 52–53
10pt . 52–53
11pt . 52–53
12h . 148
12pt . 52–53
24h . 148

A
a0paper . 48
abstract=switch 56–57
abstractoff . 44
abstracton . 44
addrfield=switch 158
adrFreeIVempty 219
adrFreeIVshow 219
adrFreeIVstop 219
adrFreeIVwarn 219
appendixprefix=switch 51
automark 136–137
autooneside . 137

B
b0paper . 48
backaddress=switch 158

BCOR=value 23–24
BCOR=current . 30
bibliography=totocnumbered 53–54
bibliography=totoc 53–54
bibtotoc . 45
bibtotocnumbered 45
bigheadings . 45

C
c0paper . 48
captions=nooneline 52
captions=oneline 52
captions=tableheading 58
captions=tableheafins 58
captions=tablesignature 58
chapteratlists 56
chapterprefix 51
chapterprefix=false 51
cleardoubleempty 44
cleardoublepage=page style . . . 49
cleardoublepage=style 152
cleardoublepage=current 49
cleardoubleplain 44
cleardoublestandard 44

260 Index of Class and Package Options

clines . 136

D
d0paper . 48
DIN . 166
DINmtext . 166
DIV=value 24–30
DIV=areaset 29, 37
DIV=calc 26–27, 29, 35
DIV=classic 26–27, 29
DIV=current 29, 27–30
DIV=default . 29
DIV=last 29, 27–30
dotlessnumbers 57
dottednumbers 57
draft=switch 59, 163

E
enlargefirstpage 151–152, 162
executivepaper 48

F
firstfoot . 190
firstfoot=switch 162–163
firsthead=switch 156
fleqn . 58
foldmarks=value 160–162
fontsize=size 153–156
footbotline 135–136
footexclude . 135
footinclude . 135
footinclude=switch 32–34
footnosepline 45
footsepline 135–136, 171
footsepline=switch . . 51, 152–153
fromalign=value 156
fromemail=switch 158
fromfax=switch 158
fromlogo=switch 158
fromphone=switch 156
fromrule=value 156
fromurl=switch 158

H
halfparskip . 44
halfparskip* . 44

halfparskip+ . 44
halfparskip- . 44
headexclude . 135
headheight . 36
headheight=height 35–36
headinclude . 135
headinclude=switch 32–34
headings=size 53
headlines . 36
headlines=number 35–36
headnosepline 45
headsepline 135–136, 171
headsepline=switch . . 51, 152–153
headtopline 135–136

I
idxtotoc . 45
ilines . 136
index=totoc 53–54

K
KakuLL . 167
KOMAold . 166
komastyle 137–138

L
landscape . 48
legalpaper . 48
leqno . 58
letterpaper . 48
listof=value . 56
listof=numbered 53–54
listof=totoc 53–54
listsindent . 44
listsleft . 44
liststotoc . 45
liststotocnumbered 45
locfield=value 159–160

M
manualmark 136–137
markuppercase 138
markusedcase 138
mpinclude=switch 34–35

N
NipponEH . 167

261 Index of Class and Package Options

NipponEL . 166
NipponLH . 167
NipponLL . 167
NipponRL . 167
noappendixprefix 45
nochapterprefix 45
noonelinecaption 45
normalheadings 45
nouppercase 138–139
numbers=value 57
numericaldate=switch 162

O
olines . 136
onelinecaption 45
open=value 48–49
openbib . 59
origlongtable 58–59

P
pagenumber 153, 200
pagesize . 39–40
pagesize=output driver 39–40
pagesize=dvips 39
paper=format 37–39
paper=orientation 37–39
parindent . 49–50
parskip* . 44
parskip+ . 44
parskip- . 44
parskip=Value 49–50

parskip=value 153
plainfootbotline 135–136
plainfootsepline 135–136
plainheadsepline 135–136
plainheadtopline 135–136
pointednumber 44
pointlessnumber 44

R
refline=value 162

S
smallheadings 45
SN . 166, 167
SNleft . 168
standardstyle 137–138
subject=value 159

T
tablecaptionabove 45
tablecaptionbelow 45
titlepage=switch 49
toc=value . 55
tocindent . 44
tocleft . 44
twocolumn . 91
twocolumn=switch 32
twoside=switch 31–32
twoside=semi 31–32

V
version 46–47, 150–151

	KOMA-Script
	Contents
	List of Tables
	Introduction
	Preface
	Structure of the Guide
	History of KOMA-Script
	Special Thanks
	Legal Notes
	Installation
	Bugreports and Other Requests
	Additional Information

	Construction of the Page Layout with typearea
	Fundamentals of Page Layout
	Page Layout Construction by Dividing
	Page Layout Construction by Drawing a Circle
	Early or late Selection of Options
	Options and Macros to Influence the Page Layout
	Paper Format Selection
	Tips

	The Main Classes scrbook, scrreprt and scrartcl
	The Options
	Options for Compatibility
	Options for Page Layout
	Options for Document Layout
	Options for Font Selection
	Options Affecting the Table of Contents
	Options for Lists of Floats
	Options Affecting the Formatting

	General Document Characteristics
	Changing Fonts
	Page Style

	Titles
	The Table of Contents
	Lists of Floats
	Main Text
	Separation
	Structuring the Document
	Footnotes
	Lists
	Margin Notes
	Tables and Figures
	Logical Markup of Text

	Appendix
	Obsolete Commands

	Adapting Page Headers and Footers with scrpage2
	Basic Functionality
	Predefined Page Styles
	Manual and Running Headings
	Formatting of Header and Footer
	Package Options

	Defining Own Page Styles
	The Interface for Beginners
	The Interface for Experts
	Managing Page Styles

	Weekday and Time Using scrdate and scrtime
	The Name of the Current Day of the Week Using scrdate
	Getting the Time with Package scrtime

	The New Letter Class scrlttr2
	Looking Back on the Old Letter Class
	Options
	Defining Options Later
	Options for Compatibility
	Page Layout Options
	Other Layout Options
	Font Options
	Options for Letterhead and Address
	Options for the Letterfoot
	Formatting Options
	The Letter Class Option Files

	General Document Properties
	Font Selection
	Page Style
	Variables
	The Pseudo-Lengths
	The General Structure of a Letter Document

	The Letter Declaration
	Foldmarks
	The Letterhead
	The Letterfoot
	The Address
	The Sender's Extensions
	The Reference Fields Line
	The Title and the Subject Line
	Further Settings

	The Text
	The Opening
	Footnotes
	Lists
	Margin Notes
	Text Emphasis

	The Closing Part
	Closing
	Postscript, Carbon Copy and Enclosures

	Language Support
	Language Selection
	Language-Dependent Terms
	Defining and Changing Language-dependent Terms

	Address Files and Circular Letters
	From scrlettr to scrlttr2

	Access to Address Files with scraddr
	Overview
	Usage
	Package Warning Options

	Creating Address Files from a Address Database
	Control Package Dependencies with scrlfile
	About Package Dependencies
	Actions Prior to and After Loading

	Package tocbasic for Class and Package Authors
	Legal Note
	Using Package tocbasic
	Basic Commands
	Creating a List of Something
	Internal Commands for Class and Package Authors

	Japanese Letter Support for scrlttr2
	Japanese standard paper and envelope sizes
	Japanese paper sizes
	Japanese envelope sizes

	Provided lco files
	Examples of Japanese letter usage
	Example 1:
	Example 2:

	Bibliography
	Index
	General Index
	Index of Commands, Environments, and Variables
	Index of Lengths and Counters
	Index of Elements with Capability of Font Adjustment
	Index of Files, Classes, and Packages
	Index of Class and Package Options

