In this sample we use Lato font [?] as the body font. For the math we use the same input as in The $\&T_EX$ Companion [?, § 12.5]).

In all examples we use Iwona scaled 1.15

Iwona regular

First some large operators both in text: $\iiint_{Q} f(x, y, z) dx dy dz$ and $\prod_{\gamma \in \Gamma_{\widetilde{C}}} \partial(\widetilde{X}_{\gamma})$; and also on display:

$$\iiint \int \int \int \int \int f(w, x, y, z) \, dw \, dx \, dy \, dz \leq \oint_{\partial Q} f' \left(\max\left\{ \frac{\|w\|}{|w^2 + x^2|}; \frac{\|z\|}{|y^2 + z^2|}; \frac{\|w \oplus z\|}{\|x \oplus y\|} \right\} \right)$$
$$\approx \bigcup_{\mathbb{Q} \in \bar{\mathbb{Q}}} \left[f^* \left(\frac{\int \mathbb{Q}(t)}{\sqrt{1 - t^2}} \right) \right]_{t=\alpha}^{t=\vartheta} - (\Delta + \nu - \nu)^3 \tag{1}$$

For x in the open interval]-1, 1[the infinite sum in Equation (8) is convergent; however, this does not hold throughout the closed interval [-1, 1].

$$(1-x)^{-k} = 1 + \sum_{j=1}^{\infty} (-1)^j {k \choose j} x^j$$
 for $k \in \mathbb{N}; k \neq 0.$ (2)

Iwona condensed

First some large operators both in text: $\iint_{Q} f(x, y, z) dx dy dz$ and $\prod_{\gamma \in \Gamma_{\widetilde{C}}} \partial(\widetilde{X}_{\gamma})$; and also on display:

$$\iiint \int \int \int \int \int f(w, x, y, z) \, dw \, dx \, dy \, dz \leq \oint_{\partial Q} f' \left(\max\left\{ \frac{\|w\|}{|w^2 + x^2|}; \frac{\|z\|}{|y^2 + z^2|}; \frac{\|w \oplus z\|}{\|x \oplus y\|} \right\} \right)$$
$$\approx \bigcup_{\mathbb{Q} \in \bar{\mathbb{Q}}} \left[f^* \left(\frac{\int \mathbb{Q}(t)}{\sqrt{1 - t^2}} \right) \right]_{t=\alpha}^{t=\vartheta} - (\Delta + \nu - \nu)^3 \tag{3}$$

For x in the open interval]-1, 1[the infinite sum in Equation (8) is conver-

gent; however, this does not hold throughout the closed interval [-1, 1].

$$(1-x)^{-k} = 1 + \sum_{j=1}^{\infty} (-1)^j {k \choose j} x^j \text{ for } k \in \mathbb{N}; k \neq 0.$$
 (4)

Iwona light

First some large operators both in text: $\iint_{\mathcal{Q}} f(x, y, z) dx dy dz$ and $\prod_{\gamma \in \Gamma_{\widetilde{C}}} \partial(\widetilde{X}_{\gamma})$; and also on display:

$$\iiint \int f(w, x, y, z) \, dw \, dx \, dy \, dz \leq \oint_{\partial Q} f' \left(\max\left\{ \frac{\|w\|}{|w^2 + x^2|}; \frac{\|z\|}{|y^2 + z^2|}; \frac{\|w \oplus z\|}{\|x \oplus y\|} \right\} \right)$$
$$\approx \bigcup_{\mathbb{Q} \in \bar{Q}} \left[f^* \left(\frac{\int \mathbb{Q}(t)}{\sqrt{1 - t^2}} \right) \right]_{t=\alpha}^{t=\vartheta} - (\Delta + \nu - \nu)^3$$
(5)

For x in the open interval]-1, 1[the infinite sum in Equation (8) is convergent; however, this does not hold throughout the closed interval [-1, 1].

$$(1-x)^{-k} = 1 + \sum_{j=1}^{\infty} (-1)^j {k \choose j} x^j$$
 for $k \in \mathbb{N}; k \neq 0.$ (6)

Iwona light condensed

First some large operators both in text: $\iiint_{Q} f(x, y, z) dx dy dz$ and $\prod_{\gamma \in \Gamma_{\widetilde{C}}} \partial(\widetilde{X}_{\gamma})$; and also on display:

$$\iiint \int f(w, x, y, z) \, dw \, dx \, dy \, dz \leq \oint_{\partial Q} f' \left(\max\left\{ \frac{\|w\|}{|w^2 + x^2|}; \frac{\|z\|}{|y^2 + z^2|}; \frac{\|w \oplus z\|}{\|x \oplus y\|} \right\} \right)$$
$$\approx \bigcup_{\mathbb{Q} \in Q} \left[f^* \left(\frac{\int \mathbb{Q}(t)}{\sqrt{1 - t^2}} \right) \right]_{t=\alpha}^{t=\vartheta} - (\Delta + \nu - \nu)^3 \tag{7}$$

For x in the open interval]-1, 1[the infinite sum in Equation (8) is convergent; however, this does not hold throughout the closed interval [-1, 1].

$$(1-x)^{-k} = 1 + \sum_{j=1}^{\infty} (-1)^j {k \choose j} x^j \text{ for } k \in \mathbb{N}; k \neq 0.$$
 (8)

References

- Łukasz Dziedzic and Mohamed El Morabity. *The lato package*, 2019. URL http://www.latofonts.com/.
- Frank Mittelbach and Ulrike Fischer. *The LaTeX Companion: Parts I & II, 3rd Edition*. Addison-Wesley Professional, May 2023. ISBN 978-01-3816-648-9.