The keyreader Package™*

A robust interface to xkeyval package

Ahmed Musa!

21st December 2011

Summary The keyreader package provides robustness and some extensions to the xkeyval package. It
preserves braces in key values and saves estate when defining keys. Also, keys are initialized as soon as
they are defined, and, unlike in the xkeyval package, admissible alternate values of choice keys can have
individual callbacks. This user manual assumes that the reader is familiar with some of the functions and
user interfaces of the xkeyval package.

This work (i.e., all the files in the keyreader package bundle) may be distributed and/or
modified under the conditions of the IATEX Project Public License (LPPL), either version 1.3
of this license or any later version.

The LPPL maintenance status of this software is ‘author-maintained.” This software is provided
‘as it is,” without warranty of any kind, either expressed or implied, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose.

© MMXI

Contents
1 Motivation 2 | 5 Options processing 4
2 User commands 2 | 6 Version history 4
3 Examples 3 | Index 6
4 Disabling keys 4

* The package is available at http://mirror.ctan.org/macros/latex/contrib/keyreader/.
* This user manual corresponds to version 0.4 of the package.
1 The University of Central Lancashire, Preston, UK. amusa22@gmail.com.

http://mirror.ctan.org/macros/latex/contrib/keyreader/
http://mirror.ctan.org/macros/latex/contrib/keyreader/
mailto:amusa22@gmail.com

The keyreader package 21st December 2011

1 Motivation

The keyreader package predated the ltxkeys package and was developed to make key parsing
by the xkeyval package robust (in the sense of preserving outer braces in key values throughout
parsing), as well as reduce the amount of typing that is required for defining several keys. To achieve
robustness in key parsing, the \setkeys command of the xkeyval package has been patched.
The keyreader package provides commands for compactly defining and setting all types of key
(ordinary, command, boolean, and choice). Also, the keyreader package introduces the concept
of callbacks for the alternate/admissible values of choice keys. Moreover, keys are automatically
set/initialized as soon as they are defined. This provides default definitions for the key macros and
functions. Boolean keys are initialized with a value of false irrespective of their default values.

The keyreader package has been used as a development platform for the 1txkeys package because
the xkeyval package, on which the keyreader package is based, has been quite stable for some
years, its inherent shortcomings not withstanding. Because the keyreader package is based on the
xkeyval package, it inherits some of the limitations of the xkeyval package. Has the user ever
tried to pass to xkeyval package’s \setkeys an unbalanced conditional (e.g., \iftrue, \iffalse,
\ifx, or \fi) as the value of a key? He/she will quickly be hit by the error message ‘! Incomplete
\ifx; all text was ignored after line ...,” or something similar. The same limitation applies to the
keyreader package.

2 User commands

The syntax for defining new keys is:

| New macro: \krddefinekeys |

1 \krddefinekeys*[(kprefix)]{(kfamily)} [(mprefix)]{(keylist)}

The optional (kprefix) and mandatory (kfamily) have unambiguous connotations. The optional
(mprefix) is the macro prefix, in the parlance of the xkeyval package. The default values of
(kprefix) and (mprefix) are KRD and krdmp®@, respectively.

In the case of ordinary, command and boolean keys, (keylist) has the syntax

| Syntax of key keylist |

2 {
3 (keytypel)/(keynamel)/(defaultl)/(callbackl);
4 (keytype2)/(keyname2)/(default2)/(callback2);
5 etc.
6 }
The list parser for (keylist) is invariably semicolon ¢;’. Hence, if the user has semicolon *;’ in

(callback), it has to be wrapped in curly braces, to hide it from TEX’s scanner. (keytype) can
be any member of the list {ord (ordinary key), cmd (command key), bool (boolean key), choice
(choice key)}.

For choice keys, (keylist) has the syntax

[Syntax of key keylist |

7 {
8 (keytypel)/(keynamel)/(defaultl)/(alt)/(callbackl);
9 (keytype2)/(keyname2)/(default2)/(alt)/(callback?2);

|PAGE 2 OF 6

The keyreader package 21st December 2011

The alternate (admissible list of) values (alt) has the syntax

| Syntax of alternate list for choice keys

12 (valuel).code=({callbackl),
13 (valuel).code=(callbackl),
14 etc.

The list parser in this case is invariably comma *,’.

The star (*) is an optional prefix. If it is present, then only definable (i. e., non-existent) keys will be
defined. The existence of a key depends on (kprefix) and (kfamily), since keys are name-spaced.

The command \setkeys of the xkeyval package is made more robust, in the sense that it now
preserves all outer braces in the values of keys. The patched command \setkeys has the same
syntax as the original \setkeys of the xkeyval package, namely

| Macro: \setkeys |
15 \setkeys*+[(kprefix)]{(families)} [(na)]{((key)=(value) pairs)’}

As usual, the star (x) and plus sign (+) are optional prefixes. The starred (x) variant will save all
undeclared keys in the list \XKV@rm, possibly for setting later with the command \setrmkeys, and
will not report any unknown key as undeclared. The plus (+) variant will set the given keys in all
the given families, instead of in just one family. The combination x+ will set the listed keys in all
the given families and append unknown keys to the container \XKV@rm. (na) is the list of keys that
shouldn’t be set in the current run.

Actually, it isn’t \setkeys that is patched directly by the keyreader package, but some of the
macros that it calls. Since a package might redefine \setkeys, we also saved the patched \setkeys
in \krdsetkeys. Indeed, \krdsetkeys isn’t exactly \setkeys, since the former avoids the selective
sanitization of (key)=(value) list that is done by \setkeys. Instead \krdsetkeys ‘normalizes’
the (key)=(value) or comma-separated list. Therefore, users of the keyreader package should
always call the command \krdsetkeys instead of \setkeys. Both have the same user interface.

The xkeyval package’s command \setrmkeys, which sets ‘remaining keys,” has been modified to
\krdsetrmkeys. Users of the keyreader package should use \krdsetrmkeys in place of \setrmkeys.

3 Examples

| Examples: \krddefinekeys, \krdsetkeys

16 \krddefinekeys* [KV]{fam} [pnt@]{Y%

17 % ‘#1° here refers to the user input for the key.

18 ord/keya/{black}/\def\xx##1{#1##1};

19 cmd/keyb/\@fisrtofone/\def\y##1{#1##1};

20 bool/keyc/true/\def\z##1{#1##1};

21 choice/keyd/center/

22 center.code=\def\my@align{center}\def\w##1{#1##1},
23 left.code=\def\my@align{flushleft},

24 right.code=\def\my@align{flushright},

25 justified.code=\def\my@align{relax},

|PAGE 3 OF 6

The keyreader package 21st December 2011

26

27

28

29

30

31

32

33

34

36

37

38

39

40

/\def\xa#t#1{#1##1};

}
\krdsetkeys [KV] {fam} [keyb] {keya={green},keyb=\@iden,keyc=false,keyd=left}

The braces around ‘green,’” the value of keya, will be preserved throughout parsing. It should be
remembered that keys are automatically set as soon as they are defined by \krddefinekeys.

Using the keys defined in the above example, let us make comma ‘,” and comma ‘=" active and see
how the keyreader package will deal with them.

| Example: Active comma and equal sign |

% Make comma ¢

% scheme of ‘keyreader’ pacakge:

\begingroup

\catcode‘\,=13

\catcode ‘\==13

\gdef\keylista{{fam,famb} [keyb , keyc]{keya = {green} , keyb = \Qiden ,
keyc = false , keyd = left, keye = somevalue}}

\gdef\keylistb{\krdsetrmkeys*+[KV]{fam,famb}}

\endgroup

\def\reserved@a{\krdsetkeys*+[KV]}

\expandafter\reserved@a\keylista

\keylistb

,” and equal ‘=’ active to test the list normalization

4 Disabling keys

The command \krddisablekeys has the same use syntax as xkeyval package’s command \disable@keys
but will issue an error (instead of a warning) when an attempt is made to set a disabled key.

5 Options processing

The commands \krdDeclareOption, \krdExecuteOptions and \krdProcessOptions are aliases
for \DeclareOptionX, \ExecuteOptionsX and \ProcessOptionsX of the xkeyval package.

6 Version history

The following change history highlights significant changes that affect user utilities and interfaces;
changes of technical nature are not documented in this section.

Version 0.4 [2011/12/20]

Several of the former functions of the package have been transferred to the 1txkeys package with
even more robustness. The package now provides mainly a compact and robust interface to
the features of the xkeyval package.

Version 0.3 [2011/03/26]
Bug fix.

Version 0.2 [2011/02/25]

The interface for defining new keys now accepts conditionals in key macros/functions.

|PAGE 4 OF 6

The keyreader package 21st December 2011

A mechanism is provided for automatic setting up and execution of key functions with default
key values.

Version 0.1 [2010/01/10]

First public release.

| PAGE 5 OF 6]

The keyreader package

21st December 2011

INDEX

Index numbers refer to page numbers.

A
active comma and equal sign.................. 4
D
\DeclareOptionXcooviuiiniiinnninnnnnnnn. 4
\diSable@KEYS « . .vvetittte et 4
disabling Keysccoviiiiiiiiiiiiiea... 4
E
EXAMPLES .ottt e 3
\ExecuteOptionsX.........ccoviiiiiiiiiinnnnenn. 4
K
\krdDeclare0ption..........covvurueinnneennnn.. 4
\krddefinekeys.......c.coovvuuiiiiinnieennnn... 2,4
\krddisablekeysciiiiiiiiiiiiinn... 4
\krdExecuteOptions.........coovviuiieinniennnn. 4
\krdProcessOptions...........covvuiieinnneennn. 4
\KTdSetReyS . oottt 4

\krdsetrmkeyscooiiiiiiiiiiii, 3
o

options processing.....................l 4
P

Packages..... ...

keyreader.........couiiiiiiiiiiiiiiiiann. 1-4

ITtXKEYS oottt 2,4

xKeyval ..ot 1-4

\ProcessOptionsX.............cooiiiiiii.an. 4
S

\SELREYS . oottt e 4

\SetrmKeysottt 3
U

USEr COMMANAS .. vvvvrevnee e eeeeeenneeannnns 2

| PAGE 6 OF 6

	1 Motivation
	2 User commands
	3 Examples
	4 Disabling keys
	5 Options processing
	6 Version history
	0.4 (2011/12/20)
	0.3 (2011/03/26)
	0.2 (2011/02/25)
	0.1 (2010/01/10)

	Index

