
The keyreader Package∗

Ahmed Musa
a.musa@rocketmail.com

January 26, 2010

Contents

1 Motivation 1

2 Package loading 2

3 Complementary boolean keys 3

4 Toggle switches and keys 4
4.1 Toggle switches 4
4.2 Toggle keys 6

5 Defining multiple keys by one
command 8
5.1 Choice key values 8
5.2 Internals 9

5.3 Examples 9

5.4 Demonstrating an effect . . 13

6 Input error 14

7 Conditionals in key macros 14

7.1 Burying conditionals in
macros or token registers . . 14

7.2 Using a “dirty” trick to
submit the conditionals . . 15

7.3 Using toggles 16

8 Disabling keys 17

9 Epilogue 17

1 Motivation

Toggle switches or booleans were introduced by the etoolbox package and have
proved very useful mainly for two reasons: unlike the legacy TEX switches which
require three commands per switch, toggles require only one command per
switch, and toggles occupy their own separate name space, thereby avoiding
clashes with other macros. So we can effectively have both the following sets in
the same file:

1 \newif\ifmyboolean -> 3 separate commands:
2 \if<myboolean> <myboolean>true

∗Version 0.3.

mailto:a.musa@rocketmail.com

3 <myboolean>false

5 \newtoggle{myboolean} -> only 1 command and no clash with
6 commands in other name spaces.

However, the xkeyval package can’t be used to define and set toggle keys. The
present package fills this gap, by providing facilities for defining and setting
toggle keys. The work relies on some of the macros from the xkeyval package.

Secondly, the xkeyval package can’t be used to define and set complementary
keys, which can be handy in the case of boolean keys. The present package
introduces this concept and additionally permits the submission of individ-
ual/different custom key macros to the complementary keys.

The third motivation for this package relates to economy of tokens in style
files. The xkeyval package provides \define@cmdkeys and \define@boolkeys
for defining and setting multiple command keys and boolean keys, but in each
category the keys must have the same default value and no key macro/function.
This package seeks to remove these restrictions, so that multiple keys of all
categories (ordinary keys, command keys, boolean keys, tog keys, and choice
keys) can be defined in one go (using only one command) and those keys can
have different default values and functions. This greatly minimizes tokens, as
hundreds of keys can, in principle, be issued simultaneously by one command.

2 Package loading

The package can be loaded in style and class files by

7 \RequirePackage[options]{keyreader}

and in document files via

8 \usepackage[options]{keyreader}

where the options and their default values are

9 parser=;, macroprefix=mp@, keyprefix=KV, keyfamily=fam,
10 xchoicelist=false.

The parser is the separator between the keys in the key list to be defined in
one go (see examples in section 5.3). All these options can be set dynamically
by using the \krsetup macro:

2

11 \krsetup{parser=;, macroprefix=mp@, keyprefix=KV,
12 keyfamily=fam, xchoicelist=false}.

3 Complementary boolean keys

The syntax of complementary boolean keys is

13 \define@comp@boolkeys[<key-prefix>]{<family>}[<macro-prefix]
14 {<primary boolean>}[<default value for primary boolean>]
15 {<secondary boolean>}{<func for primary boolean>}
16 {<func for secondary boolean>}.

When the user doesn’t supply the <key-prefix> and/or <macro-prefix>, the
package will use <KV> and <mp@>, respectively. When one boolean (primary or
secondary) is true, the other is automatically set false. Infinite loops, which are
possible in back-linked key settings, are avoided in the keyreader package.

As an example, we define below two complementary keys <draft> and <final>
with different key macros:

17 \define@comp@boolkeys[KV]{fam}[mp@]{draft}[true]{final}%
18 {%
19 \def\gobble##1{}%
20 }{%
21 \def\notgobble##1{##1}%
22 }.

The key prefix (default <KV>), macro prefix (default <mp@>), and key macros
(no default) can be empty:

23 \define@comp@boolkeys{fam}{draft}[true]{final}{}{}.

The defined complementary keys <draft> and <final> can now be set as fol-
lows:

24 \setkeys[KV]{fam}{draft=true}

26 \setkeys[KV]{fam}{final=true}

3

The second statement above reverses the boolean <draft> to <false>, which
had been set in the first statement to <true>. There is no meaning to the
following:

27 \setkeys[KV]{fam}{draft=true,final=true}.

Most applications of the xkeyval package do indeed use key and macro prefixes;
so it presumably makes sense here to assume that all uses of the present package
will involve key and macro prefixes.

4 Toggle switches and keys

4.1 Toggle switches

The following toggle switches are defined in the keyreader package. They
largely mimic those in the etoolbox package, except for the commands \deftog
and \requiretog. There is no fear that the commands in this package will
interfere with those from the etoolbox package, since the control sequence
names are different.

28 \deftog{<toggle>}

This defines a new <toggle> whether or not <toggle> is already defined. If
<toggle> is already defined, a warning message is logged in the transcript file
and the new definition is effected.

29 \newtog{<toggle>}

This defines a new <toggle> if <toggle> is not already defined; otherwise the
package issues a fatal error.

30 \providetog{<toggle>}

This defines a new <toggle> if <toggle> is not already defined. If <toggle>
is already defined, the command does nothing.

31 \requiretog{<toggle>}

\requiretog takes arguments like \newtog and behaves like \providetog with
the difference: if the toggle is already defined, the command \requiretog calls

4

LATEX’s \CheckCommand to make sure that the new and existing definitions are
identical, whereas \providetog assumes that if the toggle is already defined,
the existing definition should persist. \requiretog assures that a toggle will
have the given definition, but \requiretog also warns the user if there was a
previous and different existing definition. For example, if the toggle <toga>
is currently <true>, then since all new toggles start out as <false>, a call
\requiretog{toga} will issue a warning in the log file that the new and old
definitions of <toga> don’t agree and the new definition, therefore, can’t go
ahead.

The keyreader package also provides the command \requirecmd, which has
the same logic as \requiretog but can be used for general LATEX commands,
including those with optional arguments.

32 \settog{<toggle>}{<true | false>}

This command sets <toggle> to <value>, where <value> may be either <true>
or <false>. This statement will issue an error if <toggle> wasn’t previously
defined.

33 \togtrue{<toggle>}

This sets <toggle> to <true>. It will issue an error if <toggle> wasn’t previ-
ously defined.

34 \togfalse{<toggle>}

This sets <toggle> to <false>. It will issue an error if <toggle> wasn’t previ-
ously defined.

35 \iftog{<toggle>}{<true>}{<false>}

This yields the <true> statement if the boolean <toggle> is currently <true>,
and <false> otherwise. It will issue an error if <toggle> wasn’t previously
defined.

36 \ifnottog{<toggle>}{<not true>}{<not false>}

This behaves like \iftog but the logic of the test is reversed. It will issue an
error if <toggle> wasn’t previously defined.

5

4.2 Toggle keys

The syntax for defining toggle keys is exactly like those for boolean keys in the
xkeyval package:

37 \define@togkey[<pre>]{<fam>}[<mp>]{<key>}[<default>]{<func>}
38 \define@togkey+[<pre>]{<fam>}[<mp>]{<key>}[<default>]%
39 {<func1>}{<func2>}

If the macro prefix <mp> is not specified, these create a toggle of the form
<pre>@<family>@<key> using \newtog (which initializes the switch to <false>)
and a key macro of the form \<pre>@<family>@<key> which first checks the
validity of the user input. If the value is valid, it uses it to set the boolean and
then executes <func>. If the user input wasn’t valid, then the boolean will not
be set and the package will generate a fatal error.

If <mp> is specified, then the key definition process will create a toggle of the
form <mp><key> and a key macro of the form \<pre>@<family>@<key>. The
value <default> will be used by the key macro when the user sets the key
without a value.

If the + version of the macro is used, the user can specify two key macros
<func1> and <func2>.

If user input is valid, the macro will set the toggle and executes <func1>; oth-
erwise, it will not set the boolean but will execute <func2>.

As an example, consider the following (adapted from the xkeyval package to
suit toggle keys):

40 \define@togkey{fam}[my@]{frame}{%
41 \iftog{my@frame}{%
42 \PackageInfo{mypack}{Turning frames on}%
43 }{%
44 \PackageInfo{mypack}{Turning frames off}%
45 }%
46 }

48 \define@togkey+{fam}{shadow}{%
49 \iftog{KV@fam@shadow}{%
50 \PackageInfo{mypack}{Turning shadows on}%
51 }{%
52 \PackageInfo{mypack}{Turning shadows off}%
53 }%
54 }{%
55 \PackageWarning{mypack}{Erroneous input ‘#1’ ignored}%

6

56 }

The first example creates the toggle <my@frame> and defines the key macro
\KV@fam@frame to set the boolean (if the input is valid). The second key in-
timates the user of changed settings, or produces a warning when input was
incorrect.

It is also possible to define multiple toggle keys with a single command

57 \define@togkeys[<pre>]{<fam>}[<mp>]{<keys>}[<default>]

This creates a toggle key for every entry in the comma-separated list <keys>.
As is the case with the commands \define@cmdkeys and \define@boolkeys
from the xkeyval package, the individual keys in this case can’t have a custom
function. See section 5 for how to define multiple keys with custom functions.

As an example of defining multiple toggle keys, consider

58 \define@togkeys{fam}[my@]{toga,togb,togc}

This is an abbreviation for

59 \define@togkey{fam}[my@]{toga}{}
60 \define@togkey{fam}[my@]{togb}{}
61 \define@togkey{fam}[my@]{togc}{}

Now we can do

62 \define@togkey{fam}[my@]{book}{%
63 \iftog{my@book}{\krsetkeys[KV]{fam}{togc=true}}{}%
64 }

66 \krsetkeys[KV]{fam}{book=true}

Toggle keys can be set in the same way that other key types are set. \krsetkeys
is introduced by the keyreader package as a drop-in replacement for the legacy
\setkeys of the xkeyval package (see Section 7.2). \setkeys can still be used
when the situation permits (see Section 7.2).

The status of toggles can be examined by doing

67 \show\<KR@toggle@><mp><key>

7

when the <mp> is present. When the user has specified no <mp> in defining the
key, he has to issue

68 \show\<KR@toggle@><pre>@<family>@<key>.

5 Defining multiple keys by one command

The main user interface for defining multiple keys is the \define@keylist
macro, whose syntax is

69 \define@keylist{<key type/id>, <key>, <key default value>,
70 <key macro/function>; <another set of key specifiers>; etc}

There are five key types: 1 (ordinary key), 2 (command key), 3 (boolean key),
4 (toggle key), and 5 (choice key). The key and its attributes are separated
by commas; they constitute one object. The objects are separated by the
<parser>, which is the semicolon in the above example.

If the key list is available in a macro, say,

71 \def\keylist{<key type/id>, <key>, <key default value>,
72 <key macro/function>; <another set of key specifiers>; etc},

then the keys can be defined by the starred form of \define@keylist:

73 \define@keylist*\keylist.

\define@keylist* takes a macro as argument, while \define@keylist accepts
a key list.

5.1 Choice key values

The \ChoiceKeyValues macro is needed for choice keys; it lists the alternate
admissible values for a choice key and thus can’t be empty when a choice key is
being defined. Its syntax is

74 \ChoiceKeyValues{<key>}{<comma-separated list of admissible
75 key values>}.

To further save tokens, the macro \ChoiceKeyValues may be abbreviated by
\CKVS. It has to be defined each time a choice key is being defined. For example,

8

if we want to define two choice keys align and election, then before the call
to \define@keylist, we have to set

76 \CKVS{align}{center,right,left,justified}
77 \CKVS{election}{state,federal,congress,senate}.

It doesn’t matter which choice key first gets a \CKVS. The prevailing key fam-
ily, obtainable from \KR@keyfamily, is used internally by \ChoiceKeyValues
to build distinct alternate values lists for choice keys. Unless the key family
changes, you can’t set two \ChoiceKeyValues for the same choice key. This
will be possible only if the package option xchoicelist (meaning “allow over-
writing of choice list”) has been set <true>, either through \documentclass,
\usepackage, or \krsetup . Thus any number of choice keys can appear in
one \define@keylist or \define@keylist* statement if their lists of alter-
nate/admissible values have been set by \CKVS.

As mentioned earlier, the key family and other package options can be changed
dynamically via

78 \krsetup{parser=value,macroprefix=value,keyprefix=value,
79 keyfamily=value,xchoicelist=value}.

In line with the philosophy of the xkeyval package, all the choice keys to be
defined using the keyreader package require \ChoiceKeyValues: choice keys,
by definition, have pre-ordained or acceptable values.

5.2 Internals

The internal equivalent of \ChoiceKeyValues (the choice key list of alternative
values) is the macro \<family@key@altlist>. For example, for the align
key above, the internal of \CKVS is \fam@align@altlist, assuming the current
family is fam.

For all keys in a family, the internal of the key macro/function is available in
\<family@key@func>, and the value submitted by the user when setting the
key can be accessed via the macro \<family@key@value>.

5.3 Examples

Suppose that the key family and other attributes have been set as

80 \krsetup{parser=;,macroprefix=mp@,keyprefix=KV,
81 keyfamily=fam,xchoicelist=false}.

9

Further, suppose we wish to define a set of keys <color,angle,scale,align>.
The keys color, angle and scale will de defined using command keys, while
the key align will be defined by choice keys. Assume that the align key
can only assume the values <center,right,left,justified>, where the first
three values would further imply \centering, \flushright, and \flushleft,
respectively. Moreover, we assume that the key scale will be associated with a
macro called \mydo, where \do is assumed defined elsewhere. The keys color
and angle aren’t associated with macros. Then we can go:

82 \CKVS{align}{center,right,left,justified}
83 \CKVS{weather}{sunny,cloudy,lightrain,heavyrain,snow,
84 sleet,windy,\someweather}
85 % We assume that \someweather is defined
86 % somewhere and holds an admissible value
87 % for the key ‘‘weather’’ at any level.
88 \def\f@align{%
89 \ifcase\nr\relax
90 \def\mp@align{\centering}%
91 \or
92 \def\mp@align{\flushright}%
93 \or
94 \def\mp@align{\flushleft}%
95 \or
96 \let\mp@align\relax
97 \fi
98 }

100 \define@keylist{2,color,gray!25,;2,angle,45,;
101 2,scale,1,\def\mydo##1{\do ##1};5,align,center,\f@align;
102 \stopread;3,mybool,true,;
103 5,weather,sunny,\protected@edef\VWeather{\val}}.

The \nr and \val macros are bin parameters defined by the xkeyval package.
\val contains the user input for the current key and \nr contains the numeral
corresponding to the user input in the \CKVS list, starting from 0 (zero). For
example, in the \CKVS{align} list, the \nr values are center (0), right (1),
left (2), and justified (3). These parameters thus refresh with the choice
key and its user-supplied value.

Instead of defining the macro \f@align before hand, we can submit its re-
placement text directly to the macro \define@keylist, but, because \f@align
contains a conditional, some care is needed in doing so (see section 7). Once
the key align has been defined, the macro \f@align can be reused—perhaps
to define other keys—even before the key align is set. This is because it isn’t
\f@align that is used in defining the key align but its internal counterpart

10

(i.e., a family-dependent internal of \f@align, which is \fam@align@func). In
this way, the user can economize on tokens. The same applies to all the macros
that may be used in defining keys.

Note the \stopread command inserted above. Because of it, the key mybool
will not be read and defined; the rest (i.e., color, angle, scale and align)
will be read and defined. All the entries for mybool and weather will instead
be saved in the macro \KR@remainder, possibly for some other uses.

Hundreds of keys can be defined efficiently in this way, using very few tokens.

As another example, we consider the following page setup keys:

104 \CKVS{align}{center,right,left,justified}
105 \CKVS{election}{state,federal,congress,senate}
106 % \CKVS needs to be defined only once for each key in a family.

108 \define@keylist{%
109 3,boolvar,true,;1,paperheight,\paperheight,;
110 1,paperwidth,\paperwidth,\f@paperwidth;
111 2,textheight,\textheight,\f@textheight;
112 2,textwidth,\textwidth,\f@textwidth;
113 1,evensidemargin,\evensidemargin,;
114 5,align,center,\f@align;
115 5,election,congress,;
116 2,testdim,2cm,\long\def\f@testdim##1{A test dimension ##1
117 \par\bigskip}%
118 % Note the number of parameter characters
119 % in the definition of \f@testdim.
120 }

which have the following trivial key macros:

121 \def\f@textwidth{\AtBeginDocument{\wlog{‘textwidth’ %
122 is \mp@textwidth}}}

124 \def\f@textheight{%
125 \ifx\@empty\mp@textheight
126 \wlog{‘textheight’ value empty}%
127 \else
128 \wlog{‘textheight’ value not empty}%
129 \fi
130 }

132 \def\f@paperwidth{\wlog{‘paperwidth’ was defined as %
133 ordinary key.}}

11

134 \newcommand\f@align{%
135 \ifcase\nr\relax
136 \def\mp@align{\centering}%
137 \or
138 \def\mp@align{\flushright}%
139 \or
140 \def\mp@align{\flushleft}%
141 \or
142 \let\mp@align\relax
143 \fi
144 }

Again, once the keys have been defined, these macros can be reused.

The same set of keys can be defined via the starred form of \define@keylist:

145 \def\keylist{%
146 3,boolvar,true,;1,paperheight,\paperheight,;
147 1,paperwidth,\paperwidth,\f@paperwidth;
148 2,textheight,\textheight,\f@textheight;
149 2,textwidth,\textwidth,\f@textwidth;
150 1,evensidemargin,\evensidemargin,;
151 4,mytoggle,true,\let\settoggle\settog;
152 5,align,center,\f@align;
153 5,election,congress,;
154 2,testdim,2cm,\long\def\f@testdim##1%
155 {Do something with ##1}%
156 }
157 \define@keylist*\keylist.

Since the keys have been defined, they can now be set. In the following, we set
only two of the keys:

158 \setkeys[KV]{fam}{align=right,testdim=3cm}

The macro \mp@align holds the value \flushright, while

159 \KV@fam@testdim

holds the macros:

160 \def\mp@testdim{#1}
161 \long\def\f@testdim##1{A test dimension##1\par\bigskip},

12

where \#1 is the value submitted for the key testdim. Try \show\mp@align,
\show\KV@fam@testdim, and \show\f@testdim to confirm the above assertions.

The rest of the defined keys can now be set as follows:

162 \setkeys[KV]{fam}{boolvar=true,paperheight,paperwidth,
163 textheight,textwidth=6cm}

Try \show\ifmp@boolvar to confirm that boolvar is now <true>; it was orig-
inally set as <false>. The macro \KV@fam@paperwidth holds the function
\f@paperwidth; \mp@textheight holds the value submitted to key textheight
at any instance of \setkeys. By the above \setkeys, only the default values
of paperheight, paperwidth, and textheight are presently available.

Instead of using macros to pass key macros and functions, it is also possible to
use token registers. An example is provided below:

164 \toks0={\long\def\f@testdim#1{A test dimension #1\par\bigskip}}

166 \define@keylist{3,boolvar,true,;2,testdim,2cm,\the\toks0}.

The advantage of using token registers is that the parameter characters need
not be doubled in the token registers, unlike when using macros. The token
register \toks 0 can be reused as soon as the key testdim is defined.

5.4 Demonstrating the effect of limiting \textwidth

After defining and setting the keys above, the following tokens can be used in a
source file to demonstrate the effect of setting the page setup keys shown above:

167 \begin{center}
168 \begin{minipage}{\mp@textwidth}
169 \lipsum[1]
170 % From the lipsum package.
171 % The blindtext package can also be used.
172 \end{minipage}
173 \end{center}

175 \lipsum[1]

13

6 Input error

Both boolean and choice keys issue error messages if the input is not valid,
i.e., not in the list of admissible values. The default input error is defined by
\KR@inputerr macro to be

176 \KR@err{Erroneous value ‘#1’ for key ‘#2’}{%
177 Please use the correct value for key ‘#2’.}.

\KR@inputerr can be redefined by the user. It takes two arguments (i.e., value
and key).

7 Conditionals in key macros

The TEX conditional primitives \if and \fi cannot appear in the key macro
when \define@keylist is being invoked. The reason can be traced to the
discussion on page 211 of the TEXBook and the loop used in the keyreader
package to define keys. There are three approaches to resolving this problem,
and the user can choose anyone he/she prefers.

7.1 Burying conditionals in macros or token registers

Key macros/functions involving conditional operations such as

178 \ifmp@bool \do \fi

can be submitted to \define@keylist via macros, as seen above. We give more
examples below.

Suppose we want to submit the following:

179 \define@keylist{3,bool,true,\ifmp@bool \do \fi}.

The presence of \if and \fi in the argument will trigger an error when TEX
is scanning or skipping tokens, and, secondly, because of the loop and condi-
tional used by the keyreader package in defining keys. Neither \protect nor
\noexpand is helpful here. One solution is to first define

180 \def\f@bool{\ifmp@bool \do \fi}

and then do

14

181 \define@keylist{3,bool,true,\f@bool},

which will execute \f@bool when the key bool is set. Once the key bool has
been defined by the above statement, the function \f@bool may be redefined
and reused many times, any time, even before the setting of the key bool. It
isn’t the function \f@bool that is used in defining the key bool, but an internal
of \f@bool.

As another example, we may do

182 \def\f@abool{\ifmp@abool\def\do####1{%
183 \def####1########1{\expandafter\expandafter\expandafter\in@
184 \expandafter\expandafter\expandafter{\expandafter####1
185 \expandafter}\expandafter{########1}}}\fi}

187 \define@keylist{3,abool,true,\f@abool}.

Token registers (including scratch token registers) can be used here economically
instead of macros:

188 \toks0{\ifmp@abool\def\do#1{%
189 \def#1##1{\expandafter\expandafter\expandafter\in@
190 \expandafter\expandafter\expandafter{\expandafter#1
191 \expandafter}\expandafter{##1}}}\fi}

193 \toks1{\iftog{toggleone}{def\tempa#1{Use #1}}{}}

195 \define@keylist{3,abool,true,\the\toks0;
196 4,toggleone,true,\the\toks1}

198 \setkeys[KV]{fam}{abool=true,toggleone=true}.

You can see the significant reduction in the number of parameter characters
when using token registers. The token registers \toks 0 and \toks 1 can be
reused to define many other keys.

7.2 Using a “dirty” trick to submit the conditionals

There are two downsides to the above approach of hiding conditionals in macros:

a) The macros have to be defined and, although they can be redefined and
reused, they tend to defeat the initial aim of the package, which is to
economize on tokens.

15

b) If the conditionals involve macro definitions as in the above example, the
parameter characters have to be doubled in each instance, except when
using token registers.

Suppose we want to define a boolean key mybool with the following key macro:

199 \ifmp@mybool\def\hold##1{\def##1####1{####1}}\fi,

where the macro prefix is mp@ and the key family has been defined previously.
Then, instead of hiding the conditional in a macro, we can go

200 \define@keylist{3,mybool,true,
201 \fif{mp@mybool}\def\hold##1{\def##1####1{####1}}\ffi}.

Here we have used \fif{mp@mybool} and \ffi for \ifmp@mybool and \fi, re-
spectively, to hide the latter two from TEX’s scanning and skipping mechanism.
Please note that \fif{mp@mybool} requires that the argument <mp@mybool> be
enclosed in braces. Something like \fifmp@mybool will be interpreted by TEX
as undefined control sequence when the key mybool is being set.

Now, however, when setting the key mybool, the user has to use \krsetkeys
instead of xkeyval’s legacy \setkeys. The command \krsetkeys does under-
stand that \fif and \ffi stand for \if and \fi, respectively, and have been
used to “deceive” TEX. \krsetkeys has the same syntax as \setkeys:

202 \krsetkeys*+[key prefix]{key family}{keys=values}.

\krsetkeys can in general be used in place of \setkeys, even in instances (i.e.,
for keys) where \fif and \ffi have not been used.

In the case of conditionals starting with \ifcase, a \noexpand before the
\ifcase solves the problem:

203 \CKVS{focus}{center,left,right,justified}

205 \define@keylist{5,focus,center,\noexpand\ifcase\nr\relax
206 \def\mp@focus{\centering}\or\def\mp@focus{\flushright}
207 \or\def\mp@focus{\flushleft}\or\let\mp@focus\relax\fi
208 }

7.3 Using toggles

Toggle switches, described in Section 4, can also be used to circumvent the
problem of matching \if and \fi in difficult circumstances, since toggles aren’t

16

TEX primitives. For example, the following works:

209 \define@keylist{4,toggleone,true,
210 \iftog{toggleone}{\def\temp{This is defined by a toggle}}{}}.

And, as noted in Section 4, toggles are very economical.

8 Disabling keys

The keyreader package has modified the definition of \disable@keys from the
xkeyval package to allow for bespoke warnings and error messages, without
engendering any conflict with the legacy \disable@keys. The new command is
\krdisable@keys; the use syntax remains the same as that of \disable@keys:

211 \krdisable@keys[<key prefix>]{<key family>}{<comma %
212 separated list of keys to disable>}.

Any attempt to subsequently set a disabled key will prompt the following error
message. (The xkeyval package issues a warning in this case.) The error
message can be modified by the user, but the “names” \KR@disabledkey@err
and \KR@disabledkey should be retained.

213 \def\KR@disabledkey@err{%
214 \PackageError{keyreader}{%
215 Key ‘\KR@disabledkey’ has been disabled.}{%
216 You can’t set or reset it at this late stage.\MessageBreak
217 You should have set it earlier in the\MessageBreak
218 \string\documentclass\space or \string\usepackage
219 }%
220 }

If the user attempts to disable an undefined key, the xkeyval package issues a
fatal error; the keyreader package, on the other hand, issues a warning in the
transcript .log file, since the situation isn’t fatal to the outcome.

9 Epilogue

The are many commands available in the package for general use, but they are
not documented here.

17

	1 Motivation
	2 Package loading
	3 Complementary boolean keys
	4 Toggle switches and keys
	4.1 Toggle switches
	4.2 Toggle keys

	5 Defining multiple keys by one command
	5.1 Choice key values
	5.2 Internals
	5.3 Examples
	5.4 Demonstrating an effect

	6 Input error
	7 Conditionals in key macros
	7.1 Burying conditionals in macros or token registers
	7.2 Using a ``dirty'' trick to submit the conditionals
	7.3 Using toggles

	8 Disabling keys
	9 Epilogue

