
The Hobby package
Andrew Stacey

stacey@math.ntnu.no

September 3, 2012

1 Introduction
John Hobby’s algorithm, [1], produces a curve through a given set of points. The curve is constructed
as a list of cubic Bézier curves with endpoints at subsequent points in the list. The parameters of the
curves are chosen so that the joins are “smooth”. The algorithm was devised as part of the MetaPost
program.

TikZ/PGF has the ability to draw a curve through a given set of points but its algorithm is
somewhat simpler than Hobby’s and consequently does not produce as aesthetically pleasing curve as
Hobby’s algorithm does. This package implements Hobby’s algorithm in TEX so that TikZ/PGF can
make use of it and thus produce nicer curves through a given set of points.

Hobby’s algorithm allows for considerable customisation in that it can take into account various
parameters. These are all allowed in this implementation.

There is also a “quick” version presented here. This is a modification of Hobby’s algorithm with
the feature that any point only influences a finite number (in fact, two) of the previous segments
(in Hobby’s algorithm the influence of a point dies out exponentially but never completely). This is
achieved by applying Hobby’s algorithm to subpaths. As this is intended as a simpler method, it does
not (at present) admit the same level of customisation as the full implementation.

The full algorithm is implemented in LATEX3 and makes extensive use of the fp and prop libraries
for the computation steps. The “quick” version does not use LATEX3 and relies instead on the PGFMath
library for the computation.

Figure 1 is a comparison of the three methods. The red curve is drawn using Hobby’s algorithm.
The blue curve is drawn with the plot[smooth] method from TikZ/PGF. The green curve uses the
“quick” version.

Figure 1: Comparison of the three algorithms

1



Figure 2: Hobby’s algorithm in TikZ overlaying the output of MetaPost

2 Usage
The package is provided in form of a TikZ library. It can be loaded with

\usetikzlibrary{hobby}

The TikZ library installs a to path which draws a smooth curve through the given points:

\begin{tikzpicture}
\draw (0,0) to[curve through={(6,4) .. (4,9) .. (1,7)}] (3,5);
\end{tikzpicture}

The path can be open, as above, or closed:

\begin{tikzpicture}
\draw (0,0) to[closed,curve through={(6,4) .. (4,9) .. (1,7)}] (3,5);
\end{tikzpicture}

2



There is also the facility to subvert TikZ’s path processor and define curves simply using the ..
separator between points. Note that this relies on something a little special in TikZ: the syntax
(0,0) .. (2,3) is currently detected and processed but there is no action assigned to that syntax.
As a later version of TikZ may assign some action to that syntax, this package makes its override
optional via the key use Hobby shortcut.

\begin{tikzpicture}[use Hobby shortcut]
\draw (-3,0) -- (0,0) .. (6,4) .. (4,9) .. (1,7) .. (3,5) -- ++(2,0);
\end{tikzpicture}

The algorithm can deal with open or closed paths, it is possible to vary the “tensions” between the
specified points of the paths, and for an open path it is possible to specify the incoming and outgoing
angles either directly or via certain “curl” parameters. See the Examples section for more examples.
The algorithm is actually implemented in LATEX3 with (almost1) no reference to TikZ or PGF. The
TikZ library is simply a wrapper that takes the user’s input, converts it into the right format for the
LATEX3 code, and then calls that code to generate the path. There is also a “quick” version of Hobby’s
algorithm. This is described in Section 6. The reason for this modification of Hobby’s algorithm was to
find a variant in which adding more points does not change the path between earlier points (or rather
that there is some point earlier than which the path is not changed). The resulting path produced
with this “quick” version is not as ideal as that produced by Hobby’s full algorithm, but is still much
better than that produced by the plot[smooth] method in TikZ/PGF, as can be seen in Figure 1.

1At the moment, LATEX3 lacks a atan2 function so PGFMath is used to remedy that.

3



3 Examples
• Basic curve.

\begin{tikzpicture}
\draw[postaction=show curve controls]
(0,0) to[curve through={(1,.5) .. (2,0) .. (3,.5)}] (4,0);
\end{tikzpicture}

• Specifying the angle at which the curve goes out and at which it comes in. The angles given are
absolute.

\begin{tikzpicture}
\draw[postaction=show curve controls]
(0,0) to[out angle=0,in angle=180,curve through={(1,.5) .. (2,0) .. (3,.5)}] (4,0);
\end{tikzpicture}

• Applying tension as the curve comes in to a point.

\begin{tikzpicture}
\draw[postaction=show curve controls]
(0,0) to[curve through={(1,.5) .. ([tension in=2]2,0) .. (3,.5)}] (4,0);
\end{tikzpicture}

• Applying the same tension as a curve comes in and goes out of a point.

\begin{tikzpicture}
\draw[postaction=show curve controls]
(0,0) to[curve through={(1,.5) .. ([tension=2]2,0) .. (3,.5)}] (4,0);
\end{tikzpicture}

• Specifying the curl parameters (if using the shortcut, these have to be passed via one of the
points but obviously apply to the whole curve).

\begin{tikzpicture}[use Hobby shortcut]
\draw[postaction=show curve controls]
(0,0) to[curve through={(1,.5) .. (2,0) .. (3,.5)},in curl=.1,out curl=3] (4,0);
\begin{scope}[yshift=-1cm]
\draw[postaction=show curve controls]
(0,0) .. ([in curl=.1,out curl=3]1,.5) .. (2,0) .. (3,.5) .. (4,0);
\end{scope}
\end{tikzpicture}

4



• Closed curve.

\begin{tikzpicture}[scale=.5,use Hobby shortcut]
\draw (0,0) .. (6,4) .. (4,9) .. (1,7) .. (3,5) .. cycle;
\end{tikzpicture}

4 Edge Cases
Angles are constrained to lie in the interval (−π, π]. This can introduce edge cases as there is a point
where we have to compare an angle with −π and if it is equal, add 2π. This will occur if the path
“doubles back” on itself as in the next example. By nudging the repeated point slightly, the behaviour
changes drastically.

\begin{tikzpicture}[use Hobby shortcut]
\draw (0,0) .. (1,0) .. (0,0) .. (0,-1);
\draw[xshift=2cm] (0,0) .. (1,0) .. (0,0.1) .. (0,-1);
\draw[xshift=4cm] (0,0) .. (1,0) .. (0,-0.1) .. (0,-1);
\end{tikzpicture}

Due to the precision of the computations, it is not possible to always get this test correct. The simplest
solution is to nudge the repeated point in one direction or the other. Experimenting shows that the
“nudge factor” can be extremely small (note that it will be proportional to the distance between the
specified points). It is best to nudge it in the direction most normal to the line between the specified

5



points as the goal is to nudge the difference of the angles. An alternative solution is to add an additional
point for the curve to go through.

\begin{tikzpicture}[use Hobby shortcut]
\draw (0,0) .. (1,0) .. (0,0) .. (0,-1);
\draw[xshift=2cm] (0,0) .. (1,0) .. (0,0.002) .. (0,-1);
\draw[xshift=4cm] (0,0) .. (1,0) .. (0,-0.002) .. (0,-1);
\end{tikzpicture}

Lastly, it is possible to add an excess angle key to a coordinate. This will add the corresponding
multiple of 2π to the angle difference.

\begin{tikzpicture}[use Hobby shortcut]
\draw (0,0) .. (1,0) .. (0,0) .. (0,-1);
\draw[xshift=2cm] (0,0) .. ([excess angle=1]1,0) .. (0,0) .. (0,-1);
\draw[xshift=4cm] (0,0) .. ([excess angle=-1]1,0) .. (0,0) .. (0,-1);
\end{tikzpicture}

Although this is intended to be an integer, no check is done and so some quite odd curves can result
from changing this parameter.

5 Implementing Hobby’s Algorithm
We start with a list of n + 1 points, z0, . . . , zn. The base code assumes that these are already
stored in two arrays2: the x–coordinates in \l_hobby_points_x_array and the y–coordinates in
\l_hobby_points_y_array. As our arrays are 0–indexed, the actual number of points is one more
than this. For a closed curve, we have zn = z0

3. For closed curves it will be convenient to add an
additional point at z1: thus zn+1 = z1. This makes zn an internal point and makes the algorithms for
closed paths and open paths agree longer than they would otherwise. The number of apparent points
is stored as \l_hobby_npoints_int. Thus for an open path, \l_hobby_npoints_int is n, whilst for
a closed path, it is n + 14. Following Hobby, let us write n′ for n if the path is open and n + 1 if
closed. From this we compute the distances and angles between successive points, storing these again
as arrays. These are \l_hobby_distances_array and \l_hobby_angles_array. The term indexed
by k is the distance (or angle) of the line between the kth point and the k+1th point. For the internal
nodes5, we store the difference in the angles in \l_hobby_psi_array. The kth value on this is the

2Arrays are thinly disguised property lists
3Note that there is a difference between a closed curve and an open curve whose endpoints happen to overlap
4In fact, we allow for the case where the user specifies a closed path but with zn 6= z0. In that case, we assume that

the user meant to repeat z0. This adds another point to the list.
5Hobby calls the specified points knots

6



angle subtended at the kth node. This is thus indexed from 1 to n′− 1. The bulk of the work consists
in setting up a linear system to compute the angles of the control points. At a node, say zi, we have
various pieces of information:

1. The angle of the incoming curve, φi, relative to the straight line from zi−1 to zi

2. The angle of the outgoing curve, θi, relative to the straight line from zi to zi+1

3. The tension of the incoming curve, τ i

4. The tension of the outgoing curve, τi

5. The speed of the incoming curve, σi

6. The speed of the outgoing curve, ρi

The tensions are known at the start. The speeds are computed from the angles. Thus the key thing
to compute is the angles. This is done by imposing a “mock curvature” condition.The formula for the
mock curvature is:

k̂(θ, φ, τ, τ) = τ2
(

2(θ + φ)
τ

− 6θ
)

and the condition that the mock curvatures have to satisfy is that at each internal node, the curvatures
must match:

k̂(φi, θi−1, τ i, τi−1)/di−1 = k̂(θi, φi+1, τi, τ i+1)/di.

Substituting in yields:

τ2
i

di−1

(
2(φi + θi−1)

τi−1
− 6φi

)
= τ2

i

di

(
2(θi + φi+1)

τ i+1
− 6θi

)
.

Let us rearrange that to the following:

diτ i+1τ
2
i θi−1

+diτ i+1τ
2
i (1− 3τi−1)φi

−di−1τi−1τ
2
i (1− 3τ i+1)θi
−di−1τi−1τ

2
i φi+1

= 0

For both open and closed paths this holds for i = 1 to i = n′ − 1. We also have the condition that
θi+φi = −ψi where ψi is the angle subtended at a node by the lines to the adjacent nodes. This holds
for the internal nodes6. Therefore for i = 1 to n′ − 1 the above simplifies to the following:

diτ i+1τ
2
i θi−1

+(diτ i+1τ
2
i (3τi−1 − 1) + di−1τi−1τ

2
i (3τ i+1 − 1))θi
+di−1τi−1τ

2
i θi+1

= −diτ i+1τ
2
i (3τi−1 − 1)ψi
−di−1τi−1τ

2
i ψi+1

For an open path we have two more equations. One involves θ0. The other is the above for i = n′−1 =
n− 1 with additional information regarding ψn. It may be that one or either of θ0 or φn is specified in
advance. If so, we shall write the given values with a bar: θ0 and φn. In that case, the first equation
is simply setting θ0 to that value and the last equation involves substituting the value for φn into the

6Recall that by dint of repetition, all nodes are effectively internal for a closed path

7



above. If not, they are given by formulae involving “curl” parameters χ0 and χn and result in the
equations:

θ0 = τ3
0 + χ0τ

3
1(3τ0 − 1)

τ3
0 (3τ1 − 1) + χ0τ

3
1
φ1

φn =
τ3
n + χnτ

3
n−1(3τn − 1)

τ3
n(3τn−1 − 1) + χnτ3

n−1
θn−1

Using φ1 = −ψ1 − θ1, the first rearranges to:

(τ3
0 (3τ1 − 1) + χ0τ

3
1)θ0 + (τ3

0 + χ0τ
3
1(3τ0 − 1))θ1 = −(τ3

0 + χ0τ
3
1(3τ0 − 1))ψ1.

The second should be substituted in to the general equation with i = n− 1. This yields:

dn−1τnτ
2
n−1θn−2

+(dn−1τnτ
2
n−1(3τn−2 − 1) + dn−2τn−2τ

2
n−1(3τn − 1)

−dn−2τn−2τ
2
n−1

τ3
n + χnτ

3
n−1(3τn − 1)

τ3
n(3τn−1 − 1) + χnτ3

n−1
)θn−1

= −dn−1τnτ
2
n−1(3τn−2 − 1)ψn−1

This gives n′ equations in n′ unknowns (θ0 to θn−1). The coefficient matrix is tridiagonal. It is more
natural to index the entries from 0. Let us write Ai for the subdiagonal, Bi for the main diagonal,
and Ci for the superdiagonal. Let us write Di for the target vector. Then for an open path we have
the following formulae:

Ai = diτ i+1τ
2
i

B0 =
{

1 if θ0 given
τ3

0 (3τ1 − 1) + χ0τ
3
1 otherwise

Bi = diτ i+1τ
2
i (3τi−1 − 1) + di−1τi−1τ

2
i (3τ i+1 − 1)

Bn−1 =


dn−1τnτ

2
n−1(3τn−2 − 1) + dn−2τn−2τ

2
n−1(3τn − 1) if φn given

dn−1τnτ
2
n−1(3τn−2 − 1) + dn−2τn−2τ

2
n−1(3τn − 1)

−dn−2τn−2τ
2
n−1

τ3
n+χnτ

3
n−1(3τn−1)

τ3
n(3τn−1−1)+χnτ3

n−1
) otherwise

C0 =
{

0 if θ0 given
τ3

0 + χ0τ
3
1(3τ0 − 1) otherwise

Ci = di−1τi−1τ
2
i

D0 =
{
θ0 if θ0 given
−(τ3

0 + χ0τ
3
1(3τ0 − 1))ψ1 otherwise

Di = −diτ i+1τ
2
i (3τi−1 − 1)ψi − di−1τi−1τ

2
i ψi+1

Dn−1 =
{
−dn−1τnτ

2
n−1(3τn−2 − 1)ψn−1 − dn−2τn−2τ

2
n−1φn if φn given

−dn−1τnτ
2
n−1(3τn−2 − 1)ψn−1 otherwise

For a closed path, we have n equations in n + 2 unknowns (θ0 to θn+1). However, we have not
included all the information. Since we have repeated points, we need to identify θ0 with θn and θ1
with θn+1. To get a system with n′ equations in n′ unknowns, we add the equation θ0 − θn = 0 and
substitute in θn+1 = θ1. The resulting matrix is not quite tridiagonal but has extra entries on the
off-corners. However, it can be written in the form M + uv> with M tridiagonal. There is some

8



freedom in choosing u and v. For simplest computation, we take u = e0 + en′−1. This means that
v = dn′−2τn′−2τ

2
n′−1e1 − en′−1. With the same notation as above, the matrix M is given by the

following formulae:

Ai = diτ i+1τ
2
i

B0 = 1
Bi = diτ i+1τ

2
i (3τi−1 − 1) + di−1τi−1τ

2
i (3τ i+1 − 1)

Bn′−1 = dn′−1τn′τ
2
n′−1(3τn′−2 − 1) + dn′−2τn′−2τ

2
n′−1(3τn′ − 1) + 1

C0 = −dn′−2τn′−2τ
2
n′−1

Ci = di−1τi−1τ
2
i

D0 = 0
Di = −diτ i+1τ

2
i (3τi−1 − 1)ψi − di−1τi−1τ

2
i ψi+1

Dn′−1 = −dn′−1τn′τ
2
n′−1(3τn′−2 − 1)ψn′−1 − dn′−2τn′−2τ

2
n′−1ψ1

The next step in the implementation is to compute these coefficients and store them in appropriate
arrays. Having done that, we need to solve the resulting tridiagonal system. This is done by looping
through the arrays doing the following substitutions (starting at i = 1):

B′i = B′i−1Bi −AiC ′i−1

C ′i = B′i−1Ci

D′i = B′i−1Di −AiD′i−1

followed by back-substitution:

θn−1 = D′n−1/B
′
n−1

θi = (D′i − C ′iθi+1)/B′i

For a closed path, we run this both with the vector D and the vector u = e0 + en′−1. Then to get the
real answer, we use the Sherman–Morrison formula:

(M + uv>)−1D = M−1D − M−1uv>M−1D

1 + v>M−1u
.

This leaves us with the values for θi. We now substitute these into Hobby’s formulae for the lengths:

ρi = 2 + αi
1 + (1− c) cos θi + c cosφi+1

σi+1 = 2− αi
1 + (1− c) cosφi+1 + c cos θi

αi = a(sin θi − b sinφi+1)(sinφi+1 − b sin θi)(cos θi − cosφi+1)

where a =
√

2, b = 1/16, and c = (3 −
√

5)/2. These are actually the relative lengths so need to be
adjusted by a factor of di/3. Now θi is the angle relative to the line from zi to zi+1, so to get the true
angle we need to add back that angle. Fortunately, we stored those angles at the start. So the control
points are:

diρi(cos(θi + ωi), sin(ωi+1 − φi+1))/3 + zi

−diσi+1(cos(ωi+1 − φi+1), sin(θi + ωi))/3 + zi+1

9



6 A Piecewise Version of Hobby’s Algorithm
Here we present a variant of Hobby’s algorithm. One difficulty with Hobby’s algorithm is that it works
with the path as a whole. It is therefore not possible to build up a path piecewise. We therefore modify
it to correct for this. Obviously, the resulting path will be less “ideal”, but will have the property that
adding new points will not affect earlier segments. The method we use is to employ Hobby’s algorithm
on the two-segment subpaths. This provides two cubic Bezier curves: one from the kth point to the
k + 1st point and the second from the k + 1st to the k + 2nd. Of this data, we keep the first segment
and use that for the path between the kth and k + 1st points. We also remember the outgoing angle
of the first segment and use that as the incoming angle on the next computation (which will involve
the k + 1st, k + 2nd, and k + 3rd) points. The two ends are slightly different to the middle segments.
On the first segment, we might have no incoming angle. On the last segment, we render both pieces.
This means that for the initial segment, we have a 2× 2 linear system:[

B0 C0
A1 B1

]
Θ =

[
D0
D1

]
This has solution:

Θ = 1
B0B1 − C0A1

[
B1 −C0
−A1 B0

] [
D0
D1

]
= 1
B0B1 − C0A1

[
B1D0 − C0D1
B0D1 −A1D0

]
Now we have the following values for the constants:

A1 = d1τ2τ
2
1

B0 = τ3
0 (3τ1 − 1) + χ0τ

3
1

B1 = d1τ2τ
2
1(3τ0 − 1) + d0τ0τ

2
1 (3τ2 − 1)− d0τ0τ

2
1
τ3

2 + χ2τ
3
1 (3τ2 − 1)

τ3
2(3τ1 − 1) + χ2τ3

1

C0 = τ3
0 + χ0τ

3
1(3τ0 − 1)

D0 = −(τ3
0 + χ0τ

3
1(3τ0 − 1))ψ1

D1 = −d1τ2τ
2
1(3τ0 − 1)ψ1

Let us, as we are aiming for simplicity, assume that the tensions and curls are all 1. Then we have
A1 = d1, B0 = 3, B1 = 2d1 + 2d0− d0 = 2d1 + d0, C0 = 3, D0 = −3ψ1, D1 = −2d1ψ1. Thus the linear
system is: [

3 3
d1 2d1 + d0

]
Θ = −ψ1

[
3

2d1

]
which we can row reduce to: [

1 1
0 d1 + d0

]
Θ = −ψ1

[
1
d1

]
whence θ1 = −ψ1

d1
d0+d1

and θ0 = −ψ1 − θ1 = −ψ1
d0

d0+d1
. We also compute φ1 = −ψ1 − θ1 = θ0 and

φ2 = θ1 (in the simple version). We use θ0 and φ1 to compute the bezier curve of the first segment,
make a note of θ1, and – assuming there are more segments – throw away φ2.

For the inner segments, we have the system:[
1 0
A1 B1

]
Θ =

[
θ0
D1

]
which has the solution θ1 = (D1 −A1θ0)/B1. The values of the constants in this case are:

A1 = d1τ2τ
2
1

B1 = d1τ2τ
2
1(3τ0 − 1) + d0τ0τ

2
1 (3τ2 − 1)− d0τ0τ

2
1
τ3

2 + χ2τ
3
1 (3τ2 − 1)

τ3
2(3τ1 − 1) + χ2τ3

1

D1 = −d1τ2τ
2
1(3τ0 − 1)ψ1

10



Again, let us consider the simpler case. Then A1 = d1, B1 = 2d1 + d0, and D1 = −2d1ψ1. Thus
θ1 = (−2d1ψ1− d1θ0)/(2d1 + d0) = −(2ψ1 + θ0) d1

2d1+d0
. We compute φ1 = −ψ1− θ1 = −ψ1d0+θ0d1

2d1+d0
and

φ2 = θ1.

References
[1] John D. Hobby. Smooth, easy to compute interpolating splines. Discrete Comput. Geom., 1:123–

140, 1986.

11


