The hepthesis LATEX class Andy Buckley, andy@insectnation.org September 27, 2006 #### Abstract The hepthesis package provides an attractive framework in which to write a PhD or Masters' degree dissertation. The commands provided by this package permit most structural aspects of the thesis to be defined more or less semantically, rather than in terms of raw text sizings and position shifts. Special equation, figure and table environments are provided, along with pre-defined figure widths and macros for typesetting chapter quotes, introductory paragraphs and incliner section headings. ## 1 Introduction When I began my PhD, I was surprised to find that there was no standard LATEX thesis class used by students in my field (high-energy particle physics, hence the "hep"). In retrospect, this is not so surprising — research groups tend to have an informal system of handing down slightly tailored thesis templates (complete with in line \vspaces, \Huges and all the rest) through generations of students without ever formalising the style and attempting to do it "properly". By the time it came to write my own thesis it was obvious that I would only retain my sanity through measures of extreme procrastination and so this package came to be. It has now been edited and hacked for about 2 years, taking stylistic features from other theses that I've thought attractive. As my own thesis has been recently submitted, this seems an apt time to release the first official version of hepthesis upon the world. This document will document the structure of hepthesis and how to make it work with you rather than against you. I may be unable to resist including other hints and tips on how to make your thesis-writing go smoothly. Please contact me with suggested improvements, either to the package or to this documentation. ### 2 Features Why would you want to use hepthesis? Here's a list of features, so you can decide for yourself: - Semantic macros for defining the front page, abstract, preface, acknowledgements, etc. - Macros for quotes, including a full-page quote and chapter-wise quotes - Attractive header and footer structures - Pre-set margins suitable for binding or for screen viewing - Nicely (re-)defined figure, table and equation environments - Optional mode for generating hyper-links when building PDF files - Built-in draft copy mode with line numbering - Maths in section titles etc. will automatically be boldened if appropriate # 3 Recommended usage The basic usage mode for hepthesis is to place #### \documentclass{hepthesis} in the preamble of your document. This will then set up the document's appearance and provide the hepthesis macros as do the standard LATEX classes like article and report. A more sophisticated and flexible approach is described in Appendix A. Although strictly unrelated to hepthesis, it is usual to write each thesis chapter as a separate .tex file and to include it with \include or \input. You may find it useful to set your LATEXINPUTS environment variable to ensure that the \input'd files are found by LATEX. hepthesis takes several optional arguments. Personally, I use #### \documentclass[hyperpdf,bindnopdf]{hepthesis} which produces page-centered, hyper-linked PDF files and PostScript files with margins suitable for binding and no hyper-links, depending on whether you build the document using latex or pdflatex. The details of the hepthesis options are described in Section 5 of this document. # 4 Requirements As hepthesis aims to allow produce a fairly final version of a thesis without much additional tweaking, there are quite a few required packages. Most should be natively available in your T_FX distribution; the rest from CTAN. Here's the mandatory packages: - cite[2] - setspace[3] - fancyhdr[4] - tocbibind[6] - rotating[5] - subfigure[7] (needs updating to use subfig instead) - ccaption[8] - caption[9] (need updating to be able to use caption2 instead). Additionally, there are several packages which are only required depending on the class options: - a4wide[10]: very standard. Disabled with any paper size option other than a4paper - amsmath[11]: very, very standard. Disabled with the noams option - hyperref[12]: very standard. Enabled with the hyper option - booktabs[13]: non-standard. Disable with the nobooktabs option - draftcopy[14]: very standard. Enable with the draft option - lineno[15]: non-standard (?). Enable with the draft option - titling[16]: non-standard (?). Enable with the titling option - sfheaders[17]: non-standard (?). Enable with the sftitles option Some other handy packages (which aren't required at all for compatibility with hepthesis but may well help you to write your thesis) are summarised in Section 7. # 5 Class options ### 5.1 oneside | twoside Typeset the thesis for printing in one- or two-sided format: for example, you may wish to present preview and draft copies in two-sided format, but the final submission may be required to be single-sided. Changing to single-sided form will remove the blank facing pages and only use the margins and header/footer format specified for right-hand pages. ## 5.2 bind | nobind | bindnopdf Set the margins to be suitable for printing or screen-viewing. Using the bind option produces larger inner margins, so that left- and right-facing pages have LR-reflection symmetry. Using the nobind option makes the margins equal, so that the pages don't jump around when you flick through them in gv or Adobe Acrobat. The bindnopdf option will use binding margins when making a PostScript document and screen-view margins when building a PDF. Note that this option requires some carefulness with the .aux files: this is described in Appendix C. ## 5.3 ams | noams Make use of the AMS mathematical package. This re-defines several hepthesis mathematical environments using more powerful macros and is enabled by default. If you don't plan on having any maths in your thesis, then disabling this option may speed up your build-time a little. # 5.4 alphafoot Use alphanumeric footnote markers. # 5.5 hidefront | hideback | hidefrontback Useful for draft builds, these options respectively hide the front matter, the back matter or both from the LATEX compilation, giving a faster build time and meaning you don't have to flick through 20 pages of garbage before proof-checking the first real content. Note that hiding the back matter will fail to include the bit where you generate your bibliography, so unless you make a work-around, all your citations will break. ### 5.6 draft Prints "DRAFT" diagonally across the pages and numbers the lines, suitable for proof-reading. This makes use of the standard draftcopy and the less-standard lineno packages. #### 5.7 sftitles Uses a sans-serif font for the title page and all chapter, section and subsection headings. Requires the sfheaders package. ### 5.8 booktabs | nobooktabs Use the booktabs package to define the hepthesis tabular environment. booktabs produces publication quality tables, as opposed to TeX's rather ropey defaults, and so this option is enabled by default. You can disable it if your thesis doesn't have any tables and get a slightly faster build, but it is strongly encouraged that any table presentation uses the booktabs look and feel because it's so much better! ## 5.9 hyper The hyper option is used to activate the hyperref package, with some reasonably] sensible default options. Essentially, it's equivalent to putting in the preamble of your document. ## 5.10 hyperpdf hyperpdf has the effect of the hyper option when building PDF output, and no effect at all if building PostScript. This can be handy if you consider the PDFs to be for screen-reading purposes and the PS for printing: you probably don't want to print a version where all the references and URLs are coloured! Note that this option requires some carefulness with the .aux file, since alternating between PS and PDF builds involves repeatedly writing and removing hyperref tokens. A solution to this is described in Appendix C. #### 5.11 index Include the makeidx package, to allow an index to be built. Note that you have to do this by hand and that it's probably best done as a retrospective feature after you've written the thesis. Not many people want to spend *more* time with their thesis when they've done enough to pass! ### 5.12 titling Use the titling package to redefine the \title and \author commands so that their arguments are available through the document as \thetitle and \theauthor. This is used, for example, by the \titlepage command. If this option isn't passed, a more basic attempt is made to do this definition without needing an external package. It's unclear whether titling really helps but there may be complicated cases (such as those where the author includes a \thanks) where titling may do a better job. This is untested, though, and the result of using \thanks in a hepthesis document is to be considered undefined. # 5.13 a4paper | a4narrow | letterpaper | ... Choose the paper size. Duh. ## 6 Environments and commands The hepthesis environments and commands are a mix of new macros and tweaked versions of existing standard ones. The ones that re-define standard macros can't be disabled (at least, not in this version), so if you don't like them then you can either hack hepthesis to be the way you'd like (preferably in a nice way which I can integrate into a future release) or use something else. The choice is yours! Here are the environments and commands, roughly in the order that you'd use them: #### 6.1 \title and \author Up to version 1.3, a special \definethesis command was used to specify the thesis author and title. While this is still retained for backwards compatibility, it is deprecated and you should use the standard \title and \author macros instead. Don't use \thanks in the author argument: the results are undefined! ``` \title{A study of \BToKPi decays with the \LHCb experiment} \author{Andrew Gordon Buckley} ... \begin{document} ... ``` Once these commands have been executed, the title and author strings are available via the \thetitle and \theauthor commands. These are used by \titlepage. ### 6.2 frontmatter | mainmatter | appendices | backmatter Use these to delimit the auxiliary parts of your thesis from the main feature (being all that clever work you spent years working on). In practice, these commands change the page-numbering style and set/reset some section counters appropriately: the frontmatter and backmatter environments will not use chapter numbering but will insert the un-numbered chapter titles in the table of contents. Note that this means appendices should be placed in the appendices environment between mainmatter and backmatter, rather than in the back matter itself, which is intended for such things as the bibliography, colophon etc. ## 6.3 \titlepage The \titlepage macro generates a title page for the thesis and as such should probably be the first item in the front matter. It takes two arguments: an optional elaboration of the author name and the description of the award for which the thesis is being submitted. You may need to use a different macro if your institution has a very different prescribed format for the layout of thesis title pages: in such a case, the \theauthor and \thetitle commands will probably be useful. Here's an example of usage: ``` \thesistitlepage[of \\ Churchill College]% {A dissertation submitted to the University of Cambridge\\ for the degree of Doctor of Philosophy} ``` Additionally, the \maketitle command has been redefined to behave as \titlepage with two empty arguments. This is only provided to not confuse users who convert to hepthesis from a standard IATEX class and expect \maketitle to work: \titlepage is a more powerful command and should be used by those who are aware of it. That includes you! ### 6.4 abstract Where you present the summary of your thesis: this should be within the frontmatter environment. The abstract environment takes one optional argument, which will be the heading above the abstract. If this isn't specified, the heading will simply be "Abstract". This may be useful for providing a stand-alone summary page, with a snippet like: ``` \begin{abstract}% [\smaller\thetitle\\ \vspace*{1cm} \smaller{\theauthor}] \thispagestyle{empty} This thesis describes all the really cool work I did on... \end{abstract} ``` #### 6.5 declaration Where you declare that the thesis was all your own work, lies within word limits, etc. Use it in the front matter area, of course, with something like ``` \begin{declaration} This dissertation is the result of my own work... \vspace*{1cm} \begin{flushright} Andy Buckley \end{flushright} \end{declaration} ``` ### 6.6 acknowledgements A nice little environment for putting all those gushing thank-you's (and the obligatory thanks to a supervisor). Use it (in the front matter again) like: ``` \begin{acknowledgements} Of the many people who deserve thanks, some are particularly prominent, for example... \end{acknowledgements} ``` # 6.7 preface Here's where you summarise the structure of the thesis to come, just before the main matter starts, with something like: ``` \begin{preface} This thesis describes my research on various aspects of... \end{preface} ``` #### 6.8 \dedication Dedicate your thesis to someone/something: ``` \begin{mainmatter} \dedication{For Jo} ... \end{frontmatter} ``` ## 6.9 \frontquote Use this at the start of the main matter if you want to encapsulate your thesis in a few choice words, for example: ``` \frontquote% {Writing in English is the most ingenious torture\\ ever devised for sins committed in previous lives.}% {James Joyce} ... \end{frontmatter} ``` # 6.10 \chapterquote Something flippant/emotive to put at the start of chapters: ``` \chapter{\CP violation in the \Bmeson system} \label{chap:basictheory} \thesischapterquote{Laws were made to be broken.}% {Christopher North 1785--1854} ``` ## 6.11 colophon A colophon is an inscription placed at the end of a book or other work that talks about how the work was created and what things were used in its creation. This should go in the back matter of your thesis and is completely optional. If you use this, please mention hepthesis' rôle in making your thesis! Here's an example: ``` \begin{begin{colophon} This thesis was made with 'hepthesis' and it was really cool... \end{colophon} ... ``` #### 6.12 table Tables — use like any other table (probably combined with the tabular environment). It has been slightly modified to be horizontally centered and have an slightly increased vertical spacing at the top. It supports the standard LATEX "[!htbp]" float placement specifiers. #### 6.13 tabular If the booktabs package is used (enabled by default), then the tabular environment is re-defined to have a horizontal bar at top and bottom, which looks much nicer than TeX's default tables. ## 6.14 figure and sidewaysfigure The figure, figure* and sidewaysfigure environments are re-defined to be automatically centered. They support the standard LATEX "[!htbp]" float placement specifiers. # 6.15 equation | displaymath These environments and their starred versions are re-defined so that equation behaves like the normal displaymath environment. If the AMS package is used (which it is by default) then both are redefined to use the AMS align environment, which is much more powerful: it supports more intelligent label-placement, sub-equations and boasts a better alignment syntax than the default LATEX displayed math environments. The AMS re-defined equation is suitable for most purposes — all my purposes, in fact. ## 6.16 \verysubsection A little command for in-line mini section headings, consisting of a boldened phrase specified by the argument, a bold colon and a space. Just for convenience, really, when all you want to do is label a paragraph without incurring all the vertical space of \subsubsub...subsections. Use it like: ``` \verysubsection{\Tevatron Run II experiments} Since 1983 and until the commissioning of the \LHC is complete... ``` ### 6.17 Semantic figure widths Rather than specifying figure widths in raw terms, like centimetres, or document parameters like \textwidth, it's nice to be able to have a more semantic reference. Having a few standard width also helps to keep things looking consistent through the document. For these reasons, hepthesis provides four standard figure widths, \smallfigwidth, \mediumfigwidth, \largefigwidth and \hugefigwidth, which are defined in terms of the text width and chosen to avoid overflows. Use them like this: ``` \begin{figure} \includegraphics[width=\largefigwidth]{ckmfitter-alpha-combined} \caption{CKM Fitter constraints on \alphaCKM.} \label{fig:CKMFitter} \end{figure} ``` Note also that this way of including images will automatically look for an .eps file when building PostScript and a .pdf file when building PDF. You may find the eps2pdf and pdf2eps utilities useful. #### 6.18 Standard in-document reference terms It's nice to be able to refer to portions of your document with standard names, capitalisation, etc. For this reason, I've defined a bunch of macros which give consistent and sensible capitalisations. Using them systematically will ensure consistency in your references: - \Chapter ⇒ Chapter - \Section \Rightarrow Section - \Appendix ⇒ Appendix - \Figure ⇒ Figure - \Table \Rightarrow Table - \Equation ⇒ equation - \Reference ⇒ reference - $\backslash Page \Rightarrow page$ Taking this consistency thing a step further, here are versions of the same commands which take the reference label as a argument: - \ChapterRef - \SectionRef - \AppendixRef - \FigureRef - \TableRef - \EquationRef - \ReferenceRef - \PageRef Using these forms will ensure that the spacing between e.g. the worked "Chapter" and the chapter number is always the same, and that it won't wrap over line breaks. The equation, reference and page forms will call the \eqref, \cite and \pageref reference macros rather than \ref, which is used for all others. # 6.19 "thesis—" prefix versions Additionally, all hepthesis environments and commands have an alternative name, which is the version described above, prefixed with "thesis". These forms are frankly a bit of a pain to use, so use the short versions, please. The "thesis—" versions should be considered deprecated and may be removed in future releases. # 7 Recommended extra packages Here are some other packages it might be good to know about: • SIunits[18]: the way to do units and get it right. ¹This is a hang-over from early versions of my thesis, when I didn't know how to robustly extend and re-define environments and commands. - hepunits[19]: my extension of SIunits to include some common HEP units not used elsewhere. - hepnames[20] and hepparticles[21]: my packages for typesetting HEP particle names *properly*, with hepnames defining macros for a lot of the standard ones. Requires maybemath[22] - braket[23]: decent implementation of Dirac bra and ket notation - cancel[24]: the best way to do Feynman slashes (in my opinion) - feynmf/feynmp[25] and axodraw[26]: various approaches to doing Feynman diagrams, especially in equations, inline contexts and so-on. and some related software: - FeynDiagram[27] and Jaxodraw[28]: for Feynman diagrams outside TEX. You might also be interested in my pyfeyn[29] program, once it's publically released. - SLAC SPIRES' biblio tools service: see www.slac.stanford.edu/spires/ # 8 An example hepthesis thesis Here are some selected snippets from my thesis, which hopefully demonstrate the features described. I split my thesis into thesis.cls, thesis.sty and thesis.tex files, with the front matter, back matter and chapters \input'd into thesis.tex. The output was built by running e.g. latex thesis.tex && bibtex thesis && latex thesis.tex (though I used a Makefile rather than do it directly). You should note that you might not be able to build this exact thesis due to missing packages: if you're writing an HEP thesis then I'd encourage you to use the hepnames LATEX package for typesetting particle names — it depends on the extra hepparticles and maybemath packages, which you'll also have to download. The examples used here also rely on the hepunits package: you can all these extra packages from the CTAN[1]. See Appendix B for a quick guide on how to install personal copies of LATEX packages. #### 8.1 thesis.cls \ProvidesClass{thesis} %% For normal draft builds \LoadClass[hyperpdf,nobind,draft,sftitles]{hepthesis} ``` %% For short draft builds (breaks citations by necessity) %\LoadClass[hyperpdf,nobind,draft,hidefrontback]{hepthesis} %% For Cambridge soft-bound version %\LoadClass[hyperpdf,bindnopdf]{hepthesis} %% For Cambridge hard-bound version (must be one-sided) %\LoadClass[hyperpdf,oneside]{hepthesis} %% Standard packages %% ----- \RequirePackage{rotating} \RequirePackage{cite} %\RequirePackage{morefloats} \RequirePackage{mathrsfs} % script font \RequirePackage{afterpage} 8.2 thesis.sty \ProvidesPackage{thesis}[2005/07/28] %\RequirePackage{timing} \RequirePackage{hepnicenames,hepunits,abhep} \% Citation spacing hack to bring the citation %% number a little closer to the referring text \let\@OldCite\cite %% Maths \DeclareRobustCommand{\thesismath}[1]{\ensuremath{\maybebmsf{#1}}} \DeclareRobustCommand{\parenths}[1]{\mymath{\left({#1}\right)}} \DeclareRobustCommand{\braces}[1]{\mymath{\left\{{#1}\right\}}} \DeclareRobustCommand{\angles}[1]{\mymath{\left\langle{#1}\right\rangle}} \DeclareRobustCommand{\sqbracs}[1]{\mymath{\left[{#1}\right]}} \DeclareRobustCommand{\mods}[1]{\mymath{\left\lvert{#1}\right\rvert}} \DeclareRobustCommand{\dblmods}[1]{\mymath{\left\lVert{#1}\right\rVert}} \DeclareRobustCommand{\exp0f}[1]{\mymath{\exp{\!\parenths{#1}}}} \DeclareRobustCommand{\eexp}[1]{\mymath{e^{#1}}} \DeclareRobustCommand{\plusquad}{\mymath{\oplus}} \DeclareRobustCommand{\logOf}[1]{\log\!\parenths{#1}} \DeclareRobustCommand{\lnOf}[1]{\ln\!\parenths{#1}} ``` ``` \DeclareRobustCommand{\ofOrder}[1]{\mymath{ \mathcal{0}\parenths{#1} }} %% General utility defns \DeclareRobustCommand{\arXivCode}[1]{arXiv:#1} \DeclareRobustCommand{\CPviolation}{\CP-violation\xspace} \DeclareRobustCommand{\CPv}{\CPviolation} \DeclareRobustCommand{\LHCb}{LHCb\xspace} \DeclareRobustCommand{\LHC}{LHC\xspace} \DeclareRobustCommand{\LEP}{LEP\xspace} \DeclareRobustCommand{\CERN}{CERN\xspace} %% Basic rate formalisms \DeclareRobustCommand{\Rate}{\thesismath{\Gamma}\xspace} \DeclareRobustCommand{\RateOf}[1]{\thesismath{\Gamma}\parenths{#1}\xspace} %% Phrases to be consistent about (with b/B) \DeclareRobustCommand{\bphysics}{\Pbottom-physics\xspace} \DeclareRobustCommand{\bhadron}{\Pbottom-hadron\xspace} \DeclareRobustCommand{\Bmeson}{\PB-meson\xspace} \DeclareRobustCommand{\bbaryon}{\Pbottom-baryon\xspace} \DeclareRobustCommand{\Bdecay}{\PB-decay\xspace} \DeclareRobustCommand{\bdecay}{\Pbottom-decay\xspace} %% Processes \DeclareRobustCommand{\BToKPi}{\HepProcess{ \PB \to \PK \, \Ppi }\xspace} \DeclareRobustCommand{\BToPiPi}{\HepProcess{ \PB \to \Ppi \, \Ppi }\xspace} \DeclareRobustCommand{\BToKK}{\HepProcess{\PB \to \PK \, \PK}\xspace} \DeclareRobustCommand{\BToRhoPi}{\HepProcess{ \PB \to \Prho \, \Ppi }\xspace} \DeclareRobustCommand{\BToRhoRho}{\HepProcess{ \PB \to \Prho \Prho \\xspace} \DeclareRobustCommand{\X}{\thesismath{X}\xspace} \DeclareRobustCommand{\Xbar}{\thesismath{\overline{X}}\xspace} \DeclareRobustCommand{\Xzerobar}{\HepGenAntiParticle{X}{}{0}\xspace} \DeclareRobustCommand{\epluseminus}{\Pelectron\Ppositron\xspace} % Fix hyperref labels in PDFTeX \@ifpackageloaded{hyperref}{% \pdfstringdefDisableCommands{% \def\pi{pi}% \def\gamma{gamma}% }% ``` #### 8.3 thesis.tex ``` \documentclass{thesis} \usepackage{thesis} %% PDF metadata \makeatletter \@ifpackageloaded{hyperref}{% \hypersetup{% pdftitle = {Studying B to K pi decays with LHCb}, pdfsubject = {Andy Buckley's PhD thesis}, pdfkeywords = {LHCb, B, physics, LHC, heavy flavour}, pdfauthor = {\textcopyright\ Andy Buckley} } }{} \makeatother %% Define the thesis title and author \title{A study of \BToKPi decays with\\ the \LHCb experiment} \author{Andrew Gordon Buckley} %% Start the document \begin{document} %% Define the un-numbered front matter (cover pages, rubrik and table of contents) \begin{frontmatter} \input{frontmatter} \end{frontmatter} %% Start the content body of the thesis \begin{mainmatter} %% Actually, more semantic chapter filenames are better, like "chap-bgtheory.tex" \input{chap1} \input{chap2} %% To ignore a specific chapter while working on another, \mbox{\%}\mbox{\ } making the build faster, comment it out like this: %\input{chap3} \end{mainmatter} ``` ``` %% Produce the appendices \begin{appendices} \input{appendices} \end{appendices} %% Produce the un-numbered back matter (e.g. colophon, %% bibliography, tables of figures etc., index...) \begin{backmatter} \input{backmatter} \end{backmatter} %% Close \end{document} 8.4 frontmatter.tex %% Title \titlepage[of Churchill College]% {A dissertation submitted to the University of Cambridge\\ for the degree of Doctor of Philosophy} %% Abstract \begin{abstract}%[\smaller \thetitle\\ \vspace*{1cm} \smaller {\theauthor}] %\thispagestyle{empty} \LHCb is a \bphysics detector experiment which will take data at the \unit{14}{\TeV} \LHC accelerator at \CERN from 2007 onward\dots \end{abstract} %% Declaration \begin{declaration} This dissertation is the result of my own work, except where explicit reference is made to the work of others, and has not been submitted for another qualification to this or any other university. This dissertation does not exceed the word limit for the respective Degree Committee. \vspace*{1cm} \begin{flushright} Andy Buckley \end{flushright} ``` ``` \end{declaration} %% Acknowledgements \begin{acknowledgements} Of the many people who deserve thanks, some are particularly prominent: \noindent My supervisor\dots \end{acknowledgements} %% Preface \begin{preface} This thesis describes my research on various aspects of the \LHCb particle physics program, centred around the \LHCb detector and \LHC accelerator at \CERN in Geneva. \noindent For this example, I'll just mention \ChapterRef{chap:SomeStuff} and \ChapterRef{chap:MoreStuff}. \end{preface} %% ToC \tableofcontents %% Strictly optional! \frontquote% {Writing in English is the most ingenious torture\\ ever devised for sins committed in previous lives.}% {James Joyce} chap1.tex 8.5 \chapter{\CP violation in the \Bmeson system} \label{chap:SomeStuff} %% Note that the citations in this chapter use the journal and %% arXiv keys: I used the SLAC-SPIRES online BibTeX retriever %% to build my bibliography. There are also quite a few non-standard ``` % macros, which come from my personal collection. You can have them ``` %% if you want, or I might get round to properly releasing them at %% some point myself. \chapterquote{Laws were made to be broken.}% {Christopher North 1785--1854}%: Blackwood's Magazine May 1830 Symmetries, either intact or broken, have proved to be at the heart of how matter interacts. The Standard Model of fundamental interactions (SM) is composed of three independent continuous symmetry groups denoted $\SUgroup{3} \times \SUgroup{2} \times \Ugroup{1}$, representing the strong force, weak isospin and hypercharge respectively~\cite{Phys.Rev.Lett.19.1264, Phys.Rev.D2.1285,hep-ph/0410370}. \section{Neutral meson mixing} We can go a long way with an effective Hamiltonian approach in canonical single-particle quantum mechanics. To do this we construct a wavefunction from a combination of a generic neutral meson state $\ket{\Xzero}$ and its anti-state $\ket{\Xzerobar}$: \begin{equation} \end{equation} which is governed by a time-dependent matrix differential equation, \begin{equation} \I \<page-header> \fi \colvector{a \ \ } \underbrace{% \two matrix{ M_{11}-\frac{11}{2}\Gamma_{11}} & M_{12}-\frac{\I}{2}\Gamma_{12} } { M_{12}^\alpha = {12}^\alpha {1}}{2}\Gamma_{12}^\alpha & M_{22}-\frac{1}{2}\Gamma_{22} } {\boldmatrix{H}} \colvector{a \\ b} \end{equation} ``` ### 8.6 chap2.tex ``` \chapter{The \LHCb experiment} \label{chap:MoreStuff} \chapterquote{There, sir! that is the perfection of vessels!} {Jules Verne, 1828--1905} \section{The \LHC} The Large Hadron Collider (\LHC) at \CERN is a new hadron collider, located in the same tunnel as the Large Electron-Positron collider (\LEP)~\cite{Brianti:2004qq}. Where \LEP's chief task was the use of \displaystyle \{90--207\} \ \epluseminus collisions to establish the precision physics of electroweak unification\dots \begin{figure} \includegraphics[width=\largefigwidth]{ckmfitter-alpha-combined} \caption[CKM Fitter constraints on \alphaCKM.]% {CKM Fitter constraints on \alphaCKM from combined \BToPiPi, \BToRhoPi and \BToRhoRho decay analyses.} \label{fig:CKMFitter} \end{figure} \section{The \LHCb experiment} \label{sec:LHCbInDetail} Since both \bhadron{s} are preferentially produced in the same direction and are forward-boosted along the beam-pipe, the detector is not required to have full 4π solid-angle coverage. \LHCb takes advantage of this by using a wedge-shaped single-arm detector with angular acceptance \unit{10-300}{\mrad} in the horizontal (bending) plane \cite{Amato:1998xt}. \vspace{1cm} \dots \vspace{1cm} The detector is illustrated in \FigureRef{fig:LHCbCrossSection}, showing the overall scale of the experiment and the surrounding cavern structure. \begin{sidewaysfigure} %\begin{center} \includegraphics[width=0.8\textheight]{lhcb-detector-cross-section} \caption[Cross-section view of \LHCb, cut in the non-bending $y-z$ plane]% {Cross-section view of \LHCb, cut in the non-bending $y-z$ plane.} ``` ``` \label{fig:LHCbCrossSection} %\end{center} \end{sidewaysfigure} ``` The single-sided detector design was chosen in preference to a two-armed design since the detector dimensions are restricted by the layout of the IP8 (ex-Delphi) cavern in which \LHCb is located. Using all the available space for a single-arm spectrometer more than compensates in performance for the \about{50\percent} drop in luminosity. ``` \section{The \Cerenkov mechanism} A Huygens construction in terms of spherical shells of probability for photon emission as the particle progresses along its track shows an effective "'shock-front" of Cerenkov emission. This corresponds to an emission cone of opening angle \thetaCerenkov around the momentum vector for each point on the track, % \begin{subequations} \label{eq:cosThetaCk} \begin{equation} \cos\.\thetaCerenkov &= \frac{1}{n \beta} + \frac{hbar k}{2p}% \operatorname{parenths} \{ 1 - \operatorname{frac}\{1\}\{n^2\} \} \setminus &\,\sim \frac\{1\}{n \beta}% \label{eq:cosThetaCkApprox} \end{equation} \end{subequations} where $\beta \equiv v/c$, the relativistic velocity fraction, \section{Trigger system} \label{sec:triggers} An overview of the \LHCb trigger characteristics broken down by level is shown in \Table~\ref{tab:TriggerDetails}: \begin{table} \begin{tabular}{11111} // & LO & L1 & HLT \midrule Input rate & \unit{40}{\MHz} & \unit{1}{\MHz} & \unit{40}{\kHz} \\ Output rate & \unit{1}{\MHz} & \unit{40}{\kHz} & \unit{2}{\kHz} \\ ``` ``` Location & On detector & Counting room & Counting room \\ \end{tabular} \caption{Characteristics of the trigger levels and offline analysis.} \label{tab:TriggerDetails} \end{table} ``` #### 8.7 backmatter.tex ``` begin{colophon} This thesis was made in \LaTeXe{} using the ''hepthesis'' class~\cite{hepthesis}. \end{colophon} %% You're recommended to use the eprint-aware biblio styles which %% can be obtained from e.g. www.arxiv.org. The file mythesis.bib %% is derived from the source using the SPIRES Bibtex service. \bibliographystyle{h-physrev} \bibliography{mythesis} %% I prefer to put these tables here rather than making the %% front matter seemingly interminable. No-one cares, anyway! \listoffigures \listoffigures \listoffigures \listoftables %% If you have time and interest to generate a (decent) index, %% then you've clearly spent more time on the write-up than the research :) %\printindex ``` # 9 Wishlist / TODO I'm not planning on writing another thesis, but maybe I'll add features if there's demand. If you add a nice feature, pass it on to me and I'll think about including it in the package (and will give you some credit, of course). But anyway, here's the TODO: - Make hepthesis use subfig in place of subfigure and check out compatibility between caption and caption2. - Make the spacing in the \SectionRef etc. commands customisable. - Allow the PDF page style to be specified as a class argument - Allow section titles to be centre / right justified? - User control of frontmatter title sizes and alignments? (Probably not...) - Provide different styles for the titlepage etc. - Themes, like for Beamer? - Make the vertical spacings on the quote, dedication and title pages change by paper size ## 10 Feedback hepthesis has taken a lot of work...I hope you think it was worthwhile and that you enjoy using it. Or at least, I hope you enjoy writing your thesis more than you would have done without it! If you're feeling appreciative, then a teeny credit in your thesis acknowledgements would be hugely appreciated. Other than that, any feedback on the package is very welcome, especially if it's constructive criticism! Email your thoughts to hepthesis@insectnation.org, please. # A Using your own derived document class If you're feeling sophisticated, then you can make your own document class based on hepthesis by placing #### \LoadClass{hepthesis} in your own class definition file. This is a rather nice way of working, since it allows you to tweak the hepthesis defaults without cluttering your .tex file with preamble junk. # B Installing personal copies of LaTeX packages Since hepthesis depends on several non-standard LATEX packages, you may have to download and install them yourself. If you don't have root access to the computer on which you're working then you'll probably have to install them into your own home directory or similar. Since I expect quite a few prospective users of hepthesis will be non-experts in the ways of TeX, this is a quick guide on what to do. 1. Make a TEX directory tree in your home directory (or any other area you can write to), e.g. ``` $ mkdir -p $HOME/local/texmf/tex/latex $ mkdir -p $HOME/local/texmf/bibtex/bib $ mkdir -p $HOME/local/texmf/bibtex/bst ``` - 2. Download the packages from CTAN[1] or wherever. - 3. Follow the packages' installation instructions to install them into the \$HOME/local/texmf/tex/latex directory you made above (or an appropriately-named sub-directory of it if you want to be neat). For simple .sty or .cls files, this will just involve copying them into your directory of choice. .dtx files will probably require running latex to build the files to be installed. - 4. If you use the bash shell, add the following to your ~/.bashrc file: ``` export TEXINPUTS="$HOME/local/texmf/tex//:$TEXINPUTS" export LATEXINPUTS="$HOME/local/texmf/tex/latex//:$LATEXINPUTS" export BIBINPUTS="$HOME/local/texmf/bibtex//:$BIBINPUTS" or, if you use the (t)csh shell, add the following to your ~/.cshrc file: setenv TEXINPUTS "$HOME/local/texmf/tex//:$TEXINPUTS" setenv LATEXINPUTS "$HOME/local/texmf/tex/latex//:$LATEXINPUTS" setenv BIBINPUTS "$HOME/local/texmf/bibtex//:$BIBINPUTS" ``` 5. That's all: the lines above mean that LATEX will look for input files such as classes, packages, images, \input'd .tex files etc. recursively under \$HOME/local/texmf/tex/latex and that BibTeX will look for its style and database files recursively under \$HOME/local/texmf/bibtex. You can probably see how this can be extended to keep your thesis development directories neat, too! # C Distinguishing PS/PDF output in thesis builds The options bindnopdf and hyperpdf change the behaviour depending on whether you're building PDF or PostScript output. This is fine if you only ever do one, but if you want to switch rapidly between these output formats then you'll have problems. This is because the .aux file, which records the reference keys and suchlike changes depending on whether you're making hyper-refs and if the changes of margins force sections on to different pages. A nice solution to this involves using a Makefile, which you probably want to be doing anyway. You'll have to read up on the details of Makefiles (and possibly GNU automake) elsewhere, but to save on Make-newbie angst, I'll tell you that the indents in the following snippet *must* be tabs, rather than spaces! Here goes — put the following into a file called Makefile, change the DOCNAME variable to something which suits your project and run make thesis or make thesispdf: Otherwise you can just delete the .aux file when you change between using latex and pdflatex, but this will require more passes, since the .aux file has to be replaced each time. # References ``` [1] CTAN: http://www.ctan.org. http://www.tex.ac.uk/tex-archive is shortened to ctan: below. [2] cite: ctan:/macros/latex/contrib/cite/ [3] setspace: ctan:/macros/latex/setspace/ [4] fancyhdr: ctan:/macros/latex/contrib/fancyhdr/ [5] rotating: ctan:/macros/latex/contrib/rotating/ [6] tocbibind: ctan:/macros/latex/contrib/tocbibind/ [7] subfigure: ctan:/obsolete/macros/latex/contrib/subfigure/ [8] ccaption: ctan:/macros/latex/contrib/ccaption/ ``` ``` [9] caption: ctan:/macros/latex/contrib/caption/ ``` - [10] a4wide: ctan:/macros/latex/contrib/misc/a4wide.sty - [11] amsmath: ctan:/macros/latex/required/amslatex/math/ - [12] hyperref: ctan:/macros/latex/contrib/hyperref/ - [13] booktabs: ctan:/macros/latex/contrib/booktabs/ - [14] draftcopy: ctan:/macros/latex/contrib/draftcopy/ - [15] lineno: ctan:/macros/latex/contrib/lineno/ - [16] titling: ctan:/macros/latex/contrib/titling/ - [17] sfheaders: ctan:/macros/latex/contrib/sfheaders/ - [18] SIunits: ctan:/macros/latex/contrib/SIunits/ - [19] hepunits: ctan:/macros/latex/contrib/hepunits/ - [20] hepnames: ctan:/macros/latex/contrib/hepnames/ - [21] hepparticles: ctan:/macros/latex/contrib/hepparticles/ - [22] maybemath: ctan:/macros/latex/contrib/maybemath/ - [23] braket: ctan:/macros/latex/contrib/misc/braket.sty - [24] cancel: ctan:/macros/latex/contrib/misc/cancel.sty - [25] feynmf: ctan:/macros/latex/contrib/feynmf/ - [26] axodraw: http://www.nikhef.nl/~form/FORMdistribution/axodraw/ - [27] feyndiagram: http://www.feyndiagram.com - [28] jaxodraw: http://http://jaxodraw.sourceforge.net/ - [29] pyfeyn: http://hepforge.cedar.ac.uk/pyfeyn/