KOMA-Script

a versatile KTEX 2z bundle

Note: This document is a translation of the German KOMA-Script manual. Several
authors have been involved to this translation. Some of them are native English speakers.
Others, like me, are not. Improvements of the translation by native speakers or experts are
welcome at all times!

The Guide

KOMA -Script

Markus Kohm

2022-03-07

Authors of the KOMA-Script Bundle: Frank Neukam, Markus Kohm, Axel Kielhorn

Legal Notes:

There is no warranty for any part of the documented software. The authors have taken
care in the preparation of this guide, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or
programs contained here.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the authors were
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

English translation of this manual by: Markus Kohm, Karl Hagen, DeepL, Kevin Pfeif-
fer, Gernot Hassenpflug, Krickette Murabayashi, Jens-Uwe Morawski, Jana Schubert, Jens
Hiithne, Harald Bongartz, Georg Grandke, Raimund Kohl, Stephan Hennig, Alexander Wil-
land, Melvin Hendrix, and Arndt Schubert.

Free screen version without any optimization of paragraph and page breaks

This guide is part of KOMA-Script, which is free under the terms and conditions of IKTEX
Project Public License Version 1.3c. A version of this license, which is valid for KOMA-
Script, is part of KOMA-Script (see 1ppl.txt). Distribution of this manual —even if it is
printed —is allowed provided that all parts of KOMA-Script are distributed with it. Distri-
bution without the other parts of KOMA-Script requires an explicit, additional authorization
by the authors.

To all my friends all over the world!

Preface to KOMA -Script 3.28 7

Preface to KOMA-Script 3.28

The KOMA-Script 3.28 manual, —not only the German version —once again benefits from
the fact that a new edition of the print version [Koh20a] and the eBook version [Koh20b] will
be published at almost the same time as this version. This has led to many improvements
which also affect the free manual, in both the German and the English version.

In KOMA-Script 3.28 there are also some significant changes. In some cases, compatibility
with earlier versions has been waived. Thus a recommendation from the ranks of The LaTeX
Project Team regarding \if ... statements is complied with. If you use such statements, you
should refer to the manual again.

It is not just about the manual that I now receive little criticism. I conclude from this
fact that KOMA-Script has reached the level that it fulfils all desires. At the same time, the
project has—not only starting with the current release —reached a scale that makes it almost
impossible for a single person to accomplish

e the search for and elimination of errors,
¢ the development and implementation of new functions,

o the observation of changes in other packages and the IXTEX kernel with regard to effects
on KOMA-Script,

¢ the rapid response to such changes,
¢ the maintenance of the guides in two languages,

¢ help for beginners far beyond the functions of KOMA-Script down to the basic operation
of a computer,

o assistance in the implementation of tricky solutions for advanced users and experts,

o moderation and participation in the maintenance of a forum for all kind of help around
KOMA-Script.

While I am personally have most fun with the development of new functions, I consider
troubleshooting in existing features, compatibility with new I#TEX kernel versions, and above
all instructing users for the most important tasks. Therefore I will focus in the future on
and new functions will be available only in exceptional cases. Therefore already in KOMA-
Script 3.28 some experimental functions and packages have been removed. In future releases
this should be continued.

This, of course, also reduces the effort for the documentation of new functions. Readers
of this free, screen version, however, still have to live with some restrictions. So some infor-
mation —mainly intended for advanced users or capable of turning an ordinary user into an

Preface to KOMA -Script 3.28 8

advanced one—is reserved for the printed book, which currently exists only in German. As a
result, some links in this manual lead to a page that simply mentions this fact. In addition, the
free version is scarcely suitable for making a hard-copy. The focus, instead, is on using it on
screen, in parallel with the document you are working on. It still has no optimized wrapping
but is almost a first draft, in which both the paragraph and page breaks are in some cases
quite poor. Corresponding optimizations are reserved for the German book editions.

Another important improvement to the English guide has been accomplished by Karl Ha-
gen, who has continued the translation of the entire manual. Many, many thanks to him!
Everything that is fine in this English manual is because of him. Everything that is not good
in this manual — like the translation of this preface —is because of me. Additional editors or
translators, however, would still be welcome!

But the biggest thanks go to my family and above all to my wife. They absorb all my
unpleasant experiences on the Internet. They have also tolerated it for more than 25 years,
when I am again not approachable, because I am completely lost in KOMA-Script or some
ITEX problems. The fact that I can afford to invest an incredible amount of time in such a
project is entirely thanks to my wife.

Markus Kohm, Neckarhausen in the foggy December of 2019.

Contents 9

Contents

Preface to KOMA -Script 3.28 7

1. Introduction 21
1.1, Preface. ... o e 21
1.2, Structure of the Guide. 21
1.3. History of KOMA-Script oo e 22
1.4. Special Thanks 23
1.5, Legal Notes ... 24
1.6. Imstallation e 24
1.7. Bug Reports and Other Requests 24
1.8. Additional Information e 26

Part I:

KOMA -Script for Authors 27

2. Calculating the Page Layout with typearea 28
2.1. Fundamentals of Page Layout 28
2.2. Constructing the Type Area by Division....... 30
2.3. Constructing the Type Area by Describing a Circle 31
2.4. Early or Late Selection of Options i, 32
2.5. Compatibility with Earlier Versions of KOMA-Script................... 33
2.6. Adjusting the Type Area and Page Layout 34
2.7. Selecting the Paper Size 48
2.8, PS¢t ol

3. The Main Classes: scrbook, scrreprt, and scrartcl 54
3.1. Early or Late Selection of Options 55
3.2. Compatibility with Earlier Versions of KOMA-Script................... 56
3.3. Draft Mode e 57
3.4, Page Layout..... ... e 57
3.5. Choosing the Document Font Size.............. 58
3.6 Text Markup co o 59
3.7. Document Titles e 65
3.8, ADSETACh. . v vt 71
3.9. Tableof Contents it 72
3.10. Marking Paragraphs 7

3.11. Detecting Odd and Even Pages 80

Contents

10

3.12. Headers and Footers Using Predefined Page Styles 80
3.13. Imterleaf Pages 87
314, FoOtnoteso 89
3.15. Book Structure 94
3.16. Document Structure e 95
BT, Dicta .o 116
B8, LSt e e 118
3.19. Mathematics 127
3.20. Floating Environments for Tables and Figures 128
3.21. Marginal Notesot 147
3.22. AppendiX 147
3.23. Bibliography 148
3240 Index ..o e 151
4. Letters with the scrlttr2 Class or the scrletter Package 153
4.1. Early or Late Selection of Options 153
4.2. Compatibility with Earlier Versions of KOMA-Script................... 154
4.3. Draft Mode 155
4.4, Page Layoub. 156
4.5, Variables 157
4.6. Pseudo-lengths. 162
4.7. General Structure of Letter Documents 169
4.8. Choosing the Document Font Size......... 179
4.9, Text Markupo 181
4.10. Letterhead Page. 186
4.10.1. Fold Markso 186
4.10.2. Letterhead 191
4.10.30 AATeSSee . v v oot 205
4.10.4. Extra Sender Information 211
4.10.5. Reference Line 213
4.10.6. Subject 218
4.00.7. CloSINg « v v vt 222
4.10.8. Letterhead Page Footer 224

4.11. Marking Paragraphs 227
4.12. Detecting Odd and Even Pages 228
4.13. Headers and Footers with the Default Page Style 229
4.14. Interleaf Pages 234
415, Footnotes o 236
406, st . oo 239

4.17.

Mathematics e 242

Contents

4.18. Floating Environments for Tables and Figures 242
4.19. Marginal Notest e 243
4.20. Letter Class Option Files. e 243
4.21. Address Files and Form Letters. i 249
5. Headers and Footers with scrlayer-scrpage 254
5.1. Early or Late Selection of Options i, 254
5.2. Header and Footer Height 256
5.3, Text Markupo oo 256
5.4. Using Predefined Page Styles 259
5.5. Manipulating Page Styles 268
6. The Day of the Week with scrdate 279
7. The Current Time with scrtime 284
8. Accessing Address Files with scraddr 286
.1, OVEIVIEW . .ottt 286
8.2 USAZE o v v e e e 287
8.3. Package Warning Options 288
9. Creating Address Files from an Address Database 290
10. KOMA-Script Features for Other Classes with scrextend 291
10.1. Early or Late Selection of Options 291
10.2. Compatibility with Earlier Versions of KOMA-Script. 293
10.3. Optional, Extended Features 293
10.4. Draft Mode 294
10.5. Choosing the Document Font Size......... 294
10.6. Text Markup 295
10.7. Document Titles 296
10.8. Detecting Odd and Even Pages i 301
10.9. Choosing a Predefined Page Style L. 301
10.10. Interleaf Pages 302
10.11. Footnoteso vt 303
10.12. Dicta ..ot 306
1018, LStS o oot 307
10.14. Marginal Notes e 309
11. Support for the Law Office with scrjura 310

11.1. Early or Late Selection of Options 310

Contents

11.2. Text Markupo e e e e e e 311
11.3. Table of Contents 313
11.4. Environment for Contracts 313
1141, ClauSeS « - v v vt e e et e e e e e 314
11.4.2. Paragraphso e 316
11.4.3. SENtEnCes . . o oottt e 319
11.5. Cross-References e 320
11.6. Additional Environments. 321
11.7. Support for Different Languages 324
11.8. A Detailed Example 325
11.9. State of Development 330
Part Il:
KOMA -Script for Advanced Users and Experts 332
12. Basic Functions in the scrbase Package 333
12.1. Loading the Package 333
12.2. Keys as Attributes of Families and Their Members 333
12.3. Conditional Execution 346
12.4. Defining Language-Dependent Terms 351
12.5. Identifying KOMA-Script e 355
12.6. Extensions to the IWNIEX Kernel o o 355
12.7. Extensions to the Mathematical Features of e-TEX.......... 356
12.8. General Mechanism for Multi-Level Hooks 356
12.9. Obsolete Options and Commands i, 360
13. Controlling Package Dependencies with scrlfile 361
13.1. About Package Dependencies i 361
13.2. Actions Before and After Loading i .. 362
13.3. Replacing Files at Input 367
13.4. Preventing File Loading e 368
14. Economising and Replacing Files with scrwfile 372
14.1. Fundamental Changes to the ITEX Kernelo 372
14.2. The Single-File Method 373
14.3. The File Cloning Method 373
14.4. Note on the State of Development. 375
14.5. Known Package Incompatibilities 375

Contents

15.

16.

17.

18.

19.

13
Managing Content Lists with tocbasic 376
15.1. Basic Commands 376
15.2. Creating a Content List. 380
15.3. Configuring Content-List Entries. 387
15.4. Internal Commands for Class and Package Authors 402
15.5. A Complete Example. 404
15.6. Everything with Only One Command 407
15.7. Obsolete Befehle 413
Improving Third-Party Packages with scrhack 414
16.1. Development Status. 414
16.2. Early or Late Selection of Options 414
16.3. Using tochasic 415
16.4. Incorrect Assumptions about \@ptsize 416
16.5. Older Versions of hyperref 416
16.6. Inconsistent Handling of \textwidth and \textheight................. 417
16.7. Special Case for nomencl 417
16.8. Special Case for Section Headings 417
Defining Layers and Page Styles with scrlayer 419
17.1. Early or Late Selection of Options 419
17.2. Generic Information. 420
17.3. Declaring Layerst e 421
17.4. Declaring and Managing Page Styles. 433
17.5. Header and Footer Height 442
17.6. Manipulating Page Styles 442
17.7. Defining and Managing Interfaces for End Users 448
Additional Features of scrlayer-scrpage 449
18.1. Manipulating Page Styles 449
18.2. Defining New Pairs of Page Styles. 452
18.3. Defining Complex Page Styles i 454
18.4. Defining Simple Page Styles with a Tripartite Header and Footer 456
18.5. Legacy Features of scrpage2. 457
Note Columns with scrlayer-notecolumn 458
19.1. Note about the State of Development 458
19.2. Early or Late Selection of Options 459
19.3. Text Markupt e 460
19.4. Declaring New Note Columns 461
19.5. Making a Note 465

Contents

19.6. Forced Output of Note Columns 0.,
20. Additional Information about the typearea package
20.1. Experimental Features...... e
20.2. Expert Commands.t
20.3. Local Settings with the typearea.cfg File.......
20.4. More or Less Obsolete Options and Commands
21. Additional Information about the Main Classes and scrextend
21.1. Extensions to User Commandsinmiiiinennnnenn..
21.2. KOMA-Script’s Interaction with Other Packages
21.3. Detection of KOMA-Script Classes
21.4. Entries to the Table of Contents e,
21.5. Font Settings
21.6. Paragraph Indention or Gap
21.7. COUNTETS . . vttt e e e e
21,8, SeCHIONS .« v vttt e
21.9. Bibliography
21.10. More or Less Obsolete Options and Commands
22. Additional Information about the scrlttr2 Class and the scrletter Package
22.1. Variables for Experienced Users
22.2. Additional Information about Page Styles..............
22.3. 1lco Files for Experienced Users
22.4. Language SUPPOTt . . . oottt
22.5. Obsolete Commandsiiiin et
A. Japanese Letter Support for scrittr2
A.1. Japanese standard paper and envelope sizes,
A 1.1, Japanese paper SiZeSttt
A.1.2. Japanese envelope SiZes
A2, Provided Icofiles i
A.3. Examples of Japanese Letter Usage i,
A3.1. Example L. ..o e
A3.2. Example 2: .
Change Log

Bibliography

472
472
473
475
475

476
476
476
476
477
479
481
482
482
502
504

505
505
507
507
511
515

516
516
516
517
521
523
523
524

525

538

Contents

Index 543
General Index 543
Index of Commands, Environments, and Variables 547
Index of Lengths and Counters. 559
Index of Elements Capable of Adjusting Fonts. 560
Index of Files, Classes, and Packages 561
Index of Class and Package Options. 563

Index of Do-HOOKS . . oo 567

List of Figures

List of Figures

2.1.

3.1.
3.3.
3.2.
3.4.
3.9.
3.6.
3.7.
3.8.
3.9.
3.10.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.
4.13.

4.14.

Two-sided layout with the box construction of the classical nine-part division,

after subtracting a binding correction o o o 31
Parameters that control the footnote layout 92
Example: Using \captionaboveof inside another floating environment 135
Example: A rectangle 135
Example: Figure beside description 137
Example: Description centered beside figure. 137
Example: Figure title top beside. 138
Example: Default caption 140
Example: Caption with partially hanging indention 140
Example: Caption with hanging indention and line break 140
Example: Caption with indention in the second line 140
Schematic of the pseudo-lengths for a letter 167
General structure of a letter document containing several individual letters ... 169
General structure of a single letter within a letter document 170
Example: letter with recipient and salutation........................... 174
Example: letter with recipient, opening, text, and closing 175
Example: letter with recipient, opening, text, closing, and postscript 176
Example: letter with recipient, opening, text, closing, postscript, and distribu-

tlon LSt ..o 178
Example: letter with recipient, opening, text, closing, postscript, distribution

list, and enclosure e 179
Example: letter with address, salutation, text, closing phrase, postscript, en-

closures, distribution list, and noxiously large font size 182
schematic display of the letterhead page outlining the most important com-

mands and variables 187
Example: letter with recipient, opening, text, closing, postscript, distribution

list, enclosure, and hole-punch mark 189
Example: letter with sender, recipient, opening, text, closing, postscript, dis-

tribution list, and enclosure. e 195
Example: letter with sender, rule, recipient, opening, text, closing, signature,

postscript, distribution list, enclosure, and hole-punch mark 197

Example: letter with extra sender information, rule, recipient, opening, text,
closing, signature, postscript, distribution list, enclosure, and hole-punch mark;
standard vs. extended letterhead 201

List of Figures

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

19.1.

. Example: letter with extra sender information, rule, recipient, opening, text,

closing, signature, postscript, distribution list, enclosure, and hole-punch mark;
left- vs. right-aligned letterhead
Example: letter with extra sender information, logo, rule, recipient, opening,
text, closing, signature, postscript, distribution list, enclosure, and hole-punch
mark; left-aligned vs. right-aligned vs. centred sender information
Example: letter with extended sender, logo, recipient, extra sender informa-
tion, opening, text, closing, signature, postscript, distribution list, enclosure,
and hole-punch mark
Example: letter with extended sender, logo, recipient, extra sender informa-
tion, location, date, opening, text, closing, signature, postscript, distribution
list, enclosure, and hole-punch mark
Example: letter with extended sender, logo, recipient, extra sender informa-
tion, place, date, subject, opening, text, closing, signature, postscript, distri-
bution list, enclosure, and hole-punch mark
Example: letter with extended sender, logo, recipient, extra sender informa-
tion, place, date, subject, opening, text, closing, modified signature, postscript,
distribution list, enclosure, and hole-punch mark
Example: letter with extended sender, logo, recipient, extra sender informa-
tion, place, date, subject, opening, text, closing, modified signature, postscript,
distribution list, enclosure, and hole-punch mark using an 1co file

Commands for setting the page header
Commands for setting the page footer

. Example: First three pages of the example club by-laws of section 11.8

. Hlustrations of some attributes of a TOC entry with the dottedtocline style .
. Nlustrations of some attributes of a TOC entry with style largetocline
. Hlustrations of some attributes of a TOC entry with the tocline style.......
. Nlustration of some attributes of the undottedtocline style with the example

of a chapter title e

A sample page for the example in chapter 19

List of Tables

List of Tables

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

3.1.
3.2.

3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.
3.22.
3.23.

4.1.
4.2.
4.3.

Type area dimensions dependent on DIV for Ad 36
DIV defaults for Ad 37
Symbolic values for the DIV option and the DIV argument to \typearea 39
Symbolic BCOR arguments for \typearea, 41
Standard values for simple switches in KOMA-Script. 42
Output driver for option pagesize=output driver 51
Class correSpondencet e 54
Elements whose font style can be changed in scrbook, scrreprt or scrartcl with

\setkomafont and \addtokomafont 60
Font defaults for the elements of the title 69
Main title. . .o 69
Available values for the toc option 74
Default font styles for the elements of the table of contents 76
Available values of option parskip oo 79
Default values for page style elements........ 82
Macros to set up the page style of special pages 84
Available numbering styles of page numbers 86
Available values for the footnotes option 90
Available values for the open option 96
Available values for the headings option 98
Available values for the numbers option 101
Default font sizes for different levels of document sectioning 105
Default settings for the elements of a dictum 117
Available values for the captions option 130
Font defaults for the elements of figure or table captions 133
Example: Measure of the rectangle in figure 3.2 135
Alignments for multi-line captions of floating environments 142
Available values for the listof option 145
Available values for the bibliography option........................... 149
Available values for the index option 151
Supported variables in scrlttr2 and scrletter. 157
Pseudo-lengths provided by scrlttr2 and scrletter. 162
FElements whose font style can be changed in the scrlttr2 class or the scrletter

package with the \setkomafont and \addtokomafont commands........... 183
Combinable values for configuring fold marks with the foldmarks option 188

Available values for the fromalign option with scrlttr2 193

List of Tables

4.6.
4.7.
4.8.

4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.
4.19.

Ut

Ut
W

10.1.

11.1.

11.2.
11.3.
11.4.
11.6.

11.5.
11.7.

12.1.

15.1.
15.2.
15.3.

17.1.

17.2.

Available values for the fromrule option with scrlttr2 193
Default descriptions of the letterhead variables. 199
Default descriptions and contents of the letterhead separators without the

symbolicnames Option 200
Available values for the addrfield option with scrlttr2 206
Default font styles for the elements of the address field. 207
Available values for the priority option in scrlttr2 207
Available values for the locfield option with scrlttr2 211
Available values for the refline option with scrlttr2 214
Default descriptions of variables in the reference line 215
Default font styles for elements in the reference line...................... 216
Default descriptions of variables for the subject 219
Available values for the subject option with scrlttr2 220
Available values for the pagenumber option with scrlttr2 231
Predefined 1co files 247
Elements of scrlayer-scrpage whose font styles can be changed with the

\setkomafont and \addtokomafont commands 257
Available values for the markcase option 273
Symbolic values for the headwidth and footwidth options 277
Available extended features of scrextend 294

Elements whose scrjura font styles can be changed with \setkomafont and

\addtokomafont, including their default settings 312
Available properties for the optional argument of \Clause and \SubClause ... 315
Available values for the clausemark option to activate running heads 317
Available values for the ref option to configure the cross-reference format 322
Options provided by \DeclareNewJuraEnvironment for new contract environ-

MENES . o e 322
Example outputs of the ref-independent cross-reference commands 323
Meanings and FEnglish defaults of language-dependent terms 325
Overview of common language-dependent terms. 353
Attributes of the predefined TOC-entry styles of tocbasic 392
Options for command \DeclareNewTOCuuuuumeeneennennnn. 408

Comparing the example remarkbox environment with the figure environment 412

Options for defining page layers and the meaning of the corresponding layer
attribute 424
Hook options for page styles (in order of execution) 435

List of Tables

18.1.
19.1.

21.1.
21.2.
21.3.
21.4.
21.5.

21.6.

22.1.
22.2.

ALl
A2
A3.
AA4.
A5,
AL6.
AT

20
The layers scrlayer-scrpage defines for a page style 455
Available settings for declaring note columns 464
Style-independent attributes for declaring sectioning commands 484
Attributes of the section style when declaring a sectioning command 485
Attributes of the chapter style when declaring a sectioning command 486
Attributes of the part style when declaring a sectioning command 487
Defaults for the chapter headings of scrbook and scrreprt depending on the
headings option 489
Defaults for the headings of scrbook and scrreprt 489
Defaults for language-dependent terms 514
Language-dependent forms of the date, 515
ISO and JIS standard paper sizest 517
Japanese B-series variants 517
Main Japanese contemporary stationery 518
Japanese ISO envelope sizes 519
Japanese envelope Sizes 3 520
Supported Japanese envelope types, window sizes, and locations 522
1co files provided by scrlttr2 for Japanese window envelopes 523

Chapter 1: Introduction

Introduction

This chapter contains, among other things, important information about the structure of the
manual and the history of KOMA-Script, which begins years before the first version. You will
also find information on how to install KOMA-Script and what to do if you encounter errors.

1.1. Preface

KOMA-Script is very complex. This is due to the fact that it consists of not just a single
class or a single package but a bundle of many classes and packages. Although the classes
are designed as counterparts to the standard classes, that does not mean they provide only
the commands, environments, and settings of the standard classes, or that they imitate their
appearance. The capabilities of KOMA-Script sometimes far surpass those of the standard
classes. Some of them should be considered extensions to the basic capabilities of the XIEX
kernel.

The foregoing means that the documentation of KOMA-Script has to be extensive. In
addition, KOMA-Script is not normally taught. That means there are no teachers who know
their students and can therefore choose the teaching materials and adapt them accordingly.
It would be easy to write documentation for a specific audience. The difficulty facing the
author, however, is that the manual must serve all potential audiences. I have tried to create
a guide that is equally suitable for the computer scientist and the fishmonger’s secretary. I
have tried, although this is actually an impossible task. The result is numerous compromises,
and I would ask you to take this issue into account if you have any complaints or suggestions
to help improve the current situation.

Despite the length of this manual, I would ask you to consult the documentation first in
case you have problems. You should start by referring to the multi-part index at the end of
this document. In addition to this manual, documentation includes all the text documents
that are part of the bundle. See manifest.tex for a complete list.

1.2. Structure of the Guide

This manual is divided into several parts: There is a section for average users, one for advanced
users and experts, and an appendix with further information and examples for those who want
to understand KOMA-Script thoroughly.

part I is intended for all KOMA-Script users. This means that some information in this
section is directed at newcomers to ATEX. In particular, this part contains many examples
that are intended to clarify the explanations. Do not hesitate to try these examples yourself
and discover how KOMA-Script works by modifying them. That said, the KOMA-Script user
guide is not intended to be a I TEX primer. Those new to IXTEX should look at The Not So

Chapter 1: Introduction 22

scrartcl

Short Introduction to BTEX 2 [OPHS11] or BTEX 2¢ for Authors [Tea05b] or a IWNTEX reference
book. You will also find useful information in the many IXTEX FAQs, including the TgX
Frequently Asked Questions on the Web [FAQ13]. Although the length of the TgX Frequently
Asked Questions on the Web is considerable, you should get at least a rough overview of it
and consult it in case you have problems, as well as this guide.

part II is intended for advanced KOMA-Script users, those who are already familiar with
KTEX or who have been working with KOMA-Script for a while and want to understand more
about how KOMA-Script works, how it interacts with other packages, and how to perform
more specialized tasks with it. For this purpose, we return to some aspects of the class
descriptions from part I and explain them in more detail. In addition we document some
commands that are particularly intended for advanced users and experts. This is supplemented
by the documentation of packages that are normally hidden from the user, insofar as they do
their work beneath the surface of the classes and user packages. These packages are specifically
designed to be used by authors of classes and packages.

The appendix, which can only be found in the German book version, contains information
beyond that which is covered in part I and part II. Advanced users will find background
information on issues of typography to give them a basis for their own decisions. In addition,
the appendix provides examples for aspiring package authors. These examples are not intended
simply to be copied. Rather, they provide information about planning and implementing
projects, as well as some basic ITEX commands for package authors.

The guide’s layout should help you read only those parts that are actually of interest. Each
class and package typically has its own chapter. Cross-references to another chapter are thus
usually also references to another part of the overall package. However, since the three main
classes (scrbook, scrrprt, and scrartcl) largely agree, they are introduced together in chapter 3.
Differences between the classes, e.g., for something that only affects the class scrartcl, are
clearly highlighted in the margin, as shown here with scrartcl.

The primary documentation for KOMA-Script is in German and has been translated for your
convenience; like most of the IKTEX world, its commands, environments, options, etc., are in
English. In a few cases, the name of a command may sound a little strange, but even so, we hope
and believe that with the help of this guide, KOMA-Script will be usable and useful to you.

At this point you should know enough to understand the guide. It might, however, still be
worth reading the rest of this chapter.

1.3. History of KOMA-Script

In the early 1990s, Frank Neukam needed a method to publish an instructor’s lecture notes. At
that time KITEX was I¥TEX2.09 and there was no distinction between classes and packages —
there were only styles. Frank felt that the standard document styles were not good enough
for his work; he wanted additional commands and environments. At the same time he was
interested in typography and, after reading Tschichold’s Ausgewdhlte Aufsdatze tiber Fragen der

Chapter 1: Introduction 23

Gestalt des Buches und der Typographie (Selected Articles on the Problems of Book Design and
Typography) [Tsc87], he decided to write his own document style—and not just a one-time
solution to his lecture notes, but an entire style family, one specifically designed for European
and German typography. Thus Script was born.

Markus Kohm, the developer of KOMA-Script, came across Script in December 1992 and
added an option to use the A5 paper format. At that time neither the standard style nor
Script provided support for A5 paper. Therefore it did not take long until Markus made the
first changes to Script. This and other changes were then incorporated into Script-2, released
by Frank in December 1993.

In mid-1994, IATEX 2¢ became available and brought with it many changes. Users of Script-2
were faced with either limiting their usage to IXTEX 2¢’s compatibility mode or giving up Script
altogether. This situation led Markus to put together a new IXTEX 2 package, released on
7 July 1994 as KOMA-Script. A few months later, Frank declared KOMA-Script to be the
official successor to Script. KOMA-Script originally provided no letter class, but this deficiency
was soon remedied by Axel Kielhorn, and the result became part of KOMA-Script in December
1994. Axel also wrote the first true German-language user guide, which was followed by an
English-language guide by Werner Lemberg.

Since then much time has passed. IATEX has changed in only minor ways, but the WTEX
landscape has changed a great deal; many new packages and classes are now available and
KOMA-Script itself has grown far beyond what it was in 1994. The initial goal was to pro-
vide good ITEX classes for German-language authors, but today its primary purpose is to
provide more-flexible alternatives to the standard classes. KOMA-Script’s success has led
to e-mail from users all over the world, and this has led to many new macros—all needing
documentation; hence this “small guide.”

1.4. Special Thanks

Acknowledgements in the introduction? No, the proper acknowledgements can be found in
the addendum. My comments here are not intended for the authors of this guide—and
those thanks should rightly come from you, the reader, anyhow. I, the author of KOMA-
Script, would like to extend my personal thanks to Frank Neukam. Without his Script family,
KOMA-Script would not have come about. I am indebted to the many persons who have
contributed to KOMA-Script, but with their indulgence, I would like to specifically mention
Jens-Uwe Morawski and Torsten Kriiger. The English translation of the guide is, among many
other things, due to Jens’s untiring commitment. Torsten was the best beta-tester I ever had.
His work has particularly enhanced the usability of scrlttr2 and scrpage2. Many thanks to all
who encouraged me to go on, to make things better and less error-prone, or to implement
additional features.

Special thanks go as well to the founders and members of DANTE, Deutschsprachige An-
wendervereinigung TEX e.V, (the German-Language TEX User Group). Without the DANTE

Chapter 1: Introduction 24

server, KOMA-Script could not have been released and distributed. Thanks as well to ev-
erybody on the TEX newsgroups and mailing lists who answer questions and have helped me
provide support for KOMA-Script.

My thanks also go to all those who have always encouraged me to go further and to imple-
ment this or that feature better, with fewer flaws, or simply as an extension. I would also like
to thank the very generous donor who has given me the most significant amount of money I
have ever been paid for the work done so far on KOMA-Script.

1.5. Legal Notes

KOMA-Script is released under the IXTFX Project Public License. You will find it in the file
lppl.txt. An unofficial German-language translation is also available in 1ppl-de.txt and is
valid for all German-speaking countries.

This document and the KOMA-Script bundle are provided “as is” and without warranty of
any kind.

1.6. Installation

The three most important TEX distributions, MacTEX, MiKTEX, and TEX Live, make KOMA -
Script available through their package management software. You should install and update
KOMA-Script using these tools, if possible. Manual installation without using the package
managers is described in the file INSTALL. txt, which is part of every KOMA-Script distribu-
tion. You should also read the documentation that comes with the TEX distribution you are
using.

1.7. Bug Reports and Other Requests

If you think you have found an error in the documentation or a bug in one of the KOMA-
Script classes, packages, or another part of KOMA-Script, please do the following: First check
on CTAN to see if a newer version of KOMA-Script has been released. If a newer version is
available, install this new version and check if the problem persists.

If the bug still occurs and your installation is fully up to date, please provide a short INXTEX
file that demonstrates the problem. Such a file is known as a minimal working example (MWE).
You should include only minimal text and use only the packages and definitions essential to
demonstrate the problem. Avoid using any unusual packages as much as possible.

By preparing such an example it often becomes clear whether the problem is truly a KOMA-
Script bug or caused by something else. To check if another package or class is actually causing
the problem, you can also test your example with the corresponding standard class instead
of a KOMA-Script class. If your problem still occurs, you should address your error report
to the author of the appropriate package than to the author of KOMA-Script. Finally, you

Chapter 1: Introduction

should carefully review the instructions for the appropriate package, classes, and KOMA-Script
component. A solution to your problem may already exist, in which case an error report is
unnecessary.

If you think you have found a previously unreported error, or if for some other reason you
need to contact the author of KOMA-Script, don’t forget the following;:

¢ Does the problem also occur if a standard class is used instead of a KOMA-Script class?
In this case, the error is most likely not with KOMA-Script, and it makes more sense to
ask your question in a public forum, a mailing list, or Usenet.

e Which KOMA-Script version do you use? For related information, see the log file of the
KTEX run of any document that uses a KOMA-Script class.

e Which operating system and which TEX distribution do you use? This information might
seem rather superfluous for a system-independent package like KOMA-Script or KTEX,
but time and again they have certainly been shown to play a role.

e What exactly is the problem or the error? Describe the problem. It’s better to be too
detailed than too short. Often it makes sense to explain the background.

e What does a minimal working example look like? You can easily create one by comment-
ing out content and packages from the document step by step. The result is a document
that only contains the packages and parts necessary to reproduce the problem. In ad-
dition, all loaded images should be replaced by \rule statements of the appropriate
size. Before sending your MWE,remove the commented-out parts, insert the command
\listfiles in the preamble, and perform another IATEX run. At the end of the log
file, you will see an overview of the packages used. Add the MWE and the log file to the
end of your description of the problem.

Do not send packages, PDF, PS, or DV files. If the entire issue or bug description, including
the minimal example and the log file is larger than a few tens of kilobytes, you’re likely doing
something wrong.

If you've followed all these steps, please send your KOMA-Script (only) bug report to
komascript@gmx.info.

If you want to ask your question in a Usenet group, mailing list, or Internet forum, you
should follow the procedures mentioned above and include a minimal working example as part
of your question, but usually you don’t need to provide the log-file. Instead, just add the list
of packages and package versions from the log-file and, if your MWE compiles with errors,
you should quote those messages from the log file.

Please note that default settings which are not typographically optimal do not represent
errors. For reasons of compatibility, defaults are preserved whenever possible in new versions
of KOMA-Script. Furthermore, typographical best practices are partly a matter of language
and culture, and so the default settings of KOMA-Script are necessarily a compromise.

mailto:komascript@gmx.info

Chapter 1: Introduction

1.8. Additional Information

Once you become familiar with KOMA-Script, you may want examples that show how to
accomplish more difficult tasks. Such examples go beyond the basic instructional scope of
this manual and so are not included. However, you will find more examples on the website of
the KOMA-Script Documentation Project [KDP]. These examples are designed for advanced
XTEX users and are not particularly suitable for beginners. The main language of the site is

German, but English is also welcome.

Part I.
KOMA -Script for Authors

This part provides information for writers of articles, reports, books, and letters. The average
user is probably less interested in how things are implemented in KOMA-Script and what
pitfalls exist. Also, normal users aren’t interested in obsolete options and instructions. They
want to know how to achieve things using current options and instructions, and perhaps in
some background information about typography.

The few passages in this part which contain extra information and explanations that may be
of less interest for the impatient reader are set in a sans-serif typeface and can be skipped if de-
sired. For those who are interested in more information about the implementation, side-effects
with other packages, or obsolete options and instructions, please refer to part II beginning on
page 333. That part of the KOMA-Script guide also describes all the features that were created
specially for authors of packages and classes.

Chapter 2: Calculating the Page Layout with typearea

Calculating the Page Layout with typearea

Many IXTEX classes, including the standard classes, present the user with a largely fixed
configuration of margins and page layout. In the standard classes, the choice is limited to
selecting a font size. There are separate packages, such as geometry (see [Umel(]), which
give the user complete control over, but also full responsibility for, setting the type area and
margins.

KOMA-Script takes a somewhat different approach with the typearea package. Users are
offered ways to adjust the design and algorithms based on established typographic standards,
making it easier for them to make good choices.

2.1. Fundamentals of Page Layout

At first glance, a single page of a book or other printed material consists of the margins, a header,
a body of text, and a footer. More precisely, there is also a space between the header area and the
text body, as well as between the body and the footer. The text body is called, in the jargon of
typographers and typesetters, the type area. The division of these areas, as well as their relations
to each other and to the paper, is called the page layout.

Various algorithms and heuristic methods for constructing an appropriate type area have been
discussed in the literature [Koh02]. These rules are known as the “canons of page construction.”
One approach often mentioned involves diagonals and their intersections. The result is that the
aspect ratio of the type area corresponds to the proportions of the page. In a one-sided document,
the left and right margins should have equal widths, while the ratio of the top and bottom margins
should be 1:2. In a two-sided document (e.g. a book), however, the entire inner margin (the
margin at the spine) should be the same size as each of the two outer margins; in other words, a
single page contributes only half of the inner margin.

In the previous paragraph, we mentioned and emphasised the page. It is often mistakenly thought
that the format of the page is the same as the format of the paper. However, if you look at a bound
document, you can see that part of the paper disappears in the binding and is no longer part of the
visible page. For the type area, however, it is not the format of the paper which is important; it is
the impression of the visible page to the reader. Thus, it is clear that the calculation of the type
area must account for the “lost” paper in the binding and add this amount to the width of the
inner margin. This is called the binding correction. The binding correction is therefore calculated
as part of the gutter but not the visible inner margin.

The binding correction depends on the production process and cannot be defined in general
terms. It is therefore a parameter that must be redefined for each project. In professional printing,
this value plays only a minor role, since printing is done on larger sheets of paper and then cropped
to the right size. The cropping is done so that the above relations for the visible, two-sided page
are maintained.

Chapter 2: Calculating the Page Layout with typearea

So now we know how the individual parts of a page relate to each other. However, we do not
yet know how wide and high the type area is. Once we know one of these two dimensions, we
can calculate all the other dimensions from the paper format and the page format or the binding
correction.

type area height : type area width = page height : page width
top margin : footer margin=1:2
left margin : right margin=1:1
half inner margin : outer margin=1:2
page width = paper width — binding correction
top margin + bottom margin = page height — type area height
left margin + right margin = page width — type area width
half inner margin + outer margin = page width — type area width

half inner margin + binding correction = gutter

The values left margin and right margin only exist in a one-sided document while half inner margin
and outer margin only exist in a two-sided document. We use half inner margin in these equations,
since the full inner margin is an element of the whole two-page spread. Thus, only half of the inner
margin, half inner margin, belongs to a single page.

The question of the width of the type area is also discussed in the literature. The optimum
width depends on several factors:

o the size, width, and type of font used,
o the line spacing,

o the word length,

o the available space.

The importance of the font becomes clear once you realize what serifs are for. Serifs are small
strokes that finish off the lines of letters. Letters with vertical lines touching the text baseline
disturb the flow rather than keeping the eye on the line. It is precisely with these letters that the
serifs lie horizontally on the baseline and thus enhance the horizontal effect of the font. The eye
can better follow the line of text, not only when reading the words but also when jumping back to
the beginning of the next line. Thus, the line length can actually be slightly longer for a serif font
than for a sans serif font.

Leading refers to the vertical distance between individual lines of text. In IATEX, the leading is
set at about 20% of the font size. With commands like \1inespread, or better, packages like
setspace (see [TF11]), you can change the leading. A wider leading makes it easy for the eye to
follow the line. A very wide leading, however, disturbs reading because the eye has to travel long

Chapter 2: Calculating the Page Layout with typearea

distances between the lines. In addition, the reader becomes uncomfortable because of the visible
striped effect. The uniform grey value of the page is thereby spoiled. Nevertheless, the lines can
be longer with a wider leading.

The literature gives different values for good line lengths, depending on the author. To some
extent, this is related to the author’s native language. Since the eye usually jumps from word
to word, short words make this task easier. Across all languages and fonts, a line length of 60
to 70 characters, including spaces and punctuation, forms a usable compromise. This requires
well-chosen leading, but IATEX's default is usually good enough. Longer line lengths should only be
considered for highly-developed readers who spend many hours a day reading. But even then, line
lengths beyond 80 characters are unacceptable. In each case, the leading must be appropriately
chosen. An extra 5% to 10% is recommended as a good rule of thumb. For typefaces like Palatino,
which require more than 5% leading for normal line lengths, even more can be required.

Before looking at the actual construction of the page layout, there are a few minor points you
should know. IATEX does not start the first line in the text area of a page at the upper edge
of the text area but sets the baseline at a defined distance from the top of the text area. Also,
IATEX recognizes the commands \raggedbottom and \flushbottom. \raggedbottom specifies
that the last line of a page should be positioned wherever it was calculated. This means that the
position of this line can be different on each page, up to the height of one line— even more when
the end of the page coincides with headings, figures, tables, or the like. In two-sided documents
that is usually undesirable. The second command, \flushbottom, makes sure that the last line is
always at the lower edge of the text area. To achieve this vertical compensation, IATEX may have
to stretch vertical glue beyond what is normally allowed. Paragraph skip is such a stretchable,
vertical glue, even when set to zero. To avoid stretching on normal pages where paragraph spacing
is the only stretchable glue, the height of the text area should be a multiple of the height of the
text line, including the distance of the first line from the top of the text area.

This concludes the fundamentals. In the following two sections, the methods of construction
offered by KOMA-Script are presented in detail.

2.2. Constructing the Type Area by Division

The easiest way to make sure that the text area has the same ratio as the page is as follows:

o First, subtract the BCOR required for the binding correction from the inner edge of the
paper, and divide the rest of the page vertically into DIV rows of equal height.

o Next, divide the page horizontally into the same number (D/V) of columns of equal width.

e Then, take the uppermost row as the upper margin and the two lowermost rows as the lower
margin. If you are printing two-sided, you similarly take the innermost column as the inner
margin and the two outermost columns as the outer margin.

e Then add the binding correction BCOR to the inner margin.

Chapter 2: Calculating the Page Layout with typearea

page-ltayout-left page layout right

Figure 2.1.: Two-sided layout [
with the box construction of the
classical nine-part division, after
subtracting a binding correction [

What remains within the page is the text area. The width and height of the text area and margins
result automatically from the number of rows and columns, DIV. Since the margins always need
three stripes, DIV must be greater than three. In order that the text area occupy at least twice as
much space as the margins, DIV should really be at least nine. With this value, the design is also
known as the classical nine-part division (see figure 2.1).

In KOMA-Script, this kind of design is implemented with the typearea package, where the
bottom margin may drop any fractions of a line in order to comply with the constraint for the
height of the type area mentioned in the previous paragraph and thereby reduce the problem
mentioned with \flushbottom. For A4 paper, DIV is predefined according to the font size (see
table 2.2, page 37). If there is no binding correction (BCOR = 0pt), the results roughly match
the values of table 2.1, page 36.

In addition to the predefined values, you can specify BCOR and DIV as options when loading
the package (see section 2.4, starting on page 34). There is also a command to calculate the type
area explicitly by providing these values as parameters (see also section 2.4, page 40).

The typearea package can automatically determine the optimal value of D/V for the font and
leading used. Again, see section 2.4, page 37.

2.3. Constructing the Type Area by Describing a Circle

In addition to the construction method for the type area described above, there is an even more
traditional, or even medieval, method found in the literature. The aim of this method is not just
to have the same ratios between page size and type area; it is considered optimal when the height
of the text area corresponds to the width of the page. This means that a circle can be drawn

Chapter 2: Calculating the Page Layout with typearea

that will touch both the sides of the page and the top and bottom of the text area. The exact
procedure can be found in [Tsc87].

A disadvantage of this late-medieval canon of page construction is that the width of the text
area no longer depends on the font. One no longer chooses the text area to match the font.
Instead, the author or typesetter must choose the appropriate font for the text area. This should
be considered mandatory.

In the typearea package, this construction is modified to determine the DIV value by selecting
a special (normally meaningless) DIV value or a special, symbolic indication of the DIV value so
that the resulting type area comes as close as possible to the late-medieval page canon. Hence it
relies in turn on the method of constructing the type area by division.

2.4. Early or Late Selection of Options

This section introduces a special feature of KOMA-Script which, in addition to typearea, is also
relevant to other KOMA-Script packages and classes. This section appears in nearly identical
form in several chapters, so you can find all the information about a single package or class in
the relevant chapter. Users who are interested not just in a particular package or class but in
getting an overview of KOMA-Script as a whole only need to read this section in one of the
chapters and can then skip it as they study the guide.

\documentclass[option list J{KOMA-Script class?}
\usepackage[option list]l{package list}

XTEX allows users to pass class options as a comma-separated list of keywords in the optional
argument to \documentclass. In addition to being passed to the class, these options are also
passed on to all packages that can understand them. Users can also pass a similar comma-
separated list of keywords in the optional argument of \usepackage. KOMA-Script extends
the option mechanism for the KOMA-Script classes and some packages with further options.
Thus most KOMA-Script options can also take a value, so an option does not necessarily
take the form option, but can also take the form option=value. Except for this difference,
\documentclass and \usepackage in KOMA-Script function as described in [Tea05b] or any
introduction to WTEX, for example [OPHS11].

When using a KOMA-Script class, you should not specify options when loading the typearea
or scrbase packages. The reason for this restriction is that the class already loads these
packages without options, and IANTEX refuses to load a package multiple times with different
option settings.

Setting the options with \documentclass has one major disadvantage: unlike the interface
described below, the options in \documentclass are not robust. So commands, lengths,
counters, and similar constructs may break inside the optional argument of this command.
For example, with many non-KOMA-Script classes, using a I¥TEX length in the value of an
option results in an error before the value is passed to a KOMA-Script package and it can take

Chapter 2: Calculating the Page Layout with typearea

control of the option execution. So if you want to use a IXTEX length, counter, or command
as part of the value of an option, you should use \KOMAoptions or \KOMAoption. These
commands will be described next.

\KOMAoptions{option list}
\KOMAoption{option}{value list}

KOMA-Script also provides the ability to change the values of most class and package options
even after loading the class or package. You can use the \KOMAoptions command to change
the values of a list of options, as in \documentclass or \usepackage. Each option in the
option list has the form option=value.

Some options also have a default value. If you do not specify a value, that is if you give the
option simply as option, then this default value will be used.

Some options can have several values simultaneously. For such options, it is possible, with
the help of \KOMAoption, to pass a list of values to a single option. The individual values
are given as a comma-separated value list.

KOMA-Script uses the commands \FamilyOptions and \FamilyOption with the family
“KOMA" to implement this ability. Advanced users will find more on these instructions in sec-
tion 12.2, page 338.

Options set with \KOMAoptions or \KOMAoption will reach both the KOMA-Script class
and any previously loaded KOMA-Script packages that recognise these options. If an option
or a value is unknown, scrbase will report it as an error.

2.5. Compatibility with Earlier Versions of KOMA -Script

Those who produce their documents from source code typically attach the utmost importance
to the fact that future INTEX runs will yield exactly the same result. In some cases, however,
improvements and bug fixes to the package will result in changes of behaviour, especially to
the layout. This, however, may be undesirable.

version=value
version=first
version=last

Since Version 3.01b, typearea has been able to choose whether the source file should, as
much as possible, continue to produce exactly the same result within a XTEX run or should be
formatted according to the modifications of the latest version. You can specify the version with
which you want your file to be compatible by using the version option. Compatibility with
the oldest supported KOMA-Script version can be achieved with version=first or version=
2.9 or version=2.9t. Setting value to an unknown release number will result in a warning
message and selects version=first for safety.

Chapter 2: Calculating the Page Layout with typearea

v3.0la

With version=last, you can select the latest version. In this case, you give up backwards
compatibility. If the option is used without a value, last is assumed. This also corresponds
to the default setting, as long as you do not use any deprecated options.

If you use a deprecated option of KOMA-Script 2, KOMA-Script 3 will switch to version=
first automatically. This will also result in a warning message that explains how to prevent
this switch. Alternatively, you can choose a different setting for version with the desired
compatibility after the deprecated option.

Compatibility is primarily a question of line and page breaks (wrapping). If you choose
compatibility with an older version, new options that do not affect wrapping are still avail-
able. The version option does not affect any wrapping changes that are the result of fixing
unambiguous errors. If you need unconditional wrapping compatibility even in the case of
bugs, you should physically save the old KOMA-Script version you need together with your
document.

Note that you cannot change the version option after loading the typearea package. Setting
this option with \KOMAoptions or \KOMAoption will therefore cause an error.

2.6. Adjusting the Type Area and Page Layout

The typearea package offers two different user interfaces to influence the construction of the
type area. The most important method is to specify options when loading the package. For
information on how to setup options with KOMA-Script, please refer to section 2.4.

In this section the classes used in the examples are not existing KOMA-Script classes but
hypothetical ones. This guide assumes that ideally an appropriate class is available for each
task.

BCOR=correction

Use the BCOR=correction option to specify the absolute value of the binding correction, i.e.
the width of the area lost from the paper during the binding process. This value is then
automatically taken into account when constructing the page layout and is added back to the
inner (or left) margin during output. In the value of the correction, you can specify any
measurement unit understood by TEX.

Example: Suppose you create a financial report. The whole thing should be printed out one-
sided on A4 paper and then stapled in a binder folder. The clip of the folder covers
7.5mm. The stack of pages is very thin, so at most another 0.75 mm will be lost
from bending and the sheets themselves. Therefore, you can write:

\documentclass [adpaper] {report}
\usepackage [BCOR=8.25mm] {typearea}

with BCOR=8.25mm as an option to typearea or

Chapter 2: Calculating the Page Layout with typearea

v3.00

\documentclass [adpaper,BCOR=8.25mm] {report}
\usepackage{typearea}

when using BCOR=8.25mm as a global option.

When using a KOMA-Script class, you do not need to load the typearea package
explicitly:

\documentclass [BCOR=8.25mm] {scrreprt}

You can omit the adpaper option with scrreprt, since this is the default for all
KOMA-Script classes.

If you want to set the option to a new value later, you can, for example, use the
following:

\documentclass{scrreprt}
\KOMAoptions{BCOR=8.25mm}

Defaults are initialized when the scrreprt class is loaded. Changing a setting with
the \KOMAoptions or \KOMAoption commands will automatically calculate a new
type area with new margins.

Note you must pass this option as a class option when loading one of the KOMA-Script
classes, as in the example above, or via \KOMAoptions or \KOMAoption after loading the class.
When you use a KOMA-Script class, you should not load the typearea package explicitly with
\usepackage, nor should you specify it as an optional argument when loading the package
if you are using another class. If the option is changed with \KOMAoptions or \KOMAoption
after loading the package, the type area and margins are automatically recalculated.

DIV=factor

The DIV=factor option specifies the number of strips into which the page is divided horizon-
tally and vertically during the construction of the type area. The exact construction method
is found in section 2.2. It’s important to realise that the larger the factor, the larger the
text block and the smaller the margins. Any integer value greater than 4 is valid for factor.
Note, however, that large values can cause violations in the constraints on the margins of the
type area, depending on how you set other options. In extreme cases, the header may fall
outside of the page. When you use the DIV=factor option, you are responsible for complying
with the margin constraints and for choosing a typographically pleasing line length.

In table 2.1, you will find the sizes of the type areas for several DIV factors for the A4 page
with no binding correction. In this case, the other constraints that are dependent on the font
size are not taken into account.

Example: Suppose you are writing up the minutes of a meeting using the minutes class. The
whole thing should be two-sided. Your company uses 12 pt Bookman font. This

Chapter 2: Calculating the Page Layout with typearea

Table 2.1.: Type area dimensions dependent on DIV for
A4 regardless of \topskip or BCOR Type area Margins

DIV width Theight top inner

6 105.00 148.50 49.50 35.00
7 120.00 169.71 42.43 30.00
8§ 131.25 185.63 37.13 26.25
9 140.00 198.00 33.00 23.33
10 147.00 207.90 29.70 21.00
11 15273 216.00 27.00 19.09
12 157.50 222,75 24.75 17.50
13 161.54 228.46 22.85 16.15
14 165.00 233.36 21.21 15.00
15 168.00 237.60 19.80 14.00

(all lengths in mm)

font, which is one of the standard PostScript fonts, is enabled in I TEX with the
command \usepackage{bookman}. Bookman is a very wide font, meaning that
the individual characters are relatively wide compared to their height. Therefore,
the default setting for DIV in typearea is too small. After thoroughly studying this
entire chapter, you conclude that a value of 15, instead of 12, is most suitable. The
minutes will not be bound but punched and kept in a folder, and thus no binding
correction is necessary. So you write:

\documentclass[adpaper,twoside] {minutes}
\usepackage{bookman}
\usepackage [DIV=15] {typearea}

When you're done, you become aware that the minutes will from now on be col-
lected and bound together as a book at the end of the quarter. The binding is to be
a simple glue binding because this is only being done to conform to ISO 9000 and
nobody is actually going to read them. The binding, including space lost in folding
the pages, requires an average of 12mm You change the options of the typearea
package accordingly and use the class for minutes that conform to ISO 9000 regu-
lations:

\documentclass [adpaper,twoside] {is09000p}
\usepackage{bookman}
\usepackage [DIV=15,BCOR=12mm] {typearea}

Of course, it is equally possible to use a KOMA-Script class here:

\documentclass[twoside,DIV=15,BCOR=12mm] {scrartcl}
\usepackage{bookman}

The adpaper option can be left out when using the scrartcl class, as it is predefined

Chapter 2: Calculating the Page Layout with typearea

Table 2.2.: DIV defaults for A4

base font size: 10pt 11pt 12pt
DIV: 8 10 12

in all KOMA-Script classes.

Note that when using this option with one of the KOMA-Script classes, as in the example
above, it must be passed either as a class option, or via \KOMAoptions or \KOMAoption after
loading the class. When using a KOMA-Script class, the typearea package should not be
loaded explicitly with \usepackage, nor should the option be given as an optional argument
thereto. If the option is changed via \KOMAoptions or \KOMAoption after loading the package,
the type area and margins are automatically recalculated.

DIV=calc
DIV=classic

As already mentioned in section 2.2, there are fixed defaults for DIV when using A4 paper.
These can be found in table 2.2. However, such fixed values have the disadvantage that they
do not take into account the letter spacing of the font used. With A4 and fairly narrow
fonts, this can quickly lead to an unpleasantly high number of characters per line. See the
considerations in section 2.1. If you choose a different paper size, typearea will calculate an
appropriate DIV value for you. Of course, you can also apply this same calculation to A4.
To do so, simply use DIV=calc in place of DIV=factor. Of course, you can also specify this
option explicitly for all other paper sizes. If you want automatic calculation, this specification
is useful, as it is possible to set different preferences in a configuration file (see section 20.3).
Explicitly specifying the DIV=calc option overrides such configuration settings.

You can also select the traditional page layout mentioned in section 2.3, the medieval page
canon. Instead of the DIV=factor or DIV=calc option, simply use the DIV=classic option.
A DIV value which is as close as possible to the medieval page canon is then chosen.

Example: In the example using the Bookman font and the DIV=factor option, the problem
was to select a DIV value that better matched the font. Modifying that example,
you can simply leave the calculation of this value to typearea:

\documentclass[adpaper,twoside] {protocol}
\usepackage{bookman}
\usepackage [DIV=calc]{typearea}

Note that when using this option with one of the KOMA-Script classes, as in the example
above, it must be passed either as a class option, or via \KOMAoptions or \KOMAoption after
loading the class. When using a KOMA-Script class, the typearea package should not be loaded
explicitly with \usepackage, nor should the option be given as an optional argument. If the

Chapter 2: Calculating the Page Layout with typearea

v3.00

option is changed via \KOMAoptions or \KOMAoption after loading the package, the type area
and margins are automatically recalculated.

DIV=current
DIV=last

If you’ve been following the examples closely, you already know how to calculate a DIV value
based on the font you chose when using a KOMA-Script class together with a font package.

The difficulty with doing so is that the KOMA-Script class already loads the typearea package
itself. Thus, it is not possible to pass options as optional arguments to \usepackage. It would
also be pointless to specify the DIV=calc option as an optional argument to \documentclass.
This option would be evaluated immediately on loading the typearea package and as a result the
type area and margins would be calculated for the standard IATEX font and not for the font loaded
later.

However, it is possible to recalculate the type area and margins after loading the font with the
aid of \KOMAoptions{DIV=calc} or \KOMAoption{DIV}{calc}. The option DIV=calc will then
request a DIV value for an appropriate line length.

As it is often more convenient to set the DIV option not after loading the font but at a more
noticeable point, such as when loading the class, the typearea package offers two further symbolic
values for this option.

The option DIV=current recalculates the type area and margins using the current DIV value.
This is less important for recalculating the type area after loading a different font. Instead,
it is useful if, for example, you change the leading while keeping the DIV value the same
and want to ensure the margin constraint that \textheight minus \topskip is a multiple of
\baselineskip.

The option DIV=1last will recalculate the type area and margins using exactly the same
settings as the last calculation.

By the way, if the last typeset area calculation before using DIV=1ast or DIV=current was
done using \areaset, the recalculation will be done using \areaset again. It then corresponds
to \areaset [current] {\textwidth}\textheight.

Example: Let’s suppose again that we need to calculate an appropriate line length for a type
area using the Bookman font. At the same time, a KOMA-Script class is used.
This is very easy with the symbolic value last and the command \KOMAoptions:

\documentclass [BCOR=12mm,DIV=calc,twoside] {scrartcl}

\usepackage{bookman}

\KOMAoptions{DIV=last}
If you decide later that you need a different DIV value, just change the setting of
the optional argument to \documentclass.

For a summary of all possible symbolic values for the DIV option, see table 2.3. Note that
the use of the fontenc package may also cause INTEX to load a different font.

Chapter 2: Calculating the Page Layout with typearea

Table 2.3.: Available symbolic values for the DIV option or the DIV argument to \typearea[BCOR]
{pIVv}

areaset
Recalculate page layout.

calc
Recalculate type area including choice of appropriate DIV value.
classic
Recalculate type area using medieval book design canon (circle-based calculation).
current
Recalculate type area using current DIV value.
default
Recalculate type area using the standard value for the current page format and
current font size. If no standard value exists, calc is used.
last

Recalculate type area using the same DIV argument as was used in the last call.

Frequently, the type area must be recalculated in combination with a change in the line
spacing (leading). Since the type area should be calculated in such a way that a whole number
of lines fits in the text block, a change in the leading normally requires a recalculation of the
type area.

Example: Suppose that you require a 10 pt font and a spacing of 1.5 lines for a dissertation.
By default, ITEX sets the leading for 10 pt fonts at 2 pt, in other words 1.2 lines.
Therefore, you must use an additional stretch factor of 1.25. Suppose also that you
need a binding correction of 12mm. Then the solution to the problem might look
like this:

\documentclass[10pt,twoside,BCOR=12mm,DIV=calc]{scrreprt}

\linespread{1.25}
\KOMAoptions{DIV=last}

Since typearea always executes the \normalsize command itself when calculat-
ing a new type area, it is not strictly necessary to set the chosen leading with
\selectfont after \linespread, since this will already be done in the recalcula-
tion.

When using the setspace package (see [TF11]), the same example would appear as
follows:
\documentclass[10pt,twoside,BCOR=12mm,DIV=calc]{scrreprt}

\usepackage [onehalfspacing] {setspace}
\KOMAoptions{DIV=last}

Chapter 2: Calculating the Page Layout with typearea

As you can see from the example, the setspace package saves you from needing to know the
correct stretch value. However, this only applies to the standard font sizes 10 pt, 11 pt, and
12 pt. For all other font sizes, the package uses an approximate value.

At this point, note that the line spacing for the title page should be reset to the normal
value, and the indexes should be set with the normal line spacing as well.

Example: Here is a complete example:

\documentclass[10pt,twoside,BCOR=12mm,DIV=calc]
{scrreprt}

\usepackage{setspace}
\onehalfspacing
\AfterTOCHead{\singlespacing}
\KOMAoptions{DIV=last}
\begin{document}
\title{Title}
\author{Markus Kohm}
\begin{spacing}{1}

\maketitle
\end{spacing}
\tableofcontents
\chapter{0k}
\end{document}

Also see the notes in section 2.8. The \AfterTOCHead command is described in
chapter 15 of part II on page 383.

Note also that changing the line spacing can also affect the page’s header and footer. For
example, if you are using the scrlayer-scrpage package, you have to decide for yourself whether
you prefer to have the normal or the changed leading. See the singlespacing option in
chapter 17, page 438.

Note that when using this option with one of the KOMA-Script classes, as in the example
above, it must be passed either as a class option, or via \KOMAoptions or \KOMAoption after
loading the class. When using a KOMA-Script class, the typearea package should not be
loaded explicitly with \usepackage, nor should the option be given as an optional argument
thereto. If the option is changed via \KOMAoptions or \KOMAoption after loading the package,
the type area and margins are automatically recalculated.

\typearea [BCOR]{DIV}
\recalctypearea

If the DIV option or the BCOR option is set after loading the typearea package, the \typearea
command will be called internally. When setting the DIV option, the symbolic value current
is used internally for BCOR, which for reasons of completeness is also found in table 2.4. When
setting the BCOR option, the symbolic value last is used internally for DIV. If instead you want

Chapter 2: Calculating the Page Layout with typearea

Table 2.4.: Available symbolic BCOR arguments for \typearea [BCOR]1{DIV}

current
Recalculate type area with the currently valid BCOR value.

the type area and margins to be recalculated using the symbolic value current for DIV, you can
use \typearea[current]{current} directly.

If you change both BCOR and DIV, you should use \typearea, since then the type area and
margins are recalculated only once. With \KOMAoptions{DIV=factor ,BCOR=correction}
the type area and margins are recalculated once for the change to DIV and again for the
change to BCOR.

The command \typearea is currently defined so as to make it possible to change the type area
in the middle of a document. However, several assumptions about the structure of the IATEX kernel
are made, and internal definitions and sizes of the kernel are changed. Since changes are only made
to the IATEX kernel to fix bugs, there is a high likelihood, though no guarantee, that this will still
work in future versions of IATEX 2. When used within the document, a page break will result.

Since \KOMAoption{DIV}{last}, \KOMAoptions{DIV=last}, or \typearealcurrent]
{last} is frequently needed to recalculate the type area and margins, there is a convenience
command, \recalctypearea.

Example: If you find the notation
\KOMAoptions{DIV=last}
or
\typearea[current] {last}

too cumbersome for recalculating text area and margins because of the many special
characters, you can simply use

\recalctypearea

twoside=simple switch

twoside=semi

As explained in section 2.1, the distribution of the margins depends on whether the document
is to be printed one-sided or two-sided. For one-sided printing, the left and right margins
are the same width, whereas for two-sided printing the inner margin of one page is only half
as wide as the corresponding outer margin. To invoke two-sided printing, you must give
the typearea package the twoside option. For the simple switch, you can use any of the
standard values for simple switches in table 2.5. If the option is passed without a value, the
value true is assumed, so two-sided printing is enabled. Deactivating the option leads to
one-sided printing.

Chapter 2: Calculating the Page Layout with typearea

Table 2.5.: Standard values for simple switches in KOMA-Script

Value Description

true activates the option

on activates the option
yes activates the option
false deactivates the option
off deactivates the option
no deactivates the option

In addition to the values in table 2.5, you can also use the value semi. This value results
in two-sided printing with one-sided margins and one-sided, that is non-alternating, marginal
notes. Beginning with KOMA-Script version 3.12, binding corrections (see BCOR, page 34) will
be part of the left margin on odd pages but part of the right margin on even pages. But if you
switch on compatibility with a prior version of KOMA-Script (see section 2.5, page 33), the
binding correction will be part of the left margin on both pages while using twoside=semi.

The option can also be passed as class option in \documentclass, as a package option with
\usepackage, or even after loading typearea with \KOMAoptions or \KOMAoption. Using this
option after loading typearea automatically results in the recalculation of the type area using
\recalctypearea (see page 40). If the two-sided mode was active before the option was set,
a page break is made to the next odd page before the recalculation.

twocolumn=simple switch

To compute an appropriate type area with the help of DIV=calc, it is useful to know in advance
if the document is to be typeset in one or two columns. Since the considerations about line
length in section 2.1 apply to each column, the type area in two-column documents can be up
to twice as wide as in one-column documents.

To make this distinction, you must tell typearea if the document is to be set with two
columns using the twocolumn option. Since this is a simple switch, any of the standard
values for simple switches from table 2.5 are valid. If the option is passed without a value, the
value true is used, i.e. the two-column setting. Deactivating the option returns you to the
default one-column setting.

The option can also be passed as a class option in \documentclass, as a package op-
tion to \usepackage, or even after loading typearea with \KOMAoptions or \KOMAoption.
Using this option after loading typearea will automatically recalculate the type area using
\recalctypearea (see page 40).

Chapter 2: Calculating the Page Layout with typearea

headinclude=simple switch
footinclude=simple switch

So far we have discussed how the type area is calculated and the relationship of the margins to
one another and between margins and body of the text. But one important question has not been
answered: What exactly are the margins?

At first glance the question appears trivial: Margins are those parts on the right, left, top, and
bottom of the page which remain empty. But this is only half the story. Margins are not always
empty. Sometimes there can be marginal notes, for example (see the \marginpar command in
[OPHS11] or section 3.21).

For the top and bottom margins, the question becomes how to handle headers and footers. Do
these two belong to the text body or to their respective margins? This question is not easy to
answer. Clearly an empty footer or header belongs to the margins, since it cannot be distinguished
from the rest of the margins. A footer that contains only the pagination looks more like a margin
and should therefore be counted as such. It is irrelevant for the visual effect whether headers
or footers are easily recognized as such when reading or skimming. The decisive factor is how a
well-filled page appears when viewed out of focus. For this purpose, you could, for example, steal
the glasses of a far-sighted grandparent and hold the page about half a meter from the tip of your
nose. If you lack an available grandparent, you can also adjust your vision to infinity and look at
the page with one eye only. Those who wear glasses have a clear advantage here. If the footer
contains not only the pagination but also other material like a copyright notice, it looks more
like a slightly detached part of the body of the text. This needs to be taken into account when
calculating the type area.

For the header, this is even more complicated. The header often contains running heads. If you
use the current chapter and section titles in your running head and these titles are long, the header
itself will necessarily be very long. In this case, the header again acts like a detached part of the
text body and less like an empty margin. This effect is reinforced if the header contains not only
the chapter or section title but also the pagination. With material on the right and left side, the
header no longer appears as an empty margin. It is more difficult if the pagination is in the footer
and the length of the running titles varies, so that the header may look like part of the margin
on one page and part of the text body on another. Under no circumstances should you treat the
pages differently. That would lead to vertically jumping headers, which is not suitable even for a
flip book. In this case it is probably best to count the header as part of the text body.

The decision is easy when the header or footer is separated from the actual text body by a line.
This will give a “closed” appearance and the header or footer should be calculated as part of the
text body. Remember: It is irrelevant that the line improves the optical separation of text and
header or footer; only the appearance when viewed out of focus is important.

The typearea package cannot determine on its own whether to count headers and footers as
part of the text body or the margin. The headinclude and footinclude options cause the
header or footer to be counted as part of the text. These options, being simple switches,
accept the standard values for simple switches in table 2.5. You can use the options without

Chapter 2: Calculating the Page Layout with typearea

specifying a value, in which case the value true is used for the simple, i.e. the header or
footer is counted as part of the text.

If you are unsure what the correct setting should be, reread the explanations above. The
default is usually headinclude=false and footinclude=false, but this can change in the
KOMA-Script classes or in other KOMA-Script packages depending on the options used (see
section 3.1 and chapter 5).

Note that these options must be passed as class options when using one of the KOMA-Script
classes, or after loading the class with \KOMAoptions or \KOMAoption. Changing these options
after loading the typearea package does not automatically recalculate the type area. Instead,
the changes only take effect the next time the type area is recalculated. For recalculation
of the type area, see the DIV option with the values last or current (see page 38) or the
\recalctypearea command (see page 40).

mpinclude=simple switch

In addition to documents where the header and footer are more likely to be part of the text
body than the margins, there are also documents where marginal notes should be considered
part of the text body as well. The option mpinclude does exactly this. The option, as a
simple switch, accepts the standard values for simple switches in table 2.5. You can also
pass this option without specifying a value, in which case true is assumed.

The effect of mpinclude=true is that a width-unit is removed from the main text body and
used as the area for marginal notes. With the mpinclude=false option, which is the default
setting, part of the normal margin is used for marginal notes. The width of that area is one
or one-and-a-half width units, depending on whether you have chosen one-sided or two-sided
printing. The mpinclude=true option is mainly for experts and so is not recommended.

In most cases where the option mpinclude makes sense, you also require a wider area for
marginal notes. Often, however, only a part of the marginal note's width should be part of the
text area, not the whole width, for example if the margin is used for quotations. Such quotations
are usually set as unjustified text, with the flush edge against the text area. Since the unjus-
tified text gives no homogeneous optical impression, these lines can protrude partially into the
margin. You can accomplish that by using the option mpinclude and by increasing the length
\marginparwidth after the type area has been set up. The length can be easily enlarged with the
command \addtolength. How much the length has to be increased depends on the individual
situation and it requires a certain amount of sensitivity. This is another reason the mpinclude
option is primarily intended for experts. Of course you can specify, for example, that the marginal
notes should project a third of the way into the normal margin by using the following:

\setlength{\marginparwidth}{1.5\marginparwidth}

Currently there is no option to enlarge the space for marginal notes within the text area. There
is only one way to accomplish this: first, either omit the mpinclude option or set it to false,
and then, after the type area has been calculated, reduce \textwidth (the width of the text

Chapter 2: Calculating the Page Layout with typearea

body) and increase \marginparwidth (the width of the marginal notes) by the same amount.
Unfortunately, this procedure cannot be combined with automatic calculation of the DIV value. In
contrast, mpinclude is taken into account with DIV=calc (see page 37).

Note that these options must be passed as class options when using one of the KOMA -Script
classes, or after loading the class with \KOMAoptions or \KOMAoption. Changing these options
after loading the typearea package does not automatically recalculate the type area. Instead,
the changes only take effect the next time the type area is recalculated. For recalculation
of the type area, see the DIV option with the values last or current (see page 38) or the
\recalctypearea command (see page 40).

headlines=number of lines
headheight=height

We have seen how to calculate the type area using the typearea package and how to specify
whether the header and footer are part of the text or the margins. However, especially for the
header, we still have to specify the height. This is achieved with the options headlines and
headheight.

The headlines option specifies the number of lines of text in the header. The typearea
package uses a default of 1.25. This is a compromise: large enough for underlined headers
(see section 3.12) and small enough that the relative weight of the top margin is not affected
too much when the header is not underlined. Thus the default value will usually be adequate.
In special cases, however, you may need to adjust the header height more precisely to your
actual requirements.

Example: Suppose you want to create a two-line header. Normally this would result in BTEX
issuing the warning “overfull \vbox” for each page. To prevent this from hap-
pening, you tell the typearea package to calculate an appropriate type area:

\documentclass [adpaper]{article}
\usepackage [headlines=2.1]{typearea}

If you use a KOMA-Script class, you should pass this option directly to the class:
\documentclass [adpaper,headlines=2.1]{scrartcl}

Commands that can be used to define the contents of a two-line header can be
found in chapter 5.

In some cases it is useful to be able to specify the header height not in lines but directly
as a length. This is accomplished with the alternative option headheight. All lengths and
sizes that IXTEX understands are valid for height. Note, however, that if you use a INTEX
length such as \baselineskip, its value is not fixed at the time the option is set. The value
that will be used will be the one current at the time the type area and margins are calculated.
Also, INTEX lengths like \baselineskip should never be used in the optional argument of
\documentclass or \usepackage.

Chapter 2: Calculating the Page Layout with typearea

Please be sure to note that these options must be passed as class options when using one
of the KOMA-Script classes, or after loading the class with \KOMAoptions or \KOMAoption.
Changing these options after loading the typearea package does not automatically recalculate
the type area. Instead, the changes only take effect the next time the type area is recalculated.
For recalculation of the type area, see the DIV option with the values last or current (see
page 38) or the \recalctypearea command (see page 40).

footlines=number of lines
footheight=height
\footheight

Like the header, the footer also requires an indication of how high it should be. But unlike
the height of the header, the IXTEX kernel does not provide a length for the height of the
footer. So typearea defines a new length, \footheight, if it does not already exist. Whether
this length will be used by classes or packages to design the headers and footers depends on
the individual classes and packages. The KOMA-Script package scrlayer-scrpage incorporates
\footheight and actively cooperates with typearea. The KOMA-Script classes, on the other
hand, do not recognize \footheight because without the help of packages they offer only
page styles with single-line page footers.

You can use footlines to set the number of lines in the footer, similar to headlines for
the number of lines in the header. By default the typearea package uses 1.25 footer lines.
This value is a compromise: large enough to accommodate an overlined or underlined footer
(see section 3.12), and small enough that the relative weight of the bottom margin is not
affected too much when the footer lacks a dividing line. Thus the default value will usually be
adequate. In special cases, however, you may need to adjust the footer height more precisely
to your actual requirements.

Example: Suppose you need to place a two-line copyright notice in the footer. Although
there is no test in IATEX itself to check the space available for the footer, exceeding
the designated height will likely result in unbalanced distribution of type area and
margins. Moreover, a package such as scrlayer-scrpage, which can be used to define
such a footer, performs the appropriate test and will report any overruns. So it
makes sense to specify the required footer height when calculating of the type area:

\documentclass [adpaper]{article}
\usepackage [footlines=2.1]{typearea}

Again, if you use a KOMA-Script class, you should pass this option directly to the
class:

\documentclass[footlines=2.1]{scrartcl}

Commands that can be used to define the contents of a two-line footer are described
in chapter 5.

Chapter 2: Calculating the Page Layout with typearea

In some cases it is useful to be able to specify the footer height not in lines but directly as
a length. This is accomplished with the alternative option footheight. All lengths and sizes
that IATEX understands are valid for height. Note, however, that if you use a ITEX length
such as \baselineskip, its value is not fixed at the time the option is set. The value that
will be used will be the one current at the time the type area and margins are calculated.
Also, IATEX lengths like \baselineskip should never be used in the optional argument of
\documentclass or \usepackage.

Please be sure to note that these options must be passed as class options when using one
of the KOMA-Script classes, or after loading the class with \KOMAoptions or \KOMAoption.
Changing these options after loading typearea does not automatically recalculate the type
area. Instead, the changes only take effect the next time the type area is recalculated. For
recalculation of the type area, see the DIV option with the values last or current (see page 38)
or the \recalctypearea command (see page 40).

\areaset [BCOR]1{width}{height}

So far, we have seen how to create a nice type area for standard situations and how the
typearea package makes it easier to accomplish this while still giving the freedom to adapt
the layout. However, there are cases where the text body has to adhere precisely to specific
dimensions. At the same time, the margins should be distributed as nicely as possible and,
if necessary, a binding correction should be taken into account. The typearea package offers
the command \areaset for this purpose. This command takes as parameters the width and
height of the text body, as well as the binding correction as an optional parameter. The width
and position of the margins are then calculated automatically, taking account of the options
headinclude, headinclude=false, footinclude and footinclude=false where needed. On
the other hand, the options headlines, headheight, footlines, and footheight are ignored!
For more information, see \areaset on page 473 of section 20.1.

The default for BCOR is Opt. If you want to preserve the current binding correction, for
example the value set by option BCOR, you can use the symbolic value current at an optional
argument.

Example: Suppose a text on A4 paper needs a width of exactly 60 characters in a typewriter
font and a height of exactly 30 lines per page. You can accomplish this with the
following preamble:

\documentclass [adpaper,1ipt]{article}
\usepackage{typearea}

\newlength{\CharsLX}/ Width of 60 characters
\newlength{\LinesXXX}/ Height of 30 lines
\settowidth{\CharsLX}{\texttt{1234567890}}
\setlength{\CharsLX}{6\CharsLX}
\setlength{\LinesXXX}{\topskip}
\addtolength{\LinesXXX}{29\baselineskip}

Chapter 2: Calculating the Page Layout with typearea

\areaset{\CharsLX}{\LinesXXX}

The factor is 29 rather than 30 because the baseline of the topmost line of text
is \topskip below the top margin of the type area, as long as the height of the
topmost line is less than \topskip. So we don’t need to add any height for the
first line. The descenders of characters on the lowermost line, on the other hand,
protrude below the dimensions of the type area.

To set a book of poetry with a square text area with a side length of 15cm and a
binding correction of 1cm, the following is possible:

\documentclass{poetry}
\usepackage{typearea}
\areaset [1cm]{15cm}{15cm}

DIV=areaset

In rare cases it is useful to be able to realign the current type area. This is possible with the
option DIV=areaset, where \KOMAoptions{DIV=areaset} corresponds to the

\areaset [current] {\textwidth}{\textheight}

command. The same result is obtained if you use DIV=1ast and the typearea was last set with
\areaset.

If you have concrete specifications for the margins, typearea is not suitable. In this case,
you should use the geometry package (see [Umel0]).

2.7. Selecting the Paper Size

The paper size is a key feature of a document. As already mentioned in the description of
the supported page layout constructions (see section 2.1 to section 2.3 starting on page 28),
the layout of the page, and hence the entire document, depends on the paper size. Whereas
the I¥TEX standard classes are limited to a few formats, KOMA-Script supports even unusual
paper sizes in conjunction with the typearea package.

paper=stize
paper=orientation

The paper option is the central element for paper-size selection in KOMA-Script. Size sup-
ports the American formats letter, legal, and executive. In addition, it supports the ISO
formats of the series A, B, C, and D, for example A4 or — written in lower case — a4.

Landscape orientations are supported by specifying the option one more time with the value
landscape or seascape. The only difference between landscape and seascape is that that
the application dvips rotates landscape pages by -90°, while it rotates seascape pages by

Chapter 2: Calculating the Page Layout with typearea

4+90°. Thus seascape is particularly useful whenever a PostScript viewer shows landscape
pages upside-down. In order for the difference to have an effect, you must not deactivate the
pagesize option described below.
v3.01b Additionally, the size can also be specified either in the form width : height or in the form
E height :width. Which value is taken as the height and which as the width depends on the
orientation of the paper. With paper=landscape or paper=seascape, the smaller value is
the height and the larger one is the width. With paper=portrait, the smaller value is the
width and the larger one is the height.

Note that until version 3.01a the first value was always the height and the second one the
width. From version 3.01b through version 3.21, the first value was always the width and
the second one the height. This is important if you use compatibility settings (see option
version, section 2.5, page 33).

Example: Suppose you want to print an ISO-AS8 index card in landscape orientation. The
margins should be very small and no header or footer will be used.

\documentclass{article}

\usepackage [headinclude=false,footinclude=false,
paper=A8,landscape] {typearea}

\areaset{7cm}{5cm}

\pagestyle{empty}

\begin{document}

\section*{Supported Paper Sizes}

letter, legal, executive, a0, al \dots\ %

b0, bl \dots\ cO, c1 \dots\ dO, di1 \dots

\end{document}

If the file cards have the special format (height:width) 5cm:3cm, this can be
achieved using the following:

\documentclass{article}

\usepackage [headinclude=false,footinclude=false, /
paper=landscape,paper=5cm: 3cm] {typearea}

\areaset{4cm}{2.4cm}

\pagestyle{empty}

\begin{document}

\section*{Supported Paper Sizes}

letter, legal, executive, a0, al \dots\ 7

b0, bl \dots\ cO, c1 \dots\ 4O, di1 \dots

\end{document}

By default, KOMA-Script uses A4 paper in portrait orientation. This is in contrast to the
standard classes, which by default use the American letter paper format.

Please note that these options must be passed as class options when using one of the KOMA -
Script classes, or after loading the class with \KOMAoptions or \KOMAoption. Changing the

Chapter 2: Calculating the Page Layout with typearea

paper size or orientation with \KOMAoptions or \KOMAoption does not automatically recal-
culate the type area. Instead, the changes only take effect the next time the type area is
recalculated. For recalculation of the type area, see the DIV option with the values last or
current (see page 38) or the \recalctypearea command (see page 40).

pagesize=output driver
The above-mentioned mechanisms for choosing the paper format only affect the output insofar as
internal IATEX lengths are set. The typearea package then uses them in dividing the page into type
area and margins. The specification of the DVI formats, however, does not include any indication
of paper size. When outputting directly from the DVI format to a low-level printer language such as
PCL! or ESC/P22 or ESC/P—R3, this is usually not an issue, since with these formats the reference
zero-position is at the top left, as in DVI. But nowadays, the output is normally translated into
languages such as PostScript or PDF, in which the zero-position is at a different point, and in
which the paper format should be specified in the output file, which is missing this information. To
solve this problem, the corresponding driver uses a default paper size, which the user can change
either by an option or by specifying it in the TEX source file. When using the DVI driver dvips or
dvipdfm, the information can be given in the form of a \special command. When using pdfTEX,
luaTEX, X3TEX or VTEX their paper-size lengths are set appropriately.

With the pagesize option, you can select an output driver for writing the paper size into
the destination document. Supported output drivers are listed at table 2.6. The default is
pagesize. Using this option without providing a value is equivalent to pagesize=auto.

Example: Suppose a document should be available both as a DVI data file and in PDF format
for on-line viewing. The preamble might begin as follows:

\documentclass{article}
\usepackage [paper=A4,pagesize] {typearea}

If the pdfTEX engine is used and PDF output is enabled, the lengths \pdfpagewidth
and \pdfpageheight are set appropriately. If, however, a DVI data file is created —
whether by IMTEX or by pdfI&TEX —then a \special is written at the start of this
data file.

If you use an older version of typearea, you should always specify the pagesize option, because
older versions of typearea did not set them by default. As a rule, the method without an output
driver or with auto or automedia is convenient.

'PCL is a family of printer languages that HP uses for its inkjet and laser printers.
2ESC/P2 is the printer language that EPSON uses for its dot-matrix, and older inkjet or laser printers.
SESC/P-R is the printer language that EPSON currently uses for inkjet and laser printers.

Chapter 2: Calculating the Page Layout with typearea

Table 2.6.: Output driver for option pagesize=output driver

auto
Uses output driver pdftex if the pdfTEX-specific lengths \pdfpagewidth and
\pdfpageheight or the luaTEX-specific lengths \pagewidth and \pageheight are
defined. In addition, the output driver dvips will also be used. This setting is in
principle also suitable for XqTEX.

automedia
Almost the same as auto but if the VTEX-specific lengths \mediawidth and
\mediaheight are defined, they will be set as well.

false, no, off
Does not set any output driver and does not send page size information to the output

driver.
dvipdfmx
Writes the paper size into DVI files using \special{pagesize=width ,height}.

The name of the output driver is dvipdfmx because the application dvipdfmx handles
such specials not just in the preamble but in the document body too.

dvips
Using this option in the preamble sets the paper size using \special
{pagesize=width ,height}. Since the dvips driver cannot handle changes of paper
size in the inner document pages, a hack is required to achieve such changes. Use
changes of paper size after \begin{document} at your own risk, if you are using

dvips!
pdftex, luatex
Sets paper size using the pdfTEX-specific lengths \pdfpagewidth and

\pdfpageheight or the luaTEX-specific lengths \pagewidth and \pageheight. You
can do this at any time in your document.

2.8. Tips

For theses and dissertations, many rules exist that violate even the most elementary rules
of typography. The reasons for such rules include the typographical incompetence of those
who issue them, but also the fact that they were originally meant for mechanical typewriters.
With a typewriter or a primitive text processor from the early 1980s, it was not possible to
produce typographically correct output without extreme effort. So rules were created that
appeared to be easy to follow and were still accommodating to a proofreader. These include
margins that lead to usable line lengths for one-sided printing with a typewriter. To avoid
extremely short lines, which are made worse by unjustified text, the margins were kept narrow
and the leading was increased to 1.5 lines to allow space for corrections. Before the advent of

Chapter 2: Calculating the Page Layout with typearea

modern text processing systems, single spacing would have been the only alternative —except
with TgX. In such a single-spaced document, even correction signs would have been difficult
to add. When computers became more widely available for text processing, some students
showed their playful side and tried to spice up their work by using an ornamental font to make
their work look better than it really was. They did not consider that such fonts are often more
difficult to read and therefore unsuitable for this purpose. Thus, two font families found their
way into the regulations which are neither compatible nor particularly suitable for the job in
the case of Times. Times is a relatively narrow typeface designed at the beginning of the 20th
century for the narrow columns of British newspapers. Modern versions usually are somewhat
improved. But still the Times font, which is often required, does not really fit the prescribed
margins.

ETEX already uses adequate line spacing, and the margins are wide enough for corrections.
Thus a page will look spacious, even when quite full of text.

Often these typographically questionable rules are difficult to implement in ITEX. A fixed
number of characters per line can be achieved only when a non-proportional font is used.
There are very few good non-proportional fonts available. Hardly any text typeset in this way
looks really good. In many cases font designers try to increase the serifs on the ‘i’ or ‘I’ to
compensate for the different character widths. This does not work and results in a fragmented
and agitated-looking text. If you use ITEX for your thesis, some of these rules have to be
either ignored or at least interpreted generously. For example, “60 characters per line” can be
interpreted not as a fixed but as an average or maximum value.

As implemented, typesetting rules are usually intended to obtain a useful result even if
the author does not know what needs to be considered. Useful frequently means readable
and correctable. In my opinion the type area of a text set with IATEX and the typearea
package meets these criteria well from the outset. So if you are confronted with regulations
which deviate substantially from it, I recommend that you present a sample of the text to
your advisor and ask whether you can submit the work despite deviations in the format. If
necessary the type area can be adapted somewhat by changing the DIV option. I advise against
using \areaset for this purpose, however. In the worst case, use the geometry package (see
[Umel0]), which is not part of KOMA-Script, or change the page layout parameters of BTEX
yourself. You can find the values as determined by typearea in the log file of your document.
The usegeometry option, which you can find in part II, can also improve the interactions
between typearea and geometry. This should allow modest adjustments. However, make sure
that the proportions of the text area match those of the page, taking the binding correction
into account.

If it is absolutely necessary to set the text with a line spacing of 1.5, do not under any
circumstances redefine \baselinestretch. Although this procedure is recommended all too
frequently, it has been obsolete since the introduction of IITREX 2¢ in 1994. In the worst case,
use the \linespread command. I recommend the package setspace (see [TF'11]), which is not
part of KOMA-Script. You should also let typearea recalculate a new type area after changing

Chapter 2: Calculating the Page Layout with typearea

the line spacing. However, you should switch back to the normal line spacing for the title,
and preferably for the table of contents and various lists — as well as the bibliography and the
index. For details, see the explanation of DIV=current.

The typearea package, even with option DIV=calc, calculates a very generous text area.
Many conservative typographers will find that the resulting line length is still excessive. The
calculated DIV value may be found in the log file for each document. So you can easily choose
a smaller value after the first INTEX run.

Not infrequently I am asked why I dwell on type area calculations for an entire chapter, when
it would be much easier just to provide a package with which you can adjust the margins as in
a word processor. Often it is said that such a package would be a better solution in any case,
since everyone knows how to choose appropriate margins, and that the margins calculated
by KOMA-Script are not that good anyway. I would like to quote Hans Peter Willberg and
Friedrich Forssmann, two of the most respected contemporary typographers [WF00]. (You
can find the original German in the German guide.)

The practice of doing things oneself has long been widespread, but the results are
often dubious because amateur typographers do not see what is wrong and cannot
know what is tmportant. This is how you get used to incorrect and poor typography.
[...] Now the objection could be made that typography is a matter of taste. When it
comes to decoration, one could perhaps accept that argument, but since typography
is primarily about information, not only can mistakes irritate, but they may even
cause damage.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

The Main Classes: scrbook, scrreprt, and scrartcl

The main classes of the KOMA-Script bundle are designed as counterparts to the standard
ITEX classes. This means that the KOMA-Script bundle contains replacements for the three
standard classes, book, report, and article. There is also a replacement for the standard letter
class. The document class for letters is described in a separate chapter because it is funda-
mentally different from the three main classes (see chapter 4).

The simplest way to use a KOMA-Script class instead of a standard one is to substitute
the class name in the \documentclass command in accordance with table 3.1. For example,
you can replace \documentclass{book} with \documentclass{scrbook}. Normally, IATEX
should process the document without errors, just as before the substitution. The layout,
however, should be different. Additionally, the KOMA-Script classes provide new possibilities
and options that are described in the following sections.

However, it should be noted here that some package authors develop their packages based
on the implementation and even internal code of the standard classes, without regard to
completely independent developments like the KOMA-Script classes. In such cases, the first
TEX run after the change may well result in error messages or additional warnings. These
can usually be corrected in a simple way. Often the extended capabilities of KOMA-Script can
be used for this purpose, which completely eliminates the problematic package. Sometimes
the package scrhack documented in chapter 16 starting on page 414 can also help. Replacing
obsolete packages with current successors can also help to eliminate such problems. Sometimes
even the KOMA-Script classes provide warnings to help solve incompatibilities.

Let me say something before describing the classes. When beginning to write a document,
you are often unsure which specific options to choose. Some settings, for instance the choice of
paper size, may be fixed in advance. But even the question of the appropriate page layout could
be difficult to answer initially. On the other hand, these settings should be nearly irrelevant,
in the beginning, to the main business of an author: planning the document structure, writing
the text, preparing figures, tables, lists, index, and other data. As an author, you should
concentrate initially on the content. When that is done, you can take on the fine points
of presentation. In addition to the choice of options, this includes correcting hyphenation,
optimizing page breaks, and placing tables and figures.

Table 3.1.: Correspondence between standard classes and

KOMA-Script classes standard class KOMA-Script class
article scrartcl
report scrreprt
book scrbook

letter scrlttr2

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

3.1. Early or Late Selection of Options

The information in section 2.4 applies equally to this chapter. So if you have already read and
understood section 2.4, you can skip ahead to section 3.2, page 56.

\documentclass[option list]{KOMA-Script class?}
\usepackage [option list]{package list}

TEX allows users to pass class options as a comma-separated list of keywords in the optional
argument to \documentclass. In addition to being passed to the class, these options are also
passed on to all packages that can understand them. Users can also pass a similar comma-
separated list of keywords in the optional argument of \usepackage. KOMA-Script extends
the option mechanism for the KOMA-Script classes and some packages with further options.
Thus most KOMA-Script options can also take a value, so an option does not necessarily
take the form option, but can also take the form option=value. Except for this difference,
\documentclass and \usepackage in KOMA-Script function as described in [Tea05b] or any
introduction to WIEX, for example [OPHS11].

When using a KOMA-Script class, you should not specify options when loading the typearea
or scrbase packages. The reason for this restriction is that the class already loads these
packages without options, and IMTEX refuses to load a package multiple times with different
option settings. In general, it is not necessary to load either one of these packages explicitly
when using any KOMA-Script class.

Setting the options with \documentclass has one major disadvantage: unlike the interface
described below, the options in \documentclass are not robust. So commands, lengths,
counters, and similar constructs may break inside the optional argument of this command.
For example, with many non-KOMA-Script classes, using a IXTEX length in the value of an
option results in an error. So if you want to use a ITEX length, counter, or command as part
of the value of an option, you should use \KOMAoptions or \KOMAoption. These commands
will be described next.

\KOMAoptions{option list}
\KOMAoption{option}{value list}

KOMA-Script also provides the ability to change the values of most class and package options
even after loading the class or package. You can use the \KOMAoptions command to change
the values of a list of options, as in \documentclass or \usepackage. Each option in the
option list has the form option=value.

Some options also have a default value. If you do not specify a value, that is if you give the
option simply as option, then this default value will be used.

Some options can have several values simultaneously. For such options, it is possible, with
the help of \KOMAoption, to pass a list of values to a single option. The individual values
are given as a comma-separated value list.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

KOMA-Script uses the commands \FamilyOptions and \FamilyOption with the family
“KOMA" to implement this ability. See part I, section 12.2, page 338.

Options set with \KOMAoptions or \KOMAoption will reach both the KOMA-Script class
and any previously loaded KOMA-Script packages that recognise these options. If an option
or a value is unknown, scrbase will report it as an error.

3.2. Compatibility with Earlier Versions of KOMA -Script

The information in section 2.5 applies equally to this chapter. So if you have already read and
understood section 2.5 you can skip ahead to page 57, page 57.

Those who produce their documents from source code typically attach the utmost impor-
tance to the fact that future ITEX runs will yield exactly the same result. In some cases,
however, improvements and bug fixes to the class will result in changes of behaviour, especially
to the layout. This, however, may be undesirable.

version=value
version=first

version=last

Since Version 2.96a, KOMA-Script has been able to choose whether the source file should, as
much as possible, continue to produce exactly the same result within a KTEX run or should
be formatted according to the modifications of the latest version of the class. You can specify
the version with which you want your file to be compatible by using the version option.
Compeatibility with the oldest supported KOMA-Script version can be achieved with version=
first or version=2.9 or version=2.9t. Setting value to an unknown release number will
result in a warning message and selects version=first for safety.

With version=last, you can select the latest version. In this case, you give up backwards
compatibility. If the option is used without a value, last is assumed. This also corresponds
to the default setting, as long as you do not use any deprecated options.

If you use a deprecated option of KOMA-Script 2, KOMA-Script 3 will switch to version=
first automatically. This will also result in a warning message that explains how to prevent
this switch. Alternatively, you can choose a different setting for version with the desired
compatibility after the deprecated option.

Compatibility is primarily a question of line and page breaks (wrapping). If you choose
compatibility with an older version, new options that do not affect wrapping are still avail-
able. The version option does not affect any wrapping changes that are the result of fixing
unambiguous errors. If you need unconditional wrapping compatibility even in the case of
bugs, you should physically save the old KOMA-Script version you need together with your
document.

Note that you cannot change the version option after loading the class. Setting this option
with \KOMAoptions or \KOMAoption will therefore cause an error.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

3.3. Draft Mode

Many classes and packages provide a draft mode in addition to the normal typesetting mode.
The differences between these two are as diverse as the classes and packages that offer this
distinction.

draft=simple switch
overfullrule=simple switch

The draft option distinguishes between documents being drafted and finished documents.
The simple switch can be one of the standard values for simple switches from table 2.5,
page 42. If you activate this option, small black boxes will be output at the end of overly
long lines. These boxes make it easier for the untrained eye to locate the paragraphs that
require manual post-processing. By contrast, the default, draft=false, shows no such boxes.
Incidentally, such lines often disappear when you use the microtype package [Sch13].

Since the draft option can lead to all sorts of unwanted effects with various packages,
KOMA-Script allows you to control this marking of overly long lines separately with the
overfullrule option. If this option is enabled, the marker is again displayed.

3.4. Page Layout

Each page of a document consists of different layout elements, such as the margins, the header,
the footer, the text area, the marginal note column, and the distances between these elements.
KOMA-Script additionally distinguishes the entire page, also known as the paper, and the
visible page. Without doubt, the separation of the page into these different parts is one of
the basic features of a class. KOMA-Script delegates this work to the package typearea. This
package can also be used with other classes. The KOMA-Script classes, however, load typearea
on their own. Therefore, it’s neither necessary nor sensible to load the package explicitly with
\usepackage while using a KOMA-Script class. See also section 3.1, page 55.

Some settings of KOMA-Script classes affect the page layout and vice versa. Those effects
are documented at the corresponding settings.

For more information about the choice of paper format, the division of the page into margins
and type area, and the choice between one- and two-column typesetting, see the documentation
for the typearea package. You can find it in chapter 2, starting on page 28.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\flushbottom
\raggedbottom

In two-sided documents especially, it is preferable to have the same visual baseline not only for the
first lines of each text area in a two-page spread but also for the last lines. If a page consists only of
text without paragraphs or headings, this is generally the result. But a paragraph spacing of half a
line would be enough to prevent you from achieving this goal if the number of paragraphs on each
page of the two-page spread differs by an odd number. In this case, at least some of the paragraph
distances need to be stretched or shrunk to reach the target again. TEX defines stretchable and
shrinkable distances for this purpose, and IATEX lets you perform this kind of vertical adjustment
automatically.

Using two-sided printing with the twoside option (see section 2.4, page 41) or two-column
formatting with the twocolumn option (see page 42) also activates this vertical adjustment.
But this does not apply with a compatibility setting for a KOMA-Script version prior to 3.17
(see section 3.2, page 56, option version) if you use \KOMAoption or \KOMAoptions to change
the setting of these options.

You can also explicitly request vertical adjustment at any time starting with the current
page by using \flushbottom. \raggedbottom has the opposite effect, switching off vertical
adjustment starting with the current page. This corresponds to the default for one-sided
printing.

By the way, KOMA-Script uses a slightly modified method for adjusting the vertical skip.
This has been done to move footnotes to the bottom of the text area instead of having them
close to the last text line used.

3.5. Choosing the Document Font Size

The main font and its size are central elements in the design of a document. As stated in
chapter 2, the division of the page into the text area and the margins fundamentally depends
on them. The main font is the one that is used for most of the text in a document. All
variations, whether in shape, thickness, slant, or size, are related to the main font.

fontsize=size

While the standard classes support only a very limited number of font sizes, KOMA-Script
provides the ability to specify any size for the main font. You can also use any known
TEXunit as a unit for the size. If the size is specified without a unit, it is assumed to be
pt.

If you set the option within the document, the main font size and the dependent font sizes of
the commands \tiny, \scriptsize, \footnotesize, \small, \normalsize, \large, \Large,
\LARGE, \huge and \Huge are changed. This can be useful, for example, if you want the
appendix to be set in a smaller font size.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Note that using this option after loading the class does not automatically recalculate the type
area and margins (see \recalctypearea, section 2.6, page 40). However, if this recalculation
is performed, it will be based on the current main font size. The effects of changing the main
font size upon other loaded packages or the class used depends on these packages and on the
class. This means that you can encounter errors which are not the fault of KOMA-Script, and
even the KOMA-Script classes themselves do not recalculate all lengths if the main font size
changes after loading the class.

This option should by no means be misinterpreted as a substitute for \fontsize (see
[Tea05al). Also, you should not use it in place of one of the font size commands that are
relative to the main font, from \tiny to \Huge.

The default for scrbook, scrreprt, and scrartcl is fontsize=11pt. In contrast, the default
size in the standard classes is 10pt. You may need to account for this difference if you switch
from a standard class to a KOMA-Script class.

3.6. Text Markup

ITEX offers different possibilities for logical and direct markup of text. In addition to the
choice of the font, this includes commands for choosing the font size and orientation. For
more information about the standard font facilities, see [OPHS11], [Tea05b], and [Tea05al.

\setkomafont{element }{commands }
\addtokomafont{element }{commands }
\usekomafont{element }

With the help of the \setkomafont and \addtokomafont commands, you can attach particular
font styling commands that change the appearance of a given element . Theoretically, all state-
ments, including literal text, can be used as commands. You should, however, limit yourself
to those statements that really change font attributes only. These are usually commands like
\rmfamily, \sffamily, \ttfamily, \upshape, \itshape, \slshape, \scshape, \mdseries,
\bfseries, \normalfont, as well as the font size commands \Huge, \huge, \LARGE, \Large,
\large, \normalsize, \small, \footnotesize, \scriptsize, and \tiny. You can find these
commands explained in [OPHS11], [Tea05b], or [Tea05a]. Colour switching commands like
\normalcolor (see [Carl7] and [Ker(07]) are also acceptable. The use of other commands, in
particular those that redefine things or or lead to output, is not supported. Strange behaviour
is possible in these cases and does not represent a bug.

The command \setkomafont provides an element with a completely new definition of its
font styling. In contrast, the \addtokomafont command merely extends an existing definition.
You should not use either command inside the document body but only in the preamble. For
examples of their use, refer to the sections for the respective element. The name and meaning
of each element are listed in table 3.2 . The default values can be found in the corresponding
sections.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

With the \usekomafont command, the current font style can be changed to the one defined
for the specified element.

Example: Suppose you want to use the same font specification for the element captionlabel
that is used with descriptionlabel. This can be easily done with:

\setkomafont{captionlabel}{/
\usekomafont{descriptionlabel}/

}

You can find other examples in the explanation of each element.

Table 3.2.: Elements whose font style can be changed in scrbook, scrreprt or scrartcl with \setkomafont
and \addtokomafont

author
author of the document in the title, i. e., the argument of \author when \maketitle
is used (see section 3.7, page 68)

caption
text of a figure or table caption (see section 3.20, page 131)

captionlabel
label of a figure or table caption; applied in addition to the caption element (see
section 3.20, page 131)

chapter
title of the sectioning command \chapter (see section 3.16, page 101)

chapterentry
table of contents entry for the sectioning command \chapter (see section 3.9,
page 76)

chapterentrydots
optional points connecting table-of-content entries for the \chapter level, differing
from the chapterentry element, \normalfont and \normalsize (see section 3.9,
page 76)

chapterentrypagenumber
page number of the table of contents entry for the sectioning command \chapter,
differing from the element chapterentry (see section 3.9, page 76)

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.2.: Elements whose font style can be changed (continued)

chapterprefix
label, e. g., “Chapter”, appearing before the chapter number in both chapterprefix=
true and appendixprefix=true (see section 3.16, page 97)

date
date of the document in the main title, i. e., the argument of \date when \maketitle
is used (see section 3.7, page 68)

dedication
dedication page after the main title, i.e., the argument of \dedication when
\maketitle is used (see section 3.7, page 71)

descriptionlabel
labels, i.e., the optional argument of \item in the description environment (see
section 3.18, page 121)

dictum
dictum or epigraph (see section 3.17, page 117)

dictumauthor
author of a dictum or epigraph; applied in addition to the element dictum (see
section 3.17, page 117)

dictumtext
alternative name for dictum

disposition
all sectioning command titles, i. e., the arguments of \part down to \subparagraph
and \minisec, including the title of the abstract; applied before the element of the
respective unit (see section 3.16, page 95)

footnote
footnote text and marker (see section 3.14, page 90)

footnotelabel
marker for a footnote; applied in addition to the element footnote (see section 3.14,
page 90)

footnotereference

footnote reference in the text (see section 3.14, page 90)

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.2.: Elements whose font style can be changed (continued)

footnoterule
horizontal rule above the footnotes at the end of the text area (see section 3.14,
page 94)
itemizelabel
Default for the preset symbols of the environment itemize (see section 3.18,
page 119)
labelinglabel

labels, i.e., the optional argument of \item in the labeling environment (see sec-
tion 3.18, page 122)

labelingseparator
separator, i.e., the optional argument of the labeling environment; applied in ad-
dition to the element labelinglabel (see section 3.18, page 122)

labelitemi
Font to be used in the item symbol definition \labelitemi (see section 3.18,
page 119)
labelitemii
Font to be used in the item symbol definition \labelitemii (see section 3.18,
page 119)
labelitemiii
Font to be used in the item symbol definition \labelitemiii (see section 3.18,

page 119)

labelitemiv
v3.33 Font to be used in the item symbol definition \labelitemiv (see section 3.18,
page 119)

minisec
title of \minisec (see section 3.16 ab page 107)

pagefoot
only used if package scrlayer-scrpage has been loaded (see chapter 5, page 263)

pagehead
alternative name for pageheadfoot

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.2.: Elements whose font style can be changed (continued)

pageheadfoot
the header and footer of a page (see section 3.12 from page 80)

pagenumber
page number in the header or footer (see section 3.12)

pagination
alternative name for pagenumber

paragraph
title of the sectioning command \paragraph (see section 3.16, page 101)

part
title of the \part sectioning command, without the line containing the part number
(see section 3.16, page 101)

partentry
table of contents entry for the sectioning command \part (see section 3.9, page 76)

partentrypagenumber
page number of the table of contents entry for the sectioning command \part; applied
in addition to the element partentry (see section 3.9, page 76)

partnumber
line containing the part number in a title of the sectioning command \part (see
section 3.16, page 101)

publishers
publishers of the document in the main title, i.e., the argument of \publishers
when \maketitle is used (see section 3.7, page 68)

section
title of the sectioning command \section (see section 3.16, page 101)

sectionentry
table of contents entry for sectioning command \section (only available in scrartcl,
see section 3.9, page 76)

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.2.: Elements whose font style can be changed (continued)

sectionentrydots
optional points connecting table-of-content entries for the \section level, differing
from the sectionentry element, \normalfont and \normalsize (only available in
scrartcl, see section 3.9, page 76)

sectionentrypagenumber
page number of the table of contents entry for the sectioning command \section; ap-
plied in addition to element sectionentry (only available in scrartcl, see section 3.9,
page 76)

sectioning
alternative name for disposition

subject
topic of the document, i.e., the argument of \subject on the main title page (see
section 3.7, page 68)

subparagraph
title of the sectioning command \subparagraph (see section 3.16, page 101)

subsection
title of the sectioning command \subsection (see section 3.16, page 101)

subsubsection
title of the sectioning command \subsubsection (see section 3.16, page 101)

subtitle
subtitle of the document, i.e., the argument of \subtitle on the main title page
(see section 3.7, page 68)

title
main title of the document, i.e., the argument of \title (for details about the title
size see the additional note in the text of section 3.7 from page 68)

titlehead
heading above the main title of the document, i.e., the argument of \titlehead
when \maketitle is used (see section 3.7, page 68)

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

v3.00

\usefontofkomafont{element}
\useencodingofkomafont{element
\usesizeofkomafont{element }
\usefamilyofkomafont{element}
\useseriesofkomafont{element}
\useshapeofkomafont{element }

Sometimes, although this is not recommended, the font setting of an element is used for
settings that are not actually related to the font. If you want to apply only the font setting
of an element but not those other settings, you can use \usefontofkomafont instead of
\usekomafont. This will activate the font size and baseline skip, the font encoding, the font
family, the font series, and the font shape of an element, but no further settings as long as
those further settings are local.

You can also switch to a single one of those attributes using one of the other commands.
Note that \usesizeofkomafont uses both the font size and the baseline skip.

However, you should not take these commands as legitimizing the insertion of arbitrary
commands in an element’s font setting. To do so can lead quickly to errors (see section 21.5,
page 480).

3.7. Document Titles

In general, we distinguish two kinds of document titles. First, there are title pages. These
include title of the document, together with additional information such as the author, on a
separate page. In addition to the main title page, there may be several other title pages, such
as the half-title or bastard title, publisher data, dedication, and so on. Second, there is the
in-page title. This kind of title appears at the top of a new page, usually the first, and is
specially emphasized. It too may be accompanied by additional information, but it will be
followed by more material on the same page, for example by an abstract, the table of contents,
or even a section.

titlepage=simple switch
titlepage=firstiscover
\coverpagetopmargin
\coverpageleftmargin
\coverpagerightmargin
\coverpagebottommargin

This option determines whether to use document title pages or in-page titles when using
\maketitle (see page 67). Any value from table 2.5, page 42 can be used for simple switch.

With the titlepage=true or titlepage option, invoking \maketitle creates titles on
separate pages. These pages are set inside a titlepage environment, and they normally have

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

neither header nor footer. Compared to standard KTEX, KOMA-Script significantly expands
the handling of the titles. These additional elements can be found on the following pages.

In contrast, with the titlepage=false option, invoking \maketitle creates an in-page
title. This means that the title is specially emphasized, but it may be followed by more
material on the same page, for instance an abstract or a section.

The third choice, titlepage=firstiscover not only activates title pages but also prints
the first title page of \maketitle, i.e. either the half-title or the main title, as a cover page.
Any other setting of the titlepage option will cancel this setting. The margins of the cover
page are given by \coverpagetopmargin, \coverpageleftmargin, \coverpagerightmargin,
and \coverpagebottommargin. The defaults of these depend on the lengths of \topmargin
and \evensidemargin and can be changed with \renewcommand.

The default of the scrbook and scrreprt classes is to use title pages. The scrartcl class, on
the other hand, uses in-page titles by default.

\begin{titlepage}...\end{titlepage}

The standard classes and KOMA-Script set all title pages in a special environment: the
titlepage environment. This environment always starts a new page —in two-sided printing
a new right-hand page—and in single-column mode. For this page, the style is changed to
\thispagestyle{empty}, so that neither page number nor running head is output. At the
end of the environment, the page is automatically shipped out. Should you not be able to use
the automatic layout of the title pages provided by \maketitle, described next, you should
design a new one with the help of this environment.

Example: Suppose you want a title page on which only the word “Me” stands at the top on
the left, as large as possible and in bold —no author, no date, nothing else. The
following document creates just that:

\documentclass{scrbook}
\begin{document}
\begin{titlepage}
\textbf{\Huge Me}
\end{titlepage}
\end{document}

It’s simple, isn’t it?

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\maketitle[page number]

While the standard classes produce at most one title page that can have three items (title,
author, and date), with KOMA-Script \maketitle can produce up to six pages. In contrast
to the standard classes, \maketitle in KOMA-Script accepts an optional numeric argument.
If it is used, this number is the page number of the first title page. This page number is not
output, but it affects the subsequent numbering. You should definitely choose an odd number,
because otherwise the whole count gets mixed up. In my opinion, there are only two useful
applications for the optional argument. On the one hand, you could give the the logical page
number -1 to the half-title in order to give the full title page the number 1. On the other hand,
you could use it to start at a higher page number, for example, 3, 5, or 7, to accommodate
other title pages added by the publishing house. The optional argument is ignored for in-page
titles. You can change the page style of such a title page by redefining the \titlepagestyle
macro (see section 3.12, page 84).

The following commands do not lead immediately to the ship-out of the titles. The typeset-
ting and ship-out of the title pages are always done by \maketitle. Note also that \maketitle
should not be used inside a titlepage environment. As shown in the examples, you should
use either \maketitle or titlepage, but not both.

The following commands only define the contents of the title. Therefore they must be used
before \maketitle. It is, however, not necessary and, when using the babel package not
recommended, to include these in the preamble before \begin{document} (see [BB13]). You
can find examples in the descriptions of the other commands in this section.

\extratitle{half-title}
\frontispiece{frontispiece’}

In earlier times the inner book was often not protected from dirt by a cover. This function was then
assumed by the first page of the book, which usually had just a short title, known as the half-title.
Nowadays the extra page often appears before the real main title and contains information about
the publisher, series number, and similar information.

With KOMA-Script, it is possible to include a page before the real title page. The
half-title can be arbitrary text —even several paragraphs. The contents of the half-title
are output by KOMA-Script without additional formatting. Their organisation is completely
left to the user. The verso of the half-title is the frontispiece. The half-title is set on its own
page even when in-page titles are used. The output of the half-title defined with \extratitle
takes place as part of the title produced by \maketitle.

Example: Let’s return to the previous example and suppose that the Spartan “Me” is the
half-title. The full title should still follow the half-title. You can proceed as follows:

\documentclass{scrbook}
\begin{document}
\extratitle{\textbf{\Huge Me}}

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\title{It’s me}
\maketitle
\end{document}

You can centre the half-title horizontally and put it a little lower down the page:

\documentclass{scrbook}
\begin{document}
\extratitle{\vspacex{4\baselineskip}
\begin{center}\textbf{\Huge Me}\end{center}}
\title{It’s me}
\maketitle
\end{document}

The command \title is necessary in order to make the examples above work
correctly. It is explained next.

\titlehead{title head}
\subject{subject}
\title{title}
\subtitle{subtitle}
\author{author}
\date{date}
\publishers{publisher}
\and

\thanks{ footnote}

There are seven elements available for the content of the main title page. The main title page
is output as part of the title pages created by \maketitle, while the definitions given here
only apply to the respective elements.
The title head is defined with the command \titlehead. It occupies the entire text
width, at the top of the page, in normal justification, and it can be freely designed by the
user. It uses the font element with same name (see table 3.4, page 69).
The subject is output with the font element of the same name immediately above the
title.
The title is set in a very large font size. Along with the font size, the font element title
is applied (see table 3.4, page 69).
The subtitle is set just below the title using the font element of the same name (see
table 3.4, page 69).
Below the subtitle appears the author. Several authors can be specified in the argument
of \author. They should be separated by \and. The output uses the font element of the same
name. (see table 3.4, page 69).

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.3.: Font defaults for

the elements of the title Element name Default
author \Large
date \Large
dedication \Large
publishers \Large
subject \normalfont\normalcolor\bfseries\Large
subtitle \usekomafont{title}\large
title \usekomafont{disposition}
titlehead

Below the author or authors appears the date in the font of the element of the same name.
The default value is the current date, as produced by \today. The \date command accepts
arbitrary information —even an empty argument. The output uses the font element of the
same name (see table 3.4, page 69).

Finally comes the publisher. Of course this command can also be used for any other
information of minor importance. If necessary, the \parbox command can be used to typeset
this information over the full page width like a regular paragraph instead of centring it. It
should then be considered equivalent to the title head. Note, however, that this field is placed
above any existing footnotes. The output uses the font element of the same name (see table 3.4,
page 69).

Footnotes on the title page are produced not with \footnote, but with \thanks. They serve
typically for notes associated with the authors. Symbols are used as footnote markers instead
of numbers. Note that \thanks has to be used inside the argument of another command, such
as in the author argument of the command \author.

For the output of the title elements, the font can be set using the \setkomafont and
\addtokomafont command (see section 3.6, page 59). The defaults are listed in table 3.3.

With the exception of title head and any footnotes, all output is centred horizontally
These details are briefly summarized in table 3.4.

Table 3.4.: Font and

horizontal positioning Element ~ Command Font Alignment

of the elements in the
main title page in the ~ Title head \titlehead \usekomafont{titlehead} justified

order of their vertical — Subject \subject \usekomafont{subject} centred
position from top to Title \title \usekomafont{title}\huge centred
bottom when typeset Subtitle \subtitle \usekomafont{subtitle} centred
with \maketitle Authors \author \usekomafont{author} centred

Date \date \usekomafont{date} centred

Publishers \publishers \usekomafont{publishers} centred

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Note that for the main title, \huge will be used after the font switching element title. So
you cannot change the size of the main title using \setkomafont or \addtokomafont.

Example: Suppose you are writing a dissertation. The title page should have the university’s
name and address at the top, flush left, and the semester, flush right. As usual, a
title including author and submission date should be given. The adviser must also
be indicated, together with the fact that the document is a dissertation. You can
do this as follows:

\documentclass{scrbook}
\usepackage [english] {babel}
\begin{document}
\titlehead{{\Large Unseen University
\hfill SS~2002\\}

Higher Analytical Institute\\

Mythological Rd\\

34567 Etherworld}
\subject{Dissertation}
\title{Digital space simulation with the DSP\,56004}
\subtitle{Short but sweet?}
\author{Fuzzy George}
\date{30. February 2002}
\publishers{Adviser Prof. John Eccentric Doe}
\maketitle
\end{document}

A common misconception concerns the function of the full title page. It is often erroneously
assumed to be the cover or dust jacket. Therefore, it is frequently expected that the title page
will not follow the normal layout for two-sided typesetting but will have equally large left and right
margins.

But if you pick up a book and open it, you will quickly find at least one title page inside the
cover, within the so-called book block. Precisely these title pages are produced by \maketitle.

As is the case with the half-title, the full title page belongs to the book block, and therefore
should have the same page layout as the rest of the document. A cover is actually something that
you should create in a separate document. After all, it often has a very distinct format. It can
also be designed with the help of a graphics or DTP program. A separate document should also
be used because the cover will be printed on a different medium, such as cardboard, and possibly
with another printer.

Nevertheless, since KOMA-Script 3.12 the first title page issued by \maketitle can be for-
matted as a cover page with different margins. Changes to the margins on this page do not affect
the other margins. For more information about this option, see titlepage=firstiscover on
page 65.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\uppertitleback{titlebackhead}
\lowertitleback{titlebackfoot}

In two-sided printing, the standard classes leave the back (verso) of the title page empty.
However, with KOMA-Script the back of the full title page can be used for other informa-
tion. There are exactly two elements which the user can freely format: titlebackhead and
titlebackfoot. The header can extend to the footer and vice versa. Using this guide as an
example, the legal disclaimer was set with the help of the \uppertitleback command.

\dedication{dedication}

KOMA-Script offers its own dedication page. This dedication is centred and set by default

with a slightly larger font. = The exact font setting for the dedication element, which is
taken from table 3.3, page 69, can be changed with the \setkomafont and \addtokomafont
commands (see section 3.6, page 59).

Example: Suppose you have written a book of poetry and want to dedicate it to your spouse.
A solution would look like this:

\documentclass{scrbook}
\usepackage [english] {babel}
\begin{document}
\extratitle{\textbf{\Huge In Lovel}}
\title{In Love}
\author{Prince Ironheart}
\date{1412}
\lowertitleback{This poem book was set with/
the help of {\KOMAScript} and {\LaTeX}}
\uppertitleback{Self-mockery Publishers}
\dedication{To my treasured hazel-hen\\
in eternal love\\
from your dormouse.}
\maketitle
\end{document}

Please use your own favourite pet names to personalize it.

3.8. Abstract

Particularly with articles, more rarely with reports, there is an abstract, or summary, directly
beneath the title and before the table of contents. When using an in-page title, this abstract
is normally a kind of left- and right-indented block. In comparison, the abstract appears as a
chapter or section when using title pages.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrreprt,
scrartcl

scrartcl,
scrreprt

abstract=simple switch

In the standard classes, the abstract environment sets the text “Abstract” centred before
the abstract text. This used to be the normal practice. Since then, reading newspapers has
trained us to recognize a suitably highlighted text at the beginning of an article or report as
the abstract. This is even more true when the text comes before the table of contents. It is also
confusing if, of all things, this title appears small and centred. KOMA-Script offers the option
to include or exclude the abstract’s title with the abstract option. For simple switch, you
can use any value from table 2.5, page 42. The default for KOMA-Script is false.

Books typically use a different kind of summary. There, you usually place an appropriate
chapter at the beginning or the end of the work. This chapter is often combined with either
the introduction or a description of a larger prospectus. Therefore, the scrbook class has no
abstract environment. A summary chapter is also recommended for reports in a wider sense,
such as a Master’s thesis or Ph.D. dissertation. See the commands \chapter*, \addchap, and
\addchap* documented in section 3.16, from page 106.

\begin{abstract}...\end{abstract}

Some IMTEX classes provide a special environment for this summary: the abstract environ-
ment. This is output directly, so it is not part of the title created with \maketitle. Please
note that abstract is an environment, not a command. Whether the abstract has a heading
or not is determined by the abstract option (see above).

For books, the abstract is usually part of the introduction or a separate chapter at the end
of the document. Therefore scrbook does not provide an abstract environment. When using
the scrreprt class, it is definitely worth considering whether to proceed in the same way. See
the commands \chapter* and \addchap, or \addchapx* in section 3.16 from page 106 for more
on this.

When using an in-page title (see option titlepage, section 3.7, page 65), the abstract is set
internally using the quotation environment (see section 3.18, page 125). This way paragraphs
will be set with the first line indented. If the first paragraph of the abstract should not be
indented, you can suppress this indent by using \noindent just after \begin{abstract}.

3.9. Table of Contents

The title and optional abstract are normally followed by a table of contents. Often you also
find additional lists of the floating environments, such as tables and figures, after the table of
contents (see section 3.20).

In addition to the options documented in this section, the tocbasic package style selected and
configured with \DeclareTOCStyleEntry (see page 388) also has a significant impact on the
appearance of the table of contents. Similarly, the commands \DeclareSectionCommand,
\ProvideSectionCommand, \DeclareNewSectionCommand and \RedeclareSectionCommand
documented in section 21.8, page 482 can also affect the table of contents.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

v2.8q

v3.00

toc=setting

It is becoming increasingly common to include lists of tables and figures, the bibliography,
and sometimes even the index in the table of contents. This is surely related to the recent
trend of putting lists of figures and tables at the end of the document. Both lists are similar
to the table of contents in structure and intention. I'm therefore sceptical of this evolution.
Since it makes no sense to include only the list of tables or that of figures in the table of
contents without the other, there is only one setting listof, which causes entries for both
types of lists to be included. This also includes any lists produced with version 1.2e or later of
the float package from Version 1.2e (see [Lin01]) or floatrow (see [Lap08]). None of these lists
are generally given a chapter number. If you want to ignore this principle, use the setting
listofnumbered.

The toc=index option causes an entry for the index to be included in the table of contents.
The index is unnumbered since it too only includes references to the contents of the other
sectioning levels. Despite the author’s concerns, KOMA-Script does support deviating from
this principle with toc=indexnumbered.

The bibliography is a slightly different kind of listing. It does not list the contents of
the present document but refers instead to external sources. For that reason, it could be
argued that it qualifies as a chapter (or section) and, as such, should be numbered. The toc=
bibliographynumbered option has this effect, and puts the appropriate entry in the table
of contents. However, I think that this reasoning would lead us to consider even a classic,
annotated source list to be a separate chapter. Moreover, the bibliography is ultimately not
something that you wrote yourself. Therefore the bibliography merits, at best, an unnumbered
entry in the table of contents, and you can achieve this achieved with toc=bibliography.

The table of contents is normally formatted so that different levels of sectioning commands
have different indentations. The number for each level is set left-justified in a fixed-width field.
This default set-up is selected with the toc=graduated option.

If the sectioning level which appears in the table of contents is too deep, the number for
that level can be so wide that the space reserved for the number is insufficient. The German
FAQ [Wik] suggests redefining the table of contents in such a case. KOMA-Script offers an
alternative format that avoids the problem completely. If you use the toc=flat option, no
graduated indentation is applied to the headings of the sectioning levels. Instead, a table-
like organisation is used, where all sectioning numbers and headings are set in a left-justified
column. The space necessary for the section numbers is thus determined automatically.

You can find an overview of all available values for the setting of toc. in table 3.5.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.5.: Available values for the toc option to set the format and contents of the table of contents

bibliography, bib
The bibliography has an unnumbered entry in the table of contents.

bibliographynumbered, bibnumbered, numberedbibliography, numberedbib
The bibliography has a numbered entry in the table of contents.

chapterentrywithdots, chapterentrydotfill
The chapter entries for the scrbook and scrreprt classes also use dots to separate the
heading text from the page numbers.

chapterentrywithoutdots, chapterentryfill
The chapter entries of the scrbook and scrreprt classes use white space to separate
the heading text from the page numbers. This corresponds to the default setting.

flat, left
The table of contents is set in table form. The numbers of the headings are in the first
column, the heading text in the second column, and the page number in the third
column. The amount of space needed for the numbers of the headings is determined
by the required amount of space detected during the previous N TEX run.

graduated, indent, indented
The table of contents is set in hierarchical form. The amount of space for the heading
numbers is limited. This corresponds to the default setting.

indenttextentries, indentunnumbered, numberline
The numberline property (see section 15.2, page 385) is set for the table of contents.
As a result, unnumbered entries are left aligned with the text of numbered entries
of the same level.

index, idx
The index has an unnumbered entry in the table of contents.

indexnumbered, idxnumbered, numberedindex, numberedidx
v3.18 The index has a numbered entry in the table of contents.

leftaligntextentries, leftalignunnumbered, nonumberline

v3.12 The numberline property (see section 15.2; page 385) is deleted for the table of
contents. This places unnumbered entries left-aligned with the number of numbered
entries of the same level. This corresponds to the default setting.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.5.: Available values for the toc option (continued)

listof
The lists of floating environments, e. g. figures and tables, have unnumbered entries
in the table of contents.

listofnumbered, numberedlistof
The lists of floating environments, e. g. figures and tables, have numbered entries in
the table of contents.

nobibliography, nobib
The bibliography does not have an entry in the table of contents. This corresponds
to the default setting.

noindex, noidx
The index does not have an entry in the table of contents. This corresponds to the
default setting.

nolistof
The lists of floating environments, e. g. figures and tables, do not have entries in the
table of contents. This corresponds to the default setting.

sectionentrywithdots, sectionentrydotfill
The section entries of the scrartcl class also use dots to separate the heading text
from the page numbers.

sectionentrywithoutdots, sectionentryfill
The section entries of the scrartcl class use white space to separate the heading text
from the page number. This corresponds to the default setting.

chapterentrydots=simple switch
sectionentrydots=simple switch

These options configure a dotted connecting line between the text and page number of the
scrbook, chapter entries for the scrbook and scrreprt classes, or for the section entries of the scrartcl
scrreprt class, in the table of contents. For the simple switch, you can use any value from table 2.5,
scrartcl - page 42. The default is false. It selects an empty gap instead of dots.

If a dotted line is used, you can change its font using the element chapterentrydots or
sectionentrydots (see also \setkomafont and \addtokomafont, section 3.6, page 59, as well
as table 3.2, page 60). The defaults of the elements are shown in table 3.6, from page 76. Note
that the dots of all entries will be equally spaced only if all dots use the same font. Because of
this the base font is always \normalfont\normalsize and only the colour of chapterentry

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

v3.15

v2.97c

Table 3.6.: Default font

styles for the elements of Element Default font style
the table of contents

partentry \usekomafont{disposition}\large
partentrypagenumber

chapterentry \usekomafont{disposition}
chapterentrydots \normalfont
chapterentrypagenumber

sectionentry \usekomafont{disposition}
sectionentrydots \normalfont

sectionentrypagenumber

or sectionentry is also used for the dots.

\tableofcontents

The table of contents is output by the \tableofcontents command. To get correct values
in the table of contents requires at least two IATEX runs after every change. The toc option
described above can also affect the extent and format of the table of contents. After changing
the settings of this option, at least two IXTEX runs are needed again.

Entries for \chapter with scrbook and scrreprt, or \section with scrartcl, and the sectioning
level \part are not indented. Additionally, there are no dots between the text of this heading
and the page number. The typographical logic for this behaviour is that the font is usually
distinct and appropriate emphasis is desirable. However, you can change this behaviour with
the previously documented options. The table of contents of this guide is created with the
default settings and serves as an example.

The font style of the top two levels in the table of contents is also affected by the settings
for the partentry element, as well as by the chapterentry element for the scrbook and
scrreprt classes, and by the sectionentry element for the scrartcl class. You can set the
font style of the page numbers separately from these elements using partentrypagenumber
and chapterentrypagenumber — for scrbook and scrreprt—or sectionentrypagenumber —
for scrartcl— (see \setkomafont and \addtokomafont in section 3.6, page 59, or table 3.2,
page 60). If you use dotted lines connecting the heading entries (chapter or section depending
on the class) to the page numbers using the toc chapterentrydots or sectionentrydots
option, you can change their font style using the chapte