
The package imakeidx∗

Claudio Beccari† Enrico Gregorio‡

Contents
1 Introduction 1

2 Package usage 2

3 Specific package commands 3

4 If something goes wrong 7

5 Hints 9

6 Implementation 10

Abstract

This package exploits the \write18 facility of modern TEX system distri-
butions that allows to run system commands while typesetting a document
written with the LATEX mark up. By so doing, the index or indices, that are
usually typeset at the very end of the document, are possibly split and sorted
so as to include them in the document itself. This process has some minor
limitations: it’s impossible to start an index before all other pages have been
ejected and to have the automatic run of the index sorting program.

1 Introduction
It’s been some years now that the typesetting engine of the TEX system is just
pdftex ; the original Knuthian tex is still corrected by D.E. Knuth himself, but is
frozen, according to his will; it is still distributed by every TEX distribution, but
in practice only pdftex, xetex or luatex are used as the interpreter of every macro
package and the true typesetter engine.

This program pdftex was originally born with the facility of producing either a
pdf output file, as its name suggests, or a dvi file. Since then it has been enriched
with many upgrades, also with regard to the evolution of the PDF language itself.
It also incorporates the extensions of ε-TEX and has the ability to open a shell so
as to call system commands with their arguments. The same is true for xetex and
luatex.

This facility, since the TEX Live 2010 distribution, is official, but is sort of
restricted, in the sense that the TEX system configuration file contains a list of
∗Version number v1.1a; last revision 2012/09/07.
†claudio dot beccari at gmail dot com
‡Enrico dot Gregorio at univr dot it

1

“safe” system commands that can be run by pdftex ; presently the only program
relevant for this package is makeindex. This precaution is necessary in order to
avoid running malicious code. Other programs can be run, though, but it’s neces-
sary to expressly tell pdftex that it can do so; this authorisation is given by means
of a suitable program option, as explained below.

This package will exploit this facility in order to run a perl script that is capable
of splitting a raw index file into different chunks and to run the makeindex TEX
system program so as to sort and format the index entries according to a specified
index style file. Once the shell is terminated, the pdftex program resumes its work
and possibly prints the various formatted indices produced in previous step. In
this way the document indices are always synchronous with their document and
no further pdftex runs are necessary.

In order to reach this goal, it necessary to enable the pdftex engine to run
the so-called \write18 facility; depending on the distribution and the shell ed-
itor that is being used to work on a specific document, it is necessary to add
-shell-escape (or --enable-write18 for MiKTEX) to the command with which
pdftex is launched, possibly by the shell editor. What’s been said for pdftex goes
without change for the xetex and luatex typesetting engines.

If LuaLATEX is used and luatex is version 0.42 to 0.66, it’s impossible to distinguish whether
the restricted shell escape is active or not, so the automatic procedure will be tried anyway,
unless disabled with the noautomatic package option. With version 0.68 or later, the behavior
is the same as with the other engines.

Note
The first public version of this package was not compatible with the memoir class.
Since version 1.1 it is; however, one has to keep in mind that all index processing
is done with the methods of the present package, and not with memoir’s; however
the syntax used is the same and there should be no problem.

2 Package usage
This package is invoked as usual by means of a \usepackage command:

\usepackage[〈options〉]{imakeidx}

The available 〈options〉 consist in a comma separated list of the following op-
tions:

makeindex in order to use the makeindex sorting an formatting engine; this option
is the default and is mutually exclusive with the next option.

xindy in order to use the xindy sorting and formatting engine; texindy is an alias
for xindy and actually it’s the script texindy which is called by this package.

noautomatic disables the automatic splitting and running of the system pro-
grams; this option might be used to save time when one knows for sure that

2

the index files are already OK and do not need to be refreshed. Actually the
time spent in splitting, sorting and formatting is so short that this option
might be useful only when very lengthy indices are being processed.

nonewpage inhibits the new page command to be issued when using an article
type document class and multiple indices are being typeset. We don’t see
why someone would use multiple indices in an article (except possibly for
package documentations, which usually provide a macro index and a list of
changes).

quiet suppresses all messages about manual index processing.

original uses the class provided theindex environment for typesetting the in-
dices; it is implicitly set if the document class option twocolumn has been
specified.

splitindex calls the splitindex script by Markus Kohm, which is included in every
TEX Live distribution since 2009. With this option all index entries, which
are written in one raw file, are successively split into all the requested index
files; in this way there is virtually no limit on the number of indices that is
possible to create for a particular document.

The last described option deserves an explanation. LATEX can write on a limited
number of files during a run, and some of these output streams are already reserved
(among these: aux file, table of contents, list of figures, list of tables). When more
than one index is produced, there’s the risk to run off the number of writable
files, because normally imakeidx reserves an output stream for each index. So
the splitindex option comes to rescue: with it only one index file is written.
At the first \printindex command, the program splitindex is called; it splits the
large index file into as many parts as the number of requested indices; after this,
makeindex (or xindy) can do its job. In this way only one output stream is needed
during the LATEX run.

When should you apply this option, then? With one index it’s useless, you
should begin to consider it for two or more indices and definitely use it if you get
the error

! No room for a new \write

Apart from this case, with or without it the results are the same. See section 4 to
see what files are written during the LATEX run with or without the option.

3 Specific package commands
As it is customary when just one index is produced, the standard LATEX facilities,
i.e. the commands \makeindex, \index, and \printindex must be used. This
package redefines them so as to produce multiple indices and defines some others.
The first three of the following commands may be used only in the preamble.

3

\makeindex with the syntax:

\makeindex[〈key-values〉]
where 〈key-values〉 is a comma separated list of key-value assignments of the
form: key=value; the available keys are the following:

name is the symbolic name for an index; if this key is not specified, it de-
faults to the value of the \jobname control sequence, in other words the
name of the current main .tex file, i.e., the file that \inputs and/or
\includes all the files of the complete document. This symbolic name
is necessary only when doing multiple indices and is used with the
\index command to point to the right index.
Example: name=nameidx

title is the title that is typeset at the beginning of the specific index; if not
specified, the \indexname value is used.
Example: title=Index of names

program is the name of the system program that is used to sort and format
an index; valid choices are makeindex, xindy, or texindy. If not specified
the program specified among the package options is used. If no option
is specified, makeindex is used. In order to use xindy, it’s necessary to
call (pdf)latex with the shell escape command line option.
Example: program=xindy

options is the list of options to be passed to the sorting and formatting
program; this list is a balanced text of program options, separated
with the syntax required by the sorting and formatting program. For
example, in order to use a different makeindex sorting and formatting
style mystyle.ist and avoiding any message in the screen output write
options=-s mystyle

noautomatic is a boolean key that defaults to false; you can set it to true by
simply listing its key in the key-value list, without necessarily specifying
the =true part. If specified the index sorting program won’t be called
during the pdftex run for this particular index.

intoc is a boolean variable that defaults to false; if you want to set it true
you must simply list this key in the key-value list, with no need of
specifying the =true part. By setting this key to true an entry for this
particular index is put in the table of contents.

columns accepts an integer representing the number of columns in the index;
this is silently ignored if the original or the twocolumn options are
set; the number can even be 1.
Example: columns=3

columnsep accepts a dimension representing the separation between index
columns; the default is 35 pt as in the standard classes.
Example: columnsep=15pt

columnseprule is boolean; if it is set, a rule will appear between the index
columns.

4

\indexsetup with the syntax:

\indexsetup[〈key-values〉]
where again 〈key-values〉 is a comma separated list of key-value assignments;
the available keys are:

level which takes as value a sectioning command such as \chapter or
\chapter*. Actually any command with an argument will do and will
receive the index title as its argument. The default is \chapter* or, if
the class doesn’t provide chapters, \section*.

toclevel which takes as value a sectioning command name such as section
to indicate the level at which we want the indices appear in the table
of contents.

noclearpage is a boolean option; when set, no \clearpage will be issued
between indices. You might want to set it in order to have a ‘chapter
of indices’; in this case you are responsible for setting the right value of
the above keys. For example

\indexsetup{level=\section*,toclevel=section,noclearpage}
...
\chapter*{Indices}
\printindex
\printindex[names]
\printindex[objects]

firstpagestyle which takes as value a page style, default plain. You might
want to set it to empty or some other page style defined by the class or
by yourselves.

headers which takes as value the left and right marks. You might
want to use this for disabling automatic uppercasing, by saying
headers={\indexname}{\indexname}; notice that this value should
always be a pair of braced texts.

othercode which takes as value arbitrary TEX code that will be executed at
the beginning of index entries typesetting. For example you might want
to change here the setting of \parskip.

\splitindexoptions must have as its argument the command line option to
splitindex ; this might be necessary on some systems. The default is -m "",
because we want it only for splitting the large index file into its components
which are later processed by this package.

\index with the syntax:

\index[〈name〉]{〈entry〉}
inserts 〈entry〉 into the raw index file; upon splitting it in different files,
this particular entry is listed in the specific index file with name 〈name〉; if
no name is specified, this 〈entry〉 is added to the default index with name

5

\jobname. The 〈entry〉 should be written according to the particular syntax
of the sorting and formatting program.

\indexprologue with the syntax:

\indexprologue[〈spacing〉]{〈text〉}
is used to define some text to go between the index header and the entries;
the 〈spacing〉 should be a vertical space command such as \vspace{36pt}
(default is \bigskip), controlling the spacing between the prologue and
the index proper. The command affects only the next index produced by
\printindex and is best placed just before this command.

\printindex with the syntax:

\printindex[〈name〉]
is used to typeset the particular index named 〈name〉; if no optional ar-
gument is specified, the default index with name \jobname.ind is typeset.
Actually this command activates all the mechanism of closing the output
to the raw index file, shelling out, possibly calling the splitindex script in
order to divide the single raw file generated by (pdf)latex into distinct raw
files according to the default or specified 〈name〉s for each index, calling the
sorting and formatting program on each of these split raw files (unless inhib-
ited by a noautomatic option; in which case a warning is issued in order to
remember the typesetter that this particular index has not been processed),
producing the sorted and formatted .ind files, and eventually inputs and
typesets these formatted files. Deep breath.

Let’s see an example. The sequence of commands

...
\usepackage{imakeidx}
...
\makeindex[title=Concept index]
\makeindex[name=persons,title=Index of names,columns=3]
...
\begin{document}
...
And this is the end of the story.

\printindex

\indexprologue{\small In this index you’ll find only
famous people’s names}

\printindex[persons]
\end{document}

will produce two indices. Entries for the first one must be typed as \index{gnu},
while entries for the second are of the form \index[persons]{Lamport, Leslie}.
The prologue will be printed (full line) only in the “Index of names”, which will be
typeset in three columns.

6

When the original option is set, maybe implicitly because of twocolumn,
\indexsetup and the keys columns, columnsep and columnseprule for \makeindex
have no effect.

4 If something goes wrong
Since imakeidx relies on good cooperation between package options and command
line options for the LATEX run, in some cases it may happen that the indices are
not correctly built or built at all.

If you use only makeindex and TEX Live 2010 or later, then you shouldn’t need
anything special, since makeindex is among the safe programs allowed to be called
during a LATEX run, be it latex, pdflatex, xelatex, or lualatex. When the options
splitindex, xindy or texindy are specified (globally or locally), the LATEX run
should be called with -shell-escape (which is –enable-write18 for MiKTEX)
or the noautomatic option should be specified when loading imakeidx.

Let’s look at a couple of examples. In both we suppose that the document
mybook.tex defines two indices through

\makeindex[...]
\makeindex[name=secondary,...]

where ... denotes possible options excluding name.
First of all we examine the case when imakeidx is called without splitindex.

Two files called mybook.idx and secondary.idx will be written during the
LATEX run. At the corresponding \printindex command, makeindex will act on
each of them producing the files mybook.ind, mybook.ilg, secondary.ind and
secondary.ilg. The .ind files contain the relevant theindex environment with
alphabetized entries, while in the .ilg files makeindex will write its log. You can
check in mybook.log whether the makeindex run has been executed by searching
for a line

runsystem(makeindex <...>)...executed

where <...> stands for the rest of the command line in the particular case. If
this line is not present, then makeindex has not been called; this happens when
you didn’t specify the shell escape command line option for the LATEX run or the
restricted shell escape is not active; also, of course, if you set the noautomatic
option for the index.

When using splitindex, the situation is different. During the LATEX run, only
a large index file called mybook.idx file gets written; the first \printindex com-
mand will call splitindex (shell escape must be active), which will produce the two
partial index files mybook-mybook.idx and mybook-secondary.idx. These two
files will be processed by makeindex producing the four files mybook-mybook.ind,
mybook-mybook.ilg, mybook-secondary.ind and mybook-secondary.ilg. The
line

runsystem(splitindex <...>)...executed

7

\makeindex
\makeindex[name=secondary]

without splitindex with splitindex

(at \begin{document})

mybook.idx mybook.idx
secondary.idx

(at \printindex)

mybook.ind mybook-mybook.idx
mybook.ilg mybook-secondary.idx
secondary.ind mybook-mybook.ind
secondary.ilg mybook-mybook.ilg

mybook-secondary.ind
mybook-secondary.ilg

Table 1: Files written during a LATEX run

in mybook.log will tell that the splitting has been done (see later on if this doesn’t
seem true). In table 1 you can see what files are produced when the first two lines
are in the preamble.

Everything is the same when using texindy for alphabetizing, except that, by
default, it doesn’t write .ilg files. If you want them, add options=-t〈name〉.ilg
to the relevant \makeindex command, in our example it should be

\makeindex[...,options=-t mybook.ilg]
\makeindex[name=secondary,...,options=-t secondary.ilg]

The name of the .ilg file must be specified. Remember, though, that xindy .ilg
files may turn out to be very large.

When something different from expected appears to take place, check also the
time stamps of the produced files; if they are older than mybook.log, it means
that they have not been written in the last run. The most common case is that you
forgot to activate the shell escape feature (which is not necessary with TEX Live
2010 or later, provided you use only makeindex).

Another cause of malfunction might be a wrong option passed to makeindex,
texindy or splitindex. For example, if you specify a style option for makeindex such
as options=-s mystyle.ist and the style file is missing or its name is mistyped,
the run of makeindex will result in mybook.log, but it will be aborted and the
TEX program has no control over this process. In this case the .ilg and .ind files
will not be produced and you can spot the problem by checking the time stamps.
On some systems a message such as

Index file mystyle.ist not found
Usage: makeindex [-ilqrcgLT] [-s sty] [-o ind] [-t log] [-p num]

8

may appear on the screen, but often this window gets closed before you realize
you have a problem. The time stamp is the best clue to detect such problems.

Shell hackers may be able to redirect the stderr stream to a file, but this
requires skills that can’t be explained here, because they require tens of different
tricks, depending on what method is used to start a LATEX run. From the command
line, assuming bash, it would be something like

pdflatex -shell-escape mybook.tex 2>latex-errors

If shell hackers know a way to access the exit status of the called program, we’d
be glad to implement a supplementary check.

5 Hints
Actually this package reaches two goals: (a) it typesets the indices of a specific
document in just one run, and (b) it lets the author/typesetter produce documents
with multiple indices.

If you redefine yourself the theindex environment, please remember not to
number the chapter or section that introduces the index if you ask for the intoc
option; either use the commands \chapter* or the \section* respectively and the
intoc option or don’t use this option and redefine your theindex environment with
numbered chapter or section commands, that will put the index titles directly into
the table of contents. You may use the idxlayout package by Thomas Titz, which
offers many functions for index typesetting customization and is compatible with
our package; remember to load idxlayout after imakeidx. This package has a similar
function to our \indexprologue, called \setindexprenote; however idxlayout
doesn’t reset the index prologue, which must be declared anew or disabled with
\noindexprenote before the next \printindex command.

If by chance you get double entries into the table of contents, eliminate the
intoc option from your calls; your class and packages are already taking care of
it. The package tocbibind should be loaded with the noindex option, otherwise it
would interfere with our redefinition of theindex.

If you redefine your theindex environment by means of other packages, pay
attention that these redefine a real theindex environment with this very name;
if they create an environment with a different name, imakeidx can’t take care of
the indices production (in particular the TEX system program makeindex creates a
sorted and formatted .ind file that refers explicitly to the theindex environment),
and it can’t take care of the table of contents entry and of the position of the hyper
link anchor needed to navigate your document by means of hyper links.

Use freely the options and the key values in order to reach the desired results,
but you are advised to prepare in advance the styles for composing the various
indices in a proper way; for example, if you use a titled style for the index, where
the index sections are distinguished with a bold face title or alphabetic letter, you
have to set up a .ist file, such as myindexstyle.ist, made up like this:

headings_flag 1
heading_prefix "\\par\\penalty-50\\textbf{"

9

heading_suffix "}*\~*"
symhead_positive "Symbols"
symhead_negative "symbols"
numhead_positive "Numbers"
numhead_negative "numbers"
delim_0 ",\~"

where the numeric and non alphabetic entries have different titles. But, say, you
are making also an index where the entries are file names, and for some names only
the extension is entered; the extensions start with a dot, so the sorting program
will sort these names at the beginning of the sorted index file, but you won’t
like to have a title such as “Symbols”; you probably prefer to have a title such as
“Extensions”; therefore you have to prepare a different index style file, such as this
one:

headings_flag 1
heading_prefix "\\par\\penalty-50\\textbf{"
heading_suffix "}*\~*"
symhead_positive "Extensions"
symhead_negative "extensions"
numhead_positive "Numbers"
numhead_negative "numbers"
delim_0 ",\~"

This done, besides requiring the use of this package, you have to declare the
\makeindex command with the necessary options; pay a particular attention to
the options that involve the index symbolic name, the index title, the index style,
the fact that the index titles shall appear in the table of contents, and if you are
preparing an e-book, you probably would like to hyper link both the page numbers
and the index titles to the proper locations. pdflatex will do everything for you
but be careful not to confuse it with illogical index entries.

Especially with multiple indices it is important that you are consistent in
putting the right information in the right index and with a consistent mark-up.
Define yourself appropriate macros so that, for example, personal names are con-
sistently typeset, say, in caps and small caps and are entered into a specific index;
you may even create one command to typeset the name in the document and
replicate the same name in the index.

Of course there is no program that can decide at your place what and where
to index each piece of information; this is a task for humans. Soooooo. . .

HAPPY TEXING!

6 Implementation
The heading to the file is in common with the documentation file, and has already
been taken care of. But we require the xkeyval package, in order to handle the
key-value lists.

10

Notice that in order to create a specific name space so as to avoid possible
conflicts with other packages, all the commands defined in this package are prefixed
with the string imki@.
1 \RequirePackage{xkeyval}

We define the various options and their defaults. After \ProcessOptions,
we set anyway the original option if the document class has been given the
twocolumn option, which is incompatible with multicol. We define also an internal
alias for \immediate\write18, a rudimentary check for the typesetting engine and
a macro for modifying the command line call to splitindex.
2 \DeclareOption{xindy}{\def\imki@progdefault{texindy}}
3 \DeclareOption{texindy}{\def\imki@progdefault{texindy}}
4 \DeclareOption{makeindex}{\def\imki@progdefault{makeindex}}
5 \newif\ifimki@disableautomatic
6 \DeclareOption{noautomatic}{\imki@disableautomatictrue}
7 \newif\ifimki@nonewpage
8 \DeclareOption{nonewpage}{%
9 \imki@nonewpagetrue\imki@disableautomatictrue

10 }
11 \newif\ifimki@splitindex
12 \DeclareOption{splitindex}{\imki@splitindextrue}
13 \newif\ifimki@original
14 \DeclareOption{original}{\imki@originaltrue}
15 \DeclareOption{quiet}{\AtEndOfPackage{%
16 \let\imki@finalmessage\@gobble
17 \let\imki@splitindexmessage\relax}}
18 \ExecuteOptions{makeindex}
19 \ProcessOptions\relax
20
21 \if@twocolumn\imki@originaltrue\fi
22 \def\imki@exec{\immediate\write18}
23 \def\imki@engine{(pdf)latex}
24 \RequirePackage{ifxetex,ifluatex}
25 \ifxetex\def\imki@engine{xelatex}\fi
26 \ifluatex % luatex doesn’t have \(pdf)shellescape
27 \def\imki@engine{lualatex}
28 \ifnum\luatexversion<68
29 \chardef\imki@shellescape\@ne % no way to know the value
30 \else
31 \RequirePackage{pdftexcmds} % provides \pdf@shellescape
32 \chardef\imki@shellescape\pdf@shellescape
33 \fi
34 \let\imki@exec\pdf@system
35 \fi
36 \edef\imki@splitindexoptions{-m \string"\string"}
37 \def\splitindexoptions#1{\g@addto@macro\imki@splitindexoptions{ #1}}
38 \@onlypreamble\splitindexoptions

While experimenting we found out that some classes or packages are either
incompatible with this one, or must be faked in order to pretend they have been

11

loaded.
There is a serious incompatibility with the memoir class. In facts memoir puts

all index entries in the main .aux file and extracts them to the various raw index
files at \end{document} time. This means that no raw index file output stream has
been defined, and therefore this package can’t close it; moreover it can’t typeset
the indices before \end{document} because they are not yet available. Therefore
if memoir is the active class, we will hijack its index mechanism replacing it with
ours.

On the opposite we pretend that package makeidx or package multind have been
loaded, so that hyperref can play with their commands, that are substantially the
same as those used here. By so doing those packages are inhibited from being
loaded after this one.
39 \@namedef{ver@makeidx.sty}{3000/12/31}
40 \@ifpackageloaded{multind}
41 {\PackageError{imakeidx}{Incompatible package ‘multind’ loaded}
42 {This package is incompatible with multind, don’t load both.%
43 \MessageBreak\@ehc}}
44 {\@namedef{ver@multind.sty}{3000/12/31}}

At the same time we redefine some commands defined by makeidx and we de-
fine the default English names for the \see and \seealso commands. We use
\providecommand so that, if makeidx has already been loaded, we do not redefine
things that have already been defined.
45 \providecommand*\see[2]{\emph{\seename} #1}
46 \providecommand*\seealso[2]{\emph{\alsoname} #1}
47 \providecommand*\seename{see}
48 \providecommand*\alsoname{see also}

From here on, some commands are duplicated; this depends on the fact that
the behavior must be different when using splitindex or not. The memory occupied
by the useless commands will be cleared at the end of package.
49 \providecommand*\makeindex{} % to use \renewcommand safely
50 \renewcommand{\makeindex}[1][]{\imki@makeindex{#1}}
51 % \@onlypreamble\makeindex % Already in latex.ltx

This package implementation of \makeindex sets default values for the keys, then
evaluates its argument (which is the optional argument to \makeindex) and calls
two other macros. After that we have to reset the defaults.
52 \def\imki@makeindex#1{%
53 \def\imki@name{\jobname}%
54 \def\imki@title{\indexname}%
55 \edef\imki@program{\imki@progdefault}%
56 \let\imki@options\space
57 \KV@imki@noautomaticfalse\KV@imki@intocfalse
58 \setkeys{imki}{#1}%
59 \ifimki@splitindex\KV@imki@noautomaticfalse\fi
60 \imki@build\imki@name
61 \imki@startidx\imki@name
62 \imki@resetdefaults

12

63 }

Here are the keys. As usual, the imki@ prefix is used to distinguish anything
that is being defined in this package, even the keys.
64 \define@key{imki}{name}{\def\imki@name{#1}}
65 \define@key{imki}{title}{\def\imki@title{#1}}
66 \define@choicekey{imki}{program}[\imki@val\imki@nr]
67 {makeindex,xindy,texindy}{%
68 \ifcase\imki@nr\relax
69 \def\imki@program{makeindex}%
70 \or
71 \def\imki@program{texindy}%
72 \or
73 \def\imki@program{texindy}%
74 \fi}
75 \define@key{imki}{options}{\def\imki@options{ #1 }}
76 \define@boolkey{imki}{noautomatic}[true]{}
77 \define@boolkey{imki}{intoc}[true]{}
78 \define@key{imki}{columns}{\def\imki@columns{#1}}
79 \define@key{imki}{columnsep}{\def\imki@columnsep{#1}}
80 \define@boolkey{imki}{columnseprule}[true]{}
81 \def\imki@resetdefaults{%
82 \def\imki@options{ }%
83 \def\imki@columns{2}\def\imki@columnsep{35\p@}%
84 \KV@imki@columnseprulefalse
85 \KV@imki@intocfalse\KV@imki@noautomaticfalse}
86 \imki@resetdefaults

The control sequence \imki@build defines a control sequence to hold the setup
for an index to be used when the index is sorted and printed
87 \def\imki@build#1{%
88 \toks@{}%
89 \imki@dokey\imki@title
90 \imki@dokey\imki@program
91 \imki@dokey\imki@options
92 \imki@dokey\imki@columns
93 \imki@dokey\imki@columnsep
94 \ifKV@imki@noautomatic
95 \addto@hook\toks@{\KV@imki@noautomatictrue}%
96 \else
97 \addto@hook\toks@{\KV@imki@noautomaticfalse}%
98 \fi
99 \ifKV@imki@intoc

100 \addto@hook\toks@{\KV@imki@intoctrue}%
101 \else
102 \addto@hook\toks@{\KV@imki@intocfalse}%
103 \fi
104 \ifKV@imki@columnseprule
105 \addto@hook\toks@{\KV@imki@columnsepruletrue}%
106 \else

13

107 \addto@hook\toks@{\KV@imki@columnseprulefalse}%
108 \fi
109 \expandafter\edef\csname imki@set@#1\endcsname{\the\toks@}%
110 }

Comand \imki@dokey receives as argument the text of the values assigned to
certain keys, and adds them to the options token list.

111 \def\imki@dokey#1{%
112 \expandafter\addto@hook\expandafter\toks@\expandafter{%
113 \expandafter\def\expandafter#1\expandafter{#1}}}

Command \imki@startidx defines the output stream(s); the macro with suffix
split is used when splitindex is not enabled, the one with suffix unique is used
otherwise. In the case of many indices, the symbolic name for an index named
‘pippo’ is \pippo@idxfile corresponding to the file pippo.idx. When splitindex
is enabled, the only output stream is called \@indexfile as in standard LATEX,
corresponding to \jobname.idx.

114 \def\imki@startidxsplit#1{%
115 \if@filesw
116 \def\index{\@bsphack
117 \@ifnextchar [{\@index}{\@index[\jobname]}}
118 \expandafter\newwrite\csname #1@idxfile\endcsname
119 \immediate\openout \csname #1@idxfile\endcsname #1.idx\relax
120 \typeout{Writing index file #1.idx}%
121 \fi}

We define a switch which is set to true when a \makeindex command is given:
with splitindex we open only one stream.

122 \newif\ifimki@startedidx
123 \def\imki@startidxunique#1{%
124 \if@filesw
125 \ifimki@startedidx\else
126 \newwrite\@indexfile
127 \immediate\openout\@indexfile\jobname.idx%
128 \global\imki@startedidxtrue
129 \fi
130 \def\index{\@bsphack
131 \@ifnextchar [{\@index}{\@index[\jobname]}}
132 \expandafter\let\csname #1@idxfile\endcsname\@empty
133 \typeout{Started index file #1}%
134 \fi}

Provide a default definition for \index; when a \makeindex command is given
and LATEX is writing on auxiliary files, \index will be redefined, as seen before.
When index files are written, \index always calls \@index. Some code is borrowed
from memoir.cls, but heavily modified. We want \@wrindex to be defined with
two arguments, so that hyperref can hook into it just like it does with the similar
commands defined by the old packages multind and index.

135 \renewcommand{\index}[2][]{\@bsphack\@esphack}
136 \def\@index[#1]{%

14

137 \@ifundefined{#1@idxfile}%
138 {\PackageWarning{imakeidx}{Undefined index file ‘#1’}%
139 \begingroup
140 \@sanitize
141 \imki@nowrindex}%
142 {\edef\@idxfile{#1}%
143 \begingroup
144 \@sanitize
145 \@wrindex\@idxfile}}
146 \def\imki@nowrindex#1{\endgroup\@esphack}

Command \@wrindex must be duplicated; we have to call it the same as usual
in order to support hyperref. But the real name will be given at the end.

147 \def\imki@wrindexsplit#1#2{%
148 \expandafter\protected@write\csname#1@idxfile\endcsname{}%
149 {\string\indexentry{#2}{\thepage}}%
150 \endgroup
151 \@esphack}
152 \def\imki@wrindexunique#1#2{%
153 \protected@write\@indexfile{}%
154 {\string\indexentry[#1]{#2}{\thepage}}%
155 \endgroup
156 \@esphack}

Compilation of the indices is disabled if -shell-escape has not been given
or the restricted mode is not active; in this case we emit a warning. X ETEX
has \shellescape instead of \pdfshellescape, so we take care of this (hop-
ing that users or packages don’t define a \shellescape command). In any case
we define an internal version of this command. In the case of luatex we can’t
emit the proper messages if luatex is not version 0.68 or later. The conditional
\ifKV@imki@noautomatic is defined by \define@boolkey above.

157 \def\imki@shellwarn{}
158 \ifdefined\imki@shellescape % luatex
159 \else
160 \@ifundefined{shellescape}
161 {\let\imki@shellescape\pdfshellescape} % pdftex
162 {\let\imki@shellescape\shellescape} % xetex
163 \fi
164 \ifnum\imki@shellescape=\z@
165 \let\KV@imki@noautomaticfalse\KV@imki@noautomatictrue
166 \KV@imki@noautomatictrue
167 \def\imki@shellwarn{\MessageBreak or call \imki@engine\space with
168 -shell-escape}
169 \fi

Do the same if noautomatic has been given as an option.
170 \ifimki@disableautomatic
171 \let\KV@imki@noautomaticfalse\KV@imki@noautomatictrue
172 \KV@imki@noautomatictrue
173 \fi

15

Now we set up the theindex environment. If the original option is set,
we simply patch the class definition in order to call the macro that does the work
related to the table of contents. Otherwise we define a new theindex environment,
based on the standard, but using, if the number of columns is greater than one, the
multicols environment. Users needing a different setup can use the \indexsetup
command.

174 \ifimki@original
175 \expandafter\def\expandafter\theindex\expandafter{\expandafter
176 \imki@maybeaddtotoc\theindex}
177 \else
178 \global\let\imki@idxprologue\relax
179 \RequirePackage{multicol}
180 \renewenvironment{theindex}
181 {\imki@maybeaddtotoc
182 \imki@indexlevel{\indexname}\imki@indexheaders
183 \thispagestyle{\imki@firstpagestyle}%
184 \ifnum\imki@columns>\@ne
185 \columnsep \imki@columnsep
186 \ifx\imki@idxprologue\relax
187 \begin{multicols}{\imki@columns}
188 \else
189 \begin{multicols}{\imki@columns}[\imki@idxprologue]
190 \fi
191 \else
192 \imki@idxprologue
193 \fi
194 \global\let\imki@idxprologue\relax
195 \parindent\z@
196 \parskip\z@ \@plus .3\p@\relax
197 \columnseprule \ifKV@imki@columnseprule.4\p@\else\z@\fi
198 \raggedright
199 \let\item\@idxitem
200 \imki@othercode}
201 {\ifnum\imki@columns>\@ne\end{multicols}\fi
202 % \clearpage
203 }
204 \fi

The command \indexsetup may be used to customize some aspects of index
formatting.

205 \def\imki@indexlevel{%
206 \@ifundefined{chapter}{\section}{\chapter}*}
207 \define@key{imkiindex}{level}{\def\imki@indexlevel{#1}}
208 \def\imki@toclevel{%
209 \@ifundefined{chapter}{section}{chapter}}
210 \define@key{imkiindex}{toclevel}{\def\imki@toclevel{#1}}
211 \define@boolkey{imkiindex}{noclearpage}[true]{\let\imki@clearpage\relax}
212 \def\imki@indexheaders{%
213 \@mkboth{\MakeUppercase\indexname}{\MakeUppercase\indexname}}

16

214 \define@key{imkiindex}{headers}{\def\imki@indexheaders{\markboth#1}}
215 \def\imki@firstpagestyle{plain}
216 \define@key{imkiindex}{firstpagestyle}{\def\imki@firstpagestyle{#1}}
217 \let\imki@othercode\relax
218 \define@key{imkiindex}{othercode}{\def\imki@othercode{#1}}
219 \newcommand{\indexsetup}[1]{%
220 \ifimki@original\else\setkeys{imkiindex}{#1}\fi}
221 \@onlypreamble\indexsetup

The command \indexprologue sets the internal version which is always \let
to \relax during \begin{theindex}.

222 \newcommand{\indexprologue}[2][\bigskip]{%
223 \long\gdef\imki@idxprologue{{#2\par}#1}}

Now we provide the relevant \printindex macros by transferring the real job
to a secondary macro \imki@putindex after due checks and messages.

224 \providecommand*{\printindex}{}
225 \renewcommand*{\printindex}[1][\jobname]{%
226 \@ifundefined{#1@idxfile}{\imki@error{#1}}{\imki@putindex{#1}}}
227
228 \def\imki@error#1{%
229 \def\@tempa{#1}\def\@tempb{\jobname}%
230 \ifx\@tempa\@tempb
231 \let\imki@optarg\@empty
232 \else
233 \def\imki@optarg{[#1]}%
234 \fi
235 \PackageError{imakeidx}
236 {Misplaced \protect\printindex\imki@optarg}
237 {You are not making this index, as no appropriate
238 \protect\makeindex\MessageBreak
239 command has been issued in the preamble.}}

We define a command to do a \cleardoublepage if the option openright holds
(in classes where twoside is meaningful). In case \chapter is defined but not
\if@openright, we assume that the class wants “open right”.

240 \def\imki@clearpage{%
241 \@ifundefined{chapter}
242 {\clearpage} % article and similar classes
243 {\@ifundefined{if@openright}
244 {\cleardoublepage}
245 {\if@openright
246 \cleardoublepage
247 \else
248 \clearpage
249 \fi}
250 }}

We need a helper macro to do a check in order to avoid a loop and the hook
where to insert the table of contents related stuff.

251 \def\imki@check@indexname{\indexname}

17

252 \providecommand*\imki@maybeaddtotoc{}

Two helper macros for preparing the final messages to the user.
253 \def\imki@finalmessage#1{%
254 \expandafter\edef\csname imki@message#1\endcsname
255 {\imki@program\imki@options#1.idx}
256 \AtEndDocument{\PackageWarning{imakeidx}{%
257 Remember to run \imki@engine\space again after calling\MessageBreak
258 ‘\@nameuse{imki@message#1}’\imki@shellwarn\@gobble}}}
259 \def\imki@splitindexmessage{%
260 \AtEndDocument{\PackageWarningNoLine{imakeidx}{%
261 Remember to run \imki@engine\space again after calling\MessageBreak
262 ‘splitindex’ and processing the indices\imki@shellwarn}}}

Here is a helper macro for deciding whether to call the external utility or
to issue a final message. In \imki@makeindexname we put the name of the only
program allowed by default (makeindex). If the list is updated, we can supplement
the list here, maybe defining a list macro; for now this is sufficient. The temporary
switch \if@tempswa is set to true if automatic processing is possible, so that the
main macro can take the appropriate action.

263 \def\imki@makeindexname{makeindex}
264 \def\imki@decide{%
265 \@tempswafalse
266 \ifimki@splitindex % splitindex is not "safe"
267 \ifnum\imki@shellescape=\@ne\@tempswatrue\fi
268 \else
269 \ifx\imki@program\imki@makeindexname % nor is texindy
270 \ifnum\imki@shellescape=\tw@\@tempswatrue\fi
271 \fi
272 \ifnum\imki@shellescape=\@ne\@tempswatrue\fi
273 \fi
274 \ifKV@imki@noautomatic
275 \@tempswafalse
276 \fi}

We now define the main macro that puts the specified index file into the document
and possibly orders to add the index title to the table of contents. It is duplicated
as usual. The argument #1 is the specific symbolic name of the index. In par-
ticular if the intoc option has been specified, the hook \imki@maybeaddtotoc is
defined in such a way that the relevant information is added to the toc file. The
\phantomsection command is necessary when using hyperref; here it is hidden as
argument to \@nameuse, so it is equivalent to \relax and does nothing if hyperref
has not been loaded.

277 \def\imki@putindexsplit#1{%
278 \ifimki@nonewpage\else
279 \imki@clearpage
280 \fi
281 \immediate\closeout\csname #1@idxfile\endcsname
282 \let\imki@indexname\indexname % keep \indexname
283 \@nameuse{imki@set@#1}\imki@decide

18

284 \if@tempswa % we can call the external program
285 \imki@exec{\imki@program\imki@options#1.idx}%
286 \else
287 \imki@finalmessage{#1}%
288 \fi
289 \ifKV@imki@intoc
290 \def\imki@maybeaddtotoc{\@nameuse{phantomsection}%
291 \addcontentsline{toc}{\imki@toclevel}{\imki@title}}%
292 \else
293 \def\imki@maybeaddtotoc{}%
294 \fi
295 \ifx\imki@title\imki@check@indexname\else
296 \def\indexname{\imki@title}%
297 \fi
298 \@input@{#1.ind}
299 \let\indexname\imki@indexname % restore \indexname
300 }
301
302 \newif\ifimki@splitdone
303 \def\imki@putindexunique#1{%
304 \ifimki@nonewpage\else
305 \imki@clearpage
306 \fi
307 \let\imki@indexname\indexname % keep \indexname
308 \@nameuse{imki@set@#1}\imki@decide
309 \if@tempswa % we can call the external program
310 \ifimki@splitdone\else
311 \immediate\closeout\@indexfile
312 \imki@exec{splitindex \imki@splitindexoptions\space\jobname.idx}%
313 \global\imki@splitdonetrue
314 \fi
315 \else
316 \ifimki@splitdone\else
317 \imki@splitindexmessage\global\imki@splitdonetrue
318 \fi
319 \fi
320 \if@tempswa % we can call the external program
321 \imki@exec{\imki@program\imki@options\jobname-#1.idx}%
322 \fi
323 \ifKV@imki@intoc
324 \def\imki@maybeaddtotoc{\@nameuse{phantomsection}%
325 \addcontentsline{toc}{\imki@toclevel}{\imki@title}}%
326 \else
327 \def\imki@maybeaddtotoc{}%
328 \fi
329 \ifx\imki@title\imki@check@indexname\else
330 \def\indexname{\imki@title}%
331 \fi
332 \@input@{\jobname-#1.ind}
333 \let\indexname\imki@indexname % restore \indexname

19

334 }

At this point, we choose the meaning of the relevant commands, reclaiming
the space occupied by the discarded ones

335 \ifimki@splitindex
336 \let\imki@startidx\imki@startidxunique
337 \let\@wrindex\imki@wrindexunique
338 \let\imki@putindex\imki@putindexunique
339 \let\imki@startidxsplit\@undefined
340 \let\imki@wrindexsplit\@undefined
341 \let\imki@putindexsplit\@undefined
342 \else
343 \let\imki@startidx\imki@startidxsplit
344 \let\@wrindex\imki@wrindexsplit
345 \let\imki@putindex\imki@putindexsplit
346 \let\imki@startidxunique\@undefined
347 \let\imki@wrindexunique\@undefined
348 \let\imki@putindexunique\@undefined
349 \fi

To end the code, we deal with memoir:
350 \@ifclassloaded{memoir}{\let\@wrindexm@m\@wrindex}{}

The end.

Change History

v1.0
General: First public version 1

v1.0a
General: Small bug correction . . . 1

v1.1
General: Fixed compatibility with

memoir 1
Modified interaction with

LuaTEX 1
v1.1a

General: Fixed bug with possibly
defined \directlua 1

Fixed bug with possibly defined
\directlua; now we leave the
check to ifluatex; using also ifx-
etex for symmetry. 11

20

