Relative inverse path calculation

Will Robertson

26/04/2007 V0.1

inversepath is a simple package to calculate inverse relative paths. For example,
when writing to an auxiliary file in a subdirectory (or a series of nested subdi-
rectories), it can be useful to know how to get back to the original file.

If the absolute path of the original file is specified, this package can also
calculate the relative path of a file in parent or sibling directories.

\inversepath{(path)} — expands to the inverse of (path).

\absolutepath{(abs. path)} — specifies the absolute path for calculating
parent/sibling relative paths.

Regular usage:

i \inversepath{one/two/three/four.tex}\par
four.tex \ip@lastelement\par
one/two/three/ \ip@directpath

Expands to (empty) if the relative path is the same directory:

[] [\inversepath{one.tex}] \par
one.tex \ip@lastelement\par
[1 [\ip@directpath]

For ‘back-relative’ paths, the absolute path needs to be specified:

\absolutepath{/xyz/here/there/everywhere/}
../../there/everywhere/

three.tex \inversepath{../../one/two/three.tex}\par
../../one/two/ \ip@lastelement\par
\ip@directpath
That's it!



File I
inversepath implementation

This is the package.

1 \ProvidesPackage{inversepath}
> [26/04/2007 v0.1 Inverse relative paths]

\inversepath #1 : Path to invert
s \newcommand\inversepath[1]{%
\ip@jobpath is preserved to restore after truncation for back-relative paths.

4+ \let\ip@origjobpath\ip@jobpath
5 \let\ip@directpath\@empty

6 \let\ip@inversepath\@empty

7 \ip@strippath#1/\@nil/%

s \let\ip@jobpath\ip@origjobpath
o \ip@inversepath}

\absolutepath #1 : Absolute path used for calculating parent/sibling relative paths.

10 % macro to define the absolute path of where we are:
11 \newcommand\absolutepath[1]{\def\ip@jobpath{#1}}

For \ifx comparisons for relative back-paths:
12 \def\ip@literaldotdot{..}

\ip@strippath This is the macro that does all the work. It takes input like a/b/c/. . .x/y/z/\@nil/
and expands to \ip@inversepath, the inverse path of \ip@directpath (a/b/.../y/).

13 \def\ip@strippath#1/#2/{%
12 \ifx\@nil#2\relax

If input is z/\@nil/ then we’ve reached the end:

15 \def\ip@lastelement{#11}/,
16 \else

If we're in the middle of the slash-separated list; build up \ip@directpath:

17 \edef\ip@directpath{\ip@directpath#1/}

18 \def\@tempa{#1}}

19 \ifx\@tempa\ip@literaldotdot

20 \unless\ifdefined\ip@jobpath

21 \PackageError{inversepath}

2 {No absolute path specified}

23 {You must declare the file path of the main

2 file with \protect\absolutepath{} to be able to
2 resolve back-relative paths}/,

26 \fi



If the path is a back-relative path, things are more complex. to get the inverse

of ../, we need the absolute file path. this requires using \ip@strippath on
\ip@jobpath itself, so save out our current definitions of \ip@directpath/\ip@inversepath
and (re-)initialise them:

27 \let\ip@olddirectpath\ip@directpath

2 \let\ip@oldinversepath\ip@inversepath

29 \let\ip@directpath\@empty

30 \let\ip@inversepath\@empty

\ip@strippathon \ip@jobpath gives us the topmost directory in \ip@lastelement:
31 \expandafter\ip@strippath\ip@jobpath\@nil/

32 \let\@tempa\ip@lastelement

\ip@jobpathis now truncated so \iplastelement in the next iteration is one
folder up the hierarchy.

33 \let\ip@jobpath\ip@directpath
Now we restore everything to how it was: (this would be better with grouping,
but I don’t want to use \global)

3 \let\ip@directpath\ip@olddirectpath
35 \let\ip@inversepath\ip@oldinversepath

Build up the inverse path:

36 \ifx\@tempa\@empty

37 \PackageError{inversepath}

38 {Absolute path too shallow to resolve

39 such a deep relative path}

40 {You’re trying to go back more directories than you have!}
41 \fi

0 \edef\ip@inversepath{\@tempa/\ip@inversepathl}

43 \else

If the path is a simple relative path, then build up the inverse path by prepending
e

4 \edef\ip@inversepath{../\ip@inversepathl}y,
45 \fi

Iterate:

46 \def\@tempa{\ip@strippath#2/}/

a7 \expandafter\Qtempa

48 \fi}



